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COMMUTING ADDITIVE MAPS ON

TENSOR PRODUCTS OF MATRIX ALGEBRAS

ABSTRACT

Let k ⩾ 1 and n1, . . . , nk ⩾ 2 be integers. Let F be a field and let Mni
be the algebra

of ni × ni matrices over F for i = 1, . . . , k. Let
⊗k

i=1Mni
be the tensor product of

Mn1 , . . . ,Mnk
. In this dissertation, we obtain a complete structural characterization of

additive maps ψ :
⊗k

i=1Mni
→
⊗k

i=1Mni
satisfying

ψ(⊗k
i=1Ai)(⊗k

i=1Ai) = (⊗k
i=1Ai)ψ(⊗k

i=1Ai)

for all A1 ∈ S1,n1 , . . . , Ak ∈ Sk,nk
, where

Si,ni
=
{
E

(ni)
st + αE(ni)

pq : α ∈ F and 1 ⩽ p, q, s, t ⩽ ni are not all distinct integers
}

and E(ni)
st is the standard matrix unit inMni

for i = 1, . . . , k. In particular, we show that

ψ : Mn1 → Mn1 is an additive map commuting on S1,n1 if and only if there exist a scalar

λ ∈ F and an additive map µ : Mn1 → F such that

ψ(A) = λA+ µ(A)In1

for all A ∈ Mn1 , where In1 ∈ Mn1 is the identity matrix. As an application, we

classify additive maps ψ :
⊗k

i=1Mni
→
⊗k

i=1Mni
satisfying ψ(⊗k

i=1Ai)(⊗k
i=1Ai) =

(⊗k
i=1Ai)ψ(⊗k

i=1Ai) for all A1 ∈ Rn1
r1
, . . . , Ak ∈ Rnk

rk
. Here, Rni

ri
denotes the set of rank

ri matrices inMni
and 1 < ri ⩽ ni is a fixed integer such that ri ̸= ni when ni = 2 and

|F| = 2 for i = 1, . . . , k.

Keywords: commuting map, tensor product of matrices, rank, functional identity, linear

preserver problem.
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PEMETAAN BERDAYA TAMBAH KALIS TUKAR TERTIB PADA

HASIL DARAB TENSOR ALGEBRA MATRIKS

ABSTRAK

Biar k ⩾ 1 dan n1, . . . , nk ⩾ 2 integer. Biar F suatu medan dan biar Mni
algebra

bagi matriks ni × ni terhadap F bagi i = 1, . . . , k. Biar
⊗k

i=1Mni
menandakan hasil

darab tensor bagiMn1 , . . . ,Mnk
. Dalam disertasi ini, kami memperolehi suatu pencirian

berstruktur lengkap bagi pemetaan berdaya tambah ψ :
⊗k

i=1Mni
→
⊗k

i=1Mni
yang

memenuhi

ψ(⊗k
i=1Ai)(⊗k

i=1Ai) = (⊗k
i=1Ai)ψ(⊗k

i=1Ai)

bagi semua A1 ∈ S1,n1 , . . . , Ak ∈ Sk,nk
, di mana

Si,ni
=
{
E

(ni)
st + αE(ni)

pq : α ∈ F dan 1 ⩽ p, q, s, t ⩽ ni bukan semua integer berbeza
}

dan E(ni)
st merupakan unit matriks piawai dalam Mni

bagi i = 1, . . . , k. Khususnya,

kami membuktikan bahawa ψ : Mn1 → Mn1 merupakan pemetaan berdaya tambah

kalis tukar tertib pada S1,n1 jika dan hanya jika wujudnya suatu skalar λ ∈ F dan suatu

pemetaan berdaya tambah µ : Mn1 → F supaya

ψ(A) = λA+ µ(A)In1

bagi semuaA ∈ Mn1 , di mana In1 ∈ Mn1 adalah matriks identiti. Sebagai aplikasi, kami

mengelaskan pemetaan berdaya tambah ψ :
⊗k

i=1Mni
→
⊗k

i=1Mni
yang memenuhi

ψ(⊗k
i=1Ai)(⊗k

i=1Ai) = (⊗k
i=1Ai)ψ(⊗k

i=1Ai) bagi semua A1 ∈ Rn1
r1
, . . . , Ak ∈ Rnk

rk
. Di

sini,Rni
ri
mewakili set bagi matriks berpangkat ri dalamMni

dan 1 < ri ⩽ ni merupakan

suatu integer tetap dengan ri ̸= ni apabila ni = 2 dan |F| = 2 bagi i = 1, . . . , k.

Kata kunci: pemetaan kalis tukar tertib, hasil darab tensor matriks, pangkat, identiti

fungsian, masalah pengekal linear.
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CHAPTER 1: INTRODUCTION

1.1 Background of the Study

Linear preserver problems have a long history in matrix mathematics. This research

area began in 1897 when Frobenius first studied the determinant preservers. It poses new

challenges to researchers and motivates a good source of intriguing research problems in

matrix mathematics. Moreover, the solutions of the identified linear preserver problems

are usually simple and elegant. This makes linear preserver problems to remain attractive

for decades. Many interesting linear preserver problems have been attempted and some

of the linear preserver results have been extended or generalized until today.

Lately, the study of linear preserver problems in quantum information science has been

related to tensor products of matrices. The new research problems possess unique features

which distinguish them from classical linear preserver problems and have now inspired

a new line of active research in linear preserver problems on tensor products of matrices.

Furthermore, Brešar (2016a) recently initiated the study of functional identities on tensor

products of algebras. Motivated by the study, together with the inspiration of the study

of linear preserver problems on tensor products of matrices from quantum information

science, we study commuting additive maps on tensor products of matrix algebras.

1.2 Objectives of the Study

The main objectives of this study are:

(a) to characterize commuting additive maps on tensor products of matrices of the form

E
(ni)
st + αE

(ni)
pq , where E(ni)

st is the ni × ni standard matrix unit, and

(b) to classify commuting additive maps on tensor products of fixedrank matrices.

The following are the main questions in this study.

(a) Are commuting additive maps on tensor products of matrices of the form E
(ni)
st +

αE
(ni)
pq necessarily of the standard form?

(b) Are commuting additive maps on tensor products of fixedrankmatrices necessarily

of the standard form?
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1.3 Significance of the Study

This study aims to facilitate the advancement of the existing knowledge in the study

of linear preserver problems on tensor products of matrices which arises from quantum

information science. With the results developed as well as the techniques implemented

in this study, several existing results on commuting maps may be further extended or

generalized. Some other relevant linear preserver problems may also be reduced and

solved by applying the results and techniques established from this study.

1.4 Organisation of the Dissertation

In Chapter 2, we begin with some preliminaries on tensor products and Kronecker

product of matrices which will be useful in the following chapters. We then continue with

a literature review of this study and the methodology employed in this study.

Chapter 3 is devoted to the study of commuting additive maps on tensor products of

matrices of the form E
(ni)
st + αE

(ni)
pq . We first derive a few preliminary results before we

prove the main results.

Chapter 4 is devoted to the study of commuting additive maps on tensor products of

fixedrank matrices. As in the preceding chapter, the main results will follow after the

preliminary results.

In Chapter 5, we provide a summary of the findings in this study and suggest some

potential open problems that may be considered for future research work.
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CHAPTER 2: LITERATURE REVIEW ANDMETHODOLOGY

2.1 Tensor Products of Linear Spaces

Throughout this section, the linear spaces are always assumed to be finite dimensional.

Let F be a field and let n ⩾ 2 be an integer. Let V1, . . . ,Vn and W be linear spaces

over F. A map ϕ : V1×· · ·×Vn → W is calledmultilinear if for each integer 1 ⩽ j ⩽ n,

the following conditions are satisfied:

ϕ(v1, . . . , uj + vj, . . . , vn) = ϕ(v1, . . . , uj, . . . , vn) + ϕ(v1, . . . , vj, . . . , vn),

ϕ(v1, . . . , λvj, . . . , vn) = λϕ(v1, . . . , vj, . . . , vn)

for all v1 ∈ V1, . . . , uj, vj ∈ Vj, . . . , vn ∈ Vn and λ ∈ F. In particular, the map ϕ is called

bilinear when n = 2.

Definition 2.1.1. Let V1, . . . ,Vn be linear spaces over the same field F. A tensor product

of V1, . . . ,Vn is a pair (T ,⊗), consisting of a linear space T over F and a multilinear map

⊗ : V1 × · · · × Vn → T , which satisfies the following condition:

(Universal Factorization Property) If W is any linear space over F and ϕ : V1 × · · · ×

Vn → W is any multilinear map, then there exists a unique linear map ψ : T → W such

that ϕ = ψ ◦ ⊗.

The following results show the existence and uniqueness of tensor products.

Proposition 2.1.2. (Gallier & Quaintance, 2020, Theorem 2.6) Let V1, . . . ,Vn be linear

spaces over the same field. Then a tensor product (T ,⊗) of V1, . . . ,Vn always exists.

Proposition 2.1.3. (Gallier &Quaintance, 2020, Proposition 2.5) Let V1, . . . ,Vn be linear

spaces over the same field. If (T1,⊗1) and (T2,⊗2) are tensor products of V1, . . . ,Vn,

then there exists a linear isomorphism Φ : T1 → T2 such that Φ ◦ ⊗1 = ⊗2.

In view of Proposition 2.1.3, the tensor space T in any tensor product (T ,⊗) of linear

spaces V1, . . . ,Vn over a field F is essentially unique up to isomorphism. We thus denote

the tensor space T over F by

3
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n⊗
i=1

Vi or V1

⊗
· · ·
⊗

Vn. (2.1)

The tensor space
⊗n

i=1 Vi is also called the tensor product of linear spaces V1, . . . ,Vn.

The image of the multilinear map ⊗(v1, . . . , vn), with v1 ∈ V1, . . . , vn ∈ Vn, is denoted

by

⊗n
i=1 vi or v1 ⊗ · · · ⊗ vn. (2.2)

The elements in
⊗n

i=1 Vi are called tensors and the tensors of the form ⊗n
i=1vi are called

decomposable tensors. We denote by D(
⊗n

i=1 Vi) = {⊗n
i=1vi : v1 ∈ V1, . . . , vn ∈ Vn}

the set of all decomposable tensors in
⊗n

i=1 Vi.

The result below gives a basis of
⊗n

i=1 Vi which is formed by decomposable tensors.

Proposition 2.1.4. (Gallier & Quaintance, 2020, Proposition 2.12) Let V1, . . . ,Vn be

linear spaces over the same field F. If B1, . . . ,Bn are bases of V1, . . . ,Vn, respectively,

then {⊗n
i=1bi : b1 ∈ B1, . . . , bn ∈ Bn} forms a basis of

⊗n
i=1 Vi and dim(

⊗n
i=1 Vi) =

dimV1 × · · · × dimVn. Here, dimV denotes the dimension of the linear space V over F.

It follows from Proposition 2.1.4 that
⊗n

i=1 Vi = ⟨D(
⊗n

i=1 Vi)⟩ the linear span of

D(
⊗n

i=1 Vi). In other words, we have

n⊗
i=1

Vi = ⟨⊗n
i=1vi : v1 ∈ V1, . . . , vn ∈ Vn⟩ . (2.3)

Therefore each tensorX ∈
⊗n

i=1 Vi can be represented by a sumX =
∑

p x1p⊗· · ·⊗xnp

of a finite number of decomposable tensors in
⊗n

i=1 Vi.

The following propositions provide more basic results on tensor products.

Proposition 2.1.5. (Conrad, n.d., Theorems 5.11 and 5.15) Let V1, . . . ,Vn be linear

spaces over the same field F. Then the following hold.

(a) Let v1 ∈ V1, . . . , vn ∈ Vn. Then ⊗n
i=1vi = 0 if and only if vi = 0 for some integer

1 ⩽ i ⩽ n. Equivalently, ⊗n
i=1vi ̸= 0 if and only if vi ̸= 0 for i = 1, . . . , n.

(b) Let u1, v1 ∈ V1, . . . , un, vn ∈ Vn be nonzero. Then ⊗n
i=1ui = ⊗n

i=1vi if and only if

for each integer 1 ⩽ i ⩽ n, vi = λiui for some nonzero λi ∈ F with λ1 · · ·λn = 1.

4
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Proposition 2.1.6. (Brešar, 2014, Lemma 4.8 and Corollary 4.13) Let m be a positive

integer. Let U and V be linear spaces over the same field. Then the following hold.

(a) If u1, . . . , um ∈ U are linearly independent and v1, . . . , vm ∈ V , then
∑m

i=1 ui ⊗

vi = 0 implies that vi = 0 for i = 1, . . . ,m.
(b) If {u1, . . . , um} is a basis of U , then for eachw ∈ U

⊗
V , there exist unique vectors

v1, . . . , vm in V such that w =
∑m

i=1 ui ⊗ vi.

2.2 Tensor Products of Algebras

Recall that an associative algebra, or simply algebra, over a field is a linear space over

the field that is endowed with an associative bilinear multiplication. A unital algebra A

is an algebra that contains an element 1 such that 1a = a = a1 for all a ∈ A. The unique

element 1 is called the unity ofA. LetA1, . . . ,An be algebras over the same field F. The

tensor space
⊗n

i=1Ai can be turned into an algebra over F by defining multiplication in

a simple and natural way.

We believe the following theorem is known. Nevertheless, a proof is included for

completeness. It is a generalisation of Proposition 2.22 in Gallier and Quaintance (2020).

Theorem 2.2.1. Let A1, . . . ,An be algebras over the same field F. Then
⊗n

i=1Ai forms

an algebra over F relative to the multiplication determined by

(⊗n
i=1xi)(⊗n

i=1yi) = ⊗n
i=1xiyi (2.4)

for every x1, y1 ∈ A1, . . . , xn, yn ∈ An. Moreover, if each Ai is a unital algebra with

unity ui, then
⊗n

i=1Ai is a unital algebra with unity ⊗n
i=1ui.

Proof. Let Ψ : A1 × · · · × An ×A1 × · · · × An →
⊗n

i=1Ai be the function defined by

Ψ(x1, . . . , xn, y1, . . . , yn) = ⊗n
i=1xiyi

for every x1, y1 ∈ A1, . . . , xn, yn ∈ An. Then Ψ is a multilinear map as a result of

the multilinearity of ⊗. By the universal factorization property, there exists a linear map

5
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ξ : A1

⊗
· · ·
⊗

An

⊗
A1

⊗
· · ·
⊗

An →
⊗n

i=1Ai such that ξ ◦ ⊗ = Ψ. Therefore

ξ(x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yn) = ⊗n
i=1xiyi

for all x1, y1 ∈ A1, . . . , xn, yn ∈ An. By virtue of the associativity isomorphism in

Proposition 2.13 of Gallier and Quaintance (2020), there exists a linear isomorphism ϕ :

(
⊗n

i=1Ai)
⊗

(
⊗n

i=1Ai) → A1

⊗
· · ·
⊗

An

⊗
A1

⊗
· · ·
⊗

An such that

ϕ((⊗n
i=1xi)⊗ (⊗n

i=1yi)) = x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yn

for all x1, y1 ∈ A1, . . . , xn, yn ∈ An. It follows that

ξ′((⊗n
i=1xi)⊗ (⊗n

i=1yi)) = ⊗n
i=1xiyi

for all x1, y1 ∈ A1, . . . , xn, yn ∈ An, where ξ′ = ξ ◦ϕ is a linear map from (
⊗n

i=1Ai)
⊗

(
⊗n

i=1Ai) into
⊗n

i=1Ai. By (2.2), we obtain

(ξ′ ◦ ⊗)(⊗n
i=1xi,⊗n

i=1yi) = ⊗n
i=1xiyi

for all x1, y1 ∈ A1, . . . , xn, yn ∈ An. Here, the map ⊗ :
⊗n

i=1Ai ×
⊗n

i=1Ai →

(
⊗n

i=1Ai)
⊗

(
⊗n

i=1Ai) is a bilinear map. By defining Φ = ξ′ ◦ ⊗, we see that Φ :⊗n
i=1Ai ×

⊗n
i=1Ai →

⊗n
i=1Ai is the bilinear map satisfying

Φ(⊗n
i=1xi,⊗n

i=1yi) = ⊗n
i=1xiyi

for all x1, y1 ∈ A1, . . . , xn, yn ∈ An. We define the product of X and Y in
⊗n

i=1Ai by

XY = Φ(X,Y ). (2.5)

Obviously, (2.4) is satisfied and
⊗n

i=1Ai is closed under the multiplication in (2.5). We

claim that the multiplication in (2.5) is bilinear. LetX,Y1, Y2∈
⊗n

i=1Ai and α∈F. Then

X(αY1 + Y2) = Φ(X,αY1 + Y2) = αXY1 +XY2.

6
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Let X1, X2, Y ∈
⊗n

i=1Ai and β ∈ F. We see that

(βX1 +X2)Y = Φ(βX1 +X2, Y ) = βX1Y +X2Y.

Next, we show that the multiplication in (2.5) is associative. LetX =
∑

p x1p⊗· · ·⊗xnp,

Y =
∑

q y1q ⊗ · · · ⊗ ynq, Z =
∑

r z1r ⊗ · · · ⊗ znr ∈
⊗n

i=1Ai. Then

(XY )Z =

(∑
p

∑
q

(x1py1q)⊗ · · · ⊗ (xnpynq)

)(∑
r

z1r ⊗ · · · ⊗ znr

)
=
∑
p

∑
q

∑
r

(x1py1q)z1r ⊗ · · · ⊗ (xnpynq)znr

=
∑
p

∑
q

∑
r

x1p(y1qz1r)⊗ · · · ⊗ xnp(ynqznr)

=

(∑
p

x1p ⊗ · · · ⊗ xnp

)(∑
q

∑
r

(y1qz1r)⊗ · · · ⊗ (ynqznr)

)
= X(Y Z).

Thus
⊗n

i=1Ai forms an algebra over F. Finally, we show that if Ai is a unital algebra

with unity ui for i = 1, . . . , n, then ⊗n
i=1ui is the unity of

⊗n
i=1Ai. Let X =

∑
p x1p ⊗

· · ·⊗xnp ∈
⊗n

i=1Ai. We see thatX(⊗n
i=1ui) =

∑
p x1pu1⊗· · ·⊗xnpun = X . Likewise,

we obtain (⊗n
i=1ui)X = X . This completes the proof.

The algebra
⊗n

i=1Ai with the multiplication in (2.4) is known as the tensor product

of algebras A1, . . . ,An.

2.3 Kronecker Product of Matrices

LetF be a field and let k, n1, . . . , nk ⩾ 2 be integers. We denote byMni
(F) the algebra

of ni × ni matrices over F and abbreviate Mni
(F) to Mni

when no confusion can arise

for i = 1, . . . , k. Let A = (aij) ∈ Mn1 and B ∈ Mn2 . The Kronecker product of two

matrices A and B is defined by

A⊗B = (aijB) :=


a11B · · · a1n1B

... . . . ...

an11B · · · an1n1B

 ∈ Mn1n2 . (2.6)
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The Kronecker product is also called the tensor product. It follows from (2.6) that

(K1) (αA1+A2)⊗B = α(A1⊗B)+A2⊗B for all A1, A2 ∈ Mn1 , B ∈ Mn2 , α ∈ F.
(K2) A⊗ (αB1 +B2) = α(A⊗B1)+A⊗B2 for all A ∈ Mn1 , B1, B2 ∈ Mn2 , α ∈ F.
(K3) (A⊗B)⊗ C = A⊗ (B ⊗ C) for all A ∈ Mn1 , B ∈ Mn2 and C ∈ Mn3 .
(K4) (A1⊗B1)(A2⊗B2) = (A1A2)⊗(B1B2) for allA1, A2 ∈ Mn1 andB1, B2 ∈ Mn2 .

Let A1 ∈ Mn1 , . . . , Ak ∈ Mnk
. The tensor product of k matrices A1, . . . , Ak with k ⩾ 3

is defined inductively as follows:

⊗k
i=1Ai = A1 ⊗ (⊗k

i=2Ai). (2.7)

The notation ⊗k
i=1Ai is unambiguous due to (K3). It is not difficult to see that ⊗k

i=1Ai is

a matrix inMn1···nk
. Notice also that

⊗k
i=1 Ini

= In1···nk
, (2.8)

where In denotes the n × n identity matrix. By (K4) and (2.7), (⊗k
i=1Ai)(⊗k

i=1Bi) =

(A1 ⊗ (⊗k
i=2Ai))(B1 ⊗ (⊗k

i=2Bi)) = (A1B1) ⊗ (⊗k
i=2Ai)(⊗k

i=2Bi). It can be shown

inductively that

(⊗k
i=1Ai)(⊗k

i=1Bi) = ⊗k
i=1AiBi (2.9)

for all matrices A1, B1 ∈ Mn1 , . . . , Ak, Bk ∈ Mnk
.

Let 1 ⩽ s ⩽ k be an integer. We denote by E(ns)
ij the standard matrix unit in Mns

whose (i, j)th entry is one and zero elsewhere. Then {E(ns)
ij : 1 ⩽ i, j ⩽ ns} forms the

standard basis ofMns and

E
(ns)
ij E(ns)

pq =


E

(ns)
iq if j = p,

0ns if j ̸= p

for all integers 1 ⩽ i, j, p, q ⩽ ns, where 0ns denotes the ns × ns zero matrix.

We continue with the following elementary lemma.
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Lemma 2.3.1. The following results hold.

(a) E(n1)
ij ⊗ E

(n2)
st = E

(n1n2)
n2(i−1)+s, n2(j−1)+t for each 1 ⩽ i, j ⩽ n1 and 1 ⩽ s, t ⩽ n2.

(b)
{
E

(n1)
ij ⊗ E

(n2)
st : 1 ⩽ i, j ⩽ n1, 1 ⩽ s, t ⩽ n2

}
forms the standard basis ofMn1n2 .

Proof. (a) Let 1 ⩽ i, j ⩽ n1 and 1 ⩽ s, t ⩽ n2 be integers. By (2.6), we have

E
(n1)
ij ⊗ E

(n2)
st =


0n2(i−1),n2(j−1) 0 0

0 E
(n2)
st 0

0 0 0n2(n1−i),n2(n1−j)

 = E
(n1n2)
n2(i−1)+s, n2(j−1)+t,

where 0m,n denotes them× n zero matrix.

(b) The result follows immediately from (a) by observing that

{
E

(n1n2)
n2(i−1)+s,n2(j−1)+t : 1 ⩽ i, j ⩽ n1, 1 ⩽ s, t ⩽ n2

}
=
{
E(n1n2)

pq : 1 ⩽ p, q ⩽ n1n2

}
.

Let Θ : Mn1 ×Mn2 → Mn1n2 be the function defined by

Θ(A,B) = A⊗B (2.10)

for all matrices A ∈ Mn1 and B ∈ Mn2 . Then Θ is a bilinear map by (K1) and (K2).

Proposition 2.3.2. Let Θ : Mn1 ×Mn2 → Mn1n2 be the bilinear map defined in (2.10).

If W is a linear space over F and υ : Mn1 × Mn2 → W is a bilinear map, then there

exits a unique linear map τ : Mn1n2 → W such that υ = τ ◦Θ.

Proof. By Lemma 2.3.1 (b),
{
E

(n1)
ij ⊗ E

(n2)
st : 1 ⩽ i, j ⩽ n1, 1 ⩽ s, t ⩽ n2

}
is a basis of

Mn1n2 . Then there exists a unique linear map τ : Mn1n2 → W such that

τ(E
(n1)
ij ⊗ E

(n2)
st ) = υ(E

(n1)
ij , E

(n2)
st )

for all 1 ⩽ i, j ⩽ n1 and 1 ⩽ s, t ⩽ n2. It follows from (2.10) that

υ(E
(n1)
ij , E

(n2)
st ) = τ(E

(n1)
ij ⊗ E

(n2)
st ) = (τ ◦Θ)(E

(n1)
ij , E

(n2)
st )
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for all 1 ⩽ i, j ⩽ n1 and 1 ⩽ s, t ⩽ n2. By the bilinearity of υ and τ ◦ Θ, we conclude

that υ = τ ◦Θ as desired.

As an immediate consequence of Proposition 2.3.2, (Mn1n2 ,Θ) is a tensor product

of Mn1 and Mn2 by Definition 2.1.1. In similar fashion, using Lemma 2.3.1, it can be

proved inductively for k ⩾ 3 that

{
⊗k

i=1E
(ni)
si,ti : E

(ni)
si,ti ∈ Bi, i = 1, . . . , k

}

constitutes the standard basis of Mn1···nk
, where B1, . . . ,Bk are the standard bases of

Mn1 , . . . ,Mnk
, respectively. Furthermore, if Θ′ : Mn1 × · · · ×Mnk

→ Mn1···nk
is the

multilinear map defined by

Θ′(A1, . . . , Ak) = ⊗k
i=1Ai

for all matrices A1 ∈ Mn1 , . . . , Ak ∈ Mnk
, then (Mn1···nk

,Θ′) is a tensor product of

Mn1 , . . . ,Mnk
with a similar argument as in the proof of Proposition 2.3.2. By virtue of

(2.1), (2.8), (2.9) and Theorem 2.2.1, we may view the algebras

k⊗
i=1

Mni
∼= Mn1···nk

(2.11)

as identical and conclude that
⊗k

i=1Mni
turns into an algebra overFwith unity⊗k

i=1Ini
=

In1···nk
relative to the multiplication in (2.9). Consequently, the algebra

⊗k
i=1Mni

with

the multiplication in (2.9) is the tensor product of matrix algebrasMn1 , . . . ,Mnk
.

By (Brešar, 2014, p. 88), if A,B,X ,Y are algebras over the same field such that

A ∼= X and B ∼= Y , then A
⊗

B ∼= X
⊗

Y . It follows from (2.11) that
⊗k

i=1Mni
∼=

Mn1···nk
∼= Mn1

⊗
Mn2 ···nk

∼= Mn1

⊗
(
⊗k

i=2Mni
). Thus we may view the algebras

k⊗
i=1

Mni
∼= Mn1

⊗(
k⊗

i=2

Mni

)
(2.12)

as identical.
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2.4 Literature Review

The study of linear preserver problems has been one of the most active research areas in

matrix theory, operator theory and multilinear algebra in recent times. This study involves

the characterization of linear maps on matrices, operators or tensors which leave certain

functions, properties, subsets, relations or functional identities invariant. Possibly the

earliest paper on the study of linear preserver problems such as Frobenius (1897) dates

back to a century ago. In this paper, Frobenius obtained a characterization of linear maps

ψ : Mn(C) → Mn(C) preserving the determinant function, i.e., det(ψ(A)) = detA for

all A ∈ Mn(C), and showed that there exist invertible matrices P,Q ∈ Mn(C) with

det(PQ) = 1 such that ψ is of the form

ψ(A) = PAQ

for all A ∈ Mn(C), or

ψ(A) = PAtQ

for all A ∈ Mn(C). Since then, these problems have been studied extensively and many

elegant results have been discovered. For an expository survey of the subject and its

historic developments, we refer to the survey papers Li and Pierce (2001) and Pierce et

al. (1992) or the book Molnár (2007) and their references therein.

Recently, there have been numerous studies of linear preserver problems related to the

study of quantum information science, see for instance Fošner et al. (2013), Friedland et

al. (2011), Hou and Qi (2013) and Lim (2012). In Friedland et al. (2011), the authors

obtained a characterization of linear preservers of pure states. Let Hn(C) be the linear

space of n × n complex Hermitian matrices and let Pn be the compact subset of Hn(C)

consisting of rank one Hermitian matrices of trace one. They showed that if m,n ⩾ 2

are distinct integers and ψ : Hm(C)
⊗

Hn(C) → Hm(C)
⊗

Hn(C) is a linear map

satisfying ψ(Pm ⊗ Pn) = Pm ⊗ Pn, then there exist unitary matrices U ∈ Mm(C) and

V ∈ Mn(C) such that

ψ(A⊗B) = ϕ1(A)⊗ ϕ2(B)

for all A ⊗ B ∈ Hm(C)
⊗

Hn(C), where ϕ1 : Hm(C) → Hm(C) and ϕ2 : Hn(C) →
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Univ
ers

ity
 of

 M
ala

ya



Hn(C) are linear maps of the forms

ϕ1(A) = UAU∗

for all A ∈ Hm(C) and

ϕ2(B) = V BV ∗

for all B ∈ Hn(C), respectively. Here, U∗ denotes the conjugate transpose of U . We

refer to Fošner et al. (2013) for a survey of linear preserver problems on tensor products

of matrices arising from quantum information science.

The study of functional identities on algebras of matrices or operators is often related

to linear preserver problems. A functional identity can be informally described as an

equation with its functions appearing as unknowns. The functions satisfying a functional

identity are referred as the solutions to that functional identity. The goal of this study is

to determine the general forms and the classifications of all solutions for each functional

identity. This theory provides an effective tool for solving a variety of problems in many

areas such as prime rings, Lie algebras, Poisson algebras and preserver problems. For an

extensive survey of the subject and a full account on the theory of functional identities,

the reader is referred to the book Brešar et al. (2007). A map ψ : R → R, with R being

a ring, on a nonempty subset S ofR is called commuting on S if

[ψ(a), a] = 0 (2.13)

for all a, b ∈ S , where [a, b] is the commutator ab − ba of elements a, b ∈ R. In this

dissertation, if ψ : R → R is an additive map commuting on S, then we simply say ψ is a

commuting additivemap onS even ifS has no additive structure. The study of commuting

maps on rings or algebras is one of the most essential topics of functional identities. It was

initiated by Posner in 1957. He proved that a prime ring admitting a nonzero commuting

derivation is commutative, see (Posner, 1957, Theorem 2). In 1993, Brešar obtained a

structural result for commuting additive maps on a prime ring and showed that additive

maps ψ : R → R commuting on a prime ringR are of the standard form
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ψ(a) = λa+ µ(a)

for all a ∈ R, where λ is an element in the extended centroid C ofR and µ : R → C is an

additive map, see (Brešar, 1993, Theorem 3.2). This result has been extremely influential

and initiated considerable interest in commuting maps on various rings and algebras, see

for example Beidar (1998), Beidar et al. (2000), Cheung (2001), Chou and Liu (2021),

P.H. Lee and Lee (1997) or T.K. Lee and Lee (1996). For a survey of the subject, the

reader is referred to the survey paper Brešar (2004) and the book Brešar et al. (2007).

Recently, Brešar (2016a) initiated the study of functional identities on tensor products

of algebras. More results on Jordan derivations, derivations and biderivations on tensor

products of algebras have been obtained in Brešar (2016b, 2017) and Eremita (2018).

Motivated by these results, together with the inspiration of the study of linear preserver

problems on tensor products of matrices arising from quantum information science, we

study commuting additive maps on tensor products of matrix algebras.

Let k ⩾ 1 and n1, . . . , nk ⩾ 2 be integers. Let F be a field and letMni
be the algebra

of ni × ni matrices over F for i = 1, . . . , k. In this dissertation, we obtain a complete

structural characterization of additive maps ψ :
⊗k

i=1Mni
→
⊗k

i=1Mni
satisfying

[ψ(⊗k
i=1Ai),⊗k

i=1Ai] = 0 (2.14)

for all A1 ∈ S1,n1 , . . . , Ak ∈ Sk,nk
, where

Si,ni
=
{
E

(ni)
st + αE(ni)

pq : α ∈ F and 1 ⩽ p, q, s, t ⩽ ni are not all distinct integers
}

and E(ni)
st is the standard matrix unit inMni

for i = 1, . . . , k. In particular, we show that

commuting additive maps on S1,n1 are of the standard form.

We next deduce from the obtained result a characterization of commuting additive

maps on tensor products of fixedrank matrices. More precisely, we classify all additive

maps ψ :
⊗k

i=1Mni
→
⊗k

i=1Mni
satisfying [ψ(⊗k

i=1Ai),⊗k
i=1Ai] = 0 for all A1 ∈

Rn1
r1
, . . . , Ak ∈ Rnk

rk
, whereRni

ri
denotes the set of rank rimatrices inMni

and 1 < ri ⩽ ni
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is a fixed integer such that ri ̸= ni when ni = 2 and |F| = 2 for i = 1, . . . , k.

2.5 Methodology

The methodology of this research study comprises the four components as follows.

1. Literature Review

This research study began with an indepth study on relevant research materials to

acquire basic knowledge in tensor products and to review the latest development in

the study of linear preserver problems on tensor products of matrices. The materials

included recent survey papers and books on commuting maps on rings, functional

identities on tensor products and linear preserver problems on tensor products of

matrices. A proper literature review of the classical results and the latest articles on

the research topics was also conducted to ensure the research problems were still

open and to review useful ideas and techniques before attempting the problems.

2. Main Study

Having been equipped with the basic knowledge and techniques, useful preliminary

results were first established before obtaining a necessary and sufficient condition

for commuting additive maps on tensor products of matrices of the form E
(ni)
st +

αE
(ni)
pq . Next, a characterization was deduced for the identified commuting additive

maps using induction. As an application, the characterization was used to classify

commuting additive maps on tensor products of fixedrank matrices with the help

of some other preliminary lemmas.

3. Findings Refinement

All established characterizations were examined carefully and justified by rigorous

mathematical arguments to verify their validity. In addition, the structural results

of the identified commuting additive maps were analyzed to ensure the simplest

possible forms were obtained. Evaluation, discussion and refinement of findings

were also carried out at this stage.

4. Dissertation Writing

All findings of this research study were finally reported in detail in this dissertation.
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CHAPTER 3: COMMUTING ADDITIVE MAPS ON TENSOR PRODUCTS OF
MATRICES OF THE FORM E

(ni)
st + αE(ni)

pq

Throughout this chapter, unless stated otherwise, let F be a field and let k, n1, . . . , nk

be positive integers such that ni ⩾ 2 for i = 1, . . . , k. LetMni
be the algebra of ni × ni

matrices over F with unity Ini
for i = 1, . . . , k. For each integer 1 ⩽ h ⩽ k, we denote

Sk
h =

{
⊗k

i=h Ai : Ah ∈ Sh,nh
, . . . , Ak ∈ Sk,nk

}
,

where Si,ni
= {E(ni)

st + αE
(ni)
pq ∈ Mni

: α ∈ F, 1 ⩽ p, q, s, t ⩽ ni are not all distinct }

and E(ni)
st is the standard matrix unit in Mni

for i = 1, . . . , k. We write E(ni)
st simply

Est when there is no danger of ambiguity. We denote by D(
⊗k

i=hMni
) the set of all

decomposable tensors in
⊗k

i=hMni
. As an abuse of notation, ⊗h

i=hAi ∈
⊗h

i=hMni
is

taken to be Ah ∈ Mnh
.

3.1 Preliminary Results

We begin our discussion by giving a necessary and sufficient condition for additive

maps ψ1, ψ2 :
⊗k

i=1Mni
→
⊗k

i=1Mni
satisfying

ψ1(⊗k
i=1Ai)(⊗k

i=1Ai) = ψ2(⊗k
i=1Ai)(⊗k

i=1Ai)

for all A1 ∈ S1,n1 , . . . , Ak ∈ Sk,nk
. More precisely, we prove the following result.

Lemma 3.1.1. Let k ⩾ 1 and n1, . . . , nk ⩾ 2 be integers and let α ∈ {0, 1} be a fixed

scalar. Let ψ1, ψ2 :
⊗k

i=1Mni
→
⊗k

i=1Mni
be additive maps. Then

αψ1(A)A+ (1− α)Aψ1(A) = αψ2(A)A+ (1− α)Aψ2(A) (3.1)

for all A ∈ Sk
1 if and only if ψ1 = ψ2.

Proof. The sufficiency is clear. For the necessity, we note that the hypothesis in (3.1) is

equivalent to

αφ(A)A+ (1− α)Aφ(A) = 0
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for all A ∈ Sk
1 , where φ := ψ1 − ψ2. We only consider the case α = 1 as the case

α = 0 can be shown analogously. We argue by induction on k. Consider k = 1. For

abbreviation, we write Eij for E
(n1)
ij . Let 1 ⩽ s, p, q ⩽ n1 be integers and let a ∈ F.

Since φ(X)X = 0 for X ∈ {Ess + aEpq, Ess, aEpq} ⊆ S1,n1 , it follows that

φ(Ess + aEpq)(Ess + aEpq) = 0, φ(Ess)Ess = 0, φ(aEpq)aEpq = 0

=⇒ φ(Ess)Ess + φ(aEpq)Ess + φ(Ess)aEpq + φ(aEpq)aEpq = 0

=⇒ φ(aEpq)Ess + φ(Ess)aEpq = 0

=⇒ φ(aEpq)Ess = −φ(Ess)aEpq. (3.2)

In particular, when a = 1 and p = q, we have φ(Epp)Ess = −φ(Ess)Epp. Then φ(Ess) =

φ(Ess)In1 =
∑n1

j=1 φ(Ess)Ejj = −
∑n1

j=1 φ(Ejj)Ess = −φ(In1)Ess. Thus φ(Ess)Ejj =

0 for all j = 1, . . . , n1, and so φ(Ess) = φ(Ess)In1 =
∑n1

j=1 φ(Ess)Ejj = 0. Hence

φ(In1) = 0. By (3.2),

φ(aEpq) = φ(aEpq)In1 =

n1∑
j=1

φ(aEpq)Ejj = −
n1∑
j=1

φ(Ejj)aEpq = −φ(In1)aEpq = 0

for all integers 1 ⩽ p, q ⩽ n1 and a ∈ F. It follows from the additivity of φ that φ = 0.

This validates the base step k = 1.

Suppose that k ⩾ 2 and that the result holds for k − 1. By (2.12),
⊗k

i=1Mni
∼=

Mn1

⊗(⊗k
i=2Mni

)
. By abuse of notation, we abbreviate

⊗k
i=2Mni

to M. In view

of Proposition 2.1.6 (b) and since {Eij : i, j = 1, . . . , n1} is a basis of Mn1 , it follows

that for each pair of integers 1 ⩽ s, t ⩽ n1, the map φ induces maps ϕ(st)
ij : M → M,

i, j = 1, . . . , n1, such that

φ(Est ⊗ A) =

n1∑
i,j=1

Eij ⊗ ϕ
(st)
ij (A)

for all A ∈ M. Then
∑n1

i,j=1Eij ⊗ ϕ
(st)
ij (A + B) = φ(Est ⊗ (A + B)) = φ(Est ⊗ A) +

φ(Est⊗B) =
∑n1

i,j=1Eij ⊗ϕ
(st)
ij (A)+

∑n1

i,j=1Eij ⊗ϕ
(st)
ij (B) =

∑n1

i,j=1Eij ⊗ (ϕ
(st)
ij (A)+

ϕ
(st)
ij (B)) yields

∑n1

i,j=1Eij⊗(ϕ
(st)
ij (A+B)−(ϕ

(st)
ij (A)+ϕ

(st)
ij (B))) = 0 for allA,B ∈ M.
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By Proposition 2.1.6 (a), ϕ(st)
ij (A+B) = ϕ

(st)
ij (A)+ϕ

(st)
ij (B) for all integers 1 ⩽ i, j ⩽ n1

and A,B ∈ M, so ϕ(st)
ij , i, j = 1, . . . , n1, are additive. In particular, for each pair of

integers 1 ⩽ s, t ⩽ n1, there exist additive maps ϕ
(st)
ij : M → M, i, j = 1, . . . , n1, such

that

φ(Est ⊗ A) =

n1∑
i,j=1

Eij ⊗ ϕ
(st)
ij (A) (3.3)

for all decomposable tensors A ∈ D(M). Let 1 ⩽ s, t ⩽ n1 be arbitrary but fixed

integers. By the hypothesis and (3.3) together with (2.9), we see that

0 = φ(Est ⊗ A)(Est ⊗ A) =

n1∑
i,j=1

EijEst ⊗ ϕ
(st)
ij (A)A =

n1∑
i=1

Eit ⊗ ϕ
(st)
is (A)A

for all A ∈ Sk
2 . Then for each 1 ⩽ i ⩽ n1, by Proposition 2.1.6 (a), we get ϕ

(st)
is (A)A = 0

for all A ∈ Sk
2 . By the induction hypothesis, we obtain

ϕ
(st)
is = 0 for all i = 1, . . . , n1. (3.4)

Let p ∈ {1, . . . , n1}\{t} and let A ∈ Sk
2 . Since φ(X)X = 0 for X ∈ {(Epp + Est) ⊗

A,Epp ⊗ A,Est ⊗ A}, it follows that

φ((Epp + Est)⊗ A)((Epp + Est)⊗ A) = 0, φ(Epp ⊗ A)(Epp ⊗ A) = 0,

φ(Est ⊗ A)(Est ⊗ A) = 0

=⇒ φ(Epp ⊗ A)(Epp ⊗ A) + φ(Est ⊗ A)(Epp ⊗ A) + φ(Epp ⊗ A)(Est ⊗ A)+

φ(Est ⊗ A)(Est ⊗ A) = 0

=⇒ φ(Est ⊗ A)(Epp ⊗ A) + φ(Epp ⊗ A)(Est ⊗ A) = 0.

By virtue of (3.3), we obtain

n1∑
i,j=1

EijEpp ⊗ ϕ
(st)
ij (A)A+

n1∑
i,j=1

EijEst ⊗ ϕ
(pp)
ij (A)A = 0

=⇒
n1∑
i=1

Eip ⊗ ϕ
(st)
ip (A)A +

n1∑
i=1

Eit ⊗ ϕ
(pp)
is (A)A = 0

for allA ∈ Sk
2 . Since p ̸= t, it follows from Proposition 2.1.6 (a) that for each 1 ⩽ i ⩽ n1,
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ϕ
(st)
ip (A)A = 0 for allA ∈ Sk

2 . By the induction hypothesis, for each p ∈ {1, . . . , n1}\{t},

we have

ϕ
(st)
ip = 0 for all i = 1, . . . , n1. (3.5)

When s = t, in view of (3.4) and (3.5), we conclude that

ϕ
(ss)
ij = 0 for all i, j = 1, . . . , n1. (3.6)

Consider now s ̸= t. Let A ∈ Sk
2 . Using the fact that φ(X)X = 0 for X ∈ {(Ett +

Est)⊗A,Ett⊗A,Est⊗A}, we obtain φ(Ett⊗A)(Est⊗A)+φ(Est⊗A)(Ett⊗A) = 0.

It follows from (3.3) that

n1∑
i,j=1

EijEst ⊗ ϕ
(tt)
ij (A)A+

n1∑
i,j=1

EijEtt ⊗ ϕ
(st)
ij (A)A = 0

=⇒
n1∑
i=1

Eit ⊗ ϕ
(tt)
is (A)A+

n1∑
i=1

Eit ⊗ ϕ
(st)
it (A)A = 0

for all A ∈ Sk
2 . By virtue of (3.6), ϕ(tt)

is = 0 for i = 1, . . . , n1. Thus
∑n1

i=1Eit ⊗

ϕ
(st)
it (A)A = 0 for all A ∈ Sk

2 . Then by Proposition 2.1.6 (a), ϕ(st)
it (A)A = 0 for all

A ∈ Sk
2 , i = 1, . . . , n1. By the induction hypothesis,

ϕ
(st)
it = 0 for all i = 1, . . . , n1. (3.7)

In view of (3.5) and (3.7), we conclude that

ϕ
(st)
ij = 0 for all i, j = 1, . . . , n1. (3.8)

It follows from (3.3), (3.6) and (3.8) that φ(Est⊗A) = 0 for all A ∈ D(M) and integers

1 ⩽ s, t ⩽ n1. By the additivity of φ, we get

φ(X) =

n1∑
s,t=1

φ(Est ⊗ αstZ) = 0

for all X = Y ⊗ Z ∈ D(
⊗k

i=1Mni
), where Y =

∑n1

s,t=1 αstEst ∈ Mn1 , αst ∈ F and

Z ∈ D(M). Consequently, φ = 0 by (2.3). Hence ψ1 = ψ2 as desired.
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As an immediate consequence of defining ψ = ψ1 − ψ2 in Lemma 3.1.1, we obtain:

Theorem 3.1.2. Let k ⩾ 1 and n1, . . . , nk ⩾ 2 be integers and let α ∈ {0, 1} be a fixed

scalar. Then ψ :
⊗k

i=1Mni
→
⊗k

i=1Mni
is an additive map satisfying

αψ(A)A+ (1− α)Aψ(A) = 0

for all A ∈ Sk
1 if and only if ψ = 0.

We now obtain a characterization of additive maps satisfying condition (2.14) for k = 1.

Theorem 3.1.3. Let F be a field and let n ⩾ 2 be an integer. Then ψ : Mn → Mn is a

commuting additive map on S1,n = {Est+αEpq : α ∈ F and 1 ⩽ p, q, s, t ⩽ n are not all

distinct integers} if and only if there exist a scalar λ ∈ F and an additive map µ : Mn →

F such that

ψ(A) = λA+ µ(A)In

for all A ∈ Mn.

Proof. The sufficiency is obvious since ψ(A)A = (λA)A + (µ(A)In)A = A(λA) +

A(µ(A)In) = Aψ(A) for all A ∈ S1,n. For the necessity, we first note that for each pair

of integers 1 ⩽ s, t ⩽ n, there exist additive maps ϕ(st)
ij : F → F, i, j = 1, . . . , n, such

that

ψ(aEst) =
n∑

i,j=1

ϕ
(st)
ij (a)Eij (3.9)

for all a ∈ F. Since [ψ(aEst), aEst] := ψ(aEst)aEst − aEstψ(aEst) = 0 for all a ∈ F, it

follows from (3.9) that

n∑
i,j=1

aϕ
(st)
ij (a)EijEst −

n∑
i,j=1

aϕ
(st)
ij (a)EstEij = 0

=⇒
n∑

i=1

aϕ
(st)
is (a)Eit −

n∑
j=1

aϕ
(st)
tj (a)Esj = 0

=⇒ a(ϕ(st)
ss (a)− ϕ

(st)
tt (a))Est +

n∑
i=1,i̸=s

aϕ
(st)
is (a)Eit −

n∑
j=1,j ̸=t

aϕ
(st)
tj (a)Esj = 0
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for all a ∈ F. For any integers 1 ⩽ s, t ⩽ n, we have

ϕ
(st)
is = 0 for all i ∈ {1, . . . , n}\{s}, (3.10)

ϕ
(st)
tj = 0 for all j ∈ {1, . . . , n}\{t}, (3.11)

ϕ(st)
ss = ϕ

(st)
tt . (3.12)

In particular, when s = t, it follows from (3.10) and (3.11) that

ϕ
(ss)
is = ϕ

(ss)
si = 0 for all i ∈ {1, . . . , n}\{s}. (3.13)

Let 1 ⩽ s, t ⩽ n be integers, p ∈ {1, . . . , n}\{s, t} and a ∈ F. Since [ψ(X), X] = 0 for

all X ∈ {Epp + aEst, Epp, aEst}, we obtain

0 = [ψ(Epp + aEst), Epp + aEst]

= [ψ(Epp), Epp] + [ψ(aEst), Epp] + [ψ(Epp), aEst] + [ψ(aEst), aEst]

= [ψ(aEst), Epp] + [ψ(Epp), aEst]

= ψ(aEst)Epp − Eppψ(aEst) + ψ(Epp)aEst − aEstψ(Epp),

so ψ(aEst)Epp + ψ(Epp)aEst = Eppψ(aEst) + aEstψ(Epp). By (3.9), we get

n∑
i,j=1

ϕ
(st)
ij (a)EijEpp +

n∑
i,j=1

ϕ
(pp)
ij (1)aEijEst =

n∑
i,j=1

ϕ
(st)
ij (a)EppEij +

n∑
i,j=1

ϕ
(pp)
ij (1)aEstEij

=⇒
n∑

i=1

ϕ
(st)
ip (a)Eip +

n∑
i=1

ϕ
(pp)
is (1)aEit =

n∑
j=1

ϕ
(st)
pj (a)Epj +

n∑
j=1

ϕ
(pp)
tj (1)aEsj

(3.14)

for all a ∈ F. Since p ̸= s, t, it follows from (3.14) that

(ϕ(st)
pp (a) −ϕ(st)

pp (a))Epp +
n∑

i=1,i̸=p,s

ϕ
(st)
ip (a)Eip

+ (ϕ(pp)
ps (1)a− ϕ

(st)
pt (a))Ept −

n∑
j=1,j ̸=t,p

ϕ
(st)
pj (a)Epj
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+ (ϕ(st)
sp (a)− ϕ

(pp)
tp (1)a)Esp −

n∑
j=1,j ̸=p,t

ϕ
(pp)
tj (1)aEsj

+ (ϕ(pp)
ss (1)− ϕ

(pp)
tt (1))aEst +

n∑
i=1,i̸=s,p

ϕ
(pp)
is (1)aEit = 0

for all a ∈ F. We conclude that

(A) for each j ∈ {1, . . . , n}\{s, t}, i ∈ {1, . . . , n}\{j, s}, ϕ(st)
ij (a) = 0 for all a ∈ F,

(B) for each i ∈ {1, . . . , n}\{s, t}, ϕ(st)
it (a) = ϕ

(ii)
is (1)a for all a ∈ F,

(C) for each j ∈ {1, . . . , n}\{s, t}, ϕ(st)
sj (a) = ϕ

(jj)
tj (1)a for all a ∈ F.

From (A), we get

ϕ
(st)
ij = 0 for all j ∈ {1, . . . , n}\{s, t} and i ∈ {1, . . . , n}\{j, s}. (3.15)

From (B), together with (3.13), we have

ϕ
(st)
it = 0 for all i ∈ {1, . . . , n}\{s, t}. (3.16)

Likewise, by (C), together with (3.13), we obtain

ϕ
(st)
sj = 0 for all j ∈ {1, . . . , n}\{s, t}. (3.17)

It follows from (3.15) that when s = t,

ϕ
(ss)
ij = 0 for all distinct i, j ∈ {1, . . . , n}\{s}. (3.18)

Consequently, when s = t, it follows from the observations in (3.9), (3.13) and (3.18) that

ψ(aEss) =
n∑

i=1

ϕ
(ss)
ii (a)Eii (3.19)

for all a ∈ F. When s ̸= t, in view of (3.9), (3.10), (3.15), (3.16) and (3.17), we obtain

ψ(aEst) = ϕ
(st)
st (a)Est +

n∑
i=1

ϕ
(st)
ii (a)Eii (3.20)
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for all a ∈ F. By (3.19) and (3.20), we conclude that for any integers 1 ⩽ s, t ⩽ n,

ψ(aEst) =


∑n

i=1 ϕ
(ss)
ii (a)Eii when s = t,

ϕ
(st)
st (a)Est +

∑n
i=1 ϕ

(st)
ii (a)Eii when s ̸= t

(3.21)

for all a ∈ F. We next claim that for each pair of distinct integers 1 ⩽ s, t ⩽ n, there

exists an additive map φst : F → F such that

ϕ
(st)
ii = φst for all i = 1, . . . , n. (3.22)

By (3.12), we see that claim (3.22) is shown when n = 2. Consider n ⩾ 3. Let p ∈

{1, . . . , n}\{s, t} and let a ∈ F. By (3.21), we have

[ψ(aEst), Esp] := ψ(aEst)Esp − Espψ(aEst)

= ϕ
(st)
st (a)EstEsp +

n∑
i=1

ϕ
(st)
ii (a)EiiEsp − ϕ

(st)
st (a)EspEst −

n∑
i=1

ϕ
(st)
ii (a)EspEii

= (ϕ(st)
ss (a)− ϕ(st)

pp (a))Esp,

[ψ(Esp), aEst] := ψ(Esp)aEst − aEstψ(Esp)

= aϕ(sp)
sp (1)EspEst +

n∑
i=1

aϕ
(sp)
ii (1)EiiEst − aϕ(sp)

sp (1)EstEsp −
n∑

i=1

aϕ
(sp)
ii (1)EstEii

= a(ϕ(sp)
ss (1)− ϕ

(sp)
tt (1))Est.

Note that [ψ(X), X] = 0 for X ∈ {aEst + Esp, aEst, Esp} yields [ψ(aEst), Esp] +

[ψ(Esp), aEst] = 0. Since Est, Esp are linearly independent, we obtain

ϕ(st)
ss (a) = ϕ(st)

pp (a)

for all a ∈ F. Then ϕ(st)
pp = ϕ

(st)
ss for every p ∈ {1, . . . , n}\{s, t}. Together with (3.12),

we conclude that ϕ(st)
ii = φst for i = 1, . . . , n, where φst : F → F is an additive map.

Hence claim (3.22) is proved.

Let 1 ⩽ s ⩽ n be an integer. We claim that

ϕ
(ss)
ii = ϕ

(ss)
jj for all i, j ∈ {1, . . . , n}\{s}. (3.23)
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Ifn = 2, then there is nothing to show. Consider nown ⩾ 3. Let p, q ∈ {1, . . . , n}\{s} be

distinct integers and let a ∈ F. Note that [ψ(X), X] = 0 forX ∈ {Epq+aEss, Epq, aEss}

leads to [ψ(Epq), aEss] + [ψ(aEss), Epq] = 0. It follows from (3.21) that

[ψ(Epq), aEss] := ψ(Epq)aEss − aEssψ(Epq)

= ϕ(pq)
pq (1)aEpqEss +

n∑
i=1

ϕ
(pq)
ii (1)aEiiEss

− ϕ(pq)
pq (1)aEssEpq −

n∑
i=1

ϕ
(pq)
ii (1)aEssEii

= ϕ(pq)
ss (1)aEss − ϕ(pq)

ss (1)aEss

= 0,

[ψ(aEss), Epq] := ψ(aEss)Epq − Epqψ(aEss)

=
n∑

i=1

ϕ
(ss)
ii (a)EiiEpq −

n∑
i=1

ϕ
(ss)
ii (a)EpqEii

= ϕ(ss)
pp (a)Epq − ϕ(ss)

qq (a)Epq.

Consequently,

(ϕ(ss)
pp (a)− ϕ(ss)

qq (a))Epq = 0.

Then ϕ(ss)
pp = ϕ

(ss)
qq , and so ϕ(ss)

ii = ϕ
(ss)
jj for all i, j ∈ {1, . . . , n}\{s}, as claimed. By

(3.23), we conclude that for each integer 1 ⩽ s ⩽ n, there exists an additive map φss :

F → F such that

ϕ
(ss)
ii = φss for all i ∈ {1, . . . , n}\{s}. (3.24)

We now show that

ϕ
(st)
st is linear and ϕ(ss)

ss = ϕ
(st)
st + φss (3.25)

for all distinct integers 1 ⩽ s, t ⩽ n. Since [ψ(X), X] = 0 for all X ∈ {Ess +

aEst, Ess, aEst}, we get [ψ(Ess), aEst] + [ψ(aEst), Ess] = 0 for all a ∈ F. It follows

from (3.21) and (3.24) that
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[ψ(Ess), aEst] := ψ(Ess)aEst − aEstψ(Ess)

=
n∑

i=1

ϕ
(ss)
ii (1)aEiiEst −

n∑
i=1

ϕ
(ss)
ii (1)aEstEii

= ϕ(ss)
ss (1)aEst − ϕ

(ss)
tt (1)aEst

= ϕ(ss)
ss (1)aEst − φss(1)aEst,

[ψ(aEst), Ess] := ψ(aEst)Ess − Essψ(aEst)

= ϕ
(st)
st (a)EstEss +

n∑
i=1

ϕ
(st)
ii (a)EiiEss

− ϕ
(st)
st (a)EssEst −

n∑
i=1

ϕ
(st)
ii (a)EssEii

= ϕ(st)
ss (a)Ess − ϕ

(st)
st (a)Est − ϕ(st)

ss (a)Ess

= −ϕ(st)
st (a)Est,

so (ϕ
(ss)
ss (1)a− φss(1)a− ϕ

(st)
st (a))Est = 0, and thus ϕ(st)

st (a) = (ϕ
(ss)
ss (1)− φss(1))a for

all a ∈ F. Then ϕ(st)
st is linear for all distinct integers 1 ⩽ s, t ⩽ n. Let a ∈ F and let 1 ⩽

s, t ⩽ n be distinct integers. Again, [ψ(X), X] = 0 for all X ∈ {aEss + Est, aEss, Est}

leads to
[ψ(aEss), Est] := ψ(aEss)Est − Estψ(aEss)

=
n∑

i=1

ϕ
(ss)
ii (a)EiiEst −

n∑
i=1

ϕ
(ss)
ii (a)EstEii

= ϕ(ss)
ss (a)Est − ϕ

(ss)
tt (a)Est

= ϕ(ss)
ss (a)Est − φss(a)Est,

[ψ(Est), aEss] := ψ(Est)aEss − aEssψ(Est)

= ϕ
(st)
st (1)aEstEss +

n∑
i=1

ϕ
(st)
ii (1)aEiiEss

− ϕ
(st)
st (1)aEssEst −

n∑
i=1

ϕ
(st)
ii (1)aEssEii

= ϕ(st)
ss (1)aEss − ϕ

(st)
st (1)aEst − ϕ(st)

ss (1)aEss

= −ϕ(st)
st (1)aEst,

so (ϕ(ss)
ss (a)−φss(a)−ϕ

(st)
st (1)a)Est = 0, and thus ϕ(ss)

ss (a) = φss(a)+ϕ
(st)
st (1)a. By the
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linearity of ϕ(st)
st , we have

ϕ(ss)
ss (a) = φss(a) + ϕ

(st)
st (1)a = φss(a) + ϕ

(st)
st (a) = (φss + ϕ

(st)
st )(a)

for all a ∈ F. Then ϕ(ss)
ss = φss + ϕ

(st)
st for all distinct integers 1 ⩽ s, t ⩽ n. Hence claim

(3.25) is proved. Moreover, by (3.25), for each integer 1 ⩽ s ⩽ n,

ϕ
(si)
si = ϕ

(sj)
sj for all i, j ∈ {1, . . . , n}\{s}. (3.26)

In view of (3.21), (3.22), (3.24) and (3.25), we conclude that for any integers 1 ⩽ s, t ⩽ n,

ψ(aEst) =


ϕ
(sp)
sp (a)Ess + φss(a)In when s = t,

ϕ
(st)
st (a)Est + φst(a)In when s ̸= t

(3.27)

for all a ∈ F, where p is any integer in {1, . . . , n}\{s}. Finally, we claim that there exists

a linear map φ : F → F such that

ϕ
(st)
st = φ (3.28)

for all distinct integers s, t = 1, . . . , n. Let 1 ⩽ s, t ⩽ n be distinct integers and let a ∈ F.

Since [ψ(X), X] = 0 for X ∈ {aEss + Ets, aEss, Ets}, it follows from (3.27) that

[ψ(aEss), Ets] := ψ(aEss)Ets − Etsψ(aEss)

= ϕ
(st)
st (a)EssEts + φss(a)Ets − ϕ

(st)
st (a)EtsEss − φss(a)Ets

= −ϕ(st)
st (a)Ets,

[ψ(Ets), aEss] := ψ(Ets)aEss − aEssψ(Ets)

= ϕ
(ts)
ts (1)aEtsEss + φts(1)aEss − ϕ

(ts)
ts (1)aEssEts − φts(1)aEss

= ϕ
(ts)
ts (1)aEts,

so (ϕ(ts)
ts (1)a− ϕ

(st)
st (a))Ets = 0 for all a ∈ F. By the linearity of ϕ(ts)

ts ,

ϕ
(ts)
ts = ϕ

(st)
st (3.29)

for all distinct integers 1 ⩽ s, t ⩽ n. If n = 2, then ϕ(12)
12 = ϕ

(21)
21 by (3.29) and claim
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(3.28) is proved. Consider now n ⩾ 3. Putting (3.26) and (3.29) together, we obtain

ϕ
(12)
12 = ϕ

(13)
13 = · · · = ϕ

(1n)
1n

= ϕ
(21)
21 = ϕ

(23)
23 = · · · = ϕ

(2n)
2n

...

= ϕ
(n1)
n1 = ϕ

(n2)
n2 = · · · = ϕ

(n, n−1)
n, n−1 ,

(3.30)

so ϕ(pq)
pq = ϕ

(st)
st for all integers 1 ⩽ p, q, s, t ⩽ n with p ̸= q and s ̸= t. Hence claim

(3.28) is proved.

Let λ = φ(1) ∈ F. Since φ is linear, φ(a) = λa for all a ∈ F. By (3.27) and (3.28),

ψ(aEst) = λaEst + φst(a)In

for all integers 1 ⩽ s, t ⩽ n and a ∈ F. Let A =
∑n

s,t=1 astEst ∈ Mn. Then

ψ(A) =
n∑

s,t=1

ψ(astEst) =
n∑

s,t=1

(λastEst + φst(ast)In) = λA+ µ(A)In,

where µ : Mn → F is the additive map defined by

µ(A) =
n∑

s,t=1

φst(ast)

for all A =
∑n

s,t=1 astEst ∈ Mn. The proof is complete.

We continue with the study of additive maps satisfying condition (2.14) for k ⩾ 2.

Lemma3.1.4. LetF be a field and let k, n1, . . . , nk ⩾ 2 be integers. Letψ :
⊗k

i=1Mni
→⊗k

i=1Mni
be an additive map. Then ψ is a commuting map on Sk

1 if and only if there exist

a commuting linear map φ :
⊗k

i=2Mni
→
⊗k

i=2Mni
on Sk

2 and commuting additive

maps φst :
⊗k

i=2Mni
→
⊗k

i=2Mni
on F · Sk

2 , s, t = 1, . . . , n1, such that

ψ(⊗k
i=1Ai) = A1 ⊗ φ(⊗k

i=2Ai) + In1 ⊗

(
n1∑

s,t=1

φst(ast ⊗k
i=2 Ai)

)

for all A1 = (ast) ∈ Mn1 and A2 ∈ Mn2 , . . . , Ak ∈ Mnk
, where F · Sk

2 = {αA : α ∈

F, A ∈ Sk
2}.
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Proof. By abuse of notation, we shall abbreviate E(n1)
ij and

⊗k
i=2Mni

to Eij and M,

respectively. We first prove the sufficiency. Let ψ :
⊗k

i=1Mni
→
⊗k

i=1Mni
be the

additive map defined by

ψ(⊗k
i=1Ai) = A1 ⊗ φ(⊗k

i=2Ai) + In1 ⊗

(
n1∑

s,t=1

φst(ast ⊗k
i=2 Ai)

)
(3.31)

for every A1 = (ast) ∈ Mn1 and A2 ∈ Mn2 , . . . , Ak ∈ Mnk
, where φ : M → M

is a commuting linear map on Sk
2 and φst : M → M, s, t = 1, . . . , n1, are commuting

additive maps on F · Sk
2 . Let 1 ⩽ s, t ⩽ n1 be integers. We claim that

[In1 ⊗ φst(a⊗k
i=2 Ai),⊗k

i=1Ai] = 0

for all A1 ∈ S1,n1 , . . . , Ak ∈ Sk,nk
and a ∈ F. The result is clear when a = 0. Consider

a ̸= 0. Since φst is commuting on F · Sk
2 , we have

(In1 ⊗ φst(a⊗k
i=2 Ai))(⊗k

i=1Ai) = (In1 ⊗ φst(a⊗k
i=2 Ai))(a

−1A1 ⊗ (a⊗k
i=2 Ai))

= a−1A1 ⊗ φst(a⊗k
i=2 Ai)(a⊗k

i=2 Ai)

= a−1A1 ⊗ (a⊗k
i=2 Ai)φst(a⊗k

i=2 Ai)

= (a−1A1 ⊗ (a⊗k
i=2 Ai))(In1 ⊗ φst(a⊗k

i=2 Ai))

= (⊗k
i=1Ai)(In1 ⊗ φst(a⊗k

i=2 Ai)).

Since φ is commuting on Sk
2 , (A1 ⊗φ(⊗k

i=2Ai))(⊗k
i=1Ai) = (⊗k

i=1Ai)(A1 ⊗φ(⊗k
i=2Ai))

for every A1 ∈ S1,n1 , . . . , Ak ∈ Sk,nk
. It follows from (3.31) that ψ is commuting on Sk

1 .

We proceed to the necessity. Notice that {Eij : i, j = 1, . . . , n1} is a basis of Mn1 .

In view of (3.3), for each pair of integers 1 ⩽ s, t ⩽ n1, there exist additive maps ϕ
(st)
ij :

M → M, i, j = 1, . . . , n1, such that

φ(Est ⊗ A) =

n1∑
i,j=1

Eij ⊗ ϕ
(st)
ij (A) (3.32)

for every decomposable tensor A ∈ D(M). Let 1 ⩽ s, t ⩽ n1 be integers. By (3.32), we

obtain
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ψ(Est ⊗ A)(Est ⊗ A) =

n1∑
i,j=1

EijEst ⊗ ϕ
(st)
ij (A)A =

n1∑
i=1

Eit ⊗ ϕ
(st)
is (A)A,

(Est ⊗ A)ψ(Est ⊗ A) =

n1∑
i,j=1

EstEij ⊗ Aϕ
(st)
ij (A) =

n1∑
j=1

Esj ⊗ Aϕ
(st)
tj (A)

for all A ∈ D(M). By virtue of [ψ(Est ⊗ A), Est ⊗ A] = 0 for all A ∈ Sk
2 , we get∑n1

i=1Eit ⊗ ϕ
(st)
is (A)A+

∑n1

j=1Esj ⊗ Aϕ
(st)
tj (A) = 0, so

Est ⊗ (ϕ(st)
ss (A)A−Aϕ

(st)
tt (A)) +

n1∑
i=1,i̸=s

Eit ⊗ ϕ
(st)
is (A)A−

n1∑
j=1,j ̸=t

Esj ⊗Aϕ
(st)
tj (A) = 0

for all A ∈ Sk
2 . Since {Eij : i, j = 1, . . . , n1} is a linearly independent set, it follows

from Proposition 2.1.6 (a) that for each pair of integers 1 ⩽ s, t ⩽ n1,

ϕ(st)
ss (A)A = Aϕ

(st)
tt (A) (3.33)

for all A ∈ Sk
2 , and

ϕ
(st)
is (A)A = 0 for all i ∈ {1, . . . , n1}\{s},

Aϕ
(st)
tj (A) = 0 for all j ∈ {1, . . . , n1}\{t}

for all A ∈ Sk
2 . By Theorem 3.1.2, we conclude that

ϕ
(st)
is = 0 for all i ∈ {1, . . . , n1}\{s}, (3.34)

ϕ
(st)
tj = 0 for all j ∈ {1, . . . , n1}\{t} (3.35)

for all integers 1 ⩽ s, t ⩽ n1. When s = t, by (3.33)–(3.35), for each integer 1 ⩽ s ⩽ n1,

we have

ϕ
(ss)
is = 0 = ϕ

(ss)
si for all i ∈ {1, . . . , n1}\{s}, (3.36)

ϕ(ss)
ss is a commuting additive map on Sk

2 . (3.37)

Let 1 ⩽ s, t ⩽ n1 be integers, p ∈ {1, . . . , n1}\{s, t} and A ∈ Sk
2 . Since [ψ(X), X] =

0 for all X ∈ {(Est + Epp) ⊗ A,Est ⊗ A,Epp ⊗ A}, we get [ψ(Est ⊗ A), Epp ⊗ A]
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+ [ψ(Epp ⊗ A), Est ⊗ A] = 0. By virtue of (3.32), we obtain

[ψ(Est ⊗ A), Epp ⊗ A] := ψ(Est ⊗ A)(Epp ⊗ A)− (Epp ⊗ A)ψ(Est ⊗ A)

=

n1∑
i,j=1

EijEpp ⊗ ϕ
(st)
ij (A)A−

n1∑
i,j=1

EppEij ⊗ Aϕ
(st)
ij (A)

=

n1∑
i=1

Eip ⊗ ϕ
(st)
ip (A)A−

n1∑
j=1

Epj ⊗ Aϕ
(st)
pj (A),

[ψ(Epp ⊗ A), Est ⊗ A] := ψ(Epp ⊗ A)(Est ⊗ A)− (Est ⊗ A)ψ(Epp ⊗ A)

=

n1∑
i,j=1

EijEst ⊗ ϕ
(pp)
ij (A)A−

n1∑
i,j=1

EstEij ⊗ Aϕ
(pp)
ij (A)

=

n1∑
i=1

Eit ⊗ ϕ
(pp)
is (A)A−

n1∑
j=1

Esj ⊗ Aϕ
(pp)
tj (A).

Consequently,

n1∑
i=1

Eip⊗ϕ(st)
ip (A)A+

n1∑
i=1

Eit⊗ϕ(pp)
is (A)A =

n1∑
j=1

Epj⊗Aϕ(st)
pj (A)+

n1∑
j=1

Esj⊗Aϕ(pp)
tj (A)

(3.38)

for all A ∈ Sk
2 . Since p ̸= s, t, it follows from (3.38) that

Epp ⊗ (ϕ(st)
pp (A)A −Aϕ(st)

pp (A)) +

n1∑
i=1, i̸=p,s

Eip ⊗ ϕ
(st)
ip (A)A

+ Ept ⊗ (ϕ(pp)
ps (A)A− Aϕ

(st)
pt (A)) −

n1∑
j=1, j ̸=t,p

Epj ⊗ Aϕ
(st)
pj (A)

+ Esp ⊗ (ϕ(st)
sp (A)A− Aϕ

(pp)
tp (A)) −

n1∑
j=1, j ̸=p,t

Esj ⊗ Aϕ
(pp)
tj (A)

+ Est ⊗ (ϕ(pp)
ss (A)A− Aϕ

(pp)
tt (A)) +

n1∑
i=1, i̸=s,p

Eit ⊗ ϕ
(pp)
is (A)A = 0

for all A ∈ Sk
2 . It follows from Proposition 2.1.6 (a) that

(A) for each i ∈ {1, . . . , n1}\{s, t}, ϕ(st)
ii (A)A = Aϕ

(st)
ii (A) for all A ∈ Sk

2 ,

(B) for each j ∈ {1, . . . , n1}\{s, t}, i ∈ {1, . . . , n1}\{j, s}, ϕ(st)
ij (A)A = 0 for all

A ∈ Sk
2 ,

(C) for each i ∈ {1, . . . , n1}\{s, t}, Aϕ(st)
it (A) = ϕ

(ii)
is (A)A for all A ∈ Sk

2 ,

(D) for each j ∈ {1, . . . , n1}\{s, t}, ϕ(st)
sj (A)A = Aϕ

(jj)
tj (A) for all A ∈ Sk

2 .
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In view of (A), we see that

ϕ
(st)
ii , i = 1, . . . , n1, i ̸= s, t, are commuting additive maps on Sk

2 . (3.39)

By (B) and Theorem 3.1.2, we get

ϕ
(st)
ij = 0 for all j ∈ {1, . . . , n1}\{s, t} and i ∈ {1, . . . , n1}\{j, s}. (3.40)

By virtue of (3.36), it follows from (C) that for each i ∈ {1, . . . , n1}\{s, t},

Aϕ
(st)
it (A) = 0 (3.41)

for all A ∈ Sk
2 . By (3.41) and Theorem 3.1.2, we have

ϕ
(st)
it = 0 for all i ∈ {1, . . . , n1}\{s, t}. (3.42)

Likewise, by (D), together with (3.36) and Theorem 3.1.2, we thus obtain

ϕ
(st)
sj = 0 for all j ∈ {1, . . . , n1}\{s, t}. (3.43)

In view of (3.39) and (3.40), when s = t, we see that

ϕ
(ss)
ii , i = 1, . . . , n1, i ̸= s, are commuting additive maps on Sk

2 , (3.44)

ϕ
(ss)
ij = 0 for all distinct i, j ∈ {1, . . . , n1}\{s}. (3.45)

When s = t, in view of (3.32), (3.36), (3.37), (3.44) and (3.45), we have

ψ(Ess ⊗ A) =

n1∑
i=1

Eii ⊗ ϕ
(ss)
ii (A) (3.46)

for all A ∈ D(M), where ϕ(ss)
ii , i = 1, . . . , n1, are commuting additive maps on Sk

2 .
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When s ̸= t, in view of (3.32), (3.34), (3.39), (3.40), (3.42) and (3.43), we obtain

ψ(Est ⊗ A) = Est ⊗ ϕ
(st)
st (A) +

n1∑
i=1

Eii ⊗ ϕ
(st)
ii (A) (3.47)

for all A ∈ D(M), where ϕ(st)
ii , i = 1, . . . , n1, i ̸= s, t, are commuting additive maps

on Sk
2 . Putting (3.46) and (3.47) together, we conclude that for each pair of integers

1 ⩽ s, t ⩽ n1,

ψ(Est ⊗ A) =


∑n1

i=1Eii ⊗ ϕ
(ss)
ii (A) when s = t,

Est ⊗ ϕ
(st)
st (A) +

∑n1

i=1Eii ⊗ ϕ
(st)
ii (A) when s ̸= t

(3.48)

for all A ∈ D(M), where ϕ(ss)
ii , i = 1, . . . , n1, and ϕ

(st)
jj , j = 1, . . . , n1, j ̸= s, t, are

commuting additive maps on Sk
2 .

We show that for each pair of distinct integers 1 ⩽ s, t ⩽ n1, there exists a commuting

additive map φst : M → M on Sk
2 such that

ϕ
(st)
ii = φst (3.49)

for all i = 1, . . . , n1. Let 1 ⩽ s, t ⩽ n1 be distinct integers and let A ∈ Sk
2 . Since

[ψ(X), X] = 0 forX ∈ {(Ess+Est)⊗A, Ess⊗A, Est⊗A}, we get [ψ(Ess⊗A), Est⊗

A] + [ψ(Est ⊗ A), Ess ⊗ A] = 0. By (3.48),

[ψ(Ess ⊗ A), Est ⊗ A] := ψ(Ess ⊗ A)(Est ⊗ A)− (Est ⊗ A)ψ(Ess ⊗ A)

=

n1∑
i=1

EiiEst ⊗ ϕ
(ss)
ii (A)A−

n1∑
i=1

EstEii ⊗ Aϕ
(ss)
ii (A)

= Est ⊗ (ϕ(ss)
ss (A)A− Aϕ

(ss)
tt (A)),

[ψ(Est ⊗ A), Ess ⊗ A] := ψ(Est ⊗ A)(Ess ⊗ A)− (Ess ⊗ A)ψ(Est ⊗ A)

= EstEss ⊗ ϕ
(st)
st (A)A+

n1∑
i=1

EiiEss ⊗ ϕ
(st)
ii (A)A

− EssEst ⊗ Aϕ
(st)
st (A)−

n1∑
i=1

EssEii ⊗ Aϕ
(st)
ii (A)

= Est ⊗ (−Aϕ(st)
st (A)) + Ess ⊗ (ϕ(st)

ss (A)A− Aϕ(st)
ss (A)).
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Since Ess, Est are linearly independent, by Proposition 2.1.6 (a), ϕ
(st)
ss (A)A = Aϕ

(st)
ss (A)

for all A ∈ Sk
2 . Therefore ϕ

(st)
ss is a commuting additive map on Sk

2 . Moreover, by (3.33),

we have
Aϕ(st)

ss (A) = ϕ(st)
ss (A)A = Aϕ

(st)
tt (A)

for all A ∈ Sk
2 . It follows from Lemma 3.1.1 that

ϕ
(st)
tt = ϕ(st)

ss . (3.50)

Hence ϕ(st)
tt is a commuting additive map on Sk

2 . Together with (3.39), we conclude that

ϕ
(st)
ii , i = 1, . . . , n1, are commuting additive maps on Sk

2 . (3.51)

In view of (3.50), claim (3.49) is proved when n1 = 2. Consider n1 ⩾ 3. Let p ∈

{1, . . . , n1}\{s, t} and let A ∈ Sk
2 . Since [ψ(X), X] = 0 for X ∈ {(Est + Esp) ⊗

A,Est⊗A,Esp⊗A}, it follows that [ψ(Est⊗A), Esp⊗A]+ [ψ(Esp⊗A), Est⊗A] = 0.

By (3.48), we have

[ψ(Est ⊗ A), Esp ⊗ A] := ψ(Est ⊗ A)(Esp ⊗ A)− (Esp ⊗ A)ψ(Est ⊗ A)

= EstEsp ⊗ ϕ
(st)
st (A)A+

n1∑
i=1

EiiEsp ⊗ ϕ
(st)
ii (A)A

− EspEst ⊗ Aϕ
(st)
st (A)−

n1∑
i=1

EspEii ⊗ Aϕ
(st)
ii (A)

= Esp ⊗ (ϕ(st)
ss (A)A− Aϕ(st)

pp (A)).

Then by interchanging p and t, we get

[ψ(Esp ⊗ A), Est ⊗ A] = Est ⊗ (ϕ(sp)
ss (A)A− Aϕ

(sp)
tt (A)).

Therefore,

Esp ⊗ (ϕ(st)
ss (A)A− Aϕ(st)

pp (A)) + Est ⊗ (ϕ(sp)
ss (A)A− Aϕ

(sp)
tt (A)) = 0

for all A ∈ Sk
2 . Since Est, Esp are linearly independent, it follows from Proposition 2.1.6

(a) that

ϕ(st)
ss (A)A = Aϕ(st)

pp (A)
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for all A ∈ Sk
2 . By (3.51), we obtain

ϕ(st)
ss (A)A = ϕ(st)

pp (A)A

for allA ∈ Sk
2 . By Lemma 3.1.1, ϕ

(st)
pp = ϕ

(st)
ss for every p ∈ {1, . . . , n1}\{s, t}. Together

with (3.50) and (3.51), we conclude that ϕ(st)
ii = φst for i = 1, . . . , n1, where φst = ϕ

(st)
ss

is a commuting additive map on Sk
2 . Hence claim (3.49) is proved.

Next, we claim that for each integer 1 ⩽ s ⩽ n1, there exists a commuting additive

map φss : M → M on Sk
2 such that

ϕ
(ss)
ii = φss for all i ∈ {1, . . . , n1}\{s}. (3.52)

Let 1 ⩽ s ⩽ n1 be an integer. We show that

ϕ(ss)
pp = ϕ(ss)

qq

for all integers p, q ∈ {1, . . . , n1}\{s}. If n1 = 2, then there is nothing to show. Consider

nown1 ⩾ 3. Let p, q ∈ {1, . . . , n1}\{s} be distinct andA ∈ Sk
2 . Note that [ψ(X), X] = 0

for all X ∈ {(Epq + Ess) ⊗ A, Epq ⊗ A, Ess ⊗ A} leads to [ψ(Epq ⊗ A), Ess ⊗ A] +

[ψ(Ess ⊗ A), Epq ⊗ A] = 0. It follows from (3.48) and (3.49) that

[ψ(Epq ⊗ A), Ess ⊗ A] := ψ(Epq ⊗ A)(Ess ⊗ A)− (Ess ⊗ A)ψ(Epq ⊗ A)

= EpqEss ⊗ ϕ(pq)
pq (A)A+

n1∑
i=1

EiiEss ⊗ ϕ
(pq)
ii (A)A

− EssEpq ⊗ Aϕ(pq)
pq (A)−

n1∑
i=1

EssEii ⊗ Aϕ
(pq)
ii (A)

= Ess ⊗ (ϕ(pq)
ss (A)A− Aϕ(pq)

ss (A))

= Ess ⊗ (φpq(A)A− Aφpq(A)),

[ψ(Ess ⊗ A), Epq ⊗ A] := ψ(Ess ⊗ A)(Epq ⊗ A)− (Epq ⊗ A)ψ(Ess ⊗ A)

=

n1∑
i=1

EiiEpq ⊗ ϕ
(ss)
ii (A)A−

n1∑
i=1

EpqEii ⊗ Aϕ
(ss)
ii (A)

= Epq ⊗ (ϕ(ss)
pp (A)A− Aϕ(ss)

qq (A)).
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Consequently,

Ess ⊗ (φpq(A)A− Aφpq(A)) + Epq ⊗ (ϕ(ss)
pp (A)A− Aϕ(ss)

qq (A)) = 0

for all A ∈ Sk
2 . Since Ess, Epq are linearly independent, by Proposition 2.1.6 (a), we

get ϕ(ss)
pp (A)A = Aϕ

(ss)
qq (A) for all A ∈ Sk

2 . It follows from (3.44) that ϕ(ss)
pp (A)A =

ϕ
(ss)
qq (A)A for all A ∈ Sk

2 . Thus ϕ(ss)
pp = ϕ

(ss)
qq by Lemma 3.1.1. Hence, together with

(3.44), claim (3.52) is proved.

We now show that for each integer 1 ⩽ s ⩽ n1,

ϕ(ss)
ss = φss + ϕ

(sj)
sj for all j ∈ {1, . . . , n1}\{s}, (3.53)

ϕ
(sj)
sj , j = 1, . . . , n1, j ̸= s, are commuting additive maps on Sk

2 . (3.54)

Let 1 ⩽ s, j ⩽ n1 be distinct integers and let A ∈ Sk
2 . Since [ψ(X), X] = 0 for all

X ∈ {Ess ⊗ A,Esj ⊗ A, (Ess + Esj)⊗ A}, we get [ψ(Ess ⊗ A), Esj ⊗ A] + [ψ(Esj ⊗

A), Ess ⊗ A] = 0. It follows from (3.48), (3.49) and (3.52) that

[ψ(Ess ⊗ A), Esj ⊗ A] := ψ(Ess ⊗ A)(Esj ⊗ A)− (Esj ⊗ A)ψ(Ess ⊗ A)

=

n1∑
i=1

EiiEsj ⊗ ϕ
(ss)
ii (A)A−

n1∑
i=1

EsjEii ⊗ Aϕ
(ss)
ii (A)

= Esj ⊗ (ϕ(ss)
ss (A)A− Aϕ

(ss)
jj (A))

= Esj ⊗ (ϕ(ss)
ss (A)A− Aφss(A)),

[ψ(Esj ⊗ A), Ess ⊗ A] := ψ(Esj ⊗ A)(Ess ⊗ A)− (Ess ⊗ A)ψ(Esj ⊗ A)

= EsjEss ⊗ ϕ
(sj)
sj (A)A+

n1∑
i=1

EiiEss ⊗ ϕ
(sj)
ii (A)A

− EssEsj ⊗ Aϕ
(sj)
sj (A)−

n1∑
i=1

EssEii ⊗ Aϕ
(sj)
ii (A)

= Ess ⊗ (ϕ(sj)
ss (A)A− Aϕ(sj)

ss (A))− Esj ⊗ Aϕ
(sj)
sj (A)

= Ess ⊗ (φsj(A)A− Aφsj(A)) + Esj ⊗ (−Aϕ(sj)
sj (A))

= Esj ⊗ (−Aϕ(sj)
sj (A)).
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Therefore,

Esj ⊗ (ϕ(ss)
ss (A)A− Aφss(A)− Aϕ

(sj)
sj (A)) = 0

for all A ∈ Sk
2 . Since ϕ

(ss)
ss is commuting on Sk

2 by (3.37), using Proposition 2.1.6 (a), we

have

Aϕ(ss)
ss (A) = A (φss + ϕ

(sj)
sj )(A)

for all A ∈ Sk
2 . By Lemma 3.1.1, we obtain ϕ(ss)

ss = φss + ϕ
(sj)
sj , and hence, assertion

(3.53) is proved. Notice that ϕ(sj)
sj = ϕ

(ss)
ss − φss. By (3.37) and (3.52), we see that ϕ

(sj)
sj ,

j = 1, . . . , n1, j ̸= s, are commuting additive maps on Sk
2 . Thus assertion (3.54) is

claimed. Moreover, in view of (3.53), for each integer 1 ⩽ s ⩽ n, we have

ϕ
(si)
si = ϕ

(sj)
sj for all i, j ∈ {1, . . . , n1}\{s}. (3.55)

Next, we show that there exists a commuting additive map φ : M → M on Sk
2 such

that

ϕ
(st)
st = φ (3.56)

for all distinct integers 1 ⩽ s, t ⩽ n1. Let 1 ⩽ s ⩽ n1 be an integer, i ∈ {1, . . . , n1}\{s}

and A ∈ Sk
2 . Note that [ψ(X), X] = 0 for all X ∈ {(Ess +Eis)⊗A,Ess ⊗A,Eis ⊗A}

leads to [ψ(Ess ⊗ A), Eis ⊗ A] + [ψ(Eis ⊗ A), Ess ⊗ A] = 0. It follows from (3.48),

(3.49) and (3.52) that

[ψ(Ess ⊗ A), Eis ⊗ A] := ψ(Ess ⊗ A)(Eis ⊗ A)− (Eis ⊗ A)ψ(Ess ⊗ A)

=

n1∑
j=1

EjjEis ⊗ ϕ
(ss)
jj (A)A−

n1∑
j=1

EisEjj ⊗ Aϕ
(ss)
jj (A)

= Eis ⊗ (ϕ
(ss)
ii (A)A− Aϕ(ss)

ss (A))

= Eis ⊗ (φss(A)A− Aϕ(ss)
ss (A)),

[ψ(Eis ⊗ A), Ess ⊗ A] := ψ(Eis ⊗ A)(Ess ⊗ A)− (Ess ⊗ A)ψ(Eis ⊗ A)

= EisEss ⊗ ϕ
(is)
is (A)A+

n1∑
j=1

EjjEss ⊗ ϕ
(is)
jj (A)A

− EssEis ⊗ Aϕ
(is)
is (A)−

n1∑
j=1

EssEjj ⊗ Aϕ
(is)
jj (A)
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= Eis ⊗ ϕ
(is)
is (A)A+ Ess ⊗ (ϕ(is)

ss (A)A− Aϕ(is)
ss (A))

= Eis ⊗ ϕ
(is)
is (A)A+ Ess ⊗ (φis(A)A− Aφis(A))

= Eis ⊗ ϕ
(is)
is (A)A,

soEis⊗(φss(A)A−Aϕ(ss)
ss (A)+ϕ

(is)
is (A)A) = 0 for allA ∈ Sk

2 . Since ϕ
(ss)
ss is commuting

on Sk
2 by (3.37), using Proposition 2.1.6 (a), we have ϕ(ss)

ss (A)A = (φss + ϕ
(is)
is )(A)A for

all A ∈ Sk
2 . By Lemma 3.1.1, we obtain

ϕ(ss)
ss = φss + ϕ

(is)
is for all i ∈ {1, . . . , n1}\{s}. (3.57)

By virtue of (3.53) and (3.57), for each integer 1 ⩽ s ⩽ n1,

ϕ
(sj)
sj = ϕ

(is)
is for all i, j ∈ {1, . . . , n1}\{s}. (3.58)

Putting (3.55) together with (3.58) and using the same argument as in (3.30), we obtain

ϕ
(st)
st = ϕ

(pq)
pq for all integers 1 ⩽ s, t, p, q ⩽ n1 with s ̸= t and p ̸= q. Hence claim (3.56)

is proved.

Summarizing from (3.48), (3.49), (3.52) and (3.56), we conclude that

ψ(Est ⊗ A) = Est ⊗ φ(A) + In1 ⊗ φst(A) (3.59)

for all integers 1 ⩽ s, t ⩽ n1 and A ∈ D(M). We further show that φ is a linear map and

φst, s, t = 1, . . . , n1, are commuting additive maps on F·Sk
2 . To seeφ is linear, letA ∈ Sk

2

andλ ∈ F. By virtue of [ψ(X), X] = 0 for allX ∈ {(E21+λE12)⊗A,E21⊗A, λE12⊗A},

we obtain [ψ(E12 ⊗λA), E21 ⊗A] + [ψ(E21 ⊗A), E12 ⊗λA] = 0. It follows from (3.59)

that

[ψ(E12 ⊗ λA), E21 ⊗ A] := ψ(E12 ⊗ λA)(E21 ⊗ A)− (E21 ⊗ A)ψ(E12 ⊗ λA)

= E12E21 ⊗ φ(λA)A+ E21 ⊗ φ12(λA)A− E21E12 ⊗ Aφ(λA)− E21 ⊗ Aφ12(λA)

= E11 ⊗ φ(λA)A+ E21 ⊗ (φ12(λA)A− Aφ12(λA))− E22 ⊗ Aφ(λA),
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[ψ(E21 ⊗ A), E12 ⊗ λA] := ψ(E21 ⊗ A)(E12 ⊗ λA)− (E12 ⊗ λA)ψ(E21 ⊗ A)

= E21E12 ⊗ φ(A)(λA) + E12 ⊗ λφ12(A)A− E12E21 ⊗ λAφ(A)− E12 ⊗ λAφ12(A)

= −E11 ⊗ λAφ(A) + E12 ⊗ (λφ12(A)A− λAφ12(A)) + E22 ⊗ λφ(A)A

= E11 ⊗ (−λAφ(A)) + E22 ⊗ λφ(A)A.

Since E11, E12, E21, E22 are linearly independent, by Proposition 2.1.6 (a), we get

φ(λA)A = λAφ(A) (3.60)

for all λ ∈ F and A ∈ Sk
2 . Let α ∈ F and let ζα : M → M be the additive map defined

by

ζα(X) = φ(αX)− αφ(X)

for all X ∈ M. Let A ∈ Sk
2 . Note that

ζα(A)A = φ(αA)A− αφ(A)A = φ(αA)A− αAφ(A)

since φ(A)A = Aφ(A). It follows from (3.60) that ζα(A)A = 0 for all A ∈ Sk
2 . By

Theorem 3.1.2, ζα = 0 for all α ∈ F. Then φ(αX) = αφ(X) for all α ∈ F and X ∈ M.

Thus φ is linear.

We next verify that φst, s, t = 1, . . . , n1, are commuting additive maps on F · Sk
2 . Let

1 ⩽ s, t ⩽ n1 be integers, α ∈ F and A ∈ Sk
2 . By (3.59) and the linearity of φ, we have

ψ(αEst ⊗ A) = ψ(Est ⊗ αA) = αEst ⊗ φ(A) + In1 ⊗ φst(αA).

Since [ψ(αEst ⊗ A), αEst ⊗ A] = 0 and

[αEst ⊗ φ(A), αEst ⊗ A] := (αEst ⊗ φ(A))(αEst ⊗ A)− (αEst ⊗ A)(αEst ⊗ φ(A))

= (ααEstEst)⊗ φ(A)A − (ααEstEst)⊗ Aφ(A)

= (ααEstEst)⊗ φ(A)A − (ααEstEst)⊗ φ(A)A

= 0,
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it follows from Proposition 2.1.6 (a) that

[In1 ⊗ φst(αA), Est ⊗ αA] = 0

=⇒ (In1 ⊗ φst(αA))(Est ⊗ αA)− (Est ⊗ αA)(In1 ⊗ φst(αA)) = 0

=⇒ Est ⊗ (φst(αA)(αA)− (αA)φst(αA)) = 0

=⇒ φst(αA)(αA) = (αA)φst(αA)

for all α ∈ F and A ∈ Sk
2 . Hence φst, s, t = 1, . . . , n1, are commuting additive maps on

F · Sk
2 .

Let A1 =
∑n1

s,t=1 astEst ∈ Mn1 , ast ∈ F and let A2 ∈ Mn2 , . . . , Ak ∈ Mnk
. By

(3.59),

ψ(⊗k
i=1Ai) = ψ

(
n1∑

s,t=1

(Est ⊗ ast(⊗k
i=2Ai))

)

=

n1∑
s,t=1

ψ(Est ⊗ ast(⊗k
i=2Ai))

=

n1∑
s,t=1

(astEst ⊗ φ(⊗k
i=2Ai) + In1 ⊗ φst(ast ⊗k

i=2 Ai))

=A1 ⊗ φ(⊗k
i=2Ai) + In1 ⊗

(
n1∑

s,t=1

φst(ast ⊗k
i=2 Ai)

)
.

This completes the proof.

The following lemma will be needed to prove the results in the next section.

Lemma 3.1.5. (Chooi et al., 2019, Lemma 2.7) Let F be a field and let n ⩾ 2 be an integer.

Then τ : Mn → F is a linear functional if and only if there exists a matrixH ∈ Mn such

that

τ(A) = tr (H tA)

for all A ∈ Mn.
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3.2 Main Results

We are now ready to prove the main results.

Theorem 3.2.1. Let F be a field and let m,n ⩾ 2 be integers. Let ψ : Mm

⊗
Mn →

Mm

⊗
Mn be an additive map. Then ψ is a commuting map on S2

1 if and only if there

exist a scalar λ ∈ F, an additive map µ : Mm

⊗
Mn → F and matrices K ∈ Mm,

H ∈ Mn such that

ψ(A⊗B) = λ(A⊗B)+µ(A⊗B)Imn+ tr (H tB)(A⊗ In)+ tr (KtA)(Im⊗B) (3.61)

for all A ∈ Mm and B ∈ Mn.

Proof. We first prove the sufficiency. Letψ : Mm

⊗
Mn → Mm

⊗
Mn be the additive

map defined by

ψ(A⊗B) = λ(A⊗B) + µ(A⊗B)Imn + tr (H tB)(A⊗ In) + tr (KtA)(Im ⊗B)

for allA ∈ Mm andB ∈ Mn, where λ ∈ F,K ∈ Mm,H ∈ Mn andµ : Mm

⊗
Mn →

F is an additive map. Let A ∈ S1,m and B ∈ S2,n. Note that

(tr (H tB)(A⊗ In))(A⊗B) = tr (H tB)(AA⊗ InB)

= tr (H tB)(AA⊗BIn)

= tr (H tB)((A⊗B)(A⊗ In))

= (A⊗B)(tr (H tB)(A⊗ In)),

(tr (KtA)(Im ⊗B))(A⊗B) = tr (KtA)(ImA⊗BB)

= tr (KtA)(AIm ⊗BB)

= tr (KtA)((A⊗B)(Im ⊗B))

= (A⊗B)(tr (KtA)(Im ⊗B)).

Consequently, we obtain

ψ(A⊗B)(A⊗B) = (λ(A⊗B))(A⊗B) + (µ(A⊗B)Imn)(A⊗B)

+ (tr (H tB)(A⊗ In))(A⊗B) + (tr (KtA)(Im ⊗B))(A⊗B)
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= (A⊗B)(λ(A⊗B)) + (A⊗B)(µ(A⊗B)Imn)

+ (A⊗B)(tr (H tB)(A⊗ In)) + (A⊗B)(tr (KtA)(Im ⊗B))

= (A⊗B)ψ(A⊗B)

for all A ∈ S1,m and B ∈ S2,n. Hence ψ is commuting on S2
1 .

For the necessity, it follows from Lemma 3.1.4 that there exist a commuting linear map

φ : Mn → Mn on S2,n = {E(n)
st + αE

(n)
pq ∈ Mn : α ∈ F and 1 ⩽ p, q, s, t ⩽ ni are not

all distinct} and commuting additive maps φij : Mn → Mn on F · S2,n, i, j = 1, . . . ,m,

such that

ψ(A⊗B) = A⊗ φ(B) + Im ⊗

(
m∑

i,j=1

φij(aijB)

)

for all A = (aij) ∈ Mm and B ∈ Mn, where F · S2,n = {αX : α ∈ F, X ∈ S2,n}.

By Theorem 3.1.3, there exist scalars λ, λij ∈ F, i, j = 1, . . . ,m, a linear functional

τ : Mn → F and additive maps τij : Mn → F, i, j = 1, . . . ,m, such that

φ(B) = λB + τ(B)In and φij(B) = λijB + τij(B)In

for all B ∈ Mn and i, j = 1, . . . ,m. Then by (2.8),

ψ(A⊗B) = A⊗ (λB + τ(B)In) + Im ⊗

(
m∑

i,j=1

λijaijB +
m∑

i,j=1

τij(aijB)In

)

= λ(A⊗B) + τ(B)(A⊗ In) +

(
m∑

i,j=1

λijaij

)
(Im ⊗B) +

(
m∑

i,j=1

τij(aijB)

)
Imn

for all A = (aij) ∈ Mm and B ∈ Mn. Let µ : Mm

⊗
Mn → F be the additive map

defined by

µ(A⊗B) =
m∑

i,j=1

τij(aijB)

for all A = (aij) ∈ Mm and B ∈ Mn. We first check that µ is well defined in two cases.

Case I: A ⊗ B = 0. Since µ is additive, µ(0) = 0. On the other hand, if A ⊗ B = 0,

then A = 0 or B = 0 by Proposition 2.1.5. Therefore, µ(A⊗ B) =
∑m

i,j=1τij(0) = 0 as

τij , i, j = 1, . . . ,m, are additive.
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Case II: A ⊗ B ̸= 0. Let A′ ∈ Mm and B′ ∈ Mn such that A′ ⊗ B′ = A ⊗ B. By

Proposition 2.1.5,A′ = αA andB′ = α−1B for some nonzero α ∈ F. Then µ(A′⊗B′) =∑m
i,j=1τij ((αaij)(α

−1B)) =
∑m

i,j=1τij(aijB) = µ(A⊗B).

Hence, µ is well defined. Since τ : Mn → F is linear, it follows from Lemma 3.1.5

that there exists H ∈ Mn such that τ(B) = tr (H tB) for all B ∈ Mn. Consequently,

ψ(A⊗B) = λ(A⊗B) + µ(A⊗B)Imn + tr (H tB)(A⊗ In) + tr (KtA)(Im ⊗B)

for all A = (aij) ∈ Mm and B ∈ Mn, whereK = (λij) ∈ Mm. We are done.

Let k, n1, . . . , nk ⩾ 2 be integers. For each integer 1 ⩽ h ⩽ k, we denote by Qh,k

the totality of strictly increasing sequences α = (αi) of h integers α1 < · · · < αh chosen

from 1, . . . , k. Let A1 ∈ Mn1 , . . . , Ak ∈ Mnk
and let α = (αi) ∈ Qh,k. We designate

(⊗k
i=1Ai)α = ⊗k

i=1Bi ∈ Mn1···nk
, (3.62)

where

Bi =


Ini

if i ∈ {α1, . . . , αh},

Ai if i /∈ {α1, . . . , αh}

for i = 1, . . . , k. Evidently, [(⊗k
i=1Ai)α,⊗k

i=1Ai] = 0 for all A1 ∈ Mn1 , . . . , Ak ∈ Mnk
.

This is because (⊗k
i=1Ai)α(⊗k

i=1Ai) = (⊗k
i=1Bi)(⊗k

i=1Ai) = ⊗k
i=1BiAi = ⊗k

i=1AiBi =

(⊗k
i=1Ai)(⊗k

i=1Bi) = (⊗k
i=1Ai)(⊗k

i=1Ai)α for all A1 ∈ Mn1 , . . . , Ak ∈ Mnk
.

Theorem 3.2.2. Let F be a field and let k, n1, . . . , nk ⩾ 2 be integers. Let ψ :
⊗k

i=1Mni

→
⊗k

i=1Mni
be an additive map. Then ψ is a commuting map on Sk

1 if and only if there

exist a scalar λ ∈ F, an additive map µ :
⊗k

i=1Mni
→ F and matricesHα ∈ Mnα1 ···nαh

for each α = (αi) ∈ Qh,k, h = 1, . . . , k − 1, such that

ψ(⊗k
i=1Ai) = λ(⊗k

i=1Ai)+µ(⊗k
i=1Ai)In1···nk

+
k−1∑
h=1

∑
α=(αi)∈Qh,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=1Ai)α

for all A1 ∈ Mn1 , . . . , Ak ∈ Mnk
.
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Proof. We first prove the sufficiency. Let ψ :
⊗k

i=1Mni
→
⊗k

i=1Mni
be the additive

map defined by

ψ(⊗k
i=1Ai) = λ(⊗k

i=1Ai)+µ(⊗k
i=1Ai)In1···nk

+
k−1∑
h=1

∑
α=(αi)∈Qh,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=1Ai)α

for all A1 ∈ Mn1 , . . . , Ak ∈ Mnk
, where λ ∈ F, Hα ∈ Mnα1 ···nαh

for each α = (αi) ∈

Qh,k, h = 1, . . . , k − 1, and µ :
⊗k

i=1Mni
→ F is an additive map. Let Ai ∈ Si,ni

for

i = 1, . . . , k. Since [(⊗k
i=1Ai)α,⊗k

i=1Ai] = 0, it follows that

 k−1∑
h=1

∑
α=(αi)∈Qh,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=1Ai)α

 (⊗k
i=1Ai)

=
k−1∑
h=1

∑
α=(αi)∈Qh,k

tr (H t
α(⊗h

i=1Aαi
))((⊗k

i=1Ai)α(⊗k
i=1Ai))

=
k−1∑
h=1

∑
α=(αi)∈Qh,k

tr (H t
α(⊗h

i=1Aαi
))((⊗k

i=1Ai)(⊗k
i=1Ai)α)

= (⊗k
i=1Ai)

 k−1∑
h=1

∑
α=(αi)∈Qh,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=1Ai)α

 .

Therefore, we obtain

ψ(⊗k
i=1Ai)(⊗k

i=1Ai) = (λ(⊗k
i=1Ai))(⊗k

i=1Ai) + (µ(⊗k
i=1Ai)In1···nk

)(⊗k
i=1Ai)

+

 k−1∑
h=1

∑
α=(αi)∈Qh,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=1Ai)α

 (⊗k
i=1Ai)

= (⊗k
i=1Ai)(λ(⊗k

i=1Ai)) + (⊗k
i=1Ai)(µ(⊗k

i=1Ai)In1···nk
)

+ (⊗k
i=1Ai)

 k−1∑
h=1

∑
α=(αi)∈Qh,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=1Ai)α


= (⊗k

i=1Ai)ψ(⊗k
i=1Ai)

for all Ai ∈ Si,ni
, i = 1, . . . , k. Hence ψ is commuting on Sk

1 .

For the necessity, we argue by induction on the order k. The base case k = 2 is true

by Theorem 3.2.1. Suppose that k ⩾ 3 and that the result holds for k − 1. In view of

Lemma 3.1.4, since Sk
2 ⊆ F · Sk

2 , there exist a commuting linear map φ :
⊗k

i=2Mni
→
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⊗k
i=2Mni

on Sk
2 and commuting additive maps φpq :

⊗k
i=2Mni

→
⊗k

i=2Mni
on Sk

2 ,

p, q = 1, . . . , n1, such that

ψ(⊗k
i=1Ai) = A1 ⊗ φ(⊗k

i=2Ai) + In1⊗

(
n1∑

p,q=1

φpq(apq ⊗k
i=2 Ai)

)
(3.63)

for all A1 = (apq) ∈ Mn1 and A2 ∈ Mn2 , . . . , Ak ∈ Mnk
. For each integer 1 ⩽ h ⩽

k − 2, we denote Q∗
h,k = {(α1, . . . , αh) ∈ Qh,k : α1 ⩾ 2}. By the induction hypothesis,

there exist a scalar λ ∈ F, a linear functional η1 :
⊗k

i=2Mni
→ F and matrices Hα ∈

Mnα1 ···nαh
for all α = (αi) ∈ Q∗

h,k, h = 1, . . . , k − 2, such that

φ(⊗k
i=2Ai) = λ(⊗k

i=2Ai) + η1(⊗k
i=2Ai)IN +

k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=2Ai)α

(3.64)

for every A2 ∈ Mn2 , . . . , Ak ∈ Mnk
, where N = n2 · · ·nk and (⊗k

i=2Ai)α is as defined

in (3.62). Moreover, for each pair of integers 1 ⩽ p, q ⩽ n1, since φpq is a commuting

additive map on Sk
2 , it follows from the induction hypothesis that there exist a scalar

λpq ∈ F, an additive map ηpq :
⊗k

i=2Mni
→ F and matrices Xp,q

α ∈ Mnα1 ···nαh
for all

α = (αi) ∈ Q∗
h,k, h = 1, . . . , k − 2, such that

φpq(apq ⊗k
i=2 Ai) = λpq(apq ⊗k

i=2 Ai) + ηpq(apq ⊗k
i=2 Ai)IN+

k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

tr ((Xp,q
α )t ((apqAα1)⊗ (⊗h

i=2Aαi
)))(A2 ⊗ · · · ⊗ (apqAα1)⊗ · · · ⊗ Ak)α

for all apq ∈ F and A2 ∈ Mn2 , . . . , Ak ∈ Mnk
. Consequently,

φpq(apq ⊗k
i=2 Ai) = λpq(apq ⊗k

i=2 Ai) + ηpq(apq ⊗k
i=2 Ai)IN

+
k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

tr ((Xp,q
α )t (apq ⊗h

i=1 Aαi
))(⊗k

i=2Ai)α

(3.65)

for all apq ∈ F and A2 ∈ Mn2 , . . . , Ak ∈ Mnk
.

Note first that η1 :
⊗k

i=2Mni
→ F is a linear functional. Since

⊗k
i=2Mni

∼= Mn2 ···nk

by (2.11), it follows from Lemma 3.1.5 that there exists a matrixH(2,...,k) ∈ Mn2 ···nk
such
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that η1(⊗k
i=2Ai) = tr (H t

(2,...,k)(⊗k
i=2Ai)) for allA2 ∈ Mn2 , . . . , Ak ∈ Mnk

. We thus have

A1 ⊗ η1(⊗k
i=2Ai)IN = η1(⊗k

i=2Ai)(A1 ⊗ IN) = tr (H t
(2,...,k)(⊗k

i=2Ai))(⊗k
i=1Ai)(2,...,k)

(3.66)
for all A1 ∈ Mn1 , . . . , Ak ∈ Mnk

, where (2, . . . , k) ∈ Q∗
k−1,k.

Next, since A1 ⊗ (⊗k
i=2Ai)α = (⊗k

i=1Ai)α for any α ∈ Q∗
h,k, it follows that

A1⊗

 k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=2Ai)α

=k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=1Ai)α

(3.67)

for all A1 ∈ Mn1 , . . . , Ak ∈ Mnk
.

We denote H(1) = (λij) ∈ Mn1 . Then

tr (H t
(1)A1)(⊗k

i=1Ai)(1)=

(
n1∑

p,q=1

λpqapq

)
(In1⊗(⊗k

i=2Ai))=In1⊗

(
n1∑

p,q=1

λpq(apq ⊗k
i=2 Ai)

)
(3.68)

for all A1 = (apq) ∈ Mn1 and A2 ∈ Mn2 , . . . , Ak ∈ Mnk
, where (1) ∈ Q1,k.

Let µ :
⊗k

i=1Mni
→ F be the additive map defined by

µ(⊗k
i=1Ai) =

n1∑
p,q=1

ηpq(apq ⊗k
i=2 Ai)

for all A1 = (apq) ∈ Mn1 and A2 ∈ Mn2 , . . . , Ak ∈ Mnk
. We first check that µ is well

defined in two cases.

Case I: ⊗k
i=1Ai = 0. Since µ is additive, µ(0) = 0. On the other hand, if ⊗k

i=1Ai = 0,

then Ai = 0 for some integer 1 ⩽ i ⩽ k by Proposition 2.1.5. Therefore, µ(⊗k
i=1Ai) =∑n1

p,q=1 ηpq(0) = 0 as ηpq, p, q = 1, . . . , n1, are additive.

Case II:⊗k
i=1Ai ̸= 0. Let A′

1 ∈ Mn1 , . . . , A
′
k ∈ Mnk

such that⊗k
i=1A

′
i = ⊗k

i=1Ai. By

Proposition 2.1.5, A′
1 = αA1 and ⊗k

i=2A
′
i = α−1 ⊗k

i=2 Ai for some nonzero α ∈ F. Then

µ(⊗k
i=1A

′
i) =

∑n1

p,q=1 ηpq((αapq)(α
−1⊗k

i=2Ai)) =
∑n1

p,q=1 ηpq(apq⊗k
i=2Ai) = µ(⊗k

i=1Ai).

Hence, µ is well defined. It follows that

In1⊗

(
n1∑

p,q=1

ηpq(apq ⊗k
i=2 Ai)IN

)
=

(
n1∑

p,q=1

ηpq(apq ⊗k
i=2 Ai)

)
In1···nk

= µ(⊗k
i=1Ai)In1···nk

(3.69)
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for all A1 = (apq) ∈ Mn1 and A2 ∈ Mn2 , . . . , Ak ∈ Mnk
.

For each α = (αi) ∈ Q∗
h,k with 1 ⩽ h ⩽ k − 2, we let τα : Mn1·nα1 ···nαh

→ F be the

linear functional defined by

τα(A1 ⊗ Aα1 ⊗ · · · ⊗ Aαh
) =

n1∑
p,q=1

tr ((Xp,q
α )t (apq ⊗h

i=1 Aαi
)) (3.70)

for all A1 = (apq) ∈ Mn1 and Aα1 ∈ Mnα1
, . . . , Aαh

∈ Mnαh
. We first check that τα is

well defined in two cases.

Case I: A1 ⊗ Aα1 ⊗ · · · ⊗ Aαh
= 0. Since τα is linear, τα(0) = 0. On the other hand,

if A1 ⊗ Aα1 ⊗ · · · ⊗ Aαh
= 0, then A1 = 0 or Aαi

= 0 for some integer 1 ⩽ i ⩽ h by

Proposition 2.1.5. Therefore, τα(A1 ⊗ Aα1 ⊗ · · · ⊗ Aαh
) =

∑n1

p,q=1 tr ((Xp,q
α )t (0)) = 0.

Case II: A1 ⊗ Aα1 ⊗ · · · ⊗ Aαh
̸= 0. Let A′

1 ∈ Mn1 and A′
α1

∈ Mnα1
, . . . , A′

αh
∈

Mnαh
such that A′

1 ⊗ A′
α1

⊗ · · · ⊗ A′
αh

= A1 ⊗ Aα1 ⊗ · · · ⊗ Aαh
. By Proposition

2.1.5, we obtain A′
1 = βA1 and ⊗h

i=1A
′
αi

= β−1 ⊗h
i=1 Aαi

for some nonzero β ∈ F.

Consequently, τα(A′
1⊗A′

α1
⊗· · ·⊗A′

αh
) =

∑n1

p,q=1 tr ((Xp,q
α )t ((βapq)(β

−1⊗h
i=1Aαi

))) =∑n1

p,q=1 tr ((Xp,q
α )t (apq ⊗h

i=1 Aαi
)) = τα(A1 ⊗ Aα1 ⊗ · · · ⊗ Aαh

).

Hence, τα is well defined. By virtue of Lemma 3.1.5, there exists a matrix Yα ∈

Mn1·nα1 ···nαh
such that

τα(A1 ⊗ Aα1 ⊗ · · · ⊗ Aαh
) = tr (Y t

α(A1 ⊗ Aα1 ⊗ · · · ⊗ Aαh
)) (3.71)

for allA1 ∈ Mn1 andAα1 ∈ Mnα1
, . . . , Aαh

∈ Mnαh
. It follows from (3.70)–(3.71) that

In1 ⊗

 n1∑
p,q=1

k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

tr ((Xp,q
α )t (apq ⊗h

i=1 Aαi
))(⊗k

i=2Ai)α


=

k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

(
n1∑

p,q=1

tr ((Xp,q
α )t (apq ⊗h

i=1 Aαi
))

)
(In1 ⊗ (⊗k

i=2Ai)α)

=
k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

τα(A1 ⊗ Aα1 ⊗ · · · ⊗ Aαh
)(In1 ⊗ (⊗k

i=2Ai)α)

=
k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

tr (Y t
α(A1 ⊗ Aα1 ⊗ · · · ⊗ Aαh

))(In1 ⊗ (⊗k
i=2Ai)α)
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for all A1 = (apq) ∈ Mn1 and A2 ∈ Mn2 , . . . , Ak ∈ Mnk
. For each α = (α1, . . . , αh) ∈

Q∗
h,k with 1 ⩽ h ⩽ k − 2, we denote (1, α) = (1, α1, . . . , αh) ∈ Qh+1,k and H(1,α) =

Yα ∈ Mn1·nα1 ···nαh
. Then

In1 ⊗

 n1∑
p,q=1

k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

tr ((Xp,q
α )t (apq ⊗h

i=1 Aαi
))(⊗k

i=2Ai)α


=

k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

tr (H t
(1,α)(A1 ⊗ Aα1 ⊗ · · · ⊗ Aαh

))(⊗k
i=1Ai)(1,α)

(3.72)

for all A1 = (apq) ∈ Mn1 and A2 ∈ Mn2 , . . . , Ak ∈ Mnk
.

We are now ready to combine (3.64) and (3.65) into (3.63). Let A1 = (apq) ∈ Mn1

and let A2 ∈ Mn2 , . . . , Ak ∈ Mnk
. In view of (3.64) and (3.65), we see that

ψ(⊗k
i=1Ai) = A1 ⊗ φ(⊗k

i=2Ai) + In1⊗

(
n1∑

p,q=1

φpq(apq ⊗k
i=2 Ai)

)

= A1 ⊗

λ(⊗k
i=2Ai) + η1(⊗k

i=2Ai)IN +
k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=2Ai)α


+ In1⊗

(
n1∑

p,q=1

λpq(apq ⊗k
i=2 Ai)

)
+ In1⊗

(
n1∑

p,q=1

ηpq(apq ⊗k
i=2 Ai)IN

)

+ In1⊗

 n1∑
p,q=1

k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

tr ((Xp,q
α )t (apq ⊗h

i=1 Aαi
))(⊗k

i=2Ai)α

 .

It follows from (3.66)–(3.69) and (3.72) that

ψ(⊗k
i=1Ai) = λ(⊗k

i=1Ai) + tr (H t
(2,...,k)(⊗k

i=2Ai))(⊗k
i=1Ai)(2,...,k)

+
k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=1Ai)α

+ tr (H t
(1)A1)(⊗k

i=1Ai)(1) + µ(⊗k
i=1Ai)In1···nk

+
k−2∑
h=1

∑
α=(αi)∈Q∗

h,k

tr (H t
(1,α)(A1 ⊗ Aα1 ⊗ · · · ⊗ Aαh

))(⊗k
i=1Ai)(1,α)

= λ(⊗k
i=1Ai) + µ(⊗k

i=1Ai)In1···nk
+

k−1∑
h=1

∑
α=(αi)∈Qh,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=1Ai)α

for all A1 ∈ Mn1 , . . . , Ak ∈ Mnk
. This completes the proof.
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3.3 Remarks

First, one may ask why the set

S1,n =
{
Est + αEpq : α ∈ F and 1 ⩽ p, q, s, t ⩽ n are not all distinct integers

}

is considered in Theorem 3.1.3. The reason is, inspired by the set

Y =
{
αEpq + βEps or αEpq + βEsq : α, β ∈ F and 1 ⩽ p, q, s ⩽ n are integers

}

in Franca (2017), we want to choose a set which looks alike such that commuting additive

maps on the particular set are of the standard form. It should be noted that commuting

additive maps on Y are not necessarily of the standard form, see (Franca, 2017, Theorem

15) and (Franca, 2013, Example 1). The condition 1 ⩽ p, q, s, t ⩽ n are not all distinct

in S1,n implies that there are at most three distinct integers, which is also the case for

1 ⩽ p, q, s ⩽ n in Y .

We end our discussion with a review of the structural form as illustrated in (3.61). Let

m,n ⩾ 2 be integers and let ψ : Mm

⊗
Mn → Mm

⊗
Mn be the additive map defined

by

ψ(A⊗B) = φ1(A)⊗ φ2(B) for all A ∈ Mm, B ∈ Mn, (3.73)

where φ1 : Mm → Mm is a commuting additive map on Mm and φ2 : Mn → Mn is

a commuting additive map on Mn. Clearly, ψ is commuting on D(Mm

⊗
Mn), so ψ

is commuting on S2
1 . Then it can be represented in form (3.61). One may ask whether

commuting additive maps on D(Mm

⊗
Mn) of form (3.61) can always be represented

as in form (3.73). Unfortunately, the answer is negative in general. For example, we

consider additive maps ψ1, ψ2 : Mm

⊗
Mn → Mm

⊗
Mn defined by

ψ1(A⊗B) = tr (E(m)
11 A)(Im ⊗B) + tr (E(n)

22 B)(A⊗ In),

ψ2(A⊗B) = A⊗B + µ(A⊗B)Imn

for all A ∈ Mm, B ∈ Mn, where µ : Mm

⊗
Mn → F is the linear functional defined
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by

µ(E
(m)
ij ⊗ E

(n)
st ) =


1 if (i, j) = (1, 1), (s, t) = (2, 2),

0 otherwise.

It is easily checked that both maps ψ1 and ψ2 are commuting on D(Mm

⊗
Mn). Note

that both

ψ1(E
(m)
11 ⊗E(n)

22 ) = E
(m)
11 ⊗In+Im⊗E(n)

22 and ψ2(E
(m)
11 ⊗E(n)

22 ) = E
(m)
11 ⊗E(n)

22 +Im⊗In

are not expressible as decomposable tensors. If, however, ψi, i = 1, 2 can be represented

as in form (3.73), then ψi(E
(m)
11 ⊗ E

(n)
22 ) = φ1(E

(m)
11 ) ⊗ φ2(E

(n)
22 ) yields a decomposable

tensor independent of choices of φ1 and φ2, a contradiction.
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CHAPTER 4: COMMUTING ADDITIVE MAPS ON TENSOR PRODUCTS OF
FIXEDRANKMATRICES

As an application of Theorems 3.1.3 and 3.2.2, we now turn our attention to study

commuting additive maps ψ :
⊗k

i=1Mni
→
⊗k

i=1Mni
on tensor products of k fixed

rank matrices. A matrix A ∈ Mn, n ⩾ 2, is said to be of bounded rank two if A is of

rank at most two. We look at some preliminary results before we prove the main results.

4.1 Preliminary Results

Lemma 4.1.1. Let F be a field and let n ⩾ 2 be an integer. Let 1 < r ⩽ n be a fixed

integer such that r ̸= n when |F| = 2. Then each nonzero bounded rank two matrix in

Mn can be represented by a sum of three rank r matrices in Mn among which the sum

of any two is of rank r.

Proof. Let A ∈ Mn. We argue in the following two cases.

Case I: A is of rank one. Since two matrices are equivalent if and only if they have the

same rank, we assume without loss of generality that A = E11. Consider first r = n. We

let α ∈ F\{0, 1} and select

X1 = E11 +
n∑

i=1

Ei,n+1−i, Y1 = −
n∑

i=1

αEi,n+1−i, Z1 =
n∑

i=1

(α− 1)Ei,n+1−i.

Then X1, Y1, Z1 are of rank n such that A = X1 + Y1 + Z1 and among which the sum of

any two is of rank n. Consider now 1 < r < n. We select

X2 = −E1,r+1 +
r∑

i=1

Eii, Y2 = E1,r+1 +
r∑

i=1

Ei,i+1, Z2 = −
r∑

i=2

Eii −
r∑

i=1

Ei,i+1.

Then X2, Y2, Z2 are of rank r such that A = X2 + Y2 + Z2 and among which the sum of

any two is of rank r.

Case II: A is of rank two. We may assume A = E11 + E22. Consider r = n. We let

α ∈ F\{0, 1} and select

X3 = E11 + E12 + E21 + αE22 −
n∑

i=3

Eii, Y3 = αE11 +
n∑

i=2

(1− α)Eii,
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Z3 = −αE11 − E12 − E21 +
n∑

i=3

αEii.

Then X3, Y3, Z3 are of rank n such that A = X3 + Y3 + Z3 and among which the sum of

any two is of rank n. Consider now 1 < r < n. We take

X4 = −E1,r+1 + E21 +
r∑

i=1

Eii, Y4 = E1,r+1 +
r∑

i=1

Ei,i+1,

Z4 = −E21 −
r∑

i=3

Eii −
r∑

i=1

Ei,i+1.

Then X4, Y4, Z4 are of rank r such that A = X4 + Y4 + Z4 and among which the sum of

any two is of rank r as required.

It should be noted that the idea of the proof of Lemma 4.1.1 has been mentioned in Xu

and Yi (2014). Our proof is a different approach. The following lemma is due to Lemmas

2.3 and 2.4 in Xu and Yi (2014).

Lemma 4.1.2. (Xu & Yi, 2014, Lemmas 2.3 and 2.4) Let F be the field of two elements

and let n ⩾ 3 be an integer. Then each rank two matrix in Mn can be represented by a

sum of three rank n matrices inMn among which the sum of any two is of rank n.

Lemma 4.1.3. Let k ⩾ 1 and n1, . . . , nk ⩾ 2 be integers. LetAi1, Ai2, Ai3 ∈ Mni
for i =

1, . . . , k. Ifψ :
⊗k

i=1Mni
→
⊗k

i=1Mni
is an additive map such that [ψ(⊗k

i=1Zi),⊗k
i=1Zi]

= 0 for all Zi ∈ {Ai1, Ai2, Ai3, Ai1 + Ai2, Ai1 + Ai3, Ai2 + Ai3}, i = 1, . . . , k, then

[ψ(⊗k
i=1(Ai1 + Ai2 + Ai3)),⊗k

i=1(Ai1 + Ai2 + Ai3)] = 0.

Proof. We denote Hi = {Ai1, Ai2, Ai3, Ai1 + Ai2, Ai1 + Ai3, Ai2 + Ai3} and Xi =

Ai1 + Ai2 + Ai3 for i = 1, . . . , k. We claim that for each integer 1 ⩽ h ⩽ k,

[ψ((⊗h
i=1Xi)⊗ (⊗k

i=h+1Zi)), (⊗h
i=1Xi)⊗ (⊗k

i=h+1Zi)] = 0 (4.1)

for all Zi ∈ Hi, i = h + 1, . . . , k. We argue by induction on h. Consider h = 1. Let

1 ⩽ s, t ⩽ 3 be distinct integers and let Zi ∈ Hi for i = 2, . . . , k. For simplicity, we
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denote Z = ⊗k
i=2Zi. Since [ψ(Y ⊗Z), Y ⊗Z] = 0 for all Y ∈ {A1s+A1t, A1s, A1t}, we

get [ψ(A1s⊗Z), A1t⊗Z]+[ψ(A1t⊗Z), A1s⊗Z] = 0 for all distinct integers 1 ⩽ s, t ⩽ 3.

Thus

[ψ(X1 ⊗ Z), X1 ⊗ Z] =
3∑

i=1

[ψ(A1i ⊗ Z), A1i ⊗ Z]

+
∑

1⩽i<j⩽3

[ψ(A1i ⊗ Z), A1j ⊗ Z] + [ψ(A1j ⊗ Z), A1i ⊗ Z]

= 0

for all Z = ⊗k
i=2Zi and Zi ∈ Hi, i = 2, . . . , k. This validates the base case h = 1. If

k = 1, then the proof is complete. Consider now k ⩾ 2. Suppose that h ⩾ 2 and that

assertion (4.1) holds for h − 1. Let 1 ⩽ s, t ⩽ 3 be distinct integers and let Zi ∈ Hi

for i = h + 1, . . . , k. For simplicity, we denote X = ⊗h−1
i=1Xi andW = ⊗k

i=h+1Zi. The

induction hypothesis guarantees

[ψ(X ⊗ Y ⊗W ), X ⊗ Y ⊗W ] = 0

for all Y ∈ {Ahs +Aht, Ahs, Aht}. It follows that [ψ(X ⊗Ahs ⊗W ), X ⊗Aht ⊗W ] +

[ψ(X⊗Aht⊗W ), X⊗Ahs⊗W ] = 0 for all distinct integers 1 ⩽ s, t ⩽ 3. Consequently,

[ψ(X ⊗Xh ⊗W ), X ⊗Xh ⊗W ]

=
3∑

i=1

[ψ(X ⊗ Ahi ⊗W ), X ⊗ Ahi ⊗W ]

+
∑

1⩽i<j⩽3

[ψ(X ⊗ Ahi ⊗W ), X ⊗ Ahj ⊗W ] + [ψ(X ⊗ Ahj ⊗W ), X ⊗ Ahi ⊗W ]

= 0.

Hence the inductive step is completed. By induction, we conclude that assertion (4.1) is

proved. When h = k, we get [ψ(⊗k
i=1(Ai1+Ai2+Ai3)),⊗k

i=1(Ai1+Ai2+Ai3)] = 0.
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4.2 Main Results

We are now ready to prove the main results.

Theorem 4.2.1. Let F be a field and let n ⩾ 2 be an integer. Let 1 < r ⩽ n be a fixed

integer such that r ̸= n when n = 2 and |F| = 2. Then ψ : Mn → Mn is a commuting

additive map on rank r matrices if and only if there exist a scalar λ ∈ F and an additive

map µ : Mn → F such that

ψ(A) = λA+ µ(A)In

for all A ∈ Mn.

Proof. The sufficiency is clear. For the necessity, we first claim that [ψ(A), A] = 0 for

every bounded rank two matrix A ∈ Mn. Since it is obvious that [ψ(A), A] = 0 when

A = 0, we show only [ψ(A), A] = 0 for every nonzero bounded rank twomatrixA ∈ Mn.

We argue in two cases.

Case I: 1 < r ⩽ n and r ̸= n when |F| = 2. Let A ∈ Mn be nonzero bounded

rank two. By Lemma 4.1.1, A can be represented by a sum of three rank r matrices in

Mn among which the sum of any two is of rank r. It follows from Lemma 4.1.3 that

[ψ(A), A] = 0 as desired.

Case II: r = n ⩾ 3 and |F| = 2. We show that

[ψ(X), X] = 0 (4.2)

for all rank two matrices X ∈ Mn. By Lemma 4.1.2, X can be represented by a sum of

three rank n matrices in Mn among which the sum of any two is of rank n. By Lemma

4.1.3, we get [ψ(X), X] = 0. Next, we show that

[ψ(Y ), Y ] = 0 (4.3)

for all rank one matrices Y ∈ Mn. Since n ⩾ 3, by Lemma 4.1.1, Y can be represented

by a sum of three rank two matrices in Mn among which the sum of any two is of rank

two. It follows from (4.2) and Lemma 4.1.3 that [ψ(Y ), Y ] = 0. Putting (4.2) and (4.3)

together, we have [ψ(A), A] = 0 for every nonzero bounded rank two matrix A ∈ Mn.
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Since S1,n is contained in the set of all bounded rank two matrices in Mn, it follows

that [ψ(A), A] = 0 for all A ∈ S1,n, and so ψ is a commuting additive map on S1,n. The

result follows immediately from Theorem 3.1.3.

Remark 4.2.2. It is noted that the assumption on r in Theorem 4.2.1 is indispensable.

Theorem 4.2.1 does not hold for the case r = 1 when n ⩾ 3 and the case r = n when

|F| = 2 = n. For example, the reader may refer to Example 1 in Franca (2013) for r = 1

when n ⩾ 3, and see Theorem 2.12 in Chooi et al. (2019) for r = n when |F| = 2 = n.

Let n ⩾ 2 and 1 ⩽ r ⩽ n be integers. We denote byRn
r the set of all rank rmatrices in

Mn. By Theorem 3.2.2, Lemmas 4.1.1, 4.1.2 and 4.1.3 and by using a similar argument

as in the proof of Theorem 4.2.1, we obtain the following result.

Theorem 4.2.3. Let F be a field and let k, n1, . . . , nk ⩾ 2 be integers. Let 1 < ri ⩽ ni

be a fixed integer such that ri ̸= ni when |F| = 2 and ni = 2 for i = 1, . . . , k. If

ψ :
⊗k

i=1Mni
→
⊗k

i=1Mni
is an additive map, then ψ satisfies

ψ(⊗k
i=1Ai)(⊗k

i=1Ai) = (⊗k
i=1Ai)ψ(⊗k

i=1Ai)

for all A1 ∈ Rn1
r1
, . . . , Ak ∈ Rnk

rk
if and only if there exist a scalar λ ∈ F, an additive

map µ :
⊗k

i=1Mni
→ F and matrices Hα ∈ Mnα1 ···nαh

for each α = (αi) ∈ Qh,k,

h = 1, . . . , k − 1, such that

ψ(⊗k
i=1Ai) = λ(⊗k

i=1Ai)+µ(⊗k
i=1Ai)In1···nk

+
k−1∑
h=1

∑
α=(αi)∈Qh,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=1Ai)α

for all A1 ∈ Mn1 , . . . , Ak ∈ Mnk
.

Proof. The sufficiency is clear. For the necessity, we first claim that [ψ(⊗k
i=1Ai),⊗k

i=1Ai]

= 0 for every bounded rank two matrix Ai ∈ Mni
, i = 1, . . . , k. Since it is obvious

that [ψ(⊗k
i=1Ai),⊗k

i=1Ai] = 0 when Ai = 0 for some integer 1 ⩽ i ⩽ k, we show

only [ψ(⊗k
i=1Ai),⊗k

i=1Ai] = 0 for every nonzero bounded rank two matrix Ai ∈ Mni
,

i = 1, . . . , k. We argue in two cases.
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Case I: |F| ⩾ 3. Let Ai ∈ Mni
be nonzero bounded rank two for i = 1, . . . , k.

By Lemma 4.1.1, each Ai can be represented by a sum of three rank ri matrices in

Mni
among which the sum of any two is of rank ri. It follows from Lemma 4.1.3

that [ψ(⊗k
i=1Ai),⊗k

i=1Ai] = 0 for every nonzero bounded rank two matrix Ai ∈ Mni
,

i = 1, . . . , k.

Case II: |F| = 2 and n1, . . . , nk ⩾ 3. We show that

[ψ(⊗k
i=1Xi),⊗k

i=1Xi] = 0 (4.4)

for all rank two matrices Xi ∈ Mni
, i = 1, . . . , k. For 1 < ri < ni, by Lemma 4.1.1,

each Xi can be represented by a sum of three rank ri matrices in Mni
among which the

sum of any two is of rank ri. For ri = ni, by Lemma 4.1.2, each Xi can be represented

by a sum of three rank ri matrices inMni
among which the sum of any two is of rank ri.

By Lemma 4.1.3, we get [ψ(⊗k
i=1Xi),⊗k

i=1Xi] = 0. Now we show that

[ψ(⊗k
i=1Ai),⊗k

i=1Ai] = 0

for all nonzero bounded rank twomatricesAi ∈ Mni
, i = 1, . . . , k. Since n1, . . . , nk ⩾ 3,

by Lemma 4.1.1, each Ai can be represented by a sum of three rank two matrices inMni

among which the sum of any two is of rank two. It follows from (4.4) and Lemma 4.1.3

that [ψ(⊗k
i=1Ai),⊗k

i=1Ai] = 0 for every nonzero bounded rank two matrix Ai ∈ Mni
,

i = 1, . . . , k, as desired.

Since Si,ni
is contained in the set of all bounded rank two matrices in Mni

for i =

1, . . . , k, it follows that [ψ(⊗k
i=1Ai),⊗k

i=1Ai] = 0 for all Ai ∈ Si,ni
, i = 1, . . . , k, and

so ψ is a commuting additive map on Sk
1 . The result follows immediately from Theorem

3.2.2.
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CHAPTER 5: CONCLUSION

In this chapter, we summarize the main results in Chapters 3 and 4 for convenience.

We also propose some potential open problems related to the study in this dissertation.

5.1 Main Results in Chapter 3

Theorem 5.1.1. Let F be a field and let n ⩾ 2 be an integer. Then ψ : Mn → Mn is a

commuting additive map on S1,n = {Est+αEpq : α ∈ F and 1 ⩽ p, q, s, t ⩽ n are not all

distinct integers} if and only if there exist a scalar λ ∈ F and an additive map µ : Mn →

F such that

ψ(A) = λA+ µ(A)In

for all A ∈ Mn.

Theorem 5.1.2. Let F be a field and let k, n1, . . . , nk ⩾ 2 be integers. Let ψ :
⊗k

i=1Mni

→
⊗k

i=1Mni
be an additive map. Then ψ is a commuting map on Sk

1 if and only if there

exist a scalar λ ∈ F, an additive map µ :
⊗k

i=1Mni
→ F and matricesHα ∈ Mnα1 ···nαh

for each α = (αi) ∈ Qh,k, h = 1, . . . , k − 1, such that

ψ(⊗k
i=1Ai) = λ(⊗k

i=1Ai)+µ(⊗k
i=1Ai)In1···nk

+
k−1∑
h=1

∑
α=(αi)∈Qh,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=1Ai)α

for all A1 ∈ Mn1 , . . . , Ak ∈ Mnk
.

In particular, when k = 2, we obtain:

Theorem 5.1.3. Let F be a field and let m,n ⩾ 2 be integers. Let ψ : Mm

⊗
Mn →

Mm

⊗
Mn be an additive map. Then ψ is a commuting map on S2

1 if and only if there

exist a scalar λ ∈ F, an additive map µ : Mm

⊗
Mn → F and matrices K ∈ Mm,

H ∈ Mn such that

ψ(A⊗B) = λ(A⊗B) + µ(A⊗B)Imn + tr (H tB)(A⊗ In) + tr (KtA)(Im ⊗B)

for all A ∈ Mm and B ∈ Mn.
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5.2 Main Results in Chapter 4

Theorem 5.2.1. Let F be a field and let n ⩾ 2 be an integer. Let 1 < r ⩽ n be a fixed

integer such that r ̸= n when n = 2 and |F| = 2. Then ψ : Mn → Mn is a commuting

additive map on rank r matrices if and only if there exist a scalar λ ∈ F and an additive

map µ : Mn → F such that

ψ(A) = λA+ µ(A)In

for all A ∈ Mn.

Theorem 5.2.2. Let F be a field and let k, n1, . . . , nk ⩾ 2 be integers. Let 1 < ri ⩽ ni

be a fixed integer such that ri ̸= ni when |F| = 2 and ni = 2 for i = 1, . . . , k. If

ψ :
⊗k

i=1Mni
→
⊗k

i=1Mni
is an additive map, then ψ satisfies

ψ(⊗k
i=1Ai)(⊗k

i=1Ai) = (⊗k
i=1Ai)ψ(⊗k

i=1Ai)

for all A1 ∈ Rn1
r1
, . . . , Ak ∈ Rnk

rk
if and only if there exist a scalar λ ∈ F, an additive

map µ :
⊗k

i=1Mni
→ F and matrices Hα ∈ Mnα1 ···nαh

for each α = (αi) ∈ Qh,k,

h = 1, . . . , k − 1, such that

ψ(⊗k
i=1Ai) = λ(⊗k

i=1Ai)+µ(⊗k
i=1Ai)In1···nk

+
k−1∑
h=1

∑
α=(αi)∈Qh,k

tr (H t
α(⊗h

i=1Aαi
))(⊗k

i=1Ai)α

for all A1 ∈ Mn1 , . . . , Ak ∈ Mnk
.

5.3 Some Open Problems

1. Determine the structure of commuting additive maps on tensor products of rank one

matrices.

2. Determine the structure of centralizing additive maps on tensor products of matrices.

3. Determine the structure of power commuting additive maps on tensor products of

matrices.

4. Determine the structure of strong commutativity additive maps on tensor products of

matrices.
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Commuting additive maps on tensor products of matrices
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ABSTRACT
Let k, n1, . . . , nk be positive integers such that ni � 2 for i =
1, . . . , k and let Mni denote the algebra of ni × ni matrices over
a field F for i = 1, . . . , k. Let

⊗k
i=1 Mni be the tensor product of

Mn1 , . . . ,Mnk . We obtain a structural characterization of additive

maps ψ :
⊗k

i=1 Mni → ⊗k
i=1 Mni satisfying

ψ

⎛
⎝ k⊗

i=1

Ai

⎞
⎠
⎛
⎝ k⊗

i=1

Ai

⎞
⎠ =

⎛
⎝ k⊗

i=1

Ai

⎞
⎠ψ

⎛
⎝ k⊗

i=1

Ai

⎞
⎠

for all A1 ∈ Sn1 , . . . ,Ak ∈ Snk , where

Sni =
{
E(ni)st + αE(ni)pq : α ∈ F,

1 � p, q, s, t � ni are not all distinct integers
}

and E(ni)st is the standard matrix unit inMni for i = 1, . . . , k. In partic-
ular, we show that ψ : Mn1 → Mn1 is an additive map commuting
on Sn1 if and only if there exist a scalar λ ∈ F and an additive map
μ : Mn1 → F such that

ψ(A) = λA + μ(A)In1

for all A ∈ Mn1 . As an application, we classify additive maps ψ :⊗k
i=1 Mni → ⊗k

i=1 Mni satisfying ψ(
⊗k

i=1 Ai)(
⊗k

i=1 Ai) = (
⊗k

i=1

Ai)ψ(
⊗k

i=1 Ai) for all A1 ∈ Rn1
r1 , . . . ,Ak ∈ Rnk

rk . Here,Rni
ri denotes the

set of rank ri matrices in Mni and each 1 < ri � ni is a fixed integer
such that ri �= ni when ni = 2 and |F| = 2 for i = 1, . . . , k.
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1. Introduction

LetA be an algebra over a fieldF and letS be a nonempty subset ofA. Amapψ : A → A
is said to be commuting onS if [ψ(a), a] = 0 for all a ∈ S , where [a, b] denotes the commu-
tator ab−ba of elements a, b ∈ A. The study of commuting maps was initiated by Posner
in the 1950s. He proved that a prime ring admitting a nonzero commuting derivationmust
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