CHAPTER 2

AN OVERVIEW OF “REGULAR” RINGS

2.1 Introduction.

In this chapter, we shall study some relationships between various “regula;”
rings. We begin in Section 2 by giving some definitions and reviewing some basic
results on regular, strongly regular and strongly 7-regular rings, some of which
will be needed in succeeding chapters. We shall also study how these rings are

related to one another and to other types of “regular” rings.

Next in Section 3, we shall study some conditions under which the various
“regular” conditions are equivalent. In particular, we shall see that if R is a
commutative reduced ring, then all the different “regular” conditions on R as
given in Section 2 are equivalent (see Theorem 2.3.6). Finally, in Section 4 we

shall consider matrix rings over various “regular” rings.
2.2 Some relations between various “regular” rings.

Let R be aring. R is said to be regular if for each element z € R, there exists
y € R such that zyz = z. For example, division rings are regular. It is not
difficult to show that regular rings are closed under homomorphic images, direct

limits and direct products. The following is a basic result on regular rings.

Theorem 2.2.1. For a ring R, the following conditions are equivalent:
(i) R is regular;
(ii) Every principal right (left) ideal of R is generated by an idempotent;
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(iii) Every finitely generated right (left) ideal of R is generated by an idem-

potent.

Proof. See Theorem 1.1 of [Go]. O

A regular ring R is said to be abelian if all its idempotents are central. It is
clear that any commutative regular ring is abelian. An element z of a ring R
is said to be right (or left) regular if there exists y € R such that 2%y = z (or
ya? = z). An element of R is strongly regular if it is both left and right regular.
A ring R is called strongly regular if each element in R is strongly regular. The

following theorem by Azumaya [Az] gives a characterization of strongly regular

elements.

Theorem 2.2.2 (Azumaya, [Az]). Let R be a ring and z a strongly regular
element of R. Then there exists a unique element y € R such that zy = yz,
2%y(= yz?) = = and zy?(= y?z) = y. Moreover, y commutes with every element

of R which is commutative with .
Pro'of‘ Let a, b € R such that z2a = z and bz? = z. Note that
za = (bz?)a = b(z%a) = bz.

Therefore
za? = (bx)a = b(za) = b(br) = b’z.

Thus, we have that

2q = zhr.

rax = (br)z = bz’ =z =1

Let y = za?. Then

2%y = 2%(za?) = z(xa?) = z(za) = z%a = x.



We also have

yr = za’z = b(zaz) = br = za = z%a® = 1y

and

zy? = z(xa?)(va®) = z(bza)(za?) = (zbz)aza® = (raz)a? = za® = y.

Suppose that there exists an element y’ € R which satisfies 7y’ = y'z, 2%y’ = z

and zy'? = y/. Then
2
oy’ = 2y =y (2Py)y = v'ay =y (2% )y = v

and hence,

which shows that y is unique. Finally, let w € R such that zw = wz. Then
yw = ywr = ywrly = yrlwy = zwy = wry
and hence, w commutes with yz = zy. Therefore
yw = yPaw = y(wyz) = ywzy = (yaw)y = (wya)y = wy

and it follows that y commutes with every element which is commutative with

z. O

By Theorem 2.2.2 we see that a ring R is strongly regular if for each z € R
there exists (a unique) y € R such that 2%y = z and zy = yz. Another important
characterization of strongly regular rings is given in Theorem 2.2.4 below (see also

[Go, Theorem 3.5)). We first look at the following necessary conditions:



Proposition 2.2.3. If R is a strongly regular ring, then R is semiprime and all

idempotents in R are central.

Proof. Let = € R. Then = = z%y for some y € R and it follows by induction
that z = 2"+1y" for any positive integer n. We thus have from this that z is not
nilpotent if 2'# 0. In other words, R has no nonzero nilpotent elements, that is,
R is semiprime.

Now let e be an idempotent in R. Since ((1—e)Re)? = {0} and R is semiprime,
so (1 — e)Re = {0}. Similarly, eR(1 — e) = {0}. Therefore, given any r € R we

have e = ere = er. Thus, e is central, as required. 0O

Theorem 2.2.4 (Goodearl, [Go]). A ring R is strongly regular if and only if

it is abelian regular.

Proof. Suppose that R is abelian regular. Then for any € R, there exists y € R

such that zyz = z. Observe that
(zy)? = (zyz)y = zy,
that is, zy € Id(R). Since R is abelian regular, zy is central in R. It follows that
z = (zy)z = z(zy) = z%y.

Similarly, it can be shown that yz € Id(R) and = = ya?. Thus z is strongly
regular.

Conversely, suppose that R is strongly regular. By Proposition 2.2.3 it follows
readily that all idempotents in R are central. It remains to show that R is regular.
Let = € R. Since R is strongly regular, it follows from Theorem 2.2.2 that there
exists an element y € R such that z = 2%y and vy = yz. Thus =z = 2%y = xyx.

Since x is arbitrary, it follows that R is regular. O
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A regular ring is in general not necessarily strongly regular. In [LS], L. Li
and B. M. Schein showed that a regular ring is not strongly regular if and only
if it contains an isomorphic copy of Ma(Q) or of M(F,) for p a prime. (Here
Q is the field of rationals, F,, is the field of integers modulo p and M, (R) is the
ring of 2 x 2 matrices over R.) It follows from this that the smallest example of

a regular but not strongly regular ring is M»(F2) which has order 2¢ = 16.

Let Rbe aring and let z € R be given. We say that z is a left m-regular element
if there exist an integer n > 0 and an element y € R such that z" = yz"+!. A
right 7-regqular element is defined analogously. If every element of R is left (right)
m-regular, then R is said to be left (right) 7-regular. An element of R is strongly
w-regular if it is both left and right m-regular. R is strongly m-regular if every

element of R is strongly m-regular.

The following useful characterization of strongly m-regular elements has been

obtained by Azumaya [Az).

Theorem 2.2.5. If an element z in a ring R is strongly m-regular, then there
exist a positive integer n and an element y € R such that 2" = z"*'y and

Ty = yx.

Remark 2.2.1. We note by Theorem 2.2.5 that if = is a strongly 7-regular
element in a ring R, there exist a positive integer n and an element y € R such

that 2" = z"*1y and zy = yz. We have from this that

n+2, 2

" = .'L‘(.t"“y)y =z y? = 12(x"“y)y2 = z"+3 3 _ ... 2n, n

Y =zY

=a"y"z".

A ring R is m-regular if for every a € R there exist a positive integer n and

an element z € R such that a™ = a"za”. Clearly, regular rings are 7-regular.
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By Remark 2.2.1 it is also clear that strongly m-regular rings are 7-regular. The

converse of this is obviously true for commutative rings.

Theorem 2.2.6. Let R be a ring with bounded index. The following conditions
are equivalent.

(i) Ris rrLreguIar;

(ii) R is right m-regular;
(iii) R is left m-regular;
)

(iv) R is strongly m-regular.

Proof. See Theorem 5 of [Az]. O

Very little was known about connections between right w-regular, left 7-
regular and strongly m-regular rings until a 1976 paper by Dischinger [Di] where

he proved the following:

Theorem 2.2.7 (Dischinger, [Di]). Every right w-regular ring is left w-regular.

Proof. See Theorem 1 of [Di]. O

By using arguments analogous to the proof of Theorem 1 in [Di, it can be
shown that left w-regular rings are also right m-regular. Hence right n-regular,

left m-regular and strongly m-regular are all equivalent conditions on a ring.

As mentioned in Chapter 1, strongly 7-regular rings generalize artinian rings.
Indeed, suppose that R is a ring which is not strongly n-regular. Then there
exists an element z € R such that given any y € R, 2™ # 2"y for any positive

integer n. Thus, the descending chain
tR2x*R2---2a"R2a""RD ...

of right ideals of R does not terminate which implies that R is not artinian.
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It is clear by definition that strongly regular rings are strongly m-regular.
Then since strongly 7-regular rings are m-regular, so are strongly regular rings.
As for regular rings, a m-regular ring R is said to be abelian provided that all

idempotents in R are central.

Proposition 2.2.8. Let R be an abelian m-regular ring. Then R is strongly

m-regular.
Proof. Let € R. Since R is m-regular, there exist y € R and a positive integer
n such that z" = z";‘/z". Let e = z™y. Note that
e? = (z"yz")y =a"y =e.
Thus e € Id(R) and hence,
" = ex™ = 7" = z"(z"y) = 2" (z"y).

It follows that R is right m-regular and therefore strongly m-regular by Theorem

227 0

We next look at unit regular rings which were introduced by Ehrlich [Eh]. An
element z in a ring R is said to be unit regular if there exists an invertible element
u € R such that zuz = z. A ring R is unit regular provided that every element
in R is unit regular. Unit regular rings are nice because of various cancellation

properties associated with them, one of which is as follows:

Let R be a unit regular ring. Then A& B = A& C implies that B = C for
all finitely generated projective right R-modules A, B and C.

The proof of this fact is given in Theorem 4.5 of [Go]. It is clear that every
unit regular ring is regular. A ring R is directly finite if zy = 1 implies yz = 1 for
all z, y € R. The following proposition by R. Yue [Y1] shows that a unit regular
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element can be factored into the product of an idempotent and an invertible

element.

Proposition 2.2.9. Let R be a ring. The following conditions are equivalent:
(i) R is unit regular;
(ii) Every .element of R is the product of an idempotent and an invertible
element;
(iii) R is a directly finite ring such that for any 0 # a € ‘R, either a is right
invertible or there exist a nontrivial idempotent e € R and a left regul;ar

element d € R such that a = ed.

Proof. See Remark 8 of [Y1]. O

A ring R is unit w-regular provided that, for each = € R, there is an invertible
element © € R and a positive integer n such that z™ = z™uz™. It is obvious
that every unit 7-regular ring is m-regular. It will be shown in Chapter 3 (see

Proposition 3.3.3) that a strongly 7-regular ring is unit m-regular.

Proposition 2.2.10. Every abelian regular ring is unit regular.

Proof. See Corollary 4.2 of [Go]. O

Since strongly regular rings are abelian regular, it follows readily from Propo-
sition 2.2.10 that every strongly regular ring is unit regular. A different proof of
this result will be given in Chapter 4 (see Corollary 4.3.5). A strongly m-regular
ring is not necessarily unit regular as shown in the following example. However,
a strongly m-regular regular ring is unit regular as has been shown by Goodearl

and Menal [GM] (see also [Sh]).

Example 2.2.1: Let R be the ring of 3 x 3 upper triangular matrices over the
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field Fa. Since R is a finite dimensional algebra, so it is strongly m-regular. Let

001
A=10 0 1
000

€R.

Note that AXA = 0 for all X € R. It follows that A is not regular and hence,

not unit regu]én

Next we consider weakly 7-regular rings. A ring R is called right (left) weakly
m-regular if for every * € R there exists a positive integer n = n(z), depending
on z, such that 2" € (z"R)? (2™ € (Rz™)?). R is weakly w-regular if it is both

left and right weakly 7-regular. These definitions can be found in [Gu] and [T2].

In [Hi], a ring R is defined to be right (left) n'-regular if for each = € R
there exists a positive integer n such that z™ = z"yz"z (" = zz"ya") for some

Y,z € R. It is obvious that every m-regular ring is right and left 7'-regular.

Proposition 2.2.11. Every right (left) n’-regular ring is right (left) weakly -

regular.

Proof. Let R be a right n'-regular ring. Then for any = € R, there exist a
positive integer n and elements y, z € R such that 2™ = z"yz"z € (z"R)2. Thus,
R is right weakly 7-regular. The proof for the case R is left n'-regular follows

analogously. O

‘We close this section by illustrating how different types of “regular” rings are

related to one another in Figure 1.
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2.3 Some equivalent conditions.

In this section we shall look at situations where various “regular” rings are
equivalent. By Theorem 2.2.4, Proposition 2.2.10 and the fact that unit regular

rings are regular, we obtain the following:

Proposition 2.3.1. Let R be a ring such that every idempotent in R is central.
Then the following conditions are equivalent:

(i) R is strongly regular;

(ii) R is unit regular;

(iii) R is regular.

By definition and using some of the results given in the previous section, we

have

Proposition 2.3.2. Let R be a commutative ring. Then the following conditions
are gquiva]ent:

(i) R is strongly m-regular;

(ii) R is unit m-regular;

)

)
(iii) R is m-regular;
(iv) R is right (left) n'-regular;
)

(v) R is right (left) weakly m-regular.

A ring R is said to be right (left) duo if every right (left) ideal of R is two-
sided. R is said to be right (left) quasi-duo if every maximal right (left) ideal
of R is two-sided. If R is both left and right quasi-duo, then we say that R is
quasi-duo. It is known and will be shown in Chapter 4 (see Proposition 4.3.9)

that a strongly regular ring is left and right duo. For quasi-duo rings, we have
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the following:

Theorem 2.3.3. Let R be a left quasi-duo ring. Then the following statements

are equivalent:

(i) R is left weakly m-regular;

(ii) R is st}ong]y m-regular.

Proof. 1t suffices to show that (i) = (ii). Suppose that R is left weakly m-regular.
) Then for any a € R there exists a positive integer n such that Ra™ = Ra™Ra".
We claim that Ra + [g(a") = R. If this does not occur, then Ra + lg(a™) C M
for some maximal left ideal M of R. Then Ra™ C Ra + lg(a™) C M and hence,
Ra™ = Ra"Ra™ C MRa™ C Ma™. The reverse inclusion Ma™ C Ra™ is clear.
Thus, Ra™ = Ma™ and hence, a® = ma" for some m € M. It follows that
(1—m)a™ =0and so1—m € lg(a™) C M. But this implies that 1 € M which is
a contradiction. Thus Ra +1r(a™) = R and so, a is left 7-regular. Consequently,

R is left m-regular and therefore strongly n-regular. O

The analogue of Theorem 2.3.3 for right quasi-duo rings has in fact been

shown in [HKKL, Theorem 7]. We thus have the following:
Theorem 2.3.4. Let R be a quasi-duo ring. Then the following conditions are
equivalent: -

(i) R is strongly m-regular;

(ii) R is unit w-regular;

R is right (left) = -regular;

)
)
(iii) R is w-regular;
(iv)
)

(v

R is right (left) weakly m-regular.

The proof of the following result will be given in Chapter 4 (see Theorem
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43.6).

Theorem 2.3.5. Let R be a ring. Then the following statements are equivalent:

(i) R is reduced and strongly m-regular;
(ii) R is strongly regular.

In the next theorem we shall see that if R is a commutative reduced ring, then

all the different “regular” conditions on R as given in Figure 1 are equivalent.

Theorem 2.3.6. Let R be a commutative ring. If R is reduced, then the fol-

lowing conditions are equivalent:

(i) R is regular;
(ii) R is unit regular;
(iii) R is strongly regular;
(iv) R is strongly m-regular;
(v) R is right (left) m-regular;
(v1) R is unit m-regular;
(vii) R is w-regular;
(viii) R is right (left) n'-regular;
(ix) R is right (left) weakly 7-regular.

Proof. By Propositions 2.2.10, 2.3.2 and Theorems 2.2.4, 2.3.5. O

Let K|[z1,...,2n] be the polynomial ring over the field K in the noncommuting
variables zy,...,2,. An algebra R over K is said to satisfy a polynomial identity
(PI) if there exists f(z1,...,zn) € K[21,...,2n), f # 0 with f(a1,...,a,) =0
for all ay,...,anb € R .



Theorem 2.3.7. If R is a PI-ring then the following conditions are equivalent:
(i) R is strongly m-regular;
(ii) R is w-regular;
(ili) R/P(R) is m-regular;
(iv) R/J(R) is m-regular and J(R) is nil;
(v) R is weakly m-regular;
(vi) R is right (left) weakly m-regular;
(vii) R/J(R) is right weakly m-regular and J(R) is nil;
(viii) Every prime factor ring of R is right (left) weakly w-regular;
(ix) Every prime ideal of R is maximal;

(x) Every prime factor ring of R is simple artinian.

Proof. See Corollary 18 of [HKKL]. O

2.4 On matrix rings over “regular” rings.

For a ring R, we use M, (R) to denote the ring of n x n matrices over R. It is
known that the ring of all n x n matrices over a regular ring is regular (see [Go,
Theorem 1.7]). However, the ring of n x n matrices over a strongly regular ring

is not necessarily strongly regular as shown in the following example:

Example 2.4.1: Let A = ] € M,(F;). Clearly, F; is a strongly regular

01
00
ring. Since A? = [ ] [ ] [ ] so A # A2X for any X € My(Fy).

Hence, Mj(F2) is not strongly regular.

It has been shown by Tominaga [T1] that if R is m-regular and Nil(R) is of
bounded index, then A/, (R) is a strongly m-regular ring for each n > 1. Since

strongly m-regular rings are 7-regular, we easily have the following:
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Proposition 2.4.1. If R is a strongly w-regular ring and Nil(R) is of bounded

index, then My(R) is a strongly m-regular ring for each n > 1.

It has been conjectured that the ring of n x n matrices over a strongly -
regular ring is strongly 7-regular (see [Sh, p.9]). To date, not much progress has
been made towards proving this conjecture. It is however not difficult to show
explicitly that the ring of 2 x 2 matrices over a field is strongly 7-regular as in

the following:

Let F be a field. Clearly, if A € M;(F) is nonsingular, then A is strongly
7-regular. We are thus left with the task of showing that singular matrices are
strongly 7-regular. Let A = [Z Z] € M(F) with det(A) = ad — bc = 0.

Case I: a # —d. Since a+d € F\ {0}, so (a +d)~! exists. Let X =

[(a +0d)‘1 “ +Od)‘1] € M,(F). Note that

A=[Z Z]=[§Zj;3)) Z((ZiZ;H(“od)—l (a+0d)“]
_[a®+bec ba+d)] [(a+d)? 0
[c(a+d) cb+d2][ 0 (‘1+d)_1]
= A’X.

Thus A is strongly regular and hence, strongly m-regular.

Case II: a = —d. Note that
a2 [—d b][-d b]_[d®+bc 0 ]_f0 0
“le d||le d] | 0O be+d?|” |0 O]
Since A is a nilpotent element, so A is strongly 7-regular.

Since a full matrix ring over a division ring is artinian and artinian rings are

strongly 7-regular, we in fact have
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Proposition 2.4.2. A full matrix ring over a division ring is strongly m-regular.

Let S be a commutative ring. A ring R is said to be an S-algebra if R is an
S-module and
(aa)b = a(ab) = a(ab)
for all a,b € R, @ € S. It is known that if F is a field, then the matrix ring
M, (F) is an F-algebra.

Lemma 2.4.3. Let F be a field and R a finite-dimensional F-algebra. Then R

is both right and left artinian (hence, both right and left noetherian).

Proof. See Lemma 12.17 of [Is]. O

Proposition 2.4.4. LetF be a field and let n. > 0 be an integer. Then R = {X €
M, (F) | X is upper triangular} and S = {X € M,(F) | X is lower triangular}
are strongly m-regular.

Proof. Note that R and S are both finite-dimensional F-algebras. By Lemma

2.4.3, it follows that R and S are strongly m-regular. O

We note that every strongly m-regular ring is directly finite. Indeed, let R be
a strongly 7-regular ring and let z, y € R such that zy = 1. Since R is strongly
w-regular, then there exist z € R and a positive integer n such that y" = y"+1z
and yz = zy. Then zy™ = zy"*'z and hence, y"~! = y"z. It follows that
zy"~! = xy"z and therefore, y" 2 = y"~1z. By continuing in the same way, we

finally obtain 1 = yz. Thus,
yr = (yz)1 = (yx)(yz) = (yzy)z =yz = 1.
Therefore R is directly finite. The following proposition adds weight to the truth

of the conjecture that the ring of n x n matrices over a strongly m-regular ring

R is strongly m-regular.
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Proposition 2.4.5. Every full matrix ring over a strongly m-regular regular ring

Is directly finite.

Proof. See Corollary 4.4 of [Sh]. O
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