
~

~@~
~iii

FACULTY OF COMPUTER SCIENCE AND LNFORMATION TECHNOLOGY

UNIVERSITY OF MALA YA

KUALA LUMPUR

Perpustakaan SKTM

Prepared By:

Student : Kee Meng Yit
Course : Bachelor of Computer Science
Matrix No: WEK 010110
Title: Virtual Reality Training in

Laparoscopic Surgery

Approved By : Approved By :

Name : Dr. Rosli Salleh
Position : Project Supervisor
Signature:

Name : Ms. Rafidah Md. Noor
Position : Project Moderator
Signature:

Univ
ers

ity
 of

 M
ala

ya

Abstract

The second millennium has brought with it a new era of modern surgery. The

creation of video surgery is as revolutionary to this century as the development of

anesthesia and sterile technique was to the last one. With ten years of solid

experience behind them, surgeons can now confidently approach almost every part of

the human body with cameras and video monitors.

Today more than 90% of all gallbladder surgery is performed laparoscopically,

leaving patients with only four tiny marks and minimal discomfort. These dramatic

patient benefits make laparoscopic gallbladder surgery the procedure of choice

among both surgeons and patients.

It is increasingly important for surgeons to practice techniques outside the operating

room. These techniques include basic procedural training, allowing for as much

repetition as needed, as well as rare critical events. Critical events can be so rare that

occasional practice of them is necessary.

Currently, a variety of patient simulators allow students to expenence life-like

medical scenanos m a controlled environment. They provide a medium for

instruction in physiology, technical skills, analytical clinical reasoning, and group

crisis management.

Laparoscopic cholecystectomy (gallbladder surgery) constitutes the basis of all the

educational programmes on laparoscopic techniques. This operation and all the other

laparoscopic operations begin with the same basic steps.

11

Univ
ers

ity
 of

 M
ala

ya

This project will attempt to provide a reasonably realistic virtual reality surgical

training environment for a laparoscopic cholecystectomy surgery.

111

Univ
ers

ity
 of

 M
ala

ya

Acknowledgements

Firstly, Bravo! To faculty of Computer Science and Information Technology,

University of Malaya, for having such a wonderful and meaningful program that

would allow students to gain theoretical and practical knowledge in a 'real-time'

project environment.

l would like to express my utmost gratitude to Dr. Rosli Salleh for supervising me

and thus has given me a world of opportunities to learn and excel in many ways. To

Cik Rafidah binti Md. Noor, my project's moderator, I would like to thank her for

the valuable advice and ideas that she has given me.

I would always be indebted to both of them for all the knowledge, ideas, support,

assistance and guidance that they had given me for the whole duration of this project.

It has been truly unforgettable and wonderful experience learning from the both of

you.

IV

Univ
ers

ity
 of

 M
ala

ya

Table of Contents
Page

Abstract... 11

Acknowledgemerus., iv
list of Tables and Figures ix
list of Appendices... xi

J.Olntroduction I
I. I Overview.. 2
1.2 Project's Definition.. 4

1.2.1 The Problem... 4
1.2.2 The Solution... 5

1.3 Project's Objectives... 6
1.4 Project's Scopes.. 7
1.5 Project's Schedule.. 8

2.0 Literature Review I 0
2.1 Laparoscopic Surgery 11

2.1.1 Overview 11
2.1.1.1 What ls Laparoscopy? 11
2.1. l .2 Advantages of Laparoscopic Surgery 13
2.1.1.3 Possible Risks of Laparoscopic Surgery 15

2.1.2 'l ypcs or Laparoscopic Surgery 16

2.1.3 Laparoscopic Surgery Procedures 17

2.2 OpenGL Programming 18
2.2.1 Overview 18

2.2.1.1 What Is OpenGL? 18
2.2.1.2 OpenGL as a State Machine 21
2.2.1.3 OpenGL Rendering Pipeline 23

2.2.2 OpenGL Utility Toolkit (GLUT) 28
2.2.2.1 What is GLUT? 28
2.2.2.2 Background 29
2.2.2.3 Design Philosophy .31

2.3 Analysis Study 34
2.3.1 GridSet Laparoscopy Surgery Training 34

2.3.1.1 Background 34
2.3.1.2 Product Specification 36

2.3.2 ARTEMIS 38
2.3.2.1 Background , 38
2.3.2.2 Product Specification 39
2.3.2.3 K1SMET 4t

v

Univ
ers

ity
 of

 M
ala

ya

? .., ..,
z:» ·-' Vest System One (VSOne) .43

2.3.3. l Background .43
2.3.3.2 Features .44

2.3.4 LAP Mentor. .45
2.3 .4. I Background .45
2.3.4.2 Features .4G

3.0 Methodology .4 7
3.1 Overview .48
3.2 Spiral Model .49

3.2. l Introduction .49
3.2.2 Strengths and Weaknesses 51
3.2.3 Appropriate or Inappropriate Domains of Application 52
3.2.4 Comparison 52

3.3 Rapid Application Development Model. 53
3.3. l Introduction 53
3.3.2 Strengths and Weaknesses 54
3.3.3 Appropriate or Inappropriate Domains of Application 5G

3.4 Waterfall Model. 58
3.4. l Introduction 58
3.4.2 Strengths and Weaknesses GO

3.5 Prototyping GI
3.G Comparison 62
3. 7 Methodology Chosen 63

3. 7.1 Process Steps and Corresponding Descriptions G4

4.0 System Analysis 69
4.1 Requirement Analysis 70

4. l. l Techniques Used To Define Requirements 70
4.1.2 Functional Requirements 71

4. l.2. l Instrument Insertion and Removal 71
4.1.2.2 Tissue Deformation, Translation, Rotation 72
4.1.2.3 Tissue Cutting, Tearing, and Puncture 73
4.1.2.4 Surgical Stapler 75
4. l .2.5 Surgical Clip Application 76
4.1.2.G Suction 77
4.1.2. 7 Irrigation 77
4. l.2.8 Bleeding 79
4. l.2.9 High-Pressure Bleeding 79
4.1.2.10 Low-Pressure Bleeding 80
4.1.2. l l Liquid Pooling 81

4.1.3 Non-Functional Requirements 83
4. l .3.1 Types of Non-Functional Requirements 83
4. l.3.2 Selected Non-Functional Requirements 85

Vt

Univ
ers

ity
 of

 M
ala

ya

4.2 Authoring Tools 86
4.2. l Microsoft Visual C++ .Net 2003 86
4.2.2 3ds max'>' 5 88
4.2.3 Maya Unlimited 5.0 91
4.2.4 SOFTfMAGE\3D 95
4.2.5 Adobe Photoshop 7.0 97
4.2.6 Macromedia Fireworks MX 99

4.3 Development. Tools Chosen I 02

4.4 System Requirements I 03
4.4. l Hardware 103
4.4.2 Software 103

5.0 System Design 104
5.1 Overview 105
5.2 System Functionality Design 106
5.3 User Interface Design 107

6.0 System Development 109
6.1 Development Environment.. 110
G.2 Hardware Requirements 110
G.3 Software Requirements 111
G.4 System's Modules 11 l

7.0 System Testing 115
7. I Overview 116
7.2 Types of Faults 116
7.3 Testing Principles 118

7.3.1 White Box Testing 118
7.3.2 Black Box Testing 120

7 4T . 0 . . . esting rgaruzatron 122
7.4. l Unit Testing 122
7.4.2 Integration Testing 122
7.4.3 System Testing 125

7.5 Test Planning 125
7.6 Maintenance 127

8.0 System Review 128
8.1 Problems and Solutions 129
8.2 Advantages of Virtual Reality Tra.ining 130
8.3 System Constraints 130
8.4 Future Enhancements 130
8.5 Conclusion 131

Univ
ers

ity
 of

 M
ala

ya

Appendix A 133
Appendix B LS()
Appendix C L59
Appendix 0 I 62
Reference 174

1J I I I

Univ
ers

ity
 of

 M
ala

ya

List of Tables and Figures

Figure 1.1: Project's Gru1ll chart

Figure 2.1: The Gall bladder

Figure 2.2: OpenGL -Order of Operations

Figure 2.3: GridSET Laparoscopy Surgical training snapshot

Figure 2.4: GridSET Laparoscopy Surgical training snapshot

Figure 2.5: The ARTEMIS system

Figure 2.6: Man Machine Interface

Figure 2.7: TISKA

Figure 2.8: Simulation Scene "Laparoscopic Cholecystectomy"

Figure 2.9: Series System VSOne, with fiber housing

Figure 2.1 O: Hap tic instrument interface box

Figure 2.11: LAP Mentor Simulation Scene

Figure 3.1: The Spiral Mock!

Figure 3.2: The Traditional Waterfall Model

Figure 3.3: Prototyping Lifecycle

Table 3.4: Various Methodology's Comparison

Figure 3.5: Waterfall Model with Prototyping

Figure 3.G: Design Flowchart

Figure 3. 7: An example of a Program Unit Notebook

Figure 3.8: Data Dictionary Flowchart

Figure 5.1: Virtual Reality Training System Modules

Table G.1: Software Requirements

Table (>.2: Main.cpp Functions and Descriptions

Table (>.3: g13ds.cpp Functions and Descriptions

IX

Univ
ers

ity
 of

 M
ala

ya

Table G.4: glArcBall.cpp Functions and Descriptions

Table G.S: gllmage.cpp Functions and Descriptions

Table G.G: glFont.cpp Functions and Descriptions

Table (i.7: glArcBall.h Functions and Descriptions

Table 7.1: Static Analysis Check

Table 7.2: Inspection Check

Figure 7.3: White Box Testing

Figure 7.4: Black Box Testing

Figure 7.5: Bottom - Up Integration Testing

Figure 7.G: Top - Down Integration Testing

Table 7.7: The System's Test Plan

x

Univ
ers

ity
 of

 M
ala

ya

List of Appendices

Appendix A: OpenGL Slate Variables

Appendix B: An Example or OpenGL Code

Appendix C: OpenGL Command Syntax

Appendix D: User Manual

XI

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1 INTRODUCTION

1.1 OVERVIEW

1.2 PROJECT'S DEFINITION

1.3 PROJECT'S OBJECTJVES

1.4 PROJECT'S SCOPES

1.5 PROJECT''S SCHEDULE

1

Univ
ers

ity
 of

 M
ala

ya

1.0 Introduction

1.1 Overview

The second millennium has brought with it a new era of modern surgery. The creation of

video surgery is as revolutionary to this century as the development of anesthesia and

sterile technique was to the last one. With ten years of solid experience behind them,

surgeons can now confidently approach almost every part of the human body with

cameras and video monitors. In "Laparoscopic Surgery," Medina (2003) explained:

First they make a small cut in the skin and then introduce a harmless gas, such as

carbon dioxide, into the body cavity to expand it and create a large working

space. Through additional small cuts, a rod shaped telescope, attached to a

camera, and other long and narrow surgical instruments are place into the newly

formed space. By this means, under high magnification diseased organs are able

to be examined with minimal trauma to the patient.

It is increasingly important for surgeons to practice techniques outside the operating

room. These techniques include basic procedural training, allowing for as much

repetition as needed, as well as rare critical events. Critical events can be so rare that

occasional practice of them is necessary.

Currently, a variety of patient simulators allow students to experience life-like medical

scenarios in a controlled environment. They provide a medium for instruction in

physiology, technical skills, analytical clinical reasoning, and group crisis management.

2

Univ
ers

ity
 of

 M
ala

ya

By using the latest in PC graphics technology, the visualization of the Japaroscopic

surgery simulator can provide realism that was until recently only possible in high end,

expensive computers (Upton, 2003).

3

Univ
ers

ity
 of

 M
ala

ya

1.2 Project's Definition

1.2.1 The Problem

In "Virtual Reality Based Surgery Simulation for Endoscopic Gynaecology,"

Szekely,G. et al. (2003) discusses the advantages and disadvantages of a gynecologic

laparoscopic surgery:

The relatively large cuts in open surgery can be replaced by small perforation

holes, serving as entry points for optical and surgical instruments. The small

spatial extent of the tissue injury and the careful selection of the entry points

result in a major gain in patient recovery after operation.

The price for these advantages is paid by the surgeon who loses direct contact

with the operation site. The necessary visual information is mediated by a

(usually monoscopic) specialized camera (the laparoscope) and is presented on a

screen, distracting normal hand-eye coordination. Due to geometrical constraints

posed by the external control of the surgical instruments through the trocar hull,

the surgeon loses much of the manipulative freedom usually available in open

surgery.

Performing operations under these conditions demands very specific capabilities of the

surgeon, which can only be gained with extensive training. Virtual reality based surgical

simulator systems offer a very elegant solution to this training problem.

4

Univ
ers

ity
 of

 M
ala

ya

1.2.2 The Solution

Laparoscopic cholecystectomy (gallbladder surgery) is the most frequently laparoscopic

operation performed and constitutes the basis of all the educational programmes on

Japaroscopic techniques. This operation and a11 the other laparoscopic operations begin

with the same basic steps.

This project will attempt to provide a reasonably realistic virtual reality surgical training

environment for a laparoscopic cholecystectomy surgery.

5

Univ
ers

ity
 of

 M
ala

ya

1.3 Project's Objectives

Core objectives of the project are as below.

• To create a Virtual Reality training tool for a laparoscopic cholecystectomy surgery

using OpenGL

• To provide a safe, controllable environment for users to learn, allowing them to make

mistakes without consequences to the patient

• To explore the extendibility and reliability of OpenGL as a high level graphics

programming language.

6

Univ
ers

ity
 of

 M
ala

ya

1.4 Project's Scopes

The project's scopes are as below.

• Simulation of a laparoscopic cholecystectomy surgery that includes procedures from

the basic instrument control to effects such as liquid pooling.

• The training tool would be a standalone program.

-Due to the expensive and unavailability of hardware such as robotic arms, simulation

controls will be constraint to only keyboard and mouse.

7

Univ
ers

ity
 of

 M
ala

ya

1.5 Project's Schedule

This project was divided into two phases. The duration of Phase 1 was from June 2003

till the end of August 2003 while Phase 2 began at September 2003 and ended at

February 2003. Figure 1.1 below depicts the Gantt Chart for this project.

Phase 1 comprised of Preliminary Study and Planning, Literature Review, System

Analysis and System Design.

Meanwhile Prototyping, Development/Coding, Testing and Review, Implementation and

Maintenance were done during Phase 2.

Documentation was done continuously throughout both phases.

8

Univ
ers

ity
 of

 M
ala

ya

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 2 LITERATURE REVIEW

2.1 LAPAROSCOPIC SURGERY

2.2 OPENGL PROGRAMMING

2.3 ANALYSIS STUDY

10

Univ
ers

ity
 of

 M
ala

ya

2.0 Literature Review

2.1 Laparoscopic Surgery

2. l. 1 Overview

2. l. l. l What ls Laparoscopy?

According to Your Medical Resource (2003):

Laparoscopy (pronounced "lap-a-ROSS-coe-pee") is a surgical procedure

performed through very small incisions in the abdomen, using specialized

instruments. A pencil-thin instrument called a laparoscope is used, and it

gives the surgeon an exceptionally clear view, on a TV monitor, of the inside

of the abdominal cavity.

A Japaroscope has lenses like a telescope to magnify body structures, a

powerful light to illuminate them, and a miniature video camera. The camera

sends images of the inside of the body to a TV monitor in the operating room

Specialized surgical instruments can be inserted through the laparoscope, and

through small incisions nearby.

This type of surgery is called 'minimally invasive' because of the very small

incisions used. Yet major procedures can now be performed using this

technique. The term laparoscopy is used when this type of surgery is

performed in the abdomen. It's called arthroscopy when performed in a joint,

and endoscopy when done through a natural opening in the body, such as the

mouth or nose.

I l

Univ
ers

ity
 of

 M
ala

ya

• "Laparo" comes from a Greek word meaning "flank," which is the

side of the body between the ribs and hips. Doctors use this term to

refer to the abdomen. The term "scope" means to look at or examine.

• Many procedures once done through a large opening in the abdomen

can now be done with the small incisions of laparoscopy.

• Laparoscopy has become the preferred surgical technique for some

conditions, such as gallbladder disease.

Gan bladder

Figure 2.1: The Gall bladder

l2

Univ
ers

ity
 of

 M
ala

ya

2.1.1.2 Advantages of Laparoscopic Surgery

Laparoscopy is easier on the patient because it uses a few very small incisions. For

example, traditional "open surgery" on the abdomen usually requires a four- to five

inch incision through layers of skin and muscle. In laparoscopic surgery, the doctor

usually makes two to three incisions that are about a half-inch long.

The smaller incisions cause less damage to body tissue, organs, and muscles so that

the patient

• can go home sooner

Depending on the kind of surgery, patients may be able to return home a few

hours after the operation, or after a brief stay in the hospital.

• recovers quickly

Many people can return to work and their normal routine three to five days

after surgery. In contrast, traditional laparotomy may require a person to limit

daily activities for four to eight weeks.

• experiences fewer post-operative complications and less pain

The amount of discomfort varies with the kind of surgery. In most cases,

however, patients feel little soreness from the incisions, which heal within a

few days. Most need little or no pain medicine.

• has less scaring

The incisions for most kinds of laparoscopic surgery heal without noticeable

scars. In Japaroscopic surgery on a woman's reproductive system, for

Univ
ers

ity
 of

 M
ala

ya

instance, one incision usually can be hidden in the belly button area. The

others can be placed low in the abdomen, where any scars would be covered

by a bikini.

14

Univ
ers

ity
 of

 M
ala

ya

2.1.1.3 Possible Risks of Laparoscopic Surgery

Since laparoscopy involves minimal damage to body tissues, it is generally safer than

open operations. In diagnostic laparoscopy, for instance, complications occur in

about three out of every 1,000 operations, a significantly lower number than

traditional surgery (Your Medical Resource, 2003). A complication is an unforeseen

problem that occurs during or after surgery, such as internal bleeding or injury to a

healthy organ.

Possible complications of Iaparoscopy:

• Risks for any type of surgery may be greater. for people who are obese, smoke

cigarettes, or have additional health problems.

• Laparoscopy usuaJJy requires general anesthesia, which carries certain risks.

Modem general anesthesia, however, is safe and reactions are rare. The

individual must be sure to tell the doctor if he or she had a bad reaction to

anesthesia in the past, or if a close family member has experienced such a

reaction.

• Injury to blood vessels or organs, which causes bleeding.

• Damage to ducts or other structures that allow body fluids to leak out.

Sometimes the surgery cannot be successfully completed by laparoscopy. Then the

doctor may have to complete the operation using traditional "open" abdominal

surgery, called laparotomy. This is called "converting" to laparotomy (Your Medical

Resource, 2003).

15

Univ
ers

ity
 of

 M
ala

ya

2.1.2 Types of Laparoscopic Surgery

There are 3 types of laparoscopic surgery.

• Diagnostic laparoscopy is used to determine the cause of an abdominal

problem or sometimes to provide additional information after other tests have

been performed.

• Pelvic or gynecologic laparoscopy is used both for diagnostic purposes when

there is pain or infection, and for surgery such as tubal ligation (having the

fallopian tubes "tied") or removal of ovarian cysts or other abnormal pelvic

growths.

• Intra-abdominal laparoscopic surgery may be used for appendectomies,

gallbladder surgery, hernia repair and other procedures.

16

Univ
ers

ity
 of

 M
ala

ya

2.1.3 Laparoscopic Surgery Procedures

The procedures involved for laparoscopic surgery are both methodical and detailed.

This section outlines each of the intended simulation procedures that will replicate

the actual surgery from the basic instrument control to effects such as liquid pooling.

These procedures form part of a detailed requirements analysis in Chapter 4. Not all

of these procedures will be incorporated into the virtual reality training simulator.

In "Laparoscopic Surgery Simulation Realism In A PC," Upton (2003) outlines and

discusses these procedures in detail:

• Instrument Insertion and Removal

-Tissue Deformation, Translation, Rotation

• Tissue Cutting, Tearing, and Puncture

• Electro-Cautery

• Contact Laser

• Non-Contact Laser

• Smoke Accumulation

• Surgical Stapler

• Surgical Clip Application

•Suction

• Irrigation

<Bleeding

•High-Pressure Bleeding

• Low-Pressure Bleeding

• Liquid Pooling

17

Univ
ers

ity
 of

 M
ala

ya

2.2 OpenGL Programming

2.2.1 Overview

2.2.1.1 What ls OpenGL? (Woo et al. , 1997)

OpenGL is a software interface to graphics hardware. This interface consists of about

150 distinct commands that can be use to specify the objects and operations needed

to produce interactive three-dimensional applications.

OpenGL is designed as a streamlined, hardware-independent interface to be

implemented on many different hardware platforms.

To achieve these qualities, no commands for performing windowing tasks or

obtaining user input are included in OpenGL. Similarly, OpenGL doesn't provide

high-level commands for describing models of three-dimensional objects. Such

commands might be allowed to specify relatively complicated shapes such as

automobiles, parts of the body, airplanes, or molecules. With OpenGL, desired model

are build from a small set of geometric primitives - points, lines, and polygons.

A sophisticated library that provides these features could certainly be built on top of

OpenGL. The OpenGL Utility Library (GLU) provides many of the modeling

features, such as quadric surfaces and NURBS curves and surfaces. GLU is a

standard part of every OpenGL implementation. Also, there is a higher-level, object

oriented toolkit, Open Inventor, which is built atop OpenGL, and is available

separately for many implementations of OpenGL.

18

Univ
ers

ity
 of

 M
ala

ya

The following list briefly describes the major graphics operations which OpenGL

performs to render an image on the screen.

1. Construct shapes from geometric primitives, thereby creating mathematical

descriptions of objects. (OpenGL considers points, lines, polygons, images, and

bitmaps to be primitives.)

2. Arrange the objects in three-dimensional space and select the desired vantage

point for viewing the composed scene.

3. Calculate the color of all the objects. The color might be explicitly assigned by the

application, determined from specified lighting conditions, obtained by pasting a

texture onto the objects, or some combination of these three actions.

4. Convert the mathematical description of objects and their associated color

information to pixels on the screen. This process is called rasterization.

During these stages, OpenGL might perform other operations, such as eliminating

parts of objects that are hidden by other objects. In addition, after the scene is

rasterized but before it's drawn on the screen, you can perform some operations on

the pixel data if you want.

In some implementations (such as with the X Window System), OpenGL is designed

to work even if the computer that displays the graphics created isn't the computer that

runs the graphics program. This might be the case if one is working in a networked

computer environment where many computers are connected to one another by a

digital network. In this situation, the computer on which the program runs and issues

OpenGL drawing commands is called the client, and the computer that receives those

19

Univ
ers

ity
 of

 M
ala

ya

commands and performs the drawing is called the server. The format for transmitting

OpenGL commands (called the protocol) from the client to the server is always the

same, so OpenGL programs can work across a network even if the client and server

are different kinds of computers. If an OpenGL program isn't running across a

network, then there's only one computer, and it is both the client and the server.

20

Univ
ers

ity
 of

 M
ala

ya

2 .2. 1.2 OpenG L as a State Machine (Woo et al. , 1997)

OpenGL is a state machine. They are put into various states (or modes) then remain

in effect until they are changed. The current color is a state variable. The current

color can be set to white, red, or any other color, and thereafter every object is drawn

with that color until the current color is set to something else. The current color is

only one of many state variables that OpenGL maintains. Others control such things

as the current viewing and projection transformations, line and polygon stipple

patterns, polygon drawing modes, pixel-packing conventions, positions and

characteristics of lights, and material properties of the objects being drawn. Many

state variables refer to modes that are enabled or disabled with the command

glEnable() or glDisable().

Each state variable or mode has a default value, and at any point the system can be

queried for each variable's current value. Typically, one of the six following

commands can be used to do this: glGetBooleanv(), glGetDoublev(), glGetFloatv(),

glGetlntegerv(), glGetPointerv(), or gllsEnabled().Some state variables have a

more specific query command (such as glGetLight*(), glGetError(), or

glGetPolygonStipple()). In addition, a collection of state variables can be saved on

an attribute stack with glPushAttrib() or glPushClientAttrib(), temporarily modify

them, and later restore the values with glPopAttrib() or glPopClientAttrib(). For

temporary state changes, these commands should be used rather than any of the

query commands, since they're likely to be more efficient.

See Appendix A for the complete list of state variables that can be queried. For each

variable, the appendix also lists a suggested glGet*O command that returns the

21

Univ
ers

ity
 of

 M
ala

ya

variable's value, the attribute class to which it belongs, and the variable's default

value.

Univ
ers

ity
 of

 M
ala

ya

2.2.1.3 OpenGL Rendering Pipeline (Woo et al. ,1997)

Most implementations of OpenGL have a similar order of operations, a series of

processing stages caJJed the OpenGL rendering pipeline. This ordering, as shown in

Figure 2.2, is not a strict rule of how OpenGL is implemented but provides a reliable

guide for predicting what OpenGL will do.

The following diagram shows the Henry Ford assembly line approach, which

OpenGL takes to processing data. Geometric data (vertices, lines, and polygons)

follow the path through the row of boxes that includes evaluators and per-vertex

operations, while pixel data (pixels, images, and bitmaps) are treated differently for

part of the process. Both types of data undergo the same final steps (rasterization and

per-fragment operations) before the final pixel data is written into the framebuffer.

Pl3t-W}lt •
cperatons
arrj ptrnMI
as.serrt>~·

1----L-----• Pixel
per~IOl"l!i

Figure 2.2: OpenGL -Order of Operations

23

Univ
ers

ity
 of

 M
ala

ya

Display Lists

All data, whether it describes geometry or pixels, can be saved in a display list for

current or later use. (The alternative to retaining data in a display list is processing

the data immediately - also known as immediate mode.) When a display list is

executed, the retained data is sent from the display list just as if it were sent by the

application in immediate mode.

Evaluators

All geometric primitives are eventually described by vertices. Parametric curves and

surfaces may be initially described by control points and polynomial functions called

basis functions. Evaluators provide a method to derive the vertices used to represent

the surface from the control points. The method is a polynomial mapping, which can

produce surface normal, texture coordinates, colors, and spatial coordinate values

from the control points.

Per-Vertex Operations

For vertex data, next is the "per-vertex operations" stage, which converts the vertices

into primitives. Some vertex data (for example, spatial coordinates) are transformed

by 4 x 4 floating-point matrices. Spatial coordinates are projected from a position in

the 3D world to a position on the screen. If advanced features are enabled, this stage

is even busier. If texturing is used, texture coordinates may be generated and

transformed here. If lighting is enabled, the lighting calculations are performed using

the transformed vertex, surface normal, light source position, material properties, and

other lighting information to produce a color value.

24

Univ
ers

ity
 of

 M
ala

ya

Primitive Assembly

Clipping, a major part of primitive assembly, is the elimination of portions of

geometry which fall outside a half-space, defined by a plane. Point clipping simply

passes or rejects vertices; line or polygon clipping can add additional vertices

depending upon how the line or polygon is clipped. In some cases, this is followed

by perspective division, which makes distant geometric objects appear smaller than

closer objects.

Then viewport and depth (z coordinate) operations are applied. If culling is enabled

and the primitive is a polygon, it then may be rejected by a culling test. Depending

upon the polygon mode, a polygon may be drawn as points or lines.

The results of this stage are complete geometric primitives, which are the

transformed and clipped vertices with related color, depth, and sometimes texture

coordinate values and guidelines for the rasterization step.

Pixel Operations

While geometric data takes one path through the OpenGL rendering pipeline, pixel

data takes a different route. Pixels from an array in system memory are first

unpacked from one of a variety of formats into the proper number of components.

Next the data

is scaled, biased, and processed by a pixel map. The results are clamped and then

either written into texture memory or sent to the rasterization step. If pixel data is

read from the frame buffer, pixel-transfer operations (scale, bias, mapping, and

clamping) are performed. Then these results are packed into an appropriate format

and returned to an array in system memory.

25

Univ
ers

ity
 of

 M
ala

ya

There are special pixel copy operations to copy data in the framebuffer to other parts

of the framebuffer or to the texture memory. A single pass is made through the pixel

transfer operations before the data is written to the texture memory or back to the

framebuffer.

Texture Assembly

An OpenGL application may wish to apply texture images onto geometric objects to

make them look more realistic. "If several texture images are used, it's wise to put

them into texture objects so that you can easily switch among them.

Some OpenGL implementations may have special resources to accelerate texture

performance. There may be specialized, high-performance texture memory. If this

memory is available, the texture objects may be prioritized to control the use of this

limited and valuable resource.

Rasterization

Rasterization is the conversion of both geometric and pixel data into fragments. Each

fragment square corresponds to a pixel in the framebuffer. Line and polygon stipples,

line width, point size, shading model, and coverage calculations to support

antialiasing are taken into consideration as vertices are connected into lines or the

interior pixels are calculated for a filled polygon. Color and depth values are assigned

for each fragment square.

26

Univ
ers

ity
 of

 M
ala

ya

Fragment Operations

Before values are actua11y stored into the framebuffer, a series of operations are

performed that may alter or even throw out fragments. All these operations can be

enabled or disabled. The first operation which may be encountered is texturing,

where a texel (texture element) is generated from texture memory for each fragment

and applied to the fragment. Then fog calculations may be applied, followed by the

scissor test, the alpha test, the stencil test, and the depth-buffer test (the depth buffer

is for hidden-surface removal). Failing an enabled test may end the continued

processing of a fragment's square. Then, blending, dithering, logical operation, and

masking by a bitmask may be performed. Finally, the thoroughly processed fragment

is drawn into the appropriate butler, where it has finally advanced to be a pixel and

achieved its final resting place.

Univ
ers

ity
 of

 M
ala

ya

2.2.2 OpenGL Utility Toolkit (GLUT)

2.2.2.1 What is GLUT? (Kilgard, 1996)

The OpenGL Utility Toolkit (GLUT) is a programming interface with ANSI C and

FORTRAN bindings for writing window system independent OpenGL programs.

The toolkit supports the following functionality:

- Multiple windows for OpenGL rendering.

- Callback driven event processing.

- Sophisticated input devices.

- An "idle" routine and timers.

- A simple, cascading pop-up menu facility.

- Utility routines to generate various solid and wire frame objects.

- Support for bitmap and stroke fonts.

- Misce11aneous window management functions, including managing overlays.

28

Univ
ers

ity
 of

 M
ala

ya

2.2.2.2 Background (Kilgard, 1996)

One of the major accomplishments in the specification of OpenGL was the isolation

of window system dependencies from OpenGL's rendering model. The result is that

OpenGL is window system independent.

Window system operations such as the creation of a rendering window and the

handling of window system events are left to the native window system to define.

Necessary interactions between OpenGL and the window system such as creating

and binding an OpenGL context to a window are described separately from the

OpenGL specification in a window system dependent specification. For example, the

GLX specification describes the standard by which OpenGL interacts with the X

Window System.

The predecessor to OpenGL is lRlS GL. Unlike OpenGL, IRIS GL does specify how

rendering windows are created and manipulated. IRIS GL's windowing interface is

reasonably popular largely because it is simple to use. IRIS GL programmers can

worry about graphics programming without needing to be an expert in programming

the native window system. Experience also demonstrated that IRIS GL' s windowing

interface was high-level enough that it could be retargeted to different window

systems. Silicon Graphics migrated from NeWS to the X Window System without

any major changes to IRIS GL' s basic windowing interface.

Removing window system operations from OpenGL is a sound decision because it

allows the OpenGL graphics system to be retargeted to various systems including

powerful but expensive graphics workstations as well as mass-production graphics

systems like video games, set-top boxes for interactive television, and PCs.

Unfortunately, the lack of a window system interface for OpenGL is a gap in

29

Univ
ers

ity
 of

 M
ala

ya

OpenGL's utility. Learning native window system APis such as the X Window

System's Xlib or Motif can be daunting. Even those familiar with native window

system APis need to understand the interface that binds OpenGL to the native

window system. And when an OpenGL program is written using the native window

system interface, despite the portability of the program's OpenGL rendering code,

the program itself will be window system dependent.

Testing and documenting OpenGL's functionality lead to the development of the tk

and aux toolkits. Unfortunately, aux has numerous limitations and its utility is largely

limited to toy programs. The tk library has more functionality than aux but was

developed in an ad hoc fashion and still lacks much important functionality that IRIS

GL programmers expect, like pop-up menus and overlays.

GLUT is designed to fill the need for a window system independent programming

interface for OpenG L programs. The interface is designed to be simple yet still meet

the needs of useful OpenGL programs. Features from the IRIS GL, aux, and tk

interfaces are included to make it easy for programmers used to these interfaces to

develop programs for GLUT.

0

Univ
ers

ity
 of

 M
ala

ya

2.2.2.3 Design Philosophy (Kilgard, 1996)

GLUT simplifies the implementation of programs using OpenGL rendering. The

GLUT application programming interface (APl) requires very few routines to display

a graphics scene rendered using OpenGL. The GLUT API (like the OpenGL API) is

stateful. Most initial GLUT state is defined and the initial state is reasonable for

simple programs.

The GLUT routines also take relatively few parameters. No pointers are returned.

The only pointers passed into GLUT are pointers to character strings (all strings

passed to GLUT are copied, not referenced) and opaque font handles.

The GLUT API is (as much as reasonable) window system independent. For this

reason, GLUT does not return any native window system handles, pointers, or other

data structures. More subtle window system dependencies such as reliance on

window system dependent fonts are avoided by GLUT; instead, GLUT supplies its

own (limited) set of fonts. For programming ease, GLUT provides a simple menu

sub-API. While the menuing support is designed to be implemented as pop-up

menus, GLUT gives window system leeway to support the menu functionality in

another manner (pull-down menus for example).

Two of the most important pieces of GLUT state are the current window and current

menu. Most window and menu routines affect the current window or menu

respectively. Most callbacks implicitly set the current window and menu to the

appropriate window or menu responsible for the callback. GLUT is designed so that

a program with only a single window and/or menu will not need to keep track of any

window or menu identifiers.

31

Univ
ers

ity
 of

 M
ala

ya

This greatly simplifies very simple GLUT programs. GLUT is designed for simple to

moderately complex programs focused on OpenGL rendering. GLUT implements

its own event loop. For this reason, mixing GLUT with other APls that demand their

own event handling structure may be difficult. The advantage of a built-in event

dispatch loop is simplicity.

GLUT contains routines for rendering fonts and geometric objects, however GLUT

makes no claims on the OpenGL display list name space. For this reason, none of the

GLUT rendering routines uses OpenGL display lists. It is up to the GLUT

programmer to compile the output from GLUT rendering routines into display lists if

this is desired.

GLUT routines are logically organized into several sub-APis according to their

functionality. The sub-APis are:

Initlaliuuion: Command line processing, window system initialization, and initial

window creation state are controlled by these routines.

Beginning Event Processing. This routine enters GLUT's event processing loop.

This routine never returns, and it continuously calls GLUT callbacks as necessary.

Window Management. These routines create and control windows.

Overlay Management. These routines establish and manage overlays for windows.

Menu Management. These routines create and control pop-up menus.

Callback Registration. These routines register callbacks to be called by the GLUT

event processing loop.

Color Index Colormap Management. These routines allow the manipulation of color

index color maps for windows.

State Retrieval. These routines allow programs to retrieve state from GLUT.

32

Univ
ers

ity
 of

 M
ala

ya

Font Rendering. These routines allow rendering of stroke and bitmap fonts.

Geometric Shape Rendering. These routines allow the rendering of 3D geometric

objects including spheres, cones, icosahedrons, and teapots.

3

Univ
ers

ity
 of

 M
ala

ya

2.3 Analysis Study

2.3. l GridSET Laparoscopy Surgical training.

2.3.1.1 Background

The GridSE T - VR simulator based training courses Training course for

laparoscopic surgery aims at helping the trainee to become familiar with the initial

steps of laparoscopic surgery, which are common in all laparoscopic operations,

laparoscopic cholecystectomy being the prototype.

Unique, in comparison to other training approaches, is the possibility to interact with

a 3-D simulated model. The model can be viewed from all sides and be made

transparent. The procedure can be performed and an objective evaluation of the

quality of the surgery is given to the trainee.

At the end or this GridSET course, the trainee will be capable to (Gridset Exchange,

2003):

• Choose the appropriate tool

•Choose the correct position for insertion of the Veress needle and the trocars

• lnsert the Veress needle and the trocars accurately

• Establish an adequate pneumoperitoneum

In the end the trainee will have the appropriate skills to perform the initial steps of a

laparoscopy operation.

Univ
ers

ity
 of

 M
ala

ya

The GridSET laparoscopy surgery training course is divided into four parts (Gridset

Exchange, 2003):

• The theoretical basis of the laparoscopic approach

• Video clips

•Practice on the simulator

• Practice with multiple-choice questions.

Figure 2.3: GridSET Laparoscopy Surgical training snapshot.

Figure 2.3 shows the laparoscopy tools that the learner-surgeon uses m the

laparoscopy simulation.

35

Univ
ers

ity
 of

 M
ala

ya

2.3.1.2 Product Specification

A GridSET Integrated training course is a complete training course that can be used

in a web based class-environment. It contains (Gridset Exchange, 2003):

•A complete training course for laparoscopic surgery, with theory, examples,

multiple choice questions and VR based simulator

• GridSET evaluation module: allowing students to assess their skills. Can

also be used in examination mode

• GridSET conference server: allows the teacher and students to

collaboratively view and work on the same surgery simulator. Comes with

communication possibilities between participants.

• GridSET training server: a container to run one or more GridSET training

courses.

• License for a maximum of 50 students

36

Univ
ers

ity
 of

 M
ala

ya

Figure 2.4: GridSET Laparoscopy Surgical training snapshot

Figure 2.4 shows the Verres needle, one of the tools used for the laparoscopic

surgery, inserted into the patient

37

Univ
ers

ity
 of

 M
ala

ya

2.3.2 ARTEMIS

2.3.2. l Background

ARTEMIS (Advanced Robot and Telemanipulator System for Minimal Invasive

Surgery) features a complete telepresence system which allows the surgeon to

perform minimally invasive surgery (MIS) remotely via a man machine interface

with multimedia capabilities.

ARTEMIS is a joint research project of the Institute for Applied Informatics (IAI),

the former Hauptabteilung Ingenieurtechnik (HIT) and the former Hauptabteilung

Versuchstechnik (HVT) of the Forschungszentrum Karlsruhe and the

Universitatsklinikum Tubingen (Institute for Applied Informatics (IAI), 2003).

Figure 2.5: The ARTEMIS system.

Figure 2.5 shows the experimental operating theatre for minimally invasive surgery

with the MMI in front and the operating table with the work system in the back.

38

Univ
ers

ity
 of

 M
ala

ya

2.3.2.2 Product Specification

The ARTEMIS system consists of the following components (Institute for Applied

Informatics (IAI), 2003):

• Man Machine Interface (MMl):

o Graphical user interface; 3D video imaging of the operating

environment; simulation system KISMET

o Master

o Other input units: Speech input; foot pedal; trackball

Figure 2.6: Man Machine Interface

Figure 2.6 shows the ARTEMIS user interface system with two identical HIT

Master-II, and three video screens for the graphical user interface, the 3D video

endoscope picture and the simulation

• Work system:

ARTEMIS currently has two different telemanipulation units:

o TISKA

a computer controlled carrier system with surgical effectors.

39

Univ
ers

ity
 of

 M
ala

ya

Figure 2.7: TISKA

Figure 2.7 shows an artificial body (Pelvitrainer) with two IGSs TISKA and in the

middle the EGS ROBOX.

o ROBOX

a computer controlled endoscope guidance system.

• Control system:

o MONSUN

o KISMET

• MoMo Software Concept:

Distributed software concept for real-time systems.

40

Univ
ers

ity
 of

 M
ala

ya

2.3.2.3 KISMET

The KISMET (Kinematic Simulation, Monitoring and Off-Line Programming

Environment for Telerobotics) software is under development at Forschungszentrum

Karlsruhe since I 986 as a 30 realtime simulation support tool for (The KISMET 3D,

2003):

• effective planning, simulating, programming and monitoring of teleoperation

tasks

• robotics simulation

• high-performance graphical visualisation

• medical simulation

• Virtual-Reality (VR) application kernel

• scientific visualisation

KISMET features (The KISMET 30, 2003):

• Hierarchical data concept for interactive detail selection

• Sensor based synthetic viewing (Virtual Reality)

• Kinematic simulation of complex mechanisms

• Realtime multibody-system dynamics simulation

• Realtime elastodynamics simulation, tissue deformation

• High-quality rendering of polygonal, NURBS and voxel-volume geometry

data models

• Camera simulation, model based control and target tracking

• Robot off-line programming and simulation

• Stereo viewing (shutter glasses)

• CAD data import tools (STEP, DXF, VDA-FS, Wavefront, Softlmage ...)

41

Univ
ers

ity
 of

 M
ala

ya

• KISMET is implemented in C, as graphics interface GL is used

• KISMET is available for SILICON GRAPHICS (TM) workstations

Univ
ers

ity
 of

 M
ala

ya

2.3.3 VEST System One (VSOne)

2.3.3.1 Background

"Virtual Endoscopic Surgery Training" (VEST) system VSOne was developed within

the framework of the joint TT-project (technology transfer) "LAParoscopy-

SIMulator" (internal project name, not a product name) by the partners

Forschungszentrum Karlsruhe I Institut fur Angewandte Informatik (research group:

"VR-Systems/Realtime-Simulation" - contact: Dr. Uwe Kuhnapfel) and the

company "Select IT VEST Systems AG" I Bremen.

The VSOne system is commercially available through "Select IT VEST Systems

AG" (Virtual Endoscopic Surgery Training, 2003).

Figure 2.8: Simulation Scene "Laparoscopic Cholecystectomy"

Figure 2.9: Series System VSOne, with fiber housing
box

Figure 2.10: Haptic instrument interface

43

Univ
ers

ity
 of

 M
ala

ya

2.3.3.2 Features

VEST System VSOne features (VEST System One Technology, 2003):

• new compact design with electrically driven trainer input box (instrument

box) to ensure an optimal working position and optimum storage size

o 3 haptic (force-feedback) devices as mock-up endoscopic instruments

o 1 virtual endoscopic camera

• three new Basic Task Training (BTT) exercises

o find numbers in tubes (training to handle the endoscopic camera)

o touch points on blocks (left/right hand basic instrument handling and

3D-positioning)

o foJlow a prescribed path (left hand: grasp a plate with a figure; right

hand: follow the figure with a pencil)

• improved laparoscopic cholecystectomy scenario

• improved laparoscopic gynaecology scenario

44

Univ
ers

ity
 of

 M
ala

ya

2.3 .4 LAP Mentor

2.3.4.1 Background

The LAP Mentor™ multi discipJinary simulator enables hands on practice for a

single trainee or a team at any given time. The system offers opportunities for

perfecting basic generic laparoscopic skills and for performing complete

laparoscopic surgery procedures.

LAP Men~

Figure 2.11: LAP Mentor Simulation Scene

45

Univ
ers

ity
 of

 M
ala

ya

2.3.4.2 Features

As with all simulators in the Simbionix line of medical training simulators, the LAP

Mentor™ is designed to meet the training and practice needs of physicians and the

evaluation and management needs of their instructors. The following features are an

integral part of the simulator (Simbionix, 2003):

• Realism - realistic visualization of the human anatomy that provides a life

like view of the intraabdominal cavity. One can maneuver the gallbladder,

expose the cystic duct and artery, clip and cut the cystic duct and artery and

separate the gallbladder from the liver with electrocauterization.

• Tactile sensations - felt in the use of laparoscopic instruments that imitate

real-life.

• Anatomical variations - virtual patient cases include a variety of individuals

of both sexes with varying internal anatomies.

• Basic Tasks and full procedures - opportunities to practice in order to gain

basic Japaroscopic surgery skills as well as practice on full procedures on

virtual patients.

•

Management mode - for organization of trainees, courses and workshops.

The data collection and exporting features of this mode facilitate research

work as well.

Extensive evaluation parameters for each performance on the simulator .

Variety of educational aids •

46

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 3 METHODOLOGY

3.1 OVERVIEW

3.2 SPIRAL MODEL

3.3 RAPID APPLICATION DEVELOPMENT MODEL

3.4 WATERFALL MODEL

3.5 PROTOTYPJNG

3.6 COMPARISON

3.7 METHODOLOGY CHOSEN

47

Univ
ers

ity
 of

 M
ala

ya

3.0 Methodology

3.1 Overview

Methodology was defined as a collection of procedures, techniques, tools, and

paradigm.

The goal of any methodology is to provide a quality and cost-effective system.

Methodology provides a framework for control and coordination of the development

effort. No single methodology is "best" under all or even many situations.

System development methodology is a method to create a system with a series of

steps and operations or can be defined as a system life cycle model. Every system

development process model includes system requirements such as user, needs,

resource as input and a final product as output.

There are several process models in system development which includes

•Waterfall Model

• Spiral Model

• Rapid Application Development Model

48

Univ
ers

ity
 of

 M
ala

ya

3.2 Spiral Model

3.2.1 Introduction

The spiral Jifecycle model is the combination of the classic waterfall model and an

element called risk analysis (Spiral Lifecycle, 2003). This model is very appropriate

for large software projects. The model consists of four main parts, or blocks, and the

process is shown by a continuous loop going from the outside towards the inside.

This shows the progress of the project.

• Planning

This phase is where the objectives, alternatives, and constraints are determined.

• Risk Analysis

What happens. here is that alternative solutions and constraints arc defined, and

risks are identified and analyzed. If risk analysis indicates uncertainty in the

requirements, the prototyping model might be used to assist the situation.

• Engineering

Here the customer decides when the next phase of planning and risk analysis

occur. If it is determined that the risks are to high, the project can be terminated.

• Customer Evaluation

In this phase, the customer will assess the engineering results and make changes

if necessary.

Navigation between each phase is done through data/control hierarchies, functional

decomposition, and requirement allocation.

49

Univ
ers

ity
 of

 M
ala

ya

Phase products are represented through structure charts, state-transition diagrams,

and stimulus response threads.

Determine objectives,
alternatives
constraints

Evaluate alternatives:
identify, resolve risks

Figure 3.1: The Spiral Model

Univ
ers

ity
 of

 M
ala

ya

3.2.2 Strengths and Weaknesses

Strengths:

• Good for large and complex projects

• Customer Evaluation allows for any changes deemed necessary, or

would allow for new technological advances to be used

• Allows customer and developer to determine and to react to risks at each

evolutionary level

• Direct consideration of risks at all levels greatly reduces problems

Weaknesses:

• Difficult to convince some customers that the evolutionary approach is

controllable

<Needs considerable risk assessment

• If a risk is not discovered, problems will surely occur

Univ
ers

ity
 of

 M
ala

ya

3.2.3 Appropriate or Inappropriate Domains of Application

Appropriate:

• Large, complex projects

Inappropriate:

• Simple, easy projects

If a project is simple and easy, then time will be wasted on risk analysis as

the risk could be easily seen or there weren't any risks at all.

3.2.4 Comparison

The Spiral model is actually based in part on the Waterfall model (the other part is

based on the Rapid Prototype model). The Spiral model is better in the sense that it

allows for risk management where the Waterfall places too much emphasis on

project management. It should be kept in mind however, the requirements of the

project, and which model will suit it the best.

52

Univ
ers

ity
 of

 M
ala

ya

3.3 Rapid Application Development Model

3.3. I Introduction

Rapid Application Development can be defined as a software development process

that allows usable systems to be built in as little as 60-90 days but often with some

compromises.

According to Rapid Application Development (2003),

In certain situations, a usable 80% solution can be produced in

20% of the time that would have been required to produce a total

solution. The business requirements for a system can

be fully satisfied even if some of its operational requirements

are not satisfied. In addition, the acceptability of a system can be

assessed against the agreed minimum useful set of requirements

rather than all requirements.

5

Univ
ers

ity
 of

 M
ala

ya

3.3.2 Strengths and Weaknesses

Strengths:

•Buying may save money compared to building

•Deliverables sometimes easier to port because they make greater use of

high-level abstractions, scripts, intermediate code

•Development conducted at a higher level of abstraction because RAD tools

operate at that level

• Early visibility because of prototyping

•Greater flexibility because developers can redesign almost at will

•Greatly reduced manual coding because of wizards, code generators, code

reuse

• Increased user involvement because they are represented on the team at all

times

• Possibly fewer defects because CASE tools may generate much of the code

•Possibly reduced cost because time is money, also because of reuse

• Shorter development cycles because development tilts toward schedule and

away from economy and quality

<Standardized look and feel because APls and other reusable components

give a consistent appearance

4

Univ
ers

ity
 of

 M
ala

ya

Weaknesses:

•Buying may not save money compared to building

• Cost of integrated toolset and hardware to run it

•Harder to gauge progress because there are no classic milestones

• Less efficient because code isn't hand crafted

• Loss of scientific precision because no formal methods are used

• May accidentally empower a return to the uncontrolled practices of the early

days of software development

•More defects because of the "code-like-hell" syndrome

• Prototype may not scale up

• Reduced features because of time boxing, software reuse

• Reliance on third-party components may

I. sacrifice needed functionality

2. add unneeded functionality

3. create legal problems

• Requirements may not converge because the interests of customers and

developers may diverge from one iteration to the next

• tandardizcd look and feel (undistinguished, lackluster appearance)

55

Univ
ers

ity
 of

 M
ala

ya

• Successful efforts difficult to repeat because no two projects evolve the

same way

• Unwanted features through reuse of existing components

3.3.3 Appropriate or Inappropriate Domains of Application

Appropriate:

• The application will be run standalone.

•Major use can be made of preexisting class libraries (APis).

• Performance is not critical.

•Product distribution will be narrow (in-house or vertical market).

•Project scope (macro-schedule) is constrained.

• Reliability is not critical.

• System can be split into several independent modules.

• The product is aimed at a highly specialized IS (information systems)

market.

•The project has strong micro-schedule constraints (timeboxes).

• The required technology is more than a year old.

I nnppropriatc:

• Application must interoperate with existing programs.

6

Univ
ers

ity
 of

 M
ala

ya

•Few plug-in components are available.

•Optimal performance is required.

•Product development can't take advantage of high-end IS tools

•Product distribution will be wide (horizontal or mass market).

•RAD becomes QADAD (Quick And Dirty Application Development).

•RAD methods are used to build operating systems (reliability target too high

for RAD), computer games (performance target too high for RAD).

• Technical risks are high due to use of "bleeding" edge technology.

-The product is mission- or life-critical.

-The system cannot be modularized (defeats parallelism).

57

Univ
ers

ity
 of

 M
ala

ya

3.4 Waterfall Model

3.4.1 Introduction

The Waterfall Model is the most commonly used approach for major acquisition

systems over the past several decades. Under this approach there are a series of steps

that will have to be achieved from system concept to system operations and all will

be preformed in series, not parallel. The transition from each step is only

accomplished after successful completion of a very structured review process. The

following lists the process step and corresponding review for each phase:

Task/Step Review

l. Requirement Definition 1. System Requirement Review

2. Analysis 2. Risk Assessment Review

3. Design 3. Preliminary/Critical Design Reviews

4. Coding 4. Walk Through Review

5. Testing 5. Technical Evaluation Review/Operational
Evaluation Review

6. Operations 6. Initial Operational Capability

For each task and review there are many structured documents that are prepared,

reviewed, and maintained for the life of the system. The highly structured nature of

the waterfall method makes it quite applicable for large well-defined projects.
Univ

ers
ity

 of
 M

ala
ya

System
engineering

Traditional \.Vatcrfoll modd

Requirement
analyst ·

Design

.- One phase is completed
b fore the next is entered

Coding

Testing

Maintenance

Figure 3.2: The Traditional Waterfall Model

Univ
ers

ity
 of

 M
ala

ya

3.4.2 Strengths and Weaknesses

Strengths:

•Enables allocation of tasks within a phase.

<The progress can be evaluated at the end of each phase.

• It has the ability to control schedules, budgets & documentation.

• Tends to favor well-understood system aspects over poorly understood

system components.

Weaknesses:

• Projects rarely flow in a sequential process.

• Difficult to define all requirements at the beginning of a project.

• Unresponsive to changes.

•A working version of the system is not seen until late in the project's life.

•Repairing problems further along the lifecycle becomes progressively more

expensive.

• Maintenance costs can be as much as 70% of systems costs

60

Univ
ers

ity
 of

 M
ala

ya

3.5 Prototyping

Prototyping is a sub-process and a prototype is a system or partially complete system

that is built quickly to explore some aspects of the system requirements. It is

constructed with various objectives.

Benefits of prototyping

•To ensure that the system meets the performance goals and constraints

•To ensure the system are practical and flexible

•To ensure the system fulfills the users' requirements

• To have an insight of how the module and sub-modules interact with each

other

design code

Figure 3.3: Prototyping Lifecycle

61

Univ
ers

ity
 of

 M
ala

ya

VI
::l
0 ·ra
>

.......
Q)
"'O
0
~

·--

Univ
ers

ity
 of

 M
ala

ya

3.7 Methodology Chosen

The Waterfall Model with Prototyping was chosen because

• A good specification to begin with

•Easy to use

• Systematic

• Scope of project well understood

• Project risks have been accessed and are considered to be low

s ~l:-.1i.!111 ~111.1 ~y .,;~
Pn)h' ·m D ·-;.;.:ripti(11 Requir ments

High Lev 'I Design' l Ll'lf i ·;,d Dc~1,gn
\I u lur (' mr ruo 11

Phy. ic: Orsi .n Low Level De ign
Stet -\ ·i~L R finen en 1
l 'P- [- 1 wn ~sign I p ndcnt Design

r1tt1•. l.HllU:Ua~~ C'

I l._ horcro1in'. y.-. l lntegrarion .
Sy tcm

l I ' CSEllllJ, I• L-.f....__ __ "' ____. I

feed ack I ops o1------LI- Dcpl-~:~l~nt_·-sh
Lf rv1 a1nte11ance

Prototyping

Figure 3.5: Waterfall Model with Prototyping

63

Univ
ers

ity
 of

 M
ala

ya

3.7.1 Process Steps and Corresponding Descriptions

Requirements

Requirements are statements of functions and behavior of the system required by its

users and operators. Most general requirements define broad & detailed objectives of the

system which includes reliability, correctness, efficiency, user-friendliness and

expandability. In addition, requirements also outline the relationship of qualitative and

quantitative system goals.

fu?ecification

Specification is a listing of specific and measurable behavioral system constraints that

satisfy system requirements. Specifications should be complete unambiguous, minimal,

understandable and testable as it serves as a communication link between system

operations and end users.

It is also defines the design validation and the final system testing criteria. Finally it

provides a chief mechanism for estimating the project's progress.

64

Univ
ers

ity
 of

 M
ala

ya

Design: Representation or model of a system

0e4J ils lnll:rnal d~ PioceJsh111:
l~11iihm .dtt.Htmct111e~.

cootr-01 fro'"'
Cod~ ..,..,.""". __ ., Progmmming
l Y~I Language

1

High Lowil Sm.1c111re Ch~rts, oiuf" - o tn-t10.'., 01.nornm• USi4H·lnl~rl"co dnlgn
- 0 clston Ta1bles

-0w l1wgl - POL 1P1o<1 D:>si{lri L nn~I
Onlgn - HIPO

Hi~r"lohv l11put llroc ~..,io ~ri11)

Ol)lall

Figure 3.6: Design Flowchart

Prototyping

Prototyping is used for:

• understanding the requirements for the user interface

• examining feasibility of a proposed design approach

•exploring system performance issues

One of the problems of prototyping is that users often treat the prototype as the solution.

A prototype is only a partial specification of the solution.

~oding and Debugging (implementation)

Coding and Debugging process is the translation of system design into a programming

language.

65

Univ
ers

ity
 of

 M
ala

ya

Functionality of the Program Unit Notebooks

I. Docwnents programmer's work activities

2. Maintains current unit (module) documentation

3. Passed from programmer to programmer during development

Unit Ni:imo: Prognmmu ··- ------
ROIJU!les 1nc1u11erJ. _

·-
S'fC:nUN l:ONH:NJS OUE DAf,[t::UMP'LI: 1 EO DA H:. ~lVILWER/DAll

1. ~Ql1TS.

'
2. AR H.

I) 5U1N

J r)FTA~I
D SIGN

-
-4. IUU

· P AH

:I. resr
R·ESUtl.TS

6. Cl!ll.NSE
~ tllU srs

1. SUURCE
CODE

A. NOTES

RH ASE AP ROI/Al: OA ,£_- -----

Figure 3. 7: An example of a Program Unit Notebook

66

Univ
ers

ity
 of

 M
ala

ya

The Data Dictionary records information and physical format details of all structures,

variables and files.

}
~tiot

(11\J CT

:I

I .,
I ·~ ...

~ flffUll D D • • •

Figure 3.8: Data Dictionary Flowchart

Data Dictionary Entry

Name : from the data-flow diagram or structure chart

Routine Usage: routines that access the object

Purpose : explanation

Derivation : where the data that the items hold comes from

Sub-items : Record components

Notes : comments

67

Univ
ers

ity
 of

 M
ala

ya

Integration and Testing

Integration and Testing are divided into two

J. Unit testing

Individual modules (functions) are tested separately from other modules.

2. Integration testing

System modules are tested together.

Deployment and Maintenance

Deployment and Maintenance requires previous phases to be repeated. It makes up 70%-

90% of the total system cost.

The majority of maintenance time (50%) rs spent on system understanding which

includes system documentation.

Maintenance Tasks

• collection, analysis and prioritization of user trouble reports

• new system release instaJlations

•documentation (user's manuals) changes

• configuration control issues

68

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 4 SYSTEM ANALYSIS

4.1 REQUIREMENT ANALYSIS

4.2 AU'I'HORING TOOLS

4.3 DEVELOPMENT TOOi S CHOSEN

4.4 SYSTEM REQUIREMENTS

69

Univ
ers

ity
 of

 M
ala

ya

4.0 System Analysis

4.1 Requirement Analysis

4.1.1 Techniques Used To Define Requirements

This section discusses the appropriate techniques that are used to define and elicit user's

requirements.

Internet Research

80 % of this paper was written based on Internet research and findings.

1.ibrary Research

Medical journals and reports also proved to be a vital source of information in defining

user's requirements.

70

Univ
ers

ity
 of

 M
ala

ya

4.1.2 Functional Requirements

This section will carefully assess the needs that this project needs to fulfill and how the

project will be constructed.

Below is the listing of functional requirements that are deemed relevant to this project.

4.1.2. I Instrument Insertion and Removal

The simulator will support the insertion (and removal) of any instrument into any

cannula by the user. The following conditions or requirements apply to instrument

insertion and removal:

a) Instrument detection is automatically performed by the simulator upon instrument

msertion.

b) When the laparoscope is inserted, an iris like image will be generated as the simulated

camera view travels through the cannula tube and opens up into the body cavity. When

the laparoscope is removed, the opposite iris effect occurs.

c) If any tissue is being grasped in an instrument and that instrument is removed from

the cannula, the tissue is discarded from the database. This, in effect, simulates the

biopsy of small tissue elements as they are assumed to be removed from the instrument

when it is retracted from the body.

d) Unless otherwise directed by the training instructor, the stapler instrument is assumed

to be automatically reloaded with a staple cartridge if it is removed from the body.

71

Univ
ers

ity
 of

 M
ala

ya

Unless otherwise directed by the Training Instructor, the clip applier instrument is

assumed to be automatically refilled with clips if it is removed from the body and is

empty upon removal.

4.1.2.2 Tissue Deformation, Translation, Rotation

The simulator will support tissue deformation from interaction with surgical instruments.

It will also support large-scale translation and rotation of tissue elements.

The individual tissue elements in the simulation are connected by springs to allow the

organs to maintain an expected shape, but still allow for movement and deformation.

Tissue is deformed in several ways:

a) One or more nodes are grasped in a surgical instrument. Subsequent instrument

movements displace the grasped nodes, forcing the connecting nodes to stretch or

contract. The stretch forces affect neighboring nodes, allowing for the force and motion

to be properly distributed throughout the tissue.

b) Nodes come in contact with a surgical instrument. This causes a collision handling

process to govern the forces on the affected nodes to move them with the instrument to

prevent the instrument from moving through the tissue.

c) Nodes come into contact with other nodes (i.e., tissue contacts tissue). This is handled

in the same manner as an instrument-to tissue collision.

d) Other external forces are applied. These forces include:

i) Simulated pulsing of large blood vessels

ii) Simulated diaphra rm motion

72

Univ
ers

ity
 of

 M
ala

ya

iii) Local alterations in tissue properties caused by cautery, laser burning, etc.

iv) Constraints imposed by surgical staples, sutures, etc.

v) Change in abdomen pressure caused by insuflation or desuflation

Since the tissue elements are grouped to form structures (i.e., organs), sufficient force

can be applied to a group of nodes such that the resultant motion affects all nodes in the

structure. At this point, the structure can be translated and I or rotated as a structure.

For example, the gall bladder can be lifted and moved within the body.

Deformation can also stretch the tissue links to the point at which they break and cause

tissue tearing. This requirement is detailed in a following section.

4.J .2.3 Tissue Cutting, Tearing, and Puncture

The simulator will support tissue separation from cutting and from tearing. It will also

support puncture of tissue by rigid instruments.

The simulated nodes in the tissue element models can be stretched to deform the tissue

shape. Should the force on these spring links become excessive, the link will shear,

simulating tissue tearing.

Cutting occurs when an instrument defined as having a sharp surface comes in contact

with tissue and a force is applied. As the sharp edge moves into or over a tissue surface,

the normal link brcakin 1 thresholds are greatly reduced or eliminated. This allows tissue

tcarin ,. to occur with only a slight application of force.

73

Univ
ers

ity
 of

 M
ala

ya

After separating, the manner in which the tissue was separated determines how the

opening is handled by the models. 1 he separation can either split tissue elements at their

joints (provided that the cut or tear was sufficiently near a joint) or cause the elimination

of a tetrahedral tissue element. Jn this case, the neighboring points will be altered such

that the removal of the tetrahedron does not appear too drastic a change.

If the tissue was tom, the neighboring points will be moved somewhat randomly or

roughly to 'close up the gap'. For an incision caused by a sharp instrument, a cleaner

adjustment is made.

The dark triangles in the original surface patch represent triangles that are to be removed

because of a cut or tear. After a 'clean' cut, the neighbor vertices are adjusted to form a

regular incision in the tissue. However, if the triangles were removed due to a tear, the

resulting vertex moves leave an irregular tear in the tissue. To simulate the propagation

of a cut or tear, the breaking thresholds of neighboring tissue elements can be reduced.

Punctures occur when a rigid, tubular instrument makes contact with tissue along the

instrument's axis. In this case, it is required that the interaction be handled differently

than a cut or tear. For example, if a needle or blunt probe is pressed against tissue with

enough force to puncture it, it can then be removed without leaving a long incision as

would be occur for a cut.

Incisions, cuts, and tears will instantiate bleeding, depending on the tissue type.

74

Univ
ers

ity
 of

 M
ala

ya

4.1.2.4 Surgical Stapler

The system will support the simulation of a surgical stapler.

The surgical stapler is used to staple a section of tissue together to prevent bleeding

when the tissue is cut. The cutting function is performed by a secondary function of the

same instrument. After cutting, the bleeding should be minimal due to the staples. Cut

tissue will resemble the following:

The following conditions are required for a successful staple and cut to take place:

a) An unused staple cartridge must be present in the simulated instrument (i.e., an empty

or malfunctioning stapler is not being simulated)

b) Tissue must be fully within the staple area of the stapler instrument tip (any tissue not

touching the staple area will not receive a staple when the instrument is activated)

c) The instrument's 'staple' activation handle must be fully actuated (partial actuation

may result in some or alJ staples being only partially implanted into the tissue)

d) The instrument's 'cut' activation handle must be fulJy actuated (partial actuation may

result in a shorter cut)

A successful staple and cut will result in the following:

a) Adjustment of the texture of the stapled tissue to show the staples. These may also be

handled as individual rigid objects in the force and visual models if possible, to allow

them to be removed or touched, providing a force cue.

b) Adjusuucn: of the bleeding icncration algorithm for the stapled tissue elements.

Normally, the cut face would bleed in accordance with the blood generation

75

Univ
ers

ity
 of

 M
ala

ya

requirements listed in this document. Properly stapled tissue would cause a reduction in

the blood generation.

4.1.2.5 Surgical Clip Application

The system will support the simulation of a surgical clip application.

The surgical clip applier is used to place a metal clip around a piece of tissue, typically a

tubular structure, prior to cutting. The clip prevents bleeding from the cut vein or fluid

flow from a cut duct.

The following conditions are required for a successful clip application to take place:

a) The simulated clip applier must contain at least one clip (i.c., an empty or

malfunctioning clip applier is not being simulated)

b) The tissue must be fully within the clip area of the instrument tip (if any tissue is not

fully within the clip area, a partial application can result)

c) The instrument's activation handle must be fully actuated (partial actuation may result

in a partial application or allow the clip to fall off after application; additionally, the clip

may puncture the tissue and become embedded in it)

A successful clip application will result in the following:

a) The addition of a clip object into the database. This may be handled as a discrete rigid

object or as a combined force model and visual effect.

b) The clip object will comprc s the associated tissue, typically closing off a tubular

object. This will serve to reduce or prevent fluid flow when the object is cut.

76

Univ
ers

ity
 of

 M
ala

ya

4.1.2.6 Suction

The system will support the simulation of a vacuum suction instrument.

The suction function is part of the dual-function suction I irrigation instrument. Suction

is used to remove pooled fluid (saline, blood, etc.) from the surgical area and also

remove accumulated smoke from cautery.

The following conditions are required for suction to take place:

a) The simulated suction I irrigation instrument must be functioning (i.e., a disconnected

or blocked suction pump is not being simulated)

b) The portion of the suction area of the instrument tip that is fully submerged in liquid

will determine the rate and amount of liquid removal that occurs. The portion of the

suction area that is exposed to air will determine the amount of air I gas I smoke removal

that occurs.

c) The rate of removal of both liquid and gas I smoke is also proportional to the amount

of actuation the surgeon applies to the facsimile instrument's suction valve button.

d) The instructor also has control over the suction function, which can be enabled,

disabled, applied, or adjusted. If the insuflation pump cannot maintain the required flow,

the use of the suction instrument to remove gas or smoke can cause desutlation of the

abdomen.

4.1.2.7 lrri ration

The . ystcm wi II support the simulation of an irrigation instrument.

77

Univ
ers

ity
 of

 M
ala

ya

The irrigation function is part of the dual-function suction I irrigation instrument.

Irrigation is used to wash blood and debris from an incision or from the laparoscope

lens. Saline is used as the irrigation fluid.

The following conditions are required for irrigation to take place:

a) The simulated suction I irrigation instrument must be functioning (i.e., a disconnected

or blocked saline source is not being simulated)

b) The rate of liquid flow from irrigator tip is proportional to the amount of actuation the

surgeon applies to the facsimile instrument's irrigation valve button.

c) The actual liquid flow path from the irrigator is handled in the same manner as

bleeding. This requires that the fluid travel in an arc until it contacts a surface, it will

flow along the surface, and eventually pool in the body until removed via suction.

d) The instructor also has control over the irrigation function, which can be enabled,

disabled, applied, or adjusted.

e) Irrigation liquid flow will perform the following functions:

i) It will reduce the simulated friction of any tissue element that it makes contact

with (to a predetermined limit, i.e., it cannot make tissue that is already wet any

'wetter'). This affects the simulated stiction; by reducing stiction I friction, small

tissue particles will tend to be 'washed away' by saline flow.

ii) It will reduce the coloring effect of any tissue that is currently marked as

having blood on it. If a tissue element has blood on it, continued saline flow over

the tissue will clear the blood from the tissue over several frames. The same

effect applies to the laparoscope lens when it is dirty. There is a minimum

78

Univ
ers

ity
 of

 M
ala

ya

threshold after which the tissue is set as having no blood on it at all. This allows

a surface to be completely 'cleaned' by saline wash.

iii) lf a tissue element is generating blood, the wash of saline over that tissue will

cause the resulting blood to be less red as it flows over other tissues.

4.1.2.8 Bleeding

The system will support bleeding from the appropriate tissue sources.

There are two types of bleeding that will occur in the simulation: high-pressure bleeding

(spurting from a cut vein or artery), and low pressure bleeding (seeping from smaller

sources such as capillaries when an incision is made).

In this case, the blood source would be the source of high-pressure bleeding such as an

artery. When cut, several factors would determine the blood arc trajectory which is the

initial path that the blood will take when traveling through the cut. When this stream

makes contact with any other surface, blood flow paths (or paths) are computed to allow

the blood to flow along the surface towards ground. As the liquid reaches the lowest

level in the body, it begins pooling and raises the blood pool leveJ.

4. ·1 .2.9 High-Pressure Bleeding

High-pressure bleeding occurs when tissue is cut, torn, or weakened near an area defined

ns a hi)Ii-pressure blood source.

79

Univ
ers

ity
 of

 M
ala

ya

Typically, this will be a larger vein or artery where such a rupture will cause a large

amount of blood to enter the surgical area. Depending upon the size of the opening and

the simulated pressure, the blood will spurt at the current simulated heart rate and cause

the flow to arc as it falls.

The following factors influence the generation of high-pressure bleeding:

a) The tissue type at the incision and associated simulated blood source (i.e., a major

vein, a minor vein, partially cauterized, etc.).

b) The size of the rupture or orifice through which the blood must flow.

c) A nick in the wall of an artery can rupture on its own due to the loss in wall thickness.

Therefore, the blood generation routines must process any cutting or tearing on this type

of tissue even if a complete opening has not been made. If the algorithm determines that

the wall can self-rupture, it will instantiate an opening, after which the other blood flow

routines can process the actual flow through the opening.

d) The above rupture algorithm can also enlarge an existing opening based on tissue

type, thickness, and blood pressure.

e) If the blood generation is from a large vein or artery, the blood pressure will not be

simulated as a constant, but more appropriately will pulse from low-to-high-to low

values. This pressure waveform will enter the generation routine, causing a cyclic

change in the flow and arc results.

4.1.2. I 0 Low-Pressure Bleeding

Low-pressure bleeding occur when tissue is cut, torn, or weakened near an area that is

1101 defined as a high-pressure blood source. Typically, this will be most tissue, fat, and

80

Univ
ers

ity
 of

 M
ala

ya

the like where the blood flow is from capillaries instead of large-diameter veins or

arteries.

Incisions or tears in this type of tissue generate blood generation and seepage, instead of

the generally directed spurt or flow from a high-pressure bleed.

The following factors influence the generation of low-pressure bleeding:

a) The tissue type at the incision (i.e., fatty tissue, liver, etc.)

b) The maimer that it was cut (incision, tear, burn, etc.)

c) The size of the exposed bleeding surface

d) The amount of cautery present

As blood is generated from this tissue, it will tend to flow towards ground. As it reaches

the base of the body cavity, it will begin to pool. This pooled blood can be removed via

suction.

Blood that was generated from a high-pressure bleed and has landed on another tissue

surface will use the flow equations to create a path to ground.

4.1.2.11 Liquid Pooling

The simulator will support pooling of liquids such as blood or saline and the reduction of

the pool by suction.

Liquid pooling occurs when any liquid such as blood or saline flows until it reaches a

tissue cavity capable of containing an amount of liquid. Currently, only a single liquid

81

Univ
ers

ity
 of

 M
ala

ya

pool level is maintained in the simulator. ln effect, this allows all liquid to flow to the

base of the body cavity, at which point it will begin to collect and produce a pooled

liquid height.

Blood flow paths along the organs eventually reach the 'floor' of the database area. At

this point, all liquid flows contribute to integrating the pool level. The surface of this

pool is shown by the visual system.

The color and transparency of this pool surface are determined by the portions of blood

and saline that comprise the pooled liquid (the individual fluid types that comprise the

pool are maintained separately and added to form the total pool level). Suction is used to

reduce (and potentially eliminate) the pooled liquid.

82

Univ
ers

ity
 of

 M
ala

ya

4.1.3 Non-Functional Requirements

Non-Functional Requirements of a system are attributes and characteristics of the

system.

4.J .3.J Types of Non-Functional Requirements

i) Product-Oriented Attributes

• Performance -throughput, response time

• Usability-easy to learn and use

• Efficiency -minimal use of computing resources

•Reliability-long mean-time between failures; availability, correctness

• Security- prevents unauthorized access to programs and data

•Robustness-works in the presence of invalid input, faults, and stressful conditions

• Adaptability-reusable in other environments, for other problems

• Scalability-works with large data sets

•Cost-cheap to buy, install, and operate

ii) Family-Oriented Attributes

• Portability-easily modified to work on different platforms

• Modifiability- easily extended with new features

• Reusability-reuses design and components in other systems

iii) Process- rientcd Attributes

• Maiutainability=-casily modified (fixes, extensions)

·Readability - documents and code easy to read and understand

83

Univ
ers

ity
 of

 M
ala

ya

• Testability-easy to verify that product meets its specifications

• Understandability--design, architecture, and code a.re easy lo learn

• lntegratability-easy to integrate components; interoperability

·Complexity- level of interaction among modules

84

Univ
ers

ity
 of

 M
ala

ya

4.1.3.2 Selected Non-Functional Requirements

This project will not attempt to incorporate all of the above non-functional requirements

but instead will concentrate on the selected characteristics that are deemed relevant.

!lsability

The developed system must include ease-of-use, learnability, memorability, and a good

User Interface Design in its features.

Efficiency

Efficiency refers to the level at which a software system uses scarce computational

resources, such as CPU cycles, memory, disk space, buffers and communication

channels.

The system must be able to aim at the minimal use of computing resources.

Reliability

The developed system must have the ability to behave consistently in a user-acceptable

manner when operating within the environment for which the system was intended.

Modifiability

The developed system must have the ability to add (unspecified) future functionality.

85

Univ
ers

ity
 of

 M
ala

ya

4.2 Authoring Tools

This section discusses the various authoring tools that are available for this project's

development.

4.2.1 Microsoft Visual C++ .Net 2003 (Microsoft Corporation, 2003)

Microsoft Visual C++ .NET 2003 is a powerful tool for creating Microsoft Windows®

based and Microsoft .NET-connected applications, dynamic Web applications, and XML

Web services using the C++ development language.

This robust development environment comprises compilers that are highly-conformant

to the International Standards Organization (ISO), a Standard Template Library (STL)

implementation, industry-standard Active Template Library (ATL) and Microsoft

Foundation Class (MFC) libraries, and powerful integrated development environment

(lDE) features enabling efficient editing and debugging of source code.

Features

• Able to create highly tuned .NET-connected applications and components

• Able to create highly tuned unmanaged Windows-based applications and components

•Able to move existing C++ code to .NET granularly and at a self-defined pace

• Able lo build modern C + code and library sources with a highly ISO C++ compliant

compiler

<Ahle 10 utilize enhanced libraries to incorporate advanced features

86

Univ
ers

ity
 of

 M
ala

ya

•Advanced compiler and language features make writing complex code easier and safer

•Able to write code efficiently in an extensible IDE

•Able to debug and profile applications quickly and efficiently

87

Univ
ers

ity
 of

 M
ala

ya

4.2.2 3ds max™ 5 (Discreet, 2003)

3ds max, the world's most widely-used 30 modeling, animation, and rendering software,

contains the essential high-productivity tools required for creating eye-catching

animation, cutting-edge games, and distinct design visualizations.

Version 5 raises the bar with some great new features and highly optimized workflows

that will enable you to be highly competitive and get the work done on time, within

budget.

Features

Realism - Create completely real or totally surreal 3D renders and gaming environments

with the addition of 2 new Global Illumination methods, Render To Texture, a highly

interactive physics solution, and even better ways of knowing exactly how your art will

look in the final medium well before you hit Render or Export.

Expression - Spend more time adding character to your work, with a new Set-Key

Animation System, Spline IK, and easier ways to create and manage animation data,

including Draw Curves and a Dope Sheet Editor with Soft Keyframe Selections.

Productivity - Part of the reason why 3ds max software is the most widely-used

professional 3D tool in the world is because it allows artists and programmers the

freedom to take vastly different approaches to solving the same production problems -

that means the flexibility to chose the methods that help you expedite production.

3ds max 5 adds increased connectivity to other 3D software, improved polygon

modeling, and delivers dramatically easier methods for manipulating mapping

coordinates.

88

Univ
ers

ity
 of

 M
ala

ya

backbumer™ is Discreet's new rendering management solution, which gives you 9999

free 3ds max render nodes with each copy of 3ds max software, so you'll be able to

manage multiple rendering products, and projects, from the same source.

Innovative Character Management Tools including Bone Tools, a Weight Table for

Skin assignments, Spline IK, Progressive Morphing, a Dope Sheet Editor, and vastly

improved Function Curve editing tools for easier management of Character Animation

elements such as Keyframes and Skinning data.

On-board Radiosity and Advanced Rendering Solutions, such as Toon Shading,

Translucency, Area Light Shadows, and Texture Baking, give the artist more choices out

of the box, greater quality control, more realistic lighting, and a method for simulating

high-resolution scenes on low resolution geometry (awesome for Game Artists).

A re-designed UV unwrap delivers common tools and tasks directly to the artist's

fingertips. 3 Unwrapping types (Flatten, Normal, and Unfold) and a slew of selection &

navigation tools are now available to make texturing more predictable and easier to

manage.

Extended Polygonal modeling tools, with greater degrees of interactivity and better

ways of selecting and managing polygons.

A non-destructive SDK which enables 3ds max 4 plug-ins to nm without a recompile.

Workflow Enhancements with a new Layer Manager, Improved External References,

and Named Selection Set Management for dealing with large amounts of objects.

89

Univ
ers

ity
 of

 M
ala

ya

Easier to learn so you can keep the tools you need right at your fingertips with new

enhancements to Quad Menus & the keyboard shortcut system.

Expands with the needs of each project through an extensible architecture that allows

studios to add new functionality and mold the 3D environment to their task, need, or

preference. Floating network licenses allow easy distribution of 3ds max across your

studio.

90

Univ
ers

ity
 of

 M
ala

ya

4.2.3 Maya Unlimited 5.0 (Aliaslwavefront, 2003)

Maya Unlimited 5.0 makes the foremost 30 content creation tools accessible to a broad

range of computer graphics professionals in film, broadcast, industrial design,

visualization, game development and web design. It is the leading full 3D production

solution.

It is also coupled with the industry's most innovative animation and digital effects

technology for the creation of advanced digital content.

Features

Intuitive User Interface

Aliasiwavefrontr» is a world leader in user interface design. Maya includes an array of

ease-of-use tools such as marking menus and JD manipulators that speed up workflow.

Polygon Modeling

An entire suite of polygon modeling and UV editing tools focused on games, interactive,

and general use.

NURBS Modeling

The most advanced curve and surface modeling tools available, based on the award

winning NURBS technology by AliaslWavefront.

91

Univ
ers

ity
 of

 M
ala

ya

Subdivision Surface Modeling

A choice of advanced hierarchical subdivision surface and non-hierarchical polygon

mesh tools.

General Animation

A comprehensive range of keyfrarne and non-linear animation editing tools.

Character Animation

Advanced tools for creating) animanng, and editing realistic digital characters.

Deformers

A range of sophisticated deformation tools for modeling and animation.

Rigid and Soft Body Dynamics

High-speed precision manipulation of hard and organic objects determined by physical

rules.

Particles and Fields

Fully integrated particle effects controlled by forces based on real-world physics.

Maya Artisan™

1 lighly intuitive, pressure-sensitive brush interface for digital sculpting and attribute

paiutin ,.

92

Univ
ers

ity
 of

 M
ala

ya

Maya Paint Effects™

Unique paint technology for easily creating 30 scenes or 20 canvases of unparalleled

complexity, detail and realism. Now editable and renderable as polygons!

3D Paint

Paint color, bump, displacement, transparency and other textures directly onto objects.

Multiple Rendering Options

Choose from the Maya native renderer, a new Hardware renderer (graphics card

required), mental ray 3.2 and a new Vector renderer capable of producing bitmap and

vector outputs including Macromedia Flash®.

Integrated Rendering

A unified rendering workflow provides easy and consistent access to all four renderers

through a common user interface.

MEL™

Users can expand Maya's capabilities and add in-house tools via the renowned Maya

embedded scripting language. The Maya user interface is fully customizable for

animators and technical directors.

Maya APl/SDK

!\ lull Application Pro irarnrners' Interface opens up Maya's power and functionality for

development or plu r-in: and translators that extend the range of Maya's functionality or

93

Univ
ers

ity
 of

 M
ala

ya

interface Maya to other systems. The included Maya Software Developers Kit contains

extensive plug-in source code examples.

Online Documentation & Tutorials

Comprehensive documentation and tutorials help you hone your Maya skills and take

full advantage of what Maya software has to offer. Extensive task-based on-line help and

comprehensive reference material search capability provided. A Leaming Tool from the

extensive library of Maya Leaming Tools from AliasjWavefront is included.

Maya Fluid Effects'['"

The simulation and rendering of a huge variety of atmospheric, pyrotechnic, viscous

liquid, and open water (ocean and pond) effects overcomes one of the greatest barriers in

computer animation for all artists.

Maya Cloth™

The production proven and most accurate software solution for simulating a wide variety

of digital clothing and other fabric objects.

Maya Fur™

Incredibly realistic styling and rendering of short hair and fur, with Maya Artisan brush

interface for painting fur attributes.

Maya LivcTM Matchmoving

Precision matchin , of original I ive-action footage with 3D elements rendered in Maya.

94

Univ
ers

ity
 of

 M
ala

ya

4.2.4 SOFTIMAGEl3D (Softimage, 2003)

SOFTlMAGE®/3D is Softimage's legendary 3-D character animation product for the

film, commercial/broadcast and games development markets. SOFTIMAGEl3D features

robust, production proven organic modeling, legendary character animation tools and

high-quality photorealistic rendering-providing a perfect first step into the world of 3-

D production. New version 4.0 offers a range of new features with an emphasis on game

authoring including multiple UV texturing, vertex color authoring and polygon

hide/unhide tools. SOFTIMAGEl3D also offers an easy upgrade path to the next

generation SOFTIMAGEIXSI™ nonlinear animation (NLA) system.

l'eatures

Interactive Games Tools

SOFTIMAGEl3D games development environment provides a selection of platform

specific tools and exporters for on-target platforms like Sony PlayStation, PC/DirectX

and Nintendo 64. Take maximum advantage of platform and rendering options with

unbeatable on-target viewing tools and target-specific rendering-attribute editors.

SOFTIMAGEl3D also features import and export of the Softimage dotXSl™ v.3.0 file

format, designed especia11y for interactive media applications. The dotXSI file format

allows ASCII import and export of characters, models, and animation for complete

customizability of any game development pipeline. SOFTIMAGE\30 offers vertex color

manipulation and authoring, including alpha-channel support, as well as powerful UV

texture editing, and texture pre-lighting with Rendermap** to capture sophisticated

111c11tal ray Ii iluin 1 and effects directly in texture maps.

95

Univ
ers

ity
 of

 M
ala

ya

Intuitive Workflow

SOFTIMAGEl3D is well known for its intuitive, animation-oriented workflow. Tools

are specifically designed for integration into the overall production pipeline, providing

rapid, high-quality results to meet the most demanding deadlines. The tools are also

where an artist expects them to be, allowing the creative process to flow, so artists can

focus on their creations.

Open Extensible Environment

SOFTIMAGEl3D is a continually evolving system, refining existing tools and providing

powerful customization avenues, both within the product and through the

SOFTIMAGEISDK (Software Development Kit), SOFTIMAGEIGDK (game

development kit), and XSI Viewer Tools".

96

Univ
ers

ity
 of

 M
ala

ya

4.2.5 Adobe Photoshop 7.0 (Adobe, 2003)

Photoshop provides a comprehensive toolset, umnatched precrsion, and powerful

creative options to help to create professional-quality images for Web, print, and

emerging media such as wireless devices. And when using Photoshop in tandem with

other Adobe software, the advantage of superior Adobe technologies such as

crossproduct color management tools, Smart Object technology, and transparency can be

taken.

Features

Work more efficiently

From file management to workspace controls to editing multiple steps at one time.

Photoshop gives you the tools you need to keep the work on track and bring it in on

deadline.

Edit images with ease

Photoshop delivers high-powered image editing, photo retouching, and compositing

tools to help you get professional-quality results.

Enjoy unlimited creative options

With innovative special-effect options and powerful painting and drawing tools, there's

no limit to the results you can achieve with Photoshop.

Create compelling Web designs

97

Univ
ers

ity
 of

 M
ala

ya

Produce exceptional imagery for the Web and wireless devices with Photoshop and

ImageReady, which ships with Photoshop.

Enjoy precise typographic control

Photoshop delivers professional-quality type controls to help you create imagery that

communicates with precision and style.

Automate repetitive tasks

Streamline and simplify the production process by turning time-consuming jobs into

automated operations.

Develop a reliable workflow

Keep files moving efficiently from the beginning of the process to the end.

Maintain color precisely

Keep color consistent across different devices and count on reliable output to any media.

98

Univ
ers

ity
 of

 M
ala

ya

4.2.6 Macromedia Fireworks MX (Macromedia, 2003)

Macromedia Fireworks MX has the familiar tools that graphics professionals demand,

brought together in a single, web-centered environment. Quickly create original web

graphics and interactivity, from simple graphical buttons to complex rollover effects and

pop-up menus. Easily edit and seamlessly integrate source files in all the major graphics

formats, and export to Macromedia Flash and Dreamweaver projects. Fireworks MX

delivers a complete graphics toolset with a workflow that promotes teamwork and

enhances productivity.

Features

Enhance productivity with a highly customizable workspace shared between

Macromedia Flash MX, Dreamwcaver MX, and Fireworks MX. The Property Inspector

provides a single panel solution to edit object, text, and tool properties.

Quickly create sophisticated web navigation. Wizards automatically generate the

graphics and JavaScript. Easily use and edit the resulting files in Dreamweaver MX.

Automatically generate data-driven graphics. By dynamically linking to XML

content, you can automate repetitive graphics creation. Fireworks creates individual

graphics based on each dataset. To create graphics from existing sites, point to an HTML

file and automatically reassemble the images, text rollovers, and pop-up menus into a

new source file.

99

Univ
ers

ity
 of

 M
ala

ya

Get professional design results. Seamlessly edit vectors and bitmaps in one integrated

environment that automatically responds to selections. Robust bitmap-editing support

works exactly the way you expect for creating new bitmaps and fine-tuning images.

Optimize files and streamline exports to industry-leading applications. With a single

click, Fireworks MX automatically makes intelligent export choices to Macromedia

Flash, Dreamweaver, FreeHand, and Director Shockwave Studio, and to third-party

graphics and HTML packages.

Extend functionality and automate tasks by creating commands that combine a

powerful JavaScript extensibility API with interfaces developed in Macromedia Flash

MX.

Effortlessly share files across graphics applications including Macromedia Flash and

FreeHand, and Adobe Photoshop and Illustrator. Export SWF files and open Fireworks

files directly within Macromedia Flash MX. Open, edit, and export Photoshop graphics

while retaining layers, masks, and text properties.

Integrate seamlessly with leading editors including the Roundtrip Editor in

Macromedia Dreamweaver MX and Microsoft FrontPage. Round-trip graphics and

HTML between Firework and Dreamweaver MX or FrontPage with a single click in the

HTML editing environment

[00

Univ
ers

ity
 of

 M
ala

ya

Develop for the latest standards using support for web accessibility and XHTML.

Check for compliance with Section 508 requirements and export compliant HTML.

Round-trip XHTML with Macromedia Dreamweaver MX.

101

Univ
ers

ity
 of

 M
ala

ya

4.3 Development Tools Chosen

Microsoft Visual CH .Net 2003

•To create the Virtual Reality Training tool application program

3ds max'> 5

•To create 30 objects

Macromedia Fireworks MX

• To create and edit images

102

Univ
ers

ity
 of

 M
ala

ya

4.4 System Requirements

4.4.1 Hardware

• Pentium lil 1 .2 GHz (or faster processor)

• 512 MB SDRAM

• 20 GB Hard Disk space (or larger)

• GeForce 2 Graphics Card (or higher)

• Floppy Drive

• CD ROM Drive

•Monitor

•Keyboard

•Mouse

4.4.2 Software

• Windows 98/2000/XP

• Microsoft Visual C++ .Net 2003

• 3ds max TM 5

• Macromedia Fireworks MX

103

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 5 SYSTEM DESIGN

5.1 OVERVIEW

5.2 SYSTEM FUNCTIONALITY DESIGN

5.3 USER INTERFACE DESIGN

104

Univ
ers

ity
 of

 M
ala

ya

5.0 System Design

5.1 Overview

System design is a phase of the Waterfall model where system's requirements are

translated into system characteristics. System requirements had been discussed in the

previous chapter. The objectives of system design are listed below.

• Specify logical design elements

Plan a detail design specification with specific logical elements that describe the

features of a system.

•Meet user's requirements

Incorporate user's needs into the system in terms of appropriate procedure and

performance, accurate results and overall reliability.

System design consists of

1. System Functionality Design

11. User Interface Design

105

Univ
ers

ity
 of

 M
ala

ya

5.2 System Functionality Design

System Functionality Design is presented in the form of a hierarchy chart. It identifies

the major modules in the system. In addition, high level components can also be broken

down into sub-modules.

Virtual Reality Training System

I
I I

Surgery Simulation Module Information Module

Figure 5.1 Virtual Reality Training System Modules

.106

Univ
ers

ity
 of

 M
ala

ya

5.3 User Interface Design

Interface Design is the specification of a conversation between system users and the

computer. A good, easy to use and user friendly interface will make user's job easier and

more pleasant (Hawryszkiewyez, 1998).

5 .3 .1 Screen Design

A good screen design reduces interface complexity as perceived by the user. The design

will follow the guidelines below (Fertuck, 1997).

Concreteness

1t is easier to work with concrete objects than with an abstract concept. Icons that

perform specific functions will be incorporated into the system to achieve this purpose.

Visibility

lt is easier to operate an interface with the commands rather than remember options from

the language syntax. This is due to proven scientific research that one has highly

developed powers of pattern recognition but relatively poor memory. Therefore,

commands, function keys, options and help will be visible on the screen.

Simplicity

One of the best guideline for screen design is KISS- Keep It Simple Simon! Design

element will be used judiciously.

107

Univ
ers

ity
 of

 M
ala

ya

Context Sensitivity

Options and commands that are available depend on the current state of the screen.

Commands that are inappropriate in the current mode should not be made available.

108

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 6 SYSTEM DEVELOPMENT

6.1 DEVELOPMENT ENVIRONMENT

6.2 HARDWARE REQUIREMENTS

6.3 SOFTWARE REQUIREMENTS

6.4 SYSTEM~S MODULES

109

Univ
ers

ity
 of

 M
ala

ya

6.0 System Development

6.1 Development Environment

A system is affected by the development environment. Suitable hardware and software is

pivotal in a development process, as it fastens the development process and increases the

system's reliability.

6.2 Hardware Requirements

•Pentium III 1.2 GHz (or faster processor)

• 512 MB SDRAM

• 20 GB Hard Disk space (or larger)

• GeForce 2 Graphics Card (or higher)

• Floppy Drive

·CD ROM Drive

•Monitor

•Keyboard

<Mouse

no

Univ
ers

ity
 of

 M
ala

ya

6.3 Software Requirements

Software Type Notes

Windows 98/2000/XP Operating System System's Platform

Microsoft Visual C++ .Net System Development Coding
2003

3ds max™ 5 System Development 3d Modeling

Macromedia Fireworks MX System Development Image Modification

Microsoft Word Documentation Report Writing

Table 6.1 : Software Requirements

6.4 System's Modules

There are 5 source files and 5 header files for this system.

Source Files

• Main.cpp

• gl3ds.cpp

• glArcBal l .cpp

• gllrnage.cpp

• glFont.cpp

Header Files

• Main.h

• gl3ds.h

• glArcBall.h

• gllmagc.h

• •IFont.h

111

Univ
ers

ity
 of

 M
ala

ya

Main.cpp
Function Description
ChangeScreenResolution Changes The Screen Resolution

Cone Draw a cone

CreateTexture Create texture

CreateWindowGL Creates the OpenGL Window

Cystic Draws the Cystic Dust

Deinitialize User Deinitialization

Destroy WindowGL Destroy The OpenGL Window and Release
Resources

Draw Draws the OpenGL Scene

DrawGLinfo Draws the OpenGL Information

InitGL Setup For OpenGL

Initialize GL]nit Code and User Jnitialiazation

Key Movement Keypad movement

LoadGLTextures Load texture

Load Texture Load texture

ReSizeGLScene Resize And Initialize The GL Window

Register WindowClass Register A Window Class For This Application

ReshapeGL Reshape The Window When It's Moved Or Resized

TerminateApplication Terminate The Application

ToggleFullscreen Toggle Full screen /Windowed

Update Perform Motion Updates Here

WinMain Program Entry (WinMain)

Windowl'roc Setup Windows

112

Univ
ers

ity
 of

 M
ala

ya

bSetupPixelFormat Setup the Pixel Format

Table 6.2: Main.cpp Functions and Descriptions

f!/3ds.cpp
Function Description
CLoad3DS This constructor initializes the tChunk data

Clean Up Cleans up our allocated memory and closes the file

ComputeNormals Computes the normals and vertex normals of the
objects

GetString Reads in a string of characters

Import3DS Called by the client to open the .3ds file, read it,
then clean up

ProcessN extChunk Reads the main sections of the .3DS file, then dives
deeper with recursion

ProcessN extMaterial Chunk Handles all the information about the material
(Texture)

ProcessN extObj ectChunk Handles all the information about the objects in the
file

ReadChunk Reads in a chunk l D and it's length in bytes

ReadColorChunk Reads in the RGB color data

ReadObjectMaterial Reads in the material name assigned to the object
and sets the materialID

Read UV Coordinates Reads in the UV coordinates for the object

ReadVertexlndices Reads in the indices for the vertex array

Read Vertices Reads in the vertices for the object

Table 6.3: gl3ds.cpp Functions and Descriptions

!(IA rcBal/.cpp
F1111ctio11 Description
ArcBall t Constructor I Destructor -

Table 6.4: glArcBall.cpp Functions and Descriptions

113

Univ
ers

ity
 of

 M
ala

ya

gl], mage. cpt:
Function Description
ImageLoad Load image
Getint Get integer
Getshort Get short

Table 6.5: gllmage.cpp Functions and Descriptions

f!/1'"'()11f.CIJ/J
Function Description
BuildFont Build the Font

GetListBase Get the List Base

GetTexture Get the Texture

SetFontTexture Set the Font Texture

SetWindowSize Set the Window Size

g!Font Constructor

g!Printf Prints out the String

~glFont Destructor

Table 6.6: glFont.cpp Functions and Descriptions

f!/A rcliall. h
Function Description
Vector3fCross Sets this vector to be the vector cross product of

vectors v 1 and v2
Vector3fDot Computes the dot product of this vector and vector

vl.
Vector3 fl.ength Returns the length of this vector

Vector3 fLengthSquared Returns the squared length of this vector

Table 6.7: glArcBall.h Fw1ct1011s and Descriptions

114

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 SYSTEM TESTING

7.1 OVERVIEW

7.2 TYPES OF FAULTS

7.3 TESTING PRINCIPLES

7.4 TESTINO ORGANIZATION

7.5 TEST PLANNlNG

7.6 MAINTENANCE

115

Univ
ers

ity
 of

 M
ala

ya

7.0 System Testing

7.1 Overview

System errors and failures occur mainly because of inadequate or improper testing. The

purpose of testing is to detect the presence of errors in system- the ones that have not

been discovered yet.

7.2 Types of Faults

Fault Class Static Analysis Check
Data Faults • Variables used before initialization

• Variables declared but never used
• Variables assigned twice but never used

between assignments
• Possible array bound violations
• Undeclared variables

Control Faults • Unreachable code
• Unconditional branches into loops

Input/Output Faults • Variable output twice with no intervening
assignment

Interface Faults • Parameter type mismatches
• Parameter number mismatches
• Non-usage of the results of functions
• Uncalled functions and procedures

Storage Management Faults • Unassigned pointers
• Pointer arithmetic

Table 7.1: Static Analysis Check

116

Univ
ers

ity
 of

 M
ala

ya

Fault Class Inspection Check
Data Faults • Are all program variables initialized before

their values are used?
• Have all constants been named?
• Should the upper bound of arrays be equal

to the size of the array or size -1 '?
• If character strings are used, is a delimiter

explicitly assigned?
• Is there any possibility of buffer overflow?

Control Faults • For each conditional statement, is the
condition correct?

• Is each loop certain to terminate'?
• Are compound statements correctly

bracketed?
• In case statements, are all possible cases

accounted for?
• If a break is required after each case in case

statements, has it been included?

Input/Output Faults • Are all input variables used?
• Are all output variables assigned a value

before they are output?
• an unexpected inputs cause corruption?

Interface Faults • Do all function and method calls have the
correct number of parameters?

• Do formal and actual parameter types
match?

• Are the parameters in the right order?
• If components access shared memory, do

they have the same model of the shared
memory structure?

Storage Management Faults • If a linked structure is modified, have all
links been correctly reassigned?

• If dynamic storage is used, has space been
allocated correctly?

• Is space explicitly de-allocated after it is no
longer required?

Exception Management Faults • Have all possible error conditions been
taken into account?

Table 7.2: Inspection Check

1 I 7

Univ
ers

ity
 of

 M
ala

ya

7.3 Testing Principles

Two common testing principles were incorporated into the system testing phase. They

are the structural and functional testing.

Structural (usually called "white box") testing, and functional ("black box") testing

have unique characteristics, advantages and limitations that make them more or less

applicable to certain stages of test.

7.3.1 White Box Testing

Test data

·tests Derives

Component
1COd·e

·r· ··r ·e~.
outputs

Figure 7.3: White Box Testing

Structural tests verify the structure of the software itself and require complete access to

the object's source code. This is known as 'white box' testing because one could see into

the internal workings of the code.

White-box tests make sure that the software structure itself contributes to proper and

efficient pm 1ra111 execution. ornplicated loop structures, common data areas, 100,000

118

Univ
ers

ity
 of

 M
ala

ya

lines of code and nests of ifs are recipes to system crashes. The system should have well

designed control structures, sub-routines and reusable modular programs.

Many studies show that the single most effective defect reduction process is the classic

structural test - the code inspection or walk-through. Code inspection is like

proofreading - it can find the mistakes the author missed - the "typo's" and logic errors

that even the best programmers can produce. Debuggers are typical white-box tools.

White-box testing's strength is also its weakness. The code needs to be examined - by

highly skilled technicians. That means that tools and skills are highly specialized to the

particular language and environment. Also, large or distributed system execution goes

beyond one program, so a correct procedure might call another program that provides

bad data. In large systems, it is the execution path as defined by the program calls, their

input and output and the structure or common Jiles that is important. This gets into a

hybrid kind or testing that is often employed in intermediate or integration stages of

testing.

119

Univ
ers

ity
 of

 M
ala

ya

7.3.2 Black Box Testing

Inputs causiuz ..
nnoiualous
behaviour

Ourpms which reveal
th~ presence of
defecu

Figure 7.4: Black Box Testing

Functional tests examine the observable behavior of software as evidenced by its outputs

without reference to internal functions. Hence the term 'black box' testing. If the

program consistently provides the desired features with acceptable performance, then

specific source code features are irrelevant. It's a pragmatic and down-to-earth

assessment of software.

Black box tests better address the modern programming paradigm. As object-oriented

programming, automatic code generation and code re-use becomes more prevalent,

analysis of source code itself becomes less important and functional tests become more

important.

120

Univ
ers

ity
 of

 M
ala

ya

Black box tests are also use to achieve a certain quality target. Since only the people

paying for an application can determine if it meets their needs, it is an advantage to

create the quality criteria from this point of view from the beginning.

121

Univ
ers

ity
 of

 M
ala

ya

7.4 Testing Organization

System testing is divided into several stages.

7.4.1 Unit Testing

In some organizations, a peer review panel performs the design and/or code

inspections. Unit or component tests usually involve some combination of structural and

functional tests by programmers in their own systems. Component tests often require

building some kind of supporting framework that allows components to execute.

7.4.2 Integration Testing

The individual components are combined with other components to make sure that

necessary communications, links and data sharing occur properly. It is not truly system

testing because the components are not implemented in the operating environment. The

integration phase requires more planning and some reasonable sub-set of production

type data. Larger systems often require several integration steps.

There are three basic integration test methods:

o all-at-once

The all-at-once method provides a useful solution for simple integration problems,

involving a small program possibly using a few previously tested modules.

122

Univ
ers

ity
 of

 M
ala

ya

o bottom-up

Ti:'J[iug
sequence L~vdN

Figure 7.5: Bottom - Up Integration Testing

Bottom-up testing involves individual testing of each module using a driver routine

that calls the module and provides it with needed resources. Bottom-up testing often

works well in a less structured environment because there is less dependency on

availability of other resources to accomplish the test. It is a more intuitive approach

to testing that usually finds errors in critical routines earlier than the top-down

method. However, in a new system, many modules must be integrated to produce

system-level behavior, thus interface errors surface late in the process.

123

Univ
ers

ity
 of

 M
ala

ya

o top-down

Level 2
stubs

Level 3
stubs

Figure 7.6: Top - Down Integration Testing

Top-down testing fits a prototyping environment that establishes an initial skeleton

that fills individual modules into it. The method lends itself to more structured

organizations that plan out the entire test process. Although interface errors are

found earlier, errors in critical low-level modules are found later.

What all this implies is that a combination of low-level bottom-up testing works best for

critical modules, while high-level top-down modules provide an early working program

that can give management and users more confidence in results early on in the process.

There may be need for more than one set of integration environments to support this

hybrid approach.

124

Univ
ers

ity
 of

 M
ala

ya

7.4.3 System Testing

The system test phase begins once modules are integrated enough to perform tests in a

whole system environment. System testing can occur in parallel with integration test,

especially with the top-down method.

7.5 Test Planning

Careful test planning helps us to design an organized test. The Test Plan takes into

account the system's objective and incorporates the project deadlines. We use the Test

Plan as a guide to organize testing activities.

Test Plan for VR Training: Laparoscopic Surgery Open Framework

Actual
Function Test Cases Expected Result Results Remarks

I. Wire frame mode Toggle wire frame The Jd models goes into
mode by pressing the wire frame mode
key 'F2'

2. Lighting Toggle lighting Lighting arc turned on
by pressing the
key 'F3'

3. Selects Hook Selects Hook Electrode Hook Electrode (Left) are
Electrode (Left) (Left) by pressing the selected

key 'F4'

4. Selects Hook Selects Hook Electrode I-look Electrode (Right) are
Electrode (Right) (Right) by pressing the selected

key 'F5'

5. Selects Retract Selects Retract Retract are selected
by pressing the
key 'F6'

6. Grasps using Grasps using Retract The gallbladder are grasped
Retract by pressing the using the retract

key 'T'7'

7. (;111lhl11dtln reruuvul ,nllblndckr removed The gallbladder removed
using the retract hy using the retract
holding the key 'F7' and
'A'

125

Univ
ers

ity
 of

 M
ala

ya

8. Selects Straight Selects Straight Straight Scissors arc
Scissors Scissors by pressing selected

the key T&'

9. Cutting using Straight Cut the arteries using The simulation of scissors
Scissors the straight scissors cutting

by kiting go the key
'F8'

IO. Turns on Information Turns on in format ion Information and Lighting
and Lightini.: and lighting by pressing arc turned on

the key' I'

11. Turns off lnformntion lrurns off information Information and Lighting
and Lighting and lighting by pressing are turned off

the key '2'

12. Exits the Program !Exits the Program by The program closes safely
pressing the key
'ESC'

Table 7.7: The System's Test Plan

126

Univ
ers

ity
 of

 M
ala

ya

7.6 Maintenance

Software maintenance is the general process of changing a system after it has been

delivered. The changes may be simple changes to correct coding errors, more extensive

changes to correct design errors or signi ficant enhancements to correct specification

errors or accommodate new requirements (Sommerville, 2001).

There are two different types of software maintenance that is incorporated into the

system testing phase:

• Maintenance to repair software faults

Coding errors are usually relatively cheap to correct; design errors are more

expensive as they may involve the rewriting or several program components.

Requirements errors arc the most expensive to repair because of the extensive

system redesign which may be necessary.

• Maintenance to add to or modify the system's functionality

This type of maintenance is necessary when the system requirements change in

response to organizational or business change. The scale of the changes required

to the software is often much greater than for the other types of maintenance.

127

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 8 SYSTEM REVIEW

8.1 PROBLEMS AND SOLUTIONS

8.2 ADVANTAGES OF VIRTUAL REALITY TRAINING

8.3 SYSTEM CONSTRAINTS

8.4 FUTURE BNHANCEMENl S

8.5 CdNCLUSION

128

Univ
ers

ity
 of

 M
ala

ya

8.0 System Review

8.1 Problems and Solutions

• Limited Development Time

To develop a fully functional Virtual Reality Training tool in just two months time is

near to impossible. There was too much coding and analysis that needs to be done.

Solutions:

Time management is critical to ensure that the project schedule is followed.

• Lack of Knowledge in Authoring Tools

l Jack the experience and knowledge in dealing with the authoring tools. Familiarity

with the authoring· tools functions were also a problem during the system

development phase.

Solutions:

A lot of researches were done which includes referring to online tutorials and

reference books that are available on the Internet and library.

129

Univ
ers

ity
 of

 M
ala

ya

8.2 Advantages of Virtual Reality Training

The Virtual Reality Training: Laparoscopic Cholecystectomy Surgery Open Framework

provides a safe, controllable environment for users to learn, allowing them to make

mistakes without consequences to the patient.

8.3 System Constraints

• The laparoscopic cholecystectomy surgery simulation includes only basic

instrument control.

• Due to the expensive and unavailability of hardware such as robotic arms,

simulation controls will be constraint to only keyboard and mouse.

8.4 Future Enhancements

There are several future enhancements that can be done to improve the system which

includes:

• Collision Detection

The system should be able to detect collision between the simulation scene and

the camera and selected surgery tools.

• Puncturing of the cystic duct and the simulation of blood splatter

To incorporate an algorithm to pinpoint the location where the hook electrode

punctures the cystic duct and at the same time simulate blood splatter.

• Robotic Arms Usage

To incorporate robotic arms into the system as inputs instead of conventional

mouse and keyboard.

130

Univ
ers

ity
 of

 M
ala

ya

8.5 Conclusion

Upon the completion of this project, 1 have learnt to face challenges with an open mind

and attempt to perform my best in everything. The knowledge and experience that I have

gained were invaluable.

Having been through the development of a real life project 111 a real working

environment, I can better prepare myself for the future. The mistakes that I have made

and the experience that came while looking for solutions had made me realized that for

every problem there will always be solutions to it. By constantly doing research, it will

not only increase our knowledge but also enhance our mind towards thinking creatively.

I am confident that the experience that I had gained will provide me with a strong

foundation towards my career and achievements i11 the near future.

131

Univ
ers

ity
 of

 M
ala

ya

Reference

Adobe. [Online]. Available:
<http://www.adobe.com/products/photoshop/pdfs/ovcrview.pclf
[2003, June 23].

Aliaslwavefront. [Online]. Available:
<http ://www.alias.com/eng/products-services/maya/fi le/maya5 _ specsheet. pdt>
[2003, June 23].

Discreet. [Online]. Available:
<http://www.discreet.com/docs/products/3dsmax/3dsmax5 _techspec.pdt>
[2003, June 23].

Fertuck, Len. (1997). System Analysis and Design with Modern Method.
Business and Educational Technologies.

GridSet Exchange. [Online]. Available:
<http://gridset.com/tlyers/factsheet3.pdt> [2003, August 26].

Hawryszkiewyez, I. et al. (J 998). Introduction to System Analysis and Desi on.
Prentice Hall.

Institute for Applied Informatics (JAi) of the Forschungszenrrum Karlsruhe. [Online].
Available: <http://wwwscrv2. iai. fzk .dc/vartemis/wclcome _ engl. html>
[2003, August 26].

Kilgard, Mark J. (1996, November, 13). The OpenGL Utility Toolkit (GLUT)
Programming Interface APT Version 3. Silicon Graphics, Inc.

Macromedia. [Online]. Available:
<http://www.macromedia.com/software/fireworks/productinfo/overview/firewor
ks_datasheet.html> [2003, June 23].

Medina, Marelyn. Laparoscopic Surgery. [Online]. Available:
<http://www.sls.org/patientinfo/aboutlap.html> [2003, June 25].

Microsoft Corporation. [Online]. Available:
<http://msdn.microsotl.com/visualc/productinfo/foatures/default.aspx>
[2003, June 23].

Rapid Application Development. [Online]. Available:
<ht! p:/ /csweb.cs. bgsu.edu/maner/domains/RAD. htm> [2003,June 16].

Simbionix [Online]. Available:
··http://www.simbionix.wrn/LAP _Mentor.html> [2003, August 26].

174

Univ
ers

ity
 of

 M
ala

ya

Softimage. [Online]. Available:
<http://www. softimage. com/Products/3 d/v4/Datasheet/datasheet _ 3 D _ v. 4. 0. pdt
[2003, June 23].

Sommerville, Tan. (200 I) Software En ·1ineering
(6th Edition). Canada: Addison-Wesley Publishing Company.

Spiral Lifecycle. [Online]. Available:
<http ://cctr. umkc. edu/r-kennethjuwng/spiral. htm> [2003, June 16].

The KISMET JD-Simulation Software. [Online]. Available:
<http://iregtl.iai.fak.de/> [2003, August 26].

Upton, Graham. Laparoscopic Surgery Simulation Realism In A PC. [Online].
Available:

<http://www.dvc400.com/papers/LapSim.pdf> [2003, June 26].

VEST System One (VSOne) Technology. [Online]. Available:
<http://iregtl.iai.fzk.de/KISMET/VestTecb.html> [2003, August 26].

Virtual Endoscopic Surgery Training. [Online]. Available:
<http://iregtl.iai.fzk.de/KTSMET/VcstSystem.html> [200 , August 26].

Woo, Mason. et al. (1997). The Official Guide to Learnin • 0)enGL Version 1.1
(211<1 ed.). Canada: Addison-Wesley Publishing Company.

Your Medical Resource. [Online]. Available:
<http ://www.yourmedicalsource.com/I ibrary/laparoscopy/LAP _ whatis. html>
[2003, June 25].

175

Univ
ers

ity
 of

 M
ala

ya

