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PERFORMANCE ANALYSIS OF BACTERIAL GENOME ASSEMBLERS 

USING ILLUMINA NEXT GENERATION SEQUENCING DATA  

ABSTRACT 

The advancement of next generation sequencing (NGS) technology has revolutionized the 

field of genomic and genetic studies. As compared to conventional methods, NGS 

generate comprehensive genomic data at a fraction of the cost with a higher percentage 

of accuracy. One of the processing and analyzing NGS data is genome assembly. De novo 

assembly is a process of assembling short reads into contiguous sections of sequence 

without a reference which is different with conventional mapping technique. De Bruijn 

graph is one of the assembly algorithms that are widely used for short reads sequences 

produced from NGS platforms. In this study, the performance of four de novo assemblers 

(SPAdes, ABySS, Velvet and MaSuRCA) is reported, in which variants of de Brujin 

graph algorithms are applied, using genomic data generated by the Illumina sequencing 

platform. The computational performance regarding the assemblers running time were 

compared. The assembled contigs and scaffolds were also evaluated based on several 

qualities specifically for their length and the contiguity of the assembly using ABySS-

fac. Results showed that on single-end data sets, MaSuRCA, and SPAdes produced 

generally the best results among all the four assemblers with highest percentage of contigs 

that were equal or longer than 500 bp, highest total base pairs, highest N50 and the lowest 

L50 for most assemblers. For paired-end data sets, Velvet are suitable to assemble all the 

seven bacteria genome sequences. This comparative study will advance the current 

knowledge of de novo genome assembly as it is the first step toward characterizing and 

revealing whole genomic information. In addition, this work provides a practical guideline 

that could aid researchers in identifying the appropriate assembler(s) for their research 

projects. 
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ANALISIS PRESTASI PERHIMPUNAN GENOM BAKTERIA 

MENGGUNAKAN DATA TEKNOLOGI PENJUJUKAN GENERASI AKAN 

DATANG JENIS ILLUMINA 

ABSTRAK 
 
Kemajuan teknologi penjujukan generasi akan datang (NGS) telah membawa satu 

revolusi dalam bidang kajian genom dan genetik. Berbanding dengan kaedah 

konvensional, NGS telah dapat menghasilkan data genomik yang komprehensif pada kos 

yang minimum tetapi peratusan ketepatan yang lebih tinggi. Salah satu proses dan analisis 

data NGS adalah perhimpunan genom. Perhimpunan secara de novo adalah satu proses 

menyatukan urutan pendek menjadi jujukan bersebelahan (lebih panjang) tanpa rujukan, yang 

berbeza dengan teknik pemetaan secara konvensional. Graf de Bruijn adalah salah satu 

daripada algoritma penghimpun yang digunakan secara meluas untuk urutan pendek yang 

dihasilkan dari platform NGS. Dalam kajian ini, prestasi empat penghimpun jujukan 

secara de novo (SPAdes, ABySS, Velvet and MaSuRCA) dilaporkan, yang mana pelbagai 

algoritma graf de brujin diguna pakai bagi data genomik yang dijana oleh platform 

penjujukan Illumina. Prestasi komputasi mengenai masa yang diperlukan bagi 

menjalankan kerja-kerja penyatuan dibandingkan. Kontig dan skafold yang terhasil juga 

dinilai berdasarkan beberapa kualiti khusus untuk panjangnya dan kesinambungan 

penyatuannya menggunakan ABySS-fac. Hasil kajian menunjukkan pada set data hujung 

tunggal, MaSuRCA dan SPAdes menghasilkan hasil yang terbaik di antara keempat-

empat penghimpun dengan peratusan tertinggi yang sama atau lebih panjang daripada 

500 bp, jumlah ‘base pairs’ tertinggi, N50 tertinggi dan L50 terendah untuk kebanyakan 

penghimpun. Untuk set data berpasangan, Velvet sesuai untuk menyusun kesemua tujuh 

urutan genom bakteria. Kajian perbandingan ini akan dapat memajukan pengetahuan 

semasa berkenaan perhimpunan genom secara de novo seperti yang diketahui bahawa ia 

adalah langkah pertama ke arah mencirikan dan mendedahkan maklumat keseluruhan 
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genom. Di samping itu, ia juga dapat menyediakan satu panduan praktikal yang 

seharusnya membantu para penyelidik mengenal pasti penghimpun yang sesuai untuk 

projek penyelidikan mereka. 

 

Kata kunci: Penjujukan generasi akan datang (NGS), perhimpunan secara de novo, graf 

de Bruijn, Illumina, penjujukan genom keseluruhan 
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CHAPTER 1: INTRODUCTION 
 

1.1 Overview 
 
 

Genome sequencing has been greatly enhanced by the overwhelming revolution in 

sequencing technologies (techniques, instruments and software) for the pass forty years. 

Began with sequencing the genomes of small, simple organisms until more complex with 

various sizes and shapes of genome involving different numbers of chromosome. 

Although genome sequencing started more earlier, year 1995 is the time when the first 

complete genetic catalogue of a free-living organism generated. It was a sequence of 

Haemophilus influenzae, a Gram-negative, pathogenic, facultatively anaerobic 

bacterium. This bacteria was choosen by the researchers from Johns Hopkins University 

School of Medicine, USA for their study because its genome size is a common size for a 

bacteria (1.8 Mb), its G+C base contents (38 percent) is close with human G+C contents 

and during that time, there is no existance of a Haemophilus influenzae physical clone 

map. Sanger technology had been used to sequence the bacteria (Fleischmann et al., 

1995). 

 
However, applying whole genome sequencing (WGS) by Sanger instrument is not an 

efficient method. This is due to Sanger sequencing needs high costs and it involves time-

consuming process. Therefore, some researchers considered to transform to next 

generation sequencing (NGS) because of the costly-effective and faster when compared 

with Sanger sequencing (Ahmadloo et al., 2017). Furthermore, NGS capables to produce 

very huge amount of data which more than one billion of short reads in a single run (Raza 

& Ahmad, 2016). The changes that occur in sequencing technology influenced the post- 

genomic analysis involving small and large genomes (Ni et al., 2018; Ekblom & Wolf, 

2014; Li et al., 2009). Although, the data generated from NGS platform is quite short, it 
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has been used frequently to detect SNP in human and other mammalian genome by the 

increasing of sequencing depth and coverage. The NGS data also give a lot of information 

regarding gene fusion, expression and variation especially in disease (Benke et al., 2018; 

Gioiosa et al., 2018; De Wit et al., 2012; Ozsolak & Milos, 2011).  

 
The pipeline for processing and analyzing data from NGS or is sometimes called 

‘massively parallel sequencing’ platforms is shown in Figure 1.1. It is divided into three 

stages starting with primary analysis in which the sequencing instrument raw signals 

generates nucleotide base and short-read data. The next stage is secondary analysis by 

aligning the sequences to a reference or de novo assembly will be applied to the reads 

which do not have references. Variant detection is also performed in this stage. Finally, 

the tertiary analysis stage or “interpretation” stage is to determine their biological 

significance, function and meaning from the genetic data (Oliver, Hart, & Klee, 2015; 

Moorthie, Hall, & Wright, 2012). 

 

Figure 1.1: (A) The whole genome research in general (B) A trail of assembly 
process after sequencing.
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It is expectable that when the genome is fully sequenced and assembled, it can be 

produced in a form of full-length chromosomes. However, it is not a straightforward 

task due data complexity. There are several challenges of NGS output need to handle 

wisely such as the short reads produced by NGS platform, the gap between existing 

computational tools to align or assemble these short reads (El-Metwally et al., 2013), 

repeats can be tricky and make the assembly process more complex (Treangen & 

Salzberg, 2011), sequencing error and others. All these issues make the genome 

assembly process harder. The process involved is getting complicated when there is lack 

or absence reference genome. Thus, de novo assembly, a process of assembling short 

reads unsuitable for conventional mapping technique should be applied. Furthermore, 

according to Maretty et al. (2017) the de novo assembly has a capability to identify a 

rich information of genomic diversity by looking into the specific organism’s genetic 

and structural variations completely. In addition, with the progressive of a de novo 

assembly method in lower cost would allow the constructing the reference sequences 

which are really exigency and very important for varies post-genomic analysis such as 

identify substitutions, insertions, deletions (indel), characterize individual genomes and 

detect structural and genetic variation especially novel sequences (Sohn & Nam, 2016).  

 

Contiguity, as well as the accuracy of genome assembly can be evaluated with different 

assembly metrics such as  number of contigs (n), number of contigs at least 500 bp 

(n:500), the number of contigs equal to or longer than N50 reported in the N50 column 

(L50), smallest contig (min), largest contig (max), N50 contig length (N50), N80 contig 

length (N80), N20 contig length (N20), the sum of the square of the sequence sizes 

divided by the assembly size (E-size) and sum of contig lengths (sum). 
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1.2 Problem Statements 
 

The focus of this study is to recognize and distinguish clearly different type of de novo 

genome assemblies’ graphs which are - Greedy extension, overlap-layout-consensus and 

de Bruijn graph. In this study, efforts are also being made to assess the execution of four 

de novo assemblers (SPAdes, ABySS, Velvet and MaSuRCA) which employed de Bruijn 

graph algorithms for bacterial genomes. 

 

1.3 Research Questions 
 

Although the sizes of bacteria genome are small and bacterial sequencing procedure 

have been started in 1995, in reality many of the sequenced bacterial are still in draft 

stage. Based on Land et al. (2015), 90% of bacterial genomes in GenBank are incomplete. 

This situation happened because of the occurrence of repetitive sequences in bacterial 

genomes, misassembled regions in draft sequence, incorrect gene calls and so forth 

(Utturkar et al., 2017). Cheung & Kwan (2012) has explained the need to have a genomic 

analytical workflow to extract the complex bacterial genomes information especially 

when involved with disease outbreaks cause by bacterial pathogen. In the past few years, 

several de novo assemblers with different types of algorithms have been developed. 

However, to choose the appropriate assembler for paired-end or single-end data is still a 

challenging task (Baker, 2012).  
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1.4 Objectives 
 

1. To evaluate four de novo de Bruijn graph assemblers (SPAdes, ABySS, Velvet and 

MaSuRCA) using bacterial genome sequencing data sets generated by the Illumina 

platform. 

2. To validate the performance of the de novo assemblers, on the respective genome 

sequences using Genome Assembly Gold-Standard Evaluations (GAGE) and 

gVolante. 

 
1.5 Organization 
 

This thesis comprises of six chapters, which are: Chapter 1-Introduction, Chapter 2- 

Literature review, Chapter 3-Materials and methods, Chapter 4-Results, Chapter 5- 

Discussion and Chapter 6-Conclusion. The first chapter describes the overview of 

genome sequencing using next generation sequencing (NGS) and the objectives of this 

study. Second chapter contains literature review of entities related to the study. Chapter 

3, the materials and methodology chapter describe the software, hardware, parameters 

and research pipeline adopted in this study. Chapter 4 presents the results of this study 

and the findings are further discussed in Chapter 5, discussion. The last chapter 

summarizes the outcome of this study. 

 

Hopefully, this study will advance the current knowledge of de novo genome 

assemblies from different strategies and platforms, as we know that genome assemblies 

is the first step toward characterizing and revealing whole genomes information. This 

study also will contribute further to the development of new tools which relevance with 

the current sequencing platforms. 
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 Bacterial genome 
 

According to Goldman & Landweber (2016), “genome” of an organism is defined as 

the entire genetic complement of a living organism. The phrase “entire genetic 

complement” refers to DNA genomes or Ribonucleic acid (RNA) genomes which 

comprised genes, gene-related sequences (pseudogenes, introns, gene fragments) and 

intergenic DNA (repeats, microsatellites). These genomic elements are packaged in 

chromosomes. In eukaryotic organism, the individual genome consists of several 

chromosomes with different sizes and shapes while in prokaryotic organism, most of the 

genome usually exists as a single, circular chromosome (some have linear chromosome 

and some have more than one circular chromosome) according to the table 2.1. 

 
Table 2.1: The different types of chromosomes for selected prokaryotic organisms. 

 
Species name Chromosome 

Agrobacterium tunefaciens One linear + one circular 
Escherichia coli K-12 One circular 
Vibrio cholerae Two circular 
Paracoccus denitrificans Three circular 
Borrelia burgdorferi One linear 

 
 

Seventy years ago, it was generally believed that all chromosomes were linear. 

However, in 1963, Cairns found large circles with a 1300 μm circumferences in 

Escherichia coli cell that he isolated and labelled the DNA using radioactive isotope. It 

was clear that the bacterium consists of a single circular of molecule DNA. The idea that 

bacteria have a single circular chromosome by citing E. coli as the example, was quickly 

adopted until the development of new techniques evolved that allowed the separation and 

analysis of large DNA fragments in early 1980. One of the techniques is pulsed-field gel 

electrophoresis (PFGE). This technique permitted the study of physical structure of
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bacterial genome directly. Thus, several bacterial chromosomes’ studies have been 

conducted and revealed complex structures in some bacteria including Rhodobacter 

sphaeroides had two circular chromosomes and Borrelia burgdorferi had a linear 

chromosome and linear plasmids. 

 
A bacterial genome is unique. Other than its chromosome in its cell, with the function 

as a governor that keep necessary information for replication and continued life of the 

cell under normal growth conditions, it is also contain phage genomes and plasmids. 

These elements sometimes have the ability to integrate into the chromosome and remain 

there for generation. 

 
2.2 Genome sequencing technique – historical perspective 
 

Genome sequencing has gone through the long history starting mid 1970’s, when 

Walter Fiers and his team sequenced the first genome, the bacteriophage MS2 at the RNA 

level (Fiers et al., 1976). It was soon followed in 1977, the bacteriophage ΦX174 genome 

had been sequenced by Frederick Sanger and his team using Sanger sequencing at DNA 

level (Sanger et al., 1977). This journey of flourishing continued in 1995 when the first 

free-living organism, Haemophilus influenzae was completely sequenced by researchers 

from Johns Hopkins University School of Medicine, USA. The same team was sequenced 

Methanococcus jannaschii, thermophilic methanogenic (methane producers) archaean. 

Even during that time, modern computer facilities are not fully ready for this kind of 

research (Fleischmann et al., 1995). 

The rapid advancement of sequencing research discipline is never been stopped. There 

is a large volume of published studies describing the developing and improving the 

sequencing technologies including experiment procedures, sequencing instruments and 

software in determining the precise order of DNA molecules. This is supported by Jay 
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Shendure et al. (2017) review which described in details of the 40th anniversary of DNA 

sequencing. It is started with the history of DNA sequencing from early generation of 

sequencing (the chain termination sequencing method developed by Sanger and Coulson, 

and the chemical sequencing procedure developed by Maxam and Gilbert) until the 

improvement of the sequencing methods (including the software) were highlighted in 

details due to more complex and larger organism involved. The author also explained the 

application of DNA sequencing and finally the future and hope from these technologies. 

The authors believe that DNA sequencing still a young technology based on the continuity 

evolving and arising of the field. It can be comparable with the microscope which is still 

be applied and upgrade although it has been invented more than 400 years ago. 

 
A number of whole genome sequencing technologies have been developed through 

three major revolutions: first generation sequencing (Sanger sequencing), second 

generation sequencing (next generation sequencing) and the third generation of 

sequencing (single molecule long read sequencing). Sanger sequencing technology is also 

well known as chain termination sequencing is based on the addition of 

dideoxynucleotides (ddNTP’s) in the normal nucleotides (NTP’s) found in DNA. The 

only difference of ddNTP’s and NTP’s is the replacement of a hydroxyl group (OH) with 

a hydrogen group on the 3’ carbon (Figure 2.1). 

 

Figure 2.1: Structural comparison of dNTP and ddNTP 
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This method is faster, reliable and more efficient techniques (less utilization of toxic 

chemicals and radioisotopes) to sequence DNA compared to Maxam-Gilbert Sequencing. 

 
2.3 Next Generation Sequencing (NGS) 
 

The demand for cost-effective and faster sequencing techniques has increased 

dramatically especially after the completion of the first human genome. Some of the 

research community start to shift to NGS technology and it became more widely 

available. Instead of the factor of time and cost, the innovation of NGS is also give 

advantageous compared to Sanger sequencing. First, the preparation of NGS libraries in 

a cell free system. Second, millions of DNA fragments produced in a single reaction (i.e., 

in parallel) and really suitable for processing complex samples, especially for large‐scale 

studies (van Dijk et al., 2014). NGS sequencing has proven revolutionary, shifting the 

paradigm of genomics to address biological questions at a genome-wide scale. 

 
The first NGS was introduced to the market by 454 Life Sciences based in Branford, 

Connecticut in 2005. The sequencer uses pyrosequencing technology that relies on the 

light detection of pyrophosphate released during the DNA polymerization reaction is 

occured and used as a marker of DNA incorporation (Fakruddin et al., 2012; Ronaghi, 

2001). Later in 2007, 454 Life Sciences acquired by other company, Roche and it was 

also happened to other NGS founders, Solexa (which invented Genome Analyzer) was 

purchased by Illumina while Agencourt (which invented SOLiD [Sequencing by Oligo 

Ligation Detection]) was purchased by Applied Biosystems (Metzker, 2010; Ansorge, 

2009; J. Shendure & Ji, 2008; Bentley, 2006). These three NGS platforms have been 

classified as second-generation sequencing and they shared higher throughput, efficiency 

and accuracy, instead of it is economically compared with Sanger sequencing (Liu et al., 

2012). 
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Figure 2.2: General workflow of second-generation sequencing 
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The general workflow of second-generation sequencing (in Figure 2.2) includes five 

phases: sample collection, library and template preparation, sequencing reactions and 

detection, quality control and data analysis. Establishing a high-quality DNA in sufficient 

quantity is necessary for the first phase and it may originate from different sources such 

as genomic DNA, reverse-transcribed RNA, cDNA, immunoprecipitated DNA and 

others. Second, library preparation which involved with converting the sample DNA into 

a library of sequencing reaction templates by common process including fragmentation, 

size selection, and adapter ligation. The process of fragmentation involves by randomly 

breaking the DNA templates into small pieces in which the size is depending on the 

sequencing platforms. The ligation of platform-specific adapters (which serve as primers) 

onto the ends of the DNA fragments for amplification and/or sequencing reactions. There 

are two types of amplification processes that commonly applied in second generation 

sequencing which are – bridge PCR or emulsion PCR. Third phase involves with 

sequencing reactions and detection that are vary depending on the sequencing platforms. 

The Illumina platform is based on sequencing-by-synthesis (SBS), SOLiD platform is 

based on sequencing-by-ligation (SBL) and Roche/454 platform is based on 

pyrosequencing. 

 
The last two steps after sequencing is complete which are checking the quality control 

and analysing of generated raw sequences data. Generally, each platform produces two 

types of data – the short-read sequences (commonly in FASTQ format) and the generated 

read quality scores. It is an important step to check and remove poor-quality sequence 

data including technical sequences (example adapter sequences) before any further 

analysis conducted. There are several forms of poor-quality sequence generated which 

are base-call errors (incorrectly identified DNA bases), systematic error of read, sample 

Univ
ers

ity
 of

 M
ala

ya



12 

 

contaminants, run-to-run variations, coverage biases and others. Figure 2.3 showed the 

different types of next generation sequencing platforms. 

 

 
Figure 2.3: The type of next generation sequencing platforms 

 
 

NGS technologies revolution have been going through the significant transition from 

second-generation to third-generation sequencing. This transformation comes out with 

distinct defining characteristics of the machines which are real-time sequencing with 

simple divergence (Ambardar et al., 2016). The third-generation sequencing implies the 

single-molecule sequencing that is PCR-free protocol (directly sequence each of single 

bases of DNA or RNA molecules without amplification) and cycle-free chemistry that 

described in Figure 2.4 and Table 2.2. The advantages of this technology are minimizing 

sample handling and input requirements, increases read length and more sensitive in term 

of accurate quantitation of nucleic acid molecule. The example of third generation 

sequencing is single molecule, real time (SMRT) sequencer from Pacific Biosciences and 

SMRT incorporating nanopore technology from Oxford nanopore technologies. Univ
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Figure 2.4: The common flow of second-generation and third-generation sequencing Univ
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Table 2.2: Comparison of first-, second-, and third-generation sequencing 
technology 
 
 
 

Characteristics 

 
First generation 

sequencing 

 
Second generation 

sequencing 

 
Third generation 

sequencing 

Type of platforms 
(model) 

• ABI Sanger 
(3730xl) 

• 454 (GS20, GS FLX, 
GS FLX Titanium, 
GS Junior, GS 
Juniror+) 

 
• Illumina (Genome 

Analyzer II MiniSeq, 
MiSeq, NextSeq, 
HiSeq, Hiseq X) 

 
• SOLiD (5500 W, 

5500xl W) 

• Pacific Biosciences – 
PacBio (PacBio RS) 

 
• Ion Torrent System 

(Ion Torrent Personal 
Genome Machine 
(PGM) and Ion 
Torrent Proton) 

 
• Oxford Nanopore 

(PromethIO, 
MinION) 

Amplification 
method 

• PCR • Emulsion PCR 
except Illumina 
(Bridge PCR) 

• Real-time single- 
molecule template 
(PacBio) 

 
• None (Oxford 

Nanopore) 
Method of 
sequencing 

• Capillary 
electrophoresis 
(CE) Sanger 
sequencing 

• Pyrosequencing 
(454) 

 
• Reversible 

terminator 
sequencing by 
synthesis (Illumina) 

 
• Sequencing by 

ligation (SOLiD) 

• Real-time single- 
molecule sequencing 
(PacBio) 

 
• Single molecule 

sequencing 
incorporating 
nanopore technology 
(Oxford Nanopore) 

Method of 
Detection 

• Fluorescence • Optical (454) 
 
• Fluorescence/ 

Optical (Illumina) 
 
• Fluorescence/ 

Optical (SOLiD) 

• Fluorescence/ 
Optical (PacBio) 

• Electrical 
Conductivity 
(Oxford Nanopore) 

Reads per run < 100 100 – 300,000,000 432 – 50 000 
Read length (per 

base) 400 bp – 1000 bp 35 bp – 800 bp Up to 60 kbp 

Error rate 0.001% • 1% (454) 
 
• 0.4% (Illumina) 

 
• 0.1 % (SOLiD) 

• 15% (Pac Bio) 
 
• 1% (Ion Torrent) 

 
• 4% (Oxford 

Nanopore) 
Average time to 

run Hours Days < 1 day 
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2.4 Genome assembly 
 

After the sequencing process is done, the reads will be assembled. The read is the 

output and the most basic element of sequencing. The length of reads is varying, and it 

depends of the sequencing platforms. For instance, Sanger sequencing produces between 

700 to 1000 bp while NGS platforms - pyrosequencing which is only ~800 bp long and 

Solexa/Illumina from ~100 bp reads (Goodwin et al., 2016; Loman et al., 2012). The 

sequence assembly is forming a set of contiguous sequences (contigs) from the reads 

randomly by applying multiple sequence alignment with selected algorithms (Phillippy, 

2017). Then, the contigs will form the order and orientation of the DNA strand of 

scaffolds, either the forward or reverse strand. Scaffolds are also defined as supercontigs 

or metacontigs (Miller et al., 2010). 

 
As we know, most of reads obtained by NGS platforms is very short length, so 

assembly process is needed to construct long and contiguous sequences and finally a 

complete genome. Generally, the raw reads generated by NGS platform is in FASTQ 

format (compression version “fastq.gz”). It comprises the sequence bases with an 

associated per base quality score (normally using by Phred). Phred indicates the 

probability of correct calling of the given base by the equation 

 
𝑄𝑃𝐻𝑅𝐸𝐷  =  −10 𝑥 log 10(𝑃𝑒)                                                                                            (2.1) 
 

Example, Phread quality score of 30 nominally corresponds to a 0.1% error rate equals 

to a 99.9% base call accuracy (Kanterakis et al., 2018). FASTA format is one of several 

data file format that is widely accepted for an assembly. In FASTA file, it contains the 

characters A, C, G, T and other characters with the special meaning based on the 

assembler.  

According to Paszkiewicz & Studholme (2010), the contiguity and accuracy of the 
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contigs or scaffolds are the important criteria to determine the quality of genome 

assemblies. The contiguity of the contigs or scaffolds can be defined as the length 

distributions of these sequences and usually be calculated by  various statistical metrics 

such as number of contigs, number of contigs at least 500 bp, N50 contig length, the 

number of contigs equal to or longer than N50 contig length reported, smallest contig 

(min), median contig length, average contig length, maximum contig length and sum of 

contig lengths. However, N50 length is a metric widely used to assess the contiguity of 

an assembly which calculated by sorting contigs according to their lengths in descending 

order then summing their lengths, the length of the shortest contig that represents equal 

or more than 50% of the sequences. On the other hand, the accuracy which also refers as 

‘correctness’ of an assembly show how well an assembly represent the genome sequenced  

by aligning with a complete reference genome using different genomic alignment tools 

to detect misassemblies, including mismatches, indels, and misjoins (Alhakami, H., 

Mirebrahim, H. & Lonardi, S., 2017). If there is unavailable references genome, the 

conserved sequences of related organisms may be used to detect conserved sequences in 

the newly assembled genome (El-Metwally et al., 2013). 

 
There are two methods for assembly which are comparative assembler or de novo 

assembler. Although these two methods are different, yet not exclusive schemes. This is 

due, during comparative assembly process involved, the de novo assembly technique can 

be applied when there are the areas of the novel genome that differ significantly with the 

reference genome. The use of assembly depends on biological complexity of the data, 

computational memory constraints, availability of reference genomes and application. 

The details about these genome assembly are:  

 
Comparative assembly uses a ‘reference’ in order to guide the assembly of the target 

organism. The reference/template can be a closely related organism with the target 
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organism a different strain of the same genus (Pop et al., 2004) or a different assembly of 

the same genome. This strategy is used in resequencing applications, for example (Pop et 

al., 2004) and have many applications such as single nucleotide polymorphisms (SNP) 

discovery, expression profiling, small RNA discovery and so forth (Nagarajan, N. & Pop, 

M., 2010). There are two main reference-guided assembly strategies: In the first one, 

reads are mapped against the reference genome and then used to construct an alternative 

consensus sequence (Vezzi et al., 2011). In the second approach, the reads are first de 

novo assembled. Then, the resulting contigs/scaffolds are aligned against the reference 

genome to order and orientate them along chromosomes, to get gene information for 

genome annotation and to identify potential misassembled contigs or scaffolds (Bao et 

al., 2014). 

 
De novo genome assembly can be explained as a process of solving a big jigsaw puzzle 

without knowing the resulting picture. This is due to the absence of a reference sequences 

or even complete closure of the genome. Although this method may produce errors 

because of the algorithm will give the best guess during assembly (Horner et al., 2010), 

reference resource constraints is more crucial. Even, this type of assembly also used for 

sequence’s region that obviously have large different from the reference (Pop, 2009). In 

addition, this technique is considered much more challenging than comparative assembly. 

The applications of this technique are exploring unique microbial populations or unique 

environments, non-model organisms and others.Univ
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2.4.1 Challenges in de novo genome assembly 
 

Although the implementation of NGS delights some, there are some flaws and 

challenges that must be addressed. One of them is the existence of repeated sequences 

(Alkan et al., 2011; Treangen & Salzberg, 2011). As we know, repeated sequences are a 

common feature from bacteria to eukaryotic DNA. It looks similar or identical with the 

sequence in the genome and it difficult to detect because it is various in size, multiple 

sequence and everywhere in the genome. In general, highly repetitive DNA is usually 

occuring as tandem repeats and organized around centromeres and telomeres, while 

moderately repetitive DNA is spreaded throughout the euchromatin, chromosome and 

genome (Biscotti et al., 2015; Primrose & Twyman, 2009). The repeats give a technical 

challenge during assembly especially the perfect repeats or the repeats are longer than 

reads (Miller et al., 2010). Thus, the assembly result is reduced or even worse, lost 

genomic complexity. 

 
The next generation sequencing technique are advantageous in terms of lowering the 

cost and reducing time needed to produce high-throughput data. However, a problem of 

these sequencing technologies is the read length produced, which is much shorter than the 

traditional Sanger sequencing reads. Furthermore, the volume of reads obtained from NGS 

is three to four greater orders of magnitude when compared to the traditional sequencing 

method. Some examples are the reads from pyrosequencing (454 sequencing) which is 

only ~700 bp long and Solexa from 36 to 250 bp reads. However, these lengths of reads 

cannot compete with those of the traditional Sanger sequencing technologies (500–1,000 

bp). This is because, when NGS generates the reads too short, the procedure of repeat 

masking is disrupted. Therefore, the difficulty to assemble the reads with many repeats 

will be increased (D. R. Zerbino & E. Birney, 2008). 

 
Another assembly challenge is sequencing error. It happens when one or more bases 
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are mistakenly called during the sequencing process. Actually, the chance of a sequencing 

error is generally known, so it is important to ensure that extensive testing and calibration 

of the sequencing machine is done. For example, the sequencing errors of Illumina 

sequencing machines is yielded at a rate of ∼0.1–1 × 10−2 per base sequenced and it is 

based on the which data-filtering used (Jünemann et al., 2013; Loman et al., 2012). This 

platform may interpret millions of errors since Illumina sequencing can produces billions 

of base calls per experiments. There are several types of sequencing errors such as 

mismatches, indels, ambiguous characters and homopolymer-length errors. Although all 

of these errors become clear during the alignment of the reads especially with the 

reference’s genome, it invites some confusion if the de novo assembly is conducted. 

 
Non-uniform coverage of the target - Coverage variation occurs by chance, when 

variation in cellular copy number between source DNA molecules, and by compositional 

bias of sequencing technologies. Very low coverage will bring gaps in assemblies. 
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Characteristics of de novo assembly 

• The process of the read’s assembly into contigs and scaffolds without the 
use of previous references 

• Enable gene discovery (Hirakawa et al., 2019) 
• Identification of structural and sequence variants (including single 

nucleotide polymorphisms (SNPs) and small insertions/deletions and 
alternative splice forms) (M. Li et al., 2017; Chaisson et al., 2015; 
Pegadaraju et al., 2013) 

• Estimation of expression abundances 
• Creation a precise map of highly rearranged genomes and for 

understanding the associated phenotypes 

Challenges and Limitations 

• Variety of assembly approach whether greedy algorithm, OLC or de Bruijn 
graph 

• Complexity and non-randomness of genome sequences such as repeats that 
cause mis-arrangements or gaps in the assembly, a nonuniform read depth, 
thus resulting in copy loss or gain in the assembly. 

• To assemble vast difference in scale of short reads (compared to Sanger 
read length) generated depending on NGS platform especially big size 
genome 

• The rate and types of sequencing errors vary depending to the NGS 
instruments and library preparation method 

• Uneven read depth, which results from polymerase chain reaction (PCR), 
cloning, extreme GC bias, sequencing errors and copy number variations 

 
 
 
2.4.2 Algorithms for Genome Assembly 
 

As algorithm is implemented to assemble the reads without the reference, there are 

various types of assembler algorithms are: greedy approaches, overlap-layout- consensus 

(OLC) and de Bruijn graph (Simpson & Pop, 2015; Boisvert et al., 2010). Figure 2.5 

showed different types of algorithm for de novo assembly- greedy extension, overlap-

layout-consensus and de Bruijn graph. 

 
Greedy extension – is the implementation of string-based method. The basic operation 

of the greedy extension algorithm starts with the joining of individual read or contigs to 

another read using the highest-scoring overlap. The process is repeated until no more 
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reads can be connected. This is also applicable when joining contigs to make long 

scaffolds. Overlap in assembly refers to the prefix of one of the reads sharing sufficient 

similarity with the suffix of another read (Pop, 2009). The quality score of the overlaps 

depends on the length of overlaps and the level of identity (matching bases) between 

overlapping regions in two reads. Although this algorithm is the simplest, most intuitive; 

solution to the assembly problem (Pop, 2009), this algorithm may lead to misassembled 

repeats because it drastically simplifies the graph by considering only the high-scoring 

edges, which only optimizes a local solution. This type of algorithm is used for Sanger 

data such as, PHRAP (de la Bastide & McCombie, 2007), TIGR Assembler (Granger G. 

Sutton, 1995) and CAP3 ("HGS- TIGR splits, opportunity knocks," 1997). It is also used 

for NGS data such as SSAKE (Warren et al., 2007), VCAKE (Jeck et al., 2007) and 

SHARCGS (Dohm et al., 2007), with minor differences to the greedy approach. 

 
The second approach is overlap-layout-consensus or commonly known as OLC. It 

commonly applied in Sanger sequencing data (Z. Li et al., 2012). The similarity between 

greedy and OLC techniques is a module called an overlapper. As mentioned before, the 

overlap refers to the region where the prefix of one of the reads shares sufficient similarity 

with the suffix of another read (Pop, 2009). The method involves by finding all the 

overlapping reads in both the forward and reverse complement orientation. Then, the 

optimal reads are first merged into contigs and next to scaffolds. In the layout phase, the 

contigs are constructing and manipulating from the overlapping reads to determine the 

optimal location. Lastly, the consensus sequence of contigs are then created using 

progressive pair-wise alignments. Although some suggest to use Multiple Sequence 

Alignment (MSA) to have an accurate layout and consensus sequence, however there is 

no effective solution to find an optimal MSA (Miller et al., 2010). A few programs that 

use this algorithm are Newbler (Moore et al., 2006), Arachne (Batzoglou et al., 2002), 
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Celera Assembler (CABOG) (Miller et al., 2008) and Edena (Hernandez et al., 2008). 

 
The weakness of this approach is it cannot identify clearly the presence of errors and 

polymorphisms especially indels and structural polymorphisms. Furthermore, it is space 

and time-consuming process mostly when large data sets involved (Palmer et al., 2010). 

 
de Bruijn graph - In this graph, a node is defined by a sequence of a fixed length of k 

nucleotides (‘k-mer’, with k considerably shorter than the read length), then form the nodes of the 

graph (network), if they perfectly overlap by k – 1 nucleotides, and the sequence data support this 

connection. This kind of method shows short sequences (k-mers) occurring in reads are 

only stored once. This algorithm was originally introduced in 1995 by Ramana M. Idury 

and Michael S. Waterman (Idury & Waterman, 1995) and the first de Bruijn assembler 

was developed by Pavel Pevzner and Michael Waterman in 2001 called EULER (Pevzner, 

Tang & Waterman, 2001). The beneficial of de Bruijn graph is it solves the assembly 

problem by the properties of the graph itself that having a graph structure representative 

of the repeat structure of the genome, thus it is not required the storage of pairwise 

overlaps and provide a solution to the assembly problem concerning excessive 

computational memory usage caused by the genome length. Examples of de bruijn graph 

assemblers’ tools are SPAdes (Bankevich et al., 2012), Velvet (Zerbino & Birney, 2008), 

ABySS (Simpson et al., 2009), SOAPdenovo and so forth. However, each of these tools 

have their own uniqueness of graph construction, e.g., bulge/bubble removal in 

EULER/Velvet while in SPAdes it is applied multisized de Bruijn graph. Univ
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Figure 2.5 : Algorithm for de novo assembly- greedy extension, overlap-layout- 
consensus and de Bruijn graph. 
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CHAPTER 3: MATERIALS AND METHODOLOGY 
 

3.1 Materials 
 

3.1.1 Whole bacterial genomic dataset 
 

Whole genome sequencing data for seven bacterial species in single-end and/or paired-

end reads - Clostridium botulinum, Escherichia coli, Bacillus cereus, Campylobacter 

jejuni, Salmonella enterica, Streptococcus pneumoniae and Listeria monocytogenes 

employed in this study. These real data sets were downloaded from European 

Bionformatics Institute EMBL-EBI (http://www.ebi.ac.uk). The information of these 

bacterial species including SRA sequence accession number, read length (bp), types of 

Illumina sequencing platform, read count and base count (bp) summarized in Table 3.1. 

 
The bacteria were chosen for the availability of Illumina sequence data and only 

applied this platform for this research to standardize the parameter and protocol for each 

of the data. Illumina is the widely used NGS platform utilized by researchers based on the 

cost effectiveness of the technology in faster time, high-throughput and short reads with 

high accuracy when compared with 454 and SOLiD (Verma et al., 2017; Liu et al., 2012). 

Although it generates the output that is comparable to Illumina, SOLiD platform uses a 

relatively complicated analysis (Jackman & Birol, 2010). 
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Table 3.1: Table shows accession numbers and sizes (bp) of every species in European Bionformatics Institute EMBL-EBI 

 
 

Name 
 
Library Accession 

number 
Read length 

(bp)  

 
Sequencing platform 

 
Read count Base count 

(bp) 

Clostridium botulinum PAIRED SRR2075978 2 x 150  Illumina MiSeq 2,377,364 717,963,928 

SINGLE SRR1190420 200  Illumina MiSeq 1,845,075 516,169,318 
 

Escherichia coli 
PAIRED DRR075676 2 x 150  Illumina HiSeq 2500 4,280,866 1,284,259,800 

SINGLE ERR2039246 50 Illumina HiSeq 2500 5,723,264 349,119,104 
 

Bacillus cereus 
PAIRED SRR392456 2 x 100 Illumina HiSeq 2000 7,722,767 1,559,998,934 

SINGLE SRR1118191 200 Illumina HiSeq 2000 8,199,681 1,656,335,562 

Campylobacter jejuni PAIRED SRR3094442 2 x 100 Illumina HiSeq 2000 4,039,559 807,911,800 

SINGLE SRR3094490 75 Illumina Genome 
Analyzer II 3,619,867 260,630,424 

 
Salmonella enterica 

PAIRED SRR3049469 2 x 100 Illumina HiSeq 2500 1,500,491 280,770,533 

SINGLE ERR000017 35 Illumina Genome 
Analyzer II 3,191,127 114,880,572 

 
Streptococcus pneumoniae 

PAIRED ERR016715 2 x 50 Illumina Genome 
Analyzer II 1,989,390 228,779,850 

SINGLE SRR072214 35 Illumina Genome 
Analyzer II 2,599,192 93,570,912 

 
Listeria monocytogenes 

PAIRED SRR393537 2 x 100 Illumina Genome 
Analyzer II 1,267,995 254,866,995 

SINGLE SRR397563 35 Illumina Genome 
Analyzer II 6,984,497 251,441,892 Univ
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3.1.2 Hardware 
 

All the selected assembler programs were run on a server machine equipped with four 

2.4GHz Intel(R) Xeon(R) 4 CPU, 4 cores within each CPU, and 32 GB of random-access 

memory (RAM). The operating system is Ubuntu version 16.04 as the Linux distribution 

for our interface and architecture 64-bit with an internal storage of 1 TB. 

 
3.1.3 Software 
 

Table 3.2: The list of software used in this study 
 

No. Software Function Reference 

1. 
 

FastQC  
(version 0.11.5) 

To identify low quality reads, 
sequencing biases and adaptors 
incorporated during library 
preparation. 

 
 

(Andrews, 2010) 

2. Trimmomatic 
(version v0.36) 

To trim or eliminate bad 
quality read and adaptor 
sequence 

 
(Bolger et al., 2014) 

3. SPAdes  
(version 3.13.0) 

 
 
To assemble and reconstruct 
the read sequences into contigs 
sequence by varying the kmer 
size 

(Bankevich et al., 
2012) 

4. ABySS 
(version 2.1.2) 

(Simpson et al., 
2009) 

5. Velvet  
(version 1.2.10) 

(Zerbino & Birney, 
2008) 

6. MaSuRCA 
(version 3.2.6) 

(Zimin et al., 2013) 

7. 
IBM SPSS® 

Statistics 
(version V26) 

 
To do statistical analysis 

(George & Mallery, 
2016) 

8. ABySS-fac 
(version 2.1.2) 

To evaluate the assembly 
quality and continuity statistics 
of contigs sequences. 

 
(Simpson et al., 

2009) 

9. 
Genome Assembly 

Gold-Standard 
Evaluations (GAGE) 

 
To validate the assembly 
quality and to assess the 
genome assembly’s 
completeness 

 
(Salzberg et al., 

2012) 
 

10. gVolante  
(online tool) 

(Nishimura et al., 
2017) 
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A total of ten tools were applied in the analysis and described in Table 3.2. For raw 

sequencing data quality checking and trimming, FastQC and Trimmomatic were used. 

SPAdes, ABySS, Velvet and MaSuRCA were performed to assemble the bacterial genome 

reads (single-end and paired-end) and the quality of the output contigs was assessed by 

ABySS-fac. Then, GAGE and gVolante employed to validate the assemble contigs 

completeness. Figure 3.1 showed the workflow of the genome assembly in this study. 

 

 
 
 

Figure 3.1: Workflow of the genome assembly in whole genome sequencing 
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3.2 Methodology 
 

3.2.1 Pre-processing filtering and trimming of NGS reads 
 

Data pre-processing represents an important step before any genome analysis 

conducted. All the real data in this study were verify whether the reads are of good quality. 

If the reads are considered in the “bad” result category, the reads have to go through the 

“cleaning up” process before further analysis. Thus, the FastQC (version 0.11.8) program 

is used to check the quality of the short reads. FastQC program provides a report that 

contains various metrics of the quality of the reads (Andrews, 2010). If low quality read 

identified, Trimmomatic (version v0.36) will do trimming to eliminate bases at 3′ end of 

each read with average quality per base drops below 20 over a 4 bp window and Illumina 

adapters. 

 
3.2.2 Comparison of de novo genome assembly 
 

Four tools, SPAdes, ABySS, Velvet and MaSuRCA were selected for this study for 

comparative analyses. During the experiment, all default values and parameter were used, 

and only the the k-mer value was changed. The range of k-mer that used was between 11 

to 101 (except MaSuRCA which was automatics compute between k-mer 25 to 127). 

After that, we chose the four criteria that are useful which are (I) the highest percentage 

of contigs that were equal or longer than 500 bp, (II) highest total base pairs, (III) highest 

N50 and (IV) the lowest L50. 
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• SPAdes (Bankevich et al., 2012) is a genome assembly algorithm which was designed 

for single cell and multi-cells bacterial data sets. This tool is created based on Eulerian de 

Bruijn graph assemblers by applying paired de Bruijn graph (doubled-layered de Bruijn 

graph). The k-mers from DNA fragment reads build the inner de Bruijn graph, which is 

used for contig assembly. On the other hand, the ‘paired k-mers’ with large insert size 

build the outer de Bruijn graph, which is used for repeat resolving or scaffolding 

(Medvedev et al., 2011). 

• ABySS (Assembly By Short Sequences) assembled a genome usually large genomes by 

distributing a de Bruijn graph (parallel computation) across a cluster of computers. It 

assembled 3.5 billion pair-end reads from the genome of an African male publicly 

released by Illumina, Inc. (Simpson et al., 2009). 

• Velvet has become a standard and very well-known assembler among biologist. It is one 

of the foremost tools created for assembling short reads data which applied de Bruijn 

graph-based (Jared T Simpson & Durbin, 2012). Similar with SPAdes, Velvet is one of 

the Eulerian de Bruijn graph assembler. However, velvet uses bidirectional de Bruijn 

graph (Zerbino & Birney, 2008). 

• MaSuRCA (Maryland Super Read Cabog Assembler) is whole genome assembly 

software that can assemble all sizes genomes, from bacteria genomes to mammalian 

genomes to large plant genomes. It also can assemble data sets containing only short reads 

from Illumina sequencing or a mixture of short reads and long reads (Sanger, 454, Pacbio 

and Nanopore). It combines the efficiency and capability of the Overlap-Layout-

Consensus (OLC) and the de Bruijn graph approaches. 
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3.2.2.1 Computational performance 
 

The running time consumption metrics has been calculated for computational 

performance. It is the total time taken by the assembler to complete the assembly process 

for a given dataset. Time measurements are taken using the Linux utility commands time. 

 
3.2.2.2 Assembly quality performance 
 

Several assembly metrics were used for the assembly comparison. There are a number 

of contigs (n), number of contigs at least 500 bp (n:500), the number of contigs equal to 

or longer than N50 reported in the N50 column (L50), smallest contig (min), largest 

contig (max), N50 contig length (N50), N80 contig length (N80), N20 contig length 

(N20), the sum of the square of the sequence sizes divided by the assembly size (E-size) 

and sum of contig lengths (sum). All these metrics determined using ABySS-fac to assess 

the quality between these assemblers. 

 
3.2.3 Evaluation and Validation 
 

The in-silico evaluation of assemblies was performed using Genome Assembly Gold- 

standard Evaluations (GAGE) and gVolante. GAGE is a tool with an objective to evaluate 

the performance of different assembly tools using standardized data sets. This program is 

also could be as reference for assisting researchers in planning and managing their 

sequencing project which as we know that most appropriate criteria of sequencing 

experimental designs (depending on species of interest) are assembler and parameters 

values (Salzberg et al., 2012). In addition, gVolante provides a user-friendly interface to 

the researchers to assess the completeness of their contigs and scaffolds. There are several 

options can be choose based on the data sets such as sequence type, which pipeline and 

parameters the researchers preferred to use based on their objectives of studies and so 

forth. gVolante can generate an analysis reports (zip file) for future work. 

Univ
ers

ity
 of

 M
ala

ya



31 

 

CHAPTER 4:  RESULTS 
 
 

Results comprise several analyses which is starting with a pre-processing filtering and 

trimming of NGS reads output that was generated by FastQC and Trimmomatic software. 

Then, computational performance results were obtained from the total assembling time 

of four de novo assemblers using Linux time command and the differences on the total 

assembling time according to the types of assemblers also was compared using Kruskal-

Wallis test. After that, assembly quality assessments and comparisons of assembled 

contigs from SPAdes, ABySS, Velvet and MaSuRCA were acquired. Lastly, the 

assembly quality was validated using Genome Assembly Gold-Standard Evaluation 

(GAGE) and gVolante. 
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4.1 Pre-processing filtering and trimming of NGS reads output 
 

There are seven bacteria that had been selected with different length for this study. The 

first step after the sequencing process is to check the quality of the generated reads. This 

is due it may affect the following processes such as assembly analysis, incorrect base 

calling, annotation investigation, downstream applications and others. Adapter and low-

quality reads (flaws in library preparation and sequencing) were filtered using FastQC to 

obtain an optimal quality score of 20 or higher at each base. The poor bases (bases in 

quality score below than 20) that had been identified need to be trimmed and filtered 

using a standalone trimmer tool, which in our case we used Trimmomatic version 0.36. 

Figures 4.1 and 4.2 show the output reads (single-end and paired-end) before and after 

the filtering and trimming processes. 
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Figure 4.1: The quality control of all selected bacteria (single-end) before and after trimming process. 
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Figure 4.1, continued. 
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Figure 4.1, continued. 
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Figure 4.2: The quality control of all selected bacteria (paired-end) before and after trimming process.
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Figure 4.2, continued. 38 
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Figure 4.2, continued. 39 
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4.2 Computational performance results 
 

4.2.1 Running time 
 

The total assembling time in seconds was calculated using Linux time command and 

the differences on the total assembling time according to the types of assemblers was 

compared using Kruskal-Wallis test. For single-end reads data sets, there was no 

significant difference of total assembling time according to the types of assemblers. This 

is due the output p-value > 0.05 (Chi square = 5.141, p-value = 0.16, degree of freedom 

= 3), with a mean rank time (seconds) score of 20.00 for SPAdes, 11.71 for ABySS, 11.14 

for Velvet and 15.14 for MaSuRCA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3: The total assembling time of each assembler comparison for single-end 
data sets. 

MaSuRCA Velvet ABySS SPAdes 

Listeria monocytogenes 

495.109 
164.988 
165.077 

1006.198 

Clostridium botulinum 

171.996 
612.719 
658.422 

1928.111 

Streptococcus pneumoniae 

220.78 
49.572 
54.567 

272.78 

Salmonella enterica 

163.28 
91.61 

245.799 
147.096 

Campylobacter jejuni 

347.311 
94.749 
69.142 

476.425 

Escherichia coli 

471.23 
176.842 

117.47 
995.276 

 
 
767.676 

Bacillus cereus 2791.736 
2743.76 

5220.29 

0 1000 2000 3000 4000 5000 6000 
Total assembling times (seconds) 

Ty
pe

s 
of

 b
ac

te
ria

 g
en

om
ic

 re
ad

s 

Univ
ers

ity
 of

 M
ala

ya



42 

 

For paired-end reads data sets, there was a statistically significant difference (Chi 

square = 11.390, p-value = 0.01, degree of freedom = 3), with a mean rank time (seconds) 

score of 20.86 for SPAdes, 12.86 for ABySS, 6.86 for Velvet and 17.43 for MaSuRCA. 

The result showed that Velvet consumed lowest time (in mean) of 6.86 second while 

SPAdes consumed more time with 20.86 seconds compared to other assemblers. Figures 

4.3 and 4.4 showed the total assembling time of each assembler comparison for single- 

end and paired-end bacterial genomics reads data sets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4: The total assembling time of each assembler comparison for paired-end 
data sets. 
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4.3 Assembly quality assessments and comparisons of assembled contigs 
 

Each of the bacteria had its own size of reads and based on the Illumina technology. 

The details had been stated clearly at Table 3.1 at page 25. Each of the bacterial genome 

were run in single-ends and paired-ends sequences with different number of k-mer starting 

from 11 until 101 using three different assemblers (SPAdes, ABySS and Velvet) while 

MaSuRCA was automatics computing k- mer between 25 until 127.  

 

In this study, ABySS-fac is used to compare the contiguity sequences between these 

assemblers. ‘ABySS-fac’ is one of the programs in ABySS tools (see Materials and 

Methodology, subsection 3.1.3, page 26) with the function to calculate the contiguity of 

the assembly sequences. This program is unrelated with the ABySS assembler. The 

assembly metrics in ABySS-fac includes number of contigs (n), number of contigs at least 

500 bp (n:500), the number of contigs equal to or longer than N50 reported in the N50 

column (L50), smallest contig (min), largest contig (max), N50 contig length (N50), N80 

contig length (N80), N20 contig length (N20), the sum of the square of the sequence sizes 

divided by the assembly size (E-size) and sum of contig lengths (sum). The reason of 

using ABySS-fac is to standardize the calculation of the contigs. Furthermore, SPAdes 

do not have their own statistic tool. Thus, one program should be used to calculate all 

assemblers’ outputs from all different data and different assembly tools. 

 

Four criteria that are useful to choose the ideal tool for the selected data sets are (I) the 

lowest number of contigs at the value reported in the L50 column (L50), (II) highest N50 

length, (III) the highest percentage of contigs that were longer than 500 bp and (IV) the 

highest total base pairs obtained. N50 length is calculated by first ordering all contigs (or 

scaffolds) by length from longest to shortest. Then summing their lengths until the sum 

exceeds 50% of the total length of all contigs (Blawid et al., 2017). L50 is the number of 
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contigs (or scaffolds) of the N50 base pair in length location. The total base pairs is the 

total numbers of nucleotide in particular a strand. Lastly, the percentage of contigs that 

were longer than 500 bp was calculated by the number of contigs at least 500 bp (n:500) 

divided by number of contigs (n) times 100. Figures 4.5 until 4.8 showed the statistical 

results for single- end contigs while figure 4.9 until 4.12 showed the statistical results for 

paired-end contigs of all the bacteria genomic reads. These stated the percentage of 

contigs that were equal or longer than 500 bp, L50 value, N50 length and total base pairs. 
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4.3.1 Single-ends read 
 

The percentage of contigs that were equal or longer than 500 bp for each bacterial 

genome data (single-end) was calculated and showed in figure 4.5.MaSuRCA produced 

the highest percentage of contigs that were equal or longer than 500 bp for most bacterial 

genome data sets which are more than 85.00%. The second highest percentage is SPAdes, 

followed by Velvet and ABySS. 

 
 

 
Figure 4.5: Graph of percentage of contigs that were equal or longer than 500 bp vs 
types of assemblers based on bacteria species (single-ends)
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Based on Figure 4.6, MaSuRCA produced the lowest L50 values for most bacterial 

genome data sets except Campylobacter jejuni and Salmonella enterica. Furthermore, the 

L50 values of MaSuRCA and SPAdes (the lowest L50 value) for Campylobacter jejuni 

are high similar, MaSuRCA was 6 while SPAdes was 5. The same situation happened for 

Salmonella enterica, the L50 values of MaSuRCA and SPAdes (the lowest L50 value) 

are high similar, MaSuRCA was 30 while SPAdes was 28. 

 

Figure 4.6: Graph of L50 values vs types of assemblers based on bacteria species 
(single-ends)
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Based on Figure 4.7, MaSuRCA and SPAdes generated the highest N50 values for 

most bacterial genome data sets. The N50 values of MaSuRCA and SPAdes (the highest 

N50 value) for Salmonella enterica are similar, MaSuRCA was 50573 while SPAdes was 

53085. However, for Bacillus cereus, Campylobacter jejuni and Listeria monocytogenes 

the N50 values of MaSuRCA was not similar with the tools that have the highest N50 

values for these bacteria species. The N50 values of MaSURCA was 512 while SPAdes 

was 124534 for Bacillus cereus, the N50 values of MaSURCA was 91767 while SPAdes 

was 116955 for Campylobacter jejuni and The N50 values of MaSURCA was 110830 

while ABySS was 143758 for Listeria monocytogenes 

 
 
Figure 4.7: Graph of N50 values vs types of assemblers based on bacteria species 
(single-ends) 
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The graph of total base pairs vs types of assemblers based on bacteria species (single-

ends) at figure 4.8 showed MaSuRCA generated the highest total base pairs for most 

bacterial genome data sets except Clostridium botulinum, Bacillus cereus, and Salmonella 

enterica. The total base pairs of MaSuRCA and SPAdes (the highest total basepairs) for 

Salmonella enterica are similar, MaSuRCA was 4853346 while SPAdes was 4864450. 

However, for Clostridium botulinum and Bacillus cereus, the total base pairs of 

MaSuRCA was not similar with the tools that have the highest total base pairs for these 

bacteria species. The total base pairs of MaSURCA was 3250712 while SPAdes was 

3495662 for Clostridium botulinum and the total base pairs of MaSURCA was 512 while 

SPAdes was 7291165 for Bacillus cereus. 

 

 
 
Figure 4.8: Graph of total base pairs vs types of assemblers based on bacteria species 
(single-ends) 
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For single-end bacteria genomic data sets, the analysis performed in this study, 

suggested that MaSuRCA is the best choice for sequencing the single-end bacteria 

genomic reads regardless of the size of reads that generated by different types of Illumina 

platforms. 
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4.3.2 Paired-end read 
 

All selected bacteria were also running in paired-end data with different number of k- 

mer starting from 11 until 101 using three different assemblers (SPAdes, ABySS and 

Velvet) while MaSuRCA was automatics computing k-mer between 25 until 127. Figure 

4.9 showed the result percentage of contigs that were longer than 500 bp for each 

assembler based on bacteria species (paired-ends). MaSuRCA produced the highest 

percentage of contigs that were equal or longer than 500 bp for most bacterial genome 

data sets which are more than 80.00% except Bacillus cereus and Campylobacter jejuni. 

The second highest percentage is SPAdes, followed by ABySS and Velvet. 

 
 
Figure 4.9: Graph of percentage of contigs that were longer than 500 bp vs types of 
assemblers based on bacteria species (paired-ends)
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Based on Figure 4.10, Velvet produced the lowest L50 values for most bacterial 

genome data sets except Bacillus cereus and Campylobacter jejuni. Furthermore, the L50 

values of Velvet and ABySS (the lowest L50 value) for Campylobacter jejuni are high 

similar, Velvet was 6 while ABySS was 4. However, for Bacillus cerereus, the L50 values 

of Velvet (10) was not similar with the tools that have the lowest L50 values for these 

bacteria species, ABySS (4). 

 

Figure 4.10: Graph of L50 values vs types of assemblers based on bacteria species 
(paired-ends) 
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Based on Figure 4.11, Velvet and SPAdes generated the highest N50 values for most 

bacterial genome data sets equally. Velvet produced the highest N50 values for 

Escherichia coli (2049844), Salmonella enterica (227850) and Streptococcus 

pneumoniae (191766) while SPAdes produced the highest N50 values for Clostridium 

botulinum (474479), Campylobacter jejuni (154554) and Listeria monocytogenes 

(491195). 

 

Figure 4.11: Graph of N50 values vs types of assemblers based on bacteria species 
(paired-ends) 
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The graph of total base pairs vs types of assemblers based on bacteria species (paired-

ends) at figure 4.12 showed MaSuRCA generated the highest total base pairs for most 

bacterial genome data sets except Clostridium botulinum, Bacillus cereus, and 

Campylobacter jejuni. The total base pairs of MaSuRCA and ABySS (the highest total 

base pairs) for Clostridium botulinum and Bacillus cereus are similar, MaSuRCA was 

3781166 bp while ABySS was 3851901 bp for Clostridium botulinum and for Bacillus 

cereus MaSuRCA was 5248746 bp while ABySS was 5252109bp. However, for 

Campylobacter jejuni, the total base pairs of MaSuRCA (409417 bp) was not similar with 

the tool that has the highest total base pairs for this bacteria species, ABySS (1676333 

bp) 

 

Figure 4.12: Graph of total base pairs vs types of assemblers based on bacteria 
species (paired-ends)
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For paired-end bacteria genomic data sets, the analysis performed in this study, 

suggested that MaSuRCA and Velvet are the best choice for sequencing the paired-end 

bacteria genomic reads regardless of the size of reads that generated by different types of 

Illumina platforms. 
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4.4 Validation of the assembly quality 
 

In the previous section, we have successfully assembled the bacterial genomic reads 

(single-ends and paired-ends) with four assemblers tools SPAdes, ABySS, Velvet and 

MaSuRCA. We also compared and assessed the quality of the contigs by four assembly 

metrics which were N50, L50 values, percentage of contigs that were longer than 500 bp 

and total base pairs. As we know, annotation is involved in tertiary analysis with the 

objective, to determine their biological significance, function and meaning from the 

genetic data. Thus, assembly analysis is an important and a key step towards successful 

genome annotation. In this section, we validated the assembly quality using Genome 

Assembly Gold-Standard Evaluations (GAGE) and gVolante as outlined in objective 2 

(see page 5). 
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4.4.1 GAGE: Genome Assembly Gold-Standard Evaluations 
 

Figure 4.13 and Figure 4.14 showed GAGE e-size value vs. types of bacterial genomic 

contigs data (single-end and paired-end) graphs. GAGE or Genome Assembly Gold- 

Standard Evaluations is an evaluation tool which provides a report regarding the quality 

of data, the degree of contiguity of the data produced by the assembler tools and the 

correctness of an assembly. E-size in GAGE refers as size of contigs or scaffolds in 

certain location relatively. E-size is calculated by 

 
𝐸  = ∑ (𝐿)2/𝐺                                                                                                                     (4.1) 

 

where L is the length of contig, and G is the length of genome estimated by the sum of all 

contig lengths. The same calculation is done to get E-size of scaffolds (Salzberg et al., 

2012). The larger the E-size value, the better the assembly. 
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Figure 4.13: E-size value of contigs align for different bacteria genomes data sets 
(single-ends) using GAGE 

 
Refer to the assembled contigs statistics result of all bacteria single-end; most of the 

data sets prefer to use MaSuRCA. However, GAGE results of bacteria single-end (Figure 

4.13) showed differently when Velvet yielded the highest E-size value of all bacteria 

single-end. But, if look closely at Campylobacter jejuni point, the value of MaSuRCA 

and Velvet are high similar, MaSuRCA was 123237.53 while Velvet was 125178.04. 
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Figure 4.14: E-size value of contigs align for different bacteria genome data sets 
(paired-ends) using GAGE 
 

Refer to the assembled contigs statistics result of all bacteria paired-end; most of the 

data sets prefer to use MaSuRCA and Velvet. However, the result occurred in GAGE in 

figure 4.14 showed only Velvet yielded the highest E-size value of all bacteria genomes 

(paired-end). 

98954.95 

Clostridium botulinum 
1360248.3 

278305.8 
1024041.47 

66541.19 

Escherichia coli 
1108270.06 

558410.2 
298136.27 

Bacillus cereus 

412579.89 
183965.05 

542757.24 
361455.34 

Campylobacter jejuni 

123237.53 
212060.51 
209898.96 

138678.85 

Salmonella enterica 

113030.85 
296186.47 

109628.68 
165356.81 

Streptococcus pneumoniae 

41091.64 
213506.85 

79475.83 
115988.63 

 

154447.75 

Listeria monocytogenes 
412092.84 

281508.61 
456444.74 

 400000 800000 
E-size value 

1200000 1600000 

MaSuRCA Velvet ABySS SPAdes 

D
iff

er
en

t t
yp

es
 o

f b
ac

te
ria

 g
en

om
es

 d
at

a 
se

ts
 (p

ai
re

d-
en

ds
) 

Univ
ers

ity
 of

 M
ala

ya



59 

 

4.4.2 gVolante 
 

Commonly, the performance of a de novo assembly is measured by different metrics, 

such as ‘N50’. However, those length-based metrics are inaccurate, and cannot take into 

account their composition (the coverage of genes) and the accuracy of reconstructed 

contigs. Thus, gVolante provides an assessment referring to a set of pre-selected 

conserved genes (a complementary metric of completeness) taking the composition of 

given sequences (contigs) into account. Figures 4.15 and 4.16 showed the percentage of 

the bacterial genomic contigs completeness (based on core genes) for single-end and 

paired-end data sets graphs. 
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Figure 4.15: The graph of percentage of the bacterial genomic contigs completeness 
(based on core genes) single-end vs types of assemblers 

Refer to the assembled contigs statistics result of all bacteria genomes single-end; most 

of the data sets prefer to use MaSuRCA while GAGE suggested MaSuRCA and Velvet. 

However, gVolante results of bacteria genomes single-end (Figure 4.15) showed 

differently when SPAdes yielded the highest percentage of the bacterial genomic contigs 

completeness (based on core genes) value of all bacteria single-end. 
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Figure 4.16: The graph of percentage of the bacterial genomic contigs completeness 
(based on core genes) paired-end vs types of assemblers 
 

Refer to the Figure 4.16, Velvet produced the highest percentage of the bacterial 

genomics contigs completeness (based on core genes) for paired-end data. The similar 

result generated by the assembly metrics and GAGE. 
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CHAPTER 5: DISCUSSION 
 
 

We evaluated four assemblers, SPAdes, ABySS, Velvet and MaSuRCA using seven 

types of bacteria single-end and paired-end Illumina-based short reads. All real data of 

bacteria had been downloaded from European Bionformatics Institute EMBL-EBI. Each 

data was running with different number of k- mer starting from 11 until 101 using three 

different assemblers (SPAdes, ABySS and Velvet) while MaSuRCA was automatics 

computing k-mer between 25 until 127. Several k-mer were applied because many 

assemblers are lacking robustness with respect to the parameters especially in choosing 

the suitable k-mer. In de Bruijn-based assemblers, the most significant parameter is k, 

because the k-value chosen for construction influences its structure. When a small k-value 

applies, the resulting graph would be complicated by spurious edges and vertices 

especially when it involves with repeats or duplication. It cannot distinguish these repeats 

or duplication that make the graph tangles and break-up the contigs. On the other hand, 

when k is too large the higher the chances that a k-mer will have an error in it that makes 

the graph becomes too sparse and possibly disconnected. Therefore, the choice of k 

represents a trade-off between several effects and should be chosen appropriately. 

 

In the first analysis of computational performance regarding assemblers running time, 

the total assembling time was calculated and the differences on the total assembling time 

according to the types of assemblers was compared using Kruskal-Wallis test. This test 

is a non-parametric test to compares groups in order to determine if their time variances 

are different. From this analysis, for single-end reads data sets, there was no significant 

difference of total assembling time according to the types of assemblers. This is due the 

output p-value > 0.05 (Chi square = 5.141, p-value = 0.16, degree of freedom= 3), with a 

mean rank time (seconds) score of 20.00 for SPAdes, 11.71 for ABySS, 11.14 for Velvet 

Univ
ers

ity
 of

 M
ala

ya



63 

 

and 15.14 for MaSuRCA. For paired-end reads data sets, there was a statistically 

significant difference (Chi square = 11.390, p-value = 0.01, degree of freedom = 3), with 

a mean rank time (seconds) score of 20.86 for SPAdes, 12.86 for ABySS, 6.86 for Velvet 

and 17.43 for MaSuRCA. The result showed that Velvet consumed lowest time (in 

median) of 6.86 second while SPAdes consumed more time with 20.86 seconds compared 

to other assemblers. 

 

Practically, an assembler which produces the highest percentage of contigs that were 

equal or longer than 500 bp, highest total base pairs, highest N50 and the lowest L50 are 

ideal (Abnizova et al., 2017). Although there are other metrics to be considered against 

these four metrics, some researchers and paperwork generally declared that these four 

criteria are the standard measure of the assembly connectivity. The results from the 

statistics for assembled contigs showed that MaSuRCA is suitable for bacteria single-end 

genomic data sets. It produced the highest percentage of contigs that were equal or longer 

than 500 bp, highest total base pairs, highest N50 and the lowest L50 for most assemblers. 

MaSuRCA is combined the efficiency and capability of the Overlap-Layout-Consensus 

(OLC) and the de Bruijn graph approaches. Furthermore, this tool has a script which can 

find optimal MaSuRCA parameters for a library of reads including the optimum k-mer 

numbers, pre-processing step and so forth. This result had been validated by GAGE, 

MaSuRCA and Velvet produced the highest E-size value compared to SPAdes and 

ABySS. The different output has been produced by gVolante when SPAdes yielded the 

highest percentage of the bacterial genomic contigs completeness (based on core genes) 

value of all bacteria single-end compared to MaSuRCA, ABySS and Velvet. This is due 

to the type of read used which is single-end read that have limitation information of 

relative positions that sometimes having difficulty in identifying gene insertions, 

deletions, or inversions, worst when involved repetitive regions. However, for this study, 
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SPAdes and MaSURCA still can be used to assemble bacterial single-end reads because 

MaSURCA produced the highest percentage of the bacterial genomic contigs 

completeness (based on core genes) value few bacteria such as Escherichia coli, 

Campylobacter jejuni and Listeria monocytogenes. In terms of the types of Illumina 

platforms that we studied for bacteria single-end data, SPAdes and MaSuRCA are suitable 

to assemble the datasets regardless of the size of reads from different types of Illumina 

technology platforms. 

 
On the other hand, for bacteria paired-end reads, most of bacteria paired-end reads data 

sets were preferring to use MaSuRCA and Velvet for genome assembly based on the 

statistic. The results produced in GAGE showed Velvet yielded the highest E-size value 

of all bacteria paired-end contigs. gVolante was also generated the same results with 

GAGE when Velvet produced the highest percentage of the bacterial genomics contigs 

completeness (based on core genes) for paired-end data. Thus, Velvet were suitable to 

assemble the bacterial paired-end read datasets. This is due, paired-end give additional 

information in term of the directionality of the read, along with the length of the fragment 

from which the paired end reads were derived, in the assembly process.  

 

The importance of this study can be reviewed by the impact of gene content in the 

selected organism that have gone through the genome assembly process. According to 

Florea et al. (2011),  they found that  inaccuracies in a genome assembly affect a large 

number of genes, although  an extensive post-processing of the genome assembly have 

been run to improve the sequence, the consequences of assembly errors remain 

significant, with hundreds of genes left fragmented or incomplete. Furthermore, since 

there is no gold standard for genome assembly due to the complexity of sequencing 

generated data some practical considerations for de novo assembly, in which assembly 
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results must be taken several times using different assemblers with different parameter 

settings to determine their confidence (Bradnam, et al., 2013; El-Metwally et al., 2013). 

However, at least there is a guideline which appropriate assemblers are suitable for the 

selected data sets.
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CHAPTER 6: CONCLUSION 
 
 

Two types of analysis have been run in this study which are first, the computational 

performance in term of assemblers running time and second, assessment of assembly 

quality of four de novo de Bruijn graph sequence assemblers - SPAdes, ABySS, Velvet 

and MaSuRCA. These tools assembled seven types of bacteria genomic reads (single-end 

and paired-end) with different types of reads size and different types of Illumina 

technology platform. Each assembler is capable of assembling the whole bacterial genome 

sequences.  

 

In the first analysis which is a computational performance in term of assemblers 

running time, for single-end reads data sets there was no significant difference of total 

assembling time according to the types of assemblers while for paired-end reads data sets, 

there was a statistically significant difference. The result showed that Velvet consumed 

lowest time (in mean) of 6.86 second while SPAdes consumed more time with 20.86 

seconds compared to other assemblers.   In the second analysis, four de novo de Bruijn 

graph sequence assemblers have been assessed and compared in terms of the assembly 

quality. On single-end data sets, MaSuRCA, and SPAdes produced generally the best 

results among all the four assemblers with highest percentage of contigs that were equal 

or longer than 500 bp, highest total base pairs, highest N50 and the lowest L50 for most 

assemblers. For paired-end data sets, Velvet are suitable to assemble all the seven bacteria 

genome sequences. From this study, we concluded that the selection of the best assembler 

is dependent on the uniqueness of the data sets and the user requirements.  

 

Since genome assembly is the secondary analysis involved in processing and analyzing 

the NGS data, it will give impact on the tertiary analysis or more known as “genome 
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annotation and interpretation stage. In this stage, the genomic regions will be attached 

with biological meaningful and significance information by analyzing their sequence 

structure, composition and function. Thus, there is important to choose an appropriate 

assembler tools based on the uniqueness of the data sets. Other than that, this genome 

assembly study will advance the current knowledge of de novo genome assemblies 

especially the algorithm because the development of assembly algorithms is related 

closely to the development of sequencing technologies. Furthermore, we are currently 

towards to third-generation sequencing or long-read sequencing, that routinely generates 

reads in excess of 10 kb.  

 

 In the coming era where more researchers are able to run their own whole-genome 

sequence data because of the cost is much lower and availability of assembly software 

and hardware, this study will be further for integration with other biological studies (such 

as large-scale functional studies or evolutionary genomics investigation) or other omics 

studies such as metabolomics and proteomics.
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