
AUTOMATION TOOL FOR ROLE TRANSITION IN
ORACLE DATA GUARD DATABASES BY ADOPTING

ORACLE BEST KNOWN PRACTICES

SATHIS KRISHNAN

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

 2019

Univ
ers

ity
 of

 M
ala

ya

AUTOMATION TOOL FOR ROLE TRANSITION IN
ORACLE DATA GUARD DATABASES BY ADOPTING

ORACLE BEST KNOWN PRACTICES

SATHIS KRISHNAN

DISSERTATION SUBMITTED IN PARTIAL

FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER IN SOFTWARE ENGINEERING

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2019 Univ
ers

ity
 of

 M
ala

ya

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: (I.C/Passport No:)

Matric No:

Name of Degree:

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Field of Study:

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

 Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

[AUTOMATION TOOL FOR ROLE TRANSITION IN ORACLE DATA

GUARD DATABASES BY ADOPTING ORACLE BEST KNOWN PRACTICES]

ABSTRACT

Database availability is utmost critical factor for most of the businesses to sustain and

continue their business. The required availability varies within an organization and

unavailability is intolerable. Failed role transition is one of the causes for the

unavailability. The predominant Oracle software with Data Guard databases versions is

commonly used to run the most demanding, mission-critical database driven applications

such as manufacturing, e-banking, etc. In this complex administration of Oracle Data

Guard environment maintaining and executing an efficient role transition requires an

automated tool to optimize an error free role transition. Having discovered by the survey

result which conducted to a group of database administrators, there is a need for the

database administrators to have an automated tool to perform the role transition more

efficient and error free. With an assessment of the Oracle Data Guard database, we have

developed an approach for an efficient role transition of Oracle Data Guard database in

term of the architecture concept and components, best practices and their impact on role

transition. The approach consists of role transition, implemented with a custom developed

tool, and prerequisite and post task of role transitions using the recommended Oracle best

practices. The approach is designed by doing a comparative study of existing Oracle best

practices and interviewing database administrators. The approach consists of prerequisite

and post task of role transition such as verify configuration health check, ensure no redo

log transmission gap between primary and standby database, overall health check of

production database and its standby databases and other checks. Finally, an evaluation

between the existing methods and the proposed approach one is provided based on how

they solve the Oracle Data Guard role transitions gaps with considering the external

Univ
ers

ity
 of

 M
ala

ya

iv

factors challenges and the degree of automation provided. The results of the study show

the proposed a role transition approached, a set of SQL query scripts integrated in a

custom designed Perl tool and demonstrated how the tool helped to automate the role

transition process. It has significantly reduced the time taken to perform the role transition

up to 80% with 99% successful role transition. Moreover, the Oracle Database Automated

Role Transition (ODaRT) ease the routine task database administrator and helpful for the

novice to perform error free role transition.

Keywords: Oracle Data Guard, switchover, role transition, automation

Univ
ers

ity
 of

 M
ala

ya

v

[ALAT AUTOMASI UNTUK PERALIHAN PERANAN DALAM PANGKALAN

DATA ORACLE DATA GUARD DENGAN MENGGUNAKAN AMALAN-

AMALAN TERBAIK ORACLE]

ABSTRAK

Ketersediaan pangkalan data adalah faktor kritikal bagi kebanyakan perniagaan untuk

mengekalkan dan meneruskan perniagaan mereka. Setiap organisasi mempunyai

ketersediaan pangkalan data tersendiri. Kegagalan peralihan peranan adalah salah satu

punca untuk ketersedian pangkalan data. Perisian pangkalan data Oracle dengan versi

Data Guard paling biasa digunakan untuk menjalankan aplikasi kritikal seperti

pembuatan, e-perbankan, dan lain-lain. Alat automasi diperlukan untuk mengekal dan

melaksanakan peralihan peranan yang cekap, optimum dan bebas ralat dalam pentadbiran

Oracle Data Guard yang kompleks begini. Daripada hasil kajian yang dijalankan diantara

sebuah kumpulan pentadbir pangkalan data, kita mendapati keperluan untuk mempunyai

alat automatik untuk melaksanakan peralihan peranan yang lebih cekap dan bebas ralat.

Kami telah membangunkan satu pendekatan untuk peralihan peranan yang cekap untuk

pangkalan data Oracle Data Guard, dengan penilaian dari segi konsep, komponen seni

bina, amalan terbaik dan impaknya terhadap peralihan peranan. Pendekatan ini terdiri

daripada peralihan peranan yang dilaksanakan dengan alat yang dibangunkan khususnya,

prasyarat dan tugas selepas peralihan peranan menggunakan amalan terbaik yang

disyorkan oleh Oracle. Pendekatan ini direka dengan melakukan kajian perbandingan

terhadap amalan terbaik Oracle yang sedia ada dan dengan menemuramah pentadbir

pangkalan data. Pendekatan ini terdiri daripada prasyarat dan tugas selepas peralihan

peranan seperti mengesahkan pemeriksaan kesihatan konfigurasi, memastikan tiada

jurang penghantaran log semula antara pangkalan data primer dan siap sedia, kestabilan

keseluruhan pangkalan data produksi dan pangkalan data siap sedia. Akhirnya, penilaian

antara kaedah yang sedia ada dan pendekatan yang dicadangkan disediakan berdasarkan

Univ
ers

ity
 of

 M
ala

ya

vi

bagaimana mereka menyelesaikan jurang peralihan peranan Oracle Data Guard dengan

mempertimbangkan cabaran faktor luaran dan tahap automasi yang mereka sediakan.

Hasil kajian menunjukkan cadangan pendekatan peralihan peranan dan satu set skrip SQL

yang disepadukan dalam alat Perl yang direka khusus menunjukkan bagaimana alat itu

membantu untuk mengautomasikan proses peralihan peranan yang dapat mengurangkan

masa yang diambil untuk melaksanakan peralihan peranan hingga 80% dengan 99%

peralihan peranan yang berjaya. Selain itu, Oracle Database Automated Role Transition

(ODaRT) memudahkan rutin pentadbir pangkalan data dan juga berguna untuk orang

baru untuk melakukan peralihan peralihan dengan bebas kesalahan.

Kata Kunci: Oracle Data Guard, beralih, peralihan peranan, automasi

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

I would like to this opportunity to thank the people who have guided, supported and

motivated me to complete this dissertation. I will always gratitude for the sincere

guidance and advice given by my supervisor Dr. Nazean Jomhari. There is no gift to

substitute the knowledge I gained from her, thank you. I would like to say a big thank you

to my whole family for being always supportive especially my brother Kesavan who was

guided me throughout this dissertation process. I also like to express my thanks to my

colleagues and friends for all the motivations.

Finally to the almighty god, sometimes I just look up, smile and say, “I know that was

you, God! Thanks!”

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

Abstract iii

Abstrak v

Acknowledgement vii

Table of Contents viii

List of Figures xi

List of Tables xiii

List of Abbreviations xv

List of Appendix xvi

1. CHAPTER 1: INTRODUCTION

1.1. Statement of Problems 2

1.2. Aim of Research 4

1.3. Objective of Research 5

1.4. Research Questions 5

1.5. Research Significance 8

1.6. Organization of Dissertation 9

2. CHAPTER 2: LITERATURE REVIEW

2.1. Introduction 11

2.2. Oracle Data Guard Concept 12

2.3. Oracle Data Guard Role Transition 17

2.3.1. Switchover 17

2.3.2. Failover 18

2.3.2.1. Manual Failover 19

2.3.2.2. Fast-Start Failover 20

2.4. Oracle Data Guard Role Transition Failures 21

2.5. Oracle Data Guard Role Transition Performance 23

2.6. Oracle Data Guard Role Transition Best Practices 26

2.6.1. Switchover Best Practices 26

2.7. Evolution of Oracle Data Guard Features Specific to Role Transitions 31

2.8. Summary 33

3. CHAPTER 3: RESEARCH METHODOLOGY

Univ
ers

ity
 of

 M
ala

ya

ix

3.1. Introduction 34

3.2. Method of Analysis and Data Collections 34

3.3. Quantitative Research Method 38

3.3.1. Questionnaire Designs 38

3.3.2. Data Collections 39

3.3.3. Result 40

3.4. Qualitative Research Method 41

3.4.1. Interview 41

3.4.1.1. Interview Session Procedure (Database Administrators) 41

3.5. Summary 42

4. CHAPTER 4: DESIGN AND DEVELOPMENT OF THE APPROACH AND

AUTOMATED TOOL

4.1. Introduction 44

4.2. Two-Tier Client/Server Architecture 45

4.3. Data Guard Broker Command Line and PL/SQL Programming Language 46

4.4. Data Guard Role Transition Approach 47

4.4.1. HealthCheck 49

4.4.2. PreCheck 50

4.4.3. Switchover 50

4.5. Development of ODaRT Tool 51

4.6. Scope of Requirements 52

4.7. Requirement modeling 56

4.7.1. Use Case: DatabaseConnection 56

4.7.2. Use Case: PreCheck 57

4.7.3. Use Case: HealthCheck 59

4.7.4. Use Case: Switchover 61

4.8. Analysis Model 63

4.9. System Design 64

4.10. Detailed Design of ODaRT Tool 66

4.10.1. Design of HealthCheck 67

4.10.2. Design of PreCheck 72

4.10.3. Design of Switchover 76

4.11. Implementation of ODaRT 77

4.12. Summary 80

Univ
ers

ity
 of

 M
ala

ya

x

5. CHAPTER 5: RESULT AND DISCUSSION

5.1. Main Features 81

5.2. Testing 86

5.3. Result 98

5.3.1. Expert’s Observation 98

5.3.2. ODaRT Tool Observation 100

5.3.3. Comparison Result 102

5.4. Evaluation 103

5.5. Summary 104

6. CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1. Strengths of ODaRT tool 106

6.2. Limitation of ODaRT tool 107

6.3. Future Work 107

REFERENCE 108

APPENDIX A 111

APPENDIX B 115

Univ
ers

ity
 of

 M
ala

ya

xi

LIST OF FIGURES

1. CHAPTER 1: INTRODUCTION

1.1. Research Questions and applied solutions 7

2. CHAPTER 2: LITERATURE REVIEW

2.1. Oracle Database with Data Guard Architecture 15

2.2. Data Guard Environment after Switchover 17

2.3. Relationship of Primary and Standby Databases and the Observer 20

2.4. Show Configuration using DGMGRL 30

2.5. Process of switchover using OEM 31

3. CHAPTER 3: RESEARCH METHODOLOGY

3.1. Method of analysis and data collection process 36

3.2. Pie Chart of Respondent’s Years of Experience 40

4. CHAPTER 4: DESIGN AND DEVELOPMENT OF THE APPROACH AND

AUTOMATED TOOL

4.1. Client-Server/Two-Tier Architecture Design 46

4.2. Proposed Role Transition Approach 48

4.3. Stages of ODaRT Tool Engineering Process 52

4.4. UML Use Case Diagram for Database Connection 56

4.5. UML Use Case Diagram for PreCheck 58

4.6. UML Use Case Diagram for HealthCheck 60

4.7. UML Use Case Diagram for Switchover 61

4.8. UML Analysis Class Diagram for ODaRT tool 63

4.9. UML Class Diagram (subsystem decomposition) for ODaRT tool 65

4.10. UML Deployment Diagram for ODaRT Tool 65

4.11. Verify disk groups free space 68

4.12. Verify configuration health 69

4.13. Verify there are no large gaps 71

4.14. Verify database cluster ware resources 72

4.15. Suspend scheduler jobs 74

4.16. Check and kill potential long running operations 75

Univ
ers

ity
 of

 M
ala

ya

xii

4.17. Perform switchover 77

4.18. Database connection through Oracle DBI using TNS 79

5. CHAPTER 5: RESULTS AND DISCUSSION

5.1. Automated database health check instruction 81

5.2. Completion of automated database health check 82

5.3. Instructing for a database switchover prerequisites check 82

5.4. Pre check prompt for disabling scheduler jobs 83

5.5. Completion of switchover prerequisites check 83

5.6. Instructing for a database switchover role transition 84

5.7. Prompt for prerequisites check before switchover 84

5.8. Prompt for kill long running session 84

5.9. Prompt for confirming a switchover 85

5.10. Prompt for post switchover verification 85

5.11. Complete of switchover 86

5.12. Example of exception handler 86

5.13. The testing methodology used for ODaRT tool 87

5.14. Linear Chart of Pre-Post Tasks Time (Minutes) 99

5.15. Linear Chart of Ratio of Successful Switchover 99

5.16. Linear Chart of Switchover Time (Minutes) 101

5.17. Linear Chart of Failure of Role Transition 101

Univ
ers

ity
 of

 M
ala

ya

xiii

LIST OF TABLES

1. CHAPTER 1: INTRODUCTION

1.1. The minimal required checks that recommended by Oracle for a Switchover 3

2. CHAPTER 2: LITERATURE REVIEW

2.1. Type of Failures and Resolutions 22

2.2. Role Transition Timings 24

2.3. Average Failover Time 25

2.4. Average Switchover Time 25

2.5. DBA Tasks for Switchover 27

2.6. Verify there are no large gaps 29

2.7. Evolution of Oracle Data Guard features specific to Role Transitions 31

3. CHAPTER 3: RESEARCH METHODOLOGY

4. CHAPTER 4: DESIGN AND DEVELOPMENT OF THE APPROACH AND

AUTOMATED TOOL

4.1. HealthCheck checks list 49

4.2. PreCheck checks list 50

4.3. Switchover tasks list 51

4.4. Use Case Description for Database Connection 57

4.5. Use Case Description for PreCheck 58

4.6. Use Case Description for HealthCheck 60

4.7. Use Case Description for Switchover 62

4.8. Detail of ODaRT tool source codes 66

4.9. Hardware system requirement 77

4.10. Software system requirement 78

5. CHAPTER 5: RESULTS AND DISCUSSION

5.1. ODaRT tool black box test cases 88

5.2. ODaRT white box test cases 97

5.3. Result for expert’s observation 98

5.4. Test cases result for tool observation 100

5.5. Data Comparison of Traditional Method and ODaRT 102

Univ
ers

ity
 of

 M
ala

ya

xiv

5.6. Oracle Data Guard database role transition tools evaluation 103

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF SYMBOLS AND ABBREVIATIONS

ANSI : American National Standards Institute

CPAN : Comprehensive Perl Archive Network

CRSCTL : Oracle Clusterware Control Utility

DBA : Database Administrator

DBI : Database Interface

DGMGRL : Data Guard Command-line Interface

GUI : Graphical User Interface

IDE : Integrated Development Environment

JDBC : Java Database Connectivity

MML : RMAN Media Management Layer

OCI : Oracle Call Interface

ODaRT : Oracle Database Automated Role Transition

OEM : Oracle Enterprise Manager

RAC : Real Application Cluster

RDBMS : Relational Database Management System

RMAN : Recovery Manager

RPC : Remote Procedure Call

SPSS : Statistical Package for the Social Science

SQL : Structured Query Language

SRVCTL : Server Control Utility

TCP/IP : Transmission Control Protocol/Internet Protocol

TNS : Transparent Network Substrate

UML Unified Modeling Language

Univ
ers

ity
 of

 M
ala

ya

xvi

LIST OF APPENDICES

Appendix A: Questionnaires 101

Appendix B: Switchover and Failover Test Results 105

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1

INTRODUCTION

The Oracle Data Guard database role transition is done either by issuing SQL statements or

Data Guard broker interface or through Oracle Enterprise Manager. The Oracle Data Guard

database supports two transitions of roles, one of which is to switchover, as in this case the

primary database change the production or primary role with one of its standby databases.

The other transition is failover which changes a standby database to the primary role in

response to a primary database failure automatically depending on the configured setting or

a manual failover is initiated by the Database Administrator (DBA) in case of primary failure

or for any other reasons which shows the current primary database is unhealthy.

The error or failure free switchover and failover require a recommended pre and post

checks that are not embedded with Oracle role transition features, it still needs a DBA to

perform those tasks. This research is to study the existing Oracle recommended best practices

and reuse the open source Perl modules and produce an automated tool is developed to

achieve an automated (need DBA to execute) smooth Oracle database role transitions with a

very minimal DBA intervention.

The novice DBAs will enjoy the benefit of this automated tool since to execute the

automated role transitions tool will not require an in-depth knowledge on Oracle Database.

The tool significantly contribute to the industries which using Oracle Database in their

production environments as it save management cost and the use of software reuse reduce

Univ
ers

ity
 of

 M
ala

ya

2

the development cost. Compliance with automated best practices can help mitigate potential

performance and infrastructure issues that affects many companies.

1.1 Statement of Problems

The big scaled industries and Database Administrators often face below problems in

handling a smooth Oracle Database Role Transitions.

• Role Transitions (Failover or Switchover) often failed/hung due to several technical

reasons (long running operations, archived log apply lag, backup is running during

the switchover, etc.). The failures are avoidable if the DBA perform the best practices

recommended by Oracle by performing Pre-Switchover checks and Post-Switchover

(Metalink, n.d.). Below are the documented failures and the troubleshooting

documents have been documented and provided for the problems during role

transitions (Charles, 2014).

- Failure to Convert the Original Primary Database

- Failure to Convert Target Physical Standby Database

- Failure to Open New Primary Database

- The broker switchover fails due to problems with redo transport services

Univ
ers

ity
 of

 M
ala

ya

3

• The trouble-free Data Guard Switchover or Failover requires an around 21 tasks

involving pre/post checks and health checks which is time consuming. This would

require the DBA to have handy commands and really a time-consuming task to

perform all the checks and there are possibilities to miss or do a wrong check. The

table 1.1 shows the minimal required checks that recommended by Oracle for a

Switchover.

Table 1.1: The minimal required checks that recommended by Oracle for a Switchover

Check Pre/Post Checks
1 Verify disk groups free space
2 Verify observer location
3 Verify configuration health
4 Verify there is no apply delay for the target standby

5 Ensure online redo log files on the target physical standby have been
cleared

6 Verify there are no large gaps
7 Verify primary and standby tempfiles match

8 Verify primary and standby disk location

9 Verify all datafiles are ONLINE

10 Verify primary and standby datafiles disk location

11 Verify primary and standby online redo log disk location
12 Suspend Scheduler jobs
13 Check for potential long running operation
14 Suspend backup jobs
15 Clear potential blocking parameters
16 Perform switchover
17 Resume scheduler jobs
18 Resume backup jobs

Univ
ers

ity
 of

 M
ala

ya

4

The failure of role transitions will impact the database uptime and database maintenance

downtime. The unforeseen failure will impact the mission critical database/applications,

which is not tolerable in any industries. All the above problems is avoidable with an

Automatic Switchover or Failover Tool which will perform all the pre and post checks

automatically without much human involvement. And the automate solution eases the

Database Administrators on their daily operations duties. The development of the automation

solution is costly; hence the use of reuse Perl modules is proposed.

1.2 Aim of Research

The aim of this research is to design and development of an automated approach for role

transition in Oracle Data Guard Databases by incorporating Oracle and DBA expert’s best

practices. The automated tool development is aided by Perl modules for performing Oracle

Data Guard Database’s Failover or Switchover embedded with known best practices steps

(prerequisites and post checks) recommended by Oracle and Database Administrators

experts.

Univ
ers

ity
 of

 M
ala

ya

5

1.3 Objective of Research

To achieve the research goal, the following objectives are identified and evaluated in this

study:

[1] The first objective is to investigate and determine the challenges in the existing Oracle

Data Guard role transition.

[2] The second objective is to propose and design an automated approach for Oracle Data

Guard role transition that addresses the above challenges and minimize database

administrator intervention during the role transition process.

[3] The third objective is to develop an automated tool that can minimize the role

transition downtime in Oracle Data Guard Databases. It should demonstrate and

measure the efficiency of the proposed approach by the application of the developed

tools in the selected test cases, expert survey and the comparison with other existing

prominent methods.

1.4 Research Questions

Based on the research objective, a number of research questions are examined and the

solution for the each questions will be answered and organized in each chapters of this

research paper. The research questions are denoted as “RQ”. The solutions are denoted as

“S”.

Univ
ers

ity
 of

 M
ala

ya

6

RQ1: Why does the existing Oracle Database Role Transition methods of SQL statements,

Data Guard broker, and Oracle Enterprise Manager experiencing failures?

RQ2: What are the documented best practice steps in executing existing Oracle Database

Role Transition methods through SQL statements, Data Guard broker, and Oracle Enterprise

Manager?

RQ3: How important of performing the best practices before and after an Oracle Database

Role Transition?

RQ4: How existing Oracle Database Role Transition methods and tools serve the purpose?

RQ5: What are existing automations tool exist to support Oracle Database Role

Transition?

RQ6: How efficient the existing automations tool performing the Oracle Database Role

Transition?

Figure 1.1 illustrate the research questions raised and solutions that applied throughout this

research. Solutions are denoted with ‘S’ and research questions denoted with ‘RQ’.

Univ
ers

ity
 of

 M
ala

ya

7

Figure1.1 Research Questions and applied solutions

 Univ
ers

ity
 of

 M
ala

ya

8

1.5 Research Significance

With the current market analysis and needs of high availability of a mission critical

databases, the importance of this research is aiming at:

• Reducing of role transition time and improving the efficiently.

Having an automated tool to perform the role transition will significantly speed

up the process of role transition and with less human error. The time for a

human need to think and prepare for the role transition can be eliminated.

• Reducing the human errors

Automated tool will help to reduce the human errors since no human is always

perfect in performing a task without mistakes, but automation can help to

reduce the ratio of failures. With the embedded automation solution in the

current role transition will significantly help the database administrator to

perform the role transition without mistakes and it can save them from any

unexpected recovering situation.

• Reducing database downtime cost and maintenance cost

For a mission critical-driven application, each single second of unavailability is

counted for cost of the return of investment. A database failure is not acceptable

during a planned role transition of switchover. The failures are avoidable by

practicing and performing the role transition with guided and recommended

steps. The automation would help to make sure the recommended best practices

Univ
ers

ity
 of

 M
ala

ya

9

are always compliance rather than a human. The role transition is usually

performed during a planned downtime for database or operating systems

maintenance such as patch or upgrade. By optimizing the existing database

server for the automation will not engage any additional resource or financial

cost.

1.6 Organization of Dissertation

There are six (6) main chapters discussed in this dissertation as follows:

• Chapter 1: Introduction

This chapter consists of introduction to the problem, the objectives of the study

that describe the problem and the solutions achieved through the research

questions and solution applied.

• Chapter 2: Literature Review

This chapter present a literature review on prior work on Oracle Data Guard

Database Role Transitions. The reviews of various sources regarding the

selection criteria and potential techniques are revealed in this chapter. The

methods and automation of role transition is discussed heavily. The comparison

and evaluation of Oracle Data Guard role transition feature shall be elaborate

well on this chapter.

• Chapter 3: Research Methodology

This chapter describes the development methodology of ODaRT tool. The

client- server architecture and the database communication and manipulation

Univ
ers

ity
 of

 M
ala

ya

10

languages such as PL/SQL and DGMGRL is described in detail here. The role

transition approach of switchover and its pre-check is elaborated in this chapter.

• Chapter 4: Design and Development of the Approach and Automated Tool

In this chapter the development of ODaRT tool is discussed. The functional and

non-functional of the tool is discussed in detail. The chapter also discussed the

development of the tool through the use case modelling, analysis model, system

design and details of the source code which integrated with the database

administrator tasks.

• Chapter 5: Results and Discussion

In this chapter we demonstrated the main features of the ODaRT tool and

validated the defined testing strategy. Both the black and white testing model

been used to find and solve the bugs in the software. Finally, the collected result

is presented and evaluated by comparing with other prominent Oracle Data

Guard role transitions methods.

• Chapter 6: Conclusion and Future Works

The final chapter to discuss about the overall summary of the research

strengths, weakness and future works.

Univ
ers

ity
 of

 M
ala

ya

11

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The problems and failures in Oracle Database Role Transitions are often discussed in most

available Oracle Support also known as Metalink, oracle forums, oracle supports community

discussion board, Knowledge Centre and blogs. The failures of role transition would lead to

downtime causing outage of data access, operations are down, revenue is lost, customer

relationship is damaged and lawsuits. Although there are features provided and embedded by

oracle such like Fast-Start Failover or tools like Oracle Enterprise Manager (OEM) and Data

Guard command-line interface (DGMGRL) but it does not address the whole best practices

that recommended by the Oracle itself and still need manual intervention by database

administrator to execute. The reason why the best practices was not imbedded by Oracle in

their OEM and DGMGRL features could be due to customers varied setup of the databases.

For an example, backup is not taken in all standby databases, but it might require by certain

organization to maximize their disaster recovery. Also, these are recommended practices but

not a mandatory check to have a successful role transition.

The Oracle White Paper (Oracle Active Data Guard, 2010) and books of Role

Transition Best Practices (Carpenter et al., 2009; "Oracle10g: Data Guard Switchover and

Failover Best Practices,") proves, the Fast-Start Failover automatically executes a database

failover within seconds of an outage being detected and can complete in seconds however, it

has not provided the same automate solutions for planned switchover where a database

administrator is needed to perform prerequisite and post checks in order to perform a smooth

switchover (Jim, 2009). The fast start failover did detect the unavailability of production

Univ
ers

ity
 of

 M
ala

ya

12

database and immediately failover to the standby databases but still DBA is needed to

complete the failover process. Studies shows executing the switchover without pre check and

post check could lead to failure or hung of the databases ("High Availability Data Guard

Broker," ; Tuomas, 2010).

The other explicit tools to support the automation of role transition are reviewed in

the following sections. The Dbvisit Standby tools which help to rid of the complication of

setting up and running Oracle standby databases. It does have some of the features of

recommended Pre and Post checks for a graceful Switchover and Failover operations but it

does not automated and still a DBA intervention is needed to run separately the processing

script. The automate of data guard best practices (Larry, 2011; Nawaz & Soomro, 2013) has

demonstrated how DBAs can automate setup, configuration, monitoring and maintenance of

standby Data Guard environments with assistance from the Data Guard Toolkit which only

assist to automation but with no clear solutions and limited to only Linux platform and using

shell scripts.

The following sections of this literature review cover the topics of architecture,

requirements and external factors of role transition, methods of role transition, existing

automation on role transitions, and failures of role transitions, available best practices and its

comparison and finally the evaluation of role transition in their newer version.

2.2 Oracle Data Guard Concept

The Oracle Data Guard is a feature that only comes with Oracle Database Enterprise Edition

and operates the database in two separate roles consisting of primary database or standby

Univ
ers

ity
 of

 M
ala

ya

13

database. The databases in Data Guard is configured using Oracle Net for the networking

between the primary and standby databases. The databases can be located to different data

center irrespective of their location. The Data Guard configuration enables one of the

database to function as a primary role and the other one or additional databases as standby

role (Burleson, 2015; "Partitioning Concepts. oracle.com," 2015). Both the primary and

standby databases is manageable through three available methods. The three methods are,

the basic SQL command-line interface, the powerful and distributed management of Data

Guard broker interface including the DGMGRL command-line interface and lastly the user

friendly graphical user interface which is integrated with its Oracle product of Enterprise

Manager (Crosby, Hughes, Lizieri, & Oughton, 2005; Kumar, 2003; Metalink, n.d.)

The redo data is the vital structure for any of an Oracle instance and it is the fundamental

data used to synchronize and real time update the standby databases. In Oracle there is a

service called Redo Transport Service to manage the redo data sending to the physical

databases. The Redo Transport Service is an automated transfer to transmit the data to

standby databases from primary database via the configured parameter in both the databases.

The LOG_ARCHIVE_DEST_n is the parameter used to configure the destination of the log

transportation. The service also acts as automatic gap resolver whenever there is found redo

log gap between primary and standby databases (S. Alapati, Kuhn, & Nanda, 2007).

The gap of archived redo log usually happens when there is network glitch between

the primary and standby databases. While redo transport services support the transmission of

redo log to standby databases, the Log Apply Services support apply of the received redo

logs to the standby databases (S. Alapati et al., 2007; "Oracle® Database VLDB and

Partitioning Guide 11g Release 2 (11.2). oracle.com," 2015). The Log Apply Services also

Univ
ers

ity
 of

 M
ala

ya

14

automatically applies the redo data to uphold the sync between the primary and standby

databases.

There are three data guard protection modes available for customers to choose to

depend on their business needs. Some customer give importance to not loss any data while

some customer give importance for the availability of the database. To cater different

business needs Oracle has provided three protection modes called Maximum Protection,

Maximum Availability and Maximum Performance. Three of those have their own

advantages and limitations due to the requirement.

For an example, Maximum Protection mode ensure there is no data loss, but it cause

each of the transaction in primary will only be committed after the redo log data is transmitted

to at least one of the standby databases and it causes the production database to not able to

give its best performance (Greenwald, Stackowiak, & Stern, 2013).

The Maximum Availability mode enabled databases will give the highest level of

database availability in which the primary node will shut down itself when there was problem

while redo stream writing in standby database, but it will happen to the primary database

which is running in Maximum Protection mode (Kuhn, Alapati, & Padfield, 2016; Tuomas,

2010). While the last Maximum Performance mode enabled database will provide the highest

performance of its production database.

This is possible by the asynchronous of redo data transmission to the standby

database, the primary database will commit as soon as the redo log is transmitted to at least

one standby database and the primary will not wait for the acknowledgment of the redo log

apply in standby database. The selection between the data guard protection modes depend on

the user business needs.

Univ
ers

ity
 of

 M
ala

ya

15

Figure 2.1 Oracle Database with Data Guard Architecture on Primary and Multiple
Standby (source: Oracle Database Documentation 11g Release 1 (11.1)(Ashdown et al.,

2011; Bryla, 2007))

Figure 2.1 shows the architecture of Oracle Database with Data Guard Broker. The

features of Data Guard which is to communicate between the production database and other

standby databases either it is a Physical Standby Database, Logical Standby Database or

Snapshot Standby Database ("11.2 Data Guard Physical Standby Switchover Best Practices

using SQL*Plus. ," ; "11.2 Data Guard Physical Standby Switchover Best Practices using the

Broker.," ; Carpenter, 2009). The choice of the standby database depends on the user business

and capabilities needs. All the standby databases are real time copy of production database

Univ
ers

ity
 of

 M
ala

ya

16

which is periodically updated by transporting the redo data via network. The most common

data guard configuration is physical standby where it is an identical copy of block-by-block

production database for a use of disaster recovery and opened as read-only database for

support the reporting applications ("11.2 Data Guard Physical Standby Switchover Best

Practices using the Broker.," ; Hayes, Rinkevich, & Lowrey, 2007).

The Logical Standby Database is not identical in terms of its physical structure (data

file location) but it is identical for logical information of a production database. A sync with

primary database is by transforming the rodo logs into SQL statements and execute in

standby database using LogMiner features. The Snapshot Standby Database is usually

created for a purpose of testing and it is fully updatable ("11.2 Data Guard Physical Standby

Switchover Best Practices using SQL*Plus. ,"). The updates performed on standby database

will be discarded upon its converted to physical standby to sync as production database.

Univ
ers

ity
 of

 M
ala

ya

17

2.3 Oracle Data Guard Role Transition

2.3.1 Switchover

Data guards provides service to change the roles of the database by switching it for any

planned outages. Planned downtime usually happens for a regular maintenance of the

infrastructure such as hardware or software maintenance and repair, upgrades and patching.

A database switchover is also performed to resolve of any data corruption or failures when

the production or primary database is open.

Figure 2.2 Data Guard Environment after Switchover (source: Oracle Database
Documentation 11g Release 1 (11.1)(Ashdown et al., 2011; Bryla, 2007))

Univ
ers

ity
 of

 M
ala

ya

18

Figure 2.2 shows the environment of the production and its redundant database. The

shipment of Oracle archive logs is reversed once the switchover is done. The old primary San

Francisco database now become standby database after the switchover and receives the

archived redo log files from new primary database of Boston (Bryla, 2007; Charles, 2014;

Chaudhuri & Weikum, 2000). And the Bostan database is now serves as new production

database and it is transmits the redo data to the new standby database San Francisco. The

switchover is always not 100% success as it also could failed if there is an issue among the

primary and standby database. The failures are always prevented by executing the

recommended best practices which involves some pre and post checks. The best practices

will be discussed more detailed in the following sub topics.

2.3.2 Failover

A Failover is triggered when the primary database is having an issue which it is not reachable,

and it will move to one of the standby databases. This situation usually happens when the

primary database is not recoverable for a specific time. The failover may happen

automatically, or it can be triggered manually when there is a need. In below subtopic it is

discussed in detail the need of failover and its criteria to trigger an automatic or manual

failover. Failover may or may not result in data loss depending on the protection mode in

effect at the time of the failover (Fast-Start Failover Best Practices, 2010; "Oracle10g: Data

Guard Switchover and Failover Best Practices," ; Singh, 2013). An administrator initiates

manual failover when the primary database fails. In contrast, Data Guard automatically

initiates a fast-start failover without human intervention after the primary database has been

unavailable for a set period (the fast-start failover threshold).

Univ
ers

ity
 of

 M
ala

ya

19

2.3.1.1 Manual Failover

The manual failover is a process of convert a standby database to a primary database when

the original primary database fails and there is no possibility of recovering the primary

database in a timely manner. There may or may not be data loss depending upon whether the

primary and target standby databases were transactional consistent at the time of the primary

database failure. The manual failovers performed in three different ways (Jim, 2009):

• Complete and immediate manual failovers

Using Enterprise Manager or DGMGRL, it can perform either a complete

(recommended) or an immediate failover. It automatically recovers the maximum

amount of data for the protection mode of the original primary database

application data.

• Performing a manual failover operation

After determining that there is no possibility of recovering the primary database

in a timely manner, ensure that the primary database is shut down and then begin

the failover operation. The manual failover initiated through using Oracle

Enterprise Manager or DGMGRL.

• Re-enabling disabled databases After Failover or Switchover

To restore the original disaster-recovery solution after switchover to a logical

standby database or after failover to any standby database, requires to perform

additional steps. Any database that was disabled through multiple role changes

cannot be reinstated. The database must be recreated manually and then re-enable

the database in the broker configuration.

Univ
ers

ity
 of

 M
ala

ya

20

2.3.1.2 Fast-Start Failover

Fast-start failover allows the broker to automatically fail over to a previously chosen,

synchronized standby database in the event of loss of the primary database. Fast-start failover

quickly and reliably fails over the target standby database to the primary database role,

without requiring performing any manual steps to invoke the failover (Fast-Start Failover

Best Practices, 2010; "Oracle10g: Data Guard Switchover and Failover Best Practices,").

Fast-start failover can be used only in a broker configuration and can be configured only

through DGMGRL or Enterprise Manager (Crosby et al., 2005; "Oracle 9i Database

Manageability,")

The observer is a separate OCI client-side component that runs on a different

computer from the primary and standby databases and monitors the availability of the

primary database. Once the observer is enabled, no further user interaction is required. If both

the observer and the standby database lose connectivity to the primary database, the observer

waits for the amount of time specified by the FastStartFailoverThreshold property before

initiating a fast-start failover (Fast-Start Failover Best Practices, 2010; "Oracle10g: Data

Guard Switchover and Failover Best Practices,"). Moreover, after the failover completes, the

former primary database is automatically reinstated as a standby database in the new broker

configuration when a connection to it is reestablished.

Univ
ers

ity
 of

 M
ala

ya

21

Figure 2.3 Relationship of Primary and Standby Databases and the Observer
(source: Oracle Database Documentation 10g Release 2 (10.2)(Kumar, 2003; "Oracle10g:

Data Guard Switchover and Failover Best Practices,"))

 Figure 2.3 shows the relationships between the primary database, target standby

database, and the observer during fast-start failover. After Fast-Start Failover the old primary

database is reinstated as new standby database.

2.4 Oracle Data Guard Role Transition Failures

The role transitions are not always a successful task, the database administrator sometime

faced errors and failures that need troubleshooting and fix. Oracle has constantly fixed the

issues or bugs escalated to their support. In every version of its release or patches, Oracle

have provided the permanent solutions. However, some failures are not avoidable if the

database administrator did not follow the correct steps in performing a role transition (Larry,

2011; "Oracle10g: Data Guard Switchover and Failover Best Practices," ; Oracle Active Data

Guard, 2010).

Univ
ers

ity
 of

 M
ala

ya

22

Oracle has always recommended using its best practices guideline to ensure a smooth

role transitions. The best practices guidelines will be discussed in more detail in following

topics.

Table 2.1 Type of Failures and Resolutions

Failures Metalink Doc Reference Resolution
Standby controlfile has corrupt

information. Especially v$log_history

was showing stale information

Switchover To Physical

Standby without broker hangs.

(Doc ID 1261877.1("Oracle-Base,"

2013))

Ensure all the pre-

requisites for switchover

are met.

Refer Doc ID 751600.1

10.2 Data Guard Physical

Standby Switchover ("11.2

Data Guard Physical

Standby Switchover Best

Practices using the

Broker.,")

Problems Switching Over to a

Physical Standby Database

- Switchover Fails Because

Redo Data Was Not

Transmitted

- Switchover Fails Because

SQL Sessions Are Still Active

- Switchover Fails with the

ORA-01102 Error

- Redo Data Is Not Applied

After Switchover

- Roll Back After Unsuccessful

Switchover and Start Over

(Carpenter, 2009; Charles, 2014)

Oracle Data Guard Concepts and

Administration, 11g Release 2

(11.2)

Ensure the best

practices tasks taken

before/after switchover

User gets ORA-16778 from broker's

switchover command when primary's

 RedoRoutes has an ALT attribute

Role transition fails with terminal

standby as alternate of far sync

(ORA-16778) (Doc ID 19399918.8

("11.2 Data Guard Physical

Standby Switchover Best Practices

using SQL*Plus. ,"))

Ensure the primary's

RedoRoutes has no

alternate destination

setting.

Univ
ers

ity
 of

 M
ala

ya

23

Redo transport service was unable to

send redo data to one or more standby

databases

ORA-16778 ‘redo transport error

for one or more databases’ (Doc ID

173073.1 (S. R. Alapati, Kuhn, &

Padfield, 2011; Carpenter, 2009))

12.1 Version Bugs

- long open of standby after

switchover

- flashback adding 7+ seconds

to failover

- switchover failed with ORA-

00312

- broker adding time to

switchover

- broker validate issues

- cancel recovery on standby is

taking 3-5 seconds during

switchover

Known issues related to

Switchover/Role transitions (Doc

ID 1901194.1 ("High Availability

Data Guard Broker," ; Kumar,

2003; "Oracle 9i Database

Manageability,"))

Apply related patches

 Table 2.1 shows the errors or failures happened during a role transition. The failures

and solutions are captured in Oracle support also known as Metalink (Metalink, n.d.).

2.5 Oracle Data Guard Role Transition Performance

Role Transitions have become more streamlined and efficient in recent versions of the Oracle

Database. Using the best practices recommended by Oracle will help us to achieve the best

possible role transition times. Analyzing where the time is being spent during a role transition

can help tune and set proper expectations for the production environment(Charles, 2014;

Nawaz & Soomro, 2013).

Univ
ers

ity
 of

 M
ala

ya

24

Table 2.2 Role Transition Timings (Source: Oracle Maximum Availability Architecture,
OWP 2016 (Kuhn et al., 2016; Kyte, 2010))

Table 2.2 shows the improvement of role transition timing throughout the Oracle

versions. The data provided taken from the point the transition starts to the point the new

primary accept the new client connection. Also, the baseline measurement taken during

periods with minimum workload during Data Guard failover and no workload during Data

Guard switchover operations("11.2 Data Guard Physical Standby Switchover Best Practices

using the Broker.," ; "Oracle10g: Data Guard Switchover and Failover Best Practices,").

There are also some external factors contributes to the role transition timings such as RAC

or single instance databases, open or mounted standbys and varying workloads on a primary

database or an Active Data Guard standby.

Table 2.3 Average Failover Time (Source: Oracle Data Guard 10g Release 2 Switchover
and Failover Best Practices, OWP 2016 ("Oracle10g: Data Guard Switchover and

Failover Best Practices,"))

Univ
ers

ity
 of

 M
ala

ya

25

Table 2.4 Average Switchover Time (Source: Oracle Data Guard 10g Release 2
Switchover and Failover Best Practices, OWP 2016 ("Oracle10g: Data Guard Switchover

and Failover Best Practices,"))

Tables 2.3 and 2.4 shows the average role transitions of failover and switchover

timings. The timing were achieved using the optimal failover and switchover methods which

will be described more in next topic of role transition best practices. A role transition

performed using Enterprise Manager takes longer because of the sequence in which the

instances were restarted during the switchover and because the new production database was

restarted. In addition, Data Guard Broker processing time contributed to the overall

switchover time.

Univ
ers

ity
 of

 M
ala

ya

26

2.6 Oracle Data Guard Role Transition Best Practices

A business needs high-availability best practices that involve both technical and operational

aspects of its IT systems and business processes. Such a set of best practices removes the

complexity of designing a high-availability architecture, maximizes availability while using

minimum system resources, reduces the implementation and maintenance costs of the high-

availability systems in place, and makes it easy to duplicate the high-availability architecture

in other areas of the business ("11.2 Data Guard Physical Standby Switchover Best Practices

using SQL*Plus. ," ; "11.2 Data Guard Physical Standby Switchover Best Practices using the

Broker.," ; "Oracle10g: Data Guard Switchover and Failover Best Practices,").

One of the best ways to reduce downtime is incorporating operational best practices.

It can often prevent problems and downtime before they occur by rigorously testing changes

in test environment, following stringent change control policies to guard the primary database

from harm, and having a well-validated repair strategy for each outage type.

2.6.1 Switchover Best Practices

Table 2.5 shows the total of 20 tasks with subtasks need to be executed by a database

administrator to complete a switchover. The tasks are strongly recommended and mandated

to execute to perform a switchover. These tasks are not automated and have to perform by a

database administrator ("11.2 Data Guard Physical Standby Switchover Best Practices using

SQL*Plus. ," ; "11.2 Data Guard Physical Standby Switchover Best Practices using the

Broker.," ; "Oracle10g: Data Guard Switchover and Failover Best Practices,"). For an

environment where the high availability and running mission critical application, the

Univ
ers

ity
 of

 M
ala

ya

27

traditional method of using SQL statements is not preferred and usually the DBA will prefer

broker method. Switchover using SQL statements will take time as its needs DBA to

complete all the recommended tasks.

Table 2.5 DBA Tasks for Switchover (Source: Data Guard Physical Standby
Switchover (Doc ID 751600.1)("11.2 Data Guard Physical Standby Switchover Best

Practices using SQL*Plus. ,"))

 Number DBA Tasks
 Pre-Switchover Checks

1 Verify Configuration Health
 With Broker
 a. Verify Data Guard Environment Health
 b. Cancel apply delay for the target standby using CLI or GUI
 Without Broker
 a. Verify Managed Recovery is Running (non-broker) on the standby
 b. Cancel apply delay for the target standby using SQL

2
Ensure Online Redo Log Files on the Target Physical Standby have

been cleared
3 Check for Previously Disabled Redo Threads
4 Check if the standby has ever been open read-only
5 Verify there are no large GAPS.
6 Use “THROUGH ALL SWITCHOVER” on Bystander Standbys
7 Verify Primary and Standby TEMP Files Match
8 Verify that there is no issue with V$LOG_HISTORY on the Standby
9 Verify no old partial Standby Redo Logs on the Standby

 Switchover

10 Clear Potential Blocking Parameters & Jobs
11 Shutdown all mid-tiers (optional)
12 Monitor Switchover

 With Broker
 a. Turn on Data Guard tracing on primary and standby
 b. Tail Broker Logs (optional) on all instances
 Without Broker
 a. Turn on Data Guard tracing on primary and standby
 b. Tail Primary and Standby alert logs on all instances

13 Create Guaranteed Restore Points (optional)

Univ
ers

ity
 of

 M
ala

ya

28

14 Switchover
 With Broker
 a. Data Guard Broker command line utility
 b. EM switchover
 Without Broker

 a. Verify that the primary database can be switched to the standby role
 b. If RAC, then shutdown all secondary primary instances
 c. Switchover the primary to a standby database
 d. Verify the standby has received the end-of-redo (EOR) log(s)

e. If the standby is a RAC configuration, then shutdown all secondary

standby instances

 f. Verify that the standby database can be switched to the primary role
 g. Check if the standby has ever been open read-only
 h. Switchover the standby database to a primary
 i. Open the new primary database:
 j. Correct any tempfile mismatch
 k. Restart the new standby

15 Contingency or Fallback

 Post-Switchover Steps

16 Set Trace to Prior Value
17 Reset Jobs

18
Schedule and conduct the incremental backup, roll-forward, and tape

backups
19 Reset apply delay for the target standby
20 Drop any Switchover Guaranteed Restore Points

There are two options can be used for performing switchover with broker enabled

which are using Oracle Enterprise Manager (OEM) or Data Guard Broker command line

utility (DGMGRL) ("11.2 Data Guard Physical Standby Switchover Best Practices using the

Broker.,"). The most preferred method for database administrators are using DGMGRL since

the OEM is graphical user interfaced which needs to execute by clicking few pages before

doing the final switchover. Also, the OEM is connected via client connection to the central

database called OMS and could influence the network or traffic congestion which may cause

Univ
ers

ity
 of

 M
ala

ya

29

slowness in executing the switchover. The DGMGRL command would be the best method

since the execution happens on the target servers.

Table 2.6 Verify there are no large gaps

Primary Database:

SQL> SELECT THREAD#, SEQUENCE# FROM V$THREAD;

Standby Database:

SQL> SELECT THREAD#, MAX(SEQUENCE#)

FROM V$ARCHIVED_LOG

WHERE APPLIED = 'YES'

AND RESETLOGS_CHANGE# = (SELECT RESETLOGS_CHANGE#

FROM V$DATABASE_INCARNATION

WHERE STATUS = ‘CURRENT’)

GROUP BY THREAD#;

 Table 2.6 is the SQL statement need to be executed by database administrators before

switchover to verify there is no gaps of redo logs transmission between primary and standby

databases. Imagine the time it takes for a DBA to completely perform the above 20 tasks for

a smooth and error free switchover. Those are recommended only not mandated to perform

for a switchover.

Univ
ers

ity
 of

 M
ala

ya

30

Figure 2.4 ‘Show Configuration’ using DGMGRL

The figure 2.4 shows one of the command of verification of the primary and standby

databases using the data guard broker command line (DGMGRL).

Figure 2.5 Process of switchover using OEM

Univ
ers

ity
 of

 M
ala

ya

31

Figure 2.5 shows the progress of switchover by the execution from GUI based Oracle

Enterprise Manager (OEM)

2.7 Evolution of Oracle Data Guard Features Specific to Role Transitions

Oracle has periodically introduced new features specific to role transitions in all its version.

Each versions have introduced a better capability and features to support a robust role

transitions.

Table 2.7 Evolution of Oracle Data Guard features specific to Role Transitions

Oracle 8i Oracle 9i Oracle 10g Oracle 11g Oracle 12c
Year 1998-2000

Year 2001-2002

Year 2004 -
2005

Year 2011-2015

Year 2017

Univ
ers

ity
 of

 M
ala

ya

32

* Introduction of
Oracle Data
Guard concept
with creation of
a standby
database for
disaster recovery

* Data Guard
Broker feature is
introduced with
Data Guard
Manager GUI to
manage, monitor
and automate the
configuration

* The role
transition of
Switchover and
Failover operations
is introduced

* Data guards
detect the gaps of
archive log and
synch
automatically to
standby

* 3 protection
modes of
maximum
protection,
maximum
availability and
maximum
performance is
introduced for data
protection

* Real-time
apply is
introduced to
fasten the
process of
switchover or
failover

* Rolling
upgrades by
use of logical
database
switchover

*Fast-start
failover feature
where it
automate the
process of
failover during
production
database
outage

* Active Data
Guard feature is
introduced to
enable a physical
standby database is
quarried while it’s
actively synching
with primary
database

* Redo Logs
compression is
introduced to fasten
the gap resolving

* Supports
heterogonous
operating systems
of Standby
Database

* Far sync
feature is enable
to transmit redo
from a standby
database to
other standby
databases
regardless of its
distance

* Global
Data Service
(GDS) is in like
a RAC service
which provides
failover and
load balancing

* Verify and
Validate
commands
introduced to
ensure the
system is
healthy before
switchover

Table 2.7, shows the evolution of the role transitions in its entire Oracle version since it was

introduced on 1998 the first 8i. From the table its clearly shows Oracle had done significant

milestones for its products advancement and provided its best up to the to the market trend.

Oracle have announced the new version of Oracle Database called 18c on October 2017 at

Oracle Open World 2017 but it yet to publish the product in details. It promised and promoted

as autonomous database, expecting most the DBA tasks to be automated. The validate and

Univ
ers

ity
 of

 M
ala

ya

33

verify commands feature which introduced in Oracle 12c version is almost close to the

subject being reviewed in this paper.

2.8 Summary

This chapter reviews the Oracle Data Guard concept and architecture in the beginning and

followed by a detailed study of the each Oracle Data Guard Role Transition which are

Switchover and Failover. The architecture, requirements, failures and performance of the role

transitions is discussed in detail. The methods of role transitions are done either by using

SQL statements, Data Guard Manager Interface or Oracle Enterprise Manager and these

methods have been used by third-party companies to produce automated tools called Dbvisit

Standby and DG toolkit.

The role transition failures and performance data are reviewed in this chapter. Based

on the literature review, it’s concluded that the currently available tools, features, technology

and reference are Oracle best practice documents, fast-start failover technology which is to

prevent downtime and data loss. The third party tool of Dbvisit Standby is providing

prerequisites and post processing script with database administrator intervention. The DG

toolkit is only featured in Linux platform.

The research studies revealed that the consumers have different set of configurations

and uses in performing Oracle Data Guard role transitions. The expectations which were

derived from this chapter are, a tool with reduced manual process and robust role transition

in multi hosted platform.

Univ
ers

ity
 of

 M
ala

ya

34

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

This chapter presents the research methodology process involved and the produces carry out

on this study. The study was conducted with the experts of database field. The respondents

were the database administrators who working in multinational private sectored company. A

set of interview questions was designed to investigate and to study the respondent’s opinion

based on experience and point of view on approach that can help them to perform database

role transitions. The researcher also provides set of questionnaires for the respondents on the

same view and had conducted interview sessions with the database administrators. These

chapters are presented based on the following sections: (1) method of analysis and data

collections, (2) quantitative research method and qualitative research methods.

3.2 Method of Analysis and Data Collections

A research methodology defines which methods and research instruments are currently used

and how the results of the research studies are carried out, measured and analyzed. Two

method of research was conducted which are quantitative and qualitative research

methodology. Questionnaire is one of the types of research instruments that were used under

quantitative method. The questionnaire was designed with two (2) parts of research questions

which

Univ
ers

ity
 of

 M
ala

ya

35

were related to Oracle Data Guard and role transition activity to get respondents feedback.

Apart from this the qualitative research methodology is focused based on the interview and

comparative research instruments. The interview is conducted with database administrators

and experts of the filed. This method is used to determine about what is the perception of

respondents on this role transaction activity if used automation on performing their task. This

was reviewed at the end of edge of interview sessions. In additionally, the comparative

research method also was used to investigate the issues and challenges faced by respondents

and determine whether they willing to accept this automated tool as learning tools for their

Oracle Data Guard role transition process.

These both quantitative and qualitative research methods are conducted on the chosen

respondent’s’ which generally associated with this research studies of Oracle recommended

best practices. The figure 3.1 shows the process involved involving the data collection and

analysis. The points below elaborate more on the process involved.

Univ
ers

ity
 of

 M
ala

ya

36

Figure 3.1 Method of analysis and data collection process (Palinkas et al., 2015; Patton,

1990; Wynekoop, 1991)

• Sampling
A group of database administrator from a private manufacturing industry who are

knowledgeable in Oracle Data Guard Database administration is identified and taken as

sample to conduct the survey and test cases. The feedback and behavior change of

participants/respondents is collected through the identified instruments. The data gathered

will be use to study the objective of this research.

• Instruments
The data collected from the participants is very crucial to justify the deliverables of this

research study. The participants will be provided with set of test case scenarios to perform.

Univ
ers

ity
 of

 M
ala

ya

37

The test case scenarios are identified after aligning with the literature reviews of Oracle best

known practice and objective of this research. The respondents will be delivered with a set

of questionnaires (refer to Appendix A) to answer at the end of the session. The questions

are mainly to answer about the result of the test case conducted scenarios and feasibility study

of the ODaRT tool.

• Procedures
The responded given a set of instruction to perform the role transition in integration

environment using the ODaRT tool and the traditional method of using data guard broker.

• Data Analysis
For the data analysis we selected the Excel Spreadsheet and SPSS (Statistical Package for

the Social Sciences) tool. The gathered quantitative data is mined, measured and reported

using the SPSS tool. The raw data which captured in excel format spreadsheet is exported to

the SPSS tool and analyzed using the probabilities analysis. The analysis is based on below

criteria:

o Time taken to perform the role transition – the time taken to perform
database switchover or failover including the pre and post tasks.

o Ratio of successful – the proportion of successful role transition.
o Switchover time – the time taken to perform the switchover should less than

2 minutes.
o Failure of role transition execution

The results of the collected data are analyzed and presented in graphical form with

explanations in the result chapter.

Univ
ers

ity
 of

 M
ala

ya

38

3.3 Quantitative Research Method

Quantitative research method it’s conducted to measure the user’s perceptions on the tool

and what are the entities or variable that the tool should have to define the tool and how it’s

can be satisfied the user needs. This quantitative method is measured based on the statistical

analyzing method. As earlier discussed, the questionnaire of research instrument is used to

collect the data, and to analysis the outcome of research.

3.3.1 Questionnaire Designs

Analysis of data is a process of investigation, measuring, and validating the gathered

information into a useful of report which used to make decision and to bring a conclusion of

a research hypothesis. This began with a multiple way of measuring techniques and methods.

The data which was gathered from the respondents/participants are arranged and organized

into an excel format spreadsheet and exported to a pivot table. An analytical study was

performed on the pivot table using the data mining process on each of the data analysis stage.

At the questionnaires design, all quantitative questions were scored on a 5 point like scale

indications where 1= not true, 2= somewhat true, 3=mostly true, 4= true, 5= very true. The

mean scored were also ranked from the low level (close to 1= not true) to higher scores levels

(close to 5= very true) to investigate the perception of the reliability data. These studies also

pointed out and calculated that the data based on the mean, percentages, and frequency. The

questionnaire set was designed with two parts which inclusive of part 1 (Method and Degree

of Automation in Role Transition) and part II (Ratio of Successful). Part I consist of 5

questions to gain information method used to perform role and role transition and to identify

Univ
ers

ity
 of

 M
ala

ya

39

the degree of an automation used to perform the role transition. In part II, a set of 5 questions

were asked to gather information on role transitions failures and success. The person

answering the questionnaires are database administrators who are the expert on the field and

the person who perform the role transition in their organization routinely.

3.3.2 Data Collections

Respondents from database backgrounds were selected for this case study because the study

is focused on Oracle Data Guard role transition. This questionnaire (also called survey) was

a set of questions was given to a sample of database administrators from a multinational

private company. The main objectives of this data collection process are to make understand

about the participants/respondents background and perception of Oracle Data Guard role

transition. As earlier mentioned in the previous section, the participants feedback (answer)

are will complied and organized to perform analysis studies. Therefore, this was clearly

shown that the questionnaire is right research instrument to collect and validate the data in

effective way to approached and to validate the objective of this research study. These enable

to find out the opinion from the respondents regarding the view on Oracle Data Guard role

transition via automation. The result of this data collection is analyzed and presented in

graphical form with elaborations of it in the following section.

Univ
ers

ity
 of

 M
ala

ya

40

3.3.3 Result

This section discussed the result of the analysis from the questionnaire survey question.

Based on the Figure 3.2 shows the respondents on this study are 70% are senior database

administrator who are the experts having more than 5 years of experience in the field of

database.

Figure 3.2 Pie Chart of Respondent’s Years of Experience

The researcher has more confident on conducting the research as the data provided by the

more senior database administrators would be more accurate and reliable considering their

technical expertise and years of experience in the field of database.

Univ
ers

ity
 of

 M
ala

ya

41

3.4 Qualitative Research Method

Qualitative research is a method which has ability to precise and provides on particular group

of individual perception towards a research question. Apart of used quantitative method, this

qualitative method assists a researcher to be having better understand about the objective and

issues on the research. Moreover, at this research studies, the techniques of interview and

comparative case study instruments are used to analysis how the automated tool can be

facilitated the database administrators.

3.4.1 Interview

The main objective of this interview conducted is to get the perception and opinion of the

participants. Since this was open-minded questions involved, the prepared questions are can

be far more to personal form of question when compared to questionnaire method of study.

Thus, its important factor that the questions which pointing to participants should be relevant

to the research hypothesis. This research is focused to a group of database administrators.

3.4.1.1 Interview Session Procedure (Database Administrators)

Seven (7) database administrators from a multinational compare are chosen for the interview

session. The participants are chosen based on their experience in the filed of database

administration specifically to Oracle Data Guard features. The DBAs were asked on how

they perform and handle role transition process. They were asked on the degree of automation

uses, or Oracle best practices uses in their daily routine. The researcher also has interviewed

on the matter of challenges faced in performing the role transition and maintaining the health

Univ
ers

ity
 of

 M
ala

ya

42

of Oracle Data Guard databases. Here we have listed few samples of quotes from the database

administrators after the interview section on Oracle Data Guard role transitions.

“It is really hard for me to remember the SQL statements to perform before the switchover

activity”

“We often failed to bring the database online in designated time during the switchover or

failover activity due to the issue of human error”

“I usually keep a text file containing all the script needed to perform the pre or post check

for a role transition”

“In my organization we use DGMGRL to perform the switchover or failover activity, it is

really easing our administration”

“Yes, I would feel convenient if I can use a tool to perform the pre-tasks before a role

transition”

3.5 Summary

The overall findings of this study have proven that Oracle Data Guard role transition needs

an automation and it is agreed and the purpose of the development of this tool is a good

move for database administrator. Lesson learned from this survey is that role transition using

Oracle best practices is suitable for the respondents as they were faced challenge to provide

a perfect successful role transition all the time.

Univ
ers

ity
 of

 M
ala

ya

43

The chapter covered the components of client- server architecture and the implementation of

the architecture in developing a Data Guard role transition tool. The approach is defined and

guided by a well-constructed methodology. With incorporating the Oracle recommended

practices into the proposed transition approach the database administrators are enabled to

perform an efficient role transition. The approach is derived into three (3) functions called

HealthCheck, PreCheck and the actual role transition, Switchover.

The chapter also identifies the methodology and stages of ODaRT tool engineering process

consist of Oracle best known practices. The check list of the three identified modules are

constructed based on the Oracle best known practices. The methodology of data collection

and analysis is defined to develop and deliver the ODaRT tool.

Univ
ers

ity
 of

 M
ala

ya

44

CHAPTER 4

DESIGN AND DEVELOPMENT OF THE APPROACH AND AUTOMATED TOOL

4.1 Introduction

In this chapter we have covered the components of client- server architecture and the

implementation of the architecture in developing a Data Guard role transition tool. The

approach is defined and guided by a well-constructed methodology. With incorporating the

Oracle recommended practices into the proposed transition approach the database

administrators are enabled to perform an efficient role transition. The approach is derived

into three (3) functions called HealthCheck, PreCheck and the actual role transition,

Switchover.

The chapter also identifies the methodology and stages of ODaRT tool engineering

process consist of Oracle best known practices. The check list of the three identified modules

are constructed based on the Oracle best known practices. The chapter also covered the

ODaRT tool development requirements, functions and modeling using UML diagrams.

Univ
ers

ity
 of

 M
ala

ya

45

4.2 Two-Tier Client/Server Architecture

Two-tier architecture is usually takes direct communication between client and server. The

architecture has no intermediate between the client and server. The client layer serves

functions to run the codes or scripts and write into the database which reside the data layer.

The system developed following this architecture design usually a simple and direct way.

 The ODaRT tool is perfect to engineer based on the two tier architecture since the

tool will do a direct communication to the database server to perform administration tasks.

The codes and SQL/DGMGRL commands are resides in the client layer to help maintain the

codes easily and faster communication rather than having a separate middle layer. The

disadvantage of having two-tier architecture is many client connections to the server would

directly cause server performance degradation. But the ODaRT tool is used mostly for

administration tasks by the DBAs to administrate the database by performing the regular

DBA activity, hence choosing the client-server architecture is the best choice.

Univ
ers

ity
 of

 M
ala

ya

46

Figure 4.1 Client-Server/Two-Tier Architecture Design

The Figure 4.1 shows the client-server architecture where the client and server layers are

separated to illustrate the two major components of client and server. The interactions of the

subsystems between the layers are normally communicated through SQL interactions,

Remote Procedure Calls (RPCs), or pipes.

4.3 Data Guard Broker Command Line and PL/SQL Programming Language

The structured query language or procedural language is a programming language used to

access an Oracle Database("11.2 Data Guard Physical Standby Switchover Best Practices

using SQL*Plus. ," ; Kyte, 2010).

Univ
ers

ity
 of

 M
ala

ya

47

In two-tier architecture, with Oracle Data Guard as a database component and the application

component resides on the client machine, the communication of send and request information

to the database server is done using SQL statements or a set of SQL statements embedded as

one PL/SQL block

In Oracle, the SQL language is used as a standard language to query RDBMS database which

is supported by the ANSI (American National Standard Institute) and defined as ‘Database

language SQL’. The Data Guard command-line interface (DGMGRL) enables us to manage

a Data Guard broker configuration and its databases directly from the command line, or from

batch programs or scripts. The Data Guard command-line interface can be used as an

alternative to Oracle Enterprise Manager for managing a Data Guard configuration.

4.4 Data Guard Role Transition Approach

In the following section, we have summarized the best practices need to perform before a

role transition specific to switchover activity. In the sections we shall elaborate more on the

proposed role transition approach for running efficiently a switchover for a high availability

Oracle Data Guard database.

 Univ
ers

ity
 of

 M
ala

ya

48

Figure 4.2 Proposed Role Transition Approach

Figure 4.2 shows the proposed the role transition approach. It explains the relationship

between the automated tool ODaRT, Data Guard Broker, Primary/Standby databases and

external clients including the backups. There are modules bundled with both SQL and

DGMGRL commands to perform the switchover. The modules are categorized as

Healthcheck, Prechek and Switchover. The sub-topics below explains in details about the

three modules.

Univ
ers

ity
 of

 M
ala

ya

49

4.4.1 HealthCheck

 Basically, HealthCheck is to be used for verifying the health of the database systems.

It’s containing all the needed check to ensure the database is healthy before and after a

switchover.

It also can be used anytime by database administrator to determine the health of the database

systems. The Perl module is embedded with some SQL scripts and DGMGRL commands to

query and verify the health of the systems.

Table 4.1 HealthCheck checks list

Check# Health Checks Command

1 Verify disk groups free space SQL
2 Verify observer location DGMGRL
3 Verify configuration health DGMGRL

4 Verify there is no apply delay for the target
standby

SQL

5 Ensure online redo log files on the target
physical standby have been cleared

SQL

6 Verify there are no large gaps SQL
7 Verify primary and standby tempfiles match SQL

8 Verify primary and standby disk location SQL

9 Verify all datafiles are ONLINE SQL

10 Verify primary and standby datafiles disk
location

SQL

11 Verify primary and standby online redo log
disk location

SQL

 Table 4.1 shows the check list gathered from the Oracle recommended best practices

document for performing the health check of Oracle Data Guard database. It also explains

how the checks is queried, either by SQL or DGMGRL commands.

Univ
ers

ity
 of

 M
ala

ya

50

4.4.2 PreCheck

PreCheck is the list designed to check before executing a switchover an Oracle Data Guard

database. The prerequisite that need to be executed before performing a switchover is highly

recommended and mandated by Oracle. These checks are specific to run at an Oracle Data

Guard with Broker enabled. The ODaRT tool is designated to perform the switchover for a

database running with Oracle Broker feature. The switchover by using the DGMGRL method

is selected to perform the switchover and was well explained in the literature chapter on why

it was selected. Table 4.2 shows the checks will be done during a pre check of switchover

based on the Oracle recommended best practices.

Table 4.2 PreCheck checks list

Check
Pre Checks Command

1 Suspend Scheduler jobs SQL

2 Check for potential long running
operation

SQL

3 Suspend backup jobs SQL
4 Clear potential blocking parameters SQL

4.4.3 Switchover

Switchover is the module to perform the switchover with using the Oracle Broker feature.

The broker will use the own language of DGMGRL to perform the switchover.

After confirming the perquisites checks are passed it will get through to perform the

switchover. Table 4.3 table shows the few steps it does for performing the switchover.

Table 4.3 Switchover tasks list

Task # Tasks Command

1 Perform switchover DGMGRL
2 Resume scheduler jobs SQL

3 Resume backup jobs SQL

Univ
ers

ity
 of

 M
ala

ya

51

4.5 Development of ODaRT Tool

Our objective, to perform a database role transition while minimizing the impact of role

transition on the overall database availability, consist of developing SQL script and

DGMGRL to query or command in custom developed role transition tool, ODaRT. The

ODaRT tool is a tool developed in using Perl scripting language. The tool engineering

process (Figure 4.3), consist of currently accepted best practice in information system

development which has Unified Software Development Process (USDP) (Jacobson, .et all).

The following stages are taken for the development of the ODaRT tool.

• Scope of Requirements stage describe objectives, functional and non- functional

requirement of the ODaRT tool.

• Requirement Modelling decays the functional requirements in the form of use case

components. Each use case is describe using details methodology.

• Analysis model provides ODaRT tool’s analysis class diagram.

• System Design consist of high level subsystem component diagram and deployment

diagram

• Detailed design deliverables of SQL queries and DGMGRL commands for the

retrieval and command the task in the database.

• Implementation is the tool development using Perl scripting language, windows

commands. A set of Oracle Data Guard Enterprise version 11g is installed in two

Windows Server 2013 operating system. ODaRT tool use and Oracle JDBC drive to

communicate with both the primary and standby Oracle database.

Univ
ers

ity
 of

 M
ala

ya

52

Figure 4.3 Stages of ODaRT Tool Engineering Process

 Figure 4.3 illustrate the stages of engineering process in producing the automated tool

called ODaRT.

4.6 Scope of Requirements

In this section we discuss in details about the aim, functional and non-functional of ODaRT

tool. To achieve an error less role transition using

The goals of the ODaRT tool are:

• To deliver an approach for the Database Administrator to establish a connection to

the Oracle Data Guard databases which are implemented in client/server architecture.

Univ
ers

ity
 of

 M
ala

ya

53

• To deliver an approach for the Database Administrator to perform a complete health

check of both primary and standby databases to determine the status of databases are

healthy and synch.

• To deliver an approach for the Database Administrator, based on the need to perform

a role transition and convert the physical standby database to the production (primary)

database, and to execute the SQL or DGMGRL commands for carrying out the role

transition.

• To deliver a simple and ‘one-command’ approach for the Database Administrator to

complete the pre- check before the role transition which it’s requires to execute

commands (SQL and DGMGRL), compare, validate and output the results.

The functional requirements of the ODaRT tool are:

• The ODaRT tool should able the user/Database Administrator to connect to database

instance and check if the database is running as primary or standby database.

• The ODaRT tool should able the user/Database Administrator to perform health

check of both primary and standby database and verify if any check is problematic.

• The ODaRT tool should prompt to user/Database Administrator to fix or update to

correct values/parameter where ever applicable.

• The ODaRT tool should execute SQL/DGMGRL commands against both primary

and standby database for all below checks and report out

Univ
ers

ity
 of

 M
ala

ya

54

- Verify disk group’s free space

- Verify observer location

- Verify configuration health

- Verify there is no apply delay for the target standby

- Verify there is no block corruptions

- Logging long running SQL, RMAN jobs and MML sessions

- Ensure online redo log files on the target physical standby have been

cleared

- Verify there are no large gaps

- Verify primary and standby tempfiles match

- Verify primary and standby disk location

- Verify all datafiles are ONLINE

- Verify primary and standby datafiles disk location

- Verify primary and standby online redo log disk location

• The ODaRT tool should decides to perform switchover (database role transitions)

based on the output of the pre checks.

• The ODaRT tool should prompt to Database Administrator and initiate the switchover

using DGMGRL.

• The ODaRT tool should check primary database status for every 30 seconds for all

primary database resources during the switchover.

• The ODaRT tool should ensure the primary database is online and print the message

for the Database Administrator to perform manual fix if database and or any of the

resources are offline.

Univ
ers

ity
 of

 M
ala

ya

55

The non-functional requirements of the ODaRT tool are:

• Security. The ODaRT tool should only executed by authenticated Database

Administrator. The password of the utmost privileged of SYS account should be

protected and not visible in any prompt or log file.

• Usability. The ODaRT tool should be easy to operate for the users with minimal

execution of commands.

• Configurability. The ODaRT tool should be easy to configure the database parameters

and alerts exclusion for the health check and configurable to use for any Oracle Data

guard Database.

• Efficiency. The ODaRT tool should be perform the role transition timely and without

errors.

Univ
ers

ity
 of

 M
ala

ya

56

4.7 Requirement modeling

We have used the UML use case diagram to model all the firmed functional requirements.

The detailed of the use case diagram is describe for each of the use case.

4.7.1 Use Case: DatabaseConnection

Figure 4.4 is the use case diagram for Database Administrator to make a database connection

and table 4.4 shows the use case description. The Database Administrator should be able to

connect to database instance and check if the database is running as primary or standby

database. The ODaRT should report an error message if the database is not connectable or if

the DBA connected to the primary database node.

Figure 4.4 UML Use Case Diagram for Database Connection

Univ
ers

ity
 of

 M
ala

ya

57

• Use case Description: Database Connection

Table 4.4 Use Case Description for Database Connection

Use Case Name Database Connection
Actors Database Administrator (DBA)
Summary Description Allow DBA to make connection to

database.
Priority Mandatory
Pre-condition There is active network connection to

database server
Basic Flow 1. Double Click on ODaRT execution

2. Display a command prompt
3. Type ‘PRECHECK’ or type ‘p’ +

tab OR Type ‘HEALTHCHECK’ or
type ‘h’ + tab OR Type
‘SWITCHOVER’ or type ‘s’ + tab

4. If database is standby run and
display the result. Else display error
message

Alternative Flow none
Post-condition Exit the command prompt

4.7.2 Use Case: PreCheck

Figure 4.5 is the UML use case diagram for the Database Administrator to perform pre check

on database before a switchover and the table 4.5 shows the description of the use case. The

Database Administrator has option to kill the long running session, to clear the blocking

parameters and to suspend the scheduler/backup jobs and will report the result at the final

stages. The pre check will just continue to run and report the final result even if options are

not selected. Univ
ers

ity
 of

 M
ala

ya

58

Figure 4.5 UML Use Case Diagram for PreCheck

• Use case Description: PreCheck

Table 4.2 Use Case Description for PreCheck

Use Case Name PreCheck
Actors Database Administrator (DBA)
Summary Description Allow DBA to perform PreCheck on the

database.
Priority Mandatory
Pre-condition The DBA has successfully connected to the

database
Basic Flow 1. Double Click on ODaRT execution

2. Display a command prompt
3. Type ‘PRECHECK’ or type ‘p’ +

tab
4. If database is standby. Run and

display the result else display error
message.

5. Prompt for ‘Kill Long Running
Session’ if there is active.

6. DBA respond ‘Yes’ or ‘No’ for kill
long running session

7. Execute the SQL statements to kill
the jobs and output the log for ‘Yes’
response and if ‘No’ do continue.

Univ
ers

ity
 of

 M
ala

ya

59

8. Prompt for ‘Clear Blocking
Parameters’ if there is exist

9. DBA respond ‘Yes’ or ‘No’ for clear
blocking parameters.

10. Execute the SQL and DGMGRL
commands to clear the blocking
parameters for ‘Yes’ response and if
‘No’ do continue.

11. Prompt for ‘Suspend
Scheduler/Backup Jobs’ if there is
running.

12. DBA respond ‘Yes’ or ‘No’ for
suspend scheduler/backup jobs.

13. Execute the SQL commands to
suspend the schedulers/jobs.

14. Print the output for DBA showing
the system readiness for Switchover.

Alternative Flow none
Post-condition Exit the command prompt

4.7.3 Use Case: HealthCheck

Figure 4.6 is the UML use case diagram for the Database Administrator to perform general

health check on database and the table 4.6 shows the description of the use case. Once the

Database Administrator has run the ‘HEALTHCHECK’ command, the ODaRT tool will do

the database connection and perform all specified database checks and report the output of

the checks and save it as log text file.

 Univ
ers

ity
 of

 M
ala

ya

60

Figure 4.6 UML Use Case Diagram for HealthCheck

• Use Case Description: HealthCheck

Table 4.6 Use Case Description for HealthCheck

Use Case Name PreCheck
Actors Database Administrator (DBA)
Summary Description Allow DBA to perform Healthcheck on the

database.
Priority Mandatory
Pre-condition The DBA has successfully connected to the

database
Basic Flow 1. Double Click on ODaRT execution

2. Display a command prompt
3. Type ‘HEALTHCHECK’ or type ‘h’ + tab
4. If database is standby. Run and display the

result and write the output file to log file
folder else display error message.

Alternative Flow none
Post-condition Exit the command prompt

Univ
ers

ity
 of

 M
ala

ya

61

4.7.4 Use Case: Switchover

Figure 4.7 is the UML use case diagram for the Database Administrator to perform the role

transition of database by converting (switchover the role) the standby database to

primary/production database and table 4.7 shows the description of the use case. Once the

Database Administrator has run the ‘SWITCHOVER’ command, the ODaRT tool will do the

database connection and perform all specified database checks and report the output and exit

if the health check is reported error and not successful. The ODaRT tool will continue to

prompt for optional ‘Precheck’ for the successful ‘Healthcheck’, upon the response the

ODaRT too will perform the switchover by executing the DGMGRL command. The result

of the switchover is shown and logged in a text file into the log file folder. The ODaRT tool

will prompt for post tasks of resuming the scheduler or backup jobs upon successful

switchover.

Figure 4.7 UML Use Case Diagram for Switchover

Univ
ers

ity
 of

 M
ala

ya

62

Use case Description: PreCheck

Table 4.7 Use Case Description for Switchover

Use Case Name PreCheck
Actors Database Administrator (DBA)
Summary Description Allow DBA to perform Switchover on the

database.
Priority Mandatory
Pre-condition The DBA has successfully connected to the

database
Basic Flow 1. Double Click on ODaRT execution

2. Display a command prompt
3. Type ‘SWITCHOVER’ or type ‘s’ +

tab
4. If database is standby. Run and

display the result and write the
output file to log file folder else
display error message.

5. Prompt for ‘Precheck’.

6. DBA respond ‘Yes’ or ‘No’ for
performing the pre check.

7. Output the pre check result for ‘Yes’
response and if ‘No’ do continue.

8. 8.Output the health check result and
exit if error else continue

9. Prompt for pre checks.
10. DBA respond ‘Yes’ or ‘No’ for

confirming the switchover.
11. Execute the DGMGRL command to

perform role transition.
12. Print the output for DBA showing

the switchover result.
13. Prompt for continue for post task

else exit.
14. DBA respond ‘Yes’ or ‘No’ for post

tasks (resume scheduler/backup
jobs).

15. Execute the SQL commands to
resume the jobs for the response
‘Yes’ else exit.

Alternative Flow none
Post-condition Exit the command prompt

4.8 Analysis Model

Univ
ers

ity
 of

 M
ala

ya

63

Analysis model is needed to elaborate the relationship, attributes and operation of a class for

object-oriented system. The conceptual model diagram is very useful to implement the

analyzed requirement. The ODaRT tool is analyzed and demonstrated using UML Class

diagram to shows its aggregation and generalization. Figure 4.8 illustrate the class diagram

for ODaRT tool.

Figure 4.8 UML Analysis Class Diagram for ODaRT tool

From Figure 4.8, a User establish one or many Session connection to the Standby Database

Instance and as per Oracle definite a Session belong to only one User. The Standby Database

Univ
ers

ity
 of

 M
ala

ya

64

Instance is associated with Primary Database Instance to perform the checks between both

database objects. A connected Session can execute one to many DGMGRL Command or SQL

Command and record the output to a LogFile. Only one LogFile is created by the DGMGRL

Command or SQL Command.

4.9 System Design

Figure 4.9 illustrates the decomposition of the ODaRT tool’s subsystem. The packages of

perl modules which are embedded with SQL and DGMGRL commands/statements are

resided in the client/application layer. The ODaRT tool establish connection using the Oracle

SQL Net driver to communicate to the database objects which resides in the server/database

layer. The ODaRT tool package writes the result or output of Perl modules executions to a

text file.

Univ
ers

ity
 of

 M
ala

ya

65

Figure 4.9 UML Class Diagram (subsystem decomposition) for ODaRT tool

Figure 4.10 illustrates the software and hardware components of ODaRT tool. The

hardware’s are client PC and Server whereas it is hosting the software of Oracle Data Guard

11g Database, Oracle Client 11g, Perl 5 and ODaRT tool contains the application scripts.

Figure 4.10 UML Deployment Diagram for ODaRT Tool

Univ
ers

ity
 of

 M
ala

ya

66

4.10 Detailed Design of ODaRT Tool

Source coding is very important segment in the process of software development. We have

coded the ODaRT tool using the v5.28.0 and Perl developer tool called Padre, the Perl IDE

for debug and coding, once identified the functional requirement and its logical analysis

models. The function of each source code is explained in the table 4.8. The Perl scripts is

embedded with SQL, DGMGRL and system administration commands which are needed to

perform the tasks. We have hundred over SQL statements and DGMGRL commands are

embedded in the ODaRT tool sources codes. The commands and statements are written based

on the Oracle best practice to perform role transition which were discussed in the literature

review. Some of major tasks related commands are discussed in the following sections.

Table 4.8 Detail of ODaRT tool source codes

Module Function
ODaRT.pl This is the main Perl program file call all the Perl module

to execute.
It’s programmed and embedded with all the SQL
commands needed to perform the subtasks.
The functions of this Perl program file is discussed further
in next section.

OraPasswordUtil.pl This Perl program functioned to encrypt and decrypt the
password in order to protect the passwords.

ParameterCompare.pl This Perl program functioned to compare the database
parameters.

Password.pl This Perl program functioned to process the user inserted
password.

AlertLogParser.pm It’s a Perl module to parse the log file and report the filter

report out only the required log.
AutoInstCommon.pm It’s a Perl module to install the ODaRT tool.
CfgUtil.pm It’s a Perl module to verify all the configuration of the

database.
CrsUtils.pm It’s a Perl module to execute the Oracle Stack and Cluster

ware (SRVCTL and CRSCTL) commands for all the
checks.

Univ
ers

ity
 of

 M
ala

ya

67

Database.pm It’s a Perl module that allow to login to database and run
queries.

Dgmgrl.pm It’s a Perl module stored all the DGMGRL commands and
logics for Broker execution.

Email.pm It’s a Perl module to send email notification on
warning/critical errors to be addressed.

Logger.pm It’s a Perl module to output and keep the log.
OraParser.pm It’s a Perl module to parse the user inputs.
WMI.pm It’s a Perl module that allow to execute WQL queries

using the DBI.
 HEALTHCHECK.cmd It’s a windows command processor to call the ODaRT

tool and execute health check.
PRECHECK.cmd It’s a windows command processor to call the ODaRT tool

and execute pre check.
SWITCHOVER.cmd It’s a windows command processor to call the ODaRT

tool and execute switchover.
SetPerlPath.cmd It’s a windows command processor to set the Perl libraries

and environment.
ODaRT_MYDB1.xml It’s a user configurable variables input file to be

processed during ODaRT installation and execution.

Table 4.8 described there were four types of file extension which are Perl program file as .pl,

Perl modules as .pm, Windows Command batch file as .cmd and a document markup

language as .xml. The following sections describing the queries, commands and statements

extracted from Oracle Best Known Practice documents which are studied in the literature

review.

4.10.1 Design of HealthCheck

Health check are done comprising mainly both SQL and DGMGRL queries/statements.

There are also CRSCTL and SRVCTL commands are used to get the database resources

status which provided by the Oracle utilities. There are eleven checks are done to conclude

the health of the databases. All the checks important and show stopper if it’s not fixed, but

here we only took some major checks as an example to show the combination of SQL and

Univ
ers

ity
 of

 M
ala

ya

68

DGMGRL statements/commands usage in the tool. Figure 4.11 show the SQL command

taken from Oracle Best Practice in order to perform disk group free space. The SQL select

command of free_perc from v$asm_diskgroup view is incorporated as sub method of the

main Perl program file.

#============Verify disk groups free space

#This method call for verify disk groups free space.

 verify_disk_free_space;

=cut

#-

===

sub verify_disk_free_space

{

 my $db_pri_handle = create_dba_primary_handle ();

 Logger::Fatal ("Failed to connect to PRIMARY database") unless

(defined ($db_pri_handle));

 my $r = $db_pri_handle->GetAllRows ("select name,

round((free_mb/total_mb)*100,2) free_perc from v\$asm_diskgroup");

 my $pry_row_count = (scalar @$r);

 Data::Dumper::Dumper ($r);

 foreach my $l (@$r) {

 Logger::Info ("Diskgroup : $l->[0] \t free_perc : $l-

>[1] ");

 Logger::Fatal ("Diskgroup : $l->[0] has free_perc : $l-

>[1]. Please fix the PRIMARY Node diskspace and rerun the Tool")

unless (defined($l->[1]) and ($l->[1] > 5));

 }

 my $db_psb_handle = create_dba_psb_handle ();

 Logger::Fatal ("Failed to connect to Physical Standby database")

unless (defined ($db_pri_handle));

 my $r1 = $db_psb_handle->GetAllRows ("select name,

round((free_mb/total_mb)*100,2) free_perc from v\$asm_diskgroup");

 my $psb_row_count = (scalar @$r1);

 Data::Dumper::Dumper ($r1);

 foreach my $l (@$r1) {

 Logger::Info ("Diskgroup : $l->[0] \t free_perc : $l-

>[1] ");

 Logger::Fatal ("Diskgroup : $l->[0] has free_perc : $l-

>[1].Please fix the Physical Standby Node diskspace and rerun the Tool")

 unless (defined($l->[1]) and ($l->[1] > 5)) ;

 }

 log_SCN();

 return (1);

}

Figure 4.11 Verify disk groups free space

Univ
ers

ity
 of

 M
ala

ya

69

 Figure 4.12 shows the DGMGRL command that incorporated in the Perl module to

call the method of verify Data Guard configuration heath. The command ‘show database

verbose’ is native to DGMGRL language to view the Data Guard broker and database

configurations.

#==

#=================Verify configuration health

sub get_database_config ($)

{

 my $self = shift or die 'no self';

 my $t = shift or die 'no t';

 my $db = AppCfg::Get("DB_UNIQUE_NAME_${t}");

 my $ret = Utils::CommandPipe ("DGMGRL_$db", "DGMGRL -silent",

"connect /\@$db\nshow database verbose $db;\nquit\n");

 Logger::Info ("Ret :$ret\n");

 if ($ret =~ /^(ORA-16532|ORA-16596)/m) {

 Logger::Info ("Dataguard broker config not setup yet.");

 return ({});

 } elsif ($self->find_ora_errors ($ret)) {

 Logger::Warn ("DGMGRL SHOW DATABASE $db has ORA- errors");

 my $resp = Logger::Prompt ("Do you want to continue with

the Above ORA Error ? [Y = Yes N = No]", 'Y|N');

 return (undef) if ($resp eq 'N');

 }

 my $h = $self->parse_database_configuration ($ret);

 Logger::Warn ("Failed to parse dgmgrl database status.") unless

defined ($h);

 return ($h);

}

#==

========
Figure 4.12 Verify configuration health

Checking the archive logs gap and successful transfer to standby database from primary

database is very crucial for a Data Guard database. This is to make sure both production and

the standby are always in synch and a failover or switchover performed without issue. Figure

4.13 shows the complete check of archival transfer and log gap suing SQL statements. The

SQL queries are gathered from Oracle Best Practice documents. The database view

v$archived_log contains all the needed data to validate the archive logs gap check.

Univ
ers

ity
 of

 M
ala

ya

70

#==

========

#============Verify there are no large gaps

sub check_dg_currency ()

{

 my $db_pri_handle = create_dba_primary_handle (); #cretae

primary db handle

 my $rt = $db_pri_handle->GetAllRows("select thread#, sequence#

from v\$thread");

 return Logger::Warn ("Failed to query v\$thread") unless defined

($rt);

 if (@$rt) {

 foreach my $g (@$rt) {

 Logger::Info ("thread#: " . $g->[0] . "

sequence#: " . $g->[1]);

 }

 }

 my ($status, $r1) = $db_pri_handle->GetOneRow ("SELECT

MAX(SEQUENCE#) as MAXSEQ FROM V\$ARCHIVED_LOG where

resetlogs_change#=(select max(resetlogs_change#) from V\$ARCHIVED_LOG)

AND THREAD# = 1 AND DEST_ID = 1");

 return Logger::Warn ("Failed to query V\$ARCHIVED_LOG") unless

defined ($r1);

 return Logger::Warn ("Failed find max archived_log SEQ") unless

defined ($r1->{MAXSEQ});

 my $primary_max_seq = $r1->{MAXSEQ}; #max

sequence number from PRY DB

 Logger::Info ("Primary Max Archivelog SEQ: $primary_max_seq");

 my ($s, $r) = $db_pri_handle->GetOneRow ("SELECT DESTINATION,

STATUS, GAP_STATUS, ARCHIVED_SEQ# FROM V\$ARCHIVE_DEST_STATUS WHERE

ARCHIVED_THREAD# = 1 AND DEST_ID = 2");

 return Logger::Warn ("Failed find ARCHIVE_DEST_STATUS for

DEST_ID 2") unless defined ($r);

 return (0) unless Utils::EqCheck

("ARCHIVE_DEST_STATUS.DESTINATION", "DESTINATION", $r->{DESTINATION},

'Exp Dest', AppCfg::Get('DB_UNIQUE_NAME_B'), 1);

 return (0) unless Utils::EqCheck ("ARCHIVE_DEST_STATUS.STATUS",

"Cur Value", $r->{STATUS}, 'Exp Value', 'VALID');

 return (0) unless Utils::EqCheck

("ARCHIVE_DEST_STATUS.GAP_STATUS", "Cur Value", $r->{GAP_STATUS}, 'Exp

Value', 'NO GAP');

 ($status, $r) = $db_pri_handle->GetOneRow("SELECT

SWITCHOVER_STATUS FROM V\$DATABASE");

 return Logger::Warn ("Failed to query V\$DATABASE") unless

defined ($r);

 Logger::Info ('Switchover Status : ' . $r->{SWITCHOVER_STATUS});

 return 0 unless ($r->{SWITCHOVER_STATUS} =~ /TO STANDBY/i or $r-

>{SWITCHOVER_STATUS} =~ /SESSIONS ACTIVE/i);

 my $db_psb_handle = create_dba_psb_handle ();

 Logger::Info ("Checking for ARCH GAP");

 my ($ee, $rr) = $db_psb_handle->GetAllRows ("SELECT

LOW_SEQUENCE#, HIGH_SEQUENCE# FROM V\$ARCHIVE_GAP");

 return Logger::Warn (" Failed to query V\$ARCHIVE_GAP") unless

defined ($rr);

 if (@$rr) {

 foreach my $g (@$rr) {

Univ
ers

ity
 of

 M
ala

ya

71

 Logger::Warn ("ARCHIVE_GAP Low: " . $g->[0] . "

High Seq: " . $g->[1]);

 }

 return (0);

 }

 my ($e2, $r2) = $db_psb_handle->GetOneRow ("SELECT

MAX(SEQUENCE#) as MAXSEQ FROM V\$ARCHIVED_LOG where

resetlogs_change#=(select max(resetlogs_change#) from V\$ARCHIVED_LOG)

AND THREAD# = 1 AND DEST_ID =1 AND APPLIED= ?",'YES');

 return Logger::Warn ("Failed to query V\$ARCHIVED_LOG") unless

defined($r2);

 return Logger::Warn ("Failed find max archived_log SEQ") unless

defined ($r2->{MAXSEQ});

 my $psb_max_seq = $r2->{MAXSEQ};

 Logger::Info ("Cross check MAX SEQ at PRIMARY ($primary_max_seq)

and PSB ($psb_max_seq)");

 return Logger::Warn ("PSB MAX Log Sequence ($psb_max_seq)

should be >= to PRIMARY Log Sequence ($primary_max_seq)") unless

($primary_max_seq - $psb_max_seq <= 1);

 return Logger::Info ("Archive Log Shipping Verification

successful");

}

#==

========

Figure 4.13 Verify there are no large gaps

 The other example is shown in figure 4.14 is to check the database resources, the

CRSCTL command is used to check and manage the clusterware resources. The CRSCTL

utility is provided by Oracle under the grid home to check the resources status at the operation

system prompt. The command ‘crsctl status resource’ is used to check all the database

resources and the output is dumped by calling another perl logger module.

#==

#============Check database res status

sub get_crsctl_status

{

 my $self = shift or die 'no self';

 $self->{GRID_DB}->SetEnv ();

 my $ret = Utils::RunProcess ("crsctl status res");

 return (undef) unless defined ($ret);

 #Logger::Info ("CRSCTL STATURS RES output: $ret");

 my $h = {};

 my $cur;

 foreach my $line (split (/\n/, $ret)) {

 if ($line =~ /^\s*NAME=([^\s]+)\s*$/) {

Univ
ers

ity
 of

 M
ala

ya

72

 die "duplicate RESOURCE NAME $1" if (exists ($h-

>{$1}));

 $cur = $h->{$1} = {};

 } elsif ($line =~ /^\s*([A-Z]+)=(.+)$/) {

 die "Bad Line $line" unless defined ($cur);

 $cur->{$1} = $2;

 if ($1 eq "STATE" and $2 =~ /ONLINE on (.+)/) {

 $cur->{ONLINE_ON} = $1;

 }

 }

 }

 Logger::Info ("CRS:" . Data::Dumper::Dumper ($h));

 return ($h);

}

#===
Figure 4.14 Verify database cluster ware resources

4.10.2 Design of PreCheck

The pre check before a switchover role transition is to verify the readiness of the both primary

and standby database for a switchover. The executions are done mainly using the SQL queries

gathered from Oracle best known practice documents. The queries not only validate but also

command to alter the database configuration or jobs based on the DBA selection. There are

four checks been elaborated in the design and development of the approach chapter, figure

4.15 shows one of the checks. The incorporated SQL commands in figure 4.15 is basically

verify for any scheduler jobs and prompt to the user to perform the suspension of the jobs.

 Univ
ers

ity
 of

 M
ala

ya

73

###

#####============Suspend Grid Control Scheduler Jobs

sub Disable_GC_Scheduler_jobs

{

 my $job_sql_disable = '';

 my $job_sql_enable = '';

 my $sql_suspend_gc_job = 'SQLFILE\Disable_GC_job.sql';

 my $db_unique_name = AppCfg::Get('DB_UNIQUE_NAME_A');

 my $dbname = substr($db_unique_name,0,length($db_unique_name)-

2);

 if ($gc_connect_state){

 my $db_sysman_handle = create_sysman_handle ();

 my $sql_statement = "select job_id, job_name, job_type,

scheduled_time, round((scheduled_time-sysdate)*60*24) To_Run,

execution_id, status from sysman.mgmt\$job_execution_history where upper

(target_name) like upper ('$dbname%') and status in ('Scheduled')";

 Logger::Info("SQL Statement $sql_statement");

 my $r1_GC = $db_sysman_handle->GetAllRows

($sql_statement);

 Logger::Warn ("Failed to query

sysman.mgmt\$job_execution_history") unless defined ($r1_GC);

 Logger::Warn ("Failed to query

sysman.mgmt\$job_execution_history") if ($r1_GC =~ /ORA-/);

 my $disable_job_GC = (scalar @$r1_GC); #To check

if scheduled jobs found.

 Logger::Info("PRIMARY Node: NO GC Scheduler Jobs Found

Scheduled") if ($disable_job_GC == 0);

 if ($disable_job_GC > 0) {#log list of GC Scheduler Jobs

on PRY which are in Scheduled state

 Logger::Info ("List of GC Scheduler Jobs which

are having status Scheduled.\n");

 foreach my $l (@$r1_GC) {

 Logger::Info ("job_id : $l->[0] \t

job_name : $l->[1] \t scheduled_time: $l->[3] \t To_Run : $l->[4] mins

\t status : $l->[6]");

 $job_sql_disable .= "exec

sysman.mgmt_job_engine.suspend_job('$l->[0]');\n";

 }

 $job_sql_disable .= "commit;";

 Utils::write_file($sql_suspend_gc_job ,

$job_sql_disable);

 Logger::Info("Disable GC Scheduler Jobs\n " .

$job_sql_disable);

 #Running GC disable script to suspend the

scheduled jobs

 my ($status, $spool_file) = $db_sysman_handle-

>RunSqlScriptEx($sql_suspend_gc_job);

 my $log_text = Utils::Slurp ($spool_file);

 Logger::Warn ("Failed to get spool contents from

$spool_file") unless defined ($log_text);

Univ
ers

ity
 of

 M
ala

ya

74

 Logger::Warn ("$spool_file has ORA-Errors") if

($log_text =~ m/ORA-/);

 Logger::Info ("Output of

$sql_suspend_gc_job:\n$log_text");

 #Displaying status of job after running the

disable commands

 my $sql_statement_GC = "select job_id, job_name,

status from sysman.mgmt\$job_execution_history where upper (target_name)

like upper ((select substr ('$db_unique_name',1,length

('$db_unique_name')-2) from v\$database) || \'\%\') and status in

('Scheduled')";

 Logger::Info("SQL Statement $sql_statement");

 my $r1_GC= $db_sysman_handle->GetAllRows

($sql_statement_GC);

 Logger::Warn ("Failed to query

sysman.mgmt\$job_execution_history") unless defined ($r1_GC);

 foreach my $l (@$r1_GC) {

 Logger::Info ("job_id : $l->[0] \t

job_name : $l->[1] \t status : $l->[2]");

 }

 }

 }

 return (1);

}

Figure 4.15 Suspend scheduler jobs

 Clearing a long running session or operation is crucial check before a switchover as

it will cause the switchover to be hung and wait for the operation to complete first. This check

would help to avoid the longer downtime which one of the main purpose of this research.

Figure 4.16 shows the SQL script used to query and kill a long running session or operation

particularly Media Management Layer (MML) transaction which is an RMAN session

created to communicate with a third-party backup software.

###

############Log and Kill long running operations

sub log_and_kill_MML_session

{

 my $db_pri_handle = create_dba_primary_handle (); #

handle to connect to PRY DB

 Logger::Fatal ("Failed to connect to PRIMARY database.") unless

(defined ($db_pri_handle));

 my $MML_transaction_sql = 'SQLFILE\kill_MML_transaction.sql';

 my $sql_kill_MML_transaction = '';

Univ
ers

ity
 of

 M
ala

ya

75

 my $sql_stmt = "SELECT s.sid,s.serial#,p.SPID, s.EVENT,

s.SECONDS_IN_WAIT,sw.STATE, s.CLIENT_INFO FROM V\$SESSION_WAIT sw,

V\$SESSION s, V\$PROCESS p WHERE sw.EVENT LIKE '%MML%' AND

s.SID=sw.SID AND s.PADDR=p.ADDR";

 my $r1 = $db_pri_handle->GetAllRows ($sql_stmt);

 return Logger::Warn (" Failed to query v\$SESSION_WAIT and

v\$session") unless defined ($r1);

 my $row_count = (scalar @$r1);

 #Data::Dumper::Dumper ($r1);

 Logger::Info ("MML tape backup is running.") unless ($row_count

> 0);

 Logger::Info ('Number of MML Sessions : '.$row_count);

 if (-f $MML_transaction_sql) {

 Logger::Warn ("Failed to remove FILE :

$MML_transaction_sql : $!") unless unlink ($MML_transaction_sql);

 Logger::Warn ("Failed to remove old PFILE :

$MML_transaction_sql : file found after unlink!") if (-f

$MML_transaction_sql);

 }

 if ($row_count > 0) {

 foreach my $l (@$r1) {

 Logger::Info ("SID : $l->[0] \t SERIAL# : $l-

>[1] \t Event : $l->[3] \t Seconds_IN_Wait : $l->[4]");

 $sql_kill_MML_transaction .= "alter system kill

session '$l->[0],$l->[1]' immediate;\n";

 }

 Logger::Info ("Long Running MML Transactions :\n

$sql_kill_MML_transaction");

 my $pv = join (",", map { $_->[1]} @$r1);

 Logger::Info ("SID of LONG running MML transactions " .

$pv);

 Utils::write_file($MML_transaction_sql,$sql_kill_MML_transaction

);

 Logger::Info ("SqL Script to kill MML transactions are

created in $MML_transaction_sql");

 Logger::Info ('Running Script to kill MML transaction');

 #running script to kill long running transaction

 my ($status, $spool_file) = $db_pri_handle-

>RunSqlScriptEx($MML_transaction_sql);

 my $log_text = Utils::Slurp ($spool_file);

 Logger::Info ("Output of

$MML_transaction_sql:\n$log_text");

 }

 return (1);

}

Figure 4.16 Check and kill potential long running operations

Univ
ers

ity
 of

 M
ala

ya

76

4.10.3 Design of Switchover

The design for switchover is basically to perform the action of switchover role transition and

this is done by using the DGMGRL command. In the tool’s switchover design there are two

post task is performed after the switchover. Figure 4.17 shows the source of Perl program

embedded with DGMGRL command of ‘switchover to <StandbyDatabaseName>’ is to

perform the role transition where the production database transit to be a standby database

meanwhile the current standby database becomes as primary database.

#==

===================Perform Switchover role transition

sub SwitchOver ($$)

{

my $self = shift or die 'no self';

my $t = shift or die 'no t';

my $to = shift or die 'no to';

die 'bad t $t or to $to' unless ($t =~ /^(N|O)$/ and $to =~ /^(A|B)$/);

my $db = AppCfg::Get("DB_UNIQUE_NAME_${t}");

my $db_to = AppCfg::Get("DB_UNIQUE_NAME_${to}");

my $h;

for (my $retry = 0; $retry < 2; $retry++) {

$h = $self->get_config ($t);

last if (defined ($h) and defined ($h->{CONFIGURATION}));

Logger::Info ("Retrying after 10 seconds.");

sleep(10);

}

Logger::Warn ("Unable to get DGMGRL Config or Config not setup yet.")

unless (defined ($h) and defined ($h->{CONFIGURATION}));

return Logger::Info ("Primary is already $db_to. Skipping switch

over.") if ($h->{PRIMARY} eq $db_to);

Logger::Info ("Performing switch over to $db_to");

my $input = <<"EOF";

connect /\@$db

switchover to $db_to;

quit

EOF

$input =~ s/^\s+//mg; $input =~ s/\s+$//mg;

Logger::Info ("Switchover start time : " . POSIX::strftime ("%Y-%m-%d

%H:%M:%S", localtime()));

AppCfg::Set ('SWITCHOVER_START_TIME', POSIX::strftime ("%Y-%m-%d

%H:%M:%S", localtime()));

Univ
ers

ity
 of

 M
ala

ya

77

AppCfg::Set ('SWITCHOVER_START_TIME_1', time());

my $switchover_start_time = time();

my $ret = Utils::CommandPipe ("DGMGRL_$db", "DGMGRL -silent", $input);

Logger::Info ("RET:\n$ret\n");

return Logger::Warn("Failed to perform Switchover to $db_to") if

($ret =~ /^ORA-/m);

my $switchover_end_time = time();

AppCfg::Set ('SWITCHOVER_END_TIME', POSIX::strftime ("%Y-%m-%d

%H:%M:%S", localtime()));

Logger::Info ("Switchover End time : " . POSIX::strftime ("%Y-%m-%d

%H:%M:%S", localtime()));

my $switchover_duration = $switchover_end_time -

$switchover_start_time;

AppCfg::Set ('SWITCHOVER_DURATION', $switchover_duration);

Logger::Info ("Switchover Completed in $switchover_duration seconds");

Logger::Info ("Waiting 20 Seconds After Successful Switchover for

datagaurd to sync up");

sleep(20);

return Logger::Warn ("Unable to very clean switch over to $db_to")

unless Utils::WrapAction ("Validating switch over to $db_to",

\&validate_primary_after_switch_over, $self, $t, $db_to);

return Logger::Info ("Switchover successful.");

}

#==
Figure 4.17 Perform switchover

4.11 Implementation of ODaRT

The ODaRT tool was implemented using a vast array of software tools and hardware. Table

4.9 shows the hardware required to develop the ODaRT tool. A powerful hardware were

selected to host the Oracle Data Guard databases to replicate a real production database which

handle usually a huge load. For an Oracle Data Guard setup, it is at least two systems to

install primary and standby database hence two set of system used for this tool

implementation.

Table 4.9 Hardware system requirement

Hardware Description
Processor Intel(R) Xeon(R) CPU @ 2.00GHz
System Model and Type VMware Virtual Platform x64-based PC

Univ
ers

ity
 of

 M
ala

ya

78

Installed Memory 10GB
Network Adaptor WAN Miniport (SSTP)
Storage HP HSV450 SCSI Disk Device
Storage Capacity 100GB

 The table 4.10 shows the software requirement to develop the ODaRT tool. The latest

Oracle Data Guard Database version is chosen as of the research writing period, this is to

ensure the newer Oracle feature is not supersede the objective of this research.

Table 4.10 Software system requirement

Software Description
Microsoft Windows Server
2008 R2 Enterprise

Operating system

Oracle Database 11g
Enterprise Edition Release
11.2.0.4.0

RDBMS with Data Guard and Automatic
Storage Management option

Perl v5.10.0 Programing Language
Padre The Perl IDE v 0.94 For Perl Application Development and

Refactoring Environment

We chose Perl 5 programming language to develop the ODaRT tool as its very capable

object-oriented and functional programming. The other reason to choose Perl is easily can be

integrated and embedded with third-party database integration interface which is Oracle

software we used. The freely available open source modules from CPAN (Comprehensive

Perl Archive Network) helped very much in developing the tool. We ODaRT tool is

modelled, developed, debugged, refactored and optimized through the help of Padre

Integrated Development Environment (IDE) version 0.94.

In Figure 4.18, shows the Perl programmed oracle database connection made through Oracle

DBI using Oracle TNS entry (Transparent Network Substrate) with the TCP/IP network

protocols which resides in the Oracle Home directory.

Univ
ers

ity
 of

 M
ala

ya

79

#==

=pod

$ret = $db->connect ()

return

1 For Success

0 Other unhandled error

-1 Oracle not available

=cut

#=======================================

sub connect

{

 my $self = shift or Logger::Fatal "No self";

 my $dbh;

 $self->SetEnv();

 if (defined ($self->{TNS_NAME}) && (($self->{TNS_NAME} =~

/odart/i) or ($self->{TNS_NAME} =~ /^odart_(mydb|dss)$/i))) {

 $dbh = DBI->connect ('dbi:Oracle:', $self-

>{CONNECT_STRING}, '');

 }

 else {

 $dbh = DBI->connect ('dbi:Oracle:', $self-

>{CONNECT_STRING}, '', {ora_session_mode => main::ORA_SYSDBA});

 }

 if (!defined($dbh))

 {

 Logger::Info "DBI Error while connecting to Database",

$DBI::errstr;

 if ($DBI::errstr =~ /^ORA-01034:/)#Oracle is not available

 {

 return -1;}

 Logger::Error "Failed to Connect to Database using, ",

$self->{CONNECT_STRING};

 return 0; }

 Logger::Info "Successfully Connected to database ", $self-

>{CONNECT_STRING};

 $self->{CONNECT_HANDLE} = $dbh;

 return 1;

}

#==

Figure 4.18 Database connection through Oracle DBI using TNS

Univ
ers

ity
 of

 M
ala

ya

80

4.12 Summary

An effectual automated database role transition requires a set of accurate and reliable

procedures to perform the role transition. In this chapter, the prospective of aim, functional

and non-functional of ODaRT tool are assembled in details for the development of the tool.

The aiding and illustrative tools of UML use case diagram, analysis model and system design

are used to build the automated role transition tool, ODaRT.

Each of the use case is described in detail with use case description and this will help to

model the tool as per the user requirements. In addition, the identified three modules of health

check, pre check and switchover are incorporated with the extraction of SQL and DGMGRL

commands from Oracle best known methods. Finally we have recognized the hardware and

software systems needed for the development of the ODaRT tool.

Univ
ers

ity
 of

 M
ala

ya

81

CHAPTER 5

RESULT AND DISCUSSION

5.1 Main Features

In the following the sections, we have shown how the database administrator can use the

ODaRT tool in order to perform one of their standard task of checking the health of the

database and role transition of switchover. A health check of database is performed whenever

a database administrator is the state of doubtless of the functionality of the database. It’s a

mandatory task need to be performed by database administrator before a role transition to

make sure the primary and standby database healthy and able to support the role transition.

The main features of the ODaRT tools is demonstrated in the following segregated

paragraphs.

• HealthCheck
The screenshot shown in figure 5.1 is a command prompt invoked by an Administrator

privileged DBA. The tool directly change its directory to ODaRT installation directory upon

the database administrator invoked the ODaRT execution batch file. The DBA shall type ‘h’

+ tab or in full command of HEALTHCHECK.cmd in order to perform the heath check of the

database. Also the full instruction are provided to the Database Administrator in user manual

document.

Figure 5.1 Automated Database health check instruction

Upon execution the tool will perform the needed health check passing through all the checks

discussed in previous chapters. The checks are adopted from Oracle best known practice to

Univ
ers

ity
 of

 M
ala

ya

82

perform a database health check. The ODaRT tool will print the summary of the execution

and verification. Also complete log of the execution will be logged in a text file kept in a

folder named LOGS. The figure 5.2 shows the completion and summary of the health

execution, and in this screenshot it posted some warnings regarding the database health for

the invalid objects in database.

Figure 5.2 Completion of automated database health check

• PreCheck
All the features in ODaRT tool is invoked with the administrator privileged since the database

administration task is allowed for privileged DBAs. The figure 5.3 shows the execution of

PreCheck command batch file to perform database prerequisites check for a database role

transition of switchover. The same method as HealthCheck is applicable for all the execution

in ODaRT tool. This is to make sure the execution are simple and easily remembered by the

database administrators.

Figure 5.3 Instructing for a database switchover prerequisites check

Univ
ers

ity
 of

 M
ala

ya

83

The figure 5.4 shows a prompt by the ODaRT tool which it’s checked the running scheduler

jobs and prompting to user for disablement. The user or database administrator can either

proceed or skip the disable if he/she not going to perform the switchover after this.

Figure 5.4 Pre check prompt for disabling scheduler jobs

The figure 5.5 shows the completion of the PRECHECK.cmd execution with providing the

all the warnings to be checked by database administrator. In this figure it thrown two

warnings which could led to failure of role transition if this is not taken care before

performing database switchover. The warnings in this figure is list of long running operations

that were running more than thirty(30) minutes and the other warning is observer location is

not found.

Figure 5.5 Completion of switchover prerequisites check

• Switchover
The switchover feature is the main component in this tool beside the other features. There

are several small features are integrated for this switchover component. The figure 5.6

shows the invoking of switchover database role transition. The switchover is invoked either

by typing ‘s’ + tab in the keyboard or type the full command of SWITCHOVER.cmd.

Univ
ers

ity
 of

 M
ala

ya

84

Figure 5.6 Instructing for a database switchover role transition

As per Oracle best known practice a complete pre check of the both primary and standby

database is very crucial for a successful role transition. Thus, to call the prerequisites check

module before the switchover is important. The figure 5.7 shows the prompt for user to

continue for a prerequisites check before the continuing to role transition.

Figure 5.7 Prompt for prerequisites check before switchover

The database administrator is given option to skip prerequisites check if he/she already done

prerequisites check against the database. For a successful switchover containment from

application/user connection is very important to avoid the hung in switchover and to avoid

data loss. A switchover without closing securely a user session could cost data loss. The

figure 5.8 shows the prompt for database administrator to kill any long running or user session

which running more than thirty (30) minutes.

Figure 5.8 Prompt for kill long running session

In Oracle Data Guard database is always safe to disable the fast start failover feature before

performing a role transition. This is recommended by Oracle and stated in its best known

Univ
ers

ity
 of

 M
ala

ya

85

practice for preventing the observer initiate a failover back to original primary database if

there is an issue in standby database. The figure 5.9 shows an info and prompt to database

administrator to commit the switchover to standby database.

Figure 5.9 Prompt for confirming a switchover

A completed database validation and health check is needed upon a successful role transition

before handover the primary database for production serve. The figure 5.10 shows basically

a prompt for running post switchover verification which it will invoke again the health check

module.

Figure 5.10 Prompt for post switchover verification

The figure 5.11 shows the completion of a database role transition, switchover. The

successful switchover will have the summary of the switchover i.e time taken to perform the

switchover and information about the new primary database which is serve the production.

The information of switchover is also logged in a text file for a future reference.

Univ
ers

ity
 of

 M
ala

ya

86

Figure 5.11 Complete of switchover

• Exception Handler
There are few exception handlers been used in ODaRT tool, the figure 5.12 shows an

exception handler thrown during the execution of ODaRT. The tool is configured to run from

standby database for any activity and only connection should be initiated to primary database

for checking and this is to avoid any mishandle in primary database which is servicing the

production.

Figure 5.12 Example of exception handler

5.2 Testing

We have conducted several testing in the development of this ODaRT tool. The outlined

testing process are Unit Testing, Integration Testing and System Testing. The result of this

testing is evaluated and presented in result section. The testing is conducted to validate the

interaction of the codes and reduce the faultiness of the tool. Moreover the testing helpful to

provide a documentation regarding the solution taken or experienced gained for future

reference, this will helpful to secure and maintain the tool in future. The tests are conducted

to produce well-structured of program, and to overcome the errors and bugs.

The figure 5.13 shows the overall testing methodology conducted in this research. The testing

are categorized into two (2) section which are black box testing and white box testing. In

black box testing the accessibility and system testing is conducted which are the design and

Univ
ers

ity
 of

 M
ala

ya

87

implementation of ODaRT tool is not known by user. Meanwhile, the white box testing are

integration and unit testing which are known to user. The following section shall describe

briefly about both the stages of the testing. We performed the test to check both the

functionalities of functional and non-functional based on gathered user requirements, also to

check the efficiently of the implemented ODaRT tool.

Figure 5.13 The testing methodology used for ODaRT tool

The table 5.1 shows the twenty (20) test cases prepared and tested at the each of the stages

of execution. The functionality, performance and installation testing been conducted for the

tool based on the twenty scenarios listed in the table. The table also elaborate the action

should take by the tool if the expected results are not met. The tests are conducted in both

the primary and standby databases.

Univ
ers

ity
 of

 M
ala

ya

88

Table 5.1 ODaRT tool black box test cases

Sl# Description Checks on Primary Checks on PSB Expected Results Time to wait Fail Action -
(Command
execution Fail)

Tool Action if Expected
Results are not met

1 Verify disk
groups free
space

select name,
round((free_mb/total
_mb)*100,2)
free_perc from
v$asm_diskgroup;

 >= 5% FO Fail Tool - Fix Disk Space
issue and re-run tool.

 select name,
round((free_mb/to
tal_mb)*100,2)
free_perc from
v$asm_diskgroup;

>= 5% Manual
Action/Troublesh
ooting

Fail Tool - Fix Disk Space
issue and re-run tool.

 select
dbms_flashback.get
_system_change_nu
mber() SCN from
dual;

 <scn> FO

 select sequence#,
status from v$log
where <scn>
between
first_change# and
next_change#; --> If
no row selected,
execute below query

 no rows selected or
STATUS:
CURRENT/ACTIV
E

 FO

 select distinct
sequence#, deleted,
status from
v$archived_log

 DELETED='NO'
and STATUS='A'

 FO Fail Tool - Fix Disk Space
issue and re-run tool. Univ

ers
ity

 of
 M

ala
ya

89

where <scn>
between
first_change# and
next_change#;

2 Verify
observer
location

select
fs_failover_observer
_present,
fs_failover_observer
_host from
v$database;

 <host_name> and
observer_present=Y
ES

 FO Information - Logging
only.

3 Verify
configuratio
n health

 show
configuration;

configuration status:
SUCCESS

Fast-Start Failover:
ENABLED

 Manual
Action/Troublesh
ooting

To fix any warning/ORA-
message or errors. Tool
log output of error.
Manual Action.

4 Verify
sufficient
number of
archiver
processes >=
4

show database <PRI-
DB_UNIQUE_NA
ME>
'LogArchiveMaxPro
cesses';

5 Manual

Action/Troublesh
ooting

Fix to POR and rerun tool.

 show database
<PSB-
DB_UNIQUE_N
AME>
'LogArchiveMaxP
rocesses';

5 Manual
Action/Troublesh
ooting

Fix to POR and rerun tool.

5 Verify there
is no apply
delay for the

 show database
<PSB-

0 Manual
Action/Troublesh
ooting

Fix to POR and rerun tool.
Univ

ers
ity

 of
 M

ala
ya

90

target
standby

DB_UNIQUE_N
AME> DelayMins

6 Ensure
online redo
log files on
the target
physical
standby
have been
cleared

show database <PRI-
DB_UNIQUE_NA
ME>
'LogFileNameConve
rt';

 <non-null value>
and POR settings.

 Manual
Action/Troublesh
ooting

Fix to POR and rerun tool.
Check for Valid value.

 show database
<PSB-
DB_UNIQUE_N
AME>
'LogFileNameCon
vert';

<non-null value>
and POR settings.

 Manual
Action/Troublesh
ooting

Fix to POR and rerun tool.
Check for Valid value.

7 Verify there
are no large
gaps

select thread#,
sequence# from
v$thread;

 PRI sequence# FO

 select thread#,
max(sequence#)
from
v$archived_log
where applied =
'YES' and
resetlogs_change#
= (select
resetlogs_change#
from
v$database_incarn
ation where status
= 'CURRENT')
group by thread#;

PSB sequence#
should be within 1 or
2 of the PRI current
sequence number

 Manual
Action/Troublesh
ooting

>2 - Abort and use
Manual Process to
address Gap.

Univ
ers

ity
 of

 M
ala

ya

91

8 Verify
primary and
standby
tempfiles
match

select tmp.name
filename, bytes,
ts.name tablespace
from v$tempfile
tmp, v$tablespace ts
where
tmp.ts#=ts.ts#;

 PRI list of tempfiles FO

 select tmp.name
filename, bytes,
ts.name tablespace
from v$tempfile
tmp, v$tablespace
ts where
tmp.ts#=ts.ts#;

PSB list of tempfiles Manual
Action/Troublesh
ooting

Log message and
continue with SO. No
need for compare if it
takes more than 5 seconds
to compare.

9 Verify
primary and
standby disk
location

select name from
v$tempfile where
substr(name,1,1)!='+
';

 no rows selected FO

 select name from
v$tempfile where
substr(name,1,1)!
='+';

no rows selected Manual
Action/Troublesh
ooting

Log message and
continue with SO. No
need for compare if it
takes more than 5 seconds
to compare.

10 Verify all
datafiles are
ONLINE

select name from
v$datafile where
status='OFFLINE';

 no rows selected FO

 select name from
v$datafile where
status='OFFLINE';

no rows selected Manual
Action/Troublesh
ooting

Log message and
continue with SO. No
need for compare if it
takes more than 5 seconds
to compare. Univ

ers
ity

 of
 M

ala
ya

92

11 Verify
primary and
standby
datafiles
disk location

select name from
v$datafile where
substr(name,1,1)!='+
';

 no rows selected FO

 select name from
v$datafile where
substr(name,1,1)!
='+';

no rows selected Manual
Action/Troublesh
ooting

Log message and
continue with SO. No
need for compare if it
takes more than 5 seconds
to compare.

12 Verify
primary and
standby
online redo
log disk
location

select member from
v$logfile where
substr(member,1,1)
not in ('+','M','N');

 no rows selected FO

 select member
from v$logfile
where
substr(member,1,1
) not in
('+','M','N');

no rows selected Manual
Action/Troublesh
ooting

Log message and
continue with SO. No
need to compare if it takes
more than 5 seconds to
compare.

13 Verify
Oracle
Streams
replication

select status,
count(*) processes
from dba_apply;

 This is for
troubleshooting
purpose only. If
query returns no
rows, then it is ok.
Mainly to identify if
this DB is source or
target.

 FO No Action needed. Just
logging in logfile and at
the end provide message
to validate Streams if
setup on this DB where
SO is performed. Univ

ers
ity

 of
 M

ala
ya

93

 select status,
count(*) processes
from dba_capture;

 This is for
troubleshooting
purpose only. If
query returns no
rows, then it is ok.
Mainly to identify if
this DB is source or
target.

 FO No Action needed. Just
logging in logfile and at
the end provide message
to validate Streams if
setup on this DB where
SO is performed.

14 Suspend
Scheduler
jobs

select owner,
job_name from
dba_scheduler_runni
ng_jobs and owner
<> 'SYS';

 no rows selected FO Manual Action

 select owner,
job_name,
next_run_date,
enabled from
dba_scheduler_jobs
where
enabled='TRUE' and
owner <> 'SYS'
order by
next_run_date;

 list of scheduler jobs FO Manual Action

15 Check for
potential
long running
operation

select s.inst_id,
o.sid, client_info ch,
context, sofar,
totalwork,
round(sofar/totalwor
k*100,2) "%
complete" from
gv$session_longops
o, gv$session s
where o.sid=s.sid
and totalwork != 0

 no row selected FO Manual Action - Pre-work

Univ
ers

ity
 of

 M
ala

ya

94

and sofar <>
totalwork and
opname not like
'%aggregate%'

16 Suspend GC
backup jobs

select job_id,
job_name, job_type,
scheduled_time,
execution_id, status
from
sysman.mgmt$job_e
xecution_history@to
_emrep where upper
(target_name) like
upper ((select substr
(db_unique_name,1,
length
(db_unique_name)-
2) from v$database)
|| '%') and status in
('Scheduled');

 4 rows expected:
BCKP_<APP>_<SI
TE>_L0,
BCKP_<APP>_<SI
TE>_L1,
BCKP_<APP>_<SI
TE>_MONTHLY,
PURGE_ARCH_LO
G_<APP>_<SITE>

 FO Manual Action - Pre-work

17 Clear
potential
blocking
parameters

show parameter
job_queue_processe
s

 <value> FO Log message and
continue with SO.

 show parameter
job_queue_proces
ses

<value> Manual
Action/Troublesh
ooting

Log message and
continue with SO. Univ

ers
ity

 of
 M

ala
ya

95

18 Perform
switchover

 switchover to
<PSB-
DB_UNIQUE_N
AME>;

 Manual
Action/Troublesh
ooting

19 Resume
scheduler
jobs

execute
dbms_scheduler.ena
ble('<owner>.<job_
name>');

 User to take Manual
Action.

 Manual
Action/Troublesh
ooting

20 Resume GC
jobs

select job_name,
job_id, target_name
from
sysman.mgmt$job_t
argets@to_emrep
where upper
(target_name) like
upper ((select substr
(db_unique_name,1,
length
(db_unique_name)-
2) from v$database)
|| '%')

 User to take Manual
Action.

4 rows expected:
BCKP_<APP>_<SI
TE>_L0,
BCKP_<APP>_<SI
TE>_L1,
BCKP_<APP>_<SI
TE>_MONTHLY,
PURGE_ARCH_LO
G_<APP>_<SITE>

 Manual
Action/Troublesh
ooting

Univ
ers

ity
 of

 M
ala

ya

96

The table 5.2 elaborate the integration and unit testing conducted for the ODaRT tool. The

test is known to user and the result of the tests are exported to SPSS software to produce a

graphical presentation. The presentation are based on t-test data and stem-leaf plot which

elaborated in the next section of result. We have conducted the white box text with the

selected sample of respondents. The test case scenarios are based on the circumstances of for

a planned activity or the database goes unhealthy. The result of the test cases are provided in

the Appendix B. The combination of the primary and standby states define the preferred and

alternated role transition. For an instance, the test case scenario TS1 explains during a data

base rolling upgrade or patch a switchover is preferred role transition and failover as an

alternate option. There should be no data loss expected and the system should recovered

within two (2) minutes.

Univ
ers

ity
 of

 M
ala

ya

97

Table 5.2 ODaRT white box test cases

Sl# Scenario Primary State PSB
DB

Planned
Activity with
Quiet time or
no Quiet time?

Preferred
option to
perform
Role
change?

Alternate
option to
perform
Role
change?

Data Loss? System
recovery
<2mins?

Reinstate
Original-Pri as
Standby
Automatically?

Comment

TC# Sample Healthy/Unhe

althy

Health

y/Unhe

althy

DT/No-DT Switchover/F

ailover

Switchove

r/Failover

Yes/No/Ma

yBe

Yes/No/May

be

Yes/No/Maybe

TS1 Rolling
Upgrade

Healthy Healthy No-DT Switchover Failover
(Shutdow
n Abort)

No Yes NA Any upgrades
without
downtime.

TS2 Rolling
Upgrade

Unhealthy Healthy No-DT Failover NA No Yes Maybe

TS3 Rolling
Upgrade

Healthy Unhealt
hy

No-DT NA NA NA NA NA Fix PSB

TS4 DB/Node
Sick

Healthy Unhealt
hy

No-DT NA NA NA NA NA Fix PSB

TS5 DB/Node
Sick

Unhealthy Healthy No-DT Failover NA No Yes Maybe

TS6 DB/Node
Sick

Unhealthy Unhealt
hy

No-DT NA NA NA NA NA True Disaster
Recovery
Scenario

TS7 DB/Node Healthy Healthy DT Switchover Failover
(Shutdow
n Abort)

No NA NA

*Healthy – Primary and standby in synch/ stack working as expected

*Unhealthy – Primary and standby out of synch/Sick

*DT - Downtime Univ
ers

ity
 of

 M
ala

ya

98

5.3 Result

The ODaRT tool has been tested and presented the result with both the functionality test by

the experts and the tool efficiency measurement. Two criteria are defined for finding the tools

efficiently by the expert’s survey and with test cases. The criteria for expert’s observation are

set as prerequisite and post tasks time taken in minutes and the ratio of successful switchover.

Meanwhile, the criteria for tool test cases are switchover time in seconds and failure of role

transitions.

5.3.1 Expert’s Observation

Table 5.3 Result for expert’s observation

Table 5.3 data shows that, the average minutes taken for a responded to perform pre and post

tasks are 16.4 minutes meanwhile the ratio of successful is 9 out of 10 execution with only a

single failure. Univ
ers

ity
 of

 M
ala

ya

99

Figure 5.14 Linear Chart of Pre-Post Tasks Time (Minutes)

Figure 5.14 is the linear chart that shows the observation of pre and post tasks time taken in

minutes by the respondents (Experts). The chart clearly shows that the observed circle is

closer to the value of ~15minutes crossed by the linear line.

Figure 5.15 Linear Chart of Ratio of Successful Switchover

Univ
ers

ity
 of

 M
ala

ya

100

 The linear chart in Figure 5.15 shows the ration of successful switchover out of 10

execution. The results shows the observed circle of value ~10 is closer to the liner line. This

indicate that the average successful of execution is almost 100%.

5.3.2 ODaRT Tool Observation

Table 5.4 Test cases result for tool observation

Table 5.4 data shows that, the test cases result for the tool execution results. It shows average

it takes 53 seconds to complete the switchover. There are only one failure happen out of 5

role transition.

Univ
ers

ity
 of

 M
ala

ya

101

Figure 5.16 Linear Chart of Switchover Time (Minutes)

 The linear chart in Figure 5.16 shows the switchover time more leaning to seconds
between 60-75 seconds.

Figure 5.17 Linear Chart of Failure of Role Transition

Univ
ers

ity
 of

 M
ala

ya

102

 The Figure 5.17 shows the test cases conduct to observe the frequency of role

transition failure using the ODaRT tool. And it shows almost 0(1) cases for conducted 5 test

cases.

5.3.3 Comparison Result

To prove the ODaRT have successfully achieve the objective, the test result were compared

between both the traditional method of only Data Broker and with the automated custom tool

ODaRT.

Table 5.5 Data Comparison of Traditional Method and ODaRT

 The table 5.5 shows the test cases result comparison between the Traditional method

of using Data Broker and the ODaRT tool. The ODaRT tool have average of 21 seconds of

switchover time meanwhile the traditional method took more in average 32 seconds. The

maximum seconds taken for traditional method is 41 seconds whereas the ODaRT is just 23

seconds. This prove that the ODaRT tool give better efficiency than the traditional method

in term of time taken to complete a switchover.

Univ
ers

ity
 of

 M
ala

ya

103

5.4 Evaluation

The table 5.6 describe the comparison between the Oracle Data Guard database role

transitions comparison. The comparison done between the third-party tool, oracle provided

Data Guard Broker and the developed tool ODaRT. The DBvisit standby and DG Toolkit are

the tools available in market to perform role transitions. Oracle Data Guard Broker by the

Oracle itself is the most popular tool used to perform a switchover.

Table 5.6 Oracle Data Guard database role transition tools evaluation

Tools
Feature

1. Dbvisit
Standby

2. DG
Toolkit

3. Oracle Data Guard
Broker

4.
ODaRT

Oracle Best Known
Practice

Automated Check

Perform database
switchover

Perform database health
check

Support varied operating
system

Switchover time <
2mintues

 But now with the comparison from the results, it’s proven the customized ODaRT

tool give more efficiently in performing a role transition. Most importantly the ODaRT tool

has incorporated the Oracle best known practice and automated each of the checks. The

automated check really help to streamline the process and time taken to perform role

transition by database administrators. Only the ODaRT tool is providing the feature of

database health check based on oracle best known practices. Only the ODaRT tool support

an automated feature to perform prerequisites check, it means the database administrators

don’t need to remember and run any SQL queries or DGMGRL commands.

Univ
ers

ity
 of

 M
ala

ya

104

5.6 Summary

The ODaRT’s simple and easy execution enables a database administrator to perform Oracle

Data Guard database role transition efficieantly. In this chapter we have covered the whole

process of ODaRT tool implementation, the process been illustrated and outlined with

recognized core capabilities of the tool and with the supported technology.

The robustness of the tool is improved with the detailed white and black box testing. The

testing has made the tool functions more accurately without bugs or errors. The comparative

results have proven the tool has achieve its objective with taking a lesser seconds to complete

a role transition compare to the traditional Oracle Data Broker method. Finally the evaluation

of the comparison result has made the participant from the expert database administrators

sensed that this automated tool is excellent and superb in term of the capabilities to do health

check of a database and perform pre and post verification check before the role transition,

switchover.

Univ
ers

ity
 of

 M
ala

ya

105

CHAPTER 6

CONCLUSION AND FUTURE WORKS

In today’s world, efficiency and streamlining processes are much anticipated in performing

any task. There are lots of scope in streamlining the process involved database role change.

The ODaRT tool have successfully identified the incurring problems in Oracle Data Guard

role transition and provided a solution that given an excellent result.

In this research, we have accessed the role transitions performed by database administrators

in one of the complex database system, Oracle Data Guard. The Oracle Data Guard systems

are widely used in the sector of manufacturing, finance and human resource, etc since it’s

ensure the enterprise data are protected, highly available and recoverable for a disaster. The

Oracle Data Guard is mostly favors multiple types of systems such as Data Warehouse,

Online Transaction Processing and Decision Support Systems. The Oracle Data Guard

offload the resource intensive backups to standby database to improve the productivity of the

primary database. Since planned and unplanned outage is very common for Data Guard

database, the efficiency of the role transitions is important to make sure the availability of

database is maintained and minimized the downtime.

With the accessed database role transition approach using the Oracle best known practice in

the ODaRT tool, we have demonstrated the role transition can be performed efficiently and

effectively by database administrators without failures. The research study will be supportive

for the Oracle Corporation in enhancing their Oracle Data Guard product and probably

introduce the research contribution in their future releases.

Univ
ers

ity
 of

 M
ala

ya

106

6.1 Strengths of ODaRT tool

After the assessment of implementation and evaluation process done in previous chapter, we

have successfully achieved the following strengths for ODaRT tool.

• Automated role transition
The automated feature enable the database administrator to perform the role transition

without referring to any commands or Oracle best known practice, the tool is do it for them.

The process of health check, pre check and role transition are streamlined and automated as

much as possible.

• A error-free role transition is achievable
The tool proved there is no longer failure due to human error since the tool is automated to

perform the role transition and able to prepare both the primary and standby database before

the role transition. The industries will be beneficial in reducing the cost of downtime.

• Speed
With the ability to perform health check and prerequisites check, the database administrator

can perform the switchover without spending time on checking the health and prepare the

database to do role transition.

• Performance
The ODaRT have no performance issue since it is not a resource intensive tool, it use no GUI

which will usually slows the performance. The tool is developed with simple Perl program

gives excellent reliability.

Univ
ers

ity
 of

 M
ala

ya

107

6.2 Limitation of ODaRT tool

Although we achieved the objective of this research, the ODaRT tool still give some room

for improvements. The ODaRT tool is not developed for the use of multi operating systems.

Currently the ODaRT tool only can be run on Oracle Data Guard which installed in Microsoft

Windows Servers. Although the execution of the tool is very simple, but it slightly out of

current generation trend where mostly the applications or tools are based on web or

multimedia with a nice Graphical User Interface.

6.3 Future Work

Oracle releases its new technology rapidly, while writing this research paper there is already

Oracle Database new version of Oracle 12c is announced. The research study should expand

its boundary till the new the newer version of Oracle Database 12c. We should also focused

on expanding the development of this tool into multiple platform especially Linux which is

Oracle’s preferred platform. We have also received feedback for the tools human computer

interactions in term of user interface. Some of the participants suggested to have the tool in

Graphical User Interface with some buttons capabilities. In term of functionality, there are

chances to enhance it with more capabilities like autonomous troubleshooting for an error in

database and etc.

Univ
ers

ity
 of

 M
ala

ya

108

REFERENCES

11.2 Data Guard Physical Standby Switchover Best Practices using SQL*Plus. .
Retrieved from
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1304939.1

11.2 Data Guard Physical Standby Switchover Best Practices using the Broker. Retrieved

from https://support.oracle.com/epmos/faces/DocumentDisplay?id=1305019.1

Alapati, S., Kuhn, D., & Nanda, A. (2007). RMAN Recipes for Oracle Database 11g: A

Problem-Solution Approach: Apress.

Alapati, S. R., Kuhn, D., & Padfield, B. (2011). Oracle Database 11g performance tuning

recipes : a problem-solution approach: Apress.

Ashdown, L., Kyte, T., Creighton, J., Engsig, B., Fogel, S., Habeck, B., . . . Huey, P.

(2011). Oracle® Database Concepts 11g Release 2 (11.2).

Bryla, B. (2007). Oracle database 11g DBA handbook: Tata McGraw-Hill Education.

Burleson, D. (2015). Partitioning an Oracle table Tips. Retrieved from http://www.dba-

oracle.com/t_partitioning_tables.htm

Carpenter, L. (2009). Oracle data guard 11g handbook: Oracle Press/McGraw-Hill.

Carpenter, L., Meeks, J., Kim, C., Burke, B., Carothers, S., Kundu, J., . . . Vengurlekar,

N. (2009). Oracle data guard 11g handbook: McGraw-Hill, Inc.

Charles, K. (2014). Automate Data Guard Best Practices. Retrieved from

http://www.oracle.com/technetwork/database/features/availability/fnf-
casestudy- 082608.html

Chaudhuri, S., & Weikum, G. (2000, 2000 / 01 / 01 /). Rethinking database system

architecture: Towards a self-tuning RISC-style database system. Paper presented
at the 26th International Conference on Very Large Data Bases, Cairo, Egypt.

Crosby, N., Hughes, C., Lizieri, C., & Oughton, M. J. J. o. p. r. (2005). A Message from

the Oracle: the Land Use Impact of a Major In‐town Shopping Centre on Local
Retailing. 22(2-3), 245-265.

Univ
ers

ity
 of

 M
ala

ya

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1304939.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1305019.1
http://www.dba-oracle.com/t_partitioning_tables.htm
http://www.dba-oracle.com/t_partitioning_tables.htm
http://www.oracle.com/technetwork/database/features/availability/fnf-casestudy-
http://www.oracle.com/technetwork/database/features/availability/fnf-casestudy-

109

Fast-Start Failover Best Practices. (2010). Oracle Data Guard 10g Release 2, Oracle

MAA White Paper.

Greenwald, R., Stackowiak, R., & Stern, J. (2013). Oracle essentials: Oracle database

12c: " O'Reilly Media, Inc.".

Hayes, S., Rinkevich, D., & Lowrey, B. (2007). Auditing database end user activity in

one to multi-tier web application and local environments. In: Google Patents.

High Availability Data Guard Broker. Page 17 of 21. Retrieved from

https://docs.oracle.com/cd/B28359_01/server.111/b28295/troubleshooting.htm#

Jim, C. (2009). Performing Database Failover with Oracle 11g Data Guard

Kuhn, D., Alapati, S. R., & Padfield, B. (2016). Expert Oracle Indexing and Access

Paths: Maximum Performance for Your Database: Apress.

Kumar, S. (2003). Oracle database 10g: The self-managing database. In: November.

Kyte, T. (2010). Expert Oracle Database Architecture: Oracle Database 9i, 10g, and

11g Programming Techniques and Solutions: Apress.

Larry, M. C. (2011). Oracle OpenWorld Active Data Guard Hands on Lab.

Metalink. (n.d.). How to use Oracle Expert. Retrieved from www.metalink.oracle.com

Nawaz, R., & Soomro, T. R. (2013). Role of Oracle Active Data Guard in High

Availability Database Operations. International Journal of Applied Information
System, Foundation of Computer Science, New York, USA, Volume 5(No. 5)
doi:978-0- 07-162148-9

Oracle10g: Data Guard Switchover and Failover Best Practices. Retrieved from

https://support.oracle.com/epmos/faces/DocumentDisplay?id=387266.1

Oracle-Base. (2013). Retrieved from http://www.oraclebase.com/articles/11g/dataguard-
setup-11gr2.php

Univ
ers

ity
 of

 M
ala

ya

https://docs.oracle.com/cd/B28359_01/server.111/b28295/troubleshooting.htm
file:///C:/Users/skris19/Desktop/PERSONAL/UM/ODaRT/ODaRT_Dissertation_Correction/www.metalink.oracle.com
https://support.oracle.com/epmos/faces/DocumentDisplay?id=387266.1
http://www.oraclebase.com/articles/11g/dataguard-setup-11gr2.php
http://www.oraclebase.com/articles/11g/dataguard-setup-11gr2.php

110

Oracle 9i Database Manageability. Retrieved from
http://www.oracle.com/technology/products/manageability/data
base/pdf/Oracle9iManageabilityBWP.pdf

Oracle Active Data Guard. (2010). Oracle Data Guard 11g Release 1, Oracle MAA

White Paper.

Oracle® Database VLDB and Partitioning Guide 11g Release 2 (11.2). oracle.com.

(2015). Retrieved from
http://docs.oracle.com/cd/E18283_01/server.112/e16541/intro.htm

Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N., Hoagwood, K. J.

A., . . . Research, M. H. S. (2015). Purposeful sampling for qualitative data
collection and analysis in mixed method implementation research. 42(5), 533-
544.

Partitioning Concepts. oracle.com. (2015). Retrieved from http:

//docs.oracle.com/cd/B28359_01/server.111/b32024/partition.html

Patton, M. Q. (1990). Qualitative evaluation and research methods: SAGE Publications,

inc.

Singh, G. (2013). Maintaining Client Connectivity And Zero Failover Using Oracle

Dataguard Grid Computing. Journal of Global Research in Computer Science
(JGRCS), 4(7), 5-9.

Tuomas, N. (2010). Combining high-availability and disaster recovery: Implementing

Oracle Maximum Availability Architecture (MAA) on Oracle 10gR2 RDBMS.
24.

Wynekoop, J. L. (1991). A review of computer aided software engineering research

methods. Information Systems Research: Contemporary approaches and
emergent traditions, 129-154. Univ

ers
ity

 of
 M

ala
ya

http://www.oracle.com/technology/products/manageability/data
http://docs.oracle.com/cd/E18283_01/server.112/e16541/intro.htm

