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DYNAMIC VOLATILITY MODELLING OF CRYPTOCURRENCIES 

USING TIME-VARYING TRANSITION PROBABILITY  

MARKOV-SWITCHING MODELS 

 

ABSTRACT 

Motivated by the large price fluctuations and excessive volatility observed in 

cryptocurrency market, this research aims to model and forecast the volatility dynamics 

of cryptocurrencies. First, we adopt Bai and Perron (2003) multiple change point model 

by incorporating exogenous variables to determine the number and location of change 

points in the price series, return series and squared return series of Cryptocurrency Index, 

Cryptocurrency Index 30, and the top ten cryptocurrencies that are ranked according to 

market capitalisation. Results show that change points occur very frequently in the price 

series, followed by squared return series and return series. The change points are 

consistently observed in the periods from December 2017 to April 2018. Following these 

findings, we propose to use time-varying transition probability Markov-switching 

GARCH (TV-MSGARCH) models incorporated with logarithmic trading volume and 

Google searches series respectively as the exogenous variables to model the volatility 

dynamics of Bitcoin, Ethereum, Ripple, Bitcoin Cash and EOS. Extensive comparisons 

are carried out to compare the modelling and forecasting performances of the proposed 

model with the benchmark volatility models, which are the GARCH, GJRGARCH, 

TGARCH and MSGARCH. All of the volatility models are incorporated with three 

different error distributions, namely, normal, Student-t and generalised error. Results 

reveal that, regardless of error distributions, TV-MSGARCH models always predominate 

other volatility models for in-sample model fitting which are compared based on Akaike 

information criteria. Also, the Filardo’s weighted transition probabilities are also 

computed to assess the marginal contributions of time-varying transition probabilities of 

TV-MSGARCH models. Furthermore, it has been discovered that TV-MSGARCH model 
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generally offers the best out-of-sample forecast evaluated based on quasi-likelihood loss 

function and assessed by using Hansen’s model confidence set. Lastly, different levels of 

long and short positions of value-at-risk for GARCH model, GJRGARCH model, 

TGARCH model, MSGARCH model and TV-MSGARCH models, all incorporated with 

Student-t distribution, are calculated and tested using several backtests. 

 

Keywords: Change points, Cryptocurrency, GARCH model, Markov-switching, Time-

varying transition probability, Volatility. 
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PEMODELAN KERUAPAN DINAMIK KRIPTOWANG DENGAN MODEL 

PENSUISAN-MARKOV KEBARANGKALIAN PERALIHAN MASA-

BERBEZA  

 

ABSTRAK 

Didorong oleh turun naik harga yang besar dan keruapan berlebihan tercerap di pasaran 

kriptowang, penyelidikan ini bertujuan untuk memodel dan meramal dinamik keruapan 

kriptowang. Pertama, kami menerima pakai model titik perubahan berganda Bai dan 

Perron (2003) dengan menggabungkan pemboleh ubah eksogen untuk menentukan 

bilangan dan lokasi titik perubahan pada siri harga, siri pulangan dan siri pulangan 

terkuasa dua bagi Cryptocurrency Index, Cryptocurrency Index 30 serta sepuluh 

kriptowang teratas diatur mengikuti permodalan pasaran. Hasil kajian menunjukkan 

bahawa titik perubahan berlaku sangat kerap pada siri harga, diikuti dengan siri pulangan 

terkuasa dua dan siri pulangan. Titik perubahan telah diperhatikan secara konsisten antara 

bulan Disember 2017 hingga April 2018. Berikutan penemuan ini, kami mencadangkan 

penggunaan model pensuisan-Markov GARCH kebarangkalian peralihan masa-berbeza 

(TV-MSGARCH) yang menggabungkan logaritma jumlah dagangan dan siri carian 

Google sebagai pemboleh ubah eksogen untuk memodel dinamik keruapan Bitcoin, 

Ethereum, Ripple, Bitcoin Cash dan EOS. Perbandingan secara meluas telah dilakukan 

untuk membandingkan prestasi pemodelan dan peramalan bagi model yang dicadangkan 

dengan model keruapan penanda aras, iaitu GARCH, GJRGARCH, TGARCH dan 

MSGARCH. Kesemua model keruapan digabungkan dengan taburan ralat berbeza, iaitu 

normal, Student-t dan ralat teritlak. Hasil kajian menunjukkan bahawa apabila taburan 

ralat berbeza dipertimbangkan, model TV-MSGARCH mendominasi model keruapan 

yang lain untuk model penyuaian dalam-sampel yang dibandingkan berdasarkan kriteria 

maklumat Akaike. Di samping itu, kebarangkalian peralihan berwajaran Filardo telah 

dihitung untuk menilai sumbangan sut kesan kebarangkalian peralihan masa-berbeza 
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pada model TV-MSGARCH. Tambahan pula, didapati bahawa model TV-MSGARCH 

menawarkan ramalan luar-sampel yang terbaik dinilaikan berdasarkan fungsi kerugian 

kuasi-kebolehjadian dan dibandingkan dengan menggunakan set keyakinan model 

Hansen. Akhirnya, pelbagai tahap kedudukan panjang dan pendek nilai-berisiko bagi 

model GARCH, model GJRGARCH, model TGARCH, model MSGARCH dan model 

TV-MSGARCH dengan menggabungkan taburan Student-t telah dihitung dan hasilnya 

telah diuji dengan beberapa ujian ke-belakang. 

 

Kata kunci: Titik perubahan, Kriptowang, Model GARCH, Pensuisan-Markov, 

Kebarangkalian peralihan masa-berbeza, Keruapan. 
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CHAPTER 1 : INTRODUCTION 

1.1  Background of study 

Cryptocurrency market is a new investment opportunity that attracts tremendous 

public attention. Cryptocurrency represents a revolution of monetary system and is 

designed to work as a medium of exchange by encrypting the technique of cryptography 

to secure transactions without any third-party interference as opposed to central banking 

system. As the blockchain technology behind the cryptocurrency becomes more mature 

and receive widespread acceptance, we believe that cryptocurrency would develop as an 

appealing alternative to the existing monetary system which is inevitable in this digital 

era. Nevertheless, for cryptocurrency to be practically acceptable, the cryptocurrency 

regulations ought to be launched and studied sophisticatedly. Since the transactions of 

cryptocurrencies are anonymous, cryptocurrencies may be abused for money laundering 

activities, terrorism financing, human trafficking and other major social threats. 

Nonetheless, countries including Japan, Malaysia, Singapore, China, Spain, Germany, 

India, the Philippines, the United States and South Korea are actively working on 

cryptocurrency regulation establishments in order to provide a sustainable environment 

for the market participants. 

The first cryptocurrency, Bitcoin (BTC), was launched in year 2009 by an individual 

or a group known as Satoshi Nakamoto, whose identity is still unknown to date 

(Nakamoto, 2008). The explosion of interest in BTC has induced the development of 

other cryptocurrencies, collectively known as “altcoins”, an abbreviation for “alternate 

coins”. There are more than two thousand cryptocurrencies circulating in the market at 

present (last checked on CoinMarketCap, 30 April 2018) with BTC marking a significant 

market capitalisation of 37.04% and the combined market capitalisation of the top five 

cryptocurrencies, namely BTC, Ethereum (ETH), Ripple (XRP), Bitcoin Cash (BCH) and 
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EOS is 69.56%. Fascinatingly, over the past few years, none of the altcoins ever 

jeopardise the dominance of BTC and BTC always remains as the largest and most 

popular cryptocurrencies of all. Nevertheless, altcoins have not garnered consistent 

interest levels for all time with their market rankings keep changing and portray high 

turnover rates (Elbahrawy et al., 2017). 

Amid public interest on cryptocurrencies start to prominently emerge only when the 

market appears to portray radical and wild price dynamics with high-profit opportunities. 

A brief walk through on the prices of BTC over recent years calls attention to the highly 

volatile nature of cryptocurrencies. At the beginning of year 2017, the price of BTC was 

about 900 U.S. dollar which then surpassed 5000 U.S. dollar in October 2017. Few 

months later, BTC price skyrocketed to nearly 20000 U.S. dollar in January 2018. The 

sudden surge of interest and the high returns of BTC had undoubtedly drawn a great 

number of investors into the market. The entire cryptocurrency market capitalisation was 

approximated at 700 billion U.S. dollar in January 2018 with half of the capitals invested 

in BTC.  

The massive growth in the cryptocurrency market however is accompanied by risks 

and huge uncertainty. No sooner than that, the entire market impulsively started to 

depreciate and overwhelmed by bearish episodes. The prices of BTC depreciated to 

around 9000 U.S. dollar at 30 April 2018 (our data end point) with the total market 

capitalisation of cryptocurrency dropped to nearly 400 billion U.S. dollar. The 

cryptocurrency market lost almost half of the capitals in only four months. In fact, 

cryptocurrency market has experienced instability since then, with bullish phases and 

bearish phases interchange invariably. Besides, the unique price dynamics seen in 

cryptocurrency market behave distinctly compared to other traditional financial markets. 

With that, cryptocurrencies are also known to be great investment tools for portfolio 
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diversification which render potential benefits to the investors (Briere et al., 2015). 

Therefore, it is extremely vital to study the underlying risks bear by the investors and the 

dynamics of volatility in cryptocurrencies for both academic and practical purposes.  

To our knowledge, the existing literatures on the topics of volatility focus mainly on 

the dominant cryptocurrency, BTC. Thus, this research aims to provide a comprehensive 

analysis on the volatility modelling of a class of cryptocurrencies which covers a wider 

selection of cryptocurrencies preferred based on their market capitalisation to gain            

in-depth knowledge on the cryptocurrency market. 

1.2  Problem statement 

The massive growth of cryptocurrency market has offered an alternative opportunity 

to investors. However, investors are also exposed to excessive risks due to its price 

unpredictability whereby the price direction and market dynamics are complex to 

comprehend resulting in high volatility features. Given the complexity of cryptocurrency 

market, modelling and forecasting the volatility of cryptocurrencies are therefore 

essential to foster a better understanding on the volatility dynamics for the purpose of risk 

management practices. A comprehensive study on the volatility of cryptocurrency market 

is undeniably a necessity to provide an analytical review for financial practitioners in all 

aspects given its potential in future monetary and banking system.  

1.3  Objectives 

This research comprises four objectives as listed in the following:  

• To provide evidence of the existence of change points in price, return and squared 

return series of cryptocurrencies. 
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• To develop two-regime time-varying transition probability Markov-switching 

GARCH (TV-MSGARCH) model incorporated with exogenous variables to 

estimate and forecast the volatility of cryptocurrencies. 

• To compare the cryptocurrencies volatility estimation and forecasting 

performances of the TV-MSGARCH model with Markov-switching GARCH 

(MSGARCH) model and GARCH-type models, by evaluating their performances 

using various criteria. 

• To derive the value-at-risk (VaR) of the TV-MSGARCH models.  

1.4  Dissertation outline 

The structure of the dissertation is organised as follows. Chapter 2 provides a 

comprehensive literature on the volatility modelling of cryptocurrencies and briefs 

through the background of Markov-switching model. Then, the factors driving the prices 

of cryptocurrencies are also discussed. Chapter 3 introduces the cryptocurrency data used 

in this research and the descriptive statistics of the respective cryptocurrencies are 

provided. In Chapter 4, multiple change point model is used to detect the existence of 

change points in the price, return and squared return series of cryptocurrencies. The 

introduction of GARCH-type models and its extensions to MSGARCH model and        

TV-MSGARCH model are provided in Chapter 5 together with different distributions for 

errors, namely normal, Student-t and generalised error. Then, the formulations of VaR for 

the proposed model and the existing models are derived and the VaR estimates evaluated 

using various tests are discussed. Chapter 6 discusses and compares the in-sample model 

fitting performances of the various volatility models based on different criteria. The 

contribution of time-varying transition probabilities in TV-MSGARCH model is assessed 

via the computation of weighted transition probabilities. Chapter 7 compares the 

forecasting performances of various volatility models based on quasi-likelihood (QLIKE) 

loss function and then tested using model confidence set (MCS) procedure. VaR forecasts 
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are also calculated and tested using several backtests. Chapter 8 provides conclusion and 

remarks for this research and offers recommendations for future researches. 
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CHAPTER 2 : LITERATURE REVIEW 

2.1  Introduction 

One of the interesting aspects of cryptocurrency market is the unpredictability 

indicated by its dramatic price changes and the high underlying volatility. It is reported 

that the volatility of BTC is seven times higher than that of gold, eight times higher than 

Standard and Poor 500 (S&P 500) index and eighteen times greater than the U.S. dollar 

(Williams, 2014). The volatility of BTC is also known to be larger than a set of foreign 

currencies in the U.S. dollar (Dwyer, 2015). Particularly, Chaim and Laurini (2018) 

recorded two high volatility periods of BTC, from late 2013 to early 2014 and in 

December 2017. 

Statistically speaking, volatility is referred to as the conditional standard deviation of 

returns. It is commonly used in the financial strategies to calculate the uncertainty of any 

financial decisions. To provide a deeper understanding on the nature of volatility in the 

returns of cryptocurrencies, Philip et al. (2018) considered a vast selection of 224 

cryptocurrencies in their studies and provided evidence of cryptocurrencies exhibiting 

unique properties such as long memory, leverage and are heavy-tailed. Besides, 

cryptocurrencies also appear to display volatility clustering property in which the 

conditional volatilities are significantly affected by both past shocks and past conditional 

volatilities (Katsiampa, 2019). The author also found leverage effect between good and 

bad news in BTC, ETH, XRP and Litecoin (LTC). By leverage effect, it means that the 

volatility increases more after bad news than after good news. In fact, volatility clustering 

and leverage effect are commonly seen in financial series and the most popular systematic 

framework for such volatility modelling mostly work on the basis of autoregressive 

conditional heteroscedasticity (ARCH) model by Engle (1982) and the generalised 

autoregressive conditional heteroscedasticity (GARCH) model by Bollerslev (1986).  
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2.2  Cryptocurrencies modelling and applications 

In the most recent studies, various GARCH-type models have been widely employed 

in different research topics on cryptocurrencies. For instance, asymmetric GARCH 

(AGARCH) model is used to explore the financial ability of BTC to be used for hedging 

(Dyhrberg, 2016) and fractionally integrated GARCH (FIGARCH) model is used to study 

the long-range memory property in seven BTC markets (Lahmiri et al., 2018). In the 

attempt to study the volatility dynamics of cryptocurrencies returns, Katsiampa (2017) 

fitted six GARCH-type models to BTC return series and discovered that the component 

GARCH (CGARCH) model gave the best optimal fit. Chu et al. (2017) extended the work 

by considering twelve GARCH-type models with different error distributions to the return 

series of seven cryptocurrencies including BTC, XRP and LTC. Their work suggested 

integrated GARCH (IGARCH) model incorporated with normal error distribution is the 

best fitted volatility model for BTC and LTC; whereas standard GARCH model 

incorporated with normal error distribution is the best fitted volatility model for XRP. 

Nevertheless, it is known that IGARCH model might be biasedly chosen as the best 

volatility model when the change points found in return series are not accounted for which 

may give rise to false impression on high persistency in the return series (Caporale et al., 

2003; Mikosch & Starica, 2004). 

Change points are detected when the probability distribution of a stochastic time 

process experiences changes and can also be referred to as the unexpected change in the 

parameters of a regression model. Failure to recognise change points can lead to huge 

forecasting errors and the unreliability of the model. The central issue of change point 

detection is to ensure the stability of model coefficients for the entire sample periods. 

Discussed by Bariviera et al. (2017), it is observed that BTC return series experiences 

great swings during the period of their study which they then concluded to be the reason 

behind the feature of large volatility in BTC. In particular, previous studies have found 
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prominent statistical changes in cryptocurrencies which further give hint on the presence 

of change points in cryptocurrencies. For instance, Bouoiyour and Selmi (2016) found a 

pronounced volatility change at January 2015, the period when the volatility of BTC 

began to decline at a rapid pace. To overcome this statistical change, they separated BTC 

return series at January 2015 and fitted nine GARCH-type models to the two segmented 

returns. The best fitted models are the component with multiple threshold GARCH 

(CMTGARCH) model for prior 2015 return segment and the asymmetric power GARCH 

(APGARCH) model for post 2015 return segment. Bouri et al. (2017), on the other hand, 

found evidence of change points around December 2013 (during the BTC price crash), 

detected by using Bai and Perron (2003) method. They utilised AGARCH model to test 

the asymmetric effect of shocks on BTC volatility for the periods before the price crash 

and after the price crash. It was discovered that the BTC return series portrayed inverse 

asymmetric (safe heaven) property in the pre-crash period and showed asymmetric 

property in the post-crash period. To investigate the stability of the return and volatility 

of BTC, Thies & Mólnar (2018) applied Bayesian change point model and recorded  

forty-eight change points in BTC return series. Furthermore, Bouri et al. (2019a) studied 

the impact of change points in the stagnancy of BTC price level and its volatility of two 

markets, namely Bitstamp and Coindesk, by using logarithmic price series, squared return 

series and absolute return series. By adopting Bai and Perron (2003) method but restricted 

to a maximum of five change points only, the authors reported four and five change points 

respectively in Bitstamp and Coindesk markets. In addition, Katsiampa (2019) also found 

that change points are present in the conditional volatility of BTC and LTC. Regardless, 

the complex underlying dynamics of cryptocurrencies due to its fast-changing and 

speculative nature are the motivations of this dissertation. 
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2.3  Markov-switching volatility models 

It is well-known that traditional return-based models are prone to demonstrate high 

persistency in the conditional volatility (Hamilton & Susmel, 1994; Gray, 1996) which 

may indicate biasness if the series displays structural break (Bauwens et al., 2014b). 

Mensi et al. (2019) highlighted that the presence of change points in the mean and 

variance of BTC series can result in persistence overestimation if the change points are 

not accounted for. With that, Markov-switching models are suggested instead. Pioneered 

by Hamilton & Susmel (1994), Markov-switching GARCH (MSGARCH) model is 

ideally reported to be capable of accounting for the high persistency and poor forecasting 

performance problem when traditional single-regime GARCH-type models are employed. 

For instance, Ardia et al. (2019) showed that two-regime MSGARCH model outperforms 

single-regime GARCH model and single-regime Glosten-Jagannathan-Runkle GARCH 

(GJRGARCH) model in both in-sample and out-of-sample BTC volatility modelling. 

Caporale & Zekokh (2019) offered a similar conclusion such that the two-regime 

MSGARCH models provide better volatility forecasting estimates than those single-

regime GARCH models for BTC, ETH, XRP and LTC. Nevertheless, it is worth noting 

that the extensive discussions of these results are focused mainly on the application of 

constant transition probability for the entire period. The plausibility of the transition 

probabilities that can be time-varying over time is not addressed and is still lacking in the 

previous literature. 

The switch of conditional volatility between states or regimes for MSGARCH model 

is governed by transition probabilities which remain constant for all time ". Noteworthy, 

financial time series often undergoes series of alternating calm and turbulent periods. 

Diebold et al. (1994) and Filardo (1994) noted that the constant transition probability is 

too restrictive for some empirical settings which may not be appropriate to capture 

complex statistical features and suggested the use of time-varying transition probability 
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(TVTP) alternatively. The transition probability may evolve as either a logistic function 

or a probit function of a series of exogenous variables or lagged dependent variables 

which are time-varying. The use of time-varying transition probability MSGARCH     

(TV-MSGARCH) model is found to be capable of providing a better fit compared to 

MSGARCH model (Bazzi et al., 2017). In this respect, we are keen to answer the research 

question of whether by incorporating the drivers of cryptocurrencies price dynamics as 

the exogenous variables in TV-MSGARCH model would help to increase the model 

flexibility in explaining the volatility of cryptocurrencies. 

2.4  Determinants of cryptocurrencies prices 

Empirical studies have been put forward in an attempt to determine the drivers of 

cryptocurrencies price dynamics. The identified factors affecting BTC prices include 

fundamentals such as supply and demand of BTC; and speculation (Ciaian et al., 2016). 

The utility of BTC in trades and exchange activities contributes to the holdings of BTC 

resulting in its price appreciation in the long term (Bouoiyour & Selmi, 2015).               

Baek and Elbeck (2015) discovered the volatility of BTC is driven mainly by its buyers 

and sellers rather than by the fundamental economic factors. But without institutional 

support and backing, the fundamental value of BTC is simply zero (Cheah & Fry, 2015). 

Investor’s attention is the direct contribution to the price dynamics of most financial assets 

and Google searches series, which are obtained directly from Google Trends, are reported 

to be the optimal indicator to measure such attention (Da et al., 2011). Discovered by 

Andrei and Hasler (2015), the volatility of returns and risk premium are directly related 

to investor’s attention proxied by Google searches series. BTC price dynamics also 

appear to be particularly susceptible to the market sentiments, volume of transactions and 

public interests measured by the number of searches for “Bitcoin” from Google Trends 

(Kristoufek, 2015; Parino et al., 2018). Urquhart (2018) who utilised Google Trends as 

the proxy for BTC attention, realised that previous day volatility and trading volume are 
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the significant drivers that attract investors to BTC. A similar conclusion was also drawn 

by Aalborg et al. (2019). The authors discovered that the trading volume can improve the 

volatility model for BTC when the trading volume is predicted from Google Trends. 

Additionally, Bouri et al. (2019b) studied the impact of trading volume to the returns and 

volatility of seven cryptocurrencies including BTC, ETH, XRP and LTC. Their work 

showed that trading volume has predictive power on the returns of cryptocurrencies at 

extreme events while trading volume can only be used to forecast volatility on selected 

cryptocurrencies when the volatility is low. Besides, Katsiampa (2019) noticed that 

cryptocurrencies volatility dynamics are responsive to major news. More specifically, 

Corbet et al. (2019) and Panagiotidis et al. (2019) provided a more comprehensive and 

systematic review of the cryptocurrency market on major academic research. 
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CHAPTER 3 : DATA SETS 

This chapter discusses the data used in this research, starting with the introduction of 

cryptocurrency indices and the top five cryptocurrencies ranked according to market 

capitalisation. This chapter also discusses the cryptocurrencies trading volume data and 

Google searches series data. The trading volume and Google searches series are found to 

be the exogenous variables that can impact the cryptocurrency series. 

3.1  Cryptocurrency indices 

Financial market indices are often used as the tool or indicator to provide an insight to 

a specified market segment. Indices conventionally comprise a hypothetical constituent 

of securities that represents a particular market. With the increasing interest in 

cryptocurrency market, cryptocurrency indices are proposed to act as a benchmark index 

designed to monitor the overall market performance. In this respect, the following 

subsections introduce two types of cryptocurrency indices: Cryptocurrency Index (CRIX) 

and Cryptocurrency Index 30 (CCI30). 

3.1.1  Cryptocurrency Index 

Cryptocurrency Index (CRIX) was introduced by Trimborn and Härdle (2016). The 

number of constituents in the index are chosen in steps of five based on a lengthy          

time-varying selection method that relies on Akaike information criteria (AIC). The base 

number for CRIX is 1000 and the index is rebalanced every month and reconstituted every 

quarter. CRIX data which spans from 8 August 2014 to 30 April 2018, are retrieved from 

the official website on daily basis, http://crix.hu-berlin.de, resulting in 1362 observations. 

3.1.2  Cryptocurrency Index 30 

Cryptocurrency Index 30 (CCI30) was proposed by Rivin and Scevola (2018). Unlike 

CRIX, the constituents of CCI30 are always chosen to be the first 30 cryptocurrencies 
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ranked according to the market capitalisation. The base number for CCI30 is 100 and 

similarly, the index is rebalanced every month and reconstituted every quarter. CCI30 

data which starts from 9 January 2015 to 30 April 2018, are retrieved from the official 

website on daily basis, https://cci30.com, resulting in 1208 observations.  

3.2  Top five cryptocurrencies 

The top five cryptocurrencies are BTC, ETH, XRP, BCH and EOS ranked according 

to market capitalisation as at 30 April 2018 and contributed to a combined market share 

of 69.56% at the time. The historical data are retrieved from the most popular site for 

cryptocurrency information, CoinMarketCap (www.coinmarketcap.com). There are three 

financial time series used in this research, namely price series, return series (obtained by 

taking the difference of two consecutive log prices) and squared return series (computed 

by taking the square of return series). All data starts from the first day of availability and 

ends on 30 April 2018 as described in Table 3.1. 

Table 3.1: Data counts for the cryptocurrency indices and cryptocurrencies. 

Cryptocurrencies Data starts from Counts 
CRIX 8/8/2014 1362 

CCI30 9/1/2015 1209 

BTC 1/8/2010 2830 

ETH 13/8/2015 992 

XRP 28/1/2015 1190 

BCH 7/8/2017 267 

EOS 5/7/2017 300 

 

The daily returns summary statistics of the cryptocurrency indices and the top five 

cryptocurrencies are provided in Table 3.2. Noteworthy, CRIX and CCI30 display 

distinctive characteristic in the sense that CRIX shows positive skewness while CCI30 

shows negative skewness. Besides, as indicated by the mean and median of the 

cryptocurrencies, it is discovered that cryptocurrencies will earn below its expected return 

more than 50% of the time, except CCI30. On average, the expected gain in EOS is the 
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highest among all, followed by ETH and BCH. The turbulent behaviour of cryptocurrency 

market can also be examined from Table 3.2. For instance, BTC and XRP both show 

lucrative profit in which the highest return recorded in a single day is 147.44% and 102.80% 

respectively. However, the promising profits are also accompanied by severe potential 

losses such that the lowest return recorded in a single day for BTC and XRP is -84.88% 

and -99.73% respectively. Finally, all of the cryptocurrencies display features such as 

leptokurtic distribution with kurtosis higher than normal distribution and are positively-

skewed. 

Table 3.2: Summary statistics of daily returns of the cryptocurrency indices and 

cryptocurrencies. 

Cryptocurrencies Min 1st Q Median Mean 3rd Q Max Kurtosis Skewness 

CRIX -0.1985 -0.0180 -0.0028 -0.0025 0.0101 0.2533 9.7044 0.7340 

CCI30 -0.2643 -0.0103 0.0041 0.0039 0.0212 0.1783 8.8504 -0.7631 

BTC -0.8488 -0.0133 0.0020 0.0042 0.0230 1.4744 96.9268 3.0230 

ETH -0.3101 -0.0283 0.0000 0.0059 0.0372 0.3830 6.2779 0.1070 

XRP -0.9973 -0.0342 -0.0130 0.0033 0.0279 1.0280 22.5110 0.7420 

BCH -0.3068 -0.0518 -0.0082 0.0053 0.0521 0.4379 6.5221 0.8634 

EOS -0.3521 -0.0489 -0.0053 0.0063 0.0528 0.3598 4.9056 0.3915 

Note: Min refers to the minimum of returns, 1st Q refers to the first quantile of returns, 3rd Q refers to the 

third quantile of returns and Max refers to the maximum of returns. 

 

For illustration purpose, Figures 3.1 to 3.7 present the price, return and squared return 

series of the two cryptocurrency indices and the top five cryptocurrencies. The vertical 

dotted lines represent the location of the estimated change points while the red line is the 

fitted line estimated using Eq. (4.2) in the presence of change points which will be further 

discussed in Chapter 4. 

The large fluctuation of cryptocurrency market can be observed by the strikingly sharp 

increment in price since year 2017, which was then quickly followed by an abrupt 

depreciation in year 2018 demonstrated by both CRIX and CCI30 indices and the other 
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cryptocurrencies. Correspondingly, spikes are also noticed in return series and squared 

return series indicating a high volatility level for the cryptocurrency market.  

 
Figure 3.1: (a) CRIX price series, (b) CRIX return series and (c) CRIX squared 
return series. 
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Figure 3.2: (a) CCI30 price series, (b) CCI30 return series and (c) CCI30 squared 

return series. 
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Figure 3.3: (a) BTC price series, (b) BTC return series and (c) BTC squared return 
series. 
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Figure 3.4: (a) ETH price series, (b) ETH return series and (c) ETH squared return 
series. 
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Figure 3.5: (a) XRP price series, (b) XRP return series and (c) XRP squared return 

series. 
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Figure 3.6: (a) BCH price series, (b) BCH return series and (c) BCH squared return 
series. 
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Figure 3.7: (a) EOS price series, (b) EOS return series and (c) EOS squared return 

series. 
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3.3  Trading volume  

Existing literatures tend to relate the feature of high volatility of cryptocurrencies to 

their trading volume. Trading volume is the total number of cryptocurrencies traded over 

a specified period measured in terms of the current prices in U.S. dollar. An increase in 

the trading volume implies an increase of interest level in the cryptocurrencies, which 

may be influenced by either good or bad news. Bouri et al. (2019b) provided evidence 

such that the cryptocurrency trading volume contains useful information to predict returns 

but only on extreme market conditions. Our results in Chapter 4 also show that trading 

volume can be used to explain the dynamic of the price series, return series and squared 

return series of cryptocurrencies. With that, trading volume is incorporated as one of the 

exogenous variables for TV-MSGARCH model used in Eq. (5.13) in Chapter 5, to 

determine whether the trading volume can help to increase the flexibility of the traditional 

volatility models and thus, can better explain the volatility of cryptocurrencies. 

The daily data of cryptocurrencies trading volume are collected from the same source 

where prices are retrieved, CoinMarketCap (www.coinmarketcap.com). The raw data of 

trading volume exhibits explosive exponential behaviour which might not be appropriate 

to be directly used in the modelling and forecasting application. Instead, natural 

logarithmic transformation is applied to the raw data of trading volume. Figures 3.8 to 

3.12 illustrate the trading volume and log trading volume for the top five cryptocurrencies. 
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Figure 3.8: BTC trading volume and log BTC trading volume. 

 

As shown in Figure 3.8, there was a prominent spike in BTC trading volume recorded 

at the turning of year 2017/2018. After the peak, there were another two peaks happened 

at January 2018 and February 2018. However, the trading volume of BTC appeared to be 

in a downtrend since year 2018. This might imply the investors started to reduce their 

holdings and lost their attention on BTC. Nevertheless, log BTC trading volume appeared 

to be in an upward trend. 
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Figure 3.9: ETH trading volume and log ETH trading volume. 

 

As shown in Figure 3.9, there were few spikes in ETH trading volume recorded in late 

2017. The most prominent spike of ETH trading volume only occurred in year 2018. The 

trading volume of ETH marked a significant drop since the beginning of year 2018 which 

recovered slowly with a slight increasing trend thereafter. Nevertheless, log ETH trading 

volume remained in an upward trend at the time of research. 
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Figure 3.10: XRP trading volume and log XRP trading volume. 

 

Figure 3.10 shows that the trading volume of XRP increased tremendously in the late 

of year 2017. The trading volume before the fourth quarter of year 2017 was minimal 

compared to the trading volume recorded after year 2018. Likewise, XRP trading volume 

started to reduce tremendously in year 2018 after the few prominent spikes recorded in 

the early of year 2018 while the log XRP trading volume displayed an increasing trend. 
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Figure 3.11: BCH trading volume and log BCH trading volume. 

 

Figure 3.11 shows that the trading volume of BCH recorded the greatest spike at the 

end of year 2017 which however declined rapidly afterwards. The log trading volume of 

BCH was in a downward trend since the beginning of year 2018, which then started to 

recover since April 2018. 
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Figure 3.12: EOS trading volume and log EOS trading volume.  

 

Figure 3.12 depicts the trading volume and log EOS trading volume. There were some 

frequent spikes in EOS trading volume observed since late year 2017, which were then 

accompanied by a short period of decrement at the beginning of year 2018. Nevertheless, 

the EOS trading volume started to increase tremendously since April 2018. The log EOS 

trading volume also appeared to be in an upward trend. 
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3.4  Google searches series 

Google searches series measures the number of daily searches for a particular keyword 

on a worldwide basis obtained from Google Trends (https://trends.google.com). Existing 

literatures show close relationship of Google searches with the price dynamics of 

cryptocurrencies especially during episodes of explosive prices where the surge in the 

interest of cryptocurrencies drives the prices up while the rapid decline in public interest 

on cryptocurrencies pushes the prices down (Garcia et al., 2014; Kristoufek, 2015). Table 

3.3 outlines the keywords used to extract Google searches series for various 

cryptocurrencies. 

Table 3.3: Keywords used to extract Google searches series for various 

cryptocurrencies. 

Cryptocurrencies Keywords 
BTC Bitcoin 

ETH Ethereum 

XRP Ripple cryptocurrency 

BCH Bitcoin Cash 

EOS EOS cryptocurrency 

 

Google Trends in nature does not provide the actual total number of searches. Instead, 

relative search interests within a certain time frame are provided. The scores for the 

relative interests are set to be in between 0 to 100. The highest search is scored at 100 and 

the searches of the other days within the time frame are then scored relatively. Google 

Trends has the limitation of 90 days for daily relative search interests. To obtain a longer 

period of data, we consider the technique proposed by Risteski and Davcev (2014). Firstly, 

both the relative monthly daily and daily search interests are downloaded over the whole 

sampled period. Then, the respective monthly adjustment factor is computed by dividing 

the monthly daily captured date value with the corresponding daily captured date value. 

Each of the monthly adjustment factors is then multiplied with the respective original 
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daily search interests’ values to obtain the adjusted daily Google searches series over the 

entire sampled period. 

However, it is noticed that only those periods at the turning of year 2017/2018 show 

significant scores and if no adjustments are made, the impact of searches on the transition 

probabilities in TV-MSGARCH model (see Eq. (5.13)) may be biased to that particular 

periods. Hence, we would also want to consider the log difference of two consecutive 

Google searches that indicates the daily change of public interests in the cryptocurrencies. 

Figures 3.13 to 3.17 illustrate Google searches series and log difference of Google 

searches series for the top five cryptocurrencies. 

Interestingly, figures of Google searches series for the top five cryptocurrencies 

resemble the figures of trading volume (Figures 3.8 to 3.12). The trends of Google 

searches series and the trends of trading volume are alike. Since trading volume and 

Google searches series can both reflect the demand on cryptocurrencies, the resemblance 

between the two data is expected. In fact, it is revealed that trading volume can also be 

predicted from Google Trends (Aalborg et al., 2019). 
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Figure 3.13: BTC Google searches series and log difference of BTC Google searches 

series. 
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Figure 3.14: ETH Google searches series and log difference of ETH Google searches 
series. 
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Figure 3.15: XRP Google searches series and log difference of XRP Google searches 
series. 
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Figure 3.16: BCH Google searches series and log difference of BCH Google searches 
series. 
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Figure 3.17: EOS Google searches series and log difference of EOS Google searches 
series. 
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CHAPTER 4 : CRYPTOCURRENCIES CHANGE POINT ESTIMATION 

Change point statistically refers to the unexpected change in the parameters of a 

regression model whereby the instability of the coefficients over time may lead to huge 

forecasting error if not taken care of. With the prominent jumps and sudden shifts in 

cryptocurrency series, it is of the upmost interest to determine whether change points are 

present in cryptocurrency data. To provide an overall insight and to regard the entire 

cryptocurrency market as a whole, cryptocurrency indices such as CRIX and CCI30 are 

employed in this chapter. Cryptocurrency indices are designed specifically to act as a 

benchmark index for the entire market. To understand whether cryptocurrency indices are 

capable of representing the entire market, we decided to also include a larger market share 

of cryptocurrencies, comprising not only the top five cryptocurrencies (discussed in 

Chapter 3), but also the sixth until the tenth cryptocurrencies ranked according to market 

capitalisation, which are Cardano (ADA), LTC, Stellar (XLM), IOTA and Tron (TRX). 

With that, the top ten cryptocurrencies altogether contribute to 79% of the total market 

capitalisation as at 30 April 2018. 

4.1  Exogenous variables impacting cryptocurrency series 

Multiple change point model by Bai and Perron (2003) is applied to estimate the 

number and location of change points in price, return and squared return series of the two 

cryptocurrency indices and the top ten cryptocurrencies by incorporating the significant 

autoregressive variables and exogenous variable to the model. The autoregressive 

variables are the lagged values of the respective return series and squared return series 

whereas the exogenous variable refers to the trading volume. 

To test the significance of these variables, we commence by fitting the three time series 

data, namely price, return, and squared return under different levels (constants), trading 

volume and autoregressive variables. We use levels (constants), trading volume and 
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autoregressive variables to study which variables can explain the return series and squared 

return series of cryptocurrencies while for the case of price series, autoregressive 

variables are not considered as price series is statistically assumed to follow a random 

walk and are highly correlated. Table 4.1 provides the parameter estimates on various 

series and cryptocurrencies with values in parentheses are the standard errors of parameter 

estimates. 

As shown in Table 4.1, it is perceived that trading volume has predictive power on 

cryptocurrencies price series as the coefficients of trading volume are significant. From 

practical perspective, trading volume reflects the demands and interest level from public 

and investors. According to Aalborg et al. (2019), the trading volume of BTC can be 

predicted from the Google searches on the term “Bitcoin” which is also the proxy of the 

public interest on BTC. Our results in Table 4.1 show that all of the cryptocurrencies have 

positive correlation between price series and trading volume. 

For return series, it is discovered that trading volume has significant impact on the 

returns of XRP, BCH, EOS, ADA, LTC and XLM. Noteworthy, BTC return series is not 

affected by trading volume. This result can be further explained by the study of Balcilar 

et al. (2017). They concluded that the trading volume can be used to predict returns only 

when the market is fluctuating around the median but not viable during the periods when 

the market experiences extreme conditions. Besides, it is noticed that the lagged returns 

have different impact on the return series of cryptocurrencies. Take BTC for example,  

lag 1, lag 4 and lag 5 returns have positive impact on the current return while lag 2 return 

shows negative impact on the current return. Another example is demonstrated by ETH 

whereby the current return is negatively correlated with the past-day return but positively 

correlated with lag 3 return. Nevertheless, EOS, XLM and IOTA return series does not 

depend on their respective lagged returns. 
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Volatility wise, findings in Table 4.1 suggest that trading volume has positive impact 

on the squared return series for ETH, BCH, EOS, ADA, LTC, XLM and IOTA but not 

for BTC, XRP and TRX which is in line with the study by Balcilar et al. (2017), who 

showed that trading volume cannot be used to predict the volatility of BTC. Moreover, 

volatility is found to be correlated with past volatility. BTC volatility is significantly 

correlated to lag 2, lag 4 and lag 6 volatility. For the case of ETH, XRP, BCH, LTC and 

XLM, the relationship between today’s and previous day’s volatility is positive while 

ADA shows negative relationship between today’s and previous day’s volatility. On the 

other hand, EOS and IOTA volatilities are not affected by the lagged values. 
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Table 4.1: Parameter estimates on various series and cryptocurrencies with values in parentheses are the standard errors of parameter estimates. 

 CRIX CCI30 BTC ETH XRP BCH EOS ADA LTC XLM IOTA TRX 

 Price Series 

! 0.0015 0.0018 0.0015 0.0035 0.003 0.012 0.012 0.010 0.002 0.008 0.010 0.020 

Constant 6193.3* 
(307.9) 

2070.2* 
(107.1) 

398.3* 
(2.3610) 

6.6930* 
(6.0350) 

0.0959* 
(0.0071) 

83.85* 
(4.150) 

3.100* 
(0.2096) 

0.2807* 
(0.0018) 

1.8450* 
(1.0910) 

0.0624* 
(0.0075) 

0.9524* 
(0.0537) 

0.0182* 
(0.0022) 

Trading 
Volume ----- ----- 5.79×10-6* 

(5.40×10-8) 
9.81×10-7* 
(2.35×10-8) 

2.35×10-9* 
(5.58×10-11) 

2.29×10-6* 
(1.99×10-7) 

4.37×10-8* 
(2.39×10-9) 

5.87×10-11* 
(4.29×10-10) 

3.12×10-7* 
(9.17×10-9) 

1.63×10-8* 
(9.60×10-10) 

1.30×10-8* 
(7.29×10-10) 

1.07×10-8* 
(6.07×10-10) 

 Return Series 

! 0.0025 0.0035 0.0022 0.005 0.005 0.017 0.010 0.020 0.004 0.008 0.0065 0.025 

Constant -0.0022* 
(0.0011) 

0.0031* 
(0.0012) 

0.0040* 
(0.0013) 

0.0072* 
(0.0027) 

0.0016 
(0.0033) 

-0.0127 
(0.0073) 

-0.0050 
(0.0069) 

-0.0007 
(0.0093) 

4.96×10-5 
(0.0020) 

-0.0026 
(0.0063) 

0.0046 
(0.0066) 

0.0037 
(0.0134) 

Trading 
Volume ----- ----- -4.40×10-12 

(3.01×10-12) 
-1.08×10-11 
(1.04×10-11) 

8.50×10-11* 
(2.64×10-11) 

1.62×10-10* 
(3.85×10-11) 

2.49×10-10* 
(8.52×10-11) 

1.12×10-9* 
(2.57×10-10) 

7.63×10-11* 
(1.74×10-11) 

3.46×10-9* 
(8.88×10-10) 

-2.55×10-11 
(9.54×10-11) 

4.69×10-9 
(3.92×10-9) 

Lag 1 -0.0141 
(0.0270) 

-0.0065 
(0.0286) 

0.0462* 
(0.0188) 

-0.0637* 
(0.0315) 

-0.3281* 
(0.0291) 

-0.0461 
(0.0617) 

-0.0410 
(0.0589) 

-0.1376 
(0.0732) 

-0.1280* 
(0.0247) 

0.0026 
(0.0048) 

0.0591 
(0.0573) 

-0.0022 
(0.0707) 

Lag 2 -0.0160 
(0.0270) 

0.0200 
(0.0286) 

-0.1693* 
(0.0188) 

0.0060 
(0.0313) 

0.0629* 
(0.0304) 

-0.1400* 
(0.0620) 

0.0106 
(0.0581) 

0.1669* 
(0.0680) 

-0.0542* 
(0.0247) 

-0.0064 
(0.0467) 

-0.0354 
(0.0574) 

0.1772* 
(0.0709) 

Lag 3 0.0400 
(0.0270) 

0.0640* 
(0.0287) 

0.0228 
(0.0190) 

0.0707* 
(0.0313) 

-0.0211 
(0.0304) 

-0.0084 
(0.0602) 

0.0398 
(0.0572) 

0.0325 
(0.0713) 

0.0160 
(0.0247) 

-0.0027 
(0.0463) 

0.1107 
(0.0578) 

0.2051* 
(0.0709) 

Lag 4 0.0095 
(0.0271) 

-0.0069 
(0.0287) 

0.0107* 
(0.0190) 

-0.0151 
(0.0312) 

0.0191 
(0.0304) 

-0.1122 
(0.0586) 

-0.0576 
(0.0494) 

-0.0159 
(0.0693) 

0.0407 
(0.0248) 

-0.0778 
(0.0456) 

0.0057 
(0.0572) 

-0.1390* 
(0.0702) 

Lag 5 0.0127 
(0.0272) 

0.0190 
(0.0286) 

0.0835* 
(0.0190) 

0.0013 
(0.0312) 

-0.0435 
(0.0304) 

0.0201 
(0.0575) 

-0.0238 
(0.0496) 

-0.0929 
(0.0681) 

0.0032 
(0.0247) 

0.0788 
(0.0463) 

0.0188 
(0.0555) 

0.0179 
(0.0697) 

Lag 6 0.1055* 
(0.0272) 

0.1205* 
(0.0286) 

-0.0093 
(0.0190) 

-0.0009 
(0.0293) 

0.0492 
(0.0289) 

0.0154 
(0.0571) 

0.0602 
(0.0493) 

-0.0645 
(0.0682) 

0.0870* 
(0.0246) 

0.0152 
(0.0459) 

0.0992 
(0.0553) 

-0.0370 
(0.0695) 

----- no data available; ! is the ratio of number of days in a segment over the total number of days (count). 
*Significance at the 5% level.  
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Table 4.1, continued. 

 CRIX CCI30 BTC ETH XRP BCH EOS ADA LTC XLM IOTA TRX 

 Squared Return Series 

! 0.003 0.005 0.002 0.008 0.008 0.025 0.012 0.030 0.004 0.010 0.010 0.015 

Constant 0.0008* 
(0.0001) 

0.0008* 
0.0015) 

0.0021* 
(0.0008) 

0.0029* 
(0.0005) 

0.0057* 
(0.0018) 

0.0022* 
(0.0017) 

0.0650* 
(0.0016) 

0.0112* 
(0.0045) 

0.0032* 
(0.0009) 

0.0044* 
(0.0021) 

0.0055* 
(0.0016) 

0.0112 
(0.0062) 

Trading 
Volume ----- ----- 6.19×10-13 

(1.96×10-12) 
3.50×10-12* 
(1.75×10-12) 

1.76×10-11 
(1.38×10-11) 

6.61×10-11* 
(8.31×10-12) 

9.24×10-11* 
(1.64×10-11) 

9.64×10-10* 
(1.27×10-10) 

1.55×10-11* 
(7.33×10-12) 

1.26×10-9* 
(2.69×10-10) 

9.08×10-11* 
(1.98×10-11) 

2.70×10-9 
(1.55×10-9) 

Lag 1 0.2657* 
(0.0272) 

0.1821* 
(0.0284) 

0.0279 
(0.0186) 

0.2042* 
(0.0317) 

0.4496* 
(0.0291) 

0.1804* 
(0.0582) 

-0.0648 
(0.0570) 

-0.1591* 
(0.0733) 

0.5157* 
(0.0248) 

0.3408* 
(0.0469) 

0.1065 
(0.0565) 

0.0396 
(0.0709) 

Lag 2 0.0154 
(0.0281) 

0.0373 
(0.0287) 

0.1406* 
(0.0186) 

0.0379 
(0.0309) 

-0.0275 
(0.0318) 

-0.2546* 
(0.0594) 

-0.0562 
(0.0559) 

0.1658* 
(0.0636) 

-0.2092* 
(0.0278) 

0.0596 
(0.0489) 

-0.0262 
(0.0568) 

0.2049* 
(0.0710) 

Lag 3 0.0001 
(0.0281) 

0.0613* 
(0.0286) 

0.0087 
(0.0183) 

0.0747* 
(0.0308) 

0.1375* 
(0.0318) 

0.0258 
(0.0580) 

0.0003 
(0.0056) 

-0.1959* 
(0.0671) 

0.0911* 
(0.0283) 

0.0064 
(0.0488) 

0.0837 
(0.0565) 

0.1204 
(0.0719) 

Lag 4 0.1012* 
(0.0279) 

0.1124* 
(0.0286) 

0.2144* 
(0.0183) 

0.0642* 
(0.0307) 

-0.0519 
(0.0318) 

-0.0413 
(0.0515) 

0.0117 
(0.0189) 

-0.0191 
(0.0647) 

0.0085 
(0.0283) 

-0.0620 
(0.0487) 

0.0004 
(0.0560) 

0.0789 
(0.0714) 

Lag 5 0.0489 
(0.0281) 

0.0974* 
(0.0287) 

-0.0070 
(0.0186) 

0.0519 
(0.0300) 

0.0827* 
(0.0318) 

-0.0046 
(0.0512) 

0.0244 
(0.0180) 

-0.0699 
(0.0633) 

0.0019 
(0.0278) 

0.0877 
(0.0488) 

-0.0098 
(0.0518) 

-0.0766 
(0.0700) 

Lag 6 0.0118 
(0.0282) 

0.0375 
(0.0283) 

0.1664* 
(0.0186) 

-0.0305* 
(0.0143) 

-0.0238 
(0.0291) 

0.0950* 
(0.0477) 

0.0116 
(0.0178) 

-0.1064 
(0.0638) 

0.0223 
(0.0247) 

-0.0779 
(0.0455) 

0.0332 
(0.0511) 

0.0354 
(0.0700) 

----- no data available; ! is the ratio of number of days in a segment over the total number of days (count). 
*Significance at the 5% level. 
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4.2  Bai and Perron (2003) method in detecting change points 

After the significant autoregressive variables and exogenous variables for price, return 

and squared return series are identified, these significant variables are incorporated to the 

multiple change point model.  

Liu et al. (1997) first considered multiple change point model using least-squares 

method. They partitioned the data into m segments and then computed the sum of squared 

residuals for each segment. The change point estimators are regarded as the global 

minimisers of the sum of squared residuals. Bai and Perron (2003) extended their work 

by applying dynamic programming algorithm to estimate the global minimisers of the 

sum of squared residuals. The algorithm uses at most least-squares operations of order 

!(#!)	 for any number of & change points which appears to be a more efficient way of 

achieving a minimum global sum of squared residuals with # representing the length of 

data. 

In this section, we applied the change point model of Bai and Perron (2003) by 

augmenting the significant exogenous variables into the model to determine the location 

and number of change points in price, return and squared return series of the two 

cryptocurrency indices and the top ten cryptocurrencies. In particular, consider a linear 

model as below with & changes (& + 1 segments): 

)" = +"#, + -"#.$ + /",    0 = #$%& + 1, #$%& + 2,… , #$,                       (4.1) 

for 4 = 1, 2, … ,& + 1. In this model, )"  is the observed dependent variable at time 0 with 

dimension	1 × 1, +"#  is a 1 × 6 vector of exogenous variables with 6 number of constant 

coefficients in vector	, of dimension 6 × 1,	-"#  is a 1 × 7 vector of exogenous variables 

as discussed in Section 4.1 with 7 number of corresponding coefficients that are subject 
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to change in vector .$  of dimension 7 × 1  and /"  is the disturbance at time 0  with 

dimension	1 × 1. The indices (#&, #!, … , #') are the estimated change points treated as 

unknown with #( = 0 and #')& = #.  In this research, we concentrate on pure change 

point model which allows all coefficients subjected to change by letting , = : so that the 

shifts of all exogenous variables, if any, are considered. The above multiple linear 

regression system can then be expressed in its matrix form as below, where ;<  is a 

diagonal matrix that partition	;$ at	(#&, #!, … , #'): 

= = ;<. + >,                                                                                                              (4.2) 

or  

?
)&)!
⋮)*
A = B

!! " ⋯ "
" !" ⋯ "
⋮ ⋮ ⋱ ⋮
" " ⋯ !#+!

CB
.+
.,
⋮

.-)+
C+ ?

/&/!
⋮/*
A,             

where 

;.	 =

⎝

⎜
⎛
-*!"#)&#

-*!"#)!#

⋮
-*!# ⎠

⎟
⎞

,          4 = 1, 2, … ,& + 1. 

The dimension for = is # × 1, ;< is # × 7(& + 1), . is n(& + 1) × 1 and > is # × 1. 

For each &-partition (#&, #!, … , #') denoted by {#$}, the estimates of .$  are evaluated 

by minimising the sum of squared residuals. Substituting the values into the objective 

function and denoting the resulting sum of squared residuals as	L*(#&, #!, … , #'), the 

estimated change points (#M&, #M!, … , #M')  are then determined by 	(#M&, #M!, … , #M') =

argmin*#,…,*$ 	L*(#&, #!, … , #')  where the minimisation is taken over all partitions, 

(#&, #!, … , #'). Consequently, the change point estimators are the global minimisers of 

the objective function. The global sum of squared residuals for any of the &-partition 
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(#&, #!, … , #') and for any value of &, must be particular a linear combination of these 

#(# + 1)/2 sums of squared residuals. The estimates of the change points, &-partition 

	(#M&, #M!, … , #M'), will correspond to this linear combination with a minimal value. The 

dynamic programming algorithm is regarded as a more efficient approach to contrast all 

possible combinations (corresponding to different &-partitions) in order to achieve a 

minimum global sum of squared residuals. The number of changes is controlled by the 

trimming error, U, where U is the ratio of number of days in a segment over the total 

number of days (count). In this research, we let U to be the smallest possible value without 

limiting the number of change points as opposed to the study by Bouri et al. (2019a) who 

only allowed a maximum of five change points in their analysis. For estimation purposes, 

the number of days in a segment must be greater than the number of regressors in the 

model. The above algorithms to estimate the change points in cryptocurrencies are 

implemented using the R package strucchange and function breakpoints. 
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4.3  Discussion on change points detected 

A large number of change points in price, return and squared return series of 

cryptocurrencies are detected. The detected change points are not totally consistent 

among the three financial time series but with more change points detected in price series, 

followed by squared return series and the least in return series. Table 4.2 summarises the 

total number of change points detected in various series and cryptocurrencies. 

Table 4.2: Total number of change points detected in various series and 
cryptocurrencies. 

Cryptocurrencies Price series Return series Squared return series 
CRIX 72 7 31 
CCI30 68 5 19 
BTC 72 22 56 
ETH 62 1 23 
XRP 45 13 8 
BCH 27 1 14 
EOS 22 1 24 
ADA 26 3 9 
LTC 66 14 14 
XLM 31 4 20 
IOTA 27 2 16 
TRX 10 0 12 

 

The primary causes to the abrupt change in the cryptocurrency market are 

hypothesised to be caused by the huge correction from sharp price appreciation, stricter 

regulations and government involvement, rumours and positive or negative news as well 

as other technological issues. In particular, announcements of macroeconomic news 

related to both unemployment rates and durable goods are found to affect the returns of 

BTC (Corbet et al., 2020). These are the influential factors that contribute to the instability 

dynamics of the cryptocurrency market. Investors and financial practitioners hence ought 

to be cautious to the risks attached in the market. Next, the change points detected in price, 

return and squared return series would be discussed in length. 
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4.3.1  Price series 

Price series is greatly affected by the force of supply and demand as well as other 

external events. Price reacts sensitively to news and information in the market. When 

demand is greater than supply, the price will ascend and the market is bullish or vice versa. 

It is noticed that there are few consistent and significant change points detected in 

cryptocurrencies price series over time. Figure 4.1 depicts the monthly segmentation of 

price series, in which a change point is represented by a change in colour of the horizontal 

bar. 

 

Figure 4.1: The monthly segmentation of cryptocurrencies price series by change 
points.  

 

Figure 4.1 reveals that change points in price series are detected specifically at the 

turnings of year. Observing the longer data such as CRIX, CCI30, BTC and LTC, change 

points are detected at almost every end or beginning of year commencing from the year 

2013 when cryptocurrency market began to gain its popularity. We hence postulate that 

the cryptocurrency market is subject to “year-end” effect as there are cyclical changes in 

price series at the turnings of year. Our results also provide evidence and justification to 
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the study conducted by Bouri et al. (2017) who segmented BTC return series at December 

2013 in their analysis. The presence of frequent change points detected approximately at 

every month of year 2017 further confirms that the cryptocurrency market indeed undergo 

unexpected high price fluctuations. To be more concrete, Appendix A provides the 

detailed number of change points detected in each of the particular month throughout the 

whole sample period for the price series. 

4.3.2  Return series 

Return is an important variable in finance as it measures the profit of an investment. 

High return will usually be accompanied by high risk, hence, in the event of high volatility, 

high return is also expected. Figure 4.2 illustrates the monthly segmentation of return 

series in which a change point is represented by a change in colour of the horizontal bar. 

From Figure 4.2, there is no change point detected in BTC return series after the second 

quarter of year 2014. We also notice that the ETH return series is detected with only one 

change point located at September 2015 and none thereafter. On the other hand, TRX is 

not detected with any change points in the return series. 

Among all of the change points detected in the return series, CRIX and CCI30 show 

the consistency of change points in January 2015 and September 2017. Surprisingly, only 

LTC is detected with change points at these two periods but none for the other 

cryptocurrencies. These estimated change points may be attributed to some unexpected 

events only occurred to a certain group of cryptocurrencies which were the constituents 

of CRIX and CCI30 at those particular times but not to the top ten cryptocurrencies 

chosen at the time of research since the rankings of cryptocurrencies are fast-changing 

(Elbahrawy et al., 2017). Besides, CRIX return series is detected with one change point 

at December 2017 while the change point of CCI30 return series appeared a bit later in 
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January 2018 during the abrupt market price depreciation. Both change points are in 

expectation since cryptocurrency market is subject to obvious change of trends at the 

turning of years 2017/2018, whereby most of the cryptocurrencies also show the existence 

of change points at this particular period. For better understanding, Appendix A provides 

the detailed number of change points detected in each of the particular month throughout 

the whole sample period for the return series. 

 

Figure 4.2: The monthly segmentation of cryptocurrencies return series by change 
points. 

 

4.3.3  Squared return series 

Squared return is commonly used to assess the uncertainty (or the risk) of the financial 

market. Since volatility is unobservable, we adopt the common practice of taking the 

square of the daily returns as proxy for volatilities. Figure 4.3 illustrates the monthly 

segmentation of squared return series in which a change point is represented by a change 

in colour of the horizontal bar. 
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As shown in Figure 4.3, there are more change points detected in squared return series 

as compared to return series especially for ETH, where there is only one change point 

detected in the return series, and yet, a total of twenty-three change points are detected in 

the squared return series throughout the period. BTC appears to experience more change 

points in the squared return series in year 2011 which then becomes lesser from year 2012 

to year 2017 and no detected change point in year 2016. Our findings are in line with the 

selection of change point at the beginning of year 2015 by Bouoiyour and Selmi (2016) 

which further confirms the event of BTC volatility change at that specified period. Five 

change points are detected in ETH squared return series. Most cryptocurrencies show the 

presence of change points in the squared return series at July 2017, the last quarter of year 

2017 and at January 2018. To compare, both indices display consistent signs of change at 

January 2015, July 2017, and at the turning of years 2017/2018. Appendix A provides the 

detailed number of change points detected in each of the particular month throughout the 

whole sample period for squared return series.  

 

Figure 4.3: The monthly segmentation of cryptocurrencies squared return series by 
change points.  
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CHAPTER 5 : VOLATILITY MODELLING 

5.1  Single-regime volatility models 

Conditional heteroscedasticity models are frequently used in the work of financial 

volatility modelling and forecasting for the purpose of risk management. Financial time 

series commonly exhibits volatility clustering in which large changes in volatility are 

often followed by large changes while small changes in volatility tend to be followed by 

small changes. This behaviour is also formally known by econometrician and statistician 

as autoregressive conditional heteroscedasticity. 

Consider the return series, V" of a financial asset at time 0 for 0 = 1, 2, … , #, which can 

be calculated as V" = lnX" − lnX"%&  where ln X"  is the natural logarithm of the daily 

closing price of a cryptocurrency at time 0. The conditional mean and conditional variance 

of V" of a volatility model given Z"%& are denoted as: 

[" = \(V"|Z"%&)   and   "̂
! = Var(V"|Z"%&) = \[(V" − [")!|Z"%&],                (5.1) 

where Z"%& = {V"%&, V"%!, … } is the past observed returns up to time 0 − 1.  

The V" can be expressed as: 

V" = [" + b",   0 = 1,2, … , #,                                (5.2) 

where b" = "̂c"  is the innovation component (or shock) of return at time 0  with the 

volatility term "̂, and c" representing the error term with zero mean and unit variance. 

To remove the serial dependence in return series, we use [" = d + eV"%& where d and e 

are the model parameters to be estimated.  
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Combining Eq. (5.1)	and Eq. (5.2), conditional variance can be expressed as: 

"̂
! = Var(V"|Z"%&) = Var(b"|Z"%&),   0 = 1, 2, … , #.                         (5.3) 

The following subsection discusses various model specifications for the conditional 

variance at time 0, "̂
!. 

5.1.1  Autoregressive conditional heteroscedasticity model 

The first model that provides systematic framework for the behaviour of volatility 

clustering is ARCH model by Engle (1982). The basic idea of ARCH model is to describe 

the conditional volatility by simple quadratic function of past shocks. The ARCH model 

with order f, ARCH(f) is given by:  

"̂
! = g + ∑ i2b"%2!3

24& ,   0 = 1, 2, … , #,                    (5.4) 

where g and i2 are the model parameters with g > 0 and i2 ≥ 0 for l = 1, 2, … , f. For 

ARCH(1) model, the constraint of 0 < i < 1 must be satisfied to ensure the volatility is 

stationary. In applications, the condition of stationarity is required for one to perform 

forecasting and prediction on a time series. 

5.1.2  Generalised autoregressive conditional heteroscedasticity model 

ARCH model represents a simple approach to estimate the volatility. However, ARCH 

model contains weaknesses such that in many times, only high order of ARCH model is 

adequate to describe the volatility of an asset return. Due to this respect, Bollerslev (1986) 

introduced an extended model of ARCH, known as GARCH model. A low order of 

GARCH model is found to be effectively capturing the same effects as a high order 

ARCH model.  
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The GARCH model with orders n and f, GARCH(n, f) is expressed as: 

"̂
! = g + ∑ i2b"%2!3

24& + ∑ o$ "̂%$
!5

$4& ,   0 = 1, 2, … , #,               (5.5) 

where g , 	i2  and o$  are the model parameters with g > 0 , i2 ≥ 0  for l = 1, 2, … , f ,   

o$ ≥ 0  for 4 = 1, 2, … , n  and ∑ (i2 +678	(3,5)
24& o2) < 1 . The latter constraint implies 

covariance stationarity to ensure the unconditional volatility of V" is finite. From Eq. (5.5), 

a large b"%2!  or a large "̂%$
!  gives rise to large "̂

! depicting volatility clustering behaviour. 

5.1.3  Glosten-Jagannathan-Runkle GARCH model 

One of the well-known properties displayed by financial time series is asymmetric 

effect, also known as leverage effect, which describes the different impact of positive and 

negative shocks on volatility. Practically, the volatility of a financial asset is known to be 

more responsive to negative shocks than positive shocks. To address asymmetric property, 

Glosten et al. (1993) proposed GJRGARCH model. The GJRGARCH model with orders 

n and f, GJRGARCH(n, f) is expressed as:  

"̂
! = g + ∑ (i2b"%2!3

24& + p2q{b"%2 < 0}	) + ∑ o$ "̂%$
!5

$4& ,   0 = 1, 2, … , #,       (5.6) 

where g,	i2 ,	o$  and p2  are the model parameters with g > 0, i2 ≥ 0 for l = 1, 2, … , f,    

o$ ≥ 0 for 4 = 1, 2, … , n, q{b"%2 < 0} is an indicator variable such that q{b"%2 < 0} = 1 

if b"%2 < 0	for l = 1, 2, … , f and zero otherwise; whereas p2 is the asymmetric parameter 

that controls the degree of asymmetry effect corresponding to the past shock in the 

conditional variance. This implies that negative shock will result in higher conditional 

variance "̂
!  when p2 > 0 . In some occasional circumstances, p2 < 0 , which means 

positive shocks have larger impact on conditional variance, also known as inverted 

asymmetric effect. For GJRGARCH(1,1) model to be weakly stationary, we have that 

[i& + p&\(c"!q{c" < 0}) + o&] < 1. 
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5.1.4  Threshold GARCH model 

Another model commonly used to handle asymmetric effect is threshold GARCH 

(TGARCH) model proposed by Zakoian (1994). Unlike GJRGARCH model, TGARCH 

model applies threshold to differ the impacts of positive and negative shocks on volatility. 

The TGARCH model with orders n and f, TGARCH(n, f) is given by: 

"̂ = g + ∑ ri2(q{b"%2 > 0}) − p2q{b"%2 < 0}sb"%23
24&  +∑ o$ "̂%$

5
$4& , 0 = 1, 2, … , #,  

  (5.7) 

where g , 	i2 , 	o$  and p2  are the model parameters with g > 0 , i2 ≥ 0  and p2 ≥ 0	             

for l = 1, 2, … , f , o$ ≥ 0  for 4 = 1, 2, … , n  and q{b"%2 < 0} = 1  if b"%2 < 0  and zero 

otherwise. TGARCH model is capable of capturing leverage effect governed by i2 and 

p2. In this setting, positive and negative shocks have a different impact on the conditional 

volatility where the impact of positive shock is governed by	i2 and the impact of negative 

shock is governed by p2. Here, weakly stationary of TGARCH(1,1) model requires that      

\[(i&b"q{b" > 0} − p&b"q{b" < 0} + o&)!] < 1 (Francq & Zakoian, 2019).                   

5.2  Regime-switching model 

One potential weakness of these GARCH-type models is the implication of constant 

model parameters over time (single-regime volatility model). The structural forms of 

conditional mean and conditional variance are held fixed throughout the whole sample 

period. Practically speaking, financial time series often undergoes periods of expansion 

and recession hence is unreasonable to assume constant model parameters for all time.  

Recall the findings from Chapter 4, change points are frequently detected in price, 

return and squared return series of cryptocurrencies. The frequent existence of change 

points affected by the underlying internal or external factors definitely alert the financial 
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practitioners or researchers to realise about the possible instability of parameters which 

ought to be addressed in all aspects of cryptocurrency analysis and modelling process. 

Therefore, single-regime volatility model is perceived to be inflexible in explaining 

the volatility of cryptocurrencies and the specification of single-regime GARCH-type 

models often gives rise to false impression of high persistency and poor forecasting 

performance (Caporale et al., 2003; Mikosch & Stǎricǎ, 2004). 

5.2.1  Two-regime Markov-switching GARCH(1,1) model 

The limitation of single-regime GARCH-type models can be resolved by applying 

MSGARCH model. MSGARCH model allows the model parameters to be different in 

every regime to account for the possibility that the return series may undergo a finite 

number of changes over period. Assuming a two-regime model specification, the model 

parameters are varying and dependent on a latent process, denoted by t" ∈ {1, 2} for      

0 = 1, 2, … , #. The latent state process is assumed to be an irreducible and aperiodic 

Markov chain with stationary probability measure v = (v&, v!), where v& = ℙ(t" = 1) 

and v! = ℙ(t" = 2). The variable t" is known as state or regime variable. 

Under the Markov-switching framework, it is assumed that V" can be decomposed into 

two components subjected to Markov-switching process conditional on past observed 

returns up to time 0 − 1. For MSGARCH(1,1) model, the V" can be expressed as: 

V" = ["(t&:"; Z"%&) + b",   0 = 1, 2, … , #,                   (5.8) 

where t&:" = {t&, t!, … , t"} , Z"%&  is the past observed returns up to time 0 − 1  and       

b" = "̂(t&:"; Z"%&)c"  is the innovation component at time 0  with the volatility term 

"̂(t&:"; Z"%&), while c" is the error term with zero mean and unit variance.  
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We define the conditional mean component, ["(t&:"; Z"%&) as the following: 

["(t&:"; Z"%&) = d<% + e<%V"%&,   0 = 1, 2, … , #.                                                            (5.9) 

The conditional variance "̂
!(t&:"; Z"%&)  of MSGARCH(1,1) model at time 0  is 

formulated based on GARCH(1,1) model: 

"̂
!(t&:"; Z"%&) = g<% + i&<%b"%&! + o&<% "̂%&

! (t&:"%&; Z"%!),  	0 = 1, 2, … , #,          (5.10) 

where g<% , i&<%  and o&<%  are the model parameters at the regime t" . Even though the 

regimes are unobserved, probabilistic statement can be drafted over their likelihood of 

occurrence conditional on past observed returns up to time 0 − 1. 

The regime variable, t" is governed by constant transition probability such that: 

n2$ = ℙ(t" = 4|t"%& = l; Z"%&),   for	l, 4 ∈ {1, 2},   0 = 1, 2, … , #,     (5.11) 

where 0 < n2$ < 1 and ∑ n2$!
$4& = 1 for l ∈ {1, 2}.  

In particular, the stationary probability of a constant transition probability model can 

be obtained by: 

v$ = ℙ(t" = 4) = (&%5&&)
(!%5&&%5!!)

,   for l, 4 = 1, 2   and.  l ≠ 4.            (5.12) 

See Hamilton and Susmel (1994) for details. 

According to Bauwens et al. (2010), the stationarity of MSGARCH(1,1) model can be 

guaranteed even if not all of the regimes satisfy the stationary condition. However, this 

constraint must be satisfied on average with respect to the probability distribution of the 
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regimes. This inference is made on the assumption that the stationary regime dominates 

the entire process such that the volatility process will revert back to the stationary state 

after a big shock occurs, which is described as the “relieving effect”. 

In sum, MSGARCH(1,1) model is strictly stationary if the following conditions are 

met: 

Assumption 1: The error term c" is independently and identically distributed (i.i.d) with 

continuous density on the whole real line which is centred on zero and \[c"!]= < ∞ for 

some } > 0. 

Assumption 2: i&2 > 0, o&2 > 0 and n22 ∈ (0, 1) for l ∈ {1, 2}. 

Assumption 3: ∑ v2\[log(i&2c"! + o&2)] < 0!
24& . 

The first assumption is fulfilled for a wide range of distributions for the error terms, 

herein our research, normal distribution (NORMD), Student-t distribution (STD) and 

generalised error distribution (GED). The second assumption ensures that the Markov 

chain is discrete and ergodic. The third assumption implies that at least one of the regimes 

is stable and the strict stationarity conditions are not necessarily required in both of the 

regimes. With this, MSGARCH(1,1) model allows periods in which explosive regime 

takes place before collapsing to the stable regime. Further, the higher the probability of 

being in the stable regime, the higher the persistence level the non-stable regime can 

assume. 
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5.2.2  Time-varying transition probability MSGARCH(1,1) model 

The specification of MSGARCH model employs constant transition probability which 

is too restrictive in some empirical settings (Diebold et al., 1994; Filardo, 1994). The 

assumption of constant transition probability could be relaxed in favour of time-varying 

transition probability (TVTP) to increase the flexibility of MSGARCH model. The 

specification of conditional mean and conditional volatility of TV-MSGARCH(1,1) 

model is the same as the MSGARCH model presented in Eq. (5.8) and Eq. (5.10). TVTP 

is assumed to evolve as a logistic function dependent on exogenous variable, ~" at every 

time 0.  

More specifically, the TVTP can be expressed as: 

ℙ(t" = l|t"%& = l, ~"%&; Z"%&) = n22," = >8?	(@&)A&B%"#)
&)>8?	(@&)A&B%"#)

,    for l = 1, 2,       (5.13)         

where �2	is a constant and Ä2  is the coefficient of exogenous variable in regime l and 

ℙ(t" = 4|t"%& = l, ~"%&; Z"%&) = n2$," = 1 −	n22,"  for l ≠ 4. Note that when Ä2  is set to 

zero, the TVTP becomes constant at all times and TV-MSGARCH(1,1) model simply 

reduces to MSGARCH(1,1) model. 

As discussed in Diebold et al. (1994), the steady-state or stationary probability of 

TVTP model is determined by the coefficient parameter of ~" and there is no analytical 

formula to calculate it. Motivated by Eq. (5.12), we assess the stationarity condition of 

TV-MSGARCH(1,1) by using the following formula: 

v$ = (&%5̅&&)
(!%5̅&&%5̅!!)

   for l, 4 = 1, 2   and   l ≠ 4,                     (5.14) 

where n̅22 = &
*
∑ n22,"*
"4&  for l = 1, 2. 
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In this research, the exogenous variable, ~" employed in TV-MSGARCH(1,1) model 

is considered to be: (1) logarithmic trading volume; (2) Google searches series; and (3) 

log difference of Google searches series. Raw data of trading volume is not directly 

applied to TV-MSGARCH(1,1) model as the data is highly skewed. Instead, logarithmic 

trading volume is applied to TV-MSGARCH(1,1) model to ensure the advantage of using 

TVTP is interpretable. The motivation of using log transformation on the difference of 

Google searches series is to assess the impact of daily change in the public interest in 

cryptocurrencies to the volatility. By doing so, we can also avoid the biasness in 

cryptocurrencies volatility modelling and forecasting procedures since it was discovered 

that the data of Google searches series are protruding prominently at the turning of years 

2017/2018 depicted in Figures 3.13 to 3.17. The discussion on the trading volume and 

Google searches series can be found in Chapter 3. 

5.3  Estimation method 

Parameter estimation is performed by maximising log-likelihood (LL) function using 

non-linear filter as proposed by Hamilton (1989) since t" is not directly observed and 

evolves from a first-order Markov chain.  

First, the joint density of V"  and the regime variables, t"  and t"%&  given the past 

observed returns up to time 0 − 1, is estimated from the product of the conditional density 

of V"  and the conditional joint probability function of t"  and t"%&  as displayed in the 

following equation: 

Ç(V" , t" , t"%&|Z"%&) = Ç(V"|t" , t"%&; Z"%&)ℙ(t" , t"%&|Z"%&).                      (5.15) 
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Secondly, to determine the conditional distribution of V", Ç(V"|Z"%&), we integrate t" 

and t"%& from the joint density in Eq. (5.15)	by summing up all the possible values of t" 

and t"%& as the following: 

Ç(V"|Z"%&) = ∑ ∑ Ç(V" , t" , t"%&|Z"%&)!
<%"#4&

!
<%4&   

												= ∑ ∑ Ç(V"|t" , t"%&; Z"%&)ℙ(t" , t"%&|Z"%&)!
<%"#4&

!
<%4& ,               (5.16)        

where the conditional density function of V" , Ç(V"|t" , t"%&; Z"%&)  is dependent on the 

distribution of error term, c" and can take different forms of distribution such as NORMD, 

STD and GED.  

The LL function is then given by: 

LL=	∑ ln	[Ç(V"|Z"%&)]*
"4&  

= ∑ ln	É∑ ∑ Ç(V"|t" , t"%&; Z"%&)ℙ(t" , t"%&|Z"%&)!
<%"#

!
<%4& Ñ*

"4& .                        (5.17) 

To complete the above procedure, the conditional joint probability function of t" and 

t"%& , ℙ(t" = 4, t"%& = l|Z"%&) for l, 4 = 1, 2 can be estimated from Hamilton filtering 

algorithm (Hamilton, 1989) which can be executed in the following two steps: 

Step 1: 

Given the conditional marginal probability ℙ(t"%& = l|Z"%&) for l = 1, 2, the conditional 

joint probability function of t" and t"%&, can be calculated as: 

      ℙ(t" = 4, t"%& = l|Z"%&) = ℙ(t" = 4|t"%& = l; Z"%&) × ℙ(t"%& = l|Z"%&),     (5.18) 

where ℙ(t" = 4|t"%& = l; Z"%&) is the transition probability which is constant for all time 

0 for MSGARCH model and time-varying for TV-MSGARCH model (see Eq. (5.13)). 
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Step 2: 

At every 0-th iteration when V"  is observed at the end of time 0, the conditional joint 

probability calculated in Step 1 can be updated as follows: 

ℙ(t" = 4, t"%& = l|Z") = ℙ(t" = 4, t"%& = l|Z"%&, V") 

							= D(<%4$,<%"#42,E%|G%"#)
D(E%|G%"#)

  

																																																= DHV"It" = 4, t"%& = l; Z"%&JℙHt" = 4, t"%& = lIZ"%&J
∑ ∑ DHV" , t" = 4, t"%& = lIZ"%&J'

&(#
'
!(#

,  (5.19) 

with 

ℙ(t" = 4|Z") = ∑ ℙ(t" = 4, t"%& = l|Z")!
24& .                                 (5.20) 

The probability of being in regime 4 conditional up to observed returns at time 0, 

ℙ(t" = 4|Z"), also known as filtered probability, is inferred from the Hamilton filtering 

algorithm. To begin this iteration, steady-state probability or stationary probability are 

used for MSGARCH model (see Eq. (5.12)) and TV-MSGARCH model (see Eq. (5.14)). 

One concern arises during parameter estimation of MSGARCH model as argued by 

both Cai (1994) and Hamilton and Susmel (1994). The specifications of MSGARCH 

model and TV-MSGARCH model suggest that conditional volatility is not only 

dependent on regime t" but also indirectly dependent on the entire regime path up to time 

0 − 1, {t"%&, t"%!, … }. A quick look at Eq. (5.10) implies that "̂
!(t&:"; Z"%&) at time 0 is 

dependent on "̂%&
! (t&:"%&; Z"%!)  at time 0 − 1  whereas "̂%&

! (t&:"%&; Z"%!)  further 

depends on "̂%!
! (t&:"%!; Z"%M) at time 0 − 2 and goes on. The realisation of LL function 

is hence intractable in Ö* number of possibilities where Ö refers to the number of regimes 

and # refers to the length of data. This is also known as path dependence problem.  
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Several solutions are suggested to solve path dependence problem while in the 

meantime preserving the essential nature of GARCH volatility specification. The first 

attempt to eliminate path dependence problem was proposed by Gray (1996) who 

suggested to collapse the conditional volatility in each regime into a proxy at every       

time 0 so that the estimated volatility would not be dependent on the entire regime path. 

Other similar modified solutions to path dependence problem were also raised by    

Dueker (1997) and Klaassen (2002). Haas et al. (2004) assumed that conditional volatility 

of each regime is independent such that each regime is characterised by its own volatility 

within that regime. In addition, Elliot et al. (2012) utilised Viterbi algorithm to identify 

the current state of volatility before the estimation procedure takes place. Moreover, 

sequential Monte Carlo method can also be applied to approximate the LL function       

(see Augustyniak, et al., 2018; Bauwens et al., 2014a).  

The method of parameter estimation is not the primary concern of this research and 

the ML method is used under Gray’s technique due to its ease of implementation in the 

maximisation of LL function through R optimisation package. Gray’s technique of 

estimating volatility suggested the use of collapsed conditional variance rather than the 

actual conditional variance by integrating out the historical regime path.  

The shock b" in Eq. (5.8) can be estimated by the following:  

b" 	= V" − \[V"|Z"%&] 
 = V" − \[["(t&:"; Z"%&) + b"(t&:"; Z"%&)|Z"%&] 

												= V" − \[["(t&:"; Z"%&)|Z"%&] 
												= V" − ∑ ["(t" = 4; Z"%&) × ℙ(!

$4& t" = 4|Z"%&).                                                 (5.21) 
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Similarly, the path dependent conditional variance, "̂
!(t&:"; Z"%&)  of Eq. (5.10) is 

proxied by @̂
!(0; Z"%&) and is estimated with the following equation: 

@̂
!(0; Z"%&) = \[V"!(t&:"; Z"%&)|Z"%&] − {\[V"(t&:"; Z"%&)|Z"%&]}! 

            = \[["!(t&:"; Z"%&)|Z"%&] + \[b"!|Z"%&] − {\[["(t&:"; Z"%&)|Z"%&]}! 

											= ∑ [["!(t" = 4; Z"%&) + "̂
!(t" = 4; Z"%&)] × ℙ(t" = 4|Z"%&)	!

$4&   

							−É∑ ["(t" = 4; Z"%&) × ℙ(!
$4& t" = 4|Z"%&)Ñ

!
,                                        (5.22) 

with 

["(t" = 4; Z"%&) = d$ + e$V"%&, 

and 

"̂
!(t" = 4; Z"%&) = g$ + i&$b"%&! + o&$ @̂

!(0 − 1; Z"%!). 

It can be noticed that the collapsed conditional variance, @̂
!(0; Z"%&) is calculated by 

aggregating the conditional variances from the two regimes. The path dependence has 

been effectively removed as @̂
!(0; Z"%&)  is now the weighted average of the regime 

dependent conditional variance, "̂
!(t" = 4; Z"%&), weighted by the probability being in 

that particular regime conditional on past observed returns up to time 0 − 1. 

5.4  Distributions of return  

In many occasion, financial time series is assumed to follow NORMD. In respect to 

the heavy-tailed properties displayed by cryptocurrencies (Philip et al., 2018), STD and 

GED are also considered in this research. 
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5.4.1  Normal distribution 

Suppose that c" follows NORMD, then the following probability density function at 

time 0 applied: 

Ç(c") = &
√!O

Ü
")%'
' ,   −∞ < c" < ∞.                        (5.23) 

Recall Eq. (5.2), we obtain the conditional density function of V"  on past observed 

returns assuming NORMD as the follows: 

Ç(V"|Z"%&) = &

P!OQ%'
Ü
"(+%",%)'

'.%' ,   −∞ < V" < ∞.            (5.24) 

5.4.2  Student-t distribution 

Suppose that c" follows STD with á degrees of freedom, then the following probability 

density function at time 0 applied: 

Ç(c") =
RS/0#' T

UO(V%!)RS/'T
à1 + W%'

(V%!)
â
%/0#'

,   −∞ < c" < ∞,   á > 2.          (5.25) 

Recall Eq. (5.2), we obtain the conditional density function of  V" on past observed 

returns assuming STD as the follows: 

Ç(V"|Z"%&) = &
Q%

RS/0#' T

UO(V%!)RS/'T
à1 + (E%%X%)'

Q%'(V%!)
â
%/0#'

,   −∞ < V" < ∞,   á > 2,   (5.26) 

where Γ(á) = ∫ Ü%B~V%&Ä~Y
(  is the gamma function. The parameter á measures the tail 

thickness of the distribution which takes care of the heavy tail property of the financial 

time series. When á → ∞, the distribution will converge to NORMD (Gosset, 1908). 
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5.4.3  Generalised error distribution 

Finally, assume c" follows GED as the follows: 

Ç(c") =
V	>8?	Z%S#'T[

)%
1 [
/
\

]!#0
#
/RS#/T

,   −∞ < c" < ∞,   á > 0,                                           (5.27) 

where Γ(∙) is the gamma function and é = è!
"2'34RS#	3T

RS63T
ê
#
'

. 

Recall Eq. (5.2), we obtain the conditional density function of V"  on past observed 

returns assuming GED as the follows: 

Ç(V"|Z"%&) = &
Q%

V	>8?	Z%S#'T^
+%",%
.%1

^
/
\

]!#0
#
/RS#/T

,   −∞ < V" < ∞,   á > 0.                      (5.28) 

GED reduces to NORMD when á = 2 and has thicker tails than normal (Nelson, 1991). 

5.5  Value-at-risk 

Conventionally in finance, VaR is often used as an indicator to estimate the possible 

risk exposure for a given time horizon and risk level. VaR indicates the maximum 

potential loss of an investment which is vital in risk management practice. Analytically, 

the 100(ë! − ë&)% confidence limits for VaR forecast of single-regime GARCH-type 

models at time 0 is defined as: 

ìVaR",_# , VaR",_'ï = É[" + f_# "̂ , [" + f_' "̂Ñ,                                    (5.29) 

where f_# and f_' respectively, are the corresponding critical values of the lower quantile, 

ë& and the upper quantile, ë! of the respective distribution.  
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As for Markov-switching models, i.e. MSGARCH(1,1) and TV-MSGARCH(1,1) 

models, we propose the use of collapsed conditional mean at time 0, [@(0; Z"%&), and 

collapsed conditional standard deviation at time 0, @̂(0; Z"%&) , to calculate the forecast 

of VaR. The 100(ë! − ë&)% confidence limits for VaR forecast at time 0 is:  

ìVaR",_# , VaR",_'ï = É[@(0; Z"%&) + f_# @̂(0; Z"%&), [@(0; Z"%&) + f_' @̂(0; Z"%&)Ñ,  

(5.30) 

where 

[@(0; Z"%&) = \[["(t&:"; Z"%&)|Z"%&] = ∑ ["(t" = 4; Z"%&) × ℙ(t" = 4|Z"%&)!
$4& .  

The collapsed conditional standard deviation, @̂(0; Z"%&) at time 0 can be obtained from 

Eq. (5.22). 

Once VaR forecasts are computed for each model over the forecasting period, the 

accuracy of VaR forecasts is assessed via VaR backtests. The first test was proposed by 

Kupiec (1995), also known as unconditional coverage (UC) test, which was then extended 

by Christoffersen (1998) who introduced conditional coverage (CC) test. A more general 

VaR backtest procedure was provided by Engle and Manganelli (2004), also known as 

dynamic quantile (DQ) test, which is based on a linear regression model. UC test checks 

the correct VaR coverage of the marginal return distribution Ç(V") while CC test deals 

with the conditional density on past observed returns up to time 0 − 1, Ç(V"|Z"%&).  

5.5.1  Unconditional coverage test 

Unconditional coverage (UC) test calculates the number of VaR violations (the 

number of losses exceeding VaR estimates). If the number of violations exceeds the 

expected number indicated by the confidence level, ë, the model underestimates risk and 
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if vice versa, the model overestimates risk. Both situations may affect financial strategies 

such that for the former, negative return is expected and for the latter, additional capital 

is required to secure the investment. Let ñ_ be the number of VaR violations and ℎ is the 

total number of days using one-day ahead forecast. Then, ñ_  follows binomial 

distribution with ℎ trials and success probability ë.  

The likelihood ratio statistic is: 

LR`a = 2 ln ôà1 − b7
c
â
c%b7 àb7

c
â
b7ö − 2 ln[(1 − ë)c%b7 ëb7],                      (5.31) 

where LR`a is an asymptotically distributed chi-square with one degree of freedom. 

5.5.2  Conditional coverage test 

One of the drawbacks of UC test happens when the clustered VaR violations are not 

accounted for. In order to reject concentrated VaR violations, CC test jointly tests the 

independence of the “hit sequence” and the unconditional coverage of the VaR forecasts. 

First, define an indicator variable q", which takes value of one if VaR is violated and takes 

value of zero if no violation occurs. Then, define a first-order Markov process with 72$ as 

the number of days with condition l on the previous day and 4 on the current day.  

To provide better understanding, the 2 × 2 contingency table is as follows: 

Table 5.1: Contingency table for CC test. 

 q" = 0 q" = 1 Total 

q"%& = 0 7(( 7(& 7(( + 7(& 

q"%& = 1 7&( 7&& 7&( + 7&& 
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Let õ represents the probability of VaR violations and õ2 denotes the probability of 

VaR violations given the condition of being in regime l in the previous day, then the 

following applies: 

õ( = d8#
d88)d8#

,   õ& = d##
d#8)d##

   and   õ = d8#)d##
d88)d8#)d#8)d##

.                      (5.32) 

The null hypothesis of the independence test suggests that õ( = õ& = õ. In other words, 

the “hit sequence” should not be time dependent whereby the occurrence of VaR violation 

should not be dependent on whether there is a VaR violation occurrence on previous day. 

It is important to test whether the “hit sequence” is independent and the average number 

of violations is correct. The likelihood test statistic is defined as follows: 

LRefg = 2 lnÉ(1 − õ()d88õ(d8#(1 − õ&)d#8õ&d##Ñ − 2 ln[(1 − õ)d88)d#8õd8#)d##],   

(5.33) 

where LRefg is an asymptotically distributed chi-square with one degree of freedom. 

CC test jointly tests the correct failure rate and the independence of VaR violations 

and the likelihood test statistic is carried out as: 

LRaa = LR`a + LRefg, 																																											                                   (5.34) 

where LRaa is an asymptotically distributed chi-square with two degrees of freedom. 

5.5.3  Dynamic quantile test 

Dynamic quantile (DQ) test is based on a linear regression model where the dependent 

variable on VaR violation, known as “hit variable”, is linked to a set of explanatory 

variables including a constant, lagged values of the hit variable and any useful 

information from the past. Denote hit variable at time 0  on confidence level ν  as 
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ùl0"(ë) = q"(ë) − ë and under the correct model specification, the following moment 

conditions for the hit variables are satisfied: 

\[ùl0"(ë)] = 0, \[ùl0"(ë)q"%&(ë)] = 0  and  \[ùl0"(ë)ùl0"h(ë)] = 0   for 0 ≠ 0̀. 

(5.35) 

The linear regression is defined as the follows: 

ùl0"(ë) = } + ∑ oiùl0"%i(ë)j
i4& +∑ piü(j

i4& ùl0"%i(ë), ùl0"%i%&(ë), … ) + c",  
(5.36) 

where ü(. ) is a function of past information. The null hypothesis of DQ test is to test 

whether the coefficients are jointly equal to zero such that: 

H(: } = o& = o! = ⋯ = oj = p& = ⋯ = pj = 0                             (5.37) 

5.5.4  Model confidence set 

To further assess the forecasting performance of the models, MCS procedure by 

Hansen et al. (2011) was employed. MCS procedure consists of a sequence of statistical 

tests for constructing a set of superior models (SSM) where the null hypothesis of equal 

predictive ability (EPA) will not be rejected at certain confidence level. At each iteration, 

MCS procedure eliminates the worst model until the hypothesis of EPA is accepted for 

SSM. The SSM are then used to forecast future volatility level of cryptocurrencies. To 

sum up, MCS procedure accounts for the forecasting performance for a set of models 

rather than comparing relatively over a benchmark model for instance, Diebold-Mariano 

test (Diebold & Mariano, 1995) and superior predictive ability test (Hansen, 2005). 
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Consider a set of models £ of dimension & encompassing of & models described in 

Sections 5.1 and 5.2. Let the loss function calculated for model l at time 0 denoted as §2,". 

The loss differential of two models l and 4 at time 0, defined as Ä2$," , is calculated as 

follows: 

Ä2$," = §2," − §$,",   l, 4 = 1, 2, … ,&,   l ≠ 4   and   0 = 1, 2, … , ℎ.                       (5.38) 

Next, let  

Ä2∙," = &
'%&

∑ Ä2$,"'
$4& ,   l = 1, 2, … ,&,   l ≠ 4,                                                   (5.39) 

where Ä2∙," is the simple loss of model l relative to any other model 4 at time 0.  

The hypothesis for EPA is formulated as: 

H(: d2∙ = 0	  for all l = 1, 2, … ,&, 

H&: d2∙ ≠ 0   for some l = 1, 2, … ,&,                                                 (5.40) 

where d2∙ = \(Ä2∙) is assumed to be finite and not time dependent.  

In order to test the null hypothesis mentioned in Eq. (5.40), the following test statistic 

is constructed: 

02∙ = Al&⋅
Um7no (Al&⋅)

			for	l ∈ £, 		                                     (5.41) 

where Ä̅2⋅ = &
'%&

∑ Ä̅2$'
$4&  is the estimated loss for model l relative to the averages losses 

in the set of models £ and Ä̅2$ = &
c
∑ Ä2$,"c
"4&  while Var• (Ä̅2⋅) is the bootstrapped estimate 
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of the variance, Var(Ä̅2⋅). Finally, the test statistic above can be naturally mapped into the 

following test statistic: 

#q = max
2∈q

02⋅.                                                                  (5.42) 

Note that the asymptotic distribution of #q  is non-standard and the relevant 

distributions are estimated using bootstrap procedure similar to the method for estimating 

Var(Ä̅2⋅). 

Since MCS procedure is a sequential process which eliminates the worst model at each 

iteration as mentioned before, the elimination procedure consists of three steps.     

Step 1: Set £ = £( where £( represents the set of initial models.  

Step 2: Test for EPA hypothesis and if EPA is accepted, the algorithm is terminated and 

the models belong to SSM, otherwise, eliminates the worst model.  

Step 3: Remove the worst model in Eq. (5.43) and go back to Step 2. 

Üq = argmax
2
ß Al&⋅
Um7no (Al&⋅)

®.                                                         (5.43) 
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CHAPTER 6 : MODEL FITTING 

This chapter discusses the empirical results obtained from the volatility estimation of 

the top five cryptocurrencies which commences with the comparison of the model fitting 

performances based on several criteria. Next, a diagnostic analysis is performed on the 

standardised residuals to check the model capability in capturing the serial dependence 

of the return series of cryptocurrencies. Lastly, the contribution of time-varying transition 

probability (TVTP) for the volatility modelling of TV-MSGARCH models is assessed by 

calculating the weighted transition probability (WTP). 

6.1  Model selection  

To determine the best fitted volatility model for the returns of BTC, ETH, XRP, BCH 

and EOS, these cryptocurrencies are fitted with GARCH(1,1) model, TGARCH(1,1) 

model, GJRGARCH(1,1) model, MSGARCH(1,1) model and three TV-MSGARCH(1,1) 

models, all incorporated with three different error distributions: NORMD, STD and GED. 

The exogenous variables embedded in the TVTP of TV-MSGARCH(1,1) models are: (1) 

Google searches series, denoted by TV-MSGARCHS(1,1); (2) log difference Google 

searches series, denoted by TV-MSGARCHldS(1,1); (iii) log trading volume, denoted by 

TV-MSGARCHlnV(1,1). With that, a total of 105 volatility models are constructed and 

the parameter estimates for all these fitted models together with their standard errors in 

parentheses of various cryptocurrencies are provided in Appendix B. 
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The selection of the best fitted model for each of the cryptocurrencies is based on a 

specification test known as AIC, proposed by Akaike (1974), which can be calculated as 

follows: 

AIC = 26 − 2LL,                                                                   (6.1) 

where 6  represents the number of parameters. AIC measures the loss of information 

caused by likelihood estimation. The smaller the value of AIC, the better the model to be 

used for in-sample volatility estimation. The values of AIC and LL for various volatility 

models and cryptocurrencies with different error distributions are reported in Table 6.1. 

Table 6.1: LL and AIC values for the fitted volatility models with different error 
distributions under various cryptocurrencies. 

BTC Distribution 

Models NORMD STD GED 
LL AIC LL AIC LL AIC 

GARCH(1,1) 4787.84 -9565.68 5241.58 -10471.16 5244.25 -10476.50 
GJRGARCH(1,1) 4789.34 -9566.68 5242.11 -10470.22 5245.50 -10477.00 

TGARCH(1,1) 4804.05 -9596.10 5255.86 -10497.72 5258.76 -10503.52 
MSGARCH(1,1) 5247.03 -10470.06 5294.47 -10560.94 5294.46 -10560.92 

TV-MSGARCHS(1,1) 5249.30 -10470.60 5299.54 -10567.08 5300.61 -10569.22 
TV-MSGARCHldS(1,1) 5247.24 -10466.48 5298.70 -10565.40 5294.75 -10557.50 
TV-MSGARCHlnV(1,1) 5248.11 -10468.22 5296.66 -10561.32 5299.46 -10566.92 

ETH Distribution 

Models NORMD STD GED 
LL AIC LL AIC LL AIC 

GARCH(1,1) 1273.22 -2536.44 1337.41 -2662.82 1349.54 -2687.08 
GJRGARCH(1,1) 1273.24 -2534.48 1337.44 -2660.88 1349.65 -2685.30 

TGARCH(1,1) 1278.64 -2545.28 1337.45 -2660.90 1351.84 -2689.68 
MSGARCH(1,1) 1357.54 -2691.08 1361.45 -2694.90 1365.55 -2703.10 

TV-MSGARCHS(1,1) 1357.62 -2687.24 1365.97 -2699.94 1368.69 -2705.38 
TV-MSGARCHldS(1,1) 1358.79 -2689.58 1362.70 -2693.40 1366.25 -2700.50 
TV-MSGARCHlnV(1,1) 1359.04 -2690.08 1363.93 -2695.86 1366.55 -2701.10 
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Table 6.1, continued. 

XRP Distribution 

Models NORMD STD GED 
LL AIC LL AIC LL AIC 

GARCH(1,1) 1138.64 -2267.28 1511.92 -3011.84 1486.61 -2961.22 
GJRGARCH(1,1) 1165.37 -2318.74 1514.11 -3014.22 1488.22 -2962.44 

TGARCH(1,1) 1154.41 -2296.82 1514.92 -3015.84 1487.08 -2960.16 
MSGARCH(1,1) 1489.11 -2954.22 1544.48 -3060.96 1514.45 -3000.90 

TV-MSGARCHS(1,1) 1495.62 -2963.24 1546.41 -3060.82 1523.51 -3015.02 
TV-MSGARCHldS(1,1) 1500.21 -2972.42 1545.38 -3058.76 1526.26 -3020.52 
TV-MSGARCHlnV(1,1) 1494.90 -2961.80 1566.40 -3100.80 1533.38 -3034.76 

BCH Distribution 

Models NORMD STD GED 
LL AIC LL AIC LL AIC 

GARCH(1,1) 242.46 -474.92 265.72 -519.44 266.27 -520.54 
GJRGARCH(1,1) 243.26 -474.52 266.28 -518.56 266.88 -519.76 

TGARCH(1,1) 244.29 -476.58 266.39 -518.78 267.01 -520.02 
MSGARCH(1,1) 270.78 -517.56 289.68 -551.36 297.25 -566.50 

TV-MSGARCHS(1,1) 274.67 -521.34 302.23 -572.46 303.46 -574.92 
TV-MSGARCHldS(1,1) 289.01 -550.02 296.35 -560.70 307.29 -582.58 
TV-MSGARCHlnV(1,1) 291.95 -555.90 299.21 -566.42 300.10 -568.20 

EOS Distribution 

Models NORMD STD GED 
LL AIC LL AIC LL AIC 

GARCH(1,1) 259.88 -509.76 276.49 -540.98 259.04 -506.08 
GJRGARCH(1,1) 259.92 -507.84 276.80 -539.60 265.75 -517.50 

TGARCH(1,1) 263.93 -515.86 278.00 -542.00 269.20 -524.40 
MSGARCH(1,1) 288.75 -553.50 298.61 -569.22 290.26 -552.52 

TV-MSGARCHS(1,1) 292.82 -557.64 302.19 -572.38 311.51 -591.02 
TV-MSGARCHldS(1,1) 291.72 -555.44 318.59 -605.18 299.61 -567.22 
TV-MSGARCHlnV(1,1) 293.39 -558.78 320.71 -609.42 299.43 -566.86 

 

The volatility model with the lowest value of AIC and the highest value of LL is chosen 

to be the best fitted model amongst others. The best fitted volatility model for BTC, ETH, 

XRP, BCH and EOS are presented in bold in Table 6.1. Interestingly to know,                  

TV-MSGARCH models gave the best volatility fit for all cryptocurrencies which, in 

overall, also give smaller AIC values compared to other volatility models. Among all, the 

best fitted volatility model for BTC and ETH is TV-MSGARCHS(1,1) model with GED, 

the best fitted volatility model for BCH is TV-MSGARCHldS(1,1) model with GED and 

the best fitted volatility model for XRP and EOS is TV-MSGARCHlnV(1,1) model with 

STD. In addition, it is discovered that Google searches series are more preferred for BTC, 

Univ
ers

ity
 of

 M
ala

ya



72 
 

ETH and BCH while trading volume is more preferred for XRP and EOS to be 

incorporated into the TVTP for the respective TV-MSGARCH(1,1) model. For better 

understanding, the best fitted volatility models for BTC, ETH, XRP, BCH and EOS are 

also tabulated in Table 6.2 and the following analysis and discussions are based on the 

respective best fitted volatility model for each of the cryptocurrencies. 

Table 6.2: The best fitted volatility models for BTC, ETH, XRP, BCH and EOS. 

Cryptocurrencies Fitted volatility models 
BTC TV-MSGARCHS(1,1)-GED 
ETH TV-MSGARCHS(1,1)-GED 
XRP TV-MSGARCHlnV(1,1)-STD 
BCH TV-MSGARCHldS(1,1)-GED 
EOS TV-MSGARCHlnV(1,1)-STD 

 

The parameter estimates reported in Appendix B show that the best fitted model for 

BTC, ETH, BCH and EOS display evidence of “mean-reverting” effect particularly in the 

low volatility regime (regime 1) in which today’s return relates negatively to yesterday’s 

return. On the contrary, XRP fitted model displays “mean-reverting” effect in both of the 

regimes. The “mean-reverting” effect gradually causes the return series to move towards 

its average value in the long run. When the returns in the low volatility regime are below 

the average value, the fitted model pushes the returns back up towards its average value 

which often happens after the market recession. Similarly, when the returns in the high 

volatility regime are above the average value, the fitted model pushes the returns down 

towards its average value to avoid continuing explosive volatility. In addition, all of the 

best volatility models for BTC, ETH, XRP, BCH and EOS fulfil the stationary condition 

as discussed by Bauwens et al. (2010).  

Next, with the employment of TV-MSGARCH model, we notice that the exogenous 

variables embedded in the TVTP contribute differently on the two regimes. Note that, 

negative (positive) values of regime 1 coefficients Ä& imply that, on average, a positive 
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change in the respective exogenous variables increases (decreases) the likelihood function 

from regime 1 to regime 2. The same is also assumed for regime 2 whereby the negative 

(positive) values of regime 2 coefficients Ä! imply that, on average, a positive change in 

the respective exogenous variables increases (decreases) the likelihood function from 

regime 2 to regime 1. Following this, it is discovered that the probability of BTC and 

BCH staying in the same regime increases when the Google searches series on the 

respective cryptocurrencies increases. However, for ETH, an increase in ETH Google 

searches series decreases the probability of the returns to stay in the same regime and 

increases the probability of regime transition from either regime 1 (low volatility regime) 

to regime 2 (high volatility regime) or the other way round. Moreover, the returns of XRP 

are more likely to stay in the same regime when XRP trading volume increases. In 

contrast, returns of EOS tends to move from regime 2 (high volatility regime) to regime 

1 (low volatility regime) and stay in the low volatility regime when EOS trading volume 

increases. Despite both Google searches series and trading volume are the direct measure 

of public interest, it is noticed that the two variables have different impact on different 

cryptocurrencies. These behaviours are important to facilitate and induce the flexibility 

of TV-MSGARCH models so that the jumps in the returns of cryptocurrencies can be 

accounted for at various phases of economic expansion and depression. 

To provide in-depth understanding on the adequacy of the best fitted models in 

capturing the ARCH effects, Ljung-Box test is carried out on the standardised residuals 

and squared standardised residuals discussed in the following section. 

6.2  Ljung-Box test on standardised residuals of fitted models 

Ljung-Box test statistics are computed on the standardised residuals and the squared 

standardised residuals to examine if the conditional heteroscedasticity still exists after the 

model fitting on the mean and volatility of cryptocurrencies. The null hypothesis of 
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Ljung-Box test suggests zero serial correlation in the residuals. After model fitting, the 

squared standardised residuals should not display any serial correlation. With that, the 

fitted model is perceived to be capable of capturing the ARCH effects in the returns of 

the cryptocurrencies. The standardised residuals are calculated as the follows: 

b©" = s%

PQ%'
,   for 0 = 1, 2, …#,                                                   (6.2) 

where {b©"} is the series of standardised residuals that forms a sequence of i.i.d random 

variables if the volatility model is properly specified and estimated.  

Ljung-Box test is carried out on the standardised residuals and the squared 

standardised residuals of the best fitted model for BTC, ETH, XRP, BCH and EOS and 

the p-values for Ljung-Box test are reported in Table 6.3. 

Table 6.3: P-values for Ljung-Box test of the best fitted models for various 
cryptocurrencies. 

Ljung-Box test 
statistic 

Cryptocurrencies 
BTC ETH XRP BCH EOS 

!(5) 1.4×10-9* 0.0517 0.4559 0.4271 0.3185 
!(10) 2.9×10-11* 0.0720 0.3501 0.7314 0.3224 
!:(10) 0.6694 0.8985 0.9999 0.4878 0.9791 

*Significance at the 5% level. 
Note: !(m) and !:(m) are the test statistics for the Ljung-Box test of lag m for standardised residuals and 
squared standardised residuals respectively. 
 

There are some points worth making about Table 6.3. It is noticeable that the best fitted 

models are adequate in fitting the mean and the conditional variance of the respective 

cryptocurrencies. Based on the standardised residuals, we have the p-values of ™(5) and 

™(10) all are not significant at the 5% significance level for ETH, XRP, BCH and EOS. 

The Markov-switching specification in the mean equation adequately removes the serial 

dependence in the return series described by	d<% and	e<% 	(see Eq. (5.9)). These findings 

underscore the importance of integrating the Markov-switching specification in the return 
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series in the process of volatility modelling and this manoeuvre is often lacking in the 

previous literature. However, the p-values of ™ (5) and ™ (10) on BTC standardised 

residuals both are significant at the 5% significance level. Future study may consider 

additional lags in the Markov-switching mean equation to curb with the remaining serial 

correlation left in the BTC standardised residuals. Nevertheless, all of the fitted volatility 

models for BTC, ETH, XRP, BCH and EOS are able to capture the ARCH effects. For 

model checking in capturing the ARCH effects, we have the p-values of ™!(10) on the 

squared standardised residuals are not significant at the 5% significance level for all BTC, 

ETH, XRP, BCH and EOS. The volatility clustering in the returns of cryptocurrencies 

have been well-captured by the respective model at the 5% significance level. 

6.3  Marginal contributions of TV-MSGARCH models 

As discussed in the previous sections, TV-MSGARCH models shows superiority in 

volatility estimation over other volatility models for BTC, ETH, XRP, BCH and EOS. To 

further evaluate the improvement of TVTP in TV-MSGARCH model against constant 

transition probabilities in MSGARCH model, we utilise the approach from Filardo (1994) 

to assess the marginal contributions of TVTP.  

Weighted transition probability (WTP) is calculated for regime 1 and regime 2 for 

every time 0, denoted as WTP(n&&") and WTP(n!!"), by taking the difference between 

the transition probabilities at time 0 and the average of transition probabilities over time, 

then weighted by the filtered probabilities ℙ(t" = 4|Z") where 4 = 1, 2 and Z" represents 

the past observed returns up to time	0.  
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The respective formulas for WTP(n&&") and WTP(n!!") are given as follows: 

WTP(n&&") = (n&&" − n̅&) × ℙ(t" = 1|Z"),                                  (6.3) 

and 

WTP(n!!") = (n!!" − n̅!) × ℙ(t" = 2|Z"),                                (6.4) 

where n̅2 is the mean of n22," such that n̅2 = &
*
∑ n22,"*
"4&  for l = 1, 2 and # is the length of 

data. As indicated by Filardo (1994), the marginal contributions can be examined by their 

deviations from zero based on Eq. (6.3) and Eq. (6.4). 

The marginal contributions of TVTP in TV-MSGARCH models for BTC, ETH, XRP, 

BCH and EOS are illustrated in Figures 6.1 to 6.5. It is pronounced that TVTP does 

provide additional information to the TV-MSGARCH models. It is observed that BTC 

Google searches series shows significant contribution to the flexibility in the transition 

probabilities of TV-MSGARCH model around the turning of years 2013/2014 which is 

also the BTC historical incident, popularly known as BTC price crash 2013. Besides, the 

spikes of WTP in year 2018 correspond strongly for n!!" and less for n&&" for BTC. By 

comparing the WTP(n&&") and WTP(n!!") of ETH, we notice the ETH Google searches 

series appears to have similar impact on n&&" and n!!" in the mid-year of 2017 and also 

at the turning of year 2017/2018. As for XRP, the contribution of XRP trading volume on 

the transition probabilities can be clearly seen starting from the mid-year of 2017 when 

the WTP(n&&") and WTP(n!!") of XRP show significant deviations from zero. For BCH, 

there are three periods in year 2017 that BCH trading volume has strong contribution on 

the transition probabilities. Besides, the WTP (n&&")  and WTP (n!!")  of EOS are 

distinctive in the sense that the marginal contribution of TVTP for regime 1 affected by 
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EOS trading volume are more prominently observed while the marginal contribution of 

TVTP for regime 2 are minimal. 

 

Figure 6.1: Marginal contributions of TVTP for TV-MSGARCHS(1,1)-GED model 
for BTC. Univ

ers
ity

 of
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Figure 6.2: Marginal contributions of TVTP for TV-MSGARCHS(1,1)-GED model 
for ETH. 
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Figure 6.3: Marginal contributions of TVTP for TV-MSGARCHlnV(1,1)-STD model 
for XRP. 
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Figure 6.4: Marginal contributions of TVTP for TV-MSGARCHldS(1,1)-GED model 
for BCH. 
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Figure 6.5: Marginal contributions of TVTP for TV-MSGARCHlnV(1,1)-STD model 
for EOS. 
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CHAPTER 7 : FORECASTING AND APPLICATIONS 

Volatility forecasting performance is important to finance researchers from both 

academia and financial industry. These forecasts will form the basis of risk management 

decision making as the forecasts represent the future dynamics of financial time series 

and the foreseeable undertaking risks. With that, this chapter computes one-day ahead 

volatility forecasts from 1 May 2018 to 31 July 2018, resulting in h = 92 forecasting points 

for BTC, ETH, XRP, BCH and EOS. One-day ahead rolling window technique with 

window size # (subject to the data length of each cryptocurrency tabulated in Table 3.1) 

was used to predict the volatility of cryptocurrencies.  

Philip et al. (2018) investigated 224 cryptocurrencies and found out that the returns of 

most of the cryptocurrencies are heavy-tailed and the error distributions follow STD. 

Hence, the volatility models used in the forecasting application for BTC, ETH, XRP, 

BCH and EOS are incorporated with STD, denoted as GARCH(1,1)-STD model, 

TGARCH(1,1)-STD model GJRGARCH(1,1)-STD model, MSGARCH(1,1)-STD 

model, TV-MSGARCHS(1,1)-STD model, TV-MSGARCHldS(1,1)-STD model and    

TV-MSGARCHlnV(1,1)-STD model. 

7.1  Loss functions and model confidence set procedure 

The performances of forecasts are assessed by deriving the loss functions. Patton (2011) 

studied the properties of nine loss functions and suggested that only mean square error 

(MSE) and quasi-likelihood (QLIKE) are robust to the noise of volatility proxy.  
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The formulas for MSE and QLIKE are given below: 

MSE = ℎ%& ∑ rb̂"! − ^"̂!s
!*)c

"4*)& ,                                        (7.1) 

and  

QLIKE = ℎ%&∑ ¨ŝ%
'

Q̂%'
− log àsu%

'

Qv%'
â − 1≠*)c

"4*)& ,                             (7.2) 

where b̂w is the proxy volatility and ^"̂! is the predicted volatility. b̂w is estimated from    

Eq. (5.2) for single-regime GARCH-type models while b̂" is estimated from Eq. (5.21) 

for MSGARCH(1,1) model and TV-MSGARCH(1,1) model. Table 7.1 shows the 

forecast errors obtained by MSE and QLIKE where the volatility model with the least 

forecast errors recorded in bold. 

Table 7.1: Comparison of forecast errors using MSE and QLIKE for the fitted 
volatility models under various cryptocurrencies. 

BTC 
Model MSE QLIKE 

GARCH(1,1)-STD 5.56×10-6 1.8222 
GJRGARCH(1,1)-STD 5.87×10-6 1.8416 

TGARCH(1,1)-STD 1.36×10-5 2.0013 
MSGARCH(1,1)-STD 5.51×10-6 1.7747 

TV-MSGARCHS(1,1)-STD 7.47×10-6 1.7791 
TV-MSGARCHldS(1,1)-STD 6.13×10-6 1.7664 
TV-MSGARCHlnV(1,1)-STD 6.17×10-6 1.8021 

ETH 
Model MSE QLIKE 

GARCH(1,1)-STD 1.95×10-5 2.0931 
GJRGARCH(1,1)-STD 2.01×10-5 2.0451 

TGARCH(1,1)-STD 1.81×10-5 2.1077 
MSGARCH(1,1)-STD 3.70×10-5 2.1167 

TV-MSGARCHS(1,1)-STD 1.61×10-5 1.9105 
TV-MSGARCHldS(1,1)-STD 1.53×10-5 1.9102 
TV-MSGARCHlnV(1,1)-STD 1.50×10-5 1.8418 
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Table 7.1, continued. 

XRP 
Model MSE QLIKE 

GARCH(1,1)-STD 1.95×10-5 2.1641 
GJRGARCH(1,1)-STD 2.01×10-5 1.7127 

TGARCH(1,1)-STD 1.81×10-5 2.0669 
MSGARCH(1,1)-STD 3.70×10-5 2.0142 

TV-MSGARCHS(1,1)-STD 1.61×10-5 1.8456 
TV-MSGARCHldS(1,1)-STD 1.53×10-5 1.8453 
TV-MSGARCHlnV(1,1)-STD 1.50×10-5 1.7863 

BCH 
Model MSE QLIKE 

GARCH(1,1)-STD 7.10×10-5 1.9256 
GJRGARCH(1,1)-STD 8.48×10-5 1.9746 

TGARCH(1,1)-STD 7.20×10-5 1.9126 
MSGARCH(1,1)-STD 3.84×10-5 1.7178 

TV-MSGARCHS(1,1)-STD 2.76×10-5 1.5596 
TV-MSGARCHldS(1,1)-STD 5.21×10-5 1.9122 
TV-MSGARCHlnV(1,1)-STD 5.51×10-5 2.0518 

EOS 
Model MSE QLIKE 

GARCH(1,1)-STD 1.69×10-4 2.2082 
GJRGARCH(1,1)-STD 1.11×10-4 2.2495 

TGARCH(1,1)-STD 1.63×10-4 2.1478 
MSGARCH(1,1)-STD 1.02×10-4 2.1784 

TV-MSGARCHS(1,1)-STD 1.11×10-4 2.1260 
TV-MSGARCHldS(1,1)-STD 9.70×10-5 2.0604 
TV-MSGARCHlnV(1,1)-STD 1.26×10-4 1.8777 

 

Results from Table 7.1 report that both MSE and QLIKE suggest the best volatility 

models for forecasting application is TV-MSGARCHlnV(1,1)-STD model for ETH and 

TV-MSGARCHS(1,1)-STD model for BCH. However, in the case of BTC, XRP and EOS, 

MSE and QLIKE imply contradict results. Although MSE and QLIKE are both popular 

loss functions used very often, their formulations are different. MSE is a loss function 

based on forecast error, b̂"! − ^"̂! whereas QLIKE is a loss function based on standardised 

forecast error, 
ŝ%'

Q̂%'
. Due to this reasoning, Patton (2011) was motivated to use QLIKE rather 

than MSE in volatility forecasting application especially when extreme observations are 

observed since MSE is sensitive to extreme observations and the level of volatility return. 
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With the prominent fluctuations in cryptocurrencies returns, it is believed that QLIKE 

behaves as a better indicator to select the best forecasting model. To sum up, we are in 

the view that TV-MSGARCHldS(1,1)-STD model gives the best forecasting performance 

for BTC with lowest QLIKE value and similarly, GJRGARCH(1,1)-STD model for XRP 

and TV-MSGARCHlnV(1,1)-STD model for EOS. 

To further assess the forecasting performance of the respective volatility models, MCS 

procedure by Hansen et al. (2011) is employed. The forecasting performance for the 

volatility models is evaluated based on EPA with QLIKE. The ranks of the volatility 

models are reported in Table 7.2 below. 

Table 7.2: Comparison of forecasting performance on MCS procedure for the fitted 
volatility models under various cryptocurrencies. 

BTC 
Model eliminated: None 

Models Rank Test statistic P-value 
GARCH(1,1)-STD 5 -0.0736 1.0000 

GJRGARCH(1,1)-STD 6 0.2309 0.9932 
TGARCH(1,1)-STD 7 2.0267 0.1176 

MSGARCH(1,1)-STD 1 -1.0892 1.0000 
TV-MSGARCHS(1,1)-STD 4 -0.5894 1.0000 

TV-MSGARCHldS(1,1)-STD 2 -1.0277 1.0000 
TV-MSGARCHlnV(1,1)-STD 3 -0.7557 1.0000 

ETH 
Model eliminated: None 

Models Rank Test statistic P-value 
GARCH(1,1)-STD 6 1.2147 0.4878 

GJRGARCH(1,1)-STD 4 0.6591 0.8636 
TGARCH(1,1)-STD 7 1.3852 0.3816 

MSGARCH(1,1)-STD 5 0.7397 0.8146 
TV-MSGARCHS(1,1)-STD 2 -1.3630 1.0000 

TV-MSGARCHldS(1,1)-STD 3 -1.0033 1.0000 
TV-MSGARCHlnV(1,1)-STD 1 -2.3782 1.0000 

XRP 
Model eliminated: GARCH(1,1)-STD, TGARCH(1,1)-STD, MSGARCH(1,1)-STD 

Models Rank Test statistic P-value 
GJRGARCH(1,1)-STD 1 -1.4012 1.0000 

TV-MSGARCHS(1,1)-STD 4 1.3622 0.3392 
TV-MSGARCHldS(1,1)-STD 3 1.1629 0.4646 
TV-MSGARCHlnV(1,1)-STD 2 -0.1789 1.0000 
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Table 7.2, continued. 

BCH 
Model eliminated: None 

Models Rank Test statistic P-value 
GARCH(1,1)-STD 5 0.9818 0.7702 

GJRGARCH(1,1)-STD 6 1.2168 0.6084 
TGARCH(1,1)-STD 4 0.7247 0.9126 

MSGARCH(1,1)-STD 2 -1.2142 1.0000 
TV-MSGARCHS(1,1)-STD 1 -6.2041 1.0000 

TV-MSGARCHldS(1,1)-STD 3 0.4491 0.9872 
TV-MSGARCHlnV(1,1)-STD 7 1.2979 0.5498 

EOS 
Model eliminated: None 

Models Rank Test statistic P-value 
GARCH(1,1)-STD 6 1.3241 0.4856 

GJRGARCH(1,1)-STD 7 2.1438 0.1058 
TGARCH(1,1)-STD 4 0.3047 0.9984 

MSGARCH(1,1)-STD 5 0.4851 0.9762 
TV-MSGARCHS(1,1)-STD 3 0.0616 1.0000 

TV-MSGARCHldS(1,1)-STD 2 -0.8378 1.0000 
TV-MSGARCHlnV(1,1)-STD 1 -2.0613 1.0000 
 

The implementation of MCS procedure is completed via R package MCS and evaluated 

using 5000 bootstrap replications tested at the 5% significance level. The corresponding 

forecasting performance is ranked in column 2 of Table 7.2 in such a way that the lower 

the value of test statistic, the higher the rank. The best volatility model for forecasting 

application evaluated on MCS procedure is MSGARCH(1,1)-STD model for BTC,      

TV-MSGARCHlnV(1,1)-STD model for ETH, GJRGARCH(1,1)-STD model for XRP, 

TV-MSGARCHS(1,1)-STD model for BCH and TV-MSGARCHlnV(1,1)-STD for EOS. 

In addition, all of the TV-MSGARCH(1,1) models appear to be belonging to SSM. The 

forecasting superiority of TV-MSGARCH(1,1) models over single-regime GARCH-type 

models is again confirmed based on the rankings of these models. It is also observed that 

TV-MSGARCH models always occupy the first few ranks according to MCS procedure 

while GARCH-type models are often ranked the last, mostly due to their restricted 

volatility specifications which are not flexible to account for the volatility of 

cryptocurrencies. 
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7.2  Value-at-risk backtests 

The accuracy of VaR forecasts are evaluated based on UC test, CC test and DQ test 

which can be implemented via R package GAS. Optimal volatility forecasting models 

should provide an accurate VaR coverage with minimum percentage of VaR violations. 

The p-values for UC test, CC test and DQ test are given in Table 7.3 on various confidence 

limits. 

Table 7.3: Comparison of VaR backtest results for different confidence limits for 
the fitted volatility models under various cryptocurrencies. 

BTC Lower confidence limit, ν; Upper confidence limit, ν: 
Model 0.05 0.025 0.005 0.95 0.975 0.995 

GARCH(1,1)-STD       
UC test 0.2847 0.3033 0.0928 0.4150 0.0843 0.1739 
CC test 0.4654 0.4898 0.2329 0.1270 0.0399* 0.3967 
DQ test 0.0286* 0.0435* 0.0003* 0.2500 0.0000* 0.9964 

GJRGARCH(1,1)-STD       
UC test 0.5215 0.3033 0.0928 0.4150 0.6550 0.3369 
CC test 0.5329 0.4898 0.2329 0.1270 0.1602 0.6306 
DQ test 0.1429 0.0607 0.0009* 0.2620 0.0196* 0.9996 

TGARCH(1,1)-STD       
UC test 0.4150 0.8377 0.3369 0.0021* 0.0309* 0.3369 
CC test 0.6476 0.9362 0.6306 0.0089* 0.0974 0.6306 
DQ test 0.8703 0.9493 0.9996 0.7048 0.9443 0.9996 

MSGARCH(1,1)-STD       
UC test 0.8502 0.6550 0.0928 0.4150 0.3290 0.3369 
CC test 0.7344 0.8170 0.2329 0.1270 0.6141 0.6306 
DQ test 0.3428 0.1619 0.1768 0.2469 0.9443 0.9996 

TV-MSGARCHS(1,1)-STD       
UC test 0.4150 0.8377 0.3369 0.4150 0.3290 0.3369 
CC test 0.6476 0.9362 0.6306 0.1155 0.6141 0.6306 
DQ test 0.9348 0.8575 0.9996 0.8988 0.9443 0.9996 

TV-MSGARCHldS(1,1)-STD       
UC test 0.7693 0.6550 0.4901 0.4150 0.3290 0.3369 
CC test 0.7969 0.8170 0.7794 0.1270 0.6141 0.6306 
DQ test 0.5719 0.1742 0.1030 0.2404 0.9443 0.9996 

TV-MSGARCHlnV(1,1)-STD       
UC test 0.8502 0.6550 0.4901 0.4150 0.3290 0.3369 
CC test 0.7344 0.8170 0.7794 0.1270 0.6141 0.6306 
DQ test 0.4402 0.2850 0.3198 0.2746 0.9443 0.9996 

  *Significance at the 5% level.  

Univ
ers

ity
 of

 M
ala

ya



88 
 

Table 7.3, continued. 

ETH Lower confidence limit, ν; Upper confidence limit, ν: 
Model 0.05 0.025 0.005 0.95 0.975 0.995 

GARCH(1,1)-STD       
UC test 0.5215 0.6550 0.4901 0.0382* 0.9341 0.1739 
CC test 0.5497 0.8170 0.7794 0.1155 0.9856 0.3967 
DQ test 0.0758 0.3088 0.4027 0.7048 0.9964 0.9964 

GJRGARCH(1,1)-STD             
UC test 0.5215 0.6550 0.4901 0.0382* 0.3290 0.3369 
CC test 0.5497 0.8170 0.7794 0.1155 0.6141 0.6306 
DQ test 0.0853 0.3240 0.4191 0.7048 0.9443 0.9996 

TGARCH(1,1)-STD             
UC test 0.5215 0.6550 0.4901 0.0382* 0.3290 0.3369 
CC test 0.5497 0.8170 0.7794 0.1155 0.6141 0.6306 
DQ test 0.0547 0.1094 0.1197 0.7048 0.9443 0.9996 

MSGARCH(1,1)-STD             
UC test 0.7693 0.8377 0.3369 0.0382* 0.3290 0.3369 
CC test 0.7969 0.9362 0.6306 0.1155 0.6141 0.6306 
DQ test 0.3069 0.8605 0.9996 0.7048 0.9443 0.9996 

TV-MSGARCHS(1,1)-STD             
UC test 0.5215 0.3033 0.4901 0.0382* 0.3290 0.3369 
CC test 0.5497 0.4898 0.7794 0.1155 0.6141 0.6306 
DQ test 0.1041 0.2227 0.4186 0.7048 0.9443 0.9996 

TV-MSGARCHldS(1,1)-STD             
UC test 0.2847 0.3033 0.4901 0.0382* 0.3290 0.3369 
CC test 0.4237 0.4898 0.7794 0.1155 0.6141 0.6306 
DQ test 0.1041 0.2330 0.3829 0.7048 0.9443 0.9996 

TV-MSGARCHlnV(1,1)-STD             
UC test 0.5215 0.3033 0.4901 0.0382* 0.3290 0.3369 
CC test 0.5497 0.4898 0.7794 0.1155 0.6141 0.6306 
DQ test 0.0762 0.1810 0.2658 0.7048 0.9443 0.9996 

  *Significance at the 5% level.  
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Table 7.3, continued. 

XRP Lower confidence limit, ν; Upper confidence limit, ν: 
Model 0.05 0.025 0.005 0.95 0.975 0.995 

GARCH(1,1)-STD       
UC test 0.1696 0.3364 0.3395 0.0022* 0.1762 0.1762 
CC test 0.3720 0.6229 0.6337 0.0094 0.4007 0.4007 
DQ test 0.8671 0.9642 0.9996 0.7112 0.9966 0.9966 

GJRGARCH(1,1)-STD             
UC test 0.8312 0.6423 0.4847 0.0401* 0.3364 0.3395 
CC test 0.7283 0.8095 0.7747 0.1203 0.6229 0.6337 
DQ test 0.3014 0.3592 0.1220 0.8818 0.9891 0.9996 

TGARCH(1,1)-STD             
UC test 0.1696 0.3364 0.3395 0.0401* 0.0318 0.3395 
CC test 0.3720 0.6229 0.6337 0.1203 0.0999 0.6337 
DQ test 0.8484 0.9626 0.9996 0.8765 0.9460 0.9996 

MSGARCH(1,1)-STD             
UC test 0.4279 0.3364 0.3395 0.0401* 0.3364 0.3395 
CC test 0.6585 0.6229 0.6337 0.1203 0.6229 0.6337 
DQ test 0.8717 0.9626 0.9996 0.8917 0.9938 0.9996 

TV-MSGARCHS(1,1)-STD             
UC test 0.4279 0.8505 0.3395 0.0401* 0.3364 0.3395 
CC test 0.6585 0.9387 0.6337 0.1203 0.6229 0.6337 
DQ test 0.7437 0.6286 0.9996 0.8701 0.9819 0.9996 

TV-MSGARCHldS(1,1)-STD             
UC test 0.7873 0.8505 0.3395 0.0401* 0.3364 0.3395 
CC test 0.8005 0.9387 0.6337 0.1203 0.6229 0.6337 
DQ test 0.8683 0.8028 0.9996 0.8668 0.9938 0.9996 

TV-MSGARCHlnV(1,1)-STD             
UC test 0.7873 0.8505 0.3395 0.0022* 0.3364 0.3395 
CC test 0.8005 0.0999 0.6337 0.0094* 0.0999 0.6337 
DQ test 0.9666 0.9460 0.9996 0.7112 0.9460 0.9996 

  *Significance at the 5% level.  
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Table 7.3, continued. 

BCH Lower confidence limit, ν; Upper confidence limit, ν: 
Model 0.05 0.025 0.005 0.95 0.975 0.995 

GARCH(1,1)-STD       
UC test 0.1696 0.3364 0.3395 0.0022* 0.1762 0.1762 
CC test 0.3720 0.6229 0.6337 0.0094* 0.4007 0.4007 
DQ test 0.8671 0.9642 0.9996 0.7112 0.9966 0.9966 

GJRGARCH(1,1)-STD             
UC test 0.8312 0.6423 0.4847 0.0401* 0.3364 0.3395 
CC test 0.7283 0.8095 0.7747 0.1203* 0.6229 0.6337 
DQ test 0.3014 0.3592 0.1220 0.8818 0.9891 0.9996 

TGARCH(1,1)-STD             
UC test 0.1696 0.3364 0.3395 0.0401* 0.0318 0.3395 
CC test 0.3720 0.6229 0.6337 0.1203 0.0999 0.6337 
DQ test 0.8484 0.9626 0.9996 0.8765 0.9460 0.9996 

MSGARCH(1,1)-STD             
UC test 0.4279 0.3364 0.3395 0.0401* 0.3364 0.3395 
CC test 0.6585 0.6229 0.6337 0.1203 0.6229 0.6337 
DQ test 0.8717 0.9626 0.9996 0.8917 0.9938 0.9996 

TV-MSGARCHS(1,1)-STD             
UC test 0.4279 0.8505 0.3395 0.0401* 0.3364 0.3395 
CC test 0.6585 0.9387 0.6337 0.1203 0.6229 0.6337 
DQ test 0.7437 0.6286 0.9996 0.8701 0.9819 0.9996 

TV-MSGARCHldS(1,1)-STD             
UC test 0.7873 0.8505 0.3395 0.0401* 0.3364 0.3395 
CC test 0.8005 0.9387 0.6337 0.1203 0.6229 0.6337 
DQ test 0.8683 0.8028 0.9996 0.8668 0.9938 0.9996 

TV-MSGARCHlnV(1,1)-STD             
UC test 0.7873 0.0318 0.3395 0.0022* 0.0318 0.3395 
CC test 0.8005 0.0999 0.6337 0.0094* 0.0999 0.6337 
DQ test 0.9666 0.9460 0.9996 0.7112 0.9460 0.9996 

* Significance at the 5% level.  
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Table 7.3, continued. 

EOS Lower confidence limit, ν; Upper confidence limit, ν: 
Model 0.05 0.025 0.005 0.95 0.975 0.995 

GARCH(1,1)-STD       
UC test 0.4150 0.3289 0.3369 0.0382* 0.9341 0.1739 
CC test 0.6476 0.6141 0.6306 0.1155 0.9856 0.3967 
DQ test 0.6739 0.9884 0.9996 0.8413 0.8579 0.9964 

GJRGARCH(1,1)-STD       
UC test 0.4150 0.6550 0.3369 0.0382* 0.3290 0.3369 
CC test 0.6476 0.8170 0.6306 0.1155 0.6141 0.6306 
DQ test 0.5375 0.0885 0.9996 0.8596 0.9770 0.9996 

TGARCH(1,1)-STD       
UC test 0.4150 0.6550 0.3369 0.0382* 0.3290 0.3369 
CC test 0.6476 0.8170 0.6306 0.1155 0.6141 0.6306 
DQ test 0.6668 0.2400 0.9996 0.8674 0.9828 0.9996 

MSGARCH(1,1)-STD       
UC test 0.4150 0.6550 0.3369 0.0382 0.3290 0.3369 
CC test 0.6476 0.8170 0.6306 0.1155 0.6141 0.6306 
DQ test 0.7870 0.4080 0.9996 0.8618 0.9787 0.9996 

TV-MSGARCHS(1,1)-STD       
UC test 0.4150 0.6550 0.3369 0.0382* 0.3290 0.3369 
CC test 0.6476 0.8170 0.6306 0.1155 0.6141 0.6306 
DQ test 0.7870 0.3679 0.9996 0.8958 0.9963 0.9996 

TV-MSGARCHldS(1,1)-STD       
UC test 0.4150 0.6550 0.3369 0.0382* 0.3290 0.3369 
CC test 0.6476 0.8170 0.6306 0.1155 0.6141 0.6306 
DQ test 0.7905 0.3679 0.9996 0.8422 0.9612 0.9996 

TV-MSGARCHlnV(1,1)-STD       
UC test 0.1613 0.3289 0.3369 0.0382* 0.3290 0.3369 
CC test 0.3615 0.6141 0.6306 0.1155 0.6141 0.6306 
DQ test 0.9708 0.9970 0.9996 0.8892 0.9942 0.9996 

* Significance at the 5% level. 

 

Results in Table 7.3 show that all volatility models do not reject null hypothesis of 

correct VaR forecasting for all volatility models at the 95% and 99% confidence limits 

with the exception of BTC. It is discovered that for BTC, the p-values are significant for 

GARCH(1,1)-STD model, GJRGARCH(1,1)-STD model and TGARCH(1,1)-STD 

model for the respective backtests. Besides, the single-regime GARCH-type models do 

not forecast VaR accurately even at the 99% confidence limits. On the other hand, 

MSGARCH(1,1) model and TV-MSGARCH(1,1) models are capable of providing 

reliable VaR estimates. Noteworthy, the results obtained from UC test and CC test vary 
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from the results obtained from DQ test. More exactly, for most of the time, UC test and 

CC test indicate poor volatility forecasting performance at the 90% confidence limits 

while DQ test suggests that the VaR forecasts estimated are reliable at the 90%, 95% and 

99% confidence limits. This may be due to the length of forecasting sample size is not 

adequate to relatively evaluate the number of exceedance or VaR violations at the 90% 

confidence limit. Nevertheless, UC test and CC test imply correct VaR forecasts at the 

95% and 99% confidence limits. For illustration purpose, Figures 7.1 to 7.5 display the 

VaR plot for the best volatility model chosen from MCS procedure. 

 

Figure 7.1: VaR plot for BTC of MSGARCH(1,1)-STD model. 

 

The rankings of MCS procedure suggest that MSGARCH(1,1)-STD model is the best 

volatility model for forecasting application of BTC. However, it is also noticed that        

TV-MSGARCHldS(1,1)-STD model, which has the lowest QLIKE value among other 

volatility models, is ranked as the second in MCS procedure. As both QLIKE and MCS 

procedure can be used to assess the volatility forecasting performance of a time series, 
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the VaR plot for TV-MSGARCHldS(1,1)-STD model is also presented in Figure 7.6 for 

comparison purpose. 

 

Figure 7.2: VaR plot for ETH of TV-MSGARCHlnV(1,1)-STD model. 

 

Figure 7.3: VaR plot for XRP of GJRGARCH(1,1)-STD model. 

 

In the case of XRP, MCS procedure categorises GJRGARCH(1,1)-STD model and all 

TV-MSGARCH(1,1)-STD models as SSM while eliminates GARCH(1,1)-STD model, 

TGARCH(1,1)-STD model and MSGARCH(1,1)-STD model during the iteration 
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process. To further evaluate the forecasting performance of TV-MSGARCH(1,1)-STD 

models on the volatility of XRP, the VaR plot for TV-MSGARCHlnV(1,1)-STD model, 

which is also ranked as the second in MCS procedure, is provided in Figure 7.7. 

 

Figure 7.4: VaR plot for BCH of TV-MSGARCHS(1,1)-STD model. 

 

Figure 7.5: VaR plot for EOS of TV-MSGARCHlnV(1,1)-STD model.  
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By comparing Figure 7.1 and Figure 7.6, we see that TV-MSGARCHldS(1,1)-STD 

model yields more conservative VaR forecasts compared to MSGARCH(1,1)-STD model 

for BTC. Similarly, TV-MSGARCHlnV(1,1)-STD model also produces more conservative 

VaR forecasts compared to GJRGARCH(1,1)-STD model for XRP as portrayed by 

Figure 7.3 and Figure 7.7. 

Both of the TV-MSGARCH(1,1) models appear to be overestimating the risk which 

would result in additional capital requirement in order to secure a particular investment. 

The exogenous variables incorporated in the TV-MSGARCH(1,1)-STD models for BTC 

and XRP do not effectively provide additional information to the volatility specifications. 

Nevertheless, the risk management strategy is subject to whether the decision maker is 

risk averse or risk taker. 

 

Figure 7.6: VaR plot for BTC of TV-MSGARCHldS(1,1)-STD model. 
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Figure 7.7: VaR plot for XRP of TV-MSGARCHlnV(1,1)-STD model.  
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CHAPTER 8 : CONCLUSION AND DISCUSSIONS 

In this research, the empirical findings signify the existence of change points in price, 

return and squared return series of cryptocurrencies data which made a suggestive point 

of view for financial practitioners and researchers to consider the probable instability of 

parameters in all aspects of cryptocurrency analysis especially for the study of volatility 

modelling. Frequent change points are recorded for all cryptocurrency series affected by 

either the underlying internal factors or external factors, for instance, trading volume and 

Google searches series retrieved from Google Trends. Besides, the cryptocurrency indices, 

namely CRIX and CCI30, both consist of a moderate number of cryptocurrencies based 

on their respective selection method, appear to be inappropriate to be used directly to 

compare and contrast with the cryptocurrencies in the practical applications within a 

presumed period since the turnover rates of cryptocurrencies based on their rankings of 

market capitalisation are high. The location and number of change points detected in 

CRIX and CCI30 series are not closely consistent with the results detected in the top ten 

cryptocurrencies ranked according to market capitalisation which, at the data collection 

date, contributed a large combined market share of 79%. This might partly be due to the 

fast-changing position nature of cryptocurrency market. 

Following the study, the returns of the top five cryptocurrencies ranked according to 

total market capitalisation are fitted with various volatility models. Given the wild price 

fluctuations and excessive volatility observed in cryptocurrency market, TV-MSGARCH 

model which integrates with the drivers of cryptocurrencies prices, namely trading 

volume and Google searches series retrieved from Google Trends, are proposed. For 

empirical comparison purpose, the volatility models considered in this research includes 

GARCH(1,1) model, TGARCH(1,1) model, GJRGARCH(1,1) model, MSGARCH(1,1) 

model and three TV-MSGARCH(1,1) models, all incorporated with three different error 
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distributions: NORMD, STD and GED. The exogenous variables considered for the three 

TV-MSGARCH(1,1) respectively are: (1) Google searches series, denoted by                  

TV-MSGARCHS(1,1); (2) log difference Google searches series, denoted by                     

TV-MSGARCHldS(1,1); (iii) log trading volume, denoted by TV-MSGARCHlnV(1,1). 

The in-sample estimations of all volatility models are contrasted based on AIC while the 

out-of-sample performance are contrasted and tested using MCS procedure on QLIKE 

loss function and by using several VaR backtests.  

Based on the model selection criteria of LL and AIC, TV-MSGARCHS(1,1)-GED 

model gave the best fit for BTC and ETH, TV-MSGARCHldS(1,1)-GED model gave the 

best fit for BCH; and TV-MSGARCHlnV(1,1)-STD model gave the best fit for XRP and 

EOS. Ljung-Box test further confirms that these fitted model for the respective 

cryptocurrencies are adequate in capturing ARCH effects for which there is no serial 

correlation exists in the squared standardised residuals. The volatility clustering 

behaviours are well-captured by the respective optimal volatility models. 

Moreover, volatility forecasting is one of the common risk management approach in 

which one-day ahead forecasts are computed to provide an insight on the underlying risk. 

The best volatility model for forecasting application evaluated using MCS procedure on 

QLIKE is MSGARCH(1,1)-STD model for BTC; TV-MSGARCHlnV(1,1)-STD model 

for ETH; GJRGARCH(1,1)-STD model for XRP; TV-MSGARCHS(1,1)-STD model for 

BCH; and TV-MSGARCHlnV(1,1)-STD model for EOS. VaR backtests such as UC test, 

CC test and DQ test are carried out on the volatility models to adopt the understanding 

on the capabilities of these models in providing close estimation between actual volatility 

and volatility forecasts at the 90%, 95% and 99% confidence limits. 
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Despite the encouraging results in this research as to the positive effect in the 

modelling and forecasting process, future work might usefully be extended to explore 

other exogenous variables as well as multi-regime in the presence of dynamic changes of 

the cryptocurrencies prices. In so doing, it seeks to contribute to our growing 

understanding of how the approach can be employed in financial strategic planning.  
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