CHAPTER 3

ON STRONGLY 7n-REGULAR RINGS

3.1 Introduction.

The main purpose of this chapter is to study strongly =-regular rings; in
particular, conditions which are necessary and sufficient for a ring to be strongly
m-regular. We have seen in Theorem 2.2.5 that if z is a strongly m-regular element
in a ring R, then there exist a positive integer n and an element y € R such that
z" = "ty and ry = yz. Shirley [Sh] has shown that elements in a strongly
7-regular ring can be factored into the product of two commuting elements, one
of which is invertible and the other a near idempotent. By using this result, we

shall obtain several properties of strongly 7-regular elements and rings.

We begin in Section 2 of this chapter by studying some properties of strongly
m-regular rings. In Section 3, we are concerned with equivalent conditions for
strongly m-regular rings. In particular, a proof of the result of Shirley [Sh] men-
tioned in the preceding paragraph shall be given. We also offer another char-
acterization of strongly 7-regular rings, that is, we prove that every element in
a strongly 7-regular ring can be written as a sum of two commuting elements,
one of which is strongly regular and the other nilpotent (Theorem 3.3.5). This
characterization, to the best of our knowledge, is not available in the literature.
In Section 4, we determine necessary and sufficient conditions for a ring with
central idempotents to be strongly m-regular. Some of the results in this section
overlap with those of Badawi in [B2]. The proofs given here are however different

from those in [B2].



Next in Section 5, we obtain necessary and sufficient conditions for a group
ring to be strongly m-regular. In particular, we show that for a ring R and
a group G, the group ring RG is strongly m-regular if and only if (R/P)G is

strongly 7-regular for every prime ideal P of R.

Finally, in Section 6 we study Euler and exact-Euler rings. Badawi [B3] has
shown that a ring R is Euler if and only if R is strongly 7-regular and U(R) is a
torsion group. He also showed that R is exact-Euler if and only if R is strongly
w-regular and Nil(R), U(R) are of bounded index. We shall provide different

proofs of these results in Section 6.
3.2 Some properties of strongly m-regular rings.

Let R be a ring. We say that an ideal I of R is strongly w-regular provided
that for each = € I, there exist a positive integer n and an element y € I such

that 2" = 2"*ly and zy = yz.

In the first proposition of this section, we show that strongly 7=-regular is a

property inherited by ideals.
Proposition 3.2.1. Let R be a strongly m-regular ring. If I is an ideal of R,
then I is strongly m-regular.

Proof. Let = € I. Since R is strongly m-regular, then by Theorem 2.2.5 there
exist y € R and a positive integer n such that 2" = 2"*!y and zy = yz. If n = 1,
let z = xy?. Then z € I, 7z = zz and & = 222. If n > 2, let z = 2"~ 'y". Then

z€l,rz=zz and

gt =gy == gyn = g (g lyn) = gl

Thus I is strongly m-regular. O
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A subring of a strongly 7-regular ring is however not necessarily strongly -
regular. For example, Z < Q and Q is strongly 7-regular but Z is not strongly

m-regular.
Proposition 3.2.2. Let J < K be ideals in a commutative ring R. Then K is
strongly m-regular if and only if J and K/J are both strongly w-regular.

Proof. If K is strongly 7-regular, then obviously K/J is strongly m-regular. Since
J is an ideal of R (hence of K') and K is strongly 7-regular, so is J (by Proposition
3.2.1). Conversely, assume that J and K/J are both strongly n-regular. Given
any z € K, we have 2" + J = z"+1y 4 J for some positive integer n and some

y € K. Thus 2™ — 2"+1y € J and consequently,
(™ = "HIy)™ = (g7 — gy
for some positive integer m and some z € J < K. Then
"™ (1 — zy)™ = "M (1 — gy)™H 2
and. it follows that

"ML= m(zy) + -+ (1) (zy)"]

= DL (m+ 1)) + - () ),

Thus
™ = g™ my — -~ (=1)y(ay)™ ]
+a"™H (1 - (m 4 ) (ay) + -+ (=) ay) ™)z
and hence,
2™ = 2" my— = (=1)y(zy) ™ 2 (1 (1) ()4 -+ (—1) ™ (2y) ™) 2],

Therefore K is strongly m-regular. [
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Corollary 3.2.3. Let R be a commutative ring and J an ideal in R. If J and

R/J are both strongly w-regular, then R is strongly m-regular.

Proposition 3.2.4. Any finite subdirect product of a commutative strongly
m-regular ring is strongly m-regular.

Proof. Tt suffices to consider the case of a ring R which is a subdirect product
of two strongly 7-regular rings. In this case, R has ideals J and K such that

JNK = {0} and R/J and R/K are both strongly 7-regular. Observe that
J=J/(JNK)=(J+K)/K < R/K.

Since R/K is strongly 7-regular, it follows from Proposition 3.2.1 that (J+K)/K
is strongly 7-regular and hence, so is J. Then since R/J is strongly w-regular,

s0 is R according to Corollary 3.2.3. O

By Theorem 2.3.6, we have that if R is a commutative reduced ring, then
every unit regular element of R is strongly 7-regular. In the next proposition we

show that this result is still true even if R is not reduced.

Proposition 3.2.5. Let R be a commutative ring. If R is unit regular then R
is strongly m-regular.
Proof. Let € R. Since R is unit regular, there exists an invertible element
u € R such that zuz = 2. Note that
z" = (zuz)”

=z"u"z"

- 12nu"

= 2" (g )

=g+,
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where z = z"~!u" € R. Therefore z is strongly 7-regular and it follows that R

is strongly 7-regular. O

In [FS1, Theorem 2.1], Fisher and Snider showed that a ring R is strongly
w-regular if each prime factor of R is strongly m-regular. The converse of this is

true from the following proposition.
Proposition 3.2.6. Every homomorphic image of a strongly m-regular ring is
strongly m-regular.

Proof. Let R, S be rings and f : R — S a (ring) epimorphism. Suppose that R
is strongly m-regular and let v € S be arbitrary. Since f is epi, there exists an
element z € R such that f(z) = v. Then since R is strongly 7-regular, there exist
a positive integer n and an element y € R such that 2" = z"+1y and zy = yz.
It follows that

vt = f@") = f(@" ) = f@) () =0 ()

and hence, S is also strongly m-regular. O

‘We thus have

Theorem 3.2.7. Let R be a ring. Then R is strongly m-regular if and only if
R/P is strongly m-regular for each prime ideal P of R.

It has been shown in [Go, Theorem 1.14] that the center of a regular ring
is regular. We now show that the same can be said about centers of strongly
m-regular rings.

Theorem 3.2.8. The center of a strongly w-regular ring is strongly m-regular.

Proof. Let R be a strongly n-regular ring with center Z(R), and let = € Z(R).

Then there exist a positive integer n and an element y € R such that z" = z"+1y

28



and xy = yx. Let z = 2"y"*!. Then

n+l, Tﬂ+2

" =2y Y==z

Yy Znyn — 22ﬂ+lyﬂ+l = In+l(znyn+1)

n+1

=T z

and zz = zx. Now given any r € R, we have

zr = (a"y"t)r

- yn+],r$n

n+1,’,(12ﬂ+1 n+l)

=Y Y

= (g2 HiynHlypyntl

Yy Y

= I"Ty"+1
— T.‘l?"y"+1

=rz.

Thus z € Z(R) and hence, Z(R) is strongly m-regular. O

Let R be aring and let » € R. An element s € R is said to be a semi-inverse

2

of rif r = 725, s = s?r and rs = sr. It may be shown that if » € R has a

semi-inverse then its semi-inverse is unique.

Proposition 3.2.9. Let R be a strongly w-regular ring and = € R. Then
(i) there exist a positive integer n and an element z € R such that z"z" is
an idempotent;
(ii) there exist a positive integer n and an element z € R such that z(1—z"z")
is nilpotent;

(iii) =™ has a semi-inverse for some positive integer n.

Proof. Since R is strongly n-regular, it follows from Theorem 2.2.5 that there

exist an element z € R and a positive integer n such that 2" = z"*!z and
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zz = zzx. Then

no_ gl gnt2,2 L 20y

and hence,
(@"z")? = (22"2")2" =z
Thus z"z" is an idempotent which proves (i). Since z™z" is an idempotent, so
is 1 — 2"z". Therefore
[z(1 —2"2™)]" = z™(1 —z"z")"
=z"(1-2z"2")

=z" — 2" =0
which proves (ii). For the proof of (iii), we note that

12"(22"3}") = (Iann)(ann)

and
(2ram)2a = 22 (22 ?n)
= 22N (g2
= 22nan (22
= 22n(g272m)

= zg",

Thus =™ has a semi-inverse. [
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Proposition 3.2.10. Let R be a ring with no zero divisors. If R is strongly

m-regular and x is a nonzero element in R, then
(i) @y = 0 if and only if yr = 0 for any y € R;
(ii) = is invertible.
Proof. (i) Suppose that zy = 0. Then
(y)* = y(zy)z = y0z = 0.

Since R has no zero divisors, this implies that yz = 0. The same argument works

conversely.

(i) By Theorem 2.2.5, there exist y € R and a positive integer n such

that z" = z"+1y and zy = yz. Note that
(1 —2y) =2" —z"tly =0.

Since R has no zero divisors and = # 0, it follows that 1 — zy = 0. Thus zy = 1

and since yz = zy, we also have yz = 1. Therefore z is invertible, as asserted. O

By Proposition 3.2.10 we readily have

Corollary 3.2.11. A strongly w-regular ring with no zero divisors is a division

ring.

Proposition 3.2.12. Let R be a ring and = € R. If x is strongly m-regular,
then there exists an idempotent e € R such that ™ = ex™ is strongly regular
for some positive integer n. In particular, there exist an idempotent e € R and

a positive integer n. such that " = ex™ is strongly m-regular.

Proof. Since x is strongly w-regular, it follows by Theorem 2.2.5 that there exist

a positive integer n and an element y € R such that " = "'y and =y = yx.
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Let e = zy™. Then
e? = (z"y"z")y" = z"y" = e € Id(R)

and
Note that

Therefore, 2™ = ex™ is strongly regular. Since strongly regular elements are

strongly m-regular, the last assertion follows easily. O

In the next proposition, we will show that the converse of Proposition 3.2.12

is true.

Proposition 3.2.13. Let R be a ring and = € R. If there exists a positive

integer n such that z™ is strongly regular, then x is strongly m-regular.

Proof. Since z™ is strongly regular, it follows from Theorem 2.2.2 that there

exists y € R such that z" = 22"y and z"y = yz™. Then
2" = " (2" y) = (ya N,

hence z is strongly m-regular. O

As a consequence of Propositions 3.2.12 and 3.2.13 we have the following

corollary.

Corollary 3.2.14. Let R be a ring and ©* € R. An element x is strongly =-

regular if and only if ™ is strongly regular for some positive integer n.
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3.3 Some equivalent conditions for strongly m-regular rings.

We begin this section with some necessary and sufficient conditions for a ring

R to be strongly m-regular as obtained by Shirley [Sh].

Theorem 3.3.1. Let R be a ring. Then R is strongly 7-regular if and only if
for every element = € R, there exist elements u, g € R such that
(i) w is invertible;

(ii) g is a near idempotent;

(ili) ug =gu=

Proof. Suppose that R is a strongly m-regular ring and let = € R. By Theorem
2.2.5, there exist a positive integer n and an element y € R such that 2™ = z"+1y

and zy = yz. Note that

n n+1

o = gy = g2 o= g2ryn = gy ngn

=z"y" =z "y 2",

Let e = 2™y™. It is clear that e € Jd(R) and the elements z, y and e commute

with each other. Let u = ze + (1 —e) and g = e + z(1 — e). Then we have

ug = gu = e+ z(1 —e)][ze + (1 - ¢€)]
=eze+ (1 —e)?

=ze+zT—TEe=1.
Note that

i =le+al-e)"
=e"+2"(1—¢)"
=e+z"(1—¢€)
=e+z" —z"e=e€ Id(R).
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Thus, g is a near idempotent. To show that u is invertible, let ¢ = ye + (1 —e).
Since
uc=cu = [ye+ (1 —e)][ze + (1 —¢)]
=yere + (1 —¢)?
=yzre+1l—e
=yz(z"y")+1-e€
= (@ ly)y" +1-e
=z"y"+1—e
=e+l-e=1,
so u is invertible.
Conversely, let z € R. Then there exist an invertible element v € R and a

near idempotent g € R such that z = ug = gu. Then g*” = g" for some positive

integer n and therefore,
2" = (gu)" = g"u" = ¢?"uPu = g = g (2" ).
It follows that R is strongly m-regular. O
As an immediate consequence of Theorem 3.3.1 we have

Corollary 3.3.2. Let R be a strongly w-regular ring. Then every principal right
(left) ideal of R is generated by a near idempotent.

By using Theorem 3.3.1 we also obtain the following two results:

Proposition 3.3.3. A strongly m-regular ring is unit m-regular.

Proof. Let R be a strongly m-regular ring and let # € R. By Theorem 3.3.1,

there exist a near idempotent e € R and an invertible element u € R such that
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T = eu = ue. Since e is a near idempotent, there exists a positive integer n such

that ¢2" = e”. Note that
z" = (eu)" = e"u".

Then

Therefore, z is unit m-regular. O

Corollary 3.3.4. Let R be a ring. If z is a strongly m-regular element of R,
then there exists a positive integer n such that = = eu = ue for some e € Id(R)
and u € U(R).
Proof. Let # € R be a strongly n-regular element. By Theorem 3.3.1, there exist
a near idempotent g € R and v € U(R) such that ¢ = gv = vg. Since g is a near
idempotent, there exists a positive integer n such that g" = g". Let e = g" and
u=1". Then e? = e € Id(R), u € U(R) and
z" = g"" =v"g" = eu = ue. o
In the following theorem, we offer another characterization of strongly -

regular rings.

Theorem 3.3.5. Let R be a ring. Then the following conditions are equivalent:
(i) R is strongly m-regular;
(i) Every = € R can be written in the form x = a + w where a, w € R such

that a is strongly regular, w is nilpotent and aw = wa.
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Proof. Suppose first that R is strongly 7-regular and let = € R. Then by Theorem
2.2.5, there exist a positive integer n and an element y € R such that z" = z"+1y

and zy = yz. Since

we have that

that is, 2"*+1y™ is strongly regular. Moreover, since z"y™ is an idempotent, we

also have
(z —a™H ™)™ = g (1 — 2y = 2 (1 — Z"y") = 0.

Thus, = — 2"*+1y" is nilpotent. It is clear that Ty (g — gy = (¢ —

z"Hym)zn+lyn, Then since z = " +1y™ + (z — z"+1y™), (i) follows.
Conversely, let z € R and suppose that 2 = a +w where a, w € R such that a

is strongly regular, w is nilpotent and aw = wa. By Theorem 2.2.2, there exists

b € R such that a%b = a, ab = ba and bw = wb. Since
z -z = (a+w) — (a+w)? =w—w(2a+w)h
is nilpotent and zb = bz, it follows that 2™ = 2"*2 for some z € R with 2z = zz.

Thus z is strongly m-regular. O

Remark 3.3.1. We note that the decomposition in Theorem 3.3.5 is not. unique.

Indeed, consider the ring My(F2) of 2 x 2 matrices over the field Fo. We may
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write [(1) Hin M(F2) as
11 10 01 11 00
[o 1]=[o 1]*[0 0]:[0 1]+[0 0]

|10 11 01 00 .
where [0 1] s [0 1] are strongly regular and [0 0] s [0 0] are nilpotent.

3.4 Strongly m-regular rings with central idempotents.

In this section, we obtain necessary and sufficient conditions for a ring with

central idempotents to be strongly m-regular. First we show the following:

Theorem 3.4.1. Let R be a strongly m-regular ring with central idempotents.

Then Nil(R) is a two-sided ideal of R.

Proof. Let z € Nil(R) and r € R. If z = 0, then clearly rz = zr = 0 € Nil(R).
Assume now that z # 0. Suppose that rz ¢ Nil(R). Since R is strongly 7-regular,

we have

rz=fu=uf

for some near idempotent f and some invertible element u in R. Let n be a

positive integer such that f" is an idempotent and let e = f™. Note that
eu" = fhu = (fu)” = (rz)” #0. (3.4.1)

Since e is central, ez is a nilpotent element of R. Let m be the smallest positive

integer such that (ez)™ = 0. Note that ez # 0. Indeed, if ez = 0 we would have

0= (r(ez))" =e(rz)" = eu”
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which contradicts (3.4.1). Therefore, m > 2. Now since n > 1 and (ez)™ = 0, so
0= (r(ez))"(ez)™ "
= e(rz)"(ez)™!
= eu"(ez)™!
=u"(ez)™ L
But since u™ is invertible in R, it follows that (ez)™~! = 0; contradicting the
fact that m is the smallest positive integer such that (ez)™ = 0. Therefore we
must have rz € Nil(R). Similarly, it can be shown that zr € Nil(R).
Next let , y € Nil(R). Suppose that = +y ¢ Nil(R). Since R is strongly
m-regular, there is a positive integer n such that
(z+y)" =gv=10g (3.4.2)
for some idempotent g and some invertible element v in R. Since z+y & Nil(R),
so g cannot be nilpotent. By (3.4.2) we have that
9(@+y)" e = gu(l — v (z +y)"y). (34.3)

Frox.n the preceding paragraph we know that v=!(z + y)"~'y € Nil(R). We thus
have that 1 — v~!(z + y)"~ly is invertible. Then since g is central and not
nilpotent, the element gv(1 — v=!(z + y)"~1y) cannot be nilpotent. But this
contradicts (3.4.3) since g(z +y)"~'z € Nil(R). Hence we must have z + y €
Nil(R). This completes the proof that Nil(R) is a two-sided ideal of R.

As a consequence of Theorem 3.4.1, we have
Corollary 3.4.2. Let R be a strongly m-regular ring with central idempotents.
Then J(R) = Nil(R).
Proof. Let x € J(R). Since R is strongly m-regular, there exist a positive integer
n and an element y € R such that ™ = z"+!y and 2y = yz. Then z"(1—zy) = 0

38



and since 1 — 7y has a right inverse in R, it follows that " = 0. Therefore z is
nilpotent and hence, J(R) C Nil(R). The reverse inclusion follows from the fact
that Nil(R) is a two-sided ideal of R (by Theorem 3.4.1) and that J(R) contains
all nil ideals of R. The equality J(R) = Nil(R) thus follows. O

We also note the following property:

Proposition 3.4.3. If R is a strongly m-regular ring with central idempotents,

then R/Nil(R) is strongly regular (hence, regular).

Proof. Let x+Nil(R) € R/Nil(R). Then by Theorem 2.2.5, there exist y € R and
a positive integer n such that z"*!y = z" and zy = yz. Thus e = 2"y" € Id(R)

and hence, 1 — e € Id(R). Then since

it follows that

[(1 —e)z]* = (1 —e)z™ = 0 € Nil(R).

Hence (1 — e)z € Nil(R) and therefore

z +Nil(R) = ez + Nil(R) = z"*+'y" + Nil(R)

= [z + Nil(R))?[z"~'y" + Nil(R)].
It follows that R/Nil(R) is strongly regular (hence, regular). O

To prove the main result in this section we shall need the following lemmas:

Lemma 3.4.4. Let R be a ring and I a two-sided nil ideal of R. Then idempo-
tents of R/I can be lifted to R.

Proof. See [La, p.72). O
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Lemma 3.4.5. A reduced strongly m-regular ring R is strongly regular (hence,

regular).

Proof. Let « € R. By Theorem 3.3.1, there exist a near idempotent g € R
and an invertible element u € U(R) such that £ = gu = ug. Since g is a near

idempotent, there exists a positive integer n such that g" = g°". Note that

" = (g“)n — gn“n =g2nun = gn(gnun) = guIﬂ

and g = gz. Thus, ((1 - g™)z)" = 0. Since R is reduced,

z = g™ = 22(u"'g""Y).

It follows that R is strongly regular (hence, regular). O

The main result in this section is as follows:

Theorem 3.4.6. Let R be a ring with central idempotents. Then R is strongly
w-regular if and only if Nil(R) is a two-sided ideal of R and R/Nil(R) is regular.

Proof. Suppose that R is strongly m-regular. By Theorem 3.4.1, it follows readily
that Nil(R) is a two-sided ideal of R. Since R/Nil(R) is reduced strongly -
regular, it follows from Lemma 3.4.5 that R/Nil(R) is strongly regular and hence,
regular.

To prove the sufficiency part, we let z € R. Since R/Nil(R) is regular, there
exists some y € R such that Zjz = ¥ where £ = z + Nil(R) and § = y + Nil(R).
Clearly, (52)? = yz. By Lemma 3.4.4 there is an idempotent e € R such that
€ = &, that is e — yz € Nil(R). Thus there exists an integer m > 1 such that
(e—yz)™ = 0. Since e is central, e = zz for some z € R. Now Z = T = Té gives
us z — ze € Nil(R). Hence there exists some integer n > 1 with 0 = (z — ze)" =
z™ — z"e. Therefore 2" = z"e = ex™ = zz"*!. Thus R is left m-regular and

hence, strongly m-regular. 0O
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Remark 3.4.1. It has been shown by Ohori [Oh, Theorem 2(2)] that in an
abelian 7-regular ring R, Nil(R) is a two-sided ideal of R and R/Nil(R) is regular.
Since abelian 7-regular rings are strongly m-regular with central idempotents and
vice versa, Theorem 3.4.6 in this section shows that the converse of Ohori’s result
is also true. It is also necessary to mention here that Theorems 3.4.1 and 3.4.6
in this section can be found for abelian m-regular rings in [B2, Theorems 2 and

3]. The proofs given in this section are however independent from those in [B2).

We end this section with another characterization of strongly 7-regular rings

with central idempotents.

Theorem 3.4.7. Let R be a strongly w-regular ring with central idempotents
and let P be a prime ideal of R. Then every element of R/P is nilpotent or

invertible.

Proof. Let © € R, x € P. Since z is strongly 7-regular, we may write
z=fu=uf

for some near idempotent f and some invertible element u in R. Let n be a
positive integer such that e = f™ is an idempotent. Then 2™ = eu™ = u™e. Since
(1-e)Re = {0} € P and P is a prime ideal, it follows that e € Por 1 —e € P.

If e € P, then 2" = eu™ € P; hence, = + P is nilpotent. If 1 — e € P, then
2" +P=eu"+P=(e+P)(u"+P)=u"+P

is invertible in R/P. It follows that = + P is also invertible in R/P. O

3.5 Strongly 7-regular group rings.

In this section we study conditions which are necessary or sufficient for a group
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ring to be strongly m-regular. Most of the results in this section will appear in

[CC]. The main result in this section is as follows:

Theorem 3.5.1. Let R be a ring and G a group. If (R/P)G is strongly w-regular

for every prime ideal P of R, then RG is strongly w-regular.

Proof. Suppose to the contrary that RG is not strongly m-regular. Then there
exists an element z € RG such that for any positive integer n, z" # 2"y for

any y € RG. Therefore the sequence
zRG 2 2?RG 2+~ 2a"RG 2 a"'RG D ...

of right ideals of RG does not terminate. Let F be the set of all ideals I of R

such that the sequence
(z+ IG)(RG/IG) 2 (z + IG)*(RG/IG) 2 ...

does not terminate. Note that F # 0 since {0} € F. Furthermore, F is partially
ordered by inclusion. Let (Io)aeq be a chain of elements of F and let J =
Uaecnla. Clearly, J is an ideal of R and I, C J for all @ € Q. We show that
J € F. Suppose that J ¢ F. Then

z=z"—z"tr e JG

for some r € RG and some positive integer n. Since Supp (2) is finite, there

exists some a € (2 such that z € I,G. It follows that the sequence
(2 + InG)(RG/I,G) 2 (z + I.G)*(RG/1,G) D ...

terminates, which is a contradiction. Therefore J € F and thus by Zorn’s Lemma,

F contains a maximal element M. Since

(R/M)G = RG/MG
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is not strongly m-regular, it follows by the hypothesis that M is not a prime ideal.

Therefore there exist ideals A, B of R such that
ABC M

but A, BZ M. Let A" = M + A and B’ = M + B. Then M is strictly contained

in A’ and B’, and we also have that
A'B' = (M + A)(M + B) C M.
By the maximality of M in F, the sequences
(z+ A'G)(RG/A'G) 2 (z + A'G)*(RG/A'G) 2 ...

and

(z+ B'G)(RG/B'G) 2 (z+ B'G)*(RG/B'G) 2 ...
both terminate. Hence there exists a positive integer m such that

(z™ + A'G)(RG/A'G) = (*™*' + A'G)(RG/A'G)
and

(z™ + B'G)(RG/B'G) = (¢*™*! + B'G)(RG/B'G).

It follows that

™ —g?m s e A'G

and

™ —z*m+t e B'G
for some s, t € RG. Therefore

(a™ — 22+ g) (2™ — 2™ H1t) € (A'B')G C MG
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from which it follows that
22m — g?mtly € MG
for some w € RG. Hence the sequence
(z+ MG)(RG/MG) 2 (z + MG)*(RG/MG) 2 ...

terminates; contradicting the fact that M € F. We thus have that RG must be

a strongly m-regular ring. O

By Proposition 1.5.2 and Theorem 3.5.1, we readily have

Corollary 3.5.2. Let R be a ring and G a group. Then RG is strongly w-regular
if and only if (R/P)G is strongly n-regular for every prime ideal P of R.

We now obtain other sufficient conditions for a group ring to be strongly

m-regular as follows:

Theorem 3.5.3. Let R be a ring with artinian prime factors and let G be a

locally finite group. Then RG is strongly w-regular.

Pro;zﬁ Let P be a prime ideal of R and « = 30 ;749 € (R/P)G. Let H, be
the subgroup of G generated by the support of z. Since Supp(z) is finite and G
is locally finite, it follows that H, is finite. It is clear that z € (R/P)H,. We
note that (R/P)H, is strongly m-regular. Indeed, since R/P is artinian and H,
is finite, so (R/P)H, is artinian (by Theorem 1.5.4); hence, strongly m-regular.
Since x is arbitrary in (R/P)G, so (R/P)G is strongly 7-regular. By Theorem
3.5.1, it follows that RG is strongly m-regular. 0O

A natural question to ask is whether the converse of Theorem 3.5.3 is true.
We show that it is partially true if G is abelian (see Proposition 3.5.5). First we

prove the following:
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Proposition 3.5.4. Let R be a ring and G a group. If RG is strongly w-regular,
then R is strongly m-regular and G is torsion.
Proof. From the (ring) isomorphism R = RG/A, we have that R is strongly
m-regular. To show that G is torsion, let g € G, g # 1. Consider the element
1—g € RG. Note that 1 — g does not have a right or left inverse in RG since
1¢A.

Now since RG is strongly 7-regular, it follows from Theorem 2.2.5 that there

exist a positive integer n and an element 7 € RG such that
(1=-g)"=(1—g)"*r

and
(1-gr=r(1-g).

If 1 — g is nilpotent, then 1 — g is a zero divisor and hence by Proposition 6 in

[Co], g has finite order. Suppose that 1 — g is not nilpotent. Then since
1-g)"l-(1=-gr]=0

and 1 — (1 —g)r # 0, so 1 — g must also be a zero divisor. Hence, by Proposition

6 in [Co] again we have that g has finite order. O

Since torsion abelian groups are locally finite, we easily have the following

from Proposition 3.5.4:

Proposition 3.5.5. Let R be a ring and G an abelian group. If RG is strongly

m-regular, then R is strongly m-regular and G is locally finite.

We end this section by giving sufficient conditions for a group ring to be unit

regular as follows:
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Theorem 3.5.6. Let R be a unit regular ring with all prime factors artinian
and let G be a locally finite group such that the order of every finite subgroup of

G is a unit in R. Then the group ring RG is unit regular.

Proof. By Theorem 3.5.3, RG is strongly m-regular. Since unit regular rings are
regular, we have from Theorem 1.5.3 that RG is regular. Then since a strongly

m-regular regular ring is unit regular, we have the desired result. [

As a partial converse to Theorem 3.5.6 we have the following:

Proposition 3.5.7. Let R be a ring and G a group. If RG is unit regular, then
(i) R is unit regular,
(ii) G is locally finite,

(iii) the order of every finite subgroup of G is a unit in R.

Proof. Since a unit regular ring is regular, conditions (i) and (iii) follow readily

from Theorem 1.5.3. Condition (i) follows from the fact that
R~ RG/A

and homomorphic images of unit regular rings are unit regular. 0

3.6 Euler and exact-Euler rings.

Following Badawi (B3], a ring R is called Euler if for every = € R there exists
a positive integer n such that z" € Id(R), that is, every element of R is a near
idempotent. R is called an ezact-Euler ring if there exists a positive integer n
such that =" € Id(R) for every z € R. Clearly, an exact-Euler ring is Euler
and as we shall show below, an Euler ring is strongly m-regular. Necessary and

sufficient conditions for a ring to be Euler or exact-Euler have been considered by
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Badawi [B3]. In this section, we provide different proofs for some of the results
in (B3] which we state here in Theorems 3.6.1 and 3.6.3. It is clear that if R is
a ring, the set of units U(R) forms a multiplicative group. We begin with the

following characterization of Euler rings:

Theorem 3.6.1 (Badawi, [B3]). A ring R is Euler if and only if R is strongly

w-regular and U(R) is a torsion group.

Proof. Suppose that R is Euler. Let-u € U(R). Then there exists a positive
integer n such that u?™ = u™. Note that )
Ut = =y =y = 1

Since u is arbitrary in U(R), we obtain that U(R) is torsion. Now let = € R.
Then y = 2" € Id(R) for some positive integer n. Clearly, 2"y = z" and
zy = yr. It follows that o™ = z"+1(z"~ly) = (yz"~!)z"*! and hence, R is
strongly 7-regular.

Conversely, suppose that R is strongly 7-regular and U(R) is torsion. Let z €
R. By Corollary 3.3.4, there exists a positive integer n such that z” = ue = eu
for some e € Id(R) and u € U(R). Since U(R) is a torsion group, there exists a
positive integer m such that v™ = 1. Then

"™ =ume™ =e™ =e € Id(R).

Thus, R is Euler. O

Proposition 3.6.2. A subring of an Euler ring is also Euler.

Proof. Let R be an Euler ring and S a subring of R. For any z € S < R, there
exists a positive integer n such that 2" € Id(R). But z" € S since S is a subring

of R. Hence, 2" € Id(S) and it follows that S is also Euler. O

We next consider exact-Euler rings.
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Theorem 3.6.3 (Badawi, [B3]). A ring R is exact-Euler if and only if R is
strongly n-regular and Nil(R), U(R) are of bounded index.

Proof. Suppose first that R is exact-Euler. Then R is Euler and it follows readily
from Theorem 3.6.1 that R is strongly n-regular. Let u € U(R) and z € Nil(R).
Since R is exact-Euler, there is a (fixed) positive integer n such that u", z" €
Id(R). Then

ut =T = ute = 1

Since u is arbitrary in U(R), it follows that U(R) is torsion. Let m be the smallest
positive integer such that z™ = 0. Clearly, m < n. Hence, Nil(R) is of bounded
index.

Conversely, suppose that R is strongly m-regular and Nil(R), U(R) are of
bounded index w, m, respectively. Let z € R. Then there exist a positive integer
n and an element y € R which commutes with z such that 2™ = z"*1y. Thus,

" = 22"y and hence,

2n+k+2, 3

ntk _ p2n+k y)y2 =z y

n+k(zn+l

T 2n+k+1, 2 n+k+l(xﬂ+l

y=z Yy =z Yy =a

U o= 2Rk

for any positive integer k. We may thus assume that 2™ = z?"y for n > w. Since
(z"y)? = 2?"y? = 2"y, we have z"y € Id(R) and hence, so is 1 — z"y. Note
that [z(1 — z"y)]" = z"(1 — z™y) = 0. Thus, [z(1 — z"y)]* = 0 which gives
us 2¥(1 — z™y) = 0. It follows that 2% = g"*+%y = z2¥(z"~¥y); that is, z¥ is
strongly regular. As shall be shown in Theorem 4.3.1, z% = eu = ue for some
e € Id(R) and u € U(R). Thus, 2¥™ = e“™u*™ = e € Id(R). Since = arbitrary

in R, this shows that R is exact-Euler. O

By using arguments similar to those in the proof of Proposition 3.6.2, the

following result can be proven.
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Proposition 3.6.4. A subring of an exact-Euler ring is also exact-Euler.

We have seen in Section 2 that a subring of a strongly m-regular ring R is not
necessarily strongly 7-regular. However, if in addition U(R) is torsion, we have

the following:
Corollary 3.6.5. Let R be a strongly m-regular ring with U(R) torsion. Then
any subring of R is also strongly m-regular.

Proof. Let S be a subring of R. Since R is Euler (by Theorem 3.6.1), it follows
from Proposition 3.6.2 that S is also Euler. Hence, S is strongly m-regular by
Theorem 3.6.1. O
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