
AN INTEGRATED THREE-FLOW APPROACH FOR

FRONT-END SERVICE COMPOSITION

LIM MEI TING

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

 2020

Univ
ers

ity
 of

 M
ala

ya

AN INTEGRATED THREE-FLOW APPROACH FOR

FRONT-END SERVICE COMPOSITION

LIM MEI TING

DISSERTATION SUBMITTED IN PARTIAL

FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SOFTWARE ENGINEERING

(SOFTWARE TECHNOLOGY)

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY
UNIVERSITY OF MALAYA

KUALA LUMPUR

2020

Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Lim Mei Ting

Matric No: 17005835/1

Name of Degree: Master of Software Engineering (Software Technology)

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

An Integrated Three-Flow Approach for Front-End Service Composition

Field of Study: Computer Programming

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright of this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

28 December 2020

28 December 2020

Univ
ers

ity
 of

 M
ala

ya

iii

 AN INTEGRATED THREE-FLOW APPROACH FOR FRONT-END SERVICE

COMPOSITION

ABSTRACT

End-User Service Composition (EUSC) aims to enable end-user programmers who are

not professional developers, develop applications by composing or aggregating existing

web services. Despite the effort, studies have shown that end-user programmers are not

able to deal with the technical complexities involved in EUSC. One way to deal with this

issue is Front-End Service Composition (FESC), which allows end-user programmers to

compose web services at the presentation layer of an application by configuring User

Interface (UI) widgets that represent the back-end web services. However, apart from

there not being enough studies on FESC, end-user programmers also experience a number

of conceptual and usability issues in service composition. Following that, this research

proposes an integrated three-flow approach namely application flow, control flow and

data flow, to help deal with the current limitations of FESC. The approach generates the

Graphical User Interface (GUI) of web services automatically, thus allowing the UI of

the application to be developed at the same time the required web services are assembled.

The approach allows end-user programmers to explicitly configure the three different

types of flows involved in service composition. A proof-of-concept prototype,

QuickWSC, that incorporates the three-flow approach was developed. It adopts a side-

by-side multiple-view design to support visual configuration of the three flows in an

uncluttered yet synchronized manner that adheres to established design guidelines. A user

evaluation study which comprised the think-aloud protocol, observation and survey was

conducted for data collection purpose where end-user programmers were recruited to

evaluate QuickWSC. During the user evaluation study, the end-user programmer was

given a brief introduction about the research. Thereafter, a predefined scenario was given

to the end-user programmer for a web service composition task. The composition process

Univ
ers

ity
 of

 M
ala

ya

iv

was recorded on video for data analysis purposes. Framework analysis approach and

descriptive statistics were used for qualitative and quantitative data analysis respectively.

The results achieved was decently positive. Triangulation was performed during

discussion over the results by using the qualitative and quantitative analysed data, and

providing a more comprehensive finding of the prototype usability and its features. The

evaluation results show that QuickWSC has a high level of usability and it is easy to

compose web services by explicitly specifying the three flows, the three-flow

configurations integrated into the two views helps in composing application from web

services, and that no technical knowledge is required to use QuickWSC. This research

has successfully implemented the prototype based on the proposed approach to address a

number of conceptual and usability issues in service composition faced by the end-user.

Keywords: end-user programmer, front-end service composition

Univ
ers

ity
 of

 M
ala

ya

v

SATU PENDEKATAN TIGA ALIRAN BERSEPADU UNTUK KOMPOSISI

PERKHIDMATAN MELALUI BAHAGIAN HADAPAN

ABSTRAK

Komposisi Perkhidmatan Pengguna Akhir (EUSC) bertujuan untuk membolehkan

pengaturcara pengguna akhir yang bukan pembangun profesional, membangunkan

pelbagai aplikasi dengan mengkomposisi atau menggabungkan perkhidmatan laman web

yang sedia ada. Walaupun wujudnya usaha sebegitu, kajian menunjukkan bahawa

pengaturcara pengguna akhir tidak dapat menangani kerumitan teknikal yang terlibat di

dalam EUSC. Salah satu cara untuk menangani masalah ini ialah komposisi perkhidmatan

bahagian hadapan (FESC), yang membolehkan pengaturcara pengguna akhir

mengkomposisi perkhidmatan web pada lapisan persembahan sesuatu aplikasi dengan

mengkonfigurasi ‘widget’ antara muka pengguna yang mewakili bahagian belakang

perkhidmatan web ‘back-end’. Walau bagaimanapun, kajian mengenai FESC ini tidak

seberapa, dan ada juga pengaturcara pengguna akhir yang mengalami masalah konsep

dan kebolehgunaan komposisi perkhidmatan. Berikutan itu, penyelidikan ini

mencadangkan satu pendekatan tiga aliran bersepadu (aliran aplikasi, aliran kawalan dan

aliran data) untuk menangani batasan semasa FESC. Pendekatan ini menghasilkan antara

muka grafik perkhidmatan web secara automatik, selanjutnya membolehkan antara muka

aplikasi dibangunkan pada masa yang sama perkhidmatan web yang diperlukan

digabungkan. Pendekatan ini membolehkan pengaturcara pengguna akhir

mengkonfigurasi ketiga-tiga jenis aliran berlainan yang terlibat di dalam komposisi

perkhidmatan secara eksplisit. Satu ‘proof-of-concept’ prototaip, QuickWSC, yang

menerapkan pendekatan tiga aliran telah dibangunkan. Ia menggunakan satu reka bentuk

pandangan-pelbagai sebelah-menyebelah untuk menyokong konfigurasi visual ketiga-

tiga aliran tersebut dengan satu cara yang tidak bersepah tapi selaras yang mematuhi garis

panduan reka bentuk yang tersedia ada. Satu kajian penilaian pengguna yang terdiri

Univ
ers

ity
 of

 M
ala

ya

vi

daripada protokol think-aloud, pemerhatian dan tinjauan telah dijalankan di mana

pengaturcara-pengaturcara pengguna akhir telah direkrut untuk menilai QuickWSC.

Semasa kajian penilaian pengguna, pengaturcara pengguna akhir diberi pengenalan

ringkas mengenai penyelidikan tersebut. Selepas itu, senario yang telah ditetapkan

diberikan kepada pengaturcara pengguna akhir untuk mengkomposisi perkhidmatan web.

Proses mengkomposisi perkhidmatan web dirakam sebagai video untuk tujuan analisis

data. Pendekatan analisis kerangka dan statistik deskriptif digunakan untuk menganalisis

data kualitatif dan kuantitatif. Analisis data menunjukkan keputusan yang positif.

Triangulasi dilakukan semasa perbincangan hasil dengan menggunakan data yang

dianalisis secara kualitatif dan kuantitatif untuk memberikan penemuan yang lebih

komprehensif mengenai kebolehgunaan dan ciri-ciri prototaip. Hasil penilaian

menunjukkan bahawa QuickWSC mempunyai satu tahap kebolehgunaan yang tinggi dan

adalah mudah untuk mengkomposisi perkhidmatan web dengan menspesifikasikan tiga

aliran tersebut secara eksplisit, konfigurasi tiga aliran yang disatukan di dalam dua

pandangan membantu di dalam mengkomposisi aplikasi daripada perkhidmatan web, dan

pengetahuan teknikal tidak diperlukan untuk mengguna QuickWSC. Penyelidikan ini

berjaya membangunkan prototaip berdasarkan pendekatan yang dicadangkan untuk

mengatasi sejumlah masalah konseptual dan kebolehgunaan komposisi perkhidmatan

yang dihadapi oleh pengguna akhir.

Kata Kunci: pengaturcara pengguna akhir, komposisi perkhidmatan bahagian hadapan

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENT

I would like to take this opportunity to thank my supervisor, Dr. Su Moon Ting, who

has provided generous support and guidance throughout my research project. She has

been very patient with my pace and has encouraged me endlessly to persevere in

anticipation of the completion of this project. I would also like to dedicate my deepest

gratitude to my family, especially my parents who has given me their tremendous support

throughout the duration of my Master of Software Engineering study. My gratitude also

goes out to Dr. Khor Sook Mei from the Faculty of Science, University of Malaya, who

has helped in the recruitment of participants for the user evaluation study of my research.

Last but not least, I am also thankful to all the participants who contributed in completing

the user evaluation study.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

Abstract .. iii

Abstrak .. v

Acknowledgement... vii

Table of Contents ... viii

List of Figures ... xii

List of Tables.. xiv

List of Symbols and Abbreviations ... xv

List of Appendices ... xvi

CHAPTER 1: INTRODUCTION .. 1

1.1 Backgrounds .. 1

1.2 Problem Statement ... 3

1.3 Research Objectives (ROs) .. 4

1.4 Research Questions (RQs) ... 5

1.5 Research Scope .. 6

1.6 Significance of Research ... 6

1.7 Report Organization... 6

CHAPTER 2: LITERATURE REVIEW .. 8

2.1 Web Service Composition Approaches ... 8

2.1.1 Static Web Service Composition .. 8

2.1.2 Dynamic Web Service Composition .. 12

2.1.3 Semi-automated Web Service Composition ... 15

2.2 Front-end Service Composition (FESC) .. 17

2.2.1 UI, Types of Flow and Multiple-View ... 19

Univ
ers

ity
 of

 M
ala

ya

ix

2.2.2 Existing Works on FESC ... 21

2.2.3 Comparison to Related Works ... 31

2.3 Summary .. 35

CHAPTER 3: RESEARCH METHODOLOGY ... 36

3.1 Research Methodology .. 36

3.2 Literature Review .. 38

3.3 Identify Research Objectives and Questions ... 38

3.4 Development of Approach ... 38

3.4.1 The Design of the Proposed Approach ... 39

3.4.2 Conceptual and Usability Issues Addressed ... 42

3.5 Development of Prototype ... 43

3.6 Data Collection .. 44

3.6.1 Pilot Study of the User Evaluation Study ... 44

3.6.2 Data Collection Method ... 45

3.6.2.1 Think-aloud Protocol ... 45

3.6.2.2 Observation ... 45

3.6.2.3 Survey .. 46

3.6.3 Refinement of User Evaluation Study .. 46

3.6.4 User Evaluation Study .. 46

3.7 Result Analysis and Discussion ... 47

3.7.1 Qualitative Data Analysis ... 47

3.7.1.1 Familiarization .. 47

3.7.1.2 Identifying a Thematic Framework ... 47

3.7.1.3 Indexing ... 48

3.7.1.4 Charting ... 48

3.7.1.5 Mapping and Interpretation ... 48

Univ
ers

ity
 of

 M
ala

ya

x

3.7.2 Quantitative Data Analysis ... 48

3.7.3 Data Analysis of Think-aloud Protocol .. 48

3.7.4 Data Analysis of Observation ... 49

3.7.5 Data Analysis of Questionnaire .. 49

3.7.6 Results Discussion .. 49

3.8 Summary .. 50

CHAPTER 4: DESIGN AND IMPLEMENTATION OF PROTOTYPE 51

4.1 Requirements of QuickWSC ... 51

4.2 Architecture Design of QuickWSC ... 54

4.2.1 Extracting Information Subsystem (EIS) ... 55

4.2.2 Web Service Verification Subsystem (WSVS) .. 56

4.2.3 Web Service Retrieving Subsystem (WSRS) ... 56

4.2.4 User Interface Generation Subsystem (UIGS) ... 56

4.2.5 Workflow Generation Subsystem (WGS) .. 57

4.2.6 Servlet Execution Subsystem (SES) ... 57

4.3 User Interface Design of QuickWSC .. 58

4.4 Multiple View and Navigation Flow Support Design ... 60

4.5 Implementation of QuickWSC .. 64

4.5.1 Web Service Registration System .. 64

4.5.2 Web Service User Interface Generation ... 66

4.5.3 Workflow Generation ... 67

4.6 Summary .. 69

CHAPTER 5: USER EVALUATION STUDY .. 70

5.1 Pilot Study Design and Results ... 70

5.1.1 Predefined Scenario .. 70

Univ
ers

ity
 of

 M
ala

ya

xi

5.1.2 Pilot Study Procedure ... 71

5.1.3 Pilot Study Result ... 72

5.2 Refinement to Pilot Study Design ... 72

5.3 User Evaluation Study ... 73

5.3.1 User Evaluation Study Procedure ... 73

5.4 Results of User Evaluation Study .. 73

5.4.1 Participants Background ... 73

5.4.2 Think-aloud Protocol Results ... 74

5.4.3 Observation Results .. 75

5.4.4 Questionnaire Results ... 78

5.5 Results Discussion ... 87

5.6 Summary .. 96

CHAPTER 6: CONCLUSION ... 97

6.1 Achievement of Research Objectives .. 97

6.2 Threats to Validity ... 98

6.3 Contribution of Research ... 99

6.4 Future Works ... 99

6.5 Conclusion ... 100

References ... 102

List of Publications and Papers Presented .. 108

Appendices .. 109

Univ
ers

ity
 of

 M
ala

ya

xii

LIST OF FIGURES

Figure 2.1: Screenshot of ServFace Builder ... 22

Figure 2.2: Page Flow View of ServFace Builder .. 22

Figure 2.3: Screenshot of MashArt ... 23

Figure 2.4: Screenshot of CRUISe .. 24

Figure 2.5: Screenshot of SCE .. 25

Figure 2.6: Screenshot of LSCE ... 26

Figure 2.7: Screenshot of CapView .. 28

Figure 3.1: Flow of Research Activities ... 37

Figure 3.2: Integrated Three-flow Approach .. 39

Figure 4.1: Use Case Diagram of QuickWSC .. 52

Figure 4.2: System Architecture of QuickWSC .. 55

Figure 4.3: User Interface Design of QuickWSC ... 60

Figure 4.4: Highlighting Corresponding Items in the Two Views.................................. 63

Figure 4.5: Web Service Registration User Interface of SOAP Web Services 64

Figure 4.6: Web Service Registration User Interface of RESTful Web Services 65

Figure 4.7: Class Diagram for Web Service Registration ... 65

Figure 4.8: HTML Structure of Web Service User Interface.. 66

Figure 4.9: Flowchart Structure .. 67

Figure 4.10: Sample Data in Flowchart .. 68

Figure 5.1: Results on Ease of Use and Synchronization Features of QuickWSC 79

Figure 5.2: Results on Visualization and Execution Features of QuickWSC 79

Figure 5.3: Reasons Given for Question 13 .. 86

Figure 5.4: Reasons Given for Question 14 .. 87

Univ
ers

ity
 of

 M
ala

ya

xiii

Figure 5.5: Effectiveness of QuickWSC ... 88

Figure 5.6: Average Satisfaction Score ... 93

Univ
ers

ity
 of

 M
ala

ya

xiv

LIST OF TABLES

Table 2.1: Summary of Web Service Composition Categories and Approaches 17

Table 2.2: Summary of Existing Works on FESC .. 29

Table 2.3: Comparison with Related Works ... 33

Table 3.1: Technology Types Used in The Development of Prototype 43

Table 4.1: UI Element Type Generation Logic ... 57

Table 5.1: Thematic Table for Data Collected from Think-aloud Protocol 75

Table 5.2: Checklist Table of Pre-identified Activities for Observation 76

Table 5.3: Thematic Table for Data Collected from Observation 77

Table 5.4: Descriptive Statistics for Question 1 to Question 12 of the Questionnaire ... 80

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF SYMBOLS AND ABBREVIATIONS

EUSC : End-User Service Composition

FESC : Front-End Service Composition

UI : User Interface

Univ
ers

ity
 of

 M
ala

ya

xvi

LIST OF APPENDICES

Appendix A: Pilot Study Results ... 109

Appendix B: User Evaluation Study Instrument .. 110

Appendix C: Data Collected from Questionnaire .. 117

Appendix D: Indexing Table of Data Collected During Think-aloud Protocol . 119

Appendix E: Indexing Table of Data Collected During Observation 120

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

1.1 Backgrounds

Service Oriented Architecture (SOA) has emerged as an important distributed

computing paradigm as it makes use of services available in the network as the

fundamental elements to support rapid and low-cost development of distributed

applications in heterogeneous environments (Latih, Patel, & Zin, 2014). The services in

SOA are loosely-coupled with independent platforms because they are allowed to be

published and hosted by different providers. According to Patel and Shah (2016), services

in SOA are requested by standard protocols and consumed by applications or other

services over a network without any understanding of the internal implementation.

Web services have standard-based interface that describes the web services. It also has

a general accessible way by different communication protocols and the standard network

protocol used to incorporate the diverse systems over a network (Sheng et al., 2014). The

usage of web services has increased due to the utilization of SOA (AlSedrani & Touir,

2016). Web service technologies help websites and companies to offer simple

accessibility to their web resources. It enables third parties to combine and reuse the

services (Sheng et al., 2014) offered in the websites and by the companies.

SOA and web services technologies promote service composition with the goal of

composing the existing reusable web services into a complex process or more capable

application (AlSedrani & Touir, 2016; Sheng et al., 2014). Web services composition has

become a field of research (Sheng et al., 2014). Applications can be composed from a set

of suitable web services without been written manually (B. Srivastava & Koehler, 2003).

Professional programmers are able to access and use web services APIs to combine

multiple services from many websites to support certain tasks (Wong & Hong, 2007).

However, non-professional programmers (also known as end-user programmers) are

Univ
ers

ity
 of

 M
ala

ya

2

unable to do so due to their lack of programming skills and knowledge in applying the

web service APIs (Wong & Hong, 2007).

Nevertheless, studies have shown a significant increase in end-user programmers who

develop their own software application as compared to professional software developers

or professional programmers (Burnett & Myers, 2014). “End-user programmers” are

individuals or entities who write programs to assist themselves to accomplish their

primary tasks. End-user programmers teach themselves to program as they are not

experienced in programming languages (Latih et al., 2014). Web 2.0 technologies has

boosted the number of end-user programmers (Latih et al., 2014).

End-User Service Composition (EUSC) refers to end-user programmers composing

their own applications by aggregating existing web services (Hang & Zhao, 2015). In

EUSC, the end-user programmers who compose the services are also the person who are

going to use the composite or composed service application (Andy Ridge & O’Neill,

2014). The users not only interact with the product software, but they are also involved

in the product development process (Zhao, Loucopoulos, Kavakli, & Letsholo, 2019).

These end-user programmers typically have a low level of technical knowledge (Andy

Ridge & O’Neill, 2014). Even though many approaches have been introduced to support

EUSC, end-user programmers still require some techniques to help them to perform

EUSC (Hang & Zhao, 2015).

The common web services used in web service compositions are SOAP and RESTful

(Lemos, Daniel, & Benatallah, 2015; Sheng et al., 2014). SOAP and RESTful are

encapsulated as web service components (Lemos et al., 2015) or software components

(B. Srivastava & Koehler, 2003). Web service composition enables end-user

programmers to combine services when an existing single service is insufficient to serve

the needs of the end-user programmers (Tabatabaei, Kadir, & Ibrahim, 2011).

Univ
ers

ity
 of

 M
ala

ya

3

Front-end Service Composition (FESC) was also introduced to assist end-user

programmers who are lack in programming skills in composing web services. FESC

enhances the intuitiveness of the service composition process for these end-user

programmers (Laga, Bertin, & Crespi, 2010). FESC’s composition approach is

characterized by composition of the web services in the User Interfaces (UIs) (Laga et al.,

2010).

1.2 Problem Statement

Even though end-user programmers welcome the opportunity to assemble or compose

web services, they experience a number of conceptual and usability issues in service

composition (Cappiello, Matera, & Picozzi, 2015; Namoun, Nestler, & De Angeli, 2010).

Common conceptual issues are; not knowing what service composition is, (Cappiello et

al., 2015; Namoun et al., 2010) or having misconceptions about service compositions

such as not realizing that web services can be connected (Namoun, Owrak, &

Mehandjiev, 2019); confused between design time and runtime whereby data is inserted

into the input fields of web services and expected to produce results during design time

(Cappiello et al., 2015; Namoun et al., 2010; Namoun et al., 2019; Radeck, Blichmann,

& Meißner, 2013), and expect to see the runtime effect during the composition so as to

understand and inspect the behaviour of application (Namoun et al., 2019); having

difficulty in specifying the execution order of the web services (Namoun et al., 2010) and

logic of application (Namoun et al., 2010; Zhai et al., 2016); not understanding some of

the technical terms or terminology used during the composition process such as

‘operator’, being a function for the end-user and ‘parameter’, being the input or output

field. (Namoun et al., 2010; Namoun et al., 2019); worrying about the security of sensitive

information being provided to the web services that requires this information (Namoun et

al., 2010). Common usability issues are difficulties in positioning web services based on

Univ
ers

ity
 of

 M
ala

ya

4

their preferences to create an organized visual layout and uncertainty in whether they have

done the right things (Namoun et al., 2010). Another issue that poses difficulty to end-

user programmers in EUSC is lack of a unified model to coordinate the web services

(Zhai et al., 2016).

1.3 Research Objectives (ROs)

To address the conceptual and usability issues of service compositions mentioned

above (excluding the fear of the security of sensitive information), this research aims to

develop a new FESC approach that leverages a tight integration between the development

an application’s UI and the composition of the web services required by the application,

to enable end-user programmers to compose service-based applications out of existing

web services without much difficulty.

To achieve the aim of the research, the following objectives were identified:

RO1: To review the existing web service composition approaches/techniques

and features of FESC tools.

 This involves reviewing the existing work on web service composition and

FESC to analyse the approaches/techniques applied, as well as the

strengths and weaknesses of the current work.

RO2: To develop a new FESC approach that integrates the development of an

application’s UI with the composition of the web services required by the

application.

 The proposed approach would allow end-user programmers to configure

three types of flows (application flow, control flow and data flow) in

composing the required web services and creating the UI of the application

Univ
ers

ity
 of

 M
ala

ya

5

at the same time. It has the potential to help end-user programmers to

visualize the logic of the composed service application.

RO3: To develop a proof-of-concept FESC prototype based on the proposed

approach.

 A proof-of-concept prototype that incorporates the approach would be

developed as a working model.

RO4: To evaluate the usability of the prototype that incorporates the approach

through a user evaluation study.

The user evaluation study would include think-aloud protocol, observation

and survey. Participants will be asked to compose web services by using

the prototype and they will be video-recorded if they have no objection to

that. Think-aloud protocol and observation will be used to gather verbal

responses from the participants and to observe their behaviour and

performance of the required task while they are using the prototype. A

questionnaire will be given to the participants after they have completed

the task.

1.4 Research Questions (RQs)

The following are the RQs of this research:

RQ1: What are the current web service composition approaches/techniques and

features of FESC tools?

RQ2: How to develop an approach that integrates UI application development and

service composition in FESC?

RQ3: How to implement the prototype?

Univ
ers

ity
 of

 M
ala

ya

6

RQ4: How to measure the usability of the prototype?

1.5 Research Scope

This research focuses on composition of SOAP and RESTful web services. Since it is

related to EUSC, the targeted users of the prototype are end-user programmers and not

professional software developers. End-user programmers are individuals or entities who

write programs to help themselves accomplish their primary tasks. For this research, the

end-user programmers refers to the user who do not have well-trained programming

knowledge and do not have web service composition knowledge, but is able to use a

computer competently.

1.6 Significance of Research

The proposed approach addresses all the conceptual and usability issues of service

composition (excluding the fear in security of sensitive information) mentioned in Section

1.2 Problem Statement. Refer to Section 4.2 for further details.

The novelty of the proposed approach is in enabling end-user programmers without

technical knowledge to easily compose applications from existing web services by

configuring three different types of flow (control flow, data flow and application flow)

that represents the composition logic for the FESC process. The approach also allows

them to create and visualize the graphical User Interface of the web services together with

the composition logic during design time and runtime. This helps them to understand the

logic of the composed application.

1.7 Report Organization

The remaining part of this report is organized as follows. Chapter 2 reviews the

existing web service composition approaches and its related work on Front-end Service

Univ
ers

ity
 of

 M
ala

ya

7

Composition (FESC). Chapter 3 describes the research methodology employed in this

research and the proposed approach. The system architecture and the User Interface of

the prototype, and underlying design theory are included in Chapter 4. Chapter 5 discusses

the results of the user evaluation to the prototype. Chapter 6 presents the conclusion and

future works.

Univ
ers

ity
 of

 M
ala

ya

8

CHAPTER 2: LITERATURE REVIEW

This chapter provides reviews of existing web service composition approaches and

their limitations. It also contains a section specifically on Front-End Service Composition

(FESC). This section explains UI generation - different types of flows, multiple views,

existing works on web service composition at the presentation layer, the related tools, and

their limitations and features.

2.1 Web Service Composition Approaches

Web service composition can be classified into static or dynamic service composition

based on when the aggregation of services takes place (Hang & Zhao, 2015; Lemos et al.,

2015; Sheng et al., 2014). The limitations of these approaches are in italic.

2.1.1 Static Web Service Composition

In static web service composition, the aggregation of services takes place at design

time (Sheng et al., 2014). The users manually selects the primitive services, and designs

the composition logics, data and control flows (Hang & Zhao, 2015), and the primitive

services are bound to the process at design time (Lemos et al., 2015). Static compositionis

suitable in situations where business partners and service functionality requirements

remain fairly constant (Sheng et al., 2014). The main approaches adopted by static service

composition for end-users are workflows, spreadsheet-based, wizardand form-based,

(Hang & Zhao, 2015) and block-based. However, static approach is time consuming and

error-prone.

Workflow approach allows end-users to define the sequence of connecting web

services by using graphical workflow diagrams (Hang & Zhao, 2015). It has been applied

in a number of works such as Baya (Roy Chowdhury, Rodríguez, Daniel, & Casati, 2012),

Univ
ers

ity
 of

 M
ala

ya

9

Flow Editor (Pi et al., 2012), Hypermash (Hang & Zhao, 2013), Co-Taverna (Zhang,

2010) and VIEW (C. Lin et al., 2008). The abstract process model involved includes a

predefined list of tasks and their data dependency, with each task containing a query to

search for relevant primitive service (Tabatabaei et al., 2011).

A recent systematic review of EUSC activities and tools revealed that workflow

diagram editors are the most popular tools for end-users (Hang & Zhao, 2015). Visual

workflow composition UI makes the composition process easy and friendly (Pi et al.,

2012). Many implementations from workflow approach employs the drag-and-drop

feature (Hang & Zhao, 2013; C. Lin et al., 2008; Pi et al., 2012; Roy Chowdhury et al.,

2012). For example, Baya (Roy Chowdhury et al., 2012) provides an interactive

modelling environment for end-users to compose and connect services on a canvas

through composition actions such as select, drag, drop, delete and connect.

One of the common ways in creating workflows through visual editors is by using the

pipeline method (Hang & Zhao, 2013; Roy Chowdhury et al., 2012) and blocks (Zhang,

2010). The pipeline method connects web services and includes their inputs and outputs,

while the latter are pre-developed blocks that support certain tasks or functions (Latih et

al., 2014).

The respective domain of the workflow affects the architectural design of the workflow

management systems (C. Lin et al., 2008). Business workflows tends to be control

oriented in carrying out business logic to achieve a business goal. On the other hand,

scientific workflows are data oriented “aimed at enabling, facilitating, and speeding up

the derivation of scientific results from raw datasets” (C. Lin et al., 2008).

However, workflow approach requires extensive domain knowledge in the service

composition process (AlSedrani & Touir, 2016).

Univ
ers

ity
 of

 M
ala

ya

10

Spreadsheet-based service composition allows users to compose services in a

spreadsheet environment (Hang & Zhao, 2015), where end users use spreadsheet

formulas to achieve coordination among services (Obrenović & Gašević, 2008).

Examples of where this approach has been applied includes AMICO:CALC (Obrenović

& Gašević, 2008), Marmite (Wong & Hong, 2007), Mashroom (Wang, Yang, & Han,

2009) and Vegemite (J. Lin, Wong, Nichols, Cypher, & Lau, 2009). Some of the

spreadsheet-based service compositions introduce functions that enables the use of

services in aggregating data. Vegemite (J. Lin et al., 2009) and Mashroom (Wang et al.,

2009) are extensions to Mozilla Firefox browser. They can import and aggregate data

from different web sites. The data imported is usually arranged in an interactive table

where users can filter and manipulate the results. In Marmite (Wong & Hong, 2007), users

selected operators and chained them together in a data flow where data flowing through

operators are shown in a table. The operators are either codes that access web services, or

functions that operate locally on data (Wong & Hong, 2007). For Gneiss (Chang & Myers,

2017), it streams the hierarchical data (such as JSON and XML) from REST web service

into a spreadsheet editor and allows the user to perform simple data manipulation (sort

and filter) by drag-and-drop. However, it still requires spreadsheet formulas for more

complex data manipulations. The user can then select the desired data from the

spreadsheet editor to create a web application.

Some commercial spreadsheet environments provide mechanisms to extend their

functionalities and include functions that may access web services (Obrenović & Gašević,

2008) such as StrikeIron SOA Express for Excel (as cited in (Obrenović & Gašević,

2008)), where web services are wrapped within the spreadsheet. End-users can connect

the web services parameters to spreadsheet fields and call the functions to return the

results (Obrenović & Gašević, 2008).

Univ
ers

ity
 of

 M
ala

ya

11

By looking at the existing works in spreadsheet approach, they require certain

knowledge in spreadsheet formulas and table structures in order to successfully compose

the web services.

Wizard and form-based service composition approach solicits key information (such

as location of primitive service, order of invoking service, and so on) of the service

composition from the users (Hang & Zhao, 2015) by using forms and wizards. Easy SOA

(Yamaizumi, Sakairi, Wakao, Shinomi, & Adams, 2006) is an example of those who have

used this. Easy SOA provides an environment for end-users to develop web services and

web applications by placing cards on a sheet constructed in a web browser. Each of these

cards acts as a single-function application and contains data or expressions that evaluates

the data at run time. End-users fill in the information on these cards such as WSDL URL

and other variables in order to extract the data structures and generate the interface. The

interface between cards which represents - service methods using web browsers are

connected through simple operations. However, information configuration for every web

service is troublesome for the end-users.

Programming-by-demonstration approach provides service composition platforms

that can record the composition logics and configurations by end-users and then reapply

them in other composite services that bears similarities to the existing one (Hang & Zhao,

2015). The concept is to generate a script based on the demonstrated procedures which

can be used for different variations and parameters (Barricelli, Cassano, Fogli, &

Piccinno, 2019). For example, in web scripting or web macros, repetitive common tasks

in a web browser is recorded and replayed. One specific example is CoScripter (Bogart,

Burnett, Cypher, & Scaffidi, 2008). CoScripter uses programming-by-demonstration

language. It records and replays the actions of users for common tasks in the FireFox

browser. The actions are transformed into a script and then saved. Users can reuse the

script as it is or with some modification. CoScripter can save the data in a minimalist data

Univ
ers

ity
 of

 M
ala

ya

12

structure which does not support any looping or conditioning features. This database is

used in future executions instead of re-entering the data. It helps to resolve the need of

memorizing the detailed information and long navigation sequence. However, end-users

have to record a new action or rearrange the script for a new scenario.

Block-based programming approach allows the end-user to drag and drop graphical

blocks to create their own program (Bak, Chang, & Choi, 2020). It is built by assembling

jigsaw puzzle pieces which presents visual cues (Coronado, Mastrogiovanni, Indurkhya,

& Venture, 2020). This approach is usually engaged to the rule-base such as if-then-else

conditional statements, ECA (Event-Condition-Action) rule or trigger-action rules and

feature configurations. Smart Block (Bak et al., 2020) and EUD-MARS (Akiki, Akiki,

Bandara, & Yu, 2020) are examples of those that has used this block-based programming

to program ‘Internet of things’ (IoT) applications by using the online services. However,

conflicting rules (Ardito et al., 2019) and difficulty in understanding the implications of

multiple rules (Coronado et al., 2020) are the drawbacks of this approach for non-

programmers.

2.1.2 Dynamic Web Service Composition

Dynamic web service composition automatically creates composite services based on

users request and context (Hang & Zhao, 2015). To do that, the execution system is

required to support automatic service discovery, selection and binding (Sheng et al.,

2014). In dynamic composition, the determination and replacement of constituent

services takes place during runtime (Sheng et al., 2014) or deployment time (Lemos et

al., 2015). It is particularly useful when runtime change of requirements are frequent and

when services cannot be predicted at design time (Sheng et al., 2014).

Some of the approaches employed in dynamic service composition are: use of high-

level graphical language to define composite service, visualization, wizard-based and

Univ
ers

ity
 of

 M
ala

ya

13

natural language processing (Hang & Zhao, 2015). Other approaches make use of

semantic technologies and AI planning techniques (Sheng et al., 2014). End-users usually

specify the business goal in a description language or selected notation (Tabatabaei et al.,

2011). FUSION (Sheng et al., 2014), SWORD (Sheng et al., 2014) and OWLS-Xplan

(Sheng et al., 2014) are some examples of dynamic service composition.

Fusion (as cited in (Sheng et al., 2014)) provides a graphical interface for users to

specify the abstract requirements of a composition goal. The system takes the inputs of a

user specification and generates an optimized execution plan. The plan will be executed

and verified to ensure that the results meets the user requirement criteria and that the

appropriate recovery process will be initiated if verification failure occurs before the

response is delivered to the users.

OWLS-Xplan (as cited in (Sheng et al., 2014)) is using a way similar to Fusion in

defining the abstract requirements of a composition goal. Xplan which is an artificial

intelligence planner is used to generate the service composition plan from PDDL

(Problem and Domain Description Language) description of OWL-S services and a

planning query. Xplan consists of pre-processing and planning modules. The pre-

processing module is used to create the required data structures, generating the initial

connectivity graph and goal agenda while the planning module supports the heuristically

relaxed graph-plan generation and enforced hill-climbing search.

SWORD (as cited in (Sheng et al., 2014)) uses Entity-Relationship (ER) model to

specify web services, instead of using emerging service standards such as WSDL. Each

of the service is defined in terms by its inputs and outputs in an ER model consisting of

the entities and the relationship among the entities. The initial and final states of the

composite service need to be specified in order to create a composite service. A rule-

Univ
ers

ity
 of

 M
ala

ya

14

based engine is used to automatically determine whether the required composite service

can be realized by using existing services.

A research (Driss, Aljehani, Boulila, Ghandorh, & Al-Sarem, 2020) proposes FCA

(Formal Concept Analysis) and RCA (Relational Concept Analysis) - Driven Approach

for web service composition. The user is required to model the composition scenario by

using Business Process Model and Notation (BPMN) with its notational elements. The

composition scenario provides semantic description for the user’s requirement by using

Unified Foundational Ontology (UFO). The appropriate web services are discovered by

filter matching based on similarities of keywords and requirement descriptions. FCA is

used to select the optimal web service that offers the best compromise of QoS (Quality of

Service), QoE (Quality of Experience), and QoBiz (Quality of Business) properties while

RCA is used to minimize the required adaptation efforts for composability and offers

maximum QoS, QoE, and QoBiz before executing the composition.

Some researches use natural language-base to perform service composition. The

approach processes the natural language provided by the end-user as users request and

the system finds the services to achieve its goal. This approach usually (a) apply

restrictions on sentence constructions to match the service descriptions, (b) requires

lexical database to compute the concept similarity of constructed semantic graphs that

represents the service description and (c) match the grammatical relations of natural

language requests to the semantic web service descriptions (as cited in (Romero, Dangi,

& Akoju, 2019)). A research NLSC (Romero et al., 2019) allows the end-users to express

their needs by using unrestricted natural language for compositions. It had adopted the

semantic service matching by embedding sentences instead of description languages in

terms of service name, functionality, parameters and conditions. However, the web

service in the approach requires the natural language descriptions annotation provided

by the service developer which many existing web services do not have.

Univ
ers

ity
 of

 M
ala

ya

15

Nevertheless, these dynamic web service composition approaches rely on knowledge

of a certain kind of modelling (such as abstract requirement specification, and states of

composite service, BPMN), that most end-users do not have.

2.1.3 Semi-automated Web Service Composition

Although dynamic service composition automates some of the tasks involved in

assembling services, it limits the freedom of users in the process of service composition.

A study on establishing requirements for EUSC tools shows that an appropriate amount

of end-user’s involvement in service composition is required (Andy Ridge & O’Neill,

2014). Some non-programmers think that manual service composition could provide the

freedom to develop personalized application (Namoun et al., 2019). High degree of

automation in service composition is generally not desired (Vulcu, Bhiri, Hauswirth, &

Zhou, 2008).

Some research has tried to leverage both manual and automatic composition to assist

users in the composition process (Sheng et al., 2014). An example of semi-automated

service composition can be seen in a template-based service composition (Mehandjiev,

Lecue, Wajid, & Namoun, 2010) that allows users to compose services by selecting a

template according to their needs. This approach usually provides several templates that

are classified in a domain taxonomy. A user is allowed to choose and modify the tasks

workflow in the templates based on his or her preference to meet his or her particular

requirements. The underlying system will suggest suitable services for the tasks once the

template modification is done. The system will also adjust the list of tasks dynamically if

necessary. Despite that, limited templates are available and the templates provided may

not fulfil all the system requirements of end-users.

DoCoSoc (Marin & Lalanda, 2007) is another example of semi-automated service

composition where it uses domain SOA model to automate the service composition. It

Univ
ers

ity
 of

 M
ala

ya

16

produces a fast and easy service-based application development. However, users have to

provide the domain SOA meta-model. The code is automatically obtained from the

abstract application model using artefacts available in the service repositories. This

modelling process required expertise in Model Driven Architecture (MDA) and is not

suitable for end-users.

A research (Kasmi, Jamoussi, & Ghézala, 2018) adopted an intentional modelling of

web service composition based on MAP formalism (process model represented by the

directed graph). This is a collaborative and interactive web service composition approach.

The approach allows the user to construct the software requirement specification in a

MAP model which is partially drawn by the domain experts. The intentional services will

be identified and associated to the section in map to generate the “COLMAP” model. The

intentional service is a service model that comprises the intention to accomplish the task,

pre-condition, post-condition, input parameter and output parameter which is

corresponding to the users requirements. Group Recommender System (GRS)

recommends a set of web service to user. The user selects the web services and execute

the composite services. It is a collaborative and interactive web service composition

approach. This approach relies on the MAP model provided by the experts and users

might need to modify the MAP model based on different requirements which is not

suitable for the end-users.

Univ
ers

ity
 of

 M
ala

ya

17

Table 2.1: Summary of Web Service Composition Categories and Approaches

Composition

category

Approach Example Limitation of approach

Static
Composition

Workflow Baya
Flow editor
Hypermash
Co-tarvena
VIEW

• Requires extensive domain
knowledge

Spreadsheet AMICO:CALC
Marmite
Mashroom
Vegemite

• Requires understanding of
spreadsheet formulas and
table structures

Wizard-and
form-based

Easy SOA • Requires information
configurations

Programming-
by-
demonstration

Co-script • Requires recording a new
action or rearranging the
scripts for different scenarios

Block-based Smart Block
EUD-MARS

• Conflicting rules and
difficulties in understanding
the implications of multiple
rules

Dynamic
Composition

Abstract
model

Fusion
OWLS-Xplan

• Requires abstract requirement
specifications

FCA and RCA
Driven
Approach

• Requires business process
models

Entity-
Relationship
model

SWORD • Requires specifying the initial
and final states of the
composite service

Natural
language

NLSC • Relies on the natural language
description provided by the
service provider

Semi-
automated
Composition

Template-
based

Template-
based service
composition
prototype

• Limited templates are
available and they might not
fulfil the end-users’
requirement.

Abstract
model

DoCoSoc • Requires MDA knowledge

MAP
formalism

Collaborative
and interactive
WSC

• Relies on the MAP model and
requires modifying the MAP
model

2.2 Front-end Service Composition (FESC)

FESC applies an approach of service composition at the presentation layer, in which

applications are developed by composing web services using their UIs rather than

Univ
ers

ity
 of

 M
ala

ya

18

application logic or data (Nestler, Feldmann, Hübsch, Preußner, & Jugel, 2010). The idea

originated from graphical UI integrations which refers to integrating components by

combining their front-end presentations, rather than their application logic or data (Daniel

et al., 2007). The UI component models for FESC usually employs reusable UI

components (Daniel et al., 2007; Radeck et al., 2013) or generates suitable UIs based on

description files (Laga, Bertin, Glitho, & Crespi, 2012; Nestler et al., 2010; Zhai et al.,

2016) and these UI components represents the services. Most of the FESC make use of

drag-and-drop and wiring in composition design paradigms which do not require manual

coding (Pietschmann, Nestler, & Daniel, 2010). FESC allows the end-users to play the

role as service composer and application designer at the same time (Nestler et al., 2010),

and this is an advantage for the end-user programmers. This composition at the

presentation layer helps to reduce the cognitive challenges and efforts faced by the non-

programmers during the service composition process (Namoun et al., 2019).

Another area that contributes to FESC is mashup. A number of works (iGoogle

(http://www.google.com/ig), Yahoo! Pipes (http://pipes.yahoo.com/), Yahoo! Dapper

(http://open.dapper.net), Netvibes (http://www.netvibes.com), JackBe Presto Cloud

(http://prestocloud.jackbe.com/), Microsoft Popfly (http://www.popfly.com),

OpenKapow and Kapow Katalyst (www.kapowsoftware.com), AMICO

(http://amico.sourceforge.net/), Marmite

(http://www.cs.cmu.edu/~jasonh/projects/marmite/) or EzWeb (http://ezweb.morfeo-

project.org/) “mashup” interoperable and highly configurable visual interface elements

into a user-centered interface that can be used to invoke the backend services (Lizcano,

Alonso, Soriano, & Lopez, 2011). The word ”mashup” is initially used in audio domains,

to refer to the remixing of two or more audios into a new entity (Liu, Hui, Sun, & Liang,

2007). The word later became a common term in the web application area with many

researches working on mashup solutions (Yu, Benatallah, Casati, & Daniel, 2008).

Univ
ers

ity
 of

 M
ala

ya

http://ezweb.morfeo-project.org/
http://ezweb.morfeo-project.org/

19

Mashup in web application is a process of integrating data or content from different

sources from Internet (Liu et al., 2007). These mashup solutions mainly create data

mashups but not service mashups (Lizcano et al., 2011). Later, researchers begun using

mashup as one of the web service composition method (Liu et al., 2007; Sheng et al.,

2014). This has motivated the practice of mashing up front-ends of resources to simplify

end-users’ exploitation and invocation of web services tailored to their context and

knowledge (as cited in (Lizcano et al., 2011)).

2.2.1 UI, Types of Flow and Multiple-View

Since the target users of FESC are end-user programmers, the composition process

should not involve any code writing or technical knowledge (Andrew Ridge, 2014). This

could be achieved with proper support for UI generation, configuration of different types

of flow and multiple-view.

The UI of services should be presented during the composition process to enable an

end-user to see the outcome of the composition process (Andrew Ridge, 2014). Therefore,

the generation of UI is an important feature of FESC.

Control flow and data flow are the two essential types of composition constructs in

web service composition (Lemos et al., 2015). In web service composition, control flow

refers to the execution order of atomic services (Paik, Lemos, Barukh, Benatallah, &

Natarajan, 2017) and the dependency among activities (Agarwal et al., 2005) while data

flow refers to the data flowing from one activity to another (Yang, 2003) and the

dependency among data manipulations (Agarwal et al., 2005). The control flow and data

flow between web service components should be represented in the composition because

users need to be able to identify the execution order of components and data being passed

between the components (Andrew Ridge, 2014). Besides that, the user should be able to

Univ
ers

ity
 of

 M
ala

ya

20

edit the order of service components in composition because the user might position the

components in a wrong order in the initial stages or change their mind on the components

execution order during the composition process (Andrew Ridge, 2014).

Applications composed out of web services typically include multiple UI

pages/screens and the transition between these pages. The term “application flow” is used

in this research to refer to the transitions between the UI pages of a composed service

application. Other studies have used different terms to refer to the same thing: “program

flow” in WIDE (Okamoto, Dascalu, & Egbert, 2006) , “page flow”/“process flow” in

ServFace (Nestler, Dannecker, & Pursche, 2009) page transition framework in image-

oriented web programming (Shimomura, 2004). It is important to make application flow

visible as it helps to sort out page-transfer relationships (Shimomura, 2004) and it

provides an overview of the whole structure of an application (Okamoto et al., 2006).

It is useful to overlay the various representations of information under one viewport

(Roberts, 1998). However, problems arise when too much information are shown in one

view such as increasing irrelevant details which will confuse the final results and issues

in interpreting or perceiving the information by the end-users (Roberts, 1998). Therefore,

it is useful to split the information into multiple views (Roberts, 1998).

Multiple-view system is a system which uses two or more different views to support

the study of a single conceptual entity (Baldonado, Woodruff, & Kuchinsky, 2000). It can

help to create better understanding of the underlying information by interpreting the

information from different perspectives (Roberts, 1998). A design guideline for multiple-

view has been proposed to help designers decide when multiple-view is desirable

(Baldonado et al., 2000). The guideline shows a model of multiple-view system based on

three dimensions-selection, presentation and interaction (Baldonado et al., 2000). Eight

Univ
ers

ity
 of

 M
ala

ya

21

rules were proposed to guide the designer on when and how to use multiple-view

(Baldonado et al., 2000).

2.2.2 Existing Works on FESC

This section describes existing studies on FESC. Apart from the limitations (shown in

italic) of the studies, this section explains how these studies provide the following features

that are important in FESC: UI generation, type of flow supported and multiple view.

ServFace Builder: Figure 2.1 shows the screenshot of ServFace Builder. To integrate it

into an application, ServFace Builder allows an end-user to drag a service operation from

its Service Component Browser as shown in Figure 2.1 (4) to its composition canvas

(Namoun et al., 2010; Nestler et al., 2009; Nestler et al., 2010). It then automatically

generates the corresponding service UI as shown in Figure 2.1 (1) and (2). ServFace

Builder allows end-users to design the data flow between connected services by

connecting the UI element from where the data is obtained to the UI element serving as

the destination of the data. The data flow is represented by a linking arrow between the

two UI elements as shown in Figure 2.1 (3). Service operations can be dragged to the

same page or different pages to create a multi-page application. The end-user can connect

two pages to create a page transition as shown in Figure 2.2, which signifies the page flow

or application flow. The order of execution of the service operations, or control flow, is

implicit, following the application flow. As shown in Figure 2.2, the end-user needs to

switch to a different view to define the page flow. The page flow configuration is targeted

on experienced users to define more complex process. ServFace Builder requires service

developers to provide web services annotations to improve the visual appearance of the

resulting applications (Nestler, Dannecker, et al., 2010).

Univ
ers

ity
 of

 M
ala

ya

22

Figure 2.1: Screenshot of ServFace Builder

Figure 2.2: Page Flow View of ServFace Builder

MashArt: MashArt (Daniel, Casati, Benatallah, & Shan, 2009) proposes to create

composite web applications by integrating data, application, and UI components. It allows

Univ
ers

ity
 of

 M
ala

ya

23

the modelling of the three types of components by using a unified model. It combines

event-driven philosophy of UI and control-flow-based philosophy of service

orchestrations. Basically, the service components are linked to the UI components via

connectors while the events are attached to the UI components. It supports various types

of components such as RSS and Atom feeds for data component, SOAP and RESTful

web services for service components, and JavaScript UI components. Core functionality

service component models which are reusable are provided to users. The composition

canvas in the MashArt editor provides a visual model view of composition logic as shown

in Figure 2.3. However, the components are not properly organized in the canvas because

users are free to drag-and-drop and arrange them. In addition, MashArt targets advanced

web users as it requires the users to have the understanding of communication protocol

(Pietschmann et al., 2010).

Figure 2.3: Screenshot of MashArt

Univ
ers

ity
 of

 M
ala

ya

24

CRUISe: Figure 2.4 shows the screenshot of CRUISe. CRUISe (Pietschmann et al.,

2010; Pietschmann, Voigt, & Meissner, 2009; Pietschmann, Voigt, Rümpel, & Meißner,

2009) which employs service-oriented paradigm for web-based UI developments. In

CRUISe, UI components are provided as reusable services, namely, User Interface

Services (UIS). They can be selected, configured and exchanged dynamically based on

the model context. These reusable UI components integrates the UI logics at the

presentation layer. The data or application logics are provided by back-end services. With

a homogeneous access layer, the backend services can be bound to UI services. The UI

components concept eases the development, maintenance and upgrading of the UI.

Integration of services is carried out on the client’s side to achieve a lightweight service

orchestration on the presentation level. It also supports dynamic adaptationssuch as UIS

reconfiguration and exchange. However, CRUISe is not suitable for end-user

programmers as it requires them to have the knowledge of component-based software

and event-based communication in defining the composition description. Besides that,

CRUISe lacks of application flows to organise the services and does not show the control

flow and data flow.

Figure 2.4: Screenshot of CRUISe

Univ
ers

ity
 of

 M
ala

ya

25

Service Creation Environment (SCE): Figure 2.5 shows the screenshot of SCE. One

study proposed a Service Creation Environment (SCE) comprising a widget-based

abstraction layer and a two-step service composition mechanism (Laga et al., 2012). A

widget is a reusable GUI that is linked to one or more functionalities of a service. Every

widget has a description file that contains abstract description and implementation

description. Abstract description is used to explain the functionality of the widget while

implementation description refers to the index URL that provides access to the

functionality. The GUI can be generated semantically based on the widget description.

The first steps of the mechanism includes GUI generation based on selected widgets and

creation of a composite service through automatic semantic matching, and linking of all

connectable widgets. The connectable links and GUI elements involved are shown to

users for further modification. In the second step, the user can manually personalize the

services composed. The emphasis on semantic service composition restricts it to minor

customization such as removing the unused generated links. Besides that, there is no

proper organization of application flow and no visualization of the control flow of

composed services.

Figure 2.5: Screenshot of SCE

Univ
ers

ity
 of

 M
ala

ya

26

Lightweight Service Creation Environment (LSCE): Figure 2.6 shows the screenshot

of LSCE. Another study which has developed a Lightweight Service Creation

Environment (LSCE) based on a data-driven service creation approach to compose

services for mashup applications (Zhai et al., 2016). In this study, service is the basic data

unit, and a Service Data Model (SDM) was created to support service description, data

transforms, visualization, and extension of services. The study developed an IFrame

implementation for the SDM. The LSCE provides a drag-and-drop workspace for

developing applications by drawing dataflow graphs, also known as Service Process

Graphs (SPGs) which are shown in the right column of the LSC workspace in Figure 2.6.

SPGs would be parsed into JSON-based script before being sent for execution purpose.

Being data-driven, LSCE does not provide a clear visualization of application flow and

control flow.

Figure 2.6: Screenshot of LSCE

CapView: Figure 2.7 shows the screenshot of CapView. CapView (Radeck et al.,

2013) proposes an approach of composing the web services (encapsulated as service

components) on the functional level instead of structural units. It provides the functional

abstraction to ease users into visualizing the functionalities of components and composing

Univ
ers

ity
 of

 M
ala

ya

27

the components. Every component has a representation which describes the capabilities

and properties of the component in natural language that is derived from the semantic

annotation. Short sentences are displayed to explain the functionalities of components as

well as the meaning of their properties to the users, as shown in Figure 2.7. The capability

of the component is described as a tuple with activity (actions to be performed, such as

search and display), entity (domain objects, such as Hotel and Flight) and,

requiresInteraction (activities in whichthe user is involved). Users will be guided on the

connectible capabilities and properties, enablingconfirmation of the coupled

functionalities (data flow) before the running UI components are presented in another

view, namely, LiveView (runtime mode). Service components are recommended to users

(based on semantic matching) in a separate recommendation menu, as shown in the right

column of CapView in Figure 2.7. Service components that can be coupled are shown in

blue, and orange if otherwise. Users tend to get mixed up between CapView and LiveView,

as they assumed that the components would display the execution results directly in

CapView. Besides that, users interpret the input and output ports of services differently

from when they interpret them through a human-centred perspective. For example, users

expect “Select an event” function to only have an input. However, through the system-

oriented perspective, the function also has an output (such as list or details). Users need

to switch to CapView in order to configure composition logic, and switch to LiveView to

witness the outcome of composed services. Aditionally, CapView does not provide

control flow and application flow in organizing the order of the services selected for the

composition.

Univ
ers

ity
 of

 M
ala

ya

28

Figure 2.7: Screenshot of CapView

Univ
ers

ity
 of

 M
ala

ya

29

Table 2.2: Summary of Existing Works on FESC

Related

Work/Tool

Approach Features Limitation on the features

ServFace Builder
(Namoun et al.,
2010; Nestler et al.,
2009; Nestler et al.,
2010)

Wizard-and
form-based

UI generation: Based on service description and attached
annotations, UI generated represent web services

Type of flow: Application/page flow, control flow and data
flow

Lack of control flow visualization.

Multiple view: Not applicable Need to switch view to visualise application flow
and data flow.

MashArt (Daniel et
al., 2009;
Pietschmann et al.,
2010)

Workflow UI generation: Reusable UI components provided by
component developers

No flexibility on UI generation as it relies on
component developers.

Type of flow: Control flow and data flow Lack of control flow and application flow
visualization to organise the services.

Multiple view: Not applicable
Other: 3 types of components (data, application, and UI
components)

Require understanding of 3 types of components
for composition process

Require knowledge on communication protocol
between components

CRUISe
(Pietschmann et al.,
2010; Pietschmann,
Voigt, & Meissner,
2009; Pietschmann,
Voigt, Rümpel, et
al., 2009)

Wizard-and
form-based

UI generation: Auto search for suitable UI components
captured as reusable services in database

Return the UI component based on description
(might return unsuitable UI component)

Type of flow: Control flow and data flow Lack of application flow visualization to organise
the services

Multiple View: Visualization of information in multiple
views

Other: Context-aware composition Requires knowledge on component-based
software and event-based communication in
providing composition description

Univ
ers

ity
 of

 M
ala

ya

30

Table 2.2 continued

Related

Work/Tool
Approach Features Limitation on the features

SCE (Widget-
based two-step
service
composition
mechanism) (Laga
et al., 2012)

Wizard-and
form-based

UI generation: Based on description file of the data model
of GUI widgets (reusable GUI attached to a service)

Type of flow: Data flow Lack of control flow and application flow
visualization to organise the services

Multiple view: Not applicable
Other: Provide suggestions for linking of connectable
widgets

LSCE (Data-driven
service creation
approach) (Zhai et
al., 2016)

Wizard-and
form-based

UI generation: Generate Iframe (represent services) based
on annotation template provided by service provider

No flexibility on UI generation as it relies on
service provider

Type of flow: Control flow and data flow Lack of control flow and application flow
visualization to organise the services

Multiple view: Not applicable
CapView (Radeck
et al., 2013)

Workflow UI generation: UI components provided by service
providers

No flexibility on UI generation as it relies on
component developers

UI is only viewable in LiveView (runtime mode)
Type of flow: Data flow Lack of control flow and application flow

visualization to organise the services
Multiple view: Not applicable Need to switch between CapView and LiveView
Other: Semantic description of component functionality;
Provide recommendation menu and hints on coupled-able
components

Univ
ers

ity
 of

 M
ala

ya

31

Table 2.2 summarizes the existing works on FESC presented in this section. In

summary, there are two main problems with the existing works. Firstly, lack of control

flow and/or application flow visualization. Secondly, some still requires users to have

certain technical knowledge such as communication protocol (Daniel et al., 2009),

component-based software (Pietschmann, Voigt, Rümpel, et al., 2009) and event-based

communication (Pietschmann, Voigt, Rümpel, et al., 2009) that end-user programmers in

general do not possess.

2.2.3 Comparison to Related Works

A number of works discussed in Section 2.1 show efforts in helping end-users with

web service composition. However, those approaches consists of some limitations, as

shown in Table 2.1. which forms obstacles for end-users. The end-user is required to

know the features (workflow modelling, table structure and information configuration

properties) and have the knowledge (spreadsheet function and formula, and

understanding of script) for static web service composition approaches. For dynamic and

semi-automated web service composition, the end-user is required to have the modelling

knowledge, rule-based and specify the requirements. Some approaches rely on the

templates and service description provided by the service provider, which restricts the

composition coverage. Therefore, this research applies an approach of service

composition at the presentation layer where the service is represented by the GUI. This

FESC combines the presentation front-ends rather than the composition techniques. Even

though there are existing works on FESC, but there are also limitations as shown in Table

2.2, which is mainly lack of control flow and/or application flow visualization, and the

fact that some still requires users to have certain technical knowledge. Hence, three types

of flows (control flow, data flow and application flow as described in Section 2.2.1), are

Univ
ers

ity
 of

 M
ala

ya

32

used to represent a simple composition logic at the same time provide a visually organized

layout for the composed services.

Table 2.3 summarises the comparisons of this research with the related works on

FESC. In terms of composition model, CRUISe requires composition knowledge to

define the composition logic and description in the context module to find a suitable UI

for the web service. The components are configured with description files and connected

one from the other, through the definition of the events and operations in the users

requirement context; MashArt requires the understanding of communication protocol

between components and event attachment to the UI components. Users need to attach

the events and operations to UI components and connect to service components to

compose the mashup service - ServFace Builder employs the hybrid of control flow and

data flow in its composition model; SCE, LSCE and CapView use the data flow as the

composition model. This research employed the hybrid of application, control and data

flows as the composition model.

Univ
ers

ity
 of

 M
ala

ya

33

Table 2.3: Comparison with Related Works

Related works Composition

model

Type of flow Technical knowledge

required
Application

flow

Control

flow

Data

flow

ServFace Builder (Namoun
et al., 2010; Nestler et al.,
2009; Nestler et al., 2010)

Hybrid of control
and data flows

Explicit Implicit

Explicit None

MashArt (Daniel et al.,
2009; Pietschmann et al.,
2010)

Event-based - Implicit Explicit Communication protocol

CRUISe (Pietschmann et
al., 2010; Pietschmann,
Voigt, & Meissner, 2009;
Pietschmann, Voigt,
Rümpel, et al., 2009)

Abstract model - Implicit Implicit Component-based software
and event-based
communication

MashArt (Daniel et al.,
2009; Pietschmann et al.,
2010)

Data flow - - Explicit None

LSCE (Zhai et al., 2016) Data flow - Implicit Explicit None
CapView (Radeck et al.,
2013)

Data flow - - Explicit None

This research Hybrid of
application flow,
control and data
flows

Explicit Explicit Explicit None

 Univ
ers

ity
 of

 M
ala

ya

34

All the works in Table 2.3 includes data flow. This could be due to the semantics of

data flow being easy to understand (Pietschmann et al., 2010). All works except SCE and

CapView, includes control flow. Only ServFace Builder in its proposed works include

application flow. This research views a provided flow as explicit if it is visually visible

to the end-user programmers, and as implicit if the flow is implied and not directly visible.

MashArt allows end-user programmers to connect the data flow between components

explicitly in its editor. In MashArt, control flow is implicitly configured as events attached

to the components. CRUISe allows control flow and data flow to be configured in the

user’s requirement context and this is implicit. SCE allows end-user programmers to

compose services by configuring data flow through creation of explicit links between

GUI widgets. In LSCE, data flow configuration is done through creation of explicit links

between services, the control flow is implied by the rules in the services. CapView allows

the data flow to be connected between the service components. In terms of technical

knowledge required, studies have reported that CRUISe (Pietschmann et al., 2010;

Pietschmann, Voigt, & Meissner, 2009; Pietschmann, Voigt, Rümpel, et al., 2009) and

MashArt (Daniel et al., 2009; Pietschmann et al., 2010) are not for end-users programmers

(Pietschmann et al., 2010).

ServFace Builder is the closest to this research. It also provides the three-flow features

but the control flow is implicitly implied by the application or page flow. Control flow

could be implied by the application flow in simple applications, but in more complex

applications, web services might need to be executed concurrently, requiring the control

flow to be separated from the application flow. ServFace Builder allows the definition of

two of the five basic control flow patterns (sequence, merge, split, condition and loop)

(Zhai et al., 2016). They are sequential control flow (sequence) and alternative control

flow (condition). This research supports the definition of sequence, merge and split. In

ServFace Builder, the standard view enforces a sequential application/page flow. To alter

Univ
ers

ity
 of

 M
ala

ya

35

it, the end-user programmers need to switch to the “page flow” view. The three-flow

approach in QuickWSC shows the visualization of application, control and data flows

explicitly by using a multiple-view design which results in end-user programmers not

having to switch to a different view.

2.3 Summary

This chapter starts by reviewing the existing approaches/techniques applied in EUSC

which can be classified into static web service composition, dynamic web service

composition and semi-automated web service composition. The concept of the

approaches/techniques was discussed in detail for each section. Each of the

approaches/techniques possesses strengths and weaknesses which were also discussed.

Following that, existing works about the FESC was reviewed. FESC applies an approach

of service composition at the presentation layer, in which applications are developed by

composing web services using their UIs rather than application logic or data. This chapter

also discusses and summarises the aspects of existing works on FESC such as UI

generation, types of flows supported, multiple view concept and limitation of features.

Lastly, comparison with the related works is carried out to demonstrate the differences

between the proposed works and the related works.

Univ
ers

ity
 of

 M
ala

ya

36

CHAPTER 3: RESEARCH METHODOLOGY

This chapter presents the research methodology adopted in this research. It explains

the key steps involved in this research. It also outlines relevant design

guidelines/techniques and methods where applicable, with further details given in the

respective chapters.

3.1 Research Methodology

Figure 3.1 shows the flow of the research activities. It comprises 6 key steps as

explained in the following sections.

Univ
ers

ity
 of

 M
ala

ya

37

Figure 3.1: Flow of Research Activities

Literature Review

Identify Research Objectives and
Questions

Development of Approach

• The Design of Proposed Approach
• Conceptual and Usability Issues Addressed

Development of Prototype

Result Analysis and Discussion

Data Analysis of Think-aloud Protocol

Data Analysis of Observation

Data Analysis of Questionnaire

Result Discussion

Data Collection

Refinement

Pilot Study of User Evaluation Study (using Think-aloud Protocol,
Observation, Survey Questionnaire)

No

User Evaluation Study

Refinement?
Yes

Univ
ers

ity
 of

 M
ala

ya

38

3.2 Literature Review

Reviewing research literatures helps the researcher to determine the research problems

from the related works. A literature review is conducted to study the different approaches

applied in EUSC. The approaches/techniques and features of FESC are analysed and

presented in Chapter 2. The purpose is to inspect the problems and limitations of current

approaches and techniques in order to define the research problems. The problem

statement in Section 1.2 stated the main problems that this research aimed to resolve.

3.3 Identify Research Objectives and Questions

Based on the defined problem statement in Section 1.2, the researcher has identified

the research objectives in Section 1.3 which are concrete statements of what the

researcher is trying to achieve and done in this research in order to design and develop an

approach that integrates application UI development and service composition in FESC. It

helps to bring the focus of the research to its essential.Thereafter, the researcher identified

the research questions in Section 1.4. Research questions are important in the research

because they outline the uncertaint and concern points that needs to be investigated in

order to rationalize the objectives of the research.

3.4 Development of Approach

In this step, a new approach was proposed and developed to address the conceptual

and usability issues faced by end-user programmers in web services composition. The

approach enables end-user programmers to compose applications from existing web

services by configuring three different types of flow that represent the composition logic.

The development of approach aims to provide an understanding of the proposed

conceptual idea that describes how the work would be done and how the proposed

Univ
ers

ity
 of

 M
ala

ya

39

approach addresses the conceptual and usability issues faced by end-user programmers in

web services composition.

3.4.1 The Design of the Proposed Approach

This research proposed and developed an integrated three-flow approach (application

flow, control flow and data flow) that enables the UI of the respective application and the

composition of the web services required by the application to be constructed

concurrently. Figure 3.2 illustrates the approach, including its processes and features

involved that makes up the essential parts of the proposed approach. It explains the roles

and importance of the processes and features. It also explains through the scope of the

works, how they interrelate between each other within to produce a desired outcome. The

outcome of the proposed approach aims to overcome the common conceptual and

usability issues faced by end-user programmers in web services composition.

Figure 3.2: Integrated Three-flow Approach

The proposed approach extracts web services information from the URLs of Web

Service Description Language (WSDL) files and RESTful web service API. The

extracted web services information from WSDL file and RESTful API is then saved into

Univ
ers

ity
 of

 M
ala

ya

40

a local database. The WSDL file is used to generate the respective web services client

stubs and web service client programs for the purpose of web services execution. These

two processes are executed by Java servlets. A web service client stub acts as a remote

procedure call that provides the entry point between a web service client program and the

web service server (Microsystems, 2002). A web service client program is a remote client

that contacts the web service and invokes the web service’s methods (Microsystems,

2002) . RESTful API is used to generate the request URL for the purpose of web services

execution. The request URL will be saved into database as well.

The approach retrieves web service information from the database and auto-generates

the UI elements and operator boxes from the web services of end-users selected for the

composition process. It allows the end-user programmers to explicitly configure the three

flows - the data flow connecting web services via the operator boxes as the data mapping

between these web services, the control flow or the execution order of the web services

included in the composition, and the application flow that determines the order of

transition of UI pages in a multi-page application. Three types of control flow patterns

are provided - sequence (sequential control flow), merge (convergence of two or more

services into a single subsequent service) and split (divergence of a service into two or

more parallel services each of which executes concurrently). The composed application

will be saved as HTML.

Control flow and data flow are the two essential types of composition constructs in

web services composition (Lemos et al., 2015). The approach also includes application

flow to specify the order of the applications UI pages for the composed application.

Control flow could be implied by the application flow in simple applications, but in

more complex applications, web services might need to be executed concurrently,

requiring control flow to be separated from the application flow.

Univ
ers

ity
 of

 M
ala

ya

41

The three flows are used as the composition logic for the web service composition

process and are integrated into the UI of the composed web services. The composition

logic is embedded in the web services’ UI for execution purpose. Input data can be

provided through the UI of the composed web services and the execution of the web

services can be initiated. For SOAP web service, the web service client program will be

invoked, the web service client stub will be sending a request to the web service server

and subsequently returning the response from the server to the client program. For

RESTful web service, the requested URL will be invoked and a response by HTTP client

will be received and shown in the UI.

The approach uses web services’ names that are meaningful to the end-user

programmers instead of the services’ technical names to help them in choosing the

suitable web services for the composition. They would also be assisted in this aspect

through the early visualization of the composed application UI during design time with

the actual effects reflected instantly on the scene. The UI elements serves as concrete

mediums for end-user programmers to design the composition logic of the application by

using the three flows made visible in a multiple-view design (Section 5.3). The multiple-

view design requires the display of information regarding the different views to be

synchronized because despite their different aspects, they are presenting the same web

services. Besides that, the data flow configured in one view must be synchronized to the

data mapping between the web services appearing in the application UI in order to transfer

the data between the web services correctly during runtime. Data transformation checking

is done for data flow configuration to make sure the data format and data type of service

output can be converted to the data format and data type of another service input.

In summary, the approach leverage on instant integration, visualization and

synchronization of the application UI development and web service composition, to

simplify the process of web service composition. Through concrete visualization of the

Univ
ers

ity
 of

 M
ala

ya

42

web service composition and the application UI, as well as their synchronization, the

complexity of composing and modifying assembled applications can be reduced to cater

to end-user programmers who have no technical knowledge.

3.4.2 Conceptual and Usability Issues Addressed

The approach addresses some of the most common conceptual and usability issues

faced by end-user programmers in web services composition (Cappiello et al., 2015;

Namoun et al., 2010). In particular, the approach

(i) enables end-user programmers to gain basic understanding of web services

composition.

(ii) eliminates the need to differentiate between design time and run/execution time as

it allows end-user programmers to input data into the UI fields of the web services

and to execute the services necessary for output during the design time.

(iii) reduces the difficulties that may be faced by end-user programmers in specifying

the execution order of the web services and logic of application by providing an

intuitive graphical click-drag-release mechanism when selecting the required web

services, and specifying the control and application flow. It also allows end-user

programmers to perform a simple two-click movement when specifying the data

flow between two web services. This is done by first clicking on the output field of

the first web service, and then clicking on an input field of the subsequent web

service.

(iv) presents minimal technical terms to the end-user programmers where no other

technical term is used apart from “web services” and “composed services”.

(v) produces an organized visual layout of the UI to the selected web services so as to

reduce end-user programmers’ difficulties in positioning layouts of the web

services.

Univ
ers

ity
 of

 M
ala

ya

43

(vi) provides instant visual updates to the end-user programmers’ actions as a means to

reduce their uncertainty in whether or not they have done it right.

(vii) an integrated model that allows the composition of SOAP and RESTful web

services; data transformation between web services.

As mentioned in Section 1.3, the approach does not address the end-user programmers

concerns for security issues or sensitive information submitted as input data for certain

web services.

3.5 Development of Prototype

A proof-of-concept prototype, QuickWSC was developed based on the proposed

approach. QuickWSC was built as a layered system with presentation, logic and data

layers. Multiple-view design was adopted in QuickWSC’s UI to incorporate the

integrated three-flow approach. This research followed the design guidelines/rules for

multiple-view selection, presentation and interaction (Baldonado et al., 2000), and

applied the recommended techniques according to the design guidelines.

Table 3.1 shows the types of technology used in the development of the prototype

along with its supporting reasons. The selected technology types are proven reliable and

well documented.

Table 3.1: Technology Types Used in The Development of Prototype

Aspect Technology Type Reason

Database Microsoft SQL Server
(Microsoft)

Open source, Easy to
manage

Back-end programming Java Object-Oriented
Programming
(W3Schools, 2020)

Easy for troubleshooting,
Flexibility through
polymorphism

Front-end programming HTML (W3Schools,
2020), CSS (W3Schools,
2020), JavaScript
(W3Schools, 2020)

Platform independent

Univ
ers

ity
 of

 M
ala

ya

44

Table 3.1 continued

Aspect Technology Type Reason

Server Apache Tomcat (T. A. S.
Foundation, 2020)

Open source, Reliable,
Update without restarting
server

Development tool Eclipse IDE (E.
Foundation, 2020)

Easy to use, Easy for
deployment

System platform Web platform Accessible through any
web browser

3.6 Data Collection

Data collection is a process that uses standard and validated instruments for gathering

data and evaluating the outcome. An integrated method which combines quality and

quantity was employed for this process.

A user evaluation study was conducted in an effort to collect the data of prototype

assessment done by participants. It employed qualitative data collection using think-aloud

protocol and observation, followed by both quantitative and qualitative data collection

using a questionnaire survey. Refer to Section 3.6.3 for further details.

3.6.1 Pilot Study of the User Evaluation Study

Prior to the actual user evaluation study, a pilot study was conducted to gather feedback

as a means to refine the prototype and the user evaluation study instrument. The pilot

study was conducted by the researcher with two participants at a computer lab where the

prototype was deployed through a laptop. Feedbacks collected from these participants

were used to improve the user evaluation study before conducting it with the rest.

Univ
ers

ity
 of

 M
ala

ya

45

The criteria in recruiting the participants were:

1. Not essentially equipped with well-trained programming knowledge, but to at

least be able to use a computer proficiently.

2. Web service composition knowledge not being a necessity.

3.6.2 Data Collection Method

3.6.2.1 Think-aloud Protocol

Think-aloud protocol is a method that collects verbal translation from the subjects in

whatever goes through their minds (Jääskeläinen, 2010). The subjects only need to

verbalize what is in their mind when performing the required task, but they do not need

to explain what they are doing. Participants in the pilot study were asked to use the

prototype to compose web services based on a scenario given by the researcher. They

were asked to articulate whatever they were seeing, feeling and doing while using the

prototype to compose the web services. The process was video recorded with the consent

of the participants for further analysis. A data collecting instrument was used to log the

verbal transcriptions by participants for the think-aloud protocol.

3.6.2.2 Observation

Observation is a method where data is collected through observation of the subject

when performing a task (Diah, Ismail, Ahmad, & Dahari, 2010). An overt observation

signifies participants being aware that they are being observed (Anne, 2013). In this

observation exercise, the participant was engaged in a think aloud protocol while using

the prototype to compose web services. A one-to-one direct observation was carried out

where the researcher observed the behaviour of the participant and any incidents that took

place.

Univ
ers

ity
 of

 M
ala

ya

46

A structured checklist was prepared for the data collecting instrument to record pre-

identified activities while the participants were composing these web services. Any

incidents not listed in the checklist were still recorded in a field note.

3.6.2.3 Survey

A questionnaire is used as part of the user evaluation study. The questionnaire

comprised of 2 parts (Part A and Part B). Part A questioned the participants’ educational

background, programming experience, and level of computer skills. Questions 1 to 12 of

Part B were semi-structured questions screening the features of QuickWSC with a Likert

scale of 1 to 5 (1-Strongly Disagree, 2-Disagree, 3-Neither Agree nor Disagree, 4-Agree,

5-Strongly Agree). The participants were asked to state their reasons or opinions if the

response was 3 and below. Question 13 and Question 14 were open-ended questions

encouraging opinions on the proposed approach and tools. The intention of the

questionnaire survey was to evaluate the features of the prototype and the composition

approach applied.

3.6.3 Refinement of User Evaluation Study

Necessary refinements were made after acquiring feedbacks from participants of the

pilot study before conducting the actual user evaluation study.

3.6.4 User Evaluation Study

A user evaluation study was conducted with 20 end-user programmers that served as

participants to evaluate the prototype and the underlying approach.

Univ
ers

ity
 of

 M
ala

ya

47

3.7 Result Analysis and Discussion

The results were summarized and discussed (Section 6.4). Both qualitative and

quantitative analysis were performed on the data collected from the user evaluation study

due to the use of a mixed method research.

3.7.1 Qualitative Data Analysis

Framework analysis approach (Pickup, Holloway, & Samsi, 2015; A. Srivastava &

Thomson, 2009) was used for qualitative data analysis. The collected data was sifted,

charted, and sorted according to the different key issues and themes. Framework analysis

comprises the following five steps.

3.7.1.1 Familiarization

The videos recorded during the data collection process were watched repeatedly to

familiarized and grasp the overview of the collected data. Familiarization helps the

researcher realize the themes and issues that emerged within the data set which in this

case, is the verbal responses from the participants during the think-aloud protocol as well

as the incidents during the observation.

3.7.1.2 Identifying a Thematic Framework

This step was aimed to identify the potential categories offering the best fit for the

data. The themes and issues were identified based on the data set observed by the observer

and then devised into a thematic framework. This step helps classify and filter the data

which requires logical thinking. This is because the observer needs to make a judgement

on the identified themes and issues.

Univ
ers

ity
 of

 M
ala

ya

48

3.7.1.3 Indexing

Indexing is a step where allocation of the relevant data into the appropriate

themes/subthemes is done. The incidents witnessed by the researcher during observation,

and comments of the participants during the think-aloud protocol were categorized

according to the different themes to form an initial thematic table.

3.7.1.4 Charting

Charting is a step to revise and finalize the themes, subthemes and related data. The

data clearly states the source of response. A thematic table was finalized.

3.7.1.5 Mapping and Interpretation

This step provides a clear view of the event or phenomena surrounding the research

field. The analysis summary is presented with significant explanation of the charted

themes (mapping the data to the cause and interpreting the data sets).

3.7.2 Quantitative Data Analysis

Descriptive statistics were used to analyse the data and quantitatively summarize the

data collection. According to Fisher and Marshall (2009), “Descriptive statistics are

simply the numerical procedures or graphical techniques used to organise and describe

the characteristics or factors of a given sample.” (pg. 93).

3.7.3 Data Analysis of Think-aloud Protocol

The collected data was manually analysed by using a framework analysis approach. A

thematic table was formed to summarise the analysis result.

Univ
ers

ity
 of

 M
ala

ya

49

3.7.4 Data Analysis of Observation

Qualitative and quantitative data analysis were used to analyse the data obtained from

the observation exercise. Data collected from the structural checklist was analysed by

using a frequency distribution method. The incidents that happened which were not listed

in the structural checklist, were manually analysed by using framework analysis. Both of

the collected data were combined and collectively analysed.

3.7.5 Data Analysis of Questionnaire

The data collected on Participants backgrounds in Part A of the questionnaire was used

to obtain the sample population, whereas the data obtained from Part B of the

questionnaire was transferred into Microsoft Excel for data analysis. The descriptive

statistics (frequency distribution, mean, median, mode, standard deviation) was used to

analyse and present the collected data for Question 1 to Question 12 from the

questionnaire. For the open-ended Question 13 and Question 14, the responses were

grouped into a few reasons by thematic analysis before calculation of frequency

distribution.

3.7.6 Results Discussion

The purpose of having a results discussion was to discuss the findings of the user

evaluation study based on the obtained results. The reasoning of the results in terms of

usability and features of the prototype which incorporates the proposed approach was

enveloped within the discussion. ISO 9241-11 standard was used to measure the usability

of prototype in terms of its effectiveness, efficiency and satisfaction. Triangulation was

also involved in the explanation of results by combining the qualitative and quantitative

data to provide the confirmation of findings and comprehensive results. Triangulation

Univ
ers

ity
 of

 M
ala

ya

50

was used in more than one particular approach during the research for the purpose of

obtaining richer and fuller data in helping to confirm the research results (Wilson, 2014).

3.8 Summary

This chapter describes the research methodology for this research. The methodology

of this research included six activities, starting with the literature review wherethe

researcher reviewed the existing approach/techniques for EUSC and FESC in order to

identify the research problems. Based on the produced statement of problems discovered,

the researcher identified the objectives and research questions. Subsequently, anapproach

was developed to introduce the designs of the proposed idea. Following that, a proof-of-

concept prototype as a working model was developed based on the proposed approach

and a combined qualitative and quantitative user evaluation study was designed to

evaluate the prototype and its underlying approach. This research used three data

collection methods (think-aloud protocol, observation and survey) to collect data for

result analysis. Framework analysis approach was used to analyse the collected

qualitative data, while descriptive statistics were used to analyse the collected quantitative

data. Finally, the analysed data was used during the results discussion.

Univ
ers

ity
 of

 M
ala

ya

51

CHAPTER 4: DESIGN AND IMPLEMENTATION OF PROTOTYPE

A proof-of-concept prototype (QuickWSC) was developed based on the proposed

approach. It allows end-user programmers to aggregate and execute web services to

achieve results. This chapter explains the requirements of QuickWSC, the architecture

design, UI design and implementation of QuickWSC. It also contains a section that details

the design of the multiple-view and navigation flow support adopted.

4.1 Requirements of QuickWSC

The user requirements were identified based on the analysis of existing FESC tools

and their limitations as discussed in Chapter 2, as well as the common conceptual and

usability issues faced by the end-user programmers (Cappiello et al., 2015; Namoun et

al., 2010). Figure 4.1 shows the use case diagram of QuickWSC. It illustrates the actors

involved and use cases that represents the functional requirements of QuickWSC

followed by the use case description.

Univ
ers

ity
 of

 M
ala

ya

52

Figure 4.1: Use Case Diagram of QuickWSC

Univ
ers

ity
 of

 M
ala

ya

53

Use case 1: Register web service
Actor(s): User
Summary Description: Allows all users to register the existing web services
Use case 2: Extract web service information
Actor(s): QuickWSC system
Summary Description: QuickWSC system extracts the web service information.
Use case 3: Test run web service
Actor(s): QuickWSC system
Summary Description: QuickWSC system tests the web service.
Use case 4: Save web service information
Actor(s): QuickWSC system
Summary Description: QuickWSC system saves the web service information into

its system database.
Use case 5: Create project
Actor(s): End-user programmer
Summary Description: End-user programmer creates a project to compose web

services.
Use case 6: Validate project name
Actor(s): QuickWSC system
Summary Description: QuickWSC system checks the project name against the

system database.
Use case 7: Select web service
Actor(s): End-user programmer
Summary Description: End-user programmer selects a web services for

composition.
Use case 8: Automatic generation of web service user interface
Actor(s): QuickWSC system
Summary Description: QuickWSC system generates the UI of the selected web

service.
Use case 9: Automatic generation of flowchart operator
Actor(s): QuickWSC system
Summary Description: QuickWSC system generates the flowchart operator of the

selected web service.
Use case 10: Configure application flow
Actor(s): End-user programmer
Summary Description: Allows end-user programmer to configure the application

flow.
Use case 11: Configure control flow
Actor(s): End-user programmer
Summary Description: Allows end-user programmer to configure the control flow.
Use case12: Configure data flow
Actor(s): End-user programmer
Summary Description: Allows end-user programmer to configure the data flow.
Use case 13: Check data type matching
Actor(s): QuickWSC system
Summary Description: QuickWSC system checks the data type between the web

services.
Use case 14: Execute service
Actor(s): End-user programmer
Summary Description: Allows end-user programmer to execute services.

Univ
ers

ity
 of

 M
ala

ya

54

4.2 Architecture Design of QuickWSC

Figure 4.2 shows the architecture design of QuickWSC. The system consists of three

main systems (Web Service Registration System, Web Service Composition System and

Executing System). Web Service Registration System is used by the web service provider

to add new web services into the system database. It consists of two subsystems, namely

Extracting Information Subsystem and Web service Verification Subsystem. Web Service

Composition System is responsible for the composition process and it comprises three

subsystems (Web Service Retrieving Subsystem, User Interface Generation Subsystem,

Workflow Generation Subsystem). Executing system runs the invocation process of the

composed web services and it consists of Servlet Execution Subsystem. The functionality

of the subsystems is described next.

Univ
ers

ity
 of

 M
ala

ya

55

Figure 4.2: System Architecture of QuickWSC

4.2.1 Extracting Information Subsystem (EIS)

EIS extracts the web services information provided by web service providers from

SOAP URL and RESTful API. The extracted web service information is a set of object

Winfo = {wsop, wsdesc, wsinmsg, wsoutmsg, inelm, outelm}, where

wsop is the web service name;

wsdesc is the web service description;

Univ
ers

ity
 of

 M
ala

ya

56

wsinmsg is the web service input message;

wsoutmsg is the web service output message;

inelm is the web service input parameters and data type;

outelm is the web service output parameters and data type.

4.2.2 Web Service Verification Subsystem (WSVS)

WSVS will test run the web services to verify them. The test run uses the sample values

given by the respective web service provider. The Winfo will be saved into the system

database if the web service can be invoked successfully.

4.2.3 Web Service Retrieving Subsystem (WSRS)

WSRS retrieves the respective web service information (Wi) from the system’s database

upon the end-user programmer’s selection from the list of web services provided. The

WSRS will return a set of object Wi = {wsid, wsop, wsdesc, wsinmsg, wsoutmsg, inelm,

outelm}, where wsop, wsdesc, wsinmsg, wsoutmsg, inelm and outelm were described in

Section 5.2.1 and wsid is the web service id in the system database. The web service

object will be sent to User Interface Generation subsystem and Workflow Generation

subsystem.

4.2.4 User Interface Generation Subsystem (UIGS)

UIGS generates the UI for the respective web service based on the web service object

from WSRS. A UI element will be generated for each input data required by the web

service based on the type of input data, as shown in Table 4.1. For example, if the input

data type is String or numeric, a TextBox will be generated. The results or output of

executing the web service will be shown in a table form. All the input UI elements and

the output table will be enclosed in a container box and shown in the “UI of Composed

Univ
ers

ity
 of

 M
ala

ya

57

Services” canvas. The generated graphical UI serves as a concrete medium for the

respective web service and provides a visualization of its input and output requirements.

The whole composed services’ UI is generated in HTML format and shown in the “UI of

Composed Services” canvas.

Table 4.1: UI Element Type Generation Logic

Data type Element type

String Text
Numeric (int, float, decimal, double) Text
Boolean Radio
Range Dropdown
Time Time box
Datetime Datetime box

4.2.5 Workflow Generation Subsystem (WGS)

WGS generates operator boxes for the respective web service based on the web service

object acquired from WSRS. Each operator box represents a primitive web service and

shows the names of its input and output parameters, alongside their data type in text

format. Operator boxes were developed using jquery.flowchart (JavaScript Jquery

plugin). The operator boxes are shown in the Workflow canvas.

4.2.6 Servlet Execution Subsystem (SES)

When executing any web service from the service UI, SES serves as a core component

to communicate with the web service server in order to invoke the respective web service.

The XML HttpRequest is used to transfer the data from a web browser to an application

server. SES will send a SOAP message or call a HTTP command to the web service server

for service invocation. SES will receive the response from web service server and send it

to back to the web browser to display its results.

Univ
ers

ity
 of

 M
ala

ya

58

(a) SOAP Web Service

When the end-user programmer executes the SOAP web service, SES will execute

the respective web service client program. The program will send a request to web service

client stub to invoke the corresponding method (Figure 4.2). The runtime system of web

service client stub then sends a SOAP message to web service server. When the web

service receives the SOAP message, the runtime system of web service will execute the

web service and send the response back to the web service client stub. Web service client

stub extracts the SOAP message and sends the response to web service client program in

the requested format. Client stub acts as a proxy between the client program and the web

service. The system will create the web service client stub for every web service. Every

method/operation in a SOAP web service will be created as an individual web service

client program in the system.

(b) RESTful Web Service

When the end-user programmer executes a RESTful web service, REST request

handler will receive the query parameter from web browser to form the invocation URL

before sending it through HTTP request to the web service server. The runtime system of

web service will return the response to SES.

4.3 User Interface Design of QuickWSC

Figure 4.3 shows the UI of QuickWSC which consists of three frames. The right frame

is the web services listing. It shows the available web services in QuickWSC. The centre

frame is the web service composition workplace (“User Interface of Composed Service”

canvas) for end-user programmers to compose web services. End-user programmers are

allowed to arrange the application/page flow and control flow within this canvas. The

order of the numbers (1, 2, 3, 4) shows the application flow (namely, the sequence of UI

pages of the composed services). End-user programmers can also arrange the web

Univ
ers

ity
 of

 M
ala

ya

59

services into different vertical levels (for example, as labelled by ‘A’, ‘B’, ‘C’ in Figure

4.3) to configure the control flow of the composed services. The order of the alphabets

(A, B, C) shows the control flow (namely, the sequence of execution of the constituent

services). The left frame is the workflow workplace (“Workflow” canvas). It shows the

operator boxes that represents the web services selected for the composition. An operator

box shows the corresponding web service’s input and output parameters alongside their

data types. In this canvas, the End-user programmers can configure the data flow between

the web services by connecting the output parameter/field of a web service to an input

parameter of the second web service. This makes the output data from the first web

service to flow as an input to the second web service, resembling a data flowchart. An

example of the data flow of the service composition is shown by the blue connecting lines

in Figure 4.3. The data flow is presented by connections among the flowchart operators

while the control flow and application flow are presented by the order and arrangement

of web service UI. In short, the UI of QuickWSC presents the three different flows

(application flow, control flow and data flow) in an integrated view.

Univ
ers

ity
 of

 M
ala

ya

60

Figure 4.3: User Interface Design of QuickWSC

4.4 Multiple View and Navigation Flow Support Design

Apart from a multiple-view design, cascading view or single view could be used in the

design of a EUSC/FESC system. Nevertheless, QuickWSC adopted a multiple-view

design in its UI in order to incorporate the proposed integrated three-flow approach and

provide justification in this section. CRUISe system also adopted a multiple-view design

(Pietschmann, Voigt, Rümpel, et al., 2009).

Multiple-view design uses two or more different views to support the study of a single

conceptual entity(Baldonado et al., 2000). The integrated three-flow approach calls for a

3

2

1

4

A

B

C

Operator

Application
flow

Control
flow

Data flow

Univ
ers

ity
 of

 M
ala

ya

61

diversity of views that are complimentary, thus fulfilling two guideline rules that

advocates a multiple-view design (Baldonado et al., 2000). Multiple-view is applicable

when there is a diversity of attributes, models, user profiles, levels of abstraction or genres

(rule of diversity) (Baldonado et al., 2000). The approach allows end-user programmers

to explicitly configure the three different types of flows required in web service

compositions. Instead of cramping all the three flows into one single view, QuickWSC

splits the configuration of data flow from the configuration of the control flow and

application flow by putting the first into a separate canvas (Workflow canvas) and the

latter two into another canvas known as “UI of Composed Services” canvas. This is done

to reduce unnecessary information overload to the end-user programmers. Since control

flow which chains the execution order of web services is more closely related to the

application flow that depicts the order of pages transition, they are put in the same canvas.

On the other hand, data flow that depicts which web services’ output serves as which web

services’ input, is of a different genre, and is therefore captured in another canvas. The

benefit of having the data flow in another canvas is particularly obvious when the same

output of a web service serves also as the input to more than one web services.

According to the rule of complementarity, multiple views is applicable when different

views bring out correlations and/or disparities (Baldonado et al., 2000). Having multiple

views can help to show otherwise hidden relations. QuickWSC auto-generates a

corresponding operator box for each web service selected for the composition in the

Workflow canvas. An operator box shows the basic information of the respective web

service such as its name, input and output parameters together with their data types. When

using operator boxes to configure the data flow, end-user programmers will be able to

identify compatible output data type to serve as input for another web service. When

generating the operator box, QuickWSC also generates the UI elements of the respective

web service in the “UI of Composed Services” canvas. The data flow connections which

Univ
ers

ity
 of

 M
ala

ya

62

end-user programmers configured into the Workflow canvas shows the expected transfer

of data between the web services when the end-user programmers execute the services,

and this is not visible in the “UI of Composed Services” canvas, especially in the case of

an output of a web service serving as input for multiple web services.

Having justified the use of a multiple-view design, the following explains the decisions

made on QuickWSC’s view presentation and interaction. QuickWSC follows four design

guidelines/rules for these aspects (Baldonado et al., 2000). First, QuickWSC chooses to

present the multiple views side-by-side (rule of space/time resource optimization) instead

of sequentially, to save end-user programmers time in looking at the two views

(canvases). . Understanding the relationships between views can be difficult for the user

and perceptual cues can be used to make the relationships more obvious to the user (rule

of self-evidence). Two perceptual cue techniques are applied in the design of QuickWSC

to help user understand the relationships between the Workflow and the “UI of Composed

Services” canvases: brushing and navigational slaving. Brushing technique depicts users

highlighting or selecting items in one view and the system highlighting the corresponding

items in another view. The brushing technique is applied in both canvases. When a user

moves the mouse pointer over the UI of a web service in “UI of Composed Services”

canvas, QuickWSC will highlight it and the respective operator box in the Workflow

canvas with a green boundary, and vice versa (Figure 4.4). This helps the user to identify

the corresponding entities between the two canvases. Univ
ers

ity
 of

 M
ala

ya

63

Figure 4.4: Highlighting Corresponding Items in the Two Views

The navigational slaving technique refers to propagating movements in one view

automatically to other views. The application of this technique in fact achieves the design

required by the rule of consistency and will be explained in the following. Rule of

consistency requires making the interfaces for multiple views consistent, and making the

states of multiple views consistent. For example, if the objects or regions are

shown/highlighted in one view, the corresponding objects or regions in the related view

should also be shown. Consistent views facilitates learning and consistent states helps in

object comparisons. QuickWSC applies the consistency rule to the Workflow and “UI of

Composed Services” canvases. The operator boxes in the Workflow canvas and the

respective UI elements of the corresponding web services in the second canvas are

positioned at the same horizontal coordinate points (y-axis) in the two canvases. The

navigational slaving technique is applied to the horizontal and vertical scrollbars of both

canvases, resulting in the display of the corresponding regions in both the two canvases

when the end-user programmer scrolls either one of the canvases using its scrollbars.

Changes in “UI of Composed Services” canvas are reflected in Workflow canvas.

Green

Univ
ers

ity
 of

 M
ala

ya

64

Rule of attention management is about using the perceptual techniques to focus the

user’s attention on the right view at the right time. It is a challenge to ensure the user’s

attention is at the right place at the right time when there are multiple views so that they

are not distracted away from the view. QuickWSC uses colour highlighting technique for

attention management, where it highlights the items of focus with a green boundary in

both views (Figure 4.4).

4.5 Implementation of QuickWSC

4.5.1 Web Service Registration System

The user interface for web service registration was developed as a HTML page by

using HTML, JavaScript and CSS. Figure 4.5 shows the web service registration user

interface of SOAP web services. After submitting the WSDL URL as in Figure 4.5 (a),

all the operations of the web services will be displayed as in Figure 4.5 (b) for test run by

providing the sample values. The web service information will be saved into the database

when all the operations are invoked successfully.

Figure 4.5: Web Service Registration User Interface of SOAP Web Services

(a)

(b)

Univ
ers

ity
 of

 M
ala

ya

65

 Figure 4.6 shows the web service registration user interface for RESTful web services.

The RESTful information and sample values must be provided. The web service

information will be saved into database when it is invoked successfully.

Figure 4.6: Web Service Registration User Interface of RESTful Web Services

Web service registration system was developed using Java object-oriented

programming. Figure 4.7 shows the class diagram for web service registration. It consists

of SOAP and RESTful web service registration and verification.

Figure 4.7: Class Diagram for Web Service Registration

Univ
ers

ity
 of

 M
ala

ya

66

4.5.2 Web Service User Interface Generation

The web service User Interface is created by using HTML. Figure 4.8 shows the

HTML structure of web service User Interface. Figure 4.8 (a) is a ‘row’ container that

can arrange multiple pages to run concurrently. The container has an id pattern of

‘seqrow_p’ where ‘seqrow’ is the syntax of row container and p is the increment number

for the row div. Figure 4.8 (b) is a ‘page’ container which can comprise of multiple web

services with the id pattern of ‘page_q’, where ‘page’ is the syntax of page and q is the

increment number for page. Figure 4.8 (c) is a container structure for single web service.

Each of the web service User Interface consists of the following: Figure 4.8 (d) the web

service name, Figure 4.8 (e) input parameter, Figure 4.8(f) submission button and Figure

4.8(g) results table. The syntax of op represents the web service User Interface, {opid} is

the web service id in the database and n is the increment number of duplicate web service.

The input parameter structure Figure 4.8 (e) is looped or repeated by the number of input

parameter, x. The output of the web service is arranged in table form Figure 4.8 (h) and

the output parameter structure Figure 4.8 (i) is looped by the number of output parameter,

y.

Figure 4.8: HTML Structure of Web Service User Interface

(f)

(a)
(b)

(c)
(d)

(e)

(g)
(h)

(i)
Univ

ers
ity

 of
 M

ala
ya

67

4.5.3 Workflow Generation

jquery.flowchart was used to generate the operator in “Workflow” canvas which

represents a primitive web service selected by the end-user programmers. The operator is

used to configure the data flow. Figure 4.9 shows the flowchart structure including the

operator, title, input connector, output connector and data flow link.

Figure 4.9: Flowchart Structure

The flowchart information was saved as a variable ‘data’ by using json object. The

‘data’ consists of two main objects which are operators and links. Figure 4.10 shows the

sample of variable ‘data’ and its information with corresponding values. The ‘top’ and

‘left’ are the positions of operators from the left edge in the unit of pixel. The ‘id’ is the

unique identity that represents the operators in the flowchart. The id is created by a pattern

‘flc{opid}_n’, where flc represents the corresponding flowchart operator, {opid} is a five

digit web service id retrieved from database and n is the increment number for the

redundant web service. The ‘properties’ comprises the ‘title’ of operator (name of web

service) , and ‘inputs’ and ‘outputs’ of operator (parameter name and data type). The

connected “links” are saved with four informations. The ‘fromOperator’ refers to the link

Univ
ers

ity
 of

 M
ala

ya

68

connecting from which operator, ‘fromConnector’ refers to the link connecting from

which output connector, ‘toOperator’ refers to the link connecting to which operator and

‘toConnector’ refers to the link connecting to which input connector.

Figure 4.10: Sample Data in Flowchart

Univ
ers

ity
 of

 M
ala

ya

69

4.6 Summary

This chapter presents the requirements of the prototype (QuickWSC), the architecture

QuickWSC that describes the functionalities and responsibilites of the three main systems

(Web Service Registration, Web Service Composition and Web Service Execution) and

their subsystems. Following that, the User Interface design of the QuickWSC was

introduced to facilitate the interaction between the end-user programmers and prototype

system. Besides that, multiple view design was used to design the application user

interface. The use of multiple view design was supported by the guidelines with

justification. Finally, the details of implementation was explained.

Univ
ers

ity
 of

 M
ala

ya

70

CHAPTER 5: USER EVALUATION STUDY

This chapter presents the user evaluation study conducted to evaluate the prototype

and the approach. It also describes the results collected from the pilot study which was

conducted prior to the user evaluation study. Feedback from pilot study was used to refine

the prototype and design of the user evaluation study.

5.1 Pilot Study Design and Results

In the pilot study, participants were asked to use QuickWSC to build an application by

aggregating relevant web services based on a predefined scenario.

5.1.1 Predefined Scenario

The predefined scenario (that requires the use of four web services) is as below.

 “A man, while traveling between two cities, suffers from an electrical breakdown in his

car. He turns on the QuickWSC client installed on his PDA/laptop (alternatively, the

driver could make a call to an operator at the control center who will use the application

on the caller’s behalf). He then enters the registration number of his vehicle, problem of

vehicle and driver information to Vehicle Insurance service to check the insurance

status. Upon getting the confirmation from the Insurance service, he sends the location

as well as the problem from which the car has been suffering via Mechanic service to

find out the nearest mechanic to the car’s location who is capable to fix the stated problem

i.e. electrical breakdown. He can search for the nearest workshop’s address via the

Workshop service by providing the location, in case the mechanic could not handle the

breakdown and might need to tow-away the car to a workshop.”

Univ
ers

ity
 of

 M
ala

ya

71

5.1.2 Pilot Study Procedure

 The following is the pilot study procedure. It was estimated that a participant would

take about 30 to 45 minutes to complete the pilot study.

1) A brief introduction to the research was shown to the participant (as shown in

Appendix A), comprising mainly of the research purpose, terms and conditions of

participation, and researchers’ contact details.

2) Participants were given a manual user guide that describes the main functionalities

of QuickWSC.

3) Participants were given a set of tasks to be performed, namely, use QuickWSC to

build or compose an application by aggregating relevant web services based on the

given scenario, to execute the composed services, to check on the composition

results, and to state the start and end time of building the application. While

composing the application, participants were required to engage in think-aloud

protocol which required them to say whatever came into their mind as they were

building the application. This might include what they were seeing, thinking,

doing, and feeling.

4) Direct observation was also carried out during the composition process. The

sessions were video-recorded (with participants’ permission) for further analysis.

Participants were asked to write the start and end time of building the composed

application in Section 1 of the user evaluation study instrument (as shown in

Appendix B).

5) After completing the task of composing the application based on the scenario, the

participants were also asked to complete a short questionnaire. Section 2 Part A of

the questionnaire asks about participants’ educational background, programming

experience, and level of computer skills. Section 2 Part B of questionnaire asks

Univ
ers

ity
 of

 M
ala

ya

72

participants’ opinions on the features of QuickWSC and usefulness of three flows

configurations for service composition (as shown in Appendix B).

5.1.3 Pilot Study Result

An acquaintance from Faculty of Science, University of Malaya helped to disseminate

the information about the recruitment of participants for the study and to obtain the

contact details of students who has volunteered to take part in the study. The researcher

contacted the students and arranged for individual evaluation session.

Two students from the Faculty of Science, University of Malaya, participated in the

pilot study. The results are summarized below: Both of the participants were able to

compose the services based on the given scenario. One took 13 minutes to compose the

services. The other took 10 minutes. From the observation, it was noticed that the

participants knew what they were supposed to do but they were not sure how to do it. For

example, the participants knew that they had to drag the service from the web services

listing frame and drop it in the “UI of Composed Services” canvas, but they verbally

confirmed with the researcher regarding the dropping position. Besides that, they knew

that they had to specify the data flow, but they did not know how to create the required

connections in the Workflow canvas. One of the participants had suggested to

synchronize the data flow between the two canvases.

5.2 Refinement to Pilot Study Design

Based on the findings from the pilot study, the following refinements were made. The

rest of the study designs remained the same for user evaluation study.

Univ
ers

ity
 of

 M
ala

ya

73

1) Refine QuickWSC

The refinement is in the form of synchronizing the data flow between the two

canvases (“UI of composed service” canvas and “Workflow” canvas).

2) Change the printed user guide to a screencast user guide video

The screencast user guide video shows how to use the tool, focusing mainly on

conveying the idea of the three flows and how to configure them.

5.3 User Evaluation Study

5.3.1 User Evaluation Study Procedure

The user evaluation study procedure is corresponding to the pilot study procedure

(Section 6.1.2), except for step 2 where the participant was given a video user guide that

describes the main functionalities of QuickWSC.

5.4 Results of User Evaluation Study

This section presents the background of participants, results of observation and the

opinions of the participants on the features of QuickWSC obtained from the

questionnaire.

5.4.1 Participants Background

Twenty students from Faculty of Science, University of Malaya were recruited to take

part in the user evaluation study. There were two master students and eighteen

undergraduate students. The average participation time was 20 minutes per participant.

The participation took place at the Human Computer Interaction Lab, Faculty of

Computer Science and Information Technology, University of Malaya.

The participants’ levels of programming and computer skills are as below: Majority of

the participants (fifteen) have not learned or had any prior knowledge in programming.

Univ
ers

ity
 of

 M
ala

ya

74

Twelve of these participants possessed basic computer skills such as Internet, email,

hardware, software concepts, word processing, formatting, presentations, graphics,

multimedia, and spreadsheets. The remaining three had intermediate computer skills

including Internet, email, hardware, software concepts, terminology, word processing,

formatting, tables, presentations, graphics, multimedia, spreadsheets, and databases. One

participant acquired some self-learnt Python, C++, R and Arduino, but the participant told

the researcher that he could not write a complete program with the languages. Another

four participants also indicated that they have learnt programming on their own and could

write simple programs. However, when further probed further by the researcher, they

mentioned that they attended a one-day programming class during their matriculation

study where codes were given to them by the tutor, and they were able to execute the

codes but did not learn about programming theory. Three of these four participants have

basic computer skills and one have intermediate computer skills.

5.4.2 Think-aloud Protocol Results

Appendix D shows the indexing table of data collected during the think-aloud protocol.

Table 5.1 shows the thematic table obtained from analysis done on data collected from

think-aloud protocol. Three participants were concerned about familiarity with the

prototype system. They felt that the users need to have knowledge on and familiarity with

the system in order to use it. One participant doubted when placing the first web service

in the UI of composed service canvas. One participant was confused with the use of

operators, and asked the researcher if ‘the operator represent a status of service?’. Three

participants showed a lack of understanding on data flow. Two of them asked the

researcher on how to configure data flow while one of them thought input parameter of

one service can be connected to the input parameter of another service. There is only one

participant who wondered whether she was supposed to key in the input before executing

Univ
ers

ity
 of

 M
ala

ya

75

the service. Seven out of 20 participants mentioned the problems they faced when using

the prototype, while the rest were silent and used the prototype without any difficulty.

Table 5.1: Thematic Table for Data Collected from Think-aloud Protocol

Themes Subthemes Responses

System
understanding

System unfamiliarity P1, P3, P7

Service selection Doubtful on service placing P7
Data flow
configuration

Confuse with the usage of
operator

P8

Lack of data flow understanding P10, P11, P20
Service execution Doubtful on how to key in input

data
P1

 Note: “P” refers to a participant

5.4.3 Observation Results

Table 5.2 shows the checklist table used during the observation session to record

whether the participants performed the pre-identified activities, and Table 5.3 shows the

themes obtained from analysis done on data collected from the observation. Appendix E

shows the indexing table of data collected by the researcher during observation.

Univ
ers

ity
 of

 M
ala

ya

76

Table 5.2: Checklist Table of Pre-identified Activities for Observation

 Participants

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Service Selection

Select vehicle insurance
service

1

Select current location
service

1

Select nearest mechanic
service

1

Select nearest workshop
service

1

Select non related service 1 1 1 1 - - 1 - - - - - 1 1 - 1 1 1 - -
Delete non related service - - 1 1 - - 1 - - - - - - - - - - - - -
Application flow

configuration

Configure application flow 1
Control flow configuration

Configure control flow 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1
Data flow configuration

Configure data flow 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
Comfigure data flow 2 1
Service compositon

Successfully composed the
services

1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1

Service Execution

Input the data 1 1 1 1 - 1 1 - 1 1 - 1 1 - 1 1 1 1 1 1
Execute the composed
services and get the results

1 1 1 1 - 1 1 - 1 1 - 1 1 - 1 1 1 1 1 1

“1” : performed successfully; “0” : performed but failed ; “-” : did not perform

Univ
ers

ity
 of

 M
ala

ya

77

Table 5.3: Thematic Table for Data Collected from Observation

Themes Subthemes Responses

Service selection Doubtful on the functionality of
web service

P3, P7

Application flow
configuration

Doubtful on placing a new web
service

P3, P7

Data flow
configuration

Misunderstanding on how to
connect

P1, P4, P16, P17

Ask for configuration confirmation P12
Lack of data flow understanding P10, P11

Service execution Hesitation on method invocation P3, P16, P17

Observation results for choosing web services from the web services listing frame:

After reading the given scenario, majority of the participants (eighteen) were able to

choose the four required web services from the web services listing frame without any

difficulty. Two participants asked the researcher about the functionality of one of the web

services in the web service list before they selected the web service. Despite that, these

two participants were able to choose the correct web services from the web services listing

frame (as shown in Table 5.2). Half of the participants (ten) selected one extra web service

which was not required by the scenario. Three of them realised that they have chosen a

non-related web service and deleted it. Nevertheless, the non-related web service did not

affect the service composition results. In summary, the twenty participants had all chosen

the four required web service successfully.

Observation results for application flow configuration: All of the participants were

able to configure the application flow. Two of the participants tried to drop a new service

into a UI of composed service canvas, attempting to add the service but had failed to do

so. However, they eventually found the way to add a new service into the UI of composed

service canvas on the second attempt.

Univ
ers

ity
 of

 M
ala

ya

78

Observation results for control flow configuration: Majority of the participants

(sixteen) were able to configure the control flow. Four of the participants failed to

configure the control flow.

Observation results for data flow configuration: Eighteen of the participants were able

to configure the data flow. Two participants were not able to configure data flow. They

asked the researcher (who was also the observer) on how to configure data flow during

the composition session. Four participants made a few attempts to configure the data flow

due to misunderstanding on how to connect. They tried connecting the data flow by

dragging instead of clicking.

Observation results for service composition: Majority of the participants (sixteen)

successfully composed the services based on the given scenario, by configuring the three

flows. Four participants failed in composing the web services. They did not manage to

configure the control flow, but were able to configure the application and data flow.

Observation results for service execution: From the sixteen participants who

successfully composed the services, all of them were able to key in the input for all the

services, execute the composed application, and get the results.

5.4.4 Questionnaire Results

Figure 5.1 shows the distribution of the participants’ opinion on the ease of QuickWSC

feature usage which was obtained from questions 1-6 of the questionnaire. Figure 5.2

shows distribution of the participants’ opinion on the visualization and execution features

of QuickWSC which was obtained from questions 7-12 of the questionnaire. Table 5.4

shows the mean, median, mode and standard deviation (SD) for questions 1-12 of the

questionnaire.

Univ
ers

ity
 of

 M
ala

ya

79

Figure 5.1: Results on Ease of Use and Synchronization Features of QuickWSC

Figure 5.2: Results on Visualization and Execution Features of QuickWSC

Univ
ers

ity
 of

 M
ala

ya

80

Table 5.4: Descriptive Statistics for Question 1 to Question 12 of the

Questionnaire

 Mean Median Mode SD

Question 1 3.85 4 4 1.14
Question 2 3.95 4 4 0.51
Question 3 4.2 4 4 0.52
Question 4 4.3 4 4 0.47
Question 5 4.05 4 4 0.51
Question 6 4.5 5 5 0.61
Question 7 4.45 4 4 0.51
Question 8 4.55 5 5 0.51
Question 9 4.6 5 5 0.50
Question 10 4.55 5 5 0.51
Question 11 4.3 4 4 0.47
Question 12 4.5 5 5 0.61

Question 1 states “It is easy to find the relevant web services for the scenario. If your

response is 3 and below, please state the obstacles of finding the relevant web services.”

Fifteen (75%) participants agreed or strongly agreed that it was easy to find the relevant

web services in QuickWSC. Two (10%) participants were undecided on the ease of

finding the relevant web services while three (15%) participants disagreed or strongly

disagreed that it was easy to find the relevant services. The mean is 3.85 (SD=1.14) which

falls between ‘Neither Agree nor Disagree’ and ‘Agree’, and has a wider spread around

the mean (2.71-4.99) shows that some participants faced some problems when finding the

relevant services. Median 4 shows that more than half of the participants rated ‘Agree’ or

‘Strongly Agree’ on the ease to find the relevant web services in QuickWSC. Similarly,

mode 4 also shows that majority of participants rated ‘Agree’ on the ease to find the

relevant web services in QuickWSC.

Question 2 states “It is easy to specify the application flow in the “UI of composed

services” canvas. If your response is 3 and below, please state why it is not easy to specify

the application flow in the respective canvas.” Seventeen (85%) participants agreed or

strongly agreed that it was easy to specify the application flow. Three (15%) participants

Univ
ers

ity
 of

 M
ala

ya

81

were undecided on this aspect. The mean is 3.95 (low SD=0.51) which falls between

‘Neither Agree nor Disagree’ and ‘Agree’, it shows that a few participants faced some

problems when configuring the application flow. Median 4 shows that more than half of

the participants rated ‘Agree’ or ‘Strongly Agree’ on the ease to specify the application

flow in QuickWSC. Similarly, mode 4 also shows that majority of participants rated

‘Agree’ on the ease to specify the application flow in QuickWSC.

Question 3 states “It is easy to specify the control flow in the “UI of composed

services” canvas. If your response is 3 and below, please state why it is not easy to specify

the control flow in the respective canvas.”. All except one of the participants agreed or

strongly agreed that it was easy to specify the control flow. One participant was undecided

on this aspect. The mean is 4.2 (low SD=0.52) which falls between ‘Agree’ and ‘Strongly

Agree’, it shows that it was easy to specify the control flow. Median 4 shows that more

than half of the participants rated ‘Agree’ or ‘Strongly Agree’ on the ease to configure

the control flow in QuickWSC. Similarly, mode 4 also shows that majority of participants

rated ‘Agree’ on the ease to configure the control flow in QuickWSC.

Question 4 states “It is easy to specify the data flow in the “workflow” canvas. If your

response is 3 and below, please state why it is not easy to specify the data flow in the

respective canvas.” All participants agreed or strongly agreed that it was easy to specify

the data flow. The mean is 4.3 (low SD=0.47) which falls between ‘Agree’ and ‘Strongly

Agree’, it shows that it was easy to specify the data flow. Median 4 shows that more than

half of the participants rated ‘Agree’ or ‘Strongly Agree’ on the ease to configure the data

flow in QuickWSC. Similarly, mode 4 also shows that majority of participants rated

‘Agree’ on the ease to configure the data flow in QuickWSC.

Question 5 states “It is easy to compose the application by specifying the three flows

(application flow, control flow and data flow) in the integrated two views (workflow

Univ
ers

ity
 of

 M
ala

ya

82

canvas and UI of composed services canvas). If your response is 3 and below, please state

why it is not easy to compose the application by specifying the three flows in the

integrated two views.”. Eighteen (90%) participants agreed or strongly agreed that it was

easy to compose the application by specifying the three flows (application flow, control

flow and data flow) in the integrated two views of Workflow canvas and “UI of

Composed Services” canvas. Two (10%) participants were undecided on this aspect. The

mean is 4.05 (low SD=0.51) which falls between ‘Agree’ and ‘Strongly Agree’, it shows

that it was easy to compose the application by specifying the three flows (application

flow, control flow and data flow) in the integrated two views (workflow canvas and UI

of composed services canvas). Median 4 shows that more than half of the participants

rated ‘Agree’ or ‘Strongly Agree’ on the ease to compose the application by specifying

the three flows in the integrated two views. Similarly, mode 4 also shows that majority of

participants rated ‘Agree’ on the ease to compose the application by specifying the three

flows in the integrated two views.

Question 6 states “The web service information is synchronized between the

“workflow” canvas and “UI of composed services” canvas. If your response is 3 and

below, please state what web service information is not synchronized between the two

canvases.”. Nineteen (95%) participants agreed and strongly agreed that web service

information was synchronized between the Workflow canvas and “UI of Composed

Services” canvas. Only one (5%) participant was undecided on this aspect. The mean is

4.5 (low SD=0.61) which falls between ‘Agree’ and ‘Strongly Agree’, it shows that web

service information is synchronized between the “workflow” canvas and “UI of

composed services” canvas. Median 5 shows that more than half of the participants rated

‘Strongly Agree’ on the synchronization of web service information between the two

views. Similarly, mode 5 also shows that majority of participants rated ‘Strongly Agree’

on the synchronization of web service information between the two views.

Univ
ers

ity
 of

 M
ala

ya

83

Question 7 states ““UI of composed services” canvas provides a clear visualization of

GUI of the web services on an application page. If your response is 3 and below, please

state why the “UI of composed services” canvas does not provide a clear visualization of

the GUI on an application page.”. All the participants agreed or strongly agreed that the

“UI of Composed Services” canvas provides a clear visualization of the GUI of the web

services on an application page. All participants agreed or strongly agreed that “UI of

composed services” canvas provides a clear visualization of the GUI of the web services

on an application page. The mean is 4.45 (low SD=0.51) which falls between ‘Agree’ and

‘Strongly Agree’, it shows that “UI of composed services” canvas provides a clear

visualization of the GUI of the web services on an application page. Median 4 shows that

more than half of the participants rated ‘Agree’ or ‘Strongly Agree’ on “UI of composed

services” canvas provides a clear visualization of the GUI of the web services. Similarly,

mode 4 also shows that majority of participants rated ‘Agree’ on “UI of composed

services” canvas provides a clear visualization of the GUI of the web services.

Question 8 states “UI of composed services” canvas provides a clear visualization of

the application flow of the composed services. If your response is 3 and below, please

state why the “UI of composed services” canvas does not provide a clear visualization of

the application flow of the composed services.” All participants agreed or strongly agreed

that “UI of composed services” canvas provides a clear visualization of the application

flow of the composed services. The mean is 4.55 (low SD=0.51) which falls between

‘Agree’ and ‘Strongly Agree’, it shows that “UI of composed services” canvas provides

a clear visualization of the application flow of the composed services. Median 5 shows

that more than half of the participants rated ‘Strongly Agree’ on “UI of composed

services” canvas provides a clear visualization of the application flow of the composed

services. Similarly, mode 5 also shows that majority of participants rated ‘Strongly

Univ
ers

ity
 of

 M
ala

ya

84

Agree’ on “UI of composed services” canvas provides a clear visualization of the

application flow of the composed services.

Question 9 states “UI of composed services” canvas provides a clear visualization of

the control flow of the composed services. If your response is 3 and below, please state

why the “UI of composed services” canvas does not provide a clear visualization of the

control flow of the composed services.”. All the participants agreed or strongly agreed

that the “UI of Composed Services” canvas provides a clear visualization of the

application and control flows of the composed services. The mean is 4.6 (low SD=0.50)

which falls between ‘Agree’ and ‘Strongly Agree’, it shows that “UI of composed

services” canvas provides a clear visualization of the control flow of the composed

services. Median 5 shows that more than half of the participants rated ‘Strongly Agree’

on “UI of composed services” canvas provides a clear visualization of the control flow of

the composed services. Similarly, mode 5 also shows that majority of participants rated

‘Strongly Agree’ on “UI of composed services” canvas providing a clear visualization of

the control flow of the composed services.

Question 10 states “Workflow” canvas provides a clear visualization of the data flow

of the composed services. If your response is 3 and below, please state why the

“Workflow” canvas does not provide a clear visualization of the data flow of the

composed services.” All the participants agreed or strongly agreed that the “Workflow”

canvas provides a clear visualization of the data flow of the composed services. The mean

is 4.55 (low SD=0.51) which falls between ‘Agree’ and ‘Strongly Agree’, it shows that

“Workflow” canvas provides a clear visualization of the data flow of the composed

services. Median 5 shows that more than half of the participants rated ‘Strongly Agree’

on “Workflow” canvas providing a clear visualization of the data flow of the composed

services. Similarly, mode 5 also shows that majority of participants rated ‘Strongly

Univ
ers

ity
 of

 M
ala

ya

85

Agree’ on “Workflow” canvas providing a clear visualization of the data flow of the

composed services.

Question 11 states “The three flows (application flow, control flow and data flow) are

displayed clearly in the integrated two views (workflow canvas and UI of composed

services canvas) during design time. If your response is 3 and below, please state which

part(s) is/are not displayed clearly in the integrated two views during design time.” All

the participants agreed or strongly agreed that Workflow canvas provides a clear

visualization of the data flow of the composed services, and the three flows were

displayed clearly in the integrated two views during design time. The mean is 4.3 (low

SD=0.47) which falls between ‘Agree’ and ‘Strongly Agree’, it shows that the three flows

(application flow, control flow and data flow) are displayed clearly in the integrated two

views (workflow canvas and UI of composed services canvas) during design time.

Median 4 shows that more than half of the participants rated ‘Agree’ or ‘Strongly Agree’

on the clear display of the three flows in the integrated two views. Similarly, mode 4 also

shows that majority of participants rated ‘Agree’ on the clear display of the three flows

in the integrated two views.

Question 12 states “The execution process of the composed services is based on the

three flows configuration (application flow, control flow and data flow). If your response

is 3 and below, please state why you say that the execution process of the composed

services is not based on the three flows configuration.” Nineteen participants (95%)

agreed or strongly agreed that the execution process of the composed services was based

on the three flows configuration and they managed to get the execution results. One (5%)

participant was undecided on this aspect. The mean is 4.5 (low SD=0.61) which falls

between ‘Agree’ and ‘Strongly Agree’, it shows that the execution process of the

composed services is based on the three flows configuration (application flow, control

Univ
ers

ity
 of

 M
ala

ya

86

flow and data flow). Median 5 shows that more than half of the participants rated

‘Strongly Agree’ on the execution process of the composed services based on the three

flows configuration. Similarly, mode 5 also shows that majority of participants rated

‘Strongly Agree’ on the execution process of the composed services is based on the three

flows configuration.

Question 13 states “Does having the three flows configurations integrated in the two

views help you in composing the application? Please state your reason.”. All of the

participants indicated a “Yes”. Figure 6.3 shows the distribution of the reasons given for

a ‘Yes’ answer for Question 13.

Figure 5.3: Reasons Given for Question 13

Question 14 states “Is it useful to have an end-user service composition tool that helps

you to create the User Interface of the composed application when you are composing the

0

1

2

3

4

5

6

7

8

9

10

clear data flow clear visualization
of the three flows

easy to compose
services

manage to
compose services

by the three
flows

understanding
how the

composed
application

processes and
works

P
ar

ti
ci

p
an

ts

Reasons given for integrated three flows
helping in composition

Univ
ers

ity
 of

 M
ala

ya

87

services? Please state your reason.” All participants stated “Yes”. Figure 6.4 shows the

distribution of the reasons given for a ‘Yes’ answer for Question 14.

Figure 5.4: Reasons Given for Question 14

5.5 Results Discussion

This section discusses the results of the user evaluation study. ISO 9241-11 standard

(Bevan, 1999; Mifsud, 2020; Speicher, 2015) was used to measure the usability of the

prototype, QuickWSC. It was used to measure the usability of a product by specified users

in terms of three factors (effectiveness, efficiency and satisfaction).

Effectiveness: In this research, the effectiveness of QuickWSC was measured using

the following equation (Alturki, Gay, & Alturki, 2017) by using the observation results

(Section 6.4.3):

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑢𝑛𝑑𝑒𝑟𝑡𝑎𝑘𝑒𝑛
 𝑥 100%

The effectiveness of QuickWSC was calculated based on the successful completion of

the 6 types of tasks the participants performed, namely, 4 service selection tasks, 1

Univ
ers

ity
 of

 M
ala

ya

88

application flow configuration task, 1 control flow configuration task, 2 data flow

configuration tasks, 1 service composition task and 1 service execution task. Figure 6.5

shows the effectiveness of QuickWSC for twenty participants.

Figure 5.5: Effectiveness of QuickWSC

Fifteen participants (P1, P2, P3, P4, P6, P7, P9, P12, P13, P15, P16, P17, P18, P19,

P20) scored 100% for effectiveness. This indicates that 75% of the participants completed

the 6 types of tasks successfully although some of them experienced some minor issues

as described below: Two of them (P3, P7) had doubts on the functionality of certain

selected web services and the location to place the web services when they were selecting

the web services. The participants would be able to complete the service selection task

more smoothly if it was easy to find the relevant services from QuickWSC. The median

and mode of question 1 in Table 5.4 are both 4 which shows that majority of the

participants agreed on the ease of finding the relevant services. However, the mean score

of question 1 (3.85) in Table 5.4 shows some participants have had certain concerns when

finding the relevant services based on the scenario. Two participants were undecided on

the ease of finding the relevant web services giving the reasons that they were new to web

services and not sure whether or not they were choosing the correct web services. Three

1
0

0

1
0

0

1
0

0

1
0

0

7
0

1
0

0

1
0

0

7
0

1
0

0

9
0

6
0

1
0

0

1
0

0

7
0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

1
0

0

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 1 0 P 1 1 P 1 2 P 1 3 P 1 4 P 1 5 P 1 6 P 1 7 P 1 8 P 1 9 P 2 0

PARTICIPANTS

EFFECTIVENESS OF QUICKWSC

Univ
ers

ity
 of

 M
ala

ya

89

participants disagreed or strongly disagreed that it was easy to find the relevant services.

The reasons they gave were that they did not know what web services was and one of

them have never explored web services.

From Table 5.2, all of the participants were able to configure the application flow. The

participants should be able to complete the application flow configuration task if it is easy

to specify the application flow when using QuickWSC. The median and mode of question

2 in Table 5.4 are both 4 which shows that majority of the participants agreed on the ease

of specifying the application flow. The mean score of question 2 (3.95) in Table 5.4 near

to 4 shows that the participants agreed on the ease of specifying the application flow.

However, three participants gave their opinions about the application flow configuration.

One of them stated that they were unfamiliar with the tools when using it for the first

time. Another was confused with arranging the application flow in the canvas. The third

was confused between the application flow and control flow.

The participants should be able to complete the data flow configuration task if it is

easy to specify the data flow when using QuickWSC. Although the positive result of mean

(4.3), median (4) and mode (4) for question 4 in Table 5.4 shows majority of the

participants agreed that it was easy to specify the data flow, but the researcher observed

that participants experienced some minor issues as follows which did not affect the

results. One participant (P8) was confused with the use of the data flowchart, one

participant (P12) double checked with the researcher on the data flow configuration and

four participants (P1, P4, P16, P17) made a few attempts to configure the data flow due

to misunderstanding on how to connect. Besides that, one participant (P20) lacked the

understanding on data flow but manage to complete all the tasks.

One participant scored 90% for effectiveness. This participant (P10) failed on data

flow configuration task because of the lack of understanding on data flow. Participant

Univ
ers

ity
 of

 M
ala

ya

90

should be able to complete the control flow configuration task if it is easy to specify the

control flow, and to complete the service composition task if it is easy to specify the three

flows in the integrated two views. The mean (4.2), median (4) and mode (4) for question

3 in Table 5.4 shows majority of the participants agreed that it is easy to configure the

control flows. The mean (4.05), median (4) and mode (4) for question 5 in Table 5.4

shows majority of the participants agreed that it is easy to configure the three flows in the

integrated two views. Participants should also be able to complete the service execution

task if the composed services executed based on the three flows configuration. The mean

(4.5), median (5) and mode (5) for question 12 in Table 5.4 shows majority of the

participants strongly agreed that the execution process of composed services is based on

the three flows configuration. However, one participant (P1) hesitated to key in the input

value and three participants (P3, P16, P17) took some time to think on how to invoke for

the first web service during the service execution task. There were three participants (P5,

P8, P14) who scored 70%, and one participant (P11) who scored 60% for effectiveness.

All of these four participants failed on control flow configuration task, service

composition task and service execution task. One participant who was undecided on the

ease of specifying the control flow was confused between the application flow and control

flow. Two participants who were undecided on the ease to compose the application by

specifying the three flows in the integrated two views stated that this was new to them

and they were not familiar on their first use of this tool, but would be easy to use once

familiar with it. One participant who was undecided that the composed services executed

based on the three flow configurations stated that he was not sure whether he was

composing in the right way due to confusion between application flow and control flow.

The control flow configuration task affected the service composition task and service

execution task because the service composition task and service execution task would fail

if control flow configuration task failed. P11 also failed one data flow configuration task

Univ
ers

ity
 of

 M
ala

ya

91

due to a lack of understanding on data flow. The average of effectiveness found for the

20 participants were taken as the overall effectiveness of QuickWSC as below:

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑜𝑓 𝑄𝑢𝑖𝑐𝑘𝑊𝑆𝐶

=

100 + 100 + 100 + 100 + 70 + 100 + 100 + 70 + 100 + 90 +
60 + 100 + 100 + 70 + 100 + 100 + 100 + 100 + 100 + 100

20

= 93%

The overall effectiveness of QuickWSC at 93% shows a high level of effectiveness

which indicates that the participants were able to carry out the tasks involved in service

composition by using QuickWSC which adopted an integrated three-flow approach and

that QuickWSC is effective.

Based on the data analysis of question 13 in Section 5.4.4, the three-flow configuration

integrated in the two views helped the participants in composing the application because

it was easy to compose the services. Besides that, the system showed a clear visualization

of the three flows and it assisted them in understanding how the composed application

processes and works. Some participants stated that they managed to compose services by

applying the three flows and the system showed a clear data flow.

Efficiency: Efficiency refers to the time taken by participants to complete a task

(Alturki et al., 2017). In this research, efficiency is used to measure the time taken to

complete the web service composition by the twenty participants. The efficiency of

QuickWSC was measured using Overall Relative Efficiency, using the equation (Alturki

et al., 2017) below.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
∑ ∑ 𝑛𝑖𝑗𝑡𝑖𝑗

𝑛
𝑖=1

𝑅
𝑗=1

∑ ∑ 𝑡𝑖𝑗
𝑛
𝑖=1

𝑅
𝑗=1

 𝑥 100%

Univ
ers

ity
 of

 M
ala

ya

92

where:

R = The number of users

nij = The result of task i by user j; if the user successfully completes the task, then

nij = 1, else nij = 0

tij = The time spent by user j to complete task i in minute. If the task is not successfully
completed, then time is measured until the moment the user quits the task.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 of QuickWSC

=

(1𝑥15)+(1𝑥6)+(1𝑥9)+(1𝑥5)+(0𝑥5)+(1𝑥3)+(1𝑥9)+(0𝑥7)+(1𝑥7)+(1𝑥8)+
(0𝑥5)+(1𝑥10)+(1𝑥7)+(0𝑥7)+(1𝑥7)+(1𝑥5)+(1𝑥8)+(1𝑥5)+(1𝑥6)+(1𝑥8)

15+6+9+5+5+3+9+7+7+8+5+10+7+7+7+5+8+5+6+8
 𝑥 100 %

= 83.1%

The 83.1% overall relative efficiency of QuickWSC shows that QuickWSC is efficient

and it supports the participants to achieve the goal which is composing web services.

Satisfaction: According to ISO9241-11 (Diah et al., 2010; Speicher, 2015),

satisfaction is defined as ‘freedom from discomfort and positive attitudes toward the use

of the system’. The satisfaction level can be looked into the areas of ease of use,

organization of information, clear labeling, visual appearance, contents, and error

corrections of the system (Alturki et al., 2017; Jeng, 2005). This research focused on the

ease of use, organization of information and clear visualization aspect of satisfaction. The

average score of the 5-point Likert scale Questions 1 to 11 in Part B of the questionnaire

were used to measure the satisfaction level of QuickWSC. Questions 1 to 5 ask about the

ease of use of QuickWSC. Question 6 asks about the synchronization of web service

information between two views where the two views presents the different configuration

information. Question 7 asks about the clear visualization of web service GUI while

question 8 to 11 asks about the clear visualization of three flows. Figure 5.6 shows the

Univ
ers

ity
 of

 M
ala

ya

93

average satisfaction score for Questions 1 to 11 of the twenty participants. The average

satisfaction score of the twenty participants is taken as the overall satisfaction score of

QuickWSC with the maximum score of 5.

Figure 5.6: Average Satisfaction Score

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑄𝑢𝑖𝑐𝑘𝑊𝑆𝐶:

=

4 + 4.19 + 3.82 + 4.55 + 4.37 + 4.73 + 4.46 + 4 + 4.19 + 4.37 +
4.37 + 4.27 + 4.55 + 4.28 + 4.19 + 4.82 + 4 + 4.73 + 3.82 + 4.28

20

= 4.30

The average satisfaction score of 18 participants (P1, P2, P4, P5, P6, P7, P8, P9, P10,

P11, P12, P13, P14, P15, P16, P17, P18, P20) for the 11 questions are 4, which falls in

the range between ‘Agreed’ and Strongly Agreed’. The average satisfaction scores of the

remaining 2 participants (P3, P19) are between 3 and 4. P3 reasoned that they were

unfamiliar to the system. P19 reasoned that is was difficult to find the relevant web

services. However, the overall satisfaction score of QuickWSC is 4.30 out of 5, which

falls between ‘Agreed’ and ‘Strongly Agreed’, shows a high satisfaction. This result

4 4
.1

9

3
.8

2 4
.5

5

4
.3

7 4
.7

3

4
.4

6

4 4
.1

9

4
.3

7

4
.3

7

4
.3

7

4
.5

5

4
.2

8

4
.1

9 4
.8

2

4

4
.7

3

3
.8

2 4
.2

8

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 1 0 P 1 1 P 1 2 P 1 3 P 1 4 P 1 5 P 1 6 P 1 7 P 1 8 P 1 9 P 2 0

PARTICIPANTS

AVERAGE SATISFACTION SCORE OF
Q1-Q11

Univ
ers

ity
 of

 M
ala

ya

94

shows that the participants were satisfied with QuickWSC. Based on the data analysis of

question 14 in Section 5.4.4, all of the participants also agreed that it is useful to have an

end-user service composition tool that helps them to create the User Interface of the

composed application when composing the services. The reasons they gave were that the

tool is easy to operate and saves time in composing the web services; that they could use

the tool to solve some simple problems especially during emergencies. There were a

minority of opinions that gave the reasons of clear composition logic, clear data flow

management, clear service user interface, spontaneous design and runtime, and no

programming knowledge required. However, one participant stated that it is slightly

difficult for first-time users as they are not familiar with the tool.

Based on the high percentage of effectiveness, efficiency and satisfaction score,

QuickWSC showed a high level of usability.

Discussion of Other Results from Questionnaire: The positive results on the ease of

finding the relevant web services and on the ease of specifying each of the three flows

(Part B, Questions 1 – 4) shows that QuickWSC is easy to use. It reduces the difficulty

for end-users in specifying the execution order of the web services, as well as logic of

application and data flow configuration by explicitly configuring the three flows proposed

by the proposed approach.

Results are also positive in terms of synchronization of the web service information

between the two views/canvases (Part B, Question 6) and execution of composed services

that follows the three flows configuration (Part B, Question 12). The synchronization of

web service information between the two canvases reflects an instant update of changes

and composition results.

Univ
ers

ity
 of

 M
ala

ya

95

Besides that, results also show that QuickWSC provides a clear visualization of the

GUI of the web services and the three flows (Part B, Questions 7 – 11) and the clear

visualization of three flows assists the participants in understanding how the composed

application processes and works (Part B, Question 13). This indicates that the auto

generation of web service UI and three-flow configurations in the proposed approach

provides a concrete and organized visual layout of the composed application which

reduces the difficulty in positioning the layout of the web services. In addition, it enables

end-user programmers to gain basic understanding of web services composition process

through the visualization of the three types of flows.

The results also show that it is easy to compose web services by explicitly specifying

the three flows in an integrated two-view using QuickWSC (Part B, Question 5) and the

three flows configurations integrated with the two views helps in composing application

from web services (Part B, Question 13). This shows that the proposed three-flow

approach successfully simplifies the process of web service composition and it practically

leverages a tight integration between the UI development and the composition of the web

services that helps end-user programmers to compose service-based applications without

much difficulty.

The results also show that EUSC tool which provides UI development during the

composition process is useful for end-user programmers because it could help in a number

of ways (as stated by the participants: solving complicated tasks or problems, great during

emergencies, in choosing own preferences of tools, acquiring the help needed, only one

software to solve problems, tailored application according to needs easily) (Part B,

Question 14) and it is easy to use and save time. EUSC tool is suitable for the end-user

programmers who have no technical knowledge. The results of the user evaluation study

show a promising potential of QuickWSC and its underlying approach.

Univ
ers

ity
 of

 M
ala

ya

96

5.6 Summary

This chapter describes the pilot study design and results followed by the user

evaluation study to collect the data from 20 participants for the evaluation purpose. The

user evaluation study included the qualitative and quantitative data collection and

analysis. The data collection methods used were think-aloud protocol, observation and

survey. Framework analysis approach was used to analyse the collected qualitative data.

Thematic tables were produced based on the framework analysis approach to analyse the

problems encountered by the participants from data collected over the think-aloud

protocol and observation. Framework analysis approach was also used to categorize the

open-ended questionnaire in the survey for the opinions given by the participants towards

the proposed approach and EUSC tool. Descriptive statistics was used to analyse the

quantitative 5-point Likert scale questionnaire. After that, the analysed data were used to

discuss the usability of QuickWSC in terms of effectiveness, efficiency and satisfaction,

and the features of QuickWSC that incorporated the proposed approach. The results show

a promising potential of QuickWSC and its underlying approach.

Univ
ers

ity
 of

 M
ala

ya

97

CHAPTER 6: CONCLUSION

This research proposed a three-flow approach that supports a close integration between

web service composition and the development of the User Interface of the composed

services. This chapter discusses the achievements of the research objectives, threats to

validity, contribution of research and future work.

6.1 Achievement of Research Objectives

To achieve RO1, existing web service composition approaches/techniques and

features of FESC tools were reviewed (Chapter 2).

RO2 was achieved through the development of the proposed integrated three-flow

approach (application flow, control flow and data flow) for end-user service composition

support, concurrent UI development, and web service composition to deal with the current

limitations of FESC (RO2). The approach allows end-user programmers to explicitly

configure the three different types of flows (application flow, control flow and data flow)

involved in service composition.

A proof-of-concept prototype, QuickWSC that incorporates the three-flow approach

was developed (RO3). It adopts a side-by-side multiple-view design to support visual

configuration of the three flows in an uncluttered yet synchronized manner that adhered

to established design guidelines.

A user evaluation study on QuickWSC (RO4) was conducted. The results show that

QuickWSC has a high usability and the underlying approach is promising. It is easy to

compose web services by explicitly specifying the three flows, configurations integrated

in the two views using the three flows helps in composing application from web services,

and that no technical knowledge is required to use QuickWSC.

Univ
ers

ity
 of

 M
ala

ya

98

6.2 Threats to Validity

This section discusses the threats to internal and external validity of the research and

explains the appropriate design strategies to mitigate the threats.

According to Brewer and Crano (2000), internal validity is defined as “the true value

that can be assigned to the conclusion that a cause-effect relationship between an

independent variable and dependent variable has been establish within the context of the

particular research setting”. In a simple way, internal validity is the degree of confidence

that the causal relationship tested is not influenced by other factors or variables. The

participants had been given a brief introduction about the purpose of the study. This could

have made the participants aware of what was studied and influenced their performance.

However, this possible “awareness” threat was minimized as the participants did not

know the actual scenario of web services composition that they were supposed to perform

until the composition task was given. Besides that, the participants were given the

freedom to compose the web services. This could have caused them to perform some

unnecessary tasks. However, all the participants underwent the same user evaluation

study design and setting, and therefore the threat to “instrumentation bias” was

minimized.

External validity refers to the generalization of causal finding, that is, whether it can

be concluded that the same cause-effect relationship would be obtained across different

subjects, settings and methods (Brewer & Crano, 2000). One of the threats to external

validity of this study is that a small number of participants were recruited for the user

evaluation study due to the difficulty of recruiting participants and the time constraint of

this project. This caused the results to be non-generalizable. Nevertheless, all the

participants recruited have a similar background and fulfilled the end-user criteria of the

Univ
ers

ity
 of

 M
ala

ya

99

research. In addition, ISO standard was used to measure the usability of prototype and

this helped to minimize the threat to “reliability of measure”.

6.3 Contribution of Research

This research makes the following contributions:

a) A new three-flow approach that leverages instant integration, synchronization and

visualization of the application’s UI development and web service composition.

The approach simplifies the process of web service composition by allowing end-

user programmers to configure three different types of flows that are important in

service-assembled applications through graphical UIs without the need of any

technical knowledge. The proposed approach addresses a number of conceptual

and usability issues of service composition found in the literature. The user

evaluation study results show that the approach as implemented in the prototype

tool (QuickWSC) is easy to use and has promising potential in the field of FESC.

b) QuickWSC, a proof-of-concept prototype serves as a working model of the

approach. The prototype can be extended to include more web services for use in

the composition of different types of applications.

6.4 Future Works

The current approach only covered three (sequence, merge and split) out of the five

control flow patterns, the other two control flow patterns (condition and loop) can be

future works. From the observation results, some end-user programmers were doubtful

when they were selecting the web services from the listing. The prototype can be

improved in future to show the functionalities of the respective web services more

explicitly to the end-user programmers. Besides that, the security for sensitive

information can be taken into consideration in future because it is one of the issues end-

Univ
ers

ity
 of

 M
ala

ya

100

user programmers are concerned about. Another future work is to recruit more

participants to evaluate QuickWSC in order to get more findings.

6.5 Conclusion

End-User Service Composition (EUSC) allows end-user programmers to compose

their own applications by aggregating existing web services. However, end-user

programmers typically have a low level of technical knowledge. They still require some

techniques to help them to perform EUSC even though many approaches have been

introduced to support it. Front-end Service Composition (FESC) has been introduced to

assist end-user programmers who are lacking in programming skills for composing web

services. FESC enhances the intuitiveness of the service composition process for the end-

user programmers where the composition approach is characterized by composition of

the web services in the User Interface. However, there are not many studies on FESC and

end-user programmers has also experienced a number of conceptual and usability issues

of service composition.

This research developed a new FESC approach that leverages a tight integration

between the development of the UI of an application and the composition of the web

services required by the application, to enable end-user programmers to compose service-

based applications by existing web services without much difficulty. The three-flow

approach which was integrated in a multiple view design was successfully implemented

as a FESC tool (QuickWSC). The three flows play important roles because they represent

the composition logic of the composition process. The UI of the web services is

automatically generated and this reduces the effort required for front-end development.

A side-by-side multiple-view design was adopted during the development to support

visual configuration of the three flows in a synchronized manner by using established

Univ
ers

ity
 of

 M
ala

ya

101

design guidelines. QuickWSC that incorporates the three-flow approach was developed

as a working model of the proposed approach.

A mixed method research comprising qualitative and quantitative method was used to

design the user evaluation study to evaluate QuickWSC that incorporates the three-flow

approach. The user evaluation study that includes think-aloud protocol, observation and

survey was conducted where 20 end-user programmers were recruited to evaluate

QuickWSC. The results show that QuickWSC has a high level of usability. It simplifies

the composition of service applications for end-user programmers by explicitly specifying

the three flows in the two views and that no technical knowledge is required to use

QuickWSC.

The outcome of the result shows that the underlying approach is promising and it has

achieved the aim of the research.

Univ
ers

ity
 of

 M
ala

ya

102

REFERENCES

Agarwal, V., Chafle, G., Dasgupta, K., Karnik, N., Kumar, A., Mittal, S., & Srivastava,
B. (2005). Synthy: A system for end to end composition of web services. Journal
of Web Semantics, 3(4), 311-339.

Akiki, P. A., Akiki, P. A., Bandara, A. K., & Yu, Y. (2020). EUD-MARS: End-user
development of model-driven adaptive robotics software systems. Science of
Computer Programming, 200, 102534.

AlSedrani, A., & Touir, A. (2016). Web service composition processes: A comparative
study. 7(1), 1-21.

Alturki, R., Gay, V., & Alturki, R. (2017). Usability testing of fitness mobile application:
methodology and quantitative results.

Anne, H. (2013). Direct Observation. In V. Fred R. (Ed.), Encyclopedia of Autism
Spectrum Disorders (pp. 980). New York, NY: Springer.

Ardito, C., Costabile, M. F., Desolda, G., Manca, M., Matera, M., Paternò, F., & Santoro,
C. (2019). Improving Tools that Allow End Users to Configure Smart
Environments. Paper presented at the International Symposium on End User
Development.

Bak, N., Chang, B.-M., & Choi, K. (2020). Smart Block: A visual block language and its
programming environment for IoT. Journal of Computer Languages, 60, 100999.

Baldonado, M. Q. W., Woodruff, A., & Kuchinsky, A. (2000). Guidelines for using
multiple views in information visualization. In Proceedings of the working
conference on Advanced visual interfaces (pp. 110-119): Association for
Computing Machinery.

Barricelli, B. R., Cassano, F., Fogli, D., & Piccinno, A. (2019). End-user development,
end-user programming and end-user software engineering: A systematic mapping
study. 149, 101-137.

Bevan, N. (1999). Quality in use: Meeting user needs for quality. Journal of systems and
software, 49(1), 89-96.

Bogart, C., Burnett, M., Cypher, A., & Scaffidi, C. (2008). End-user programming in the
wild: A field study of CoScripter scripts. In 2008 IEEE Symposium on Visual
Languages and Human-Centric Computing (pp. 39-46): IEEE.

Brewer, M. B., & Crano, W. D. (2000). Research design and issues of validity. 3-16.

Burnett, M. M., & Myers, B. A. (2014). Future of end-user software engineering: beyond
the silos. In Proceedings of the on Future of Software Engineering - FOSE 2014
(pp. 201-211).

Univ
ers

ity
 of

 M
ala

ya

103

Cappiello, C., Matera, M., & Picozzi, M. (2015). A UI-Centric Approach for the End-
User Development of Multidevice Mashups. ACM Transactions on the Web, 9(3),
1-40. doi:10.1145/2735632

Chang, K. S.-P., & Myers, B. A. (2017). Gneiss: spreadsheet programming using
structured web service data. Journal of Visual Languages & Computing, 39, 41-
50.

Coronado, E., Mastrogiovanni, F., Indurkhya, B., & Venture, G. (2020). Visual
Programming Environments for End-User Development of Intelligent and Social
Robots, a Systematic Review. Journal of Computer Languages, 100970.

Daniel, F., Casati, F., Benatallah, B., & Shan, M.-C. (2009). Hosted universal
composition: Models, languages and infrastructure in mashart. In International
Conference on Conceptual Modeling (pp. 428-443). Springer, Berlin: Springer.

Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., & Saint-Paul, R. (2007).
Understanding ui integration: A survey of problems, technologies, and
opportunities. IEEE Internet Computing, 11(3), 59-66.

Diah, N. M., Ismail, M., Ahmad, S., & Dahari, M. K. M. (2010). Usability testing for
educational computer game using observation method. In 2010 international
conference on information retrieval & knowledge management (CAMP) (pp. 157-
161): IEEE.

Driss, M., Aljehani, A., Boulila, W., Ghandorh, H., & Al-Sarem, M. (2020). Servicing
Your Requirements: An FCA and RCA-Driven Approach for Semantic Web
Services Composition. 8, 59326-59339.

Fisher, M. J., & Marshall, A. P. (2009). Understanding descriptive statistics. Australian
Critical Care, 22(2), 93-97.

Foundation, E. (2020). Eclipse IDE for Java Developers. Retrieved from
https://www.eclipse.org/downloads/packages/release/oxygen/3a/eclipse-ide-
java-developers

Foundation, T. A. S. (2020). Apache Tomcat. Retrieved from http://tomcat.apache.org/

Hang, F., & Zhao, L. (2013). HyperMash: a heterogeneous service composition approach
for better support of the end users. In 2013 IEEE 20th International Conference
on Web Services (pp. 435-442): IEEE.

Hang, F., & Zhao, L. (2015). Supporting End-User Service Composition: A Systematic
Review of Current Activities and Tools. In 2015 IEEE International Conference
on Web Services (pp. 479-486).

Jääskeläinen, R. (2010). Think-aloud protocol. 1, 371-374.

Jeng, J. (2005). Usability assessment of academic digital libraries: effectiveness,
efficiency, satisfaction, and learnability. Libri55(2-3), 96-121.

Univ
ers

ity
 of

 M
ala

ya

https://www.eclipse.org/downloads/packages/release/oxygen/3a/eclipse-ide-java-developers
https://www.eclipse.org/downloads/packages/release/oxygen/3a/eclipse-ide-java-developers
http://tomcat.apache.org/

104

Kasmi, M., Jamoussi, Y., & Ghézala, H. H. B. (2018). Towards a Collaborative,
Interactive Web Services Composition Approach Based on an Intentional Group
Recommender System. Paper presented at the International Conference on Design
Science Research in Information Systems and Technology.

Laga, N., Bertin, E., & Crespi, N. (2010). Composition at the frontend: The user centric
approach. In 2010 14th International Conference on Intelligence in Next
Generation Networks (pp. 1-6): IEEE.

Laga, N., Bertin, E., Glitho, R., & Crespi, N. (2012). Widgets and composition
mechanism for service creation by ordinary users. IEEE Communications
Magazine, 50(3), 52-60.

Latih, R., Patel, A., & Zin, A. M. (2014). A Systematic Literature Review of end-user
programming for the web mashup. 60(1), 119-132.

Lemos, A. L., Daniel, F., & Benatallah, B. (2015). Web service composition: A survey
of techniques and tools. ACM Comput. Surv., 48(3), 1-41. Retrieved from
https://doi.org/10.1145/2831270

Lin, C., Lu, S., Lai, Z., Chebotko, A., Fei, X., Hua, J., & Fotouhi, F. (2008). Service-
oriented architecture for VIEW: a visual scientific workflow management system.
In 2008 IEEE International Conference on Services Computing (Vol. 1, pp. 335-
342): IEEE.

Lin, J., Wong, J., Nichols, J., Cypher, A., & Lau, T. A. (2009). End-user programming of
mashups with vegemite. In Proceedings of the 14th international conference on
Intelligent user interfaces (pp. 97-106): Association for Computing Machinery.

Liu, X., Hui, Y., Sun, W., & Liang, H. (2007). Towards service composition based on
mashup. Paper presented at the 2007 IEEE Congress on Services (Services 2007).

Lizcano, D., Alonso, F., Soriano, J., & Lopez, G. (2011). A new end-user composition
model to empower knowledge workers to develop rich internet applications.
Journal of Web Engineering, 10(3), 197-233.

Marin, C., & Lalanda, P. (2007). Docosoc-domain configurable service-oriented
computing. In IEEE International Conference on Services Computing (SCC 2007)
(pp. 52-59): IEEE.

Mehandjiev, N., Lecue, F., Wajid, U., & Namoun, A. (2010). Assisted service
composition for end users. In 2010 Eighth IEEE European Conference on Web
Services (pp. 131-138): IEEE.

Microsoft. Microsoft SQL Server 2008 R2 Express. Retrieved from
https://www.microsoft.com/en-my/download/details.aspx?id=26729

Microsystems, S. (2002). A Simple Example: HelloWorld. Retrieved from
http://www.inf.fu-berlin.de/lehre/SS03/19560-
P/Docs/JWSDP/tutorial/doc/JAXRPC3.html

Univ
ers

ity
 of

 M
ala

ya

https://doi.org/10.1145/2831270
https://www.microsoft.com/en-my/download/details.aspx?id=26729
http://www.inf.fu-berlin.de/lehre/SS03/19560-P/Docs/JWSDP/tutorial/doc/JAXRPC3.html
http://www.inf.fu-berlin.de/lehre/SS03/19560-P/Docs/JWSDP/tutorial/doc/JAXRPC3.html

105

Mifsud, J. (2020). Usability Metrics – A Guide To Quantify The Usability Of Any
System. Retrieved from https://usabilitygeek.com/usability-metrics-a-guide-to-
quantify-system-usability/

Namoun, A., Nestler, T., & De Angeli, A. (2010). Conceptual and usability issues in the
composable web of software services. In International Conference on Web
Engineering (pp. 396-407). Berlin, Heidelberg: Springer.

Namoun, A., Owrak, A., & Mehandjiev, N. (2019). Non-Programmers Composing
Software Services: A Confirmatory Study of the Mental Models and Design
Challenges. 9(24), 5558.

Nestler, T., Dannecker, L., & Pursche, A. (2009). User-centric composition of service
front-ends at the presentation layer. In Service-Oriented Computing.
ICSOC/ServiceWave 2009 Workshops (pp. 520-529). Berlin, Heidelberg:
Springer.

Nestler, T., Feldmann, M., Hübsch, G., Preußner, A., & Jugel, U. (2010). The ServFace
builder-A WYSIWYG approach for building service-based applications. In
International Conference on Web Engineering (pp. 498-501). Berlin, Heidelberg.:
Springer.

Obrenović, Ž., & Gašević, D. (2008). End-User Service Computing: Spreadsheets as a
Service Composition Tool. IEEE Transactions on Services Computing, 1(4), 229-
242. doi:10.1109/tsc.2008.16

Okamoto, S., Dascalu, S., & Egbert, D. (2006). Web interface development environment
(WIDE): software tool for automatic generation of web application interfaces. In
2006 World Automation Congress (pp. 1-7): IEEE.

Paik, H.-y., Lemos, A. L., Barukh, M. C., Benatallah, B., & Natarajan, A. (2017). Web
Service Implementation and Composition Techniques (Vol. 256): Springer.

Patel, S., & Shah, T. (2016). A survey on issues and challenges of web service
development, composition, discovery. 5(1).

Pi, B., Zou, G., Zhong, C., Zhang, J., Yu, H., & Matsuo, A. (2012). Flow editor: Semantic
web service composition tool. In 2012 IEEE Ninth International Conference on
Services Computing (pp. 666-667): IEEE.

Pickup, J. C., Holloway, M. F., & Samsi, K. (2015). Real-time continuous glucose
monitoring in type 1 diabetes: a qualitative framework analysis of patient
narratives. 38(4), 544-550.

Pietschmann, S., Nestler, T., & Daniel, F. (2010). Application composition at the
presentation layer: alternatives and open issues. In Proceedings of the 12th
International Conference on Information Integration and Web-based
Applications & Services (pp. 461-468).

Pietschmann, S., Voigt, M., & Meissner, K. (2009). Dynamic composition of service-
oriented web user interfaces. In 2009 Fourth International Conference on Internet
and Web Applications and Services (pp. 217-222): IEEE.

Univ
ers

ity
 of

 M
ala

ya

https://usabilitygeek.com/usability-metrics-a-guide-to-quantify-system-usability/
https://usabilitygeek.com/usability-metrics-a-guide-to-quantify-system-usability/

106

Pietschmann, S., Voigt, M., Rümpel, A., & Meißner, K. (2009). Cruise: Composition of
rich user interface services. In International Conference on Web Engineering (pp.
473-476). Berlin, Heidelberg: Springer.

Radeck, C., Blichmann, G., & Meißner, K. (2013). CapView–functionality-aware visual
mashup development for non-programmers. In International Conference on Web
Engineering (pp. 140-155). Berlin, Heidelberg: Springer.

Ridge, A. (2014). On the Design of End-user Service Composition Applications.
University of Bath,

Ridge, A., & O’Neill, E. (2014). Establishing requirements for End-user Service
Composition tools. Requirements Engineering, 20(4), 435-463.
doi:10.1007/s00766-014-0207-x

Roberts, J. C. (1998). On encouraging multiple views for visualization. In Proceedings.
1998 IEEE Conference on Information Visualization. An International
Conference on Computer Visualization and Graphics (Cat. No. 98TB100246) (pp.
8-14). London, UK: IEEE.

Romero, O. J., Dangi, A., & Akoju, S. A. (2019). NlSC: Unrestricted natural language-
based service composition through sentence embeddings. Paper presented at the
2019 IEEE International Conference on Services Computing (SCC).

Roy Chowdhury, S., Rodríguez, C., Daniel, F., & Casati, F. (2012). Baya: assisted
mashup development as a service. In Proceedings of the 21st International
Conference on World Wide Web (pp. 409-412).

Sheng, Q. Z., Qiao, X., Vasilakos, A. V., Szabo, C., Bourne, S., & Xu, X. (2014). Web
services composition: A decade’s overview. 280, 218-238.

Shimomura, T. (2004). A page-transition framework for image-oriented Web
programming. 29(2), 10-10.

Speicher, M. (2015). What is usability? a characterization based on ISO 9241-11 and
ISO/IEC 25010.

Srivastava, A., & Thomson, S. B. (2009). Framework analysis: a qualitative methodology
for applied policy research.

Srivastava, B., & Koehler, J. (2003). Web service composition-current solutions and open
problems. Paper presented at the ICAPS 2003 workshop on Planning for Web
Services.

Tabatabaei, S. G. H., Kadir, W., & Ibrahim, S. (2011). A review of web service
composition approaches. In Proceedings of the 1st International Conference on
Computer Science and Information Technology (CCSIT).

Vulcu, G., Bhiri, S., Hauswirth, M., & Zhou, Z. (2008). A user-centric service
composition approach. In OTM Confederated International Conferences" On the
Move to Meaningful Internet Systems" (pp. 160-169). Berlin, Heidelberg:
Springer.

Univ
ers

ity
 of

 M
ala

ya

107

W3Schools. (2020). Java OOP. Retrieved from
https://www.w3schools.com/java/java_oop.asp

Wang, G., Yang, S., & Han, Y. (2009). Mashroom: end-user mashup programming using
nested tables. In Proceedings of the 18th international conference on World wide
web (pp. 861-870).

Wilson, V. (2014). Research methods: triangulation. Evidence based library and
information practice, 9(1), 74-75.

Wong, J., & Hong, J. I. (2007). Making mashups with marmite: towards end-user
programming for the web. In Proceedings of the SIGCHI conference on Human
factors in computing systems (pp. 1435-1444).

Yamaizumi, T., Sakairi, T., Wakao, M., Shinomi, H., & Adams, S. (2006). Easy soa:
Rapid prototyping environment withweb services for end users. In 2006 IEEE
International Conference on Web Services (ICWS'06) (pp. 931-932): IEEE.

Yang, J. (2003). Web service componentization. 46(10), 35-40.

Yu, J., Benatallah, B., Casati, F., & Daniel, F. (2008). Understanding mashup
development. 12(5), 44-52.

Zhai, Z., Cheng, B., Tian, Y., Chen, J., Zhao, L., & Niu, M. (2016). A Data-Driven
Service Creation Approach for End-Users. IEEE Access, 4, 9923-9940.
doi:10.1109/access.2017.2647838

Zhang, J. (2010). Co-Taverna: a tool supporting collaborative scientific workflows. In
2010 IEEE International Conference on Services Computing (pp. 41-48): IEEE.

Zhao, L., Loucopoulos, P., Kavakli, E., & Letsholo, K. (2019). User studies on end-user
service composition: a literature review and a design framework. 13(3), 1-46.

Univ
ers

ity
 of

 M
ala

ya

https://www.w3schools.com/java/java_oop.asp

108

LIST OF PUBLICATIONS AND PAPERS PRESENTED

Conference Presentation

Lim, M. T., & Su, M. T. (2018). A Review on End-User Service Composition
Approaches. In Malaysian Software Engineering Conference (MySec 2018),
Universiti Malaysia Sarawak (UNIMAS).

Journal Publication (ISI indexed)

Lim, M. T., & Su, M. T. (2019). AN INTEGRATED THREE-FLOW APPROACH FOR
FRONT-END SERVICE COMPOSITION. Malaysian Journal of Computer
Science, 1-24.

Univ
ers

ity
 of

 M
ala

ya

