CHAPTER 5

(8,2)-RINGS AND RINGS WITH STABLE RANGE ONE

5.1 Introduction.

In this final chapter we shall study (s,2)-rings and rings with stable range one.
In particular, we are interested in how these rings are related to various ‘regular’
rings. For convenience in this chapter, we shall refer to all invertible elements as

just units.

In Section 2 we shall study conditions under which strongly regular and
strongly m-regular rings are (s,2)-rings. We shall also study some related rings

such as semicommutative rings, (s,2)-7-rings and exact-(s,2)-7-rings.

In Section 3 we study some important features of rings with stable range one.
We shall see that every strongly m-regular ring has stable range one (Theorem
5.3.5). We also give a proof different from the ones available in the literature

that a regular ring has stable range one if and only if it is unit regular.
5.2 On (s,2)-rings.

A ring R is said to be an (s,2)-ring (see [FS2] or [He)) if every element in R
is a sum of two units of R. It has been shown by Ehrlich [Eh] that if R is a unit
regular ring and 2 is a unit in R, then R is an (s,2)-ring. As a consequence of

this result, we make the following observations:

Proposition 5.2.1. Let R be a strongly regular ring. If 2 is a unit in R, then

R is an (s,2)-ring.
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Proof. This is obvious since every strongly regular ring is unit regular. 0O

Proposition 5.2.2. Let R be a strongly w-regular regular ring. If 2 is a unit in
R, then R is an (s,2)-ring.

Proof. This is also obvious since every strongly m-regular regular ring is unit

regular (see [GM, Theorem 5.8]). O
A natural question to ask is whether a ring R is an (s,2)-ring if R is only
strongly m-regular. Fisher and Snider [FS2] showed the following:

Theorem 5.2.3. Let R be a strongly n-regular ring. If 2 is a unit in R, then R

is an (s,2)-ring.

Proof. See Theorem 3 of [FS2]. O

As an immediate consequence, we have

Corollary 5.2.4. Let R be a ring with prime factors artinian. If 2 is a unit in

R, then R is an (s,2)-ring.

Proof. This follows easily from Theorem 5.2.3 and the fact that rings with prime

factors artinian are strongly 7-regular (see [FS1, Theorem 2.1]). O

Note that since every abelian m-regular ring is strongly 7-regular, we also have

the following result:

Corollary 5.2.5. Suppose that R is an abelian w-regular ring and 2 is a unit of

R. Then R is an (s,2)-ring.

In the case where R is abelian 7-regular and 2 is a nonnilpotent element of

R, we have the following result of A. Badawi [B2].
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Theorem 5.2.6. Suppose that R is abelian 7-regular and 2 is a nonnilpotent
element of R. Then there exists e € Id(R) such that e # 0 and every element in

eR is a sum of two units of R.

Proof. See Theorem 7 of [B2]. O

Before continuing, we pause to consider the following two propositions.

Proposition 5.2.7. Let R be a ring. If R has a strongly m-regular element
which is a sum of two units, then there exists a near idempotent e € R which is

also a sum of two units.

Proof. Let x be a strongly m-regular element of R which can be written as a sum
of two units. By Theorem 3.3.1, there exist a near idempotent e € R and an
invertible element u € R such that z = eu. By the hypothesis, z = v + w for
some v, w € U(R). It follows that

-1 1

e=(v+wul=vu" +wu”

is a sum of two units. O

Proposition 5.2.8. Let R be a ring. If every near idempotent of R is a sum of

two units, then so is every strongly w-regular element of R.
Proof. Let x be a strongly 7-regular element of R. Then by Theorem 3.3.1,

z = eu for some near idempotent e € R and some u € U(R). Since e = v+ w for

some v, w € U(R), it follows that

r=eu=(v+wu=vu+wn

is a sum of two units in R. O

A natural question to ask is whether subrings of (s.2)-rings are (s,2)-rings.

The following result tells us when this is true.

63



Proposition 5.2.9. Let R be an (s,2)-ring and let S be a subring of R. If
U(R) < S, then S is an (s,2)-ring.

Proof. Let * € S. Then there exist u, v € U(R) such that z = u + v. Since
U(R) < S, it follows that S is an (s,2)-ring. O

Proposition 5.2.10. Let R be a regular (s,2)-ring and suppose that U(R) is a

subring of R. Then R is unit regular.

Proof. Let z € R. Since R is regular, there exists y € R such that z = xyz.
Since R is (s,2), we have y = u + v for some u, v € U(R). Then since U(R) < R,
it follows that y = u + v € U(R). Therefore, R is unit regular. 0O

Since every unit regular ring is regular, the following corollary is obvious.

Corollary 5.2.11. Let R be an (s,2)-ring and suppose that U(R) is a subring
of R. Then the following conditions are equivalent:
(i) R is regular;

(ii) R is unit regular.

As mentioned earlier in this section, Ehrlich [Eh] has shown that a ring R is
an (s,2)-ring if R is unit regular and 2 is a unit in R. In the following proposition

we show that the converse of this is true if U(R) < R.

Proposition 5.2.12. Let R be a ring and suppose that U(R) is a subring of R.
Then R is an (s,2)-ring if and only if R is unit regular and 2 is a unit of R.

Proof. It suffices to show the necessity part. Suppose that R is an (s,2)-ring.
Given any z € R, there exist u, v € U(R) such that x = u +v. Since U(R) < R,
so # € U(R) and hence, 27! exists. Clearly, zz~'z = z and therefore R is unit

regular. Moreover,2 =1+1€U(R). O
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Proposition 5.2.13. Let R be a ring. If U(R) is a subring of R, then the
following conditions are equivalent:

(i) R is strongly regular;

(ii) R is strongly m-regular;

(iii) R is.an (s,2)-ring.

Proof. (i) = (ii): Obvious.

(ii) = (iii): By Theorem 3 of [FS2]. _

(iii) = (i): Let = € R. Since R is an (s,2)-ring, there exist u, v € U(R) such
that z = u + v. Then since U(R) < R, it follows that z € U(R) and hence, 77!
2

exists. Clearly, z = 222! = 27122, Thus, z is strongly regular. O

Let R be a ring and a € R. If for every b € R, there exist r, s € R such

that ab = ra and ba = as, then a is called semic: tative. If every el of
R is semicommutative, then R is called a semicommutative ring. In the case of

semicommutative rings, the following results are known:

Theorem 5.2.14. Let R be a semicommutative ring. A m-regular ring R is an

(s,2)-ring if and only if every element in Id(R) is a sum of two units of R.

Proof. See Theorem 4 of [B1]. O

Corollary 5.2.15. Let R be a semicommutative w-regular ring. If 2 € U(R),
then R is an (s,2)-ring.

Proof. See Corollary 2 of [B1]. O

We say that a ring R is an (s,2)-w-ring if for each element z in R, there is a
positive integer n > 1 such that 2" is a sum of two units of R. If there is a fixed
positive integer n > 1 such that z" is a sum of two units of R for each = in R,

then R is called an ezact-(s,2)-w-ring.
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Theorem 5.2.16 (Badawi, [B3]).

(i) Let R be a strongly m-regular ring. Then R is an (s,2)-w-ring if and only
if every element in Id(R) is a sum of two units of R. In particular, if

2 € U(R), then R is an (s,2)-m-ring.
- (ii) Let R be an exact-Euler ring. Then R is an exact-(s,2)-w-ring if and only
if each element in Id(R) is a sum of two units of R. In particular, if

2 € U(R), then R is an exact-(s,2)-w-ring.

Proof. (i) Let z € R. By Theorem 3.3.1, there exist a unit « € R and a near
idempotent g € R such that = gu = ug. Let n be a positive integer such that
g" = ¢*" and let e = g". Then e € Id(R) and 2" = eu". Therefore, R is an
(s,2)-m-ring if each e € Id(R) is a sum of two units of R. It is clear by definition
that if R is an (s,2)-7-ring, then each e € Id(R) is a sum of two units of R.
Next, suppose that 2 € U(R). By Theorem 5.2.3, R is an (s,2)-ring; hence, an
(s,2)-m-ring.

(ii) Let R be an exact-Euler ring. Then there exists a positive integer n
such that 2" = e € Id(R) for each z € R. Thus, R is an exact-(s,2)-7-ring if
each element in Id(R) is a sum of two units of R. The converse of this is clear
by definition of an exact-(s,2)-7-ring. Next, suppose that 2 € U(R). Since R is
strongly m-regular (by Theorem 3.6.3), it follows from Theorem 5.2.3 that R is
an (s,2)-ring. In particular, every element in Id(R) is a sum of two units of R;

hence, R is an exact-(s,2)-7-ring.  OJ

5.3 Rings with stable range one.

A ring R is said to have stable range oneif for any a, b € R satisfying aR+bR =
R, there exists y € R such that a + by is right invertible. By Vaserstein [V1,

66



Theorem 1], this definition is left-right symmetric.

Theorem 5.3.1 ([V2]). If a ring R has stable range one then all one-sided

inverses of R are two-sided.

Proof. See Theorem 2.6 of [V2]. O

Proposition 5.3.2. A ring R has stable range one if and only if for any a, =,

b € R satisfying ax + b = 1, there exists y € R such that a + by is invertible.

Proof. Assume that R has stable range one. Let a, z, b € R satisfy az +b = 1.
Then aR+ bR = R and by definition, there exists y € R such that a + by is right
invertible. By Theorem 5.3.1, we have that a+ by is left invertible. The converse

is obvious. 0O

One of the most important features of the stable range one condition is the
cancellation of related modules from direct sums. Evans [Ev, Theorem 2] proved
that if the endomorphism ring of a module M has stable range one, then M @A =
M 6) B implies that A = B. The converse of this is however not necessarily true

as shown by taking M = Z.

It has been shown in [Fu] and [Go] that a regular ring has stable range one if
and only if it is unit regular. By using Proposition 2.2.9 we now provide another

proof of this result.

Proposition 5.3.3. A regular ring R has stable range one if and only if it is

unit regular.

Proof. First, assume that R has stable range one. Given any a € R, there exists
x € Rsuch that axa = a. Clearly, az+(1—axz) = 1. By the assumption on R and
by Proposition 5.3.2, there exists y € R such that v = a+ (1 — ax)y is invertible.
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Therefore, azu = azfa + (1 — ar)y] = ara = a. It follows that az = au™! from

1

which we have au™'a = ara = a.

Conversely, assume that R is unit regular and suppose that axz + b = 1 for
some a, T, b € R. By Proposition 2.2.9, we may write a = eu, b = gv for some

idempotents e, g € R and some units u, v € R. It follows that
e(ur+b)+(l—e)gv=euz+eb+(l1—eb=ax+b=1.

Since R is regular, there exists ¢ € R such that (1 —e)g = (1 —e)gc(l — e)g. Let
f=(1-¢€)gc(l —e). We then have

e(ux +b) + fb = e(uz + b) + (1 — e)ge(l — e)gv
=1-(1-e)gv+(1—e)gv=1.

Note that 0 = feur = faz = f(1 —b), that is, fb = f. We also have e = el =
e(ax +b) = e(ux +b). Thus

e+ f=e(ur+b)+ fb=1.

It is clear that 1+ ebv™'c(1 - e) is a unit with inverse 1 — ebv~'¢(1 — e). Since
e+f =1, we have that e+(1—e)gc(1—e€) = 1, that is, e+(1—e)gvv~lc(1—e) = 1.

But since b = gv, we have e + (1 — e)bv~1¢(1 — €) = 1 and therefore
e+bvle(l—e) =1+ebv lc(l—e).
Since (1 — e)e = 0, we can write
e+bvle(l—e)[l +ebvle(l —e)] = 1+ebvc(1 —e).
Multiplying on the right by ., we then obtain
a+bvle(l—e)[l +ebve(l —€)Ju = eu+bv e(l —e)[l + ebv (1 — €)]u

=[1+ebvle(l - e)u
c U(R).
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It then follows from Proposition 5.3.2 that R has stable range one. [

A ring R is said to have unit I-stable range if for any =,y € R, there is a
unit u € R such that = — v and y —u~" are both units. Unit 1-stable range is a

stronger condition than stable range one as shown in the following:

Proposition 5.3.4. Let R be a ring. If R satisfies unit 1-stable range, then R

has stable range one.

Proof. Let a, z, b € R with az + b = 1. By the hypothesis, there exist u, v, w €

U(R) such that  =u+v and a = w + u~1. Note that

a+bv ! =a+(1—az)!
=w+ul+ 1= (wt+u ) (u+v)u!
=w+u 4 [~wu — wv — u" !

= —wuv™! € U(R).

By Proposition 5.3.2, it follows that R has stable range one. 0

The converse of Proposition 5.3.4 is not necessarily true. For example, Z/2Z
has stable range one but does not have unit 1-stable range. Note that Z/3Z has

both unit 1-stable range and stable range one.

In [GM], Goodear] and Menal showed that an algebraic algebra over an infinite
field FF has both stable range one and unit 1-stable range. They also conjectured
that any algebraic algebra has stable range one. This conjecture has been proven
by P. Ara in [Ar]. Ara [Ar] has in fact proven the following stronger and deeper
result:

Theorem 5.3.5. Strongly m-regular rings have stable range one.
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Prior to this effort by Ara [Ar], several mathematicians have made various
attempts to link strongly m-regular rings with rings having stable range one. We

list here some of the major results which have been obtained.

A corner of aring R is any (non-unital) subring eRe where e is an idempotent

in R.

Theorem 5.3.6. A strongly w-regular ring R has stable range one if and only if

every nilpotent regular element of each corner of R is unit régular in that corner.

Proof. See Theorem 6.1 of [GM]. O

Proposition 5.3.7. Let R be a strongly n-regular ring. If every element of R

is a sum of a unit and a central unit, then R has stable range one.

Proof. See Corollary 6.2 of [GM]. O

Proposition 5.3.8 ([Yu]). Let R be a strongly w-regular ring. If
(i) all idempotents of R are central, or

(ii) 2 is invertible in R and every element of R is a sum of an idempotent and

a central unit,

then R has stable range one.

Corollary 5.3.9 ([CY]). A strongly m-regular ring R has stable range one if

and only if every regular element of R is unit regular in R.

Theorem 5.3.10 ([CY]). Let R be a strongly w-regular ring. If all powers of

every regular element of R are regular, then R has stable range one.

A major breakthrough in linking strongly m-regular rings with rings having

stable range one came via exchange rings. Let R be a ring and A/ = Mp be a
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right R-module. Following Crawley and Johnson [CJ], Mp is said to have the
exchange property if for every right R-module Ar and any two decompositions
of Ag

Ap=M'® N = @1 A;

where Mp = Mg, there exist submodules Al C A; such that
A=M & (®ic1Al).

Mp, is said to have the finite ezchange property if the above condition is satisfied

whenever the index I is finite.

The study of exchange rings was pioneered by Warfield in [Wa]. Warfield
called a ring R an exchange ring if Rp has the exchange property as above and
proved that this definition is left-right symmetric. He also proved that for any
right R-module M, M has the finite exchange property if and only if Endp(M)
is an exchange ring. Nicholson [Ni] showed that a ring R is an exchange ring if
and only if all idempotents of R lift modulo left (right) ideals of R. The exchange
property of rings is preserved under taking corners and matrix rings. As shown
below, 7-regular rings (hence, strongly 7-regular and regular) rings are exchange

rings.

Proposition 5.3.11 ([St]). A w-regular ring R is an exchange ring.

Proof. Let x € R. Then there exist y € R and a positive integer n such that
a" = a"yx". Let e = yz". Then e = €2 = (yz"y2" ')z € Rz and 2" = ayx" =

a"e € Re. Now,
l—a"=(Q+a+2?+ - +2" ) (1-2) € R(1-1z).

Thus, 1 = 2" +(1-2") € Re+R(1—x). It follows that R = Re+R(1 —xz). Then

there exist clements # and s in R such that 1 = te+s(1—x). Let f = e+ (1—¢)fe.
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Then f% = f and f = kx for some k € R. Note that
l—f=(-¢)=(1-e)te=(1-e)(l-te) = (1—e)s(l —a).
Thus,
f-2=f0=2)= (= f)o = ka(l—2) - (1= )s(1 ~ 2}z

and hence, f —z € R(z — 22). Let I be an arbitrary left ideal of R and suppose
that ¢ — 22 € I. Then f —z € R(z — 2%) C I. Therefore R is an exchange

ring. O

Ara [Ar] made use of the fact that a strongly 7-regular ring R is an exchange
ring to show that any nilpotent regular element of R is unit regular (see [Ar,
Theorem 2]). By using Theorem 5.3.6 he then concluded that R has stable range

one.
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