CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction.

Let R be a ring. R is said to be von Neumann regular if for each element
x € R, there exists y € R such that zyz = z. Von Neumann regular ring
is a part of noncommutative ring theory that was originally introduced by von
Neumann in the mid-1930s to clarify certain aspects of operator algebras. Indeed,
much of the impetus behind the development of regular rings is due to this and to
some connections with functional analysis. As would be expected, von Neumann
regular rings have also been extensively studied by ring theorists for their own
sake. For convenience, we shall refer to von Neumann regular rings as just regular

rings in the remainder of this thesis.

A ring R is said to be strongly regular if for each z € R there exists y € R
such that 2y = z. The study of strongly regular rings was pioneered by Arens
and Kaplansky [AK]. They showed that a strongly regular ring is regular and
that in a strongly regular ring, every one-sided ideal is two-sided. Forsythe and
McCoy [FM] showed that a regular ring is strongly regular if and only if it has
no nonzero nilpotent elements. Strongly regular rings have also been studied
by Azumaya [Az], Goodearl [Go], Kennison [Ke], Yue [Y2], Li and Schein [LS],
Zhang [Zh], Zhang and Lu [ZL] among others.

Strongly m-regular rings were introduced by Kaplansky [Ka] as a common
generalization of algebraic algebras and artinian rings. A ring R is said to be

strongly m-regular if for each a € R there exist a positive integer n and an element
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= € R such that ¢" = a"*'z and az = za. In the early years, strongly m-regular
rings were studied extensively by Arens and Kaplansky [AK] and Azumaya [Az].
The theory of strongly 7-regular rings has since developed into a variety of ap-
plications. For example, since algebraic algebras are strongly m-regular rings, the
study of strongly 7-regular rings has been used to solve some classical open ques-
tions on algebraic algebras. In more recent times, strongly 7-regular rings have
been studied by Dischinger [Di], Ara [Ar], Hirano [Hi], Shirley [Sh] and Badawi

[B3] among others.

Topics in this dissertation are mainly concerned with several aspects of
strongly m-regular and strongly regular rings. We shall also show how these
rings are related to other types of “regular” rings. All rings considered in this
dissertation are associative with identity unless stated otherwise and all modules
are unitary. For any ring R, by an R-module M, we mean a right R-module
and sometimes write M as Mpg. In the remainder of this chapter, we shall fix

notations and terminologies for later use.

1.2 Nil, nilpotent, idempotent and annihilator.

An element z of a ring R is nilpotent if there is a positive integer n such that
2™ = 0. A right (left, or two-sided) ideal I of R is nil provided that every element
of I'is nilpotent. The ideal I is called nilpotent if I"={0} for some positive integer
n. Equivalently, I is nilpotent if for every choice of n elements ay, as,...,a, € I,
the product ajaz...a, = 0. It is clear that nilpotent ideals are nil. A ring R is
said to be reduced if it has no nonzero nilpotent elements. A nilpotent element
2 € R is said to have index n if n is the least positive integer such that 2" = 0.
If the indices of all nilpotent elements of R are bounded, then R is said to have

bounded index (of nilpotency).



Let R be a ring. An element e € R is said to be an idempotent if €2 = e.
An element f € R is a near idempotent if f™ is an idempotent for some positive
integer n. Clearly, every idempotent is a near idempotent. A ring R is said to

be indecomposable if and only if 1 is the only nonzero central idempotent of R.
Proposition 1.2.1. If the center of a ring R is a field, then R is indecomposable.

Proof. Let Z(R) denote the center of R and let e be a nonzero central idempotent
of R. Since e € Z(R) and Z(R) is a field, the inverse e~! of e exists. It then

follows from e(e — 1) = 0 that e = 1. Hence, R is indecomposable. [

Let a € R. Then

rr(a) = {z € R | az = 0}
is called the right annihilator of a in R. Similarly,
lr(a) = {z € R|za =0}

is the left annhilator of a in R. It is straightforward to show that rz(a) (Ir(a))

is right (left) ideal of R.

Given a ring R, we use the notation Nil(R) to denote the set of all nilpotent
elements of R. We also use Id(R) and U(R) to denote the set of all idempotent

and invertible elements of R, respectively.
1.3 Artinian rings.

A ring R is said to be right (left) artinian if for any descending chain

h2L2 - 2L,2...
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of right (left) ideals of R, there exists an integer n such that I,, = I, for all
m > n. As mentioned earlier, strongly m-regular rings generalize artinian rings.

We shall provide details of this statement in the following chapter.
1.4 Prime and Jacobson radicals.

Let R be a ring. A proper ideal P of R is said to be prime if for any elements
a,b € R, aRb C P implies that a € P or b € P. The prime mdical of a ring
R, denoted by P(R), is the intersection of all the prime ideals of R. It is known
that P(R) contains all the nilpotent ideals of R and that P(R) is a nil ideal. A
ring R is said to be semiprime if P(R) = {0}.

A proper right (left) ideal I of R is said to be mazimal if whenever J is a
right (left) ideal of R with I C J C R, then J = R. The Jacobson radical of R,
denoted by J(R), is the intersection of all the maximal right ideals of R. It can
be shown that J(R) is also the intersection of all the maximal left ideals of R. If
J(R) = {0}, then R is said to be semiprimitive. It is known that J(R) consists
of ail x € R such that for all » € R, 1 — zr has a right inverse. In addition, J(R)

is an ideal of R which contains all the nil ideals of R; hence, P(R) C J(R).
1.5 Some basic results on group rings.

Let R be a ring and G' a multiplicative group. The group ring RG consists of
all formal sums of the form dec Ty - g with 7, € R, where only finitely many
rq # 0. The operations of addition, scalar multiplication and multiplication in

RG are defined as follows:

Z’}:‘g*'zsy'y:Z("g"’sg)'g;

9€C 9€G 9€G



(ng»g)a=2(rga)-g, a € R;

9€G 9€G

Q(ng-g) =Y (ary) 9. aekR

9€G 9€G

() (z4)-2 (z) .

heG keG 9€G \hk=g

If 1r and 1 are the identity elements of R and G respectively, then RG has
identity element 1 = 1g - 1. If we identify z € G with 1g -z € RG, then we
have G C RG, and the elements of G form a basis of RG over R. Similarly, we
may also identify 7 € R with r - 1¢ € RG. With these identifications, T4 g can

be written as r,4g.
Let r = ngc r99 € RG. The support of r is defined to be
Supp(r) = {g € G | ry #0}.
Since 1y # 0 for only finitely many g € G, so Supp(r) is a finite subset of G.
Furthermore, Supp(r) = 0 if and only if » = 0. The norm of 7, §(r), is defined as

6(r) =31,

9€G

A mapping w from the lattice of subgroups of G to the lattice of right ideals
of the group ring RG is defined as follows: If H is a subgroup of G, then wH is
the right ideal of RG generated by {1 —h | h € H}. If H = G, then wG = A is

called the augmentation ideal of RG.
Proposition 1.5.1 (Connell, [Co]). Let R be a ring, G a group and H a
subgroup of G.

(i) If H is generated by {h;}, then wH is generated by {1 — h;}.

5



(ng~g)a=2(rga)-g, a € R;

9€G 9€G

a(ng-g> =Z(arg)-g, a € R;

9€G 9€G

(Z) () Z(z) ”

heG keG 9€G \hk=g

If 1g and 1 are the identity elements of R and G respectively, then RG has
identity element 1 = 1g - 1g. If we identify z € G with 1g - = € RG, then we
have G C RG, and the elements of G form a basis of RG over R. Similarly, we
may also identify 7 € R with r - 1 € RG. With these identifications, r, - g can

be written as ryg.
Let r = dec r99 € RG. The support of r is defined to be
Supp(r) = {g € G| ry #0}.
Since ry # 0 for only finitely many g € G, so Supp(r) is a finite subset of G.
Furthermore, Supp(r) = 0 if and only if 7 = 0. The norm of r, §(r), is defined as

§(r) = Z Tq.

9€G

A mapping w from the lattice of subgroups of G to the lattice of right ideals
of the group ring RG is defined as follows: If H is a subgroup of G, then wH is
the right ideal of RG generated by {1 —h | h € H}. If H = G, then wG = A is

called the augmentation ideal of RG.
Proposition 1.5.1 (Connell, [Co]). Let R be a ring, G a group and H a
subgroup of G.

(i) If H is generated by {h;}, then wH is generated by {1 — h;}.
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(i) wH is a two-sided ideal of RG if and only if H is a normal subgroup of
G. Moreover, R(G/H) = RG/wH if H is a normal subgroup of G. In
particular, R = RG/A.

(iii) If J is a right ideal of R, then JG is a right ideal of RG. Conversely, if
J' is a right ideal of RG, then J' N R is a right ideal of R.

(iv) If J is an ideal of R, then JG is an ideal of RG and (R/J)G = RG/JG.

(v) For any element r € RG, r € A if and only if §(r) = 0.

Proposition 1.5.2. Let R be aring and G a group. If RG has property (P) and
homomorphic images of RG also have property (P), then (R/I)G has property
(P) for every ideal I of R.

Proof. This is straightforward since (R/I)G = RG/IG. O

A group G is said to be locally finite if every finitely generated subgroup of
G is finite. Necessary and sufficient conditions for a group ring to be regular are

known and are as follows:

Theorem 1.5.3 (Auslander, [Au]; Connell, [Co]; Villamayor, [Vi]). Let
R be a ring and G a group. Then RG is regular if and only if

(i) R is regular,

(ii) G is locally finite, and

(iii) the order of every finite subgroup of G is a unit in R.

The following result is also well-known:

Theorem 1.5.4 (Connell, [Co]; Passman, [Pa]). Let R be a ring and G a

group. Then RG is artinian if and only if R is artinian and G is finite.



