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CENTRALIZING ADDITIVE MAPS ON RANK R BLOCK TRIANGULAR
MATRICES

ABSTRACT

In this dissertation, we study centralizing additive maps on block triangular matrix algebras.
The main focus of this research is to classify centralizing additive maps on rank r block
triangular matrices over an arbitrary field. Let k£, nq,...,n; be positive integers with
ny+---+n, =n>2 Let7T, . bethen, ..., ngblock triangular matrix algebra
over a field F with center Z(7,, .. ,,) and unity [,. We first obtain a characterization of
centralizing additive maps on 7, . ,,. Then, by using this preliminary result together
with the classification of rank factorization of block triangular matrices, we characterize

n, On rank r block triangular matrices,

..........

n,) for all rank r matrices

,,,,,

-----

field of two elements, and we prove these additive maps v are of the form

W(A) = AN+ p(A) L, + a(ar + apn) Ern

for all A = (a;;) € Tn,....n,» Where o = Ty, — F is an additive map, A\, a € F are
scalars in which a # O only if r = n, ny = ng = 1 and |F| = 3, and Ey,, € Tpy . s
is the standard matrix unit whose (1, n)th entry is one and zero elsewhere. Using this
result, together with the recent works on commuting additive maps on upper triangular
matrices, we give a complete description of commuting additive maps on rank » > 1 upper
triangular matrices.

Keywords: centralizing additive maps, commuting additive maps, block triangular matri-

ces, upper triangular matrices, ranks.
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PEMETAAN BERDAYA TAMBAH MEMUSAT PADA MATRIKS SEGITIGA
BLOK BERPANGKAT R

ABSTRAK

Dalam disertasi ini, kami mengkaji pemetaan berdaya tambah memusat pada algebra ma-
triks segitiga blok. Tumpuan utama dalam penyelidikan ini adalah mengelaskan pemetaan

berdaya tambah memusat pada matriks segitiga blok berpangkat r terhadap medan semba-

rangan. Biar k, n4, ..., n; merupakan integer denganny +- - -+n, =n > 2. Biar 7,,, .
menandakan nq, ..., n, algebra matriks segitiga blok terhadap medan F dengan pusat
Z(Tn,...n,,) dan unit 7,,. Kami mula dengan memperoleh suatu pencirian bagi pemetaan

.....

berdaya tambah ) pada 7T,
semua A € Ty, ., di mana r adalah suatu integer tetap supaya r # n bila F merupakan
medan Galois berunsur dua, dan kami membuktikan pemetaan ) berdaya tambah tersebut
berstruktur )(A) = AA + pu(A) L, + a(ain + an,)Ery, bagi semua A = (a;5) € Toyoonys

di mana y : 7, . n, — F merupakan pemetaan berdaya tambah, \, o € F adalah skalar

.....

di mana « # 0 hanya jika r = n, ny = n, = 1 dan |F| = 3, dan E,,, € T, n, adalah

adalah unit matriks piawai yang masukan (1, n)th satu dan sifar yang lain. Dengan ini,
bersama dengan karya terbaru dalam pemetaan berdaya tambah kalis tukar tertib segitiga
atas, kami memberikan suatu penyampaian lengkap bagi pemetaan berdaya tambah kalis
tukar tertib pada matriks segitiga atas berpangkat r > 1.

Kata kunci: pemetaan berdaya tambah, pemetaan berdaya tambah kalis tukar tertib,

matriks segitiga blok, matriks segitiga atas, pangkat.
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1.1

CHAPTER 1: INTRODUCTION

Research objectives

The main objectives of this research are as follows:

1.2

1. To characterize centralizing additive maps on block triangular matrices over an

arbitrary field.

. To characterize centralizing additive maps on rank r block triangular matrices.

. To study commuting additive maps on rank » upper triangular matrices over an

arbitrary field.

. To develop new mathematical tools in rank factorization for block triangular matrices

in matrix theory.

Among the questions that we considered in this research are the following:

1. Is the structure of centralizing additive maps on block triangular matrix of the

standard form?

. What is the structure of centralizing additive maps on rank r block triangular

matrices?

. What is the complete description of commuting additive maps on rank » > 1 upper

triangular matrices over an arbitrary field?

Significance of the study

The study of centralizing and commuting maps on matrices is an influential research

topic in functional identity, linear preserver problems, ring theory and matrix theory.

The study of this research topic was initiated when Posner (1957) studied centralizing

derivation on prime rings. In recent years, many developments and new results in the study

of centralizing and commuting additive maps on some sets of matrices can be observed



(Chooi et al., 2019, 2020; Franca, 2012, 2013; Liu, 2014a, 2014b; Liu et al., 2018; Liu
& Yang, 2017; Wang, 2016; Xu & Yi, 2014). This research aims at facilitating the
advancement of existing knowledge of linear algebra, matrix theory and functional identity.
With the new mathematical techniques and tools on centralizing additive maps on rank r
block triangular matrices developed from this study, the existing results on centralizing
and commuting additive maps on some sets of matrices can be further extended and
generalized. Some other relevant centralizing maps problems can also be alleviated and

then solved by applying the techniques and results established from this study.

1.3 Organization of dissertation

In Chapter 2, we begin with some preliminaries on basic algebraic structures, prime
rings, triangular rings and block triangular rings. We then proceed with the literature
review of this research and followed by its methodology.

In Chapter 3, a characterization of centralizing additive maps on block triangular
matrices over an arbitrary field is presented. The characterization is obtained by studying
some relevant works in centralizing additive maps on triangular rings and some basic
properties of block triangular matrices.

In Chapter 4, we present our main result of this dissertation. A characterization of
centralizing additive maps on rank 7 block triangular matrices is obtained. This is achieved
by the development of the rank factorization of block triangular matrices and several
technical lemmas. Then we employ the characterization of centralizing additive maps
obtained in Chapter 3 to achieve this result.

In Chapter 5, we study commuting additive maps on rank 7 upper triangular matrices
over an arbitrary field. We employ the characterization of centralizing additive maps
obtained in Chapter 4, together with some recent works in commuting additive maps, to

give a complete description of commuting additive maps on rank » > 1 upper triangular



matrices. We then continue to study commuting additive maps on rank one upper triangular
matrices of orders two and three.
Lastly, in Chapter 6, we present the summary of our findings and list some open

problems for future study.



CHAPTER 2: LITERATURE REVIEW AND SOME PRELIMINARIES

2.1 A brief overview

This chapter starts with some preliminaries on basic algebraic structures, prime rings,
triangular rings and block triangular matrix algebras. These preliminaries consist of
definitions, propositions and some theorems that will be used throughout this research.
The following section is a literature review of some classical results and articles related to
functional identities and centralizing maps on various rings and algebras. The last section

provides us with a brief discussion of the methodology used in this research.

2.2 Some preliminaries
2.2.1 Some basic algebraic structures
Definition 2.2.1. A group G = (G, o) is a set GG together with a binary operation on G

with the following properties:

(i) The operation o is associative, i.e.,ao (boc) = (aob)ocforall a,b € G.
(ii) There exists an identity element, i.c., thereise € GG, eoa = a o e = a for all
a €.
(iii) Each element a € ¢ has an inverse, i.e., for each a € G, thereisb € G,a0b =

boa=ce.

A group is abelian if its binary operation is commutative. We say that GG is an additive
group if the binary operation o is referred as the additive notation, i.e., a o b = a + b for

a,b e G.

Definition 2.2.2. A nonempty subset H of a group (G, o) is a subgroup of G if a,b € H
implies that ab~! € H. For additive group (G, +), a subgroup H of G if and only if

H # @anda—be€ H forevery a,b € H.



Definition 2.2.3. A ring R = (R, +, -) is a set R together with two binary operations on

R, an addition “+4" and a multiplication “-" such that

(i) (R, +) is an abelian group.
(ii) The multiplication is associative, i.e.,a- (b-c) = (a-b)-cforall a,b,c € R.
(iif) The multiplication is distributive, i.e., (a+b)-c = a-c+b-cand a-(b+c) = a-b+a-c

forall a,b,c € R.

An element u € R is called an identity element or a unity of R (for the multiplication)
ifu-a=a-u=aforalla € R. A ring with an identity element is called a ring with
unity or a unital ring. The zero element of a ring is the identity element 0 for addition,
ie,0+a=a+0=aforalla € R. Aring is commutative when its multiplication is
commutative, i.e.,a- b =0-a forall a,b € R. A field [F is a commutative ring with unity

u # 0 such that every nonzero element in [ is invertible.

Definition 2.2.4. Let (R, +, ) be aring. A nonempty subset S of R is a called a subring
of Rif (S,+, ) is itself a ring, or equivalently, .S is a subring of R if and only if a — b € S

and ab € S forall a,b € S.

Definition 2.2.5. Let R be a ring. The center of R is the set

Z(R)={z€ R:zr=rz forall r € R}.

Elements in Z(R) are called central elements and Z(R) is a subring of R.

Let n be a positive integer and let F be a field. We denote by M,,(FF) and 7,,(FF) the
set of all n X n matrices over F and the set of all n X n upper triangular matrices over F,
respectively. Under the usual matrix addition and matrix multiplication, M, (F) and 7,,(F)

are noncommutative rings with unity /,,, the identity matrix. It can be verified that 7,,(IF)



is a subring of M, (F), and Z(M,,(F)) =F - I,, = {\, : A€ F} and Z(T,,(F)) =F - I,,.

For a detailed proof, see for example (Chooi et al., 2020, Lemma 2.6).

Definition 2.2.6. Let R and R’ be rings. A map ¢ : R — R’ is said to be a ring

homomorphism if

(i) pla+0b) =¢(a) + ¢(b) foralla,b € R,

(ii) p(ab) = p(a)p(b) forall a,b € R.

If a ring homomorphism ¢ is bijective, then ¢ is a ring isomorphism.

Definition 2.2.7. Let R be aring. An element ¢ € R is said to be an idempotent if ¢ = e.
Moreover, if R is a unital ring, we say that e € R is a nontrivial idempotent if it is an

idempotent different from 0 and 1 in R.

Let £;; € M, (F) be the matrix whose (¢, j)th entry is one and zero elsewhere. If n > 2,

then E;; is a nontrivial idempotent element of M, (IF).

Definition 2.2.8. Let (R, +,-) be a ring. A left ideal I (respectively, right ideal) of
R is an additive subgroup of (R, +) such that « € I and r € R implies that ra € I
(respectively, ar € I). We say that [ is an ideal of R if it is two-sided ideal, i.e., [ is is an
additive subgroup of R such that a € [ and r € R implies that ra € [ and ar € I. An
ideal I of aring R is a subring of R. Evidently, R and {0} are two ideals of R and {0} is

called the trivial ideal of R. An ideal [ of R is said to be proper if [ # R.

Note that 7, (IF) is not an ideal of M,,(F), because Eyy € T,,(F) and Ey € M, (F)
but FyoFo ¢ T,(F). Also, Z(M,(F)) is not an ideal of M, (IF). To see this, let A €
Z (M, (TF)) be nonzero. Then A = «I,, for some nonzero « € F. Take B = Ey5 € M, (F).
Then AB = aFs ¢ Z(M,(F)), and so Z(M,(F)) is not an ideal of M, (F). Likewise,

Z(T,(IF)) is not an ideal of T,,(IF).



Definition 2.2.9. Let F be a field. An algebra over F is a nonempty set .4 together with

two binary operations on .A: an addition “+" and a multiplication “-", and an external

binary operation: scalar multiplication from [ x A into .4, with the following properties:

(A1) Ais aring under addition and multiplication.
(A2) A is alinear space under addition and scalar multiplication.

(A3) A(ab) = (Aa)b = a(Ab) forall a,b € Aand X € F.

Notice that an algebra A is a ring as well as a linear space which is endowed with an
associative bilinear multiplication: (Aa + b)c = A(ac) + be and a(A\b + ¢) = A(ab) + ac
forall a,b,c € Aand )\ € F. A subalgebra is a subring and a subspace. A unital algebra
is an algebra which is unital as a ring. The center of an algebra is just as the center of a

ring.

We see that M, (IF) and 7T),(F) are unital algebras over F with unity /,, and center F - [,,.

Also, T,,(IF) is a subalgebra of M,,(IF).

2.2.2 Prime rings

Let R be aring. Let a,b € R and let S be a subset of R. We define

aSbh = {asb: s € S}. (2.1)

If S is a subring of R and a,b € .S, then aSb is a subring of R. To see this, we first note
that aSh # @ since S is a subring of R. Let x,y € aSb. Then x = as1b and y = asyb for

some si, So € S. Note that

r—y=a(s) — s2)b € aSb and zy = a(s1bass)b € aSbh

since s; — sy € S, ba € S and s1basy € S.



Note that if R is a ring with idempotent e € R, then eRe is a unital ring with identity
element e. Since eRRe is a ring, it follows that e = eee € eRe is e which is the identity

element of eRe. Let x € eRe. Then x = ere for some r € R and

ex = eere) = e’re = ere = x and ze = (ere)e = ere’ = ere =

for every x € eRe. Hence eRe is a unital ring even if R is not.

Definition 2.2.10. A ring R is prime if for any a,b € R, aRb = {0} implies that a = 0

orb=0.

Theorem 2.2.1. Let n be a positive integer and let F be a field. Then M, (F) is a prime

ring.

Proof. The result is clear when n = 1. Consider n > 2. Let A, B € M,,(IF) be such that
AM,(F)B = {0}. We claim that either A = 0 or B = 0. Suppose to the contrary that A
and B are nonzero. It follows from the canonical rank factorization theorem that there
exist invertible matrices Py, P», Q1, Q2 € M, (F) such that A = P,(Eyy + -+ + E,,) Q1

and B = Po(Ey1 + - - - + Ey,) Q- for some integers 1 < p, ¢ < n. We thus obtain

(Ell+"‘+Epp)M(E11+"'+qu):O

forevery M € M, (F). Taking M = Ey;, wehave (Ey 1+ - -+ E,,) E1 (En+ -+ Eyy) =

Ey1 # 0, a contradiction. Hence AM,,(F)B = 0 implies either A = 0 or B = 0. O

When n > 2, we note that 7,,(IF) is not a prime ring. Let A = E,,,, and B = Ej; be
elements of 7),(F). Note that £, F;;Ey; = 0 forevery 1 <i < j <n. Then ATB =0

for every T' € T, (F).



223 Triangular rings
Definition 2.2.11. Let R be a ring. A left module over R, or a left R-module is an
additive group V together with a map from R x V into V, (r,u) — ru, such that for every

r,s € Rand u,v € V,

(L1) (r+ s)u =ru+ su,
(L2) r(u+v) =ru+rv,

(L3) r(su) = (rs)u.

If, additionally, R is a unital ring with unity 1 and

L4) lu=u

for every u € V, then V is called a unital left module over R, or a unital left R-module.
A right module over R, or a right R-module is an additive group V together with a map

from V x Rinto V, (u,r) — ur, such that for every r, s € R and u,v € V,

(R1) w(r+ s) = ur + us,
(R2) (u+v)r =ur+or,

(R3) (us)r = u(sr).

If, additionally, R is a unital ring with unity 1 and

R4) ul =u

for every u € V, then V is called a unital right module over R, or a unital right
R-module. If R is commutative, then every left R-module V becomes right R-module
by defining ur := ru for every r € R and v € V. Unless specified otherwise, we will

henceforth adopt the following convention:

R — module := left R — module.



When it will be clear which ring R we have in mind, or when R will play just a formal
role in our discussion, we will simply use the term “module”.

Notice that a linear space over a field IF is a unital F-module.

Definition 2.2.12. Let R and S be rings. If V is both a left R-module and a right S-module

satisfying

(ru)s = r(us)

forevery r € R, u € Vand s € S, then V is called an (R, S)-bimodule. An (R, R)-
bimodule is called an R-bimodule. In addition, we say that ) is a unital (R, S)-bimodule

if it is both a unital left R-module and a unital right S-module.

Definition 2.2.13. Let R be aring. A left R-module V is said to be faithful if » = 0 is the

only element in R satisfying ) = {0}, or equivalently,

{re R:rv={0}} = {0},

where rV := {rv : v € V}. Note that r}V = {0} if and only if rv = 0 for allv € V.
A right R-module U/ is said to be faithful if » = 0 is the only element in R satisfying

Ur = {0}, or equivalently,

{re R :Ur={0}} ={0},

where Ur := {ur : u € U}.

10



Definition 2.2.14. Let R and S be rings. A (R, S)-bimodule M is said to be faithful if

M is faithful as a left R-module as well as a right S-module, i.e.,

{reR:rM=0}={0} and {s€ S: Ms=0} ={0}.

Let R be a unital ring with unity 1. Two elements r, s € R are said to be orthogonal
if rs = sr = (0. Notice that if e € R is a nontrivial idempotent, then f := 1 — e is a
nontrivial idempotent such that e and 1 — e are orthogonal. If R be a unital ring with

nontrival idempotent e, then, by (2.1), it can be shown that

(i) eRe and fRf are unital rings with identity elements e = ece € eRe and f =
fff € fRf, respectively.
(ii) eRf is aleft eRe-module and eRf is a right f R f-module, and so eR f is a unital

(eRe, f Rf)-bimodule. Note that em = m and mf = m for every m € eRf.

Definition 2.2.15. Let R be a unital ring with unity 1. We say that R is a triangular
ring if there exists a nontrivial idempotent e € R such that eRf is a faithful (eRe, fRf)-
bimodule and f Re = {0}. Here, f = 1 — e and eRe and fRf are called the corner rings
corresponding to e.

We remark that when eRf is a faithful (eRe, f R f)-bimodule which means

{r € eRe:r(eRf) ={0}} ={0} and {s € fRf:(eRf)s={0}} = {0}.

Let A € M,,,(F). Notice that AM, ,(F) = {0} if and only if AB = 0 for every
B € M, ,(FF). It is not difficult to verify that AM, ,(F) = {0} if and only if A = 0.

Likewise, M, ,,(F)A = {0} if and only if A = 0.

11



Proposition 2.2.1. Let R be a unital ring with unity and nontrivial idempotent e € R. If

eRf is a faithful (eRe, f Rf)-bimodule, then eRf # {0}.

Proof. Note that 0 # eece € eRe and (ece)eRf = eRf. If eRf = {0}, then (ece)eRf =

{0} which contradicts to eR f is a faithful left e Re-module. O

Let Gy, ..., G, be additive subgroups of an additive group G. The sum G+ - -+G,, =
{pr+--+9gn:9 € G;, i =1,...,n}. The sum is direct, denoted G; @ - -- & G,

provided that

GN(Gi+-+Ga+Gi +---+Gn) ={0}

for every i = 1,...,n. Indeed, it can be shown that every elementin G; & - -- & GG, can

be written as g; + - - - + ¢, Where g; € G;,© = 1,...,n, in a unique way.

Proposition 2.2.2. Let R be a unital ring. If R is a triangular ring, then there exists a
nontrivial idempotent e € R such that R can be represented by the Peirce decomposition

with respect to

R=eRe®eRf D fRS,

where f = 1 — e and 1 is the unity of R. The Peirce decomposition of R with respect to a

nontrivial idempotent ¢ € R states that for each r € R, there is a unique representation

r=-ere+erf+ frf.

Proof. We first show that R = eRe +eRf + fRf. Clearly, eRe +eRf + fRf C R. Let

r € R. Since e+ f = 1, it follows that r = 1r1 = (e+ f)r(e+ f) = ere+erf+ frf since

12



fre=0.Hence R = eRe+eRf+ fRf. Suppose that r = erje + ery f + frsf for some
r1,79,73 € R. Thene(r—ry)e+e(r—ry) f+f(r—r3)f = 0. Sinceef = fe = land * =
e, it follows that 0 = eOe = e(e(r—ry)e+e(r—ry) f+ f(r—rs) f)e = r—ry. This implies

that , = r. Likewise, 7o = r and r3 = r. Consequently, R = eRe ® eRf & fRf. [

Definition 2.2.16. Let R and S be rings and let M be a (R, S)-bimodule. Let

r m

Tri(R,M,S):{[O S} :TER,SGS,mGM}. (2.2)

We define the usual matrix-like addition and matrix-like multiplication on Tri(R, M, S)

as follows:

_7“1 ml_ n ro Mmo| |71+ T2 ml—l—mg_
0 s | 0 sof 0 s1+sg |’

r mq To Ma|  |T1T2 1M1 + MaSg
0 S1 0 S189

for every 11,79 € R, $1, 89 € S and my, my € M. Then Tri(R, M, S) forms a ring under

the usual matrix operations.

Let R be a unital ring. By Proposition 2.2.2, if R is a triangular ring, then there exists
a nontrivial idempotent ¢ € R such that eRf is a faithful (eRe, f Rf)-bimodule and
fRe = {0}, where f = 1 — e. By the Peirce decomposition of R with respect to e, we

define the isomorphism ¥ : R — Tri(eRe,eRf, fRf) by

v = |0 o)

for every r € R. Consequently, we summarize the following observation.

13



Theorem 2.2.2. Let R be a unital ring. Then R is a triangular ring if and only if there
exist unital rings A, B and a unital faithful (A, B)-bimodule M such that R is isomorphic

to the ring

a m

Tri(.A,M,B):{[O b} ca€e A, be B, me./\/l}

under the usual matrix addition and matrix multiplication.

Proof. If R is a triangular ring, then there exists a nontrivial idempotent e € R such that
eRf is a faithful (eRe, fRf)-bimodule and fRe = {0}, where f = 1 — e and 1 is the
unity of R. Note that eRe and f Rf are unital ring and e R f is a unital faithful (eRe, fRf)-
bimodule. By the Peirce decomposition of R, we have R = eRe @ eRf @ fRf. Let

U : R — Tri(eRe,eRf, fRf) be the isomorphism defined by

v = |0 o]

for every r € R. Hence R is isomorphic to Tri(eRe, eRf, fRf).
Conversely, if R is isomorphic to the ring Tri(.4, M, BB), where A and B are unital
rings, and M is a unital faithful (A, B)-bimodule, then there exists a ring isomorphism

U : Tri(A, M, B) — R such that
R=U(Tri(AM,B))=SON & T,

where S = W¥(Tri(A4,0,0)), T = ¥(Tri(0,0,8)) and N' = ¥(Tri(0, M, 0)). By virtue
of ® is a ring isomorphism, .4 and B are unital rings, and M is a unital faithful (A, 5)-
bimodule, it follows that that S and 7" are unital subrings of R, and N is a unital faithful

(S, T)-bimodule.

14



Let e4 and ez be the identity elements of the rings A and B, respectively. Let

E4= [eA 0} € Tri(A,0,0) and Eg = [

0 0 .
0 0 :|€TI‘1(0,0,B).

063

Since F4 = E4 and E3 = Ep, we obtain e = ®(E4) and f = ®(Ejp) are nontrivial
idempotents of R such that e + f = 1, and eRe = ®(E )V (Tri(A, M, B))P(E4) =
U(Tri(A,0,0)) = S, fRf =T, eRf = N and fRe = {0}. Then R is a triangular

ring. ]

Proposition 2.2.3. Let R be a triangular ring with with identity 1 and nontrivial idempo-

tent e. Then
Z(R)={a+be Z(eRe)® Z(fRf): am = mb forevery m € eRf},
where f =1 — e. Moreover, if eRf is a faithful (eRe, f Rf)-bimodule, then
Z(R)={a+be€eRe® fRf :am =mb forevery m € eRf}.

Proof. Denote H = {a+b € Z(eRe) ® Z(fRf) : am = mb forevery m € eRf}. Let
h € H. Then h = a+ b for some a € Z(eRe) and b € Z(fRf) such that am = mb for
allm € eRf. Letr € R. Since R =eRe® eRf ® fRf, we have r = @' + m + b for

some a’ € eRe, m € eRf and b’ € fRf. Note that
rh = (a'+m+V)(a+b) = da+mb+0'b = ad'+am+bb' = (a+b)(a'+m+V) = hr

since a’'b = ma = bla = ab = ba’ = bm = 0. Then rh = hr for all r € R. Hence

h e Z(R),so HC Z(R).
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Letz € Z(R). Since Z(R) C R =eRe®eRf® fRf, it follows that x = ay +m; +b;

for some a1 € eRe, m; € eRf and by € fRf. Note that

ai+my =-e(a; +my+b) = (a1 +my +b)e=are =a;

since eb; = mye = bie = 0. Then m; = 0, and so x = a; + b;. Consequently, each
element in Z(R) is of the form a + b for some a € eReand b € fRf.

We now claim a;n = nb; foralln € eRf. Letn € eRf. Then a;n = (a; + by)n since
bin = 0. Since a; + b, € Z(R), we have (a; +b1)n = n(a; +b). Soayn = n(ay+by) =
nby since na; = 0.

We next claim that a; € Z(eRe) and by € Z(fRf). Let p € eRe and q € fRf.
Note that a1p + big = (a1 + b1)(p + q) = (p + ¢)(a1 + b1) = pay + gby. This implies
that (a1p — pay) + (b1g — gby) = 0. Note that a;p — pa; € eRe and b1jq — gby € fRf.
Since eRe N fRf = {0}, we must have a1p — pa; = 0 and b;q — gb; = 0 due to unique
representation. Hence a;p = pa, for all p € eRe, and b1q = ¢b, for all ¢ € fRf. Hence
a; € Z(eRe)and by € Z(fRf),sox € H. Consequently, Z(R) = H as desired.

Consider now eR f is faithful. Let K = {a+b € eRe® fRf : am = mb for every m €
eRf}. By virtue of Z(R) = H, we see that Z(R) C K. Letk € K. Thenk =a+b
for some a € eRe and b € fRf such that am = mb for all m € eRf. We claim that
a € Z(eRe). Letx € eRe. Note that (ax—za)m = (ax)m—(xa)m = a(xm)—z(am) =
(xm)b — x(mb) since xm € eRf. Hence (ax — za)m = xmb — xmb = 0. Hence
(ax —za)m = 0 forallm € eRf. Since eRf is a faithful (e Re, f R f)-bimodule, we must
have ax — za = 0, and so a € Z(eRe). Likewise, b € Z(fRf). Hence k € H = Z(R).

The proof is complete. ]
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2.24 Block triangular matrix algebras

Let m, n be positive integers and let IF be a field. Let M,,, ,(F) be the linear space of
m X n matrices over F. When m = n, we recall that M,,(F) constitutes an algebra over
F under the usual matrix multiplication. Let k£, nq, ..., n; be positive integers such that

ni + -+ n, = n. By T,, ., we designate the subalgebra of M, (FF) consisting of all

-----

upper triangular block matrices of the form

An Ap oo A
0 A22 NN A2k
0 0 ... A

where A;; € M, ,,(F) forall 1 <i < j < k. Weshallcall 7y, ., the ni, ..., n; block

triangular matrix algebra over F, or simply a block triangular matrix algebra. When

k =1, we have T,,, . n, = M,(F) and when k = n, we obtain 7,,, _,, = T.(F), the

..........

algebra of all n x n upper triangular matrices over F.

Theorem 2.2.3. Let k,n4, . ..,ny be positive integers such that k > 2. Then T, . ,, isa

triangular ring.

.....
77777
.....

.....

,,,,,
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,,,,,

............... nkF

n, are unital rings and M,,, ,,_, (F) a unital

-----

n, 18 a unital triangular ring by Definition

..........

2.2.15. ]
Theorem 2.2.4. Let k,ny,...,ny be positive integers with ny + --- + ny = n. Then
Z(ﬁzl ..... nk) =F- In

-----
,,,,,

MB forall M € My, —n,(F). Since T' € Z(T,,

.....

and B € Z(T,, . »,). So A = al, and B € I,_,, for some «, 5 € F. Note that

-----

(o — B)M = (alp )M — M(Blp—pn,) = AM — M B = 0 for every M € My, p—n, (F).

Since M, n—n, (F) is faithful, we obtain a = 5. So Z(T,,...n.) =F - I,, as desired. [

-----

23 Literature review

Let R be a ring with center Z(R). We say that a map 1) : R — R is centralizing on a
nonempty subset S of R if [¢)(a), a] € Z(R) for all a € S, and that is commuting on S if
[¢(a),a] = 0forall a € S, where [a,b] = ab — ba for a,b € R. The study of centralizing
maps was originated by the classical result of Posner (1957) which states that a prime ring
admitting a nonzero centralizing derivation must be commutative. Later, Mayne (1976)
obtained an analogous result of centralizing automorphisms on prime rings. BreSar (1993)

then gave a structural result of centralizing additive maps ) : R — R on a prime ring R
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of characteristic not two and showed that v is of the form

¥(a) = Za+ p(a) (2.3)

for every a € R, where Z is an element in the extended centroid C of R and o : R — C
is an additive map. This result has been extremely influential and stimulated considerable
interest in centralizing maps and commuting maps on various rings and algebras (Ara
& Mathieu, 1993; Beidar, 1998; Bresar et al., 1993; Cheung, 2001; Du & Wang, 2012;
P. H. Lee & Lee, 1997; P. H. Lee & Wang, 2009; Wang, 2016). More importantly, together
with the works by Beidar (1998) and Chebotar (1998), their efforts have activated the
development of the theory of functional identities which can be informally described as
the study of equations in which functions appear as unknowns. The main goal of this study
is to determine the general forms and the classifications of all solutions for each functional
identity. For an extensive survey of the subject, see the book “Functional Identities” by
Bresar et al. (2007).

Lately, inspired by the study of linear preserver problems on matrices (Li & Pierce,
2001; Pierce, 1992), Franca (2012) studied commuting additive maps on invertible (re-
spectively, singular) matrices over a field F. He showed that if ¢ : M,,(F) — M,,(F) is an
additive map satisfying [¢)(A), A] = 0 for all invertible (respectively, singular) matrices

A € M, (IF), then there exist a scalar A € F and an additive map y : M,,(F) — F such that

b(A) = AA + p(A) I,

for all A € M, (F). Here, I, is the identity matrix of M,,(IF).
Franca (2012) has advanced the study of functional identities to the set that are not

closed under addition. Later, Liu (2014a) extended Franca’s result and characterized
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centralizing additive maps on invertible (respectively, singular) matrices over division rings.
This new line of research in functional identities has been continued in commuting additive
maps on rank k£ matrices (Franca, 2013; Xu & Yi, 2014), power commuting additive maps
on rank £ matrices (Chou & Liu, 2019), commuting traces maps on invertible and singular
matrices (Franca, 2015), strong commutativity preserving maps on rank k& matrices (Liu et
al., 2018) and additivity preserving maps on rank k& matrices (Chooi & Kwa, 2019, 2020;
Xu & Liu, 2017).

Let IF be an arbitrary field and let k£, nq, . . ., ng be positive integers such that ny + - - - +
ni = n. Motivated by the recent development of functional identities on rank £ matrices,
in this dissertation, we classify centralizing additive maps ¥ : Tp,...n. — Tny...m, OD
block triangular matrices over F. Next, we deduce from the obtained result a complete

characterization of centralizing additive maps ¢ : 7,,, ., — Tn,..n, On rank r block

Tyeeey
triangular matrices with 1 < r < n being a fixed integer such that » # n when F is the
Galois field of two elements. Together with the results in (Chooi et al., 2019, Theorems 2.8,
2.9, 2.10) and (Chooi et al., 2020, Theorem 1.1), we give a complete structural description

of commuting additive maps v : T,,(IF) — T,,(IF) on rank r upper triangular matrices over

F, where 1 < r < n is a fixed integer.

24 Methodology

The methodology that has been employed in this research consists of three main
components. The first component involves a proper literature review of some classical and
the latest articles on centralizing additive maps on algebras and rings. This is followed
by a preliminary background study on triangular rings and matrix rings that will be
employed in this research. Various techniques from research papers will be studied for
possible application in our study. The second component concerns the classification of

centralizing additive maps on block triangular matrices and on rank r block triangular
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matrices. During these studies, various useful techniques by other researchers will be
noted and new mathematical tools will be developed. The third component is to apply
the obtained result of centralizing additive maps on block triangular matrices in the study
of commuting additive maps on rank r upper triangular matrices. This component will

highlight the significance of our study in this research.
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CHAPTER 3: CENTRALIZING ADDITIVE MAPS ON BLOCK TRIANGULAR
MATRICES

3.1 A brief overview
This chapter describes the characterization of centralizing additive maps on block
triangular matrices over an arbitrary field. Three lemmas are also presented to arrive at

our main outcome of this chapter.

3.2 A characterization of centralizing additive maps on block triangular matri-
ces
Throughout this dissertation, we keep in mind that 7y, . ,, is the nq, ..., n; block

triangular matrix algebra over a field F with ny 4 --- 4+ ny = n, unity /,, and center
Z(Tny...n,)- We refer to the commutator as [ -, -] and we write E;; € M, (FF) for the
standard matrix unit whose (7, j)th entry is one and zeros elsewhere.

We begin our discussion with a lemma that will be used to prove a result on rank

factorization of block triangular matrices.

Lemma 3.2.1. Let r, k,ny, ..., n, be positive integers such thatny + ---+np =n > 2

andr < n. If A= Ep, j, + -+ Epn, j, is such that Ey,, , € Tp,,..n. fori=1,...,r,

and h; # hj and k; # kj whenever 1 < i # j < r, then there exists an invertible matrix

PeT,

n,, Such that

77777

PA - E517t1 + s + Esmtr

for some integers 1 < s; <t; <nfori=1,...,rsuchthats, < --- < s, andt; #t;

whenever 1 < i # j <.

Proof. If h; < k; foreach i = 1,...,r, then the conclusion follows by taking P = I,

and an appropriate rearrangement on £, ;. in which PA = E, ;, + --- + E,_, with
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s < - <spand {(s;,t;) i =1,...,r} ={(hi,k;) :i=1,...,r}

Suppose that there exists an integer 1 < p < r such that h, > k,. Since Ej x, €
Tns....m,» there exists an integer 1 < [ < k such that ;1 < k, < h, < ¢, where
0; =ny+---+mn;fori =1,...k and dg = 0. We first observe that for each pair of

integers 0;_1 < i < and 0,1 < j <mn, E;; €Ty, . n, and

M ;Eij = Es; € Ty (3.1)

k

for every integer 9,1 < s < ¢;, where M, ; is the elementary matrix performed on /,, by
interchanging rows s and . We argue in the following three cases:

Case I: When r = 1, we have A = Ej ;. By (3.1), we obtain M, ;, A =
My, 1, Eny iy = Egp k-

Case II: When r > 2 and k, # h; forevery j € {1,...,7}\{p}, we have A =

Ehp,kp + Z::Li;ﬁp Ehiyki' By (31), we obtain

My, 5, A = My, n,(En, x, + Z En, k;)

i=1,i#p
r
% Mkpvhthp»kp + Mhpvk’p z : Ehivki
i=1,i#p
r
= By, k, + E Eh, k-

i=1,i#p

Case III: When » > 2 and k, = h, for some ¢ € {1,...,r}\{p}, we have A =

Ehp,kp + th’kq + E::Li?ép,q Ehi,ki' By (31), we obtain
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My, 1, A= My, (Bnyiy + Engiy + Y Enci)

i=1,i#p,q

r
= My, 1, Eny ik, + My hy Eng iy + My 1, g Ey, 1,

i=1,i#p,q
= Bk, T By + Z Eh; ;-
i=1,i#p,q
Hence My, , € Tn,,...n, is invertible and
My, 5, A= Ep, 1, + B, (3.2)
where
)
0 ifr=1,
B = Z;:L#p En, 1 if r > 2, k, # h; forevery j € {1,...,7}\{p},
By &2 ictizpg Eniks 17> 2,k = hy forsome g € {1,...,7}\{p}.
\

It follows from (3.1) and (3.2) that B € 7, . »,, and particularly E} ;. € Ty,
when r > 2 and k, = hy. If B is an upper triangular matrix, then the result holds
by taking P = My, 5. Otherwise, since h; # h; and k; # k; whenever ¢ # j, and
M; ;Ey, 1, = Ey, 1, for every i, j # k,, we continue with a similar argument on B and

deduce that there exists an invertible matrix P € 7, ,, such that

PA=E, ., + +FE,

rotr

for some integers 1 < s; <t;, <mnfori=1,...,rsuchthats; <--- <s,andt; # ;

whenever 1 < i # j < r. The proof is complete. [

We are now ready to prove a result on rank factorization of block triangular matrices.
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Lemma 3.2.2. Let k,ny,...,ny be positive integers such that ny + --- +nx =n > 1.
Then A € Ty, ..., is of rank r if and only if there exist invertible matrices P,(Q) € T, . »

k

such that

for some integers 1 < s; <t; <nfori=1,...,rsuchthat s, < --- < s, andt; #t,

whenever 1 < i # j <.

Proof. The sufficiency is clear. We now prove the necessity.
Let A = (ai;) € Tp,...n, be of rank 7. The result is clear when » = 0 or n = 1.
Consider now r > 1 and n > 2. We first claim that there exist invertible matrices

H,K € T,,.. n, such that

HAK =E, 4+ +E,. 4 (3.3)

for some integers 1 < py,q1,...,pr, ¢ < nsuchthat £, , € Ty, fori=1,...,r,
and p; < p; and ¢; # ¢; whenever 1 < i < j < r. Let R; and C; denote the i-th row
and the ¢-th column of A, respectively. Since A # 0, we let R,,, be the nonzero row of A
such that R; = 0 forz = p; +1,...,n, and let a,, 4, be the first nonzero entry in row 12, .
We may assume without loss of generality that a,, ,, = 1. Foreach1 <i <p; — 1 and

@1 + 1 < j < n, we apply the following elementary row and column operations on A:

R, — R; — Q. qy Rp1 and Cj — Cj — ameql. (34)

Then there exist invertible matrices H1, Ky € 7Ty, . n, such that
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HlAKl - Epl,Ql + B, (35)

where E,, 4., B € Ty, ... If B =0, then claim (3.3) is proved. Consider now 0 # B =

(b;j). In view of the operations performed in (3.4) on A, we see that b; ,, = 0 for every
1 <i<mn,andb;; = 0foreveryp; <¢ <mnand1l < j < n. By repeating a similar
process on B, there exist integers 1 < py, g2 < n, with p, < p; and ¢ # ¢1, and invertible

matrices Hy, Ky € Ty, ... n.» With Ho ), o Ko = E, 4., such that

.....

HyBKy = E,, 4, +C

for some E, ,,,C € Ty, .. n,. Together with (3.5), we have

.....

(HQHl)A(KlKQ) == HQ(HlAKl)KQ
= H2(EP1,Q1 + B)K2
= H,E,, , Ky + HyBK,

= Ep g + Epyg. + C.

Continuing this process, since A is of rank 7, we finally reach the desired result (3.3).

By Lemma 3.2.1, there is an invertible matrix U € Ty, _n, suchthat U(E,, , + -+

-----

E, ) =FEg4 +---+ Es 4, forsomeintegers 1 < s; <t; <nfori=1,...,rsuch

that s; < --- < s, and t; # t; whenever 1 <i # j < r. Together with (3.3) and

U(HAK) = U(Eph(h +oe+ Epr,qr) - ES1,t1 ot ESr,trv

we thus obtain
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A= UH) Y Ey 4+ +Eq 4 )K1

ritr

= P<E517t1 + e + E&,-,t,-)@?

where P = (UH)"! and Q = K ! are invertible matrices in 7,,, ., as desired. ]

7777

Given a nonempty subset S of 7,,, ., we let

Z5(S)={AeS:[[A X],X]=0 forall X € S}.

Note also that when k£ > 2, 7,,, ,, is a triangular algebra because it can be represented

-----

as

Tononp = { {61 ]\1;[} :Ae M, (F), BeTh..m, M€ Mmm_m(IF)} (3.6)

with M, ,,_,, (F) being a faithful (M, (F), T, . »,)-bimodule.

.....

We are now ready to prove the following lemma.

Lemma 3.2.3. Let k,ny,...,ny be positive integers such that ny + ---+np = n > 1.

Then Zs(Tp,

..........

.....

n,, 18 a triangular

..........

algebra, the result follows immediately from (Wang, 2016, Lemma 2.2). Consider k£ = 1.

Then Ty, ..o, = Mo(F). Clearly, F - I, C Zy(M,(F)). Let H = (hy;) € Zo(M,(F)).

.....

Then

HH,X],X]:O 3.7
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forall X € M, (F). Let 1 < < n be an integer. Taking X = Ej; in (3.7), we obtain

and since (I, — E;)HE; = (Z?:u# Ey)HE;; = 0, therefore we obtain E;H =
E”HE“ Then Zlnzl hilEil = h“E” fors = 1, Lo, Hence H = diag(hll, cey hnn) is
diagonal. Let 1 < 4,5 < n be distinct integers. We set X = E;; + Ej; in (3.7). Since

[[H, E;j], Ei;] = 0 and together with the bilinearity of | - , - | and (3.7), we obtain

0= [[H, Eij + Ej;], Eij + Ejjl
= [[Hv Eij]’ Ejj]
= [hiiLij — hj; Eij, Ejjl

= (hii — hy;) Eij-

Thus (h;; — h;;)E;; = 0,and so h;; = h;j forevery 1 <i # j <n. Then H € F- ], and

hence Zo(Tny...n.) =F - . O

.....

We are now ready to characterize centralizing additive maps on block triangular matrices

over an arbitrary field.

Theorem 3.2.1. Let k,nq,...,n; be positive integers such thatn; + ---+n, =n > 1.

Then : Ty,

..........

AeT,,

----------

such that
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(A) = A+ p(A) I,

forall A€ T,  n,.

Proof. For the sufficiency part, let A € 7,,,

.....

n,» We see that
[W(A), Al = (AA+ p(A) 1) A — AQAA+ p(A)],) =0 € Z(Toy,.ny)-

Hence the additive map v is centralizing on 7, ,,

For the necessity, if & = 1, then 7, ,, = M,(F) is prime. The result follows
immediately from (T. K. Lee, 1997, Theorem 2) or (Liu, 2014a, Lemma 2.2). Consider
now k£ > 1. We divide the proof into two cases.

Casel: 7,, ., #T2(F).Let E=Ey; +---+ E,, », and F' = [,, — E. Notice that

77777

ETnomE={ETE T € Ty} = [)g - 1:X€Mn1(ﬁ?)},
n—mi

,,,,,,,,,

.....

-----
..........
.....
,,,,,

----------

result follows from (Wang, 2016, Theorem 3.1).
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CaseII: 7, ., = T5(F). For each pair of integers 1 < ¢ < j < 2, let

b(aEy) = [f 0" Zé‘iﬂ

for every a € F, where fi;, gij, hij : F — F are additive maps. Since [¢(aE;;), aE;;] €

Z(I»(F)) =F-ILforalla € Fand 1 <i < j < 2, it follows that

laB) o] :aflé(a) 8] _[aflé(a) ahlé(a)] B [an 0}’

> 1

) oBal = g )] = [0 gme) = |0 o)

O|

[W(aBs), aF,] = o “flé(a)} _ {8 agl(z)(a)} N |:012 0 }

for some 11, aigg, i € . Therefore

[V(aEi), aEy] =0 (3.8)
foralla € Fand 1 < < 5 < 2. We also obtain

hiy1 = hoy =0 and g2 = fi2. (3.9)

We next see that [)(aEy; + bE12),aFE1 + bE3| € F- I, forall a,b € F. By the additivity

of 1, the bilinearity of [ - , - | and together with (3.8), we obtain

0
|:(8/ Oé:| = [w(CLEH + bElg), CLEH + bEu]

= [Y(aEn),bE] + [ (bE12), aEy]

_ [8 bfl(l)(@)] _ [8 bgl(l)(a)} n [aflé(b) 8] _ [afl(z](b) ahlé(b)]

30



for all a,b € F and for some o € . We thus obtain & = 0 and

ahi2(b) + b(g11(a) — f11(a)) =0 (3.10)
for all a, b € F. Taking a = 1 in (3.10), we obtain

hi2(b) = Ab (3.11)
forall b € F, where A = f11(1) — g11(1). Setting b = 1 in (3.10), we obtain

fi(a) = gii(a) + Aa (3.12)

for all @ € F. Likewise, considering [1)(bF1s + als),bE12 + aFy] € F - I, for all
a,b € T, together with the additivity of 1), the bilinearity of | - , - ], (3.8) and (3.11), we

obtain

0
{g a] = [(bE12 + aFEa),bE 13 + aFa|

= [(bE2), aLy] + [¢(aFas), bE12]

=10 agmtn] =10 agmw] * o 57 10 )

for all a, b € I and for some o € F. Hence we obtain @ = 0 and
Aba -+ b(fgg(&) - 922(0» =0 (313)
for all a,b € F. Taking b = 1 in (3.13), we obtain

g22(a) = fas(a) + Aa (3.14)
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forall a € F. Let i : T5(F) — I be the additive map defined by

p(A) = gri(ar) + gi2(arz) + for(aze) (3.15)

for all A = (a;;) € T5(F). By virtue of (3.9), (3.11), (3.12), (3.14) and (3.15), we obtain

¥(A)
_ f11(G11) 0 f12(a12) hlz(alz) f22(a22) 0
a { 0 911(‘111)] - { 0 912((112)1 * { 0 922(@22)1
_ {911((111) + Aai; 0 } {912(012) Aai2 }
- 0 g11(ar) 0 g12(a12)
fa2(a22) 0
* [ 0 faa(age) + /\Cl22]
Aair Aaig
= { 0 )\CL22:| + (g11(a11) + gr2(a12) + foz(as2)) 1o
for every A = (a;;) € T»(F) as desired. O

32



CHAPTER 4: CENTRALIZING ADDITIVE MAPS ON RANK R BLOCK
TRIANGULAR MATRICES
4.1 A brief overview
This chapter presents the main result of this dissertation. We give a characterization
of centralizing additive maps on rank r block triangular matrices over an arbitrary field.
To accomplish this, several lemmas are developed in Section 4.2 and will then be used to

prove our main result in section 4.3.

4.2 Preliminary results

We recall that 7, . ,, is the ny, ..., n; block triangular matrix algebra over a field IF

.....

with ny + -+ +n, = n. Given A € T, . ., we denote by AT = J, A" J,,, where A’ is

the transpose of A and J, is the square matrix of order n with ones on the anti-diagonal

and zeros elsewhere.

We begin our discussion with a technical lemma.

Lemma 4.2.1. Let r,k,ny,...,n, be positive integers such thatn, + ---+ny =n >3
and 1 <r <mn, and (k,n) # (3,3) when |F| = 2. Then each rank one or rank two matrix
AeT,

which the sum of any two is of rank r.

Proof. For convenience, we denote 7 = T,,,

Without loss of generality that

rq

for some integers 1 < p < ¢ < n. Then A € T,(F) and the result holds by (Chooi

et al., 2020, Lemma 2.2) when |F| > 3. Consider now |F| = 2. By the hypothesis of
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(k,n) # (3,3), we see that T # T3(IF). We argue in the following two cases:

Case 1: n = 3. Note thatr = 2 and 1 < k£ < 2. We consider only the case 2 < ny < 3,
ie., T € {721, M5(F)} as the case T = T; » can be treated similarly. We consider two
subcases:

Subcase 1.1: p = q. When A = E;;, we set

Xi=FEn+Eia+ Ey, Y =Fg3z+En+Ey and Z) = Eip+ B3+ Eay.

We thus obtain X; + Y; + Z; = E1; = A, where

Xi+Yi=FEu+Eo+ Eizs+ FEy, Xi+7Z1=FE1+ Ei3+ FEy+ E

and

are of rank two. When A = Fj3, since E33 = Ef}, we have A = X|" + Y|" + Z|" with
X, YT, Z € T as required. Consider now A = Ey,. Since T € {751, M3(F)}, we see

that Fy; € 7. We set

Xo = FEig+ Ey + Eoy, Yo = FEy + E33 and Zy = Eip + Ess.

We thus obtain X5 4+ Y5 + Z5 = Eyy = A, where

Xo+ Yy = Eig + Foy + Ess,

Xo+ Zy = Foy + B+ E33 and Yy + Zy = Eig + By
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are of rank two.

Subcase 1.2: p < q. When A = Ej,, we set

Xz =FEi+ Eig+ Es3, Yz = FEyp+ L33, and Zs= Ey + Eop.

We thus obtain X5 + Y3 + Z3 = Ej5 = A, where

Xz +Ys = Eyy + Eig + Ea,

Xg+Z3=Fig+ Eyp+ E33 and Y3+ Z3 = By + Esg

are of rank two. When A = Fs3, since Ey3 = Ef,, we have A = X" + Y;" + Z with

X YsH Z4 € T as required. When A = E3, we set

Xy =FEio+Ei3+ Fys, Yy=FE1+Es3 and Zy = By + By + Eoz + Ess.

We thus obtain X, + Y, + Z, = E13 = A, where

Xo+Yy = Fy + Eig + Ei3 + Eoz + Esg,

Xy +Zy=FEn+Eis+Ess and Y, + Zy = Eig + Ebs

are of rank two.
Case 2 : n > 4. Note that 2 < r < n — 1. We consider two subcases:
Subcase 2.1: p = ¢q. Consider A = E,, with 1 < p <n — 2. We select r — 1 distinct

integers hy,...,h,—1 € {1,...,n — 1}\{p} and set
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r—1 r—1
pr - Epp + Epn + Z Ehi,hp }/ZDP = Lppti + Epn + Z Ehivh’i+1
i=1 i=1

and

r—1 r—1
pr = Ep,p+1 + E :Ehi7hi + E :Ehhhi"!‘l‘
i=1 i=1

We thus obtain X, + Y, + Z,, = E,, = A, where

r—1 r—1

pr + Ypp = Epp + Ep7p+1 + Z B n, + Z By hi+1s
i=1 i=1

r—1
Xop + Zpp = Lpp + Lppia + Lpp + Z By hi+1
i=1
and

r—1

Yop + Zpp = Epn + Z L, h;

i=1

are of rank 7. Consider A = E,1_pny1-, With 1 < p < 2. Since Epy1-pny1—p = B,

we have A = X P + Y0 4 ZF with X} Y F 74 € T as required.

pp’ ~ pp?

Subcase 2.2: p < ¢. Consider A = E,, with p + 2 < ¢. We select r — 1 distinct

integers hy,...,h,—; € {1,...,n — 1}\{p} and set

r—1 r—1

qu = qu + Epp + Ep’p_;_l + Z Ehi,hi + Z Ehi,hi+17
=1 =1

r—1 r—1

Ypg = Epp + Z Enip, and - Zpg = Eppyr + Z B hit-
i=1 i=1

We thus obtain X, + Y,, + Z,, = E,, = A, where
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r—1

Xpqg +Ypqg = Epg + Eppi1 + Z B bty
i=1

r—1
Xpqg + Zpg = Epg + Epp + Z B b,
i=1
and

r—1 r—1
Ypg + Zpg = Epp + Eppia + Z B + Z B hit
i=1 i=1

are of rank r. Consider A = FE, .1 with 1 < p <n — 2. We select r — 1 distinct integers
hi,...;her €{1,....n—1}\{p}. Let T, ={i: 1 < h; <p}and T, ={i:p < h; <

n}. Note that Z, U J, = {1,...,r —1},Z7, =@ whenp=1landn ¢ J, # @. We set

r—1 r—1
Xp,p+1 - Epp + Ep,p+1 + Epn + Z Ehizhi + Z B, hiv1s
i=1 i=1

Yop+1 = Epp + Z B hi + Z B, hit

i€y 1€Jp
and
Zppir = Bpn+ Y Bnon + Y Enpitr-
i€y i€T,

We thus obtain X, 11 + Y, 11 + Zppi1 = Eppr1 = A, where

Xpp+1 + Yppr1 = Eppr1 + Epn + Z B, + Z Ehihi1,
i€Jp i€,

Xppt1+ Zppy1 = Epp + Eppi1 + Z By + Z By hit1
€Ty 1€Jp

and
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r—1 r—1
Yppt1 + Zppi1 = Epp + Epp + Z B h, + Z B, hi1

i=1 i=1

are of rank r. Consider A = FE,,_; ,. Since E,,_1,, = E},, we have A = X, + Y5 + Z}},
with X15, Y5, Z}, € T as required. This completes the proof for A is of rank one.
Next, we consider A is of rank two. Invoking Lemma 3.2.2, we may assume without

loss of generality that
A - qu + Est

for some integers 1 < p < g<nandl1l < s <t < nwithp < sand q # t. Then
A € T,(F), and the result holds by (Chooi et al., 2020, Lemma 2.2) when |F| > 3.
Consider now |F| = 2. Recall that 7 # T5(F). We distinguish the following two cases:

Case A: n = 3. Note that r = 2. Again, we consider 7 € {721, M3(FF)} as the case
T = T1 2 can be treated similarly. We consider three subcases:

Subcase A.1: p = g and s = t. Consider A = F1; + Fa. We set
X1 =FEny+Eig+ Esz, Y, =FEg+ Eys+ E33 and 72 = Eyg + Eoas.
We thus obtain X; +Y; + Z; = E1 + E9s = A, where
Xi+Yi=FEn+Eo+ Ep+ FEy, X+ 2y =FE;+ Eaz+ Esg
and

Y1+ 7y = By + Fayy + Esg
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are of rank two. Consider A = E4; + E33. We set

Xo=FEn+ Eig+ Ey, Yy= L+ Eyy+ FEs3 and Zy = By + Eag.

We thus obtain X5 + Y, + Zy = Ey; + E33 = A, where

Xo+ Yo =Fy + Eig+ Eas + B33, Xo+ Zy = Eiy + Foy + Eo3

and

Yo+ Zy = Eyp + Fay + Esg

are of rank two. Consider A = Eyy + F33. Since Eyy + F33 = (E11 + Fa2)™, we have
A= X +Y"+Z with X{", Y7, Z] € T as required.

Subcase A.2: p = q or s = t. Consider A = F1; + Fs3. We set

X3 = B + B + By,

YE:, = E13 + Egl + Egz + Egg, and Z3 = E12 + E13 + Egl.

We thus obtain X5 + Y3 + Z3 = Ey; + Es3 = A, where

X3+ Ys = FEy + Eig+ Eig + Eoy + Eas,

Xs+ 23 =Fy + Eig+ Ey 4+ Eyy and Y+ Z3 = Eig + Eay + Fog

are of rank two. Consider A = E35 + E5. We set
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Xy = Eig + E3 + Egy + Eyg + Eas,

Yy = Eo + L33 and  Zy = o + Eas + Ess.

We thus obtain X, + Y, + Z, = E3 + F9s = A, where

Xy + Y, = Eig+ Eoy + Ei3 + Eog + Ess,

Xo+Zy=Fo + Eyp+ Eis+ FEs3 and Y, + Zy = Eig + Eoy + Eo3

are of rank two. Consider A = E5 + E33. We set

Xs=FEn+Eia+ Eoy, Ys=FEy + Ey+ FEs3 and Zs = By + Eas.

We thus obtain X5 + Y; + Z5 = E5 + E33 = A, where

X5+ Y5 = By + B9 + Eoz + Ess,

X5+ Zs = Fig+ Eoy + Eys and Y5+ Zs = By + By + Ess

are of rank two.

Subcase A.3: p < gand s < t. Then A = E15 + F»3. We set

Xe¢ = En+ Eio+ Bz, Yo= L1+ Ey+ FEyy and  Zg = Eyy + Ess.

We thus obtain Xg + Y5 + Zg = Eja + FEe3 = A, where

Xe+Ys = Fig + Eog + Eo3 + L33, Xe+ Zsg = E11 + Fia + Eo
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and

Yo + Z = B + Eas + B3

are of rank two.
Case B : n > 4. Recall that 2 < r < n — 1. We consider the following four subcases:
Subcase B.1: p = gand s = ¢t. Then 1 < p < s < n. Firstly, we consider
A=E,,+ E;,withl <p < s <n—2. Weselect r — 2 distinct integers hy, ..., h,_o €

{1,...,n—1}\{p, s} and set

r—2

Xps = Epp + Ep,p+1 + Epn + Es,s-i-l + Esn + Z Ehivhi'i‘l’

i=1

r—2

Y;)s = Ess + Epn + Esn + Z Ehi,hi

i=1

and

r—2 r—2
Zps = Eppi1 + Egst1 + § Ehn; + § :Ehivhi-'rl'
=1 1=1

We thus obtain X, ,11 + Y, 11 + Zppi1 = Epp + Ess = A, where

r—2 r—2

Xps + }/;)S = Epp + Ep,p—i—l + Ess + Es,s+1 + Z Ehi,hi + Z Ehi,hi+1>

i=1 i=1

r—2

Xps + Zps - Epp + Epn + Esn + Z Ehi,hi

=1

and

r—2

Y;)s + Zps = Ep7p+1 + Epn + By + Es,s+1 + By + Z Ehi7hi+1

=1
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are of rank r. Consider A = E,, + E,,_1,_1 with 1 <p <n — 3. When r = 2, we set

Xp,n—l = Epp + Ep,n—l + Epn + En—l,n + Enna

Y;),n—l = En—l,n—l + Epn + En, and Zp,n—l = Ep,n—l + En—l,n-

We thus obtain X, ,_1 + Y, -1+ Zp 1 = Epp + Ep_10-1 = A, where

Xp,n—l + }/p,n—l - Epp + Ep,n—l + En—l,n—l + En—l,n7

Xp,nfl + Zp,nfl = Epp + Epn + Enn

and

YZD,nfl +Z n—1 = Ep,nfl + Enfl,nfl + Epn + Enfl,n + Enn

are of rank two. When 3 < r < n — 1, we select r — 3 distinct integers hq, . ..

{1,...,n—=2}\{p,p + 1} and set

r—3
Xp,nfl = Epp + EP,PJrl + Epn + Ep+1,p+1 + Enfl,n + Enn + Z Ehi,hia
i=1

r—3
Y}),nfl = Epn + B + Ep+1,p+1 + Ep+1,p+2 + Enfl,nfl + Z Ehi,hi

i=1
r—3
+ Y Buoht
i=1

and

) hr—f‘) €
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r—3

Zpn-1 = Eppi1+ Eppipra+ Eno1n + E B, pit1-

i=1

We thus obtain X, ,_1 + Y, -1+ Zp 1 = Epp + Ep_10-1 = A, where

r—3

Xp,n—l + }/p,n—l - Epp + Ep,p+1 + Ep+1,p+2 + En—l,n—l + En—l,n + Z Ehi,hi—i-la

=1

r—3

Xp,n—l + van—l = Epp + Epn + Ep+17p+1 + Ep+1,p+2 + Enn + Z Ehivhi

=1
r—3
+ § :Ehi»hi+1
=1
and

YZD,nfl + Z n—1 = Ep,erl + Ep+1,p+1 + Enfl,nfl + Epn + Enfl,n + Enn

r—3
+ § :Ehi7hi
=1

are of rank r. Considernow A = E,,_o,_» + E,,_1 ,_1. We select r — 2 distinct integers
hi,...,h—o € {1,...,n — 3} and set
r—2
Xn—2,n—1 = En—2,n—2 + En—Z,n—l + En—27n + En—l,n + Enn + Z Ehi,hm
i=1
r—2 r—2
Yn—?,n—l = En—l,n—l + En—Q,n + Enn + Z Ehi,hi + Z Ehi,hi—i-l
i=1 i=1

and

r—2
Zn—?,n—l = En—2,n—1 + En—lm + E Ehi,hi-i—l-

=1
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We thus obtain Xn72,n71 + Yn72,n71 + Zn,lnfl = En72,n72 -+ Enflynfl = A, where

Xn—2,n—1 + Yn—2,n—1 = En—2,n—2 + En—2,n—1 + En—l,n—l + En—l,n

r—2
+ E En, h+1,
i=1

r—2 r—2
anZ,nfl + an2,n71 - Ean,n72 + Ean,n + Enn + Z Ehi,hi + Z Ehi,h¢+1
=1 =1

and

Yn72,n71 + anZ,nfl = Enf2,n71 + Enfl,nfl + Enf2,n + Enfl,n + Enn

r—2
+ 2 Bn
i=1
are of rank r. Consider A = E; + E,,,. When r = 2, we set
Xin=Fu+FEo+Es+E,9,+E,1,+ Enp,

}/171 = El? + En—l,n and Zln = E13 + En—Z,n'

We thus obtain Xy, + Y1, + Z1,, = E11 + E,, = A, where
Xln + YVln = Ell + E13 + En—27n + Enna

Xin+Zin=FEn+Eo+E,_1,+ L,

and

Yin+Zin=En+Es+E, 0, +E, 1,
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are of rank two. When 3 < r < n — 1, we select r — 3 distinct integers hy,...,h,_3 €
{1,...,n — 3} and set

r—3
Xn=FEn+Eipi1+EionotEnoni+Ey 11+ Z Eh;

i=1
r—3

+ g En hi+1,
i=1

r—3
Yln = E12 + El,nfl + Enf2,n72 + Enfl,n + Erm + Z Ehi,hi

=1

and

r—3
Zin=Fo+FE, 9n 1+ FE,1na1+E1,+ Z Ehn, pit1-

i=1
We thus obtain Xy, + Y1, + Z1,, = E11 + E,, = A, where

r—3
Xln + len = Ell + E12 + En—2,n—1 + En—l,n—l + En—l,n + Enn + Z Ehi,hi—i-la

i=1

r—3
Xin+ Zin=FEn+ B+ Ein+ Enana+ Encin+ > Enn,

=1

and

r—3
Yin + 21, = El,n—l + En—l,n—l + En—2,n—2 + En—Q,n—l + Epn + Z Ehi,hi

i=1
r—3
+ § :Ehmhi—i-l
=1

are of rank r. Consider now A= Epp + Enn with 2 S D S n — 1. Since Epp +
Enn = (En + Ensiopmir—p)™s we have A = X[y )+ Vb, + 20,4, , with
X+ Yl—,i_nJrlfpa Zi":n+1,p S T as desired.

1n+1—p>
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Subcase B.2: p = gands <t. Thenl < p < s <t <n. Sos <n-—1and
s+1 <t Consider A =FE,, +FE;withl <p < s <t < n Weselectr—2
distinct integers hy, ..., h,—o € {1,...,n — 1}\{p,s}. Let Z, = {i : 1 < h; < s} and
Js={i:s<h; <n}. Notethat Z,U J, = {1,...,r — 2}, Z, = Js = & whenr = 2,

and Z, = @ and p = 1 when s = 2. We set

Xpst = Epp + Ep,p+1 + Epn + Est + Esn + Z Ehi,hi-i-l + Z Ehi,hia
i€Ls USWE

(

EP7P+1 + Ess + Est + Esn + ZiEIS Ehi,hi

+ 3078 Enoni ift =s+1,
Y;)st -

Ep,p+1 + Ess + Es,s+1 + Est + Esn + ZiGIs Ehi,hi

+ 22;12 Eh, hi+1 ift>s+1,
\
and

;

Epn —I— ESS + Est + Z:;f Ehl,hl + Ziejs Ehi,hi-i-l ift =S + 1’

Zpst - Epn + Ess + Es,erl + Est + 22;12 Eh,‘,h

7

+ Ziejs Ehi,hi-i-l lft > S + ]_.
\

We thus obtain X,z + Y, + Zpst = Epp + By = A, where

(

Epp + Epn + B + Z::_lQ Ehi,hi + Ziejs Ehi,hﬁ-l ift =s+1,

Xpst + Ypst - Epp —+ Epn —+ Ess —+ Es,erl + Z:;f Ehi,h'

(3

+ Ziejs Ehn,; i1 ift>s+1,
\
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(

Epp + Ep,pﬂ + Ess + Eon + ZiEZS Ehi:hi

+ 30 Enohit ift=s+1,
Xpst + Zpst =

Epp + Ep,erl + Ess + Es,erl + Esn + EiGIS Ehi,hi

+ 30 Enhi ift> s+ 1,
\

and

Y;ast + Zpst = Ep,p—l—l + Epn + Eg, + Z Ehmhi-i-l + Z Ehi,hi

€L 1€Ts

are of rank r. Consider now A = E,, + E,, for1 < p < s <n — 1. We select r — 2
distinct integers hy, ..., h,—2 € {1,...n — 1}\{p,s}. LetZ, = {i : 1 < h; < s} and
Js ={i:s < h; <n}. Weset

r—2

Xpsn = Lipp + Ep,erl + Epn + Es,s+l + Esn + Z Ehi,hi+17

i=1

r—2
Y})sn = Lppt+1 + Ess + Es,s+1 + Esn + Z Ehi,hi + Z Ehi,hﬂrl
=1

1€7Ls

and

r—2
Zpsn N Epn + Ess + Esn + Z Ehi,hi + Z Ehi,hﬂrl-

1=1 1€Ts

We thus obtain X, + Y,sn + Zpsn = Epp + B, = A, where

r—2
Xpsn + )/;osn = Epp + Epn + Ess + Z Ehz-7hi + Z Ehi,hi—&-lv
=1 1€Ts
r—2
Xpsn + Zpsn = Epp + Ep,p—l—l + Ess + Es,s+1 + Z Ehi,hi + Z Ehi,hi—&—l
=1 1€Ls

and
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r—2
YZDsn + Zpsn = Lpp+1 + Epn + Es,erl + Z Ehi,hﬂrl

i=1
are of rank r. Note thatt = n when s = n — 1. We consider A = E,, + E,,_;,, with

1 <p<n-—2. Whenr = 2, we set
Xp,n—l,n = Epp + Ep,p+1 + Ep,p+2 + En—2,n + En—l,n + Enny

Y;o,n—l,n = Ep,p+1 + En—2,n and Zp,n—l,n = Lpp+2 + Enn.

We thus obtain X,,,, 1 + Y, -1+ Zp 1 = Epp + Ep_1,, = A, where
X

p,n—1n + Y;),n—l,n = Epp + Ep,p+2 + En—l,n + Enna

Xp,nfl,n + Zp,nfl,n - Epp + Ep,erl + En72,n + Enfl,n

and
YZD,n—l,n +Z n—1n — Lppt+l + Ep,p+2 + En—2,n + Enn

are of rank two. When 3 < r < n — 1, we select r — 3 distinct integers hq, ..., h,_3 €

{1,...,n—3}\{p} and set

r—3
Xp,nfl,n = Epp + Epn + Enf2,n72 + Enfl,nfl + Z Ehi,hia

=1

r—3
YZz),nfl,n = Ep,erl + Ean,an + Ean,nfl + Enfl,n + Eppn + Z Ehi,hi

=1
r—3
+ § :Ehivhi"rl
i=1
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and

r—3
Zp,n—l,n = Ep,p+1 + Epn + En—2,n—1 + En—l,n—l + Enn + Z Ehi,hi—l-l'
=1

We thus obtain X, .1, + Yy 10+ Zpn-1n = Epp + En_1n = A, where

Xp,nfl,n + Y, n—1ln — Epp + Ep,erl + Epn + Ean,nfl + Enfl,nfl + Enfl,n

r—3
+ Enn + Z Ehi,hi-i-la

i=1

Xp,nfl,n + Z n—1ln — Epp + Ep,erl + Enf2,n72 + Ean,nfl + Enn+

r—3 r—3
+ E :Ehiyhi + E :Ehmhﬁ-l
i=1 =1

and

r—3
Y;),n—l,n +Z n—1ln — Epn + En—Z,n—Q + En—l,n—l + En—l,n + Z Ehi,hi

=1
are of rank r. Consider now A = E,,_5,,_2 + E,_1,. Whenr = 2, we set

Xn—Q,n—l,n — Lp—-3n-3 + En—3,n + En—2,n—27

Yn—2,n—1,n = Lpn—-3n-3 + En—3,n—2 + En—3,n + En—2,n + En—l,n

and

Zn—Q,n—l,n - En—3,n—2 + En—Q,n-
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We thus obtain Xn72,n71,n + Yn72,nfl,n + Zn72,n71,n = Lp—2n-2 + Enfl,n = A, where

Xn—2,n—1,n + Yn—Q,n—l,n = En—3,n—2 + En—2,n—2 + En—2,n + En—l,na

Xn—2,n—1,n + Zn—Z,n—l,n = Lipn—-3n-3 + En—3,n—2 + En—S,n + En—?,n—Z + En—?,n

and

Yn—Q,n—l,n + Zn—Q,n—l,n = En—3,n—3 + En—3,n + En—l,n

are of rank two. When 3 < r < n — 1, we select r — 3 distinct integers hq, . . .

{1,...,n — 4} and set

r—3
Xn—2,n—1,n - En—3,n—3 + En—?,n—Q + En—?,n + En—lm,—l + E Ehi,hm

i=1

Yn72,n71,n = Ln—-3n-3 + En73,n72 + En72,n71 + Enfl,n + Enn

r—3 r—3
+ E :Ehiyhi + E :Ehi,hﬁ-l
i=1 i=1

and

r—3

) hr73 €

Zn—2,n—1,n - En—3,n—2 + En—?,n—l + En—l,n—l + En—Q,n + Enn + Z Ehi,hi-‘,-l-

i=1

We thus obtain Xn72,n71,n + Yn72,nfl,n + Zn72,n71,n = Lp—2n-2 + Enfl,n = A7 where
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Xn72,n71,n + Yn72,n71,n = En73,n72 + Enf2,n72 + En72,n71 + Enfl,nfl
r—3
+ Enfl,n + Enf2,n + Enn + Z Ehi,hiJrla

=1

Xn—2,n—1,n + Zn—2,n—1,n = Ln-3n-3 + En—3,n—2 + En—2,n—2 + En—2,n—1

r—3 r—3
+ By + Z En, b, + Z En p+1

i=1 i=1
and

r—3
Yn—2,n—1,n + Zn—2,n—1,n = Lipn—-3n-3 + En—2,n + En—l,n—l + En—l,n + E Ehi,hi

i=1
are of rank 7.
Subcase B.3: p < ¢q and s = t. We consider the following two subcases:
Subcase B.3.1: ¢ < s. We thushave 1 < p < ¢ < s < n. Consider A = E,, + I, for
1<p<g<s<n.Since E,y+ Ess = (Ey+ Ey,,)",wherel =n+1—s,u=n+1—¢q
and v = n + 1 — p are integers such that 1 <[ < u < v < n, it follows from Subcase

+Y

luv

B.2 that A = (Ell -+ Euv)+ = X+

luv

+ Zlfw is the sum of three rank r matrices

Xt vk Zt

o Yoo Z,tin T among which the sum of any two is of rank r as claimed.

Subcase B.3.2: s < g. We thus obtain 1 < p < s < ¢ < n. Consider A = E,;, + F,
forl <p<s<qg<nands <n—2. Weselect r — 2 distinct integers hy, ..., h, o €

{1,...,n—1\{p, s} and set

r—2
Xpsq = Ep,p+1 + qu + Es,s+1 + Esn + Z Ehi,hrH;

i=1

r—2
}/;qu = Epp + Ess + Esn + Z Ehi,hi

=1
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and

r—2 r—2

Zpsg = Epp + Bppsr + Boser + > Enon + > Enonsr.

i=1 i=1
We thus obtain X5 + Ve + Zpsg = Epg + Egs = A, where

r—2 r—2

Xpsq + Y;osq = Epp + Ep,pH + qu + Ess + Es,erl + Z Ehi,hi + Z Ehi,hiJrl?
=1 i=1

r—2
Xpsqg T Zpsg = Epp + Epg + Eon + Z Eh, h,

i=1
and

r—2

Ypsg + Zpsqg = Eppy1 + Egs + Es 1 + By, + Z B, hi+1

=1

are of rank r. Note that ¢ = n when s = n — 1. Consider A = E,, + E,_1,_1. Since
Em+Ep1n1 = (Ew+ Ey)", wherew = 1, v =n+1—pand ! = 2 are integers
satisfying 1 < u <l < v <nandl < n — 2, it follows that A = (E,, + E;)* =

+Y*"

ulv

X+

e + Z7, is the sum of three rank r matrices X, , X = X

u ulv?) “Fulvy “Hulv

€ T among which
the sum of any two is of rank r as desired.

Subcase B4: p < gands <t. Thenp<¢g—1lands <t—1withl <p < s <nand
1 < g #t < n. We consider the following four subcases:

Subcase B.4.1: p < ¢ —1and s <t — 1. Consider A = E,, + E; withq > p+ 2 and

t > s+ 2. We select r — 2 distinct integers hy, ..., h._o € {1,...,n — 1}\{p, s} and set

r—2 r—2
X = Epp + Epﬁﬂ-&-l + qu + Ess + Es,s+1 + Est + Z Ehi,hi + Z Ehi,hi-i-l?

i=1 i=1
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r—2 r—2

Y =Ep+Eu+Y Enn and Z=E,,u+Eei+ Y Enn

i=1 =1

We thus obtain X +Y + 7 = £, + B, = A, where

r—2
X+Y =E, 1+ Epg + Egs11 + By + Z B, hit1,
=1
r—2
X + Z — Epp + qu + ESS + ESt _|_ ZEhzyhz
=1
and
r—2 r—2

Y + Z = Epp + EP7P+1 + Ess + Es,s—H + Z Ehi,hi + Z Ehi7hi+1

i=1 i=1

are of rank 7.

Subcase B4.2: p=qg—1lands=t—1.Thenl <s<n—1land1 <p<s. When

s<n—1landp < s,weconsider A =FE, .1+ F; .1 withl <p < s <n—1. We select

r — 2 distinct integers Ay, ..., h,—o € {1,...,.n —1}\{p,s}. Let T, , = {i : p < h; < s}

and Jps ={i: 1 <h; <ptU{i:s<h; <n}. NotethatZ,,UJ,s = {1,...

— 2}’

Zys =Tps =< whenr =2,andZ,, = Jand h; #p,p+ 1fori =1,...7 — 2 when

s =p+ 1. We set

r—2 r—2
X = Epp + EPJJ—H + Ep,s+1 + Ess + Esn + Z Ehi,hi + Z Ehi,hi—i-la

i=1 i=1

Y = Ep,s+1 + Ess + Es,s+1 + Z Ehi,hi + Z Ehi,hi—l—l

iGIpys iEJp,S

and

Z=Ep+Ew+ Y Bunt+ Y Ernir

ZGJpS ZGZP,S
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We thusobtain X +Y + 7 = E, ,11 + Es .41 = A, where

X+Y =Ep+Eppat + Eesp1 + B + > Enn, + > Enss

i€Tp,s i€T, s

X + Z = Ep,p—‘rl + Ep,s—‘rl + Ess + Z Ehivhi + Z Ehi7hi+1

1€Tp,s 1€Tp,s

and

r—2 r—2

Y+ 7= Epp + Ep,s-ﬁ-l + Egs + Es,s—l—l + Eon + Z Ehi,hi + Z Eh‘ivhi"l'l

=1 =1

are of rank 7. Whens =n — 1landp < s — 1, we consider A = E, 11 + E,,_1, with

1 <p<n-—3. Ifr =2, then we set

X" = Epp + Ep7p+1 + Ep,p+2 + En—2,n + En—l,n + Enna

Y, =Ep+Eno, and Z, =E,pi5+ Eny.

We thus obtain X, + Y, + Z, = £, .11 + Ep,_1 ,, Where

Xr + Y;ﬂ = Ep,erl + Ep,p+2 + Enfl,n + Enru

X’r + Z’r - Epp + Ep,p+1 + En—2,n + En—l,n

and

Y;’ + ZT - Epp _'_ Ep,p—‘,—Q + ETL—Q,TL + E'I’LTL

are of rank two. If 3 < r < n — 1, then we select » — 3 distinct integers hq,...,h,_3 €
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{1,....n=2}\{p,p+1}. LetZ,={i: 1 < h; <p}and K, ={i : p+1 < h; <n—2}.
Note that Z, UKC, = {1,...,r —3},Z, =K, = @ whenr = 3,Z, = @ whenp = 1, and

K, = @ when p = n — 3. We set

X = Epp + EP7P+1 + Ep+1,p+2 + Eppn + Z Ehiyhi + Z Ehmhﬂrla

i€, i€Kp

Y; - Epn + Enn + Ep+1,p+1 + En—l,n—l + En—l,'n + Z Ehi,hi + Z Ehi,hi—l—l

i€k, i€T,

and

r—3 r—3

Zr = Epp + Ezm + Ep+1,p+1 + Ep+1,p+2 + En—l,n—l + Z Ehi,hi + Z Ehi,hﬂrl-

1=1 i=1

We thus obtain X, + VY, + Z, = E, ,11 + E,_1, = A, where

XetYo=Ep+EpatEpmtEpipn+ Epiprot Evana+ Enan

r—3 r—3
+ E :Ehi,hi N E B hit1,
i=1 i=1

X, + 2, = Epn + Enn + Ep,p+1 + Ep+1,p+1 + Enfl,nfl + Z Ehi,hi

i€kp
+ E Ehl Jhi+1

i€T,

and

Y;“ + Zr - Epp + Ep+1,p+2 + En—l,n + Enn + Z Ehi,hi + Z Ehi,hi—i-l

i€T, iekyp

are of rank r. When s = n — 1 and p = s — 1, we thus obtainp = n — 2 and A =
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E, 2n-1+ E,_1,. We select r — 2 distinct integers hy, ..., h,_2 € {1,

set
r—2 r—2
X = En—2,n—2 + En—27n—1 + Enn + Z Ehi,hi + Z Ehi,hi—i-la
=1 =1
r—2
Y = En—l,n—l + En—2,n + En—l,n + Enn + Z Ehi,hi—i-l
=1
and

r—2
Z = En—2,n—2 + En—Z,n + En—l,n—l + Z Ehi,hi-

=1

We thusobtain X +Y + 272 = E,,_ 5,1+ E,_1, = A, where

...,n—3}and

r—2

X+Y = En—2,n—2 + En—2,n—1 + En—2,n + En—l,n—l + En—l,n + Z Ehi,h“

r—2
X+7= En_g’n_1 + En—l,n—l + En—Q,n + B + Z Ehi7hi+1

=1

and

r—2 r—2
Y+7Z= En—2,n—2 + En—l,n + E’rm + Z Ehi,hi + Z Ehi,hi—l-l

i=1 =1

are of rank r.

i=1

Subcase B4.3: p=g—1lands <t—1. Theng=p+landl <p<s<t—1<n-—1.

Consider A = E,,41 + Eq withl < p < s <t—-—1<n-1 Weselectr — 2

distinct integers hy, ..., h,—o € {1,....,n — 1}\{p,s}. LetZ, = {i : 1 < h; < p} and

Jpy={i:p<h; <n-—1} Notethat Z, U J, ={1,...,r =2}, 7, =

r = 2,and Z, = & when p = 1. Since p < n — 2, we set

Jp = & when

56



r—2 r—2
Xppttst = Epp + Eppi1 + Epn + Ess + Es 541 + Z Epn + Z Eh, hi+1,

i=1 i=1

Yp,p—f—l,s,t = Epn + Fss + Eg + Z Ehi,hi + Z Ehi,hi-l—l

icJy i€T,

and

Zppist = Lpp + Egsi1 + Z Ehini + Z Ehshis1-

i€T, i€Tp

We thus obtain X 115 + Yppi1st + Zppiist = Eppr1 + Eq = A, where

Xpptist + Ypprise = Epp + Eppy1 + Egsp1 + By + Z Enn + Z Eh; hiv1s

€Ty 1€Jp

Xp,p-l—l,s,t + Zp,p+1,s,t = Ep,p—H + Epn + Ess + Z Ehi,hi + Z Ehivhi+1

1€Jp i€y
and
r—2
Yppitst + Zpprist = Epp + Epn + Egs + Es o1 + B + Z Ehih,

i=1

r—2
+ E :Ehivhi‘f‘l
i=1

are of rank 7.

Subcase B.44: p < g—1lands =t — 1. If ¢ < s, then we obtaint = s + 1 and
1<p<qg—1<qg<s<n.Consider A=FE,+FE;s.1withl<p<g—1<s<n.
Since By + Es 511 = (Ejys1 + Eu) o wherel =n—s,u=n+1—gandv=n+1—p
are integers satisfying 1 <[/ < u < v—1 < n — 1. It follows from Subcase B.4.3
that A = (B 4+ Euw)™ = X100 + Yiiiiue T 21110, 18 the sum of three rank

Z+

LI+1,u,v

Y+

Ll+1u00 € 7 among which the sum of any two is of rank

. +
matrices X”H’u’v,

r. If s < g, thenl < p < s < s+1< q < nbecauset = s+ 1 and q # t.
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Consider A = Ep; + FEy oy withl < p < s < s+1< g < n. Weselect r — 2
distinct integers hy, ..., h.—2 € {1,....,n — 1}\{p,s}. Let I, = {i : 1 < h; < s} and
Js={i:s<h;<n-—1}. Notethat ;UJ, ={1,...,r—2}, I, =J, = O whenr = 2,

and [, = @ whens =2.Since2 <s<n-—2andp <n— 2, we set

r—2 r—2

X - Epp + Ep7p+1 + qu + Ess + E&s—}—l —I'_ Esn + Z Eh“h, + Z Ehz,hz‘i'l?

=1 i=1

Y = EPP + Eos + Z Ehi,hi + Z Ehi,hi"l‘]-

i€l 1€Js

and

Z = Ep7p+1 + Esn _I_ Z Ehi,hi + Z Ehi,hi—‘rl'

i€Js 1€ls

We thus obtain X +Y + 7 = E,, + F, ;11 = A, where

X+Y = Ep,p—i—l + qu + Es,5+1 + Eon + Z Ehi,hi + Z Ehi,hi-f—la

1€Js i€l

X —|— Z — Epp + qu + Ess + Es,erl + Z Ehz‘,hi + Z Ehiahi+1

i€ls i€Js
and
r—2 r—2
Y+ 272 =Eyp+ Eppir + Lo + Eon + Z Enn; + Z Ehhit1
i=1 i=1
are of rank r. This completes the proof. [

We now prove the following.

Lemma 4.2.2. Let IF be a field and n > 2 be an integer. Suppose that S is a subset of

M,,(F) such that S is closed under addition and that Z = {A € S : [A, X| = 0 for all
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X €S8} # 2. Lety : S — S be an additive map satisfying [V(A), A| € Z for every rank
r matrix A € S, where 1 < r < n is a fixed integer. If H € S is a sum of three rank r

matrices in S among which the sum of any two is of rank r, then [(H ), H] € Z.

Proof. Note first that Z is closed under addition. Let A, B € Z. Then (A + B)X =
AX 4+ BX = XA+ XB = X(A+ B) forany X € S implies that A+ B € S. Let
H = X, + X5 + X3 be a sum of three rank r matrices X1, X5, X3 € S among which
the sum of any two is of rank r. Let 1 < ¢ < 7 < 3 be a pair of distinct integers. Since

[w(Xz -+ XJ), Xz + X]], [w(Xz)a Xl] and [w(X]), X]] are in Z, it follows that

Then

as desired. O]

We continue our discussion by proving a result related to centralizing additive maps on

rank n block triangular matrix algebra over a field F with |F| > 3.

Lemma 4.2.3. Let k,nq,...,n; be positive integers such thatny + --- +n =n > 2

,,,,,

,,,,,,,,,,
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exists a unique additive map T : F — [ such that

b(A) +7(N) Ern € Z(To,. ...y

for every \ € F, where T = 0 when either (ny,n;) # (1,1) or |F| > 3.

Proof. Let A € F. The result is clear when A = 0. Consider A # 0. We first claim that

[(ALn), Est] = 0 (4.1)

for every (s,t) € A with s # t. Here, A = {(i,j) : Eij € Tny,..n,}- We denote

P(A,) = (a;;). By virtue of |F| > 3, there exists a nonzero scalar o € F such that o # .
Setting B = Eg — o, yields B and \I,, + B are of rank n. Then [)(\[,, + B), A\I,, + B|

and [¢(B), B] are in Z(T,,.. n,). Since [{(\, + B),AI,] = 0, it follows from the

.....

additivity of ) and the bilinearity of | - , - | that

[¢(A[n)7B] = [w()‘[n + B)a)‘jn + B] - W(B)»B] € Z<77u

Since [(Al,), —ad,] = 0, we thus have [(A],), Eq] = [V(A],),B] € Z(Tn,...n,.)-
Consequently, for each (s,t) € A with s # ¢, there exists £ € F such that ¢(\],) Eg —
Eq(AL,) = &ql,. When n > 3, there exists an integer 1 < p < n such that p # s, t.

Then

Epp<w()\[n)Est - Estw()\ln)) = EPP(SStLl) - a/pSEpt = gstEpp'

Hence & = 0. Consider now n = 2. When 7,,, . = T2(F), we have (s,t) = (1,2).

,,,,,
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Then

E22(¢(/\12)E12 - E12'¢(>\]2>> = E22(£12-[2) — a21E22 = £I2E22'

Since ay; = 0, we obtain &9 = 0. If 7, ,, = Ms(F), then either (s,¢) = (1,2) or

(s,¢) = (2,1). When (s,t) = (1,2), ¥(As)Erz — Erptb(A) = &1, yields —az Eyp +
(a11 — ag2)Erg + as Bay = &2l Then &5 = ag1 = —ag, and so &2 = 0. Likewise,
when (s,t) = (2,1), we see that ©)(\l3) Ey; — Eyth(Ay) = &91 15 implies that a2 Eyq +
(agy — ay1)Eop — a12E9s = &o115. Then &1 = a12 = —aq2, and so o = 0. Hence claim
(4.1) is proved.

We now distinguish our argument in the following two cases:

Case 1: |F| > 3. We claim that

[(Mn), Ess] =0 (4.2)

for every 1 < s < n. Since |F| > 3, there exists a nonzero scalar 5 € F such that
B # a,a — A. Setting C' = fFE,, — al, yields C and A\I,, + C are of rank n. Then

(AL, +C), A, +C] and [(C), Cl are in Z(Ty, .., ). Since [ (AIn+C), \,,] = 0, we

.....

have [(A],),C) € Z(Tn,y...n)- By [W(A],), —ad,] = 0, we thus obtain [)(A],), Ess] €

.....

Z(Tn,....n,,)- Therefore for each (s, s) € A, there exists &, € F such that {)(\],,) Es —

Esp(M ) = Ess1,,. We take an integer 1 < p < n such that p # s. Then

Epp<w(A]n)Ess - Ess¢(A]n)) - EpP(fss]n) — apsEpS = fssEpp-

Hence &, = 0, and thus claim (4.2) is proved. In view of (4.1) and (4.2), we con-

clude that [¢)(\],,), Ey] = 0 for every (s,t) € A. Let X = (z5) € Ty,

.....
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[W(ALn), X] = 32 yen T (MR), Eij] = 0 implies that ¢y (Al,) € Z(7Ty,,..n, ) for each
A € F. Consequently, the result holds with 7 the zero map on F.
Case 2: |[F| = 3. Let 1 < h < n be an integer and let (s,t) € A with s # t. From

4.1),
Ewnpp( ML) Est = EppEqp(NL,) = apsEnt = 0ps Enetp(AL,) (4.3)

where J;; is the Kronecker delta. Note that as, = 0 for all (h, s), (s,t) € A with h # s
and s # t. In particular, taking ¢t = n yields aps = 0 foreach 1 < s < n and (h,s) € A

with h # s. So
n n—1
Y(AL,) = Z ai; i + Z in By . 4.4)
i=1 i=1

On the other hand, when h = s = 1, for each integer 1 < ¢ < n, we note from (4.3) and

(4.4) that

an by = Eltw()\[n)
n n—1
= Fkyy ( Z a;i By + Z amEm)
i=1 i=1

attElt + atnEln ifl<t< n,

annEln ift = n.

Then a;, = 0 foreach 1 < i < n, and a; = ay; for 1 < i < n. Hence ¥(\],) =

a1, + a1, F1,. When (nq,ng) = (1, 1), there exist maps 7,7 : F — F such that

V(ML) + T(A) B = n(AN) L, € Z(Tay,..ny.)
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for every A € FF. By the additivity of ¢ and the linear independence of E,, and I,,, it can
be shown that 7 and 7 are additive maps uniquely determined by ) as required.

Consider now (ny,ny) # (1,1). When n; > 2, we have Ey € Ty, ,,. By virtue of

(41), we have [1/1()\[71), Egl] =0 y161dS alnEgn = Owhenn > 3, and a12E11—a12E22 =0
when n = 2. In both cases, we obtain a;,, = 0. Likewise, when n; > 2, we have

[Y(Ay,), Eypn—1] = 0 leads to a;, = 0. Then ¢)(\l,)) € Z(T,,. . n,) for each A € F.

Consequently, the result holds with 7 the zero map on F. [

We now prove a result related to centralizing additive maps on rank two upper triangular

matrices of order three over the Galois field of two elements.

Lemma 4.2.4. Let F be the field with |F| = 2. If 1 : T5(F) — T5(F) is a centralizing

additive map on rank two matrices and D = F15 + Ea3 € T3(IF), then the following hold.

() [¥(I3), D+ Ey] € Z(T5(F)) fori =1,2,3.
(i) [(Is), D] + [ (Eu), Eu] € Z(T3(F)) fori=1,2,3.
(iii) [V(Eg + Is + Ey), Ey] + [W0(Ey), Ey) € Z(T5(F)) for all integers 1 < s < t < 3
andi =1,2,3.

(iv) [¥(D), Ey] + [W(Eij), D] € Z(T5(F)) for all integers 1 < i < j < 3.

Proof. (1) Let 1 < ¢ < 3 be an integer and let F}; = I3 + Fj;. Since E;; + D and F; + D
are of rank two, it follows that [¢)(E;; + D), Ey; + D), [v(Fy; + D), F;; + D] € Z(T5(F)).

Note that

[V(I3), By + D] + [(Ej; + D), By + D]
= [Y(Fi + D), By + D]

= [(Fi + D), Fy; + D]
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as [(Fy; + D), Is] = 0. Hence [¢([3), D + Ey] € Z(T3(F)) fori = 1,2, 3.
(i) Let 1 < i < 3 be an integer. Note that [¢)(Fy;), E;] = [©(Fy), Fii] € Z(T3(F))

since [¢(F};), I3] = 0 and F}; is of rank two. By (i), we obtain

[W(13), D] + [(Eu), Bul + [ (Fa), Bu]l = [¥(13), D + Eyi] € Z(T3(F)).

Thus [¢(13), D] + [Y(Ey), By € Z(T5(F)) fori = 1,2, 3.
(i) Let 1 <i < 3and 1 < s <t < 3beintegers. Since [)(Fy; + Ey), I3] = 0, we see

that

[V(Fi + Egt), Fii + Est) = [W(Fii + Est), Eii + Eg

= [W(Fyi + Eg), Eg] + [U(Fy), By] + [0 (Ey), E).

Since Fy; + E; and Fy; are of rank two, we have [()(F; + Ey), Fy; + El, [0(Fy), By €
Z(T5(F)). We thus obtain [¢)(F; + Eg), Eq] + [(Es), Ei] € Z(T5(F)) for all integers
1<s<t<3andi=1,23.

(iv) Let 1 <7 < j < 3 be integers. Note that

[Y(Fi1 + D+ Ej;), i1 + D + Ejj]

= [”(/)(Fll + D),Fn + D] + [QZJ(FH + D),Ew] + [w(EZ]), F11 —|— D + Ez]]

Since Fi1 + D + E;; and Fy; + D are of rank two, it follows that [¢)(Fy, + D + Ej;), Fi1 +

D + Eij], [w(Fll + D), F11 + D] € Z(Tg(F)) Then
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[Y(Fi1 + D), Eij| + [V(Ei;), Fin + D + E;;] € Z(T5(F))
= [Y(Fn), Byl + (D), Eijl + [W(Ey), Byl + [Y(Ey), Fu + D] € Z(T5(F))

= [V(Fu + Ey), Eij] + [Y(D), Byl + [W(Eiy), BEul + [ (Eij), D] € Z(15(F))

because [¢)(E;;), Is] = 0. By (iii), we see that [¢(F11 + Eyj), Ei] + [W(Eij), En] €
Z(T5(F)). 1t follows that [¢(D), E;;] + [¢(E;;), D] € Z(T5(F)) for all integers 1 < i <

J <3 ]
The following result is a continuation of the previous lemma.

Lemma 4.2.5. Let [F be the field with |F| = 2. Then v : T5(F) — T3(F) is a centralizing
additive map on rank two matrices if and only if there exist a scalar A € F and a matrix

H € T5(FF) such that

Y(A) = M + te(H'A) I

for every A € T5(F). Here, tr(A) denotes the trace of A.

Proof. Lety(I3) = (a;;) € T5(F) and let D = E\5 + Ey3 € T5(F). By Lemma 4.2.4 (i),

we have [¢)(I3), D + E11] € Z(T5(F)). So

a1 = a2 + agy, Q12 = aj3 +azs and ag = ass. 4.5)

By [¢(I3), D + Eq| € Z(T5(F)), we see that

@12 = Qg3, Q22 = @11 + a2 and agy = ags + ass. (4.6)

Solving the equations in (4.5) and (4.6) yields a2 = a13 = as3 = 0 and a;; = asy = ass.
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Then

U(I3) = als

for some o € F.

For each integer 1 < s <t < 3, let ¢(Ey)

“.7)

(b2") € T3(F) and let /(D) = (cy;) €

T5(F). Since [¢(I3), D] = [als, D] = 0 by (4.7), it follows from Lemma 4.2.4 (ii) that

[(Ey), i) € Z(Ts(F)) fori = 1,2, 3. Then

11 11
b§2) :bg:')) =0,

22 22
bgz) :bé3) =0,

33 33
b§3) :bés) =0,

(4.8)

4.9)

(4.10)

Since ¥(FE11) + ¥(Faa) + ¥ (Es3) = 1¥(13) = A3, together with (4.8)-(4.10), we obtain

11 22 33
b§3):b§3):b§2):0

Y

R

i

Q,

for: = 1,2, 3. In view of (4.8)-(4.11), we conclude that

W(E;) = 09 Eyy + 059 oy + b5 Eyg

.11

4.12)

(4.13)
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fori = 1,2, 3. By virtue of [)(D), D] € Z(T5(F)), we see that

C11 = C99 = C33 and Co3 = C12. (414)

Let A = ¢15. By Lemma 4.2.4 (iv), [¢(D), E12] + [¥(Eh2), D] € Z(T5(FF)), together with

(4.14), we obtain

b =0 = b5y and  bYyY = biY) 4\ (4.15)

By Lemma 4.2.4 (lll), [w(Elg + [3 =+ Ell)a Elg] + [¢<E12), Ell] - Z(Tg(F)), together

with (4.7), (4.13) and (4.15), we have

b =tV 4 pY  and p(lY = bl (4.16)

By [w(Elg —+ Ig —+ E22>, E12] + [w<E12), EQQ] [~ Z(Tg(F)), (47), (413) and (415), we

obtain

by = b1 + 65 and b = 0. @17

It follows from (4.15) and (4.16) that bglf) = Aand bﬁf) = 0. Then

V(E12) = agals + AEqs. (4.18)

where ayy = 1%, Likewise, by [(/(D), Eas] + [1h(Eas), D] € Z(T3(F)) and (4.14), we

obtain

M — o o and o2 — o @19

67



By [¢(E23 + Ig + E11>, Egg] + [@D(Egg), Ell] € Z(Tg(F)), (47), (413) and (419), we

obtain b%?’) = 6%3) = (0 and b%l) = bglzl), and so b%g) = A. Then

V(Ea3) = aals + AEss, (4.20)

where g3 = bng”. Note that b§122) = bﬁ” + bgl;) by (4.16). It follows from (4.13),

b = bt and A = b{L? that

Y(En) = anls + AEq, (4.21)

where ay; = by Similarly, by [¢/(D), E1s] + [¢(Eys, D] € Z(T5(F)) and (4.14), we

obtain

b =05 = b5y and bl = by (4.22)

By [¢(E13 + 13 + EH), Elg] + [1/)(E13>, EH] € Z(Tg(F)), (47), (421) and (422), we

have b%?’) =0 and b%g) = \. Consequently,

V(E3) = aqsls + AEss, (4.23)

where a3 = b\"). Next, consider [)(Eys + Is + Eas), Es] + [(Ers), Bas) € Z(T5(F)).
Together with (4.7), (4.13) and (4.23), we obtain 65212) = bé?). By (4.17), we have

A= bﬁZ) + b§222). Then

V(Ea) = ool + A, (4.24)

where agy = b§212). In view of (4.12), we see that bﬁ” + 65212) + bﬁg) = b%l) + b§222) + bgg).
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Since 61" + b5V = b2 4+ 52? by (4.16) and (4.17), we obtain b = b{3¥ By (4.12),
by 07 0 = by b by and b1 = b imply that by 055" = b 4b5.

Since b%l) = bglzl), we obtain bﬁ?’) + b:g?;?’) = A. It follows from (4.13) that
V(Es3) = agals + AEss, (4.25)

where ass = b3?. Let H = (ay;) € T3(F). By virtue of (4.18), (4.20), (4.21), (4.23)-

(4.25), we obtain

1<i<;j<3

= t(H'A)I; + \A

for all A = (a;;) € T5(F). O

4.3 A characterization of centralizing additive maps on rank r block triangular
matrices

With the several technical lemmas developed in the previous section, we are now ready

to prove the main result of this dissertation.

Theorem 4.3.1. Let k,ny,...,ny be positive integers such thatny + ---+n, =n > 2

and let Ty, ... n, be a block triangular matrix algebra over a field F. Let 1 <r < mnbea

,,,,,

fixed integer such that v # n when |F| = 2. Then 1) : Ty, . n, — Tny...n, IS a centralizing

.....

additive map on rank r matrices if and only if there exist scalars A\, « € F and an additive

map (: Tn,....n, — F such that

.....

W(A) = AN+ p(A) L, + a(ar + apn) Ern
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forevery A = (a;j) € Tp,....n,, where a # 0 only if r =n, ny =ny, = 1 and |F| = 3.

.....

Proof. For sufficiency, we note that the additivity of v is obvious. We show that ) is
centralizing on rank r matrices. When o = 0, we have ¢(A) = NA + u(A)IL, for A €

n,- Consider

..........

,,,,, n,, be of rank

n. Since n; = ny = 1, we must have ay1, a,, # 0 and E1, A — AEy, = (apyn — a11) F1p-

Thus

W(A), A] - a(all + ann)(ElnA - AEln) = CY(all + ann)<ann - all)Eln-

Since |F| = 3, it follows that a;; + a,, = 0 when aj; # a,,. Then [)(A), A] =0 €

Z(Tn,....n,,) for all rank n matrices A € Ty, ,, as claimed.

-----

To show necessity, we consider the following two cases:
Case I: |F| = 2 and (k,n) = (3,3). Thus r = 2 and 7, ., = T53(F). The result

follows immediately from Lemma 4.2.5. Then there exist a scalar A € F and a matrix

H € T5(IF) such that

Y(A) = M + tr(H'A) I

for every A € T3(IF) as required.
Case II: |F| > 2 and (k,n) # (3,3) when |F| = 2. Recall that A = {(i,j) : E;; €
Toy..ni - Let A = (a;5) € Tp,....n,- By the bilinearity of [ -, - ], we obtain

-----

(A A= ) [WlayBy),agEgl+ ) [(ayEy), anEy] (4.26)

(i,j)eN (1.9)#(s,t) €D
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To prove [)(A), A] € Z(Tp,....n,.), We only need to show that

.....

W(aijEzj)ﬂmEzj] € Z(Tu.,.., nk)

and

[V(aijEij), asiEs) + [W(asEs), aijEij] € Z(Tny,..ny)

for every pair of distinct indexes (i, j), (s,t) € A. We distinguish two subcases:

Subcase II-1: = n. Then |F| > 3. Let ¢ : Ty, ...n. — Tny....n, be the map defined

Y(A) — 7(a11 + apn) By, When np=mni =1 and |F|=3,
p(A) = (4.27)

P(A) otherwise

for every A = (a;;) € Tn,....n,» Where 7 : ' — IF is the additive map uniquely determined

by 1) as described in Lemma 4.2.3. We claim that ¢ is a centralizing additive map
on rank n matrices such that o(Z(7n, . n.)) € Z(Tn,...n.)- The result is clear when
(ny,ng) # (1,1) or |F| > 3 by Lemma 4.2.3. Consider n; = n; = 1 and |F| = 3. Let
A= (ay) € Tny

n,, be of rank n. Then

,,,,,

[SO(A)’ A] = [@Z)(A),A] + AT(all + a’nn)Eln - T(all + ann)ElnA

= W)(A), A] + (CL11 — ann)7'<a11 + ann)E1n~

Since A is invertible and n; = n; = 1, we have aq1,a,, # 0. If a11 # a,,, then

a1+ an, = 0 by |F| = 3. Consequently, (a11 — apy)7(a11 + any) = 0. Since [(A), A] €
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.....

..........

Lemma 3.2.3 that X = A, for some A € F. Since A + A\ = —\, we have ¢(X) =

W(AL) —T( A+ N E, = (ML) +7(N) By, € Z(Th,

.....

.....

[p(aiiEij), aijEij] € Z(Tay,..ny)- (4.28)

Let (7,j) € A. The result is clear if a;; = 0. Consider now a;; # 0. Since |F| > 3,
there exists a nonzero a € F such that a;; E;; + al, is of rank n. By virtue of p(al,) €

.....

claim (4.28) is proved. We next claim that for each (i, j), (s,t) € A with (4, j) # (s, 1),

[@(aijEz‘j); st Eg) + [0(asEst), aijEij] € Z(Tay,..n)- (4.29)

When ¢ # j or s # t or |F| > 3, there exists a nonzero b € F such that a;; E;; +
astEst + bIn is of rank n. By [@(aijEij + astEst + bIn)a aijEij + astEst + bln]7 [@(aijEij +

as Fgy+0I,),01,) € Z(T,, n,) and (4.28), claim (4.29) is proved.

..........

Consider now ¢ = j, s = t and |F| = 3. Then there exists a nonzero ¢ € [ such that
E;; + Ess + cl,, is of rank n. Using the facts that [p(FEy; + Ess + cl), By + Ess + cl,y),

(o(Ey; + Ess + cl), cl) € Z(Ty, n,) and (4.28), we obtain

----------

[SO(Eu)a Ess] + [@(Ess)a Eu] € Z(%l ,,,,, nk) (430)

Moreover, since ¢ is linear when |F| = 3, it follows from (4.30) and the bilinearity of
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[+, -] that

[Qp(azzEm); assEss] + [Sp(assEss)y azzEu] = aiiassqSO(Eii)u Ess] + [SO(ESS)7 Ez])

we conclude that [p(A), A] € Z(Ty,

7777 ng*

.....

Subcase II-2: 1 < r < n. Thenn > 3 and (k,n) # (3,3) when |F| = 2. Let

A = (a;j) € Tny,..n, and let (4,7),(s,t) € A be such that (7, j) # (s,t). Note that

-----

a;j i + asEg € Ty, 1s of at most rank two. By Lemma 4.2.1, if a;; E; + asEg

.....

is nonzero, then it can be represented as a sum of three rank r matrices in 7,
among which the sum of any two is of rank r. Then [¢)(a;;Eij + aaFEs), a;;Eij +

astEo] € Z(Tn,...n,) by Lemma 4.2.2. By a similar argument on a;; E;; and as Ey,

.....

weE have [¢(aijEij).aijEij], [@/J(CLStESt), astEst] - Z(ﬁl "k) Then [1/1(az~jEij), aStEst] =+

-----

[W(astEst), aijEij] € Z(Tn,

..........

every A € Toy -

In view of (4.27) and Theorem 3.2.1, we see that there exist a scalar A € [ and an

additive map p : 7y, ... n, — IF such that

.....

Tﬂ(A) =) + ,M(A)]n + T(CLH + ann>Eln

.....

|F| > 3. Moreover, when |F| = 3, n; = n;, = 1 and r = n, the additivity of 7 yields 7 is
linear. Then either 7 = 0 or 7 is bijective. When 7 # 0, we have either 7 is the identity, or
7(0) =0, 7(1) = —1 and 7(—1) = 1. We thus conclude that there exists a scalar « € [F

such that 7(x) = ax for every x € F. This completes the proof. [
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As an immediate consequence of Theorem 4.3.1, we obtain a classification of central-
izing additive map ¢ : M — M on rank r matrices, where M € {M,,(F),T,(F)} and
1 < r < nisafixed integer with r # n when |F| = 2.

When M = M,,(IF), we have the following result.

Theorem 4.3.2. Let F be a field and let n > 2 be an integer. Let 1 < r < n be a fixed
integer such that v # n when |F| = 2. Then ¢ : M,(F) — M,(F) is a centralizing
additive map on rank r matrices if and only if there exist a scalar \ € F and an additive

map 1 : M, (F) — F such that

p(A) = A+ p(A) I,

forevery A € M, (F).

When M = T,,(IF), we obtain the following result.

Theorem 4.3.3. Let I be a field and let n > 2 be an integer. Let 1 < r < n be a fixed
integer such that v # n when |F| = 2. Then ) : T,,(F) — T,(F) is a centralizing additive
map on rank r matrices if and only if there exist scalars \, o« € F and an additive map

w: To(F) — T such that

W(A) = AN+ p(A) L, + alar + apn) Ern

for every A = (a;;) € T, (F), where a # 0 only if r = n and |F| = 3.
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CHAPTER 5: COMMUTING ADDITIVE MAPS ON RANK R UPPER
TRIANGULAR MATRICES

5.1 A brief overview

In this chapter, we will apply the characterization of centralizing additive maps on rank
r block triangular matrices and employ the most recent results (Chooi et al., 2019, 2020)
to give a complete description of commuting additive maps ¢ : T,,(F) — T,,(IF) on rank
r > 2 upper triangular matrices over an arbitrary field. In Section 5.3 we continue our
study of commuting additive maps on rank one upper triangular matrices of orders two

and three.

5.2 A complete description of commuting additive maps on rank > 2 upper
triangular matrices

We begin with the illustration of the most recent results by Chooi et al. (2019, 2020) in
the study of commuting additive maps on rank r upper triangular matrices
We will state without proof the following results related to commuting additive maps

on rank r upper triangular matrices.

Lemma 5.2.1. (Chooi et al., 2020, Theorem 1.1) Let 2 < r < n be fixed integers and
let F be a field with |F| > 3. Let T,,(IF) be the ring of n X n upper triangular matrices
over F with center Z(T,,(F)). Then v : T,,(F) — T,(F) is an additive map satisfying
AY(A) = (A)A for all rank r matrices A € T,,(IF) if and only if there exist an additive
map p: T,(F) — Z(T,(F)), Z € Z(T,,(F)) and o € F in which o« = 0 when |F| > 3 or

r < n such that

V(A) = ZA + p(A) + alan + ) Ery,

forall A = (a;;) € T, (F).

75



Lemma 5.2.2. (Chooi et al., 2019, Theorem 2.8) Let n > 4 be an integer. Then v :
T,(Fy) — T,,(Fy) is a commuting additive map on invertible matrices if and only if there
exist scalars \, v, 51, B2 € Fy and matrices H, K € T,(Fs) and X1, ..., X, € T,(Fs)

satisfying X1 + - - - + X,, = 0 such that
Y(A) = M+ tr(H' A)L, + (K ' A) By, + o, 5, (A) + Y anX;
i=1

forall A = (a;j) € T,,(Fy), where U, g, 3, : T,,(F2) — T, (F2) is the additive map defined

by

\Iloc7ﬁ1,ﬂg (A) - (aa12 + 61 (an—l,n + ann))El,n—l a (aan—l,n + BQ(all + a12))E2n

forall A = (a;;) € T,,(F2).

Lemma 5.2.3. (Chooi et al., 2019, Theorem 2.9) ¢ : T3(Fy) — T5(FFy) is a commuting
additive map on invertible matrices if and only if there exist scalars \, o, 5, € Fy and

matrices H, K € T5(Fy) and X1, X, X3 € T3(Fy) satisfying X1 + Xo + X3 = 0 such

that
3
Y(A) = M + tr(H' A) I3 + (K" A) Bz + U 5(A) + D4 (A) + Y auX;
=1

forall A = (a;;) € T5(F), where U, g : T5(F) — T5(FF) and ®., : T5(IF) — T5(IF) are the

additive maps defined by
U, 5(A) = (a(ags + ass)) Erz + (B(a11 + ai2)) Eas,

Q. (A) = y((a12 + ag2) Eaa + (@11 + a12 + ags + ass) B33 + ai3(E12 + Ea))
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forall A = (a;;) € T5(FF).

Lemma 5.2.4. (Chooi et al., 2019, Theorem 2.10) ¢ : T5(Fy) — T5(FFy) is a commuting

additive map on invertible matrices if and only if there exist some scalars \i, Ao € Fy and

matrices X1, Xo € To(Fs) such that

Y(A) = (a11 + a12) X1 + (22 + a12) X + Maials + Aeai2Ero

forall A = (a;;) € To(F).

Using Lemmas 5.2.1, 5.2.2, 5.2.3, 5.2.4 and Theorem 4.3.3, we obtain a complete

description of commuting additive maps ¢ : T,(F) — T,,(IF) on rank r matrices over an

arbitrary field IF, where 1 < » < n is a fixed integer.

Theorem 5.2.1. Let ¥ be a field and let n > 2 be an integer. Let 1 < r < n be a fixed

integer. Then 1) : T,,(F) — T, (F) is a commuting additive map on rank r matrices if and

only if

* when r < n or |F| # 2, there exist scalars \,a € F and an additive map p :

T, (F) — F such that
@D(A) =) -+ N(A)]n + a(a11 + am)Eln

forall A= (a;;) € T,(F), where a # 0 only if r = n and |F| = 3,
* whenr = n > 4 and |F| = 2, there exist scalars )\, «, By, B2 € F and matrices

H K € T,,(F) and Xy, ... X, € T,(F) satisfying X, + - - - + X,, = 0 such that

Y(A) = M + tr(H' A)L, + (K ' A) Ery + Va5, (A) + ) aaX;
=1
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forall A = (a;;) € T,(F), where U, g, 3, : T,(F) — T,(F) is the additive map

defined by

\1104751752 (A) = (aal? + Bl (a'n—l,n + &nn))El,n—l

+ (ap—15 + P2(ar1 + ai2)) Es,

forall A = (a;;) € T,,(F),
* when r = n = 3 and |F| = 2, there exist scalars \,«, 3,y € F and matrices

H, K € T5(F) and X1, X5, X5 € T5(F) satisfying X1 + X5 + X3 = 0 such that
3
Y(A) = M + tr(H' A) I + (K" A) Bz + o 5(A) + D4 (A) + D auX;
=1

forall A = (a;;) € T5(F), where ¥, 5 : T5(F) — T5(F) and ., : T5(F) — T5(F)

are the additive maps defined by
‘I/aﬁ(A) > (a(a23 + CL33))E12 + (6(6111 + (112))E23,

wa(A) = v((a12 + agn) Eas + (a1 + a1z + ags + ass) B33 + a13(Ere + Ea3))

forall A = (a;;) € T5(F), and
s when r = n = 2 and |F| = 2, there exist scalars A\, Ny € F and matrices

Xy, Xy € To(F) such that
P(A) = (a11 + a12) X1 + (ag2 + a12) Xo + Marals + Aoar2Ero

for all A= (aij) S TQ(IF)
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53 A study of commuting additive maps on rank one upper triangular matrices
of orders two and three

In this section, we characterize commuting additive maps ¢ : T,,(F) — 7T,,(F) on rank
one upper triangular matrices for n = 2 and n = 3 respectively. As we will see in Theorem
5.3.2, the structure of commuting additive maps ¢ : T3(F) — T5(F) is rather complicated
and complex.

We begin with a result on commuting additive maps on rank one upper triangular

matrices of order two.

Theorem 5.3.1. Let F be a field. Then v : To(F) — T5(FF) is a commuting additive
map on rank one matrices if and only if there exist a scalar A\ € F and an additive map

w2 To(F) — T such that
Y(A) = M+ (A,

for every A € Ty(TF).

Proof. For the sufficiency part, let A € T5(IF), we see that
Y(A)A = (NA+ u(A) L) A = NA* + u(A)A = ANA + p(A) L) = Ap(A).

Hence the additive map v is commuting on 75([F), and so ¢ is a commuting additive map
on rank one matrices in 75 (TF).

We now proceed to prove the necessity part. Since ¢ is an additive map, it follows that
for each pair of integers 1 < ¢ < j < 2, there exist additive maps fi;, gij, hi; : F — F
such that

ila) hii(a
viar) =[50 ol
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forall a € F. Since 0 = [¢(aF;;), aly;] = Y(aE;j)al;; — aE;;(aE;;) for all integers

1 <1< j5<2anda €F, it follows that

_fnga)a 8] = Y(aFE1)aby = aBny(ak,) = [Gflé(a) ahlé(a)} |
8 f120a)a] = Y(aB2)aEs = aE¢(aFs) = {8 ag1(2)(a)] |
8 ZZ((;L;Z] = Y(aFy)alsy = aFn(aFy) = {8 ag;j(@)}

for all a € IF. Therefore
g2 = f12 and Dy = hgy = 0. (5.1)

We next see that 0 = ['Lﬂ(CLEH —+ bElz), GEH -+ bElg] = w(aEn + bE12)(GE11 -+ bElg) —
(aF11 + bE19)Y(aEy; + bEys) for all a, b € . By the additivity of ¢, together with (5.1),

we obtain

{fll(a)a + fi2(b)a afi1(a)b+ g12(b)b]
0 0

_ |:CLf11(CL) + af12<b) CLhu(b) + bgu (Cl) + bglg(b)‘|
0 0

for all a,b € F. We thus obtain

ahiz(b) + b(gui(a) — fii(a)) =0 (52)
for all a,b € F. Taking a = 1 in (5.2), we obtain

hi2(b) = Ab (5.3)

forall b € F, where A = f11(1) — g11(1). Setting b = 1 in (5.2), we obtain

80



fir(a) = gii(a) + Aa (5.4)

for all a € FF. Likewise, considering [¢)(bFE1s + aF9),bFE 19 + aFs] = 0 forall a,b € F,

together with the additivity of v, (5.1) and (5.3), we obtain

0 flg(b)b + fzz(a)b + )\ba] _ |:0 bflz(b) + bggz(a)
0 afi2(b) + agea(a) 0 fiz(b)a + goa(a)a

for all a,b € F. Then
g22(a) = faz(a) + Aa (5.5)

forall a € F. Let i : T5(F) — ¥ be the additive map defined by

p(A) = gii(an) + fiz(ar2) + foz(az) (5.6)

for all A = (a;;) € T(F). By virtue of (5.1), (5.3), (5.4), (5.5), (5.6) and together with

the additivity of 1), we obtain

V(A) = Y(anEn) + Y(a2Er2) + ¥(aFs)

_ [g1(an1) + Aan 0 ] I |:f12(a12) Aaio
0 gu(an) 0 f12(a12)

[ faa(azs) 0 }
0 fa2(a22) + Aago

+

/\CL11 )\CL12

1o Mm] + (g11(a11) + fiz(a12) + faa(age))l

for every A = (a;;) € T»(F) as desired. O
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We now show the structure of commuting additive maps on rank one upper triangular

matrices of order three.

Theorem 5.3.2. Let F be a field. Then 1 : T5(F) — T5(FF) is a commuting additive map
on rank one matrices if and only if there exists scalar 0,0, 715, T13, Tog € F and additive

maps j: T3(F) = F, ¢ : F — F such that

w(A) = M(A)Ifi + lez,Tls,Tzs <A> + wG,ﬁ(A) + %(A)

forall A = (a;j) € T5(F). Here 17\, 1155 (A) is the linear map defined by

—Q22T12 — 433713 Q12712 413713
0 —Aa33723 — A11712 23723
0 0 —a117T13 — A227T23

forall A = (a;;) € T5(FF), and 1 4(A) is the linear map defined by

0 Cl3319 —G2319 — &129
0 0 CL119
0 0 0

forall A = (a;;) € T5(IF), and 1 4(A) is the additive map defined by

0 0 ¢(a22)
0 0 0
0 0 0

forall A = (a;;) € T5(F).

Proof. Firstly, we see that the additive map A — p(A)[l3 is commuting on triangular
matrices A € T5(F). So it is a commuting additive map on rank one triangular matrices.
We now proceed to prove ¥;,, -, s, Vo9 and ¢4 are, respectively, commuting additive

maps on rank one triangular matrices T3(IF). Note that
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—a712E22 — a713E33 when 7 :] = 1,

—CLTlgEn — CLTQgEgg when 7 :j = 2,
w712,’r13,7'23 (aEij) = (5.7)

—&TlgEn — Cl7'23E22 when 1 = ] =3

CLTijEij whenl <1 < 7 < 3

for all a € F. By (5.7), we obtain

[¢T127713,T23 (&Eij)7 aEij] =0 (5.8)

for all « € I and integers 1 < ¢ < j < 3. Since [¥r, r5ms(alij), bEy] = 0 =
[Vr19.715.m5 (DEir), aEy;] for all a,b € F and integers 1 < ¢ < j, k < 3 such that j # k,

and together with the additivity of ¢, the bilinearity of | - , - | and (5.8), it follows

T13,723°

that

[Vr10m18,m5 (Fi + 0Ey), aFyy + bEg] = 0 (5.9)

for all a,b € F and integers 1 < ¢ < 7,k < 3 such that j # k. Also, since
[Vr1gmi5.m5 (@Ei;), bER;] = 0 = [Yr, 11505 (DEkj), aEy;] for all a,b € F and integers
1 <,k < j < 3suchthat i # k, and together with the additivity of ¢;,, 1,5 1., the

bilinearity of | - , - | and (5.8), it follows that

[7707'12,7'13,723 (aEij + bEkj)7 aEij + bEk;g] =0 (510)

for all a,b € F and integers 1 < ¢,k < 7 < 3 such that ¢ # k. By the additivity of

Yr5 115,m5- the bilinearity of [ -, - | and together with (5.9), we obtain
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[2/}7—1277—13’7—23 ((IEH -+ bElg -+ CE13>, aE11 —+ bE12 + CE13] =0 (51 1)

for all a,b, c € F. By the additivity of ¢, r,, . the bilinearity of | -, - | and together

with (5.10), we obtain

(V15 715795 (AE33 + Eog + cE13), aFEss + bEas + cEy3) = 0 (5.12)

for all a,b,c € F. By virtue of (5.8)-(5.12), it follows that 9, ., -,, 1S @ commuting

additive map on rank one triangular matrices 753(IF). Next, we see that

(

avEy;  when (i,5) = (1,1),
—avEy3  when (i, 75) = (1,2),
0 when (4, j) = (1, 3),
Vo9(aky;) = (5.13)

0 when (7, j) = (2,2),

—afFE,3  when (1,7) = (2,3),

abE1, when (i,7) = (3,3),

\

for all a € F. By (5.13), we obtain

[Vg.9(aE;j), aF;j] =0 (5.14)

foralla € Fandintegers 1 < i < j < 3. Since [)g9(aF;j), bEy] = 0 = [o.9(bEi), aEyj]
for all a,b € F and integers 1 < ¢ < j, k < 3 such that j # k, and together with the

additivity of 1y », the bilinearity of | -, - | and (5.14), it follows that
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[2/}9’79<CLEU + bEZk), aEij + bElk] =0 (515)

for all a,b € F and integers 1 < ¢ < j,k < 3 such that j # k. Also, since
[Vg,9(alij), bEg;] = 0 = [tg.9(bE);), aE;;] forall a,b € F and integers 1 < i,k < j <3
such that i # k, and together with the additivity of vy », the bilinearity of |-, -] and

(5.14), it follows that

[2/}9’79<CLEU + bEkj), aEij + bEkJ] =0 (516)

for all a,b € F and integers 1 <,k < j < 3 such that ¢ # k. By the additivity of v 4,

the bilinearity of | - , - | and together with (5.15), we obtain
[Qﬂg’ﬁ(aEn + bE12 + CE13), CLE11 + bElg -+ CE13] =0 (517)
for all a, b, ¢ € F. By the additivity of )y y, the bilinearity of [ -, - | and together with

(5.16), we obtain

[Qﬂg}ﬂ(@E{B + bE23 + CE13), CLE33 + bE23 + CElg] = O (518)

for all a, b, c € F. By virtue of (5.14)-(5.18), it follows that 1y » is a commuting additive

map on rank one triangular matrices 73(IF). We also see that

¢(G)E13 when (Zaj) = (27 2)
Volak;) = (5.19)

0 when (7, j) # (2,2)

for all @ € F and integers 1 < ¢ < 7 < 3. By (5.19), we obtain
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[Ve(aEs;), all;] = 0 (5.20)

for all « € F and integers 1 < ¢ < j < k. Since [)4(aFE;;), bEir] = 0 = [¢y(bEi), aEyj]
for all a,b € F and integers 1 < ¢ < j,k < 3 such that j # k, and together with the

additivity of 1)y, the bilinearity of | -, - | and (5.20), it follows that

[ZZJ(b(aEij + bEZk), aEij + bEzk] =0 (521)

for all a,b € F and integers 1 < ¢ < 7,k < 3 such that j # k. Also, since
[Vp(aE;;), bEy;] = 0 = [¢y(bE);), aE;j] for all a,b € F and integers 1 < i,k < j <3
such that ¢ # k, and together with the additivity of )4, the bilinearity of [ - , - | and (5.20),

it follows that

forall a,b € IF and integers 1 < i, k < j < 3 such that i # k. By the additivity of 1), the

bilinearity of | - , - | and together with (5.21), we obtain
[ZZ%(CLEH -+ bE12 + CE13), (ZE11 + bE12 + CElg] =0 (523)
for all a,b,c € F. By the additivity of v, the bilinearity of |-, - | and together with

(5.21), we obtain

[wd,(aEg:g + bE23 + CElg), GE33 + bEQg + CE13] =0 (524)

for all a,b,c € F. By (5.20)-(5.24), it follows that 1), is a commuting additive map on
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rank one triangular matrices 73(IF). This proves the sufficiency part.
For the necessity part, since ¢ is an additive map, it follows that for each pair of integers
1 <i<j<3andintegers 1 < s <t < 3, there exist additive maps fs(fj)(a)Est F—>F

such that ¢ (aEyj) = Y2\, peq £ (@) By for all a € F. We note that

w(aEij)(aEij) = aEijzb(aEij) (525)

for all @ € F and integers 1 < ¢ < 5 < 3. By (5.25), we have

Z fs(zj st aEz]) Elk a’E’Lj Z

1<s<t<3 1<5<t<3

for all a € F and integers 1 < ¢, j, k < 3 with ¢ < j. Therefore

Zt_] 99 (q) By, when k = i,
aft?(a) By = (5.26)

0 when k # i

for all a € F and integers 1 < k < i < j < 3. Setting (i, 7) = (1, 1) in (5.26), we obtain

k =1 and so

afiy(@) B = a(fi (@) Bn + fi37(a) B + fis" () Ers)
for all @ € F. Hence we obtain
o =Y =o. (5.27)

Setting (7, ) = (2,2) in (5.26), we obtain k = 1,2 and so
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af3)(a)Er =0 and af$)(a)Erw = a(f57(a) B + f33) (a)Ers)

for all @ € F. Hence we obtain

5 =5 =o. (5.28)

Setting (7, j) = (3, 3) in (5.26), we obtain k = 1,2, 3 and so

afS(a)Eis =0, af$’(a)Eiz=0 and afy’ (a)Es = afsy’ (a)Ens

for all @ € [F. Hence we obtain

1Y =1 =0 (5.29)

Setting (7, j) = (1,2) in (5.26), we obtain k£ = 1 and so

af () (a)Ers = a(f$7(a) Ers + fi3”) (a) Ens)

for all @ € F. Hence we obtain

2 =152, (5.30)

2 g (5.31)

Setting (¢, 7) = (1,3) in (5.26), we obtain k = 1 and so

afGP(a)Ers = afs? (a) Ers
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for all a € [F. Hence we obtain

Y =15, (5.32)
Setting (7, j) = (2, 3) in (5.26), we obtain k = 1,2 and so

afy)(@)Es =0 and af$y”(a)Eis = afiy’ (a)Eis
for all a € F. Hence we obtain

5y =o, (5.33)

f5 =15 (5.34)
We also see that

Y(aE;; +bEy)(al;; + bEy) = (aE;j + bEy)v(al;; + bEy) (5.35)
forall a,b € F and integers 1 < ¢ < j,1 < 3. By the additivity of ¢ and (5.35), we have

b ¥ r0m)+ Y 055

1<s<t<3 1<s<t<3
:E1k<<aEij> S SO E 0B Y fii”(a)Est).

1<s<t<3 1<s<t<3

forall a,b € F and integers 1 <, 7,l, k < 3 with¢ < j,[. Therefore
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bf (@) B+ afl (b)Eyy

a0 OBy + b0, £ () By when k =1,
= (5.36)

0 when k # i

forall a,b € F and integers 1 < k <1 < 5,1 < 3. Setting (i, 7,1) = (1,1, 2) in (5.36), we

obtain £ = 1 and so

bflql) (a)Ers + afﬁz) (b) Eny

= a(f1;7 (0)En + 37 (0) Era + 57 (0) Erg) + b(f5" (@) Era + £33 (a) Ery)
for all a, b € F. Hence we obtain

(£ (@) — £V () = af? (0), (5.37)

afi5? (b) = =bf3"(a) (5.38)
for all a,b € F. Taking a = 1 in (5.37) and (5.38), we obtain

£ (b) = by, (5.39)

Fi52 (b) = —bo (5.40)

forall b € F, where 7o = f1V(1) — f47(1) and 6 = 3V (1). Taking b = 1 in (5.37)

and (5.38), and together with (5.39) and (5.40) respectively, we obtain
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FiV (@) = 157 (a) + ama, (5.41)

57 (a) = af (5.42)

for all a € F. Setting (7, j,1) = (1, 1, 3) in (5.36), we obtain & = 1 and so

b5 (@) Ers + afit? (0)Eny

= a(fGV (D) En + 157 (0)Ers + F37 (0) Erg) + bf3" (a) Ens

for all a, b € F. Hence we obtain

b(f1 (@) — £33 (@) = afs” (b) (5.43)

for all a,b € FF, and

£~ (5.44)

Taking a = 1 in (5.43), we obtain

£52(6) = brg (5.45)

forall b € F, where 713 = f.17(1) — f47(1). Taking b = 1 in (5.43) and together with

(5.45), we obtain

() = £537(0) + ang (5.46)

91



for all a € F. Setting (7, j, 1) = (1,2, 3) in (5.36), we obtain & = 1 and so

bfGP(a) i + aflyP (0)Ere = a(f3” () Ers + f537 (0) Ers) + bf$7 (a) Ens

for all a, b € F. Hence we obtain

b(f117 (@) — £33 (@) = afyy” (b) (5.47)

forall a,b € T, and

Y =157 (5.48)

Setting (7, j,1) = (2,2, 3) in (5.36), we obtain & = 1,2 and so

b (a)Ers + af 2P (a) By =0

and

bfsa(a)Ews + af? (b)Ere = a(f37 () Ers + f537 (0) Ers) + bfs3 (a) Ers

for all a, b € F. Hence we obtain

b(fs (@) — f537 () = afsy” (b) (5.49)

forall a,b € TF, and

52 =rEY =o. (5.50)
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Taking a = 1 in (5.49), we obtain

F33) (b)) = bryg (5.51)

for all b € F, where 193 = f2(§2)(1) - 3552)(1). Taking b = 1 in (5.42) and together with

(5.47), we obtain

£ (@) = £33 (a) + amy (5.52)
for all @ € F. We see that

Y(aE;; +bEy;)(aE;j + bE;) = (aE;; + bE,)Y(aE;; + bE;;)) (5.53)

for all a,b € F and integers 1 < i,/ < j < 3. By the additivity of ¢ and (5.44), we obtain

( Z fs(t”)( st bEl] Z fsl]) st aEzj))EkS

1<s<t<3 1<s<t<3

Z l]) B + bElJ Z fﬁj st)Ek3~

1<s<t<3 1<s<t<3

for all a,b € I and integers 1 < 4,1, 7,k < 3 with ¢,] < j. Therefore

a ](zij)(b)Ez‘?» + bf;]ij)(a)Elg

b P ()Eg +a X ) (0)Eys  whenk = j,
_ (5.54)

0 when k # j

forall a,b € F and integers 1 <i,] < j < k < 3. Setting (j,7,1) = (2,1,2) in (5.54), we

obtain k£ = 2, 3 and so
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afsy) (0)Ews + 057 () Eas = b(f15” (a) Erg + fsa(a) Eag) + afly” (b) Ens

and

afyy) (0)Ew +bfyy” (a) =0

for all a, b € F. Hence we obtain

a(fi37(b) — 17 (0)) = bfls (a) (5.55)

for all a,b € I and so

5 = =o. (5.56)

Taking a = 1 in (5.55) and by (5.39), we obtain

132 0) = fE2(b) + brys (5.57)

forall b € F. Setting (7,7,1) = (3,1,2) in (5.54), we obtain £ = 3 and so

afsy) (0)Ews + 0f5” () oy = b(f1y” (a) Ers + fay(a) Eag) + afy” (b) Eng

for all ab € . Hence we obtain

a(f337(b) — £37(0)) = bfs (a) (5.58)

for all a,b € I and so
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13 13
f?gs ) = 2(2 )-

In view of (5.44) and (5.58), we obtain

23 23
;= 4

Setting (7,7,1) = (3,1, 3) in (5.54), we obtain k£ = 3 and so

afg(gg) (b)Ers + bf;%g) (a)Es3

= b(f37(a)Ers + fi57 (a) Eag + f337(a) Ess) + afS>) (b) Eng

for all a, b € F. Hence we obtain

a(fi32(b) — £77 () = bf37(a)

forall a,b € TF, and

fi) =0.

In view of (5.47) and (5.62), we obtain

12 12
f1(1 )= ?E3 )-

Taking a = 1 in (5.61) and together with (5.45), we obtain

SO) = 2 (b) + brig

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)
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for all a € F. Setting (j,7,1) = (3,2, 3) in (5.54), we obtain & = 3 and so

afs3) (0)Bys + 01537 (a) Ess

= 0(f3(a) Ers + f37)(a) Eay + f337(a) Ess) + a(f{s” (0) By + fs” (b) Ens)

for all a, b € F. Hence we obtain

a(fi57(b) — f337 () = bfs3(a), (5.65)

bf3(a) = —af3”(b) (5.66)

for all a,b € F. Taking b = 1 in (5.66), we obtain

£3(a) = —av (5.67)

forall a € F, where ¥ = f{3”(1). Taking a = 1 in (5.66) and by (5.67), we obtain

52 (6) = bo (5.68)

for all b € F. Taking a = 1 in (5.66) and together with (5.51), we obtain

S0 (b) = £330 (b) + brag (5.69)

for all b € F. We next see that
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w(CI,EH + bE12 + CE13)((ZE11 + bElz + CE13)

= (aFE11 + bEg + cE3)Y(alh + bEy + cBhg)

for all a, b, c € F. By the additivity of ¢ and (5.70), we have

( Z 11) st bE12 Z fstll Eg CE13)

1<s<t<3 1<s<t<3
+ Z fs(t12)(b Eg(aEr) + Z fstu Eq(cEr3)
1<s<t<3 1<s<t<3
LY OBt Y R sta»Eu))
1<s<t<3 1<s<t<3

(bEm Z F3V() By + (aBn) Z £ () By

1<s<t<3 1<s<t<3
(12) 12
CE13 E fst St + aEll § fst St
1<s<t<3 1<s<t<3
(11) 11
+ (cEh3) E fst '(a)Eq + (bE12) fst Ey
1<s<t<3 1<s<t<3

for all a, b, c € F. Therefore

bf (@) i + cf GV (a) B + afiy? (b) En

+ f(u)( b)Es + afﬁ?))(C)Ell + bfl(ig)(@El?

bez E1t+a2f1 E1t+CZf3 b)Ey

MWL Eu+ch“” El“?Zfa“) )
t=1

for all a,b,c € F, and so

(5.70)
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(Y (@) + F120) = £570) — 337 (a))
= a(f{57(c) + f157(0)) + b(f33” () + fi3"(a)) (5.71)

forall a,b, c € F. By (5.40), (5.42), (5.45), (5.46), (5.62) and (5.71), we obtain

i =157 (5.72)
We then see that

IZJ(CLElg —f- bE23 —|— CE33)(CLE13 —|— bE23 —|— CE33>

= (CLE13 + bE23 + CE33)1/}<(1E13 + bE23 + CE33) (573)

for all a, b, ¢ € F. By the additivity of 1) and (5.73), we have

( Z fs(tlg) ((I st bE23 Z fstlg St CE33>

1<s<t<3 1<s<t<3

+ Z fs(tzs)(b st aE13 Z fst23 Eg CE33)

1<s<t<3 1<s<t<3

+ > FPOEaBs) + Y (0B bE23))E33

1<s<t<3 1<s<t<3

(08 3 OB+ 0B Y 4O

1<s<t<3 1<s<t<3

+ (cE33) Z fsfg Eg + (aE3) Z fst23 Eg

1<s<t<3 1<s<t<3

+ (cE33) Z fstlg Eg + (bE23) Z fst13 st>E33

1<s<t<3 1<s<t<3

for all a, b, c € F. Therefore
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b5y (a)Ea + cfs” (a) Ess + afss” (b) Ers

+cfss” () Bas + afs;” (¢) By + bfs” (¢) Bas

1

bes”” )Eq +ch;3> VEs+ay f3(0)Eg

s=1

2
+ec Z S (0)Eg +a Z 8 OEs +bY " f57(0) B
s=1 s=1 s=1

for all a, b, c € F, and so

a(fi37(0) + 1537 () — £ 0) — £57(0))
= b(fs7(a) + £57(c) + (157 (@) + £57 (D))

forall a,b,c € F. By (5.44), (5.45), (5.64), (5.67), (5.68) and (5.74), we obtain

(23) 23
f33 1(1 )

Solving equations (5.37), (5.39), (5.43) and (5.45), we obtain

a(riz —7i3) = f33(a) — f35" (a)

for all a € F. Solving equations (5.37), (5.39), (5.43) and (5.45), we obtain

b(Ti2 — To3) = fiz ) (b) — f112 (D)

for all b € F. Solving equations (5.45), (5.51), (5.61) and (5.65), we obtain

c(is — 7o) = fi32(c) — 2 (e)

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)
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for all c € F. By (5.77), (5.78), together with (5.52) and (5.69), it follows that

FOW) + 89 (0) = —bry — ems + £22(0) + £839(c) (5.79)

for all b, c € F. By (5.76), (5.78), together with (5.46) and (5.64), it follows that

(@) + 152(e) = —ama — emag + £ (a) + £ (0) (5.80)

for all a, c € F. By (5.76), (5.77), together with (5.41) and (5.57), it follows that

fis (@) + f3P(b) = —amis — brog + f11(a) + fi37 (b) (5.81)

forall a,b € F. Let pu : T5(F) — T be the additive map defined by

w(A) = 1 (an) + 5 () + 57 (ars) + 37 (az)

+ 13 (ags) + £33 (ass) (5.82)

forall A = (a;;) € T5(F). Let ¢ry 11509, Yo (A) : T5(F) — T5(F) be the linear maps

defined by
rQZ}’T'127'7'1377'23 (A)
—(Q22T12 — A33713 12712 13713
= 0 —@33T23 — A11T12 23723 (5.83)
0 0 —a11T13 — A22T23
and
0 CL33’[9 —(12319 — (1129
Vg9(A) = (0 0 a1 (5.84)
0 0 0
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for all A = (a;;) € T5(FF) and for some scalars 6,9, 712, 713,723 € F. Let 4(A) :

T3(F) — T3(IF) be the additive map defined by

Yy(A)

forall A =

f(22)

13 (az2)

0
0

00
00 (5.85)
00

(a;j) € T5(F). By virtue of (5.27)-(5.34), (5.39), (5.40), (5.42), (5.44), (5.45),

(5.48), (5.45), (5.50), (5.51), (5.56), (5.59), (5.60), (5.62), (5.63), (5.67), (5.68), (5.72),

(5.75), (5.79)-(5.85) and together with the additivity of 1, we obtain

¥(A)

= IU(A)I?» + lez,Tls,Tzs <A> + w9ﬂ9("4)

for every A =

= Y(a11En) + Y(a12E12) + Y(aisEhs) + Y(aglas) + 1 (asLag)

f%?(aw)

1 (ass)
1 22
Nan) + £33 (az)

£37 (ags)
0
0

Fi2 (ar2)
(an) + fi5” (ass)
0

(a12) + f13” (ass)

fa3? (ann)
0

(11)
22 (1
[33
(33 a33) 1(?1)2)

0 0
+ 10 0
0 0

+ (17 (a2) + 17 (as) + £37 (azs)) I3

13713
(23723
—Q117T13 — (22723
1137 (a2)
0
0

12712
—(a33T23 — A11712

0

—Q22T12 — 33713
0
0

—ag3V — ay20

(1119
0

+

CL33’l9
0
0

0 0 0
0 0 0

(a;;) € T5(F) as desired.
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CHAPTER 6: CONCLUSION

6.1 A brief overview
This final chapter briefly discusses the main findings of this research. Some open

problems related to the study of this dissertation are also listed for future study.

6.2 Summary

In summary, this research explored centralizing (commuting) additive maps on some
matrix rings. We first studied centralizing additive maps on block triangular matrices over
an arbitrary field and showed its characterization, see Theorem 3.2.1. We extended this
result by characterizing centralizing additive maps on rank r block triangular matrices
over an arbitrary field, see Theorem 4.3.1. Consequently, we also obtained a classification
of centralizing additive maps on rank r square matrices and centralizing additive maps on
rank 7 upper triangular matrices, see Theorem 4.3.2 and Theorem 4.3.3.

Next, we explored commuting additive maps on rank 7 upper triangular matrices over
an arbitrary field. By (Chooi et al., 2020, Theorem 1.1), (Chooi et al., 2019, Theorems 2.8,
2.9, 2.10) and together with our main result, i.e. Theorem 4.3.1, we obtained a complete
structural characterization of commuting additive maps ¢ : T,,(F) — 7T,,(F) on rank r
matrices over an arbitrary field IF, where 2 < r < n is a fixed integer, see Theorem 5.2.1.
At the end of this dissertation, we continued studying on commuting additive maps on
rank one upper triangular matrices over an arbitrary field as it was not covered in Theorem
5.2.1. We managed to show the characterization on commuting additive maps on rank
one upper triangular matrices of order two and three. We must highlight that the structure
of commuting additive map on rank one upper triangular matrices is rather complex and

complicated.
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6.3 Some open problems

We end this chapter with some open problems related to the study of this dissertation.

1. Determine the structure of centralizing additive maps on invertible block triangular
matrices over the Galois field of two elements.

2. Determine the structure of centralizing additive maps on rank one block triangular
matrices over fields.

3. Determine the structure of centralizing additive maps on rank one block triangular

matrices over division rings.
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