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RAIN GAUGE NETWORK OPTIMIZATION IN A TROPICAL AREA 

TOWARDS EFFICIENT HYDROLOGICAL DATA ACQUISITION 

ABSTRACT 

An adequate and reliable rain gauge network is essential for observing rainfall data in 

hydrology and water resource applications. For this purpose, rain gauge stations are 

installed in the catchment area of the river that forms a rain gauge network. Normally, a 

rain gauge network will be developed in accordance with the hydrological purpose and 

evaluated to extend to the network size in order to increase data accuracy. The 

increasing number of rain gauge network and augmentation of the existing rain gauge 

networks without proper planning and design has resulted in the high density of rain 

gauge stations compared to the recommendation made by the World Meteorological 

Organization (WMO). This resulted in increasing maintenance costs, but at the same 

time, creates the possibility of redundancy of stations within the catchment area. Due to 

this factor, it is the aim of this study to review the rain gauge network in a specific 

catchment to establish the optimal number of stations so that efficient rainfall data 

acquisition can be obtained. Two new optimization approaches have been developed in 

this study for the rain gauge network optimization and to prioritize the rain gauge 

stations, first by coupling the cross-validation technique with the geostatistical method 

(CV-Geo), and second, using the modified Particle Swarm Optimization (MPSO) 

technique. The spatial interpolation error of the spatial rainfall distribution, measured as 

the Root Mean Square Error (Erms) optimization criterion, is applied to a rain gauge 

network in a tropical urban area. The total daily rainfall data from the 55 rain gauge 

stations were used to perform the optimization process for seven flood events. The 

optimization aimed to reduce the number of rain gauge stations in the existing network 

that could be hypothetically redundant. By using the two new methods, CV-Geo and 
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MPSO, the number of stations in the existing rain gauge network could be optimized 

based on the lowest Erms value of spatial interpolation error. The optimized rain gauge 

network exhibited a better semivariogram structure, especially in terms of nugget value 

that has been drastically improved. However, MPSO had shown a slightly better nugget 

value since it has recorded the lowest value of nugget. The rain gauge stations were 

prioritized based on their importance in the network. Four stations, namely T02, N03, 

N06, and N21 were considered ineffective and could, therefore, be relocated within the 

study area or eliminated from the existing network. A preliminary evaluation of the 

optimized network without the four stations showed satisfactory results in flood 

hydrograph simulation using a lump hydrologic model. Three out of four flood 

hydrograph simulations have yielded the NSE, r, and R2 values more than 0.75, which 

have indicated that the optimized network is efficient enough to produce rainfall data to 

simulate a flood hydrograph. The optimized rain gauge network exhibited a better semi 

variogram structure and lowered spatial interpolation error.  

Keywords: rain gauge network, cross-validation, geostatistical analysis, optimization, 

Particle Swarm Optimization. 
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PENGOPTIMUMAN RANGKAIAN STESEN HUJAN DI KAWASAN TROPIKA 

KE ARAH PENCERAPAN DATA HIDROLOGI YANG CEKAP 

ABSTRAK 

Rangkaian stesen hujan yang mencukupi dan boleh dimanfaatkan adalah penting 

untuk mencerap data hujan untuk kegunaan aplikasi hidrologi dan sumber air. Untuk 

tujuan ini, beberapa stesen hujan dipasang di kawasan tadahan sungai yang membentuk 

rangkaian stesen hujan. Lazimnya, rangkaian stesen hujan akan dibangunkan mengikut 

keperluan hidrologi tertentu dan dinilai untuk meluaskan saiz rangkaian bagi 

meningkatkan ketepatan data. Peningkatan saiz rangkaian stesen hujan dan peluasan 

rangkaian stesen hujan sedia ada tanpa perancangan dan reka bentuk yang betul telah 

mengakibatkan kepadatan stesen hujan yang tinggi berbanding dengan yang disyorkan 

oleh Pertubuhan Meteorologi Sedunia (WMO). Ini menyebabkan peningkatan kos 

penyelenggaraan, dan pada masa yang sama, mewujudkan kemungkinan berlakunya 

pertindanan stesen hujan di kawasan tadahan. Disebabkan oleh faktor ini, kajian ini 

bertujuan untuk mengkaji semula rangkaian stesen hujan di kawasan tadahan tertentu 

untuk mendapatkan bilangan stesen yang optimum ke arah pengumpulan data hujan 

yang cekap. Dua pendekatan pengoptimuman baharu dibangunkan dalam kajian ini 

untuk mengoptimumkan rangkaian stesen hujan dan menyenaraikan stesen hujan 

mengikut keutamaan, pertama dengan menggabungkan teknik cross-validation dengan 

kaedah geostatistical (CV-Geo) dan kedua menggunakan teknik Particle Swarm 

Optimization (PSO) terubahsuai (MPSO). Ralat sisipan ruang bagi taburan hujan 

ruangan, Root Mean Square Error (Erms) diadaptasi sebagai kriteria pengoptimuman 

terhadap rangkaian stesen hujan di kawasan bandar tropika. Proses pengoptimuman 

dijalankan untuk tujuh kejadian banjir dengan menggunakan data hujan harian pada 55 

stesen hujan. Tujuan pengoptimuman adalah untuk mengurangkan bilangan stesen hujan 
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yang secara hipotesis adalah bertindan di dalam rangkaian sedia ada. Dengan 

menggunakan dua kaedah baharu, CV-Geo dan MPSO, bilangan stesen hujan dalam 

rangkaian sedia ada dapat dioptimumkan berdasarkan nilai ralat sisipan ruangan, Erms 

yang terendah. Hasil rangkaian stesen hujan yang dioptimumkan mempamerkan struktur 

semivariogram yang lebih baik, terutamanya dari segi nilai nugget yang telah 

ditambahbaik secara drastik. Walau bagaimanapun, MPSO telah menunjukkan nilai 

nugget sedikit lebih baik kerana ia mencatatkan nilai nugget terendah. Stesen hujan 

telah disusun berdasarkan kepentingan mereka dalam rangkaian. Empat stesen hujan, 

iaitu T02, N03, N06, dan N21 dianggap tidak berkesan dan boleh dipindahkan dari 

lokasi asal ke lokasi baru dalam kawasan kajian atau dihapuskan dari rangkaian sedia 

ada. Penilaian awal rangkaian yang dioptimumkan tanpa empat stesen hujan tersebut 

menunjukkan keputusan yang memuaskan dalam simulasi hidrograf banjir 

menggunakan model hidrologi. Tiga dari empat simulasi hidrograf banjir telah 

menghasilkan nilai NSE, r, dan R2 lebih daripada 0.75, yang menunjukkan bahawa 

rangkaian yang dioptimumkan cukup memadai untuk menghasilkan data hujan bagi 

mensimulasikan hidrograf banjir. Rangkaian stesen hujan dioptimumkan mempamerkan 

struktur semivariogram yang lebih baik dan ralat sisipan ruangan yang terendah.  

Keywords: rangkaian stesen hujan, cross-validation, analisa geostatistical, 

pengoptimuman, Particle Swarm Optimization. 
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CHAPTER 1: INTRODUCTION 

1.1 Background  

A rain gauge network is a hydrological network meant to collect rainfall data and 

facilitate hydrology applications, such as hydrologic modeling (Hongliang et al., 2015), 

flood forecasting (Kar, Lohani, Goel, & Roy, 2015), flash flood prediction (Volkmann, 

Lyon, Gupta, & Troch, 2010) as well as water resource analysis. Rainfall data from a 

rain gauge network is used to compute spatial rainfall information in terms of point-

based, areal average and spatial variability. Accurate rainfall data is crucial for 

hydrology and water resource-related projects at the planning, design and operational 

levels (Adhikary, Yilmaz, & Muttil, 2015).  

The development of a rain gauge network is an evolutionary process, beginning with 

the initial development of a basic network, followed by periodic reviews for upgrading 

to achieve an optimum network (Vivekanandan & Jagtap, 2013b). River basin managers 

around the world adopt this process in rain gauge network design and optimization. A 

rain gauge network is reviewed to optimize the appropriate number of point rainfall 

stations, as studied by Bastin, Lorent, Duque, and Gevers (1984) and Pardo-Igu´zquiza 

(1998). The review process can adopt the procedure suggested by the World 

Meteorological Organization (WMO) as illustrated in Figure 1.1. 

 Univ
ers

ity
 of

 M
ala

ya



2 

   

Figure 1.1: Framework of hydrological network analysis and redesign in line 
with the World Meteorological Organization (2008). 

The framework illustrates the process to review an existing rain gauge network based 

on the purpose and objective of a rain gauge network. This will determine the priority of 

each rain gauge. Then, a network will be designed and optimized for operations, limited 

by the budget constraint. At this stage, the budget also influences the purpose of the 

analysis and redesign of a network. Furthermore, the budget significantly depends on 

the economic condition in term of global and micro-scale levels. The policy and vision 
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of an organization concerning the review process also play a primary role in influencing 

the finance. However, the redesign and optimization stages are the technical part in 

which there are widely explored by researchers to contribute in the review process 

(Adhikary et al., 2015; Al-Abadi & Al-Aboodi, 2014; Bakhtiari, Kermani, & Bordbar, 

2013; Kar et al., 2015; Leach, Kornelsen, Samuel, & Coulibaly, 2015; Mishra & 

Coulibaly, 2014; Shaghaghian & Abedini, 2013) 

In Malaysia, the development of the rain gauge network began in 1972, initiated by 

the Department of Drainage and Irrigation (DID). The initial network is called National 

Hydrological Network that comprised 86 principal rain gauge stations and 647 

secondary rainfall stations (Jabatan Pengairan dan Saliran, 2009). The principal stations 

are defined as permanent or fixed stations and equipped with self-recording instrument. 

Meanwhile, the secondary stations are similar to principal station but they are installed 

for short-term or project basis which is subjected to review after certain period, 

normally for 5 to 10 years. The network was expanded each year, and by 1985, the 

densities of the rain gauge stations established by DID had met the requirements as 

recommended by the World Meteorological Organization (WMO). To date, with the 

increasing need of hydrological analysis for sustainable water resources planning, 

development, and management, the National Hydrological Network was expanding to 

collect more data for analysis. Currently, DID maintain more than 1000 hydrological 

stations throughout the country for hydrological data collection for water resources, 

flood and drought monitoring (Jabatan Pengairan dan Saliran, 2017).  

A common but effective way to represent spatial rainfall data is by using a spatial 

rainfall map. The map generated using rainfall data from the rain gauge networks 

involves point-based rainfall that is used to compute the average areal rainfall for spatial 

rainfall mapping. The map is produced through an interpolation process using point 
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rainfall values. Accurate rainfall maps are crucial for any hydrology application. Thus, 

the level of spatial interpolation error determined the accuracy of the map. The ability to 

reduce the error will ensure the goodness of result in the hydrological analysis, and it is 

an excellent opportunity to explore. 

A rain gauge network with a high number of stations could not guarantee the quality 

of the spatial rainfall map because it immeasurably depends on how the stations are 

distributed within the area. In many cases, the rain gauge stations were installed without 

proper design especially the stations that had been installed at an early stage. When the 

network is expanded to procure more rainfall data, the redundancy of the station could 

occur. In addition, the climate change factor that affects the entire world influences the 

pattern of rainfall distribution in terms of spatial and temporal scale. These factors 

motivate the need for a review process on the existing rain gauge network. 

1.2 Problem statement 

In operational hydrology, rainfall data presented as spatial rainfall map are generated 

via spatial interpolation process. Through the spatial interpolation method, point rainfall 

data are converted into spatial rainfall data for hydrological analysis such as to check 

water availability within a catchment and to give early flood warning information to the 

public via a flood forecasting model or system. 

The spatial rainfall data are commonly measured as a catchment or areal rainfall 

(Bastin et al., 1984; Bras & Colon, 1978; Bras & Rodríguez‐Iturbe, 1976; Pardo-

Igu´zquiza, 1998). The catchment rainfall is calculated using rainfall data from several 

stations within a catchment area. Therefore, the accuracy of the catchment rainfall 

significantly depends on the adequacy and reliability of the rainfall data measured from 

every station in the station network. Furthermore, the adequacy and reliability of the 
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rainfall data depend on the appropriate location of the station to gauge the rainfall that 

reaches the ground (Bastin et al., 1984; Cheng, Lin, & Liou, 2008). 

In conventional practice, the location of the rain gauge station depends on a few 

factors such as the cost of development, access to the site, and maintenance aspect. In 

addition, Shaghaghian and Abedini (2013) have listed the factors that influence the rain 

gauge network design which are the overall objective of the network design, the process 

considered, the  attribute  under  consideration, the temporal scale or sampling interval 

in, the spatial scale, the topographic setting, types of precipitation, the nature of the 

objective function used for design and the algorithm used for minimization of 

maximization the objective function value. These factors are relatively subjective from 

one basin to another. On the other hand, it is recommended that factors like the 

elevation effect (Feki, Slimani, & Cudennec, 2012; Goovaerts, 2000), spatial 

distribution of rainfall (Xu, Xua, Chen, Zhang, & Li, 2013), and purpose of the station 

to be developed are to be taken into consideration. However, to incorporate these factors 

in the design, the location and rain gauge network are hard to implement. Instead, the 

instinct of personal experience takes over this task.  

The conventional use of the geostatistical method for producing spatial rainfall 

distribution has been enhanced by the advanced development of the Geographical 

Information System (GIS). Today, the GIS applications have been facilitated by the 

built-in interpolation methods in geostatistical analysis. This has offered an advantage in 

analyzing spatial rainfall data. The Kriging technique variant is one of the example 

methods which require a variogram model to compute estimated data at the 

interpolation point. 

The Kriging technique is quite similar to the Inverse Distance Weight (IDW) method 

that needs the weight of the observed data to estimate the value at a certain location. 
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The IDW derives the weight based on the distance of the interpolated point to the 

observed data point only. However, the Kriging incorporated the distance with the 

spatial correlation of the observed data arrangement. The spatial correlation is evaluated 

using the variogram model before the estimation at an unobserved point can be done. 

Furthermore, several variogram models are available in the ArcGIS tools for use in 

spatial interpolation using the Kriging technique. Gaussian, Exponential, Pentaspherical, 

Spherical, and Tetraspherical are the most popular models. However, for practicality of 

modeling the experimental datasets, only one variogram model should be selected  (Ly, 

Charles, & Degré, 2011). 

A variogram model selection can be justified by many performance indicators. 

However, fulfilling them concurrently remains questionable. This has made researchers 

consider in their analyses only the indicator that most achievable. In GIS application, 

five performance indicators are available which are root- mean standardized error, mean 

error, average standard error, root-mean-square standardized error and mean-square 

error (Johnston, Hoef, Krivoruchko, & Lucas, 2003). In order to evaluate the accuracy 

of spatial interpolation of a spatial rainfall map, all indicators are recommended to be 

emphasized. Thus, a multi-criteria decision-making tool which is able to incorporate the 

indicators in the decision-making process is an excellent opportunity to be adopted.  

In a tropical urban area like Kuala Lumpur, the capital of Malaysia, the global 

climate change has affected the frequency of flash events in term of rainfall magnitude 

and spatial distribution. The main authority of hydrological work, the Drainage and 

Irrigation Department of Malaysia (DID) has installed many rain gauge stations within 

the Kuala Lumpur area (243km2) to monitor the flash floods events. To date, there are at 

least 3 networks developed with a total of more than 100 stations for hydrological 

purposes such as flood monitoring and water resources study. The density is vastly more 

Univ
ers

ity
 of

 M
ala

ya



7 

than the number recommended by the World Meteorological Organization (WMO) 

within the range of 10km2 per station to 20km2 per station (World Meteorological 

Organization, 2008). Indeed, these stations incurred a vast commitment in terms of 

maintenance costs. 

In such a case, the rain gauge network needs to be optimized to ensure that the 

network is able to collect sufficient and less variation in spatial rainfall data by ensuring 

an optimum number of stations in the network. The network size and the existing 

location of the station need to be reviewed in order to optimize the network. In this case, 

the application of the conventional method and evolutionary computation are very 

beneficial to come up with a new approach. The Cross-Validation technique is an 

example of a conventional method that is widely used in various fields. On the other 

hand, Particle Swarm Optimization is an evolutionary computation widely applied 

especially in the electrical engineering field. However, a modification task must be 

conducted to apply suitable methods to overcome the rain gauge network problem. 

1.3 Aim and Objectives of the Study 

This study aims to optimize the number of rain gauges for effective rainfall data 

acquisition. To achieve the aim, four objectives are chosen for this research and listed as 

follow: 

a. To select an appropriate semivariogram model for spatial rainfall interpolation 

process, 

b. To adapt the Particle Swarm Optimization algorithm for rain gauge network 

optimization design, 

c. To optimize the number of rain gauges in the rain gauge network using the 

Cross-Validation technique and modified Particle Swarm Optimization method, 
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d. To validate the optimized rain gauge network using an established hydrological 

model. 

1.4 Significance of the Study 

This study enhances the spatial rainfall mapping for a better presentation, instead of 

the numerical form. However, along with the process, several added values to the 

hydrological methodology are developed which has contributed to the significance of 

this study. 

The results of this study can help hydrologist in the process of analyzing rainfall data 

using the geostatistical method in selecting the appropriate semivariogram model. The 

exact selection of the semivariogram models can be made, and the error in spatial 

interpolation at the ungauged location will be subsequently reduced.  

The new methodology developed in this study offers a new perspective to 

hydrologist to optimize the rain gauge network, especially in geostatistical and artificial 

intelligence applications. This is parallel to the Fourth Industrial Revolution in which 

artificial intelligence is one of the emerging applications. 

The ability to optimize rain gauge network will reduce the maintenance costs 

because the numbers of stations are reduced to the optimum size. Furthermore, the 

spatial rainfall map produced by the optimal network has minimal error. Thus, the 

spatial rainfall map has a better presentation of the rainfall data.  

A better spatial rainfall map that is produced by the enhancement of spatial 

interpolation can be utilized for bias correction of the satellite rainfall estimation and 

Numerical Weather Prediction (NWP) data. It is the new direction in which such data is 

used in hydrological and water resource applications, but it must be corrected using 
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ground observed data prior to use. The output of this study offers a good option for the 

bias correction of the NWP data. 

1.5 Thesis Structure  

This thesis is divided into five chapters. The contents of each chapter are elaborated 

as follows: 

This Chapter is an introduction which covers the background of the study, the 

problem statements, the aim and objectives of the study, the significance of the study 

and the structure of this thesis. 

Chapter 2 covers a review of relevant literature material in the previous research 

works regarding rain gauge station network and the available optimization approaches 

in this field. A brief discussion regarding the introduction of rainfall measurement, the 

development of the rain gauge network, the method of spatial rainfall mapping and 

interpolation and the research conducted on the rain gauge network design or 

optimization are presented. A new proposed method that is the Particle Swarm 

Optimization method is also reviewed for modification and adaptation to achieve the 

objectives of this study. 

The methodologies adopted in this thesis to answer the research objectives are 

explained in detail in Chapter 3. It covers the study area and the available rain gauge 

network, followed by the explanation on the input data used and the preliminary data 

analysis involved. This chapter also explains how the methodology was developed using 

the geostatistical method, cross-validation technique and the Particle Swarm 

Optimization method to solve the optimization problem of the rain gauge network. The 

verification method is included in this chapter in order to verify the optimized rain 

gauge network. 
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The results and discussions are presented in Chapter 4. The results from the applied 

methodology are presented along with the discussion about the research finding. 

Generally, it is divided into four major subchapters to discuss the result of the selected 

semivariogram model, the developed reference optimized rain gauge network, 

optimized rain gauge network using Cross Validation technique and modified Particle 

Swarm Optimization method and the validation of the optimized rain gauge network.  

The last chapter of this thesis, Chapter 5, presents the conclusion of the research 

findings. The recommendations for potential future studies are included for the reader to 

enhance the methodology and/or improve the current results. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

A rain gauge network is a hydrological network which consists of a few numbers of 

the rain gauge station. The network has been designed to measure rainfall amount that 

reaches to the ground for hydrologic and water resource purposes. The rain gauge 

instrument installed could be an automatic (equipped with a telemetric system for real-

time data collection or non-telemetry which collected manually) or manual. The 

measured rainfall data is normally archived for future purposes. 

Rainfall amount that is measured by the rain gauge network is a point value which is 

not directly used in a hydrological application or rainfall data illustration, for instance, 

hydrologic modeling and spatial rainfall mapping. For this purpose, point rainfall data 

must be converted into areal rainfall. Several methods are available to calculate the areal 

rainfall and the most common techniques used in any hydrological application are 

Thiessen Polygon and Inverse Distance Weighting schemes due to their simplicity in 

theory and calculation. Besides, an advanced spatial interpolation method that is 

geostatistical analysis is also being applied for the hydrologic application. Somehow, 

whatever methods used in the hydrologic application, an appropriate quantity of rainfall 

data is essential to produce acceptably accurate output.    

The main source of the rainfall data comes from a rain gauge network. Appropriate 

rainfall data is determined by the size of the network. A dense rain gauge network is 

certainly producing an appropriate quantity of rainfall data. However, to develop such a 

dense rain gauge network incurred high development and maintenance cost. For this 

reason, a rain gauge network needs to be optimized for an optimum size so that the 

rainfall data measured is able to produce an analysis output with acceptable accuracy.  
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This chapter presents a review of the studies that have been carried out for a rain 

gauge network optimization by the researchers and scientists. The achievement of 

method or procedure applied by them are presented and also with the advantages and 

disadvantages. In addition, new potential methods for rain gauge network optimization 

are explained as well. 

2.2 Rain Gauge Network 

The rain-gauge network is a network formed of several rainfall stations for a 

particular area. The individual station within the network will gauge the rainfall amount 

for certain rainfall event. The rainfall data collected by the rain gauge station were 

normally used to check on the water availability within the certain catchment and to 

give early warning to the public via a flood forecasting model. To ensure the network 

can execute, it needs a sufficient and reliable rainfall data. But in the real situation, 

sufficient and reliable rainfall data is very hard to get due to several problems such as 

missing data, instrumentation breakdown, lack of maintenance and an inadequate 

amount of rainfall collected by the station. These problems can be a threat to other 

hydrological application that used the rainfall data as the main input data. For instance, 

a flood forecasting model cannot be calibrated if the rainfall data is insufficient and this 

could lead to disseminating wrong flood warning information.  

Division of Water Resources Management and Hydrology, Drainage and Irrigation 

Department of Malaysia (DID) has developed hydrological stations network as early as 

the 1970s. To date, there are more than 1,000 numbers of stations in the networks with 

various types of hydrological stations (telemetry or non-telemetry) that have been 

developed and maintained throughout Malaysia (Table 2.1). The department is 

implementing Quality Management System (QMS)-MS ISO 9001:2008 within the 
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hydrological data management scope to ensure the quantity and quality of collected 

hydrological data from the network.  

Table 2.1: Statistical figures of the hydrological stations of the Drainage and 
Irrigation Department (DID, 2009). 

Region Rainfall Evaporation Streamflow 
River 
Water 

Quality 

River 
Suspended 
sediment 

Peninsula 710 23 92 70 78 

Sabah 83 4 37 32 31 

Sarawak 297 25 39 5 - 

Total 1090 47 168 107 109 
 

Conventionally practiced in Malaysia, the Jabatan Pengairan dan Saliran (2009) has 

listed several factors that should be considered to develop rain gauge network: 

a. The minimum density of gauges as recommended by the World Meteorological 

Organization (2008) 

b. Gauge type - In Malaysia, a tipping bucket of 0.5mm is used because of the high 

intensity of rainfall received.   

c. The location of the rain gauge 

d. Observation and communication method for data collection.  

e. The cost of development  

f. The access to the site 

g. Maintenance aspect.  

A comprehensive review  by Shaghaghian and Abedini (2013) on factors that 

affected a typical rain gauge network design have stated that the factors that should be 

taken into consideration are, but not limited to the overall objective of the network 

design, the process considered, the  attribute  under  consideration, the temporal scale or 
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sampling interval in, the spatial scale, the topographic setting, types of precipitation, the 

nature of the objective function used for design and the algorithm used for minimization 

of maximization the objective function value. 

Rain gauge network must be designed in such a way that it can record rainfall data 

for certain purposes. Either for water resource study or for flood monitoring, the 

minimum numbers of rain-gauge should be in the network to record a sufficient enough 

of rainfall data that is a benefit to its purpose. The network with minimum numbers of 

rain gauge station is distinguished as an optimum rain gauge network for rainfall data 

acquisition.  

The number of rain gauge stations in the base network may be different based on the 

temporal resolution of the rainfall data that required to be measured. Normally, the 

higher temporal resolution of rainfall data such as monthly and annually needs few 

numbers of the stations as compared with a smaller temporal resolution like hourly 

rainfall data. However, this rule should be assessed according to the climatological 

characteristic of the specific site. 

2.2.1 Set up a rain gauge network 

Normal practice in hydrological network development is to construct the initial 

network with a few numbers of rain gauge stations, a so-called base network for specific 

objective of rainfall data collection, for instance drainage and irrigation, flood 

mitigation and water reservoir project. Then, the network is to be augmented to improve 

the accuracy of the rainfall data from the available data sets.  

In any development of the hydrological network, it must be in accord with the 

guideline that has been explained by the World Meteorological Organization (2008).  

The density of a rain gauge network depends on the geographical categories and the 
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type of rain gauge instrument. The general density of the rain gauge network as 

recommended by the WMO is tabulated in Table 2.2.  

Table 2.2: The minimum station’s density recommended (area in km2 per 
station), (World Meteorological Organization, 2008). 

Area Rainfall station 
Recording Non-recording 

Coastal 9,000 900 
Mountains 2,500 250 

Interior plains 5,750 575 
Hilly/undulating 5,750 575 

Small islands 250 25 
Urban areas 10 - 20 - 
Polar/arid 100,000 10,000 

 

The climate of the river basin also influences the rain gauge network design. All 

factors should be considered before designing a rain gauge network but to incorporate 

them in design is almost impossible. Thus, the appropriate analysis must be carried out 

to find the most important factors to be considered for rain gauge network optimization 

or design. 

Rain-gauge network must be designed in such a way that it can record rainfall data 

for certain purposes. The minimum number of rain gauges should be in the network to 

record sufficient enough rainfall data for the benefit of the purpose. According to Table 

2.2, for the urban area, a rain gauge station should cover area between 10 km2 to 20 

km2. Thus, if a 500 km2 basin is assumed to be considered, the recommended number of 

rain gauge station should be in a range of 25 to 50 stations. However, the number of 

stations somehow do not guarantee the accuracy of the spatial rainfall interpolation 

within the basin. 
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2.3 Spatial Rainfall Interpolation 

In hydrologic and water resources application, rainfall recorded by a rain gauge 

network is converted into areal rainfall according to the basin or subbasin. Areal rainfall 

is commonly presented as a single or spatial rainfall value for each basin and spatial 

mapping.  

The areal rainfall of river basin is estimated by using the averaging or interpolating 

method for hydrological application. For this purpose, Thiessen-polygon method and 

Inverse Distance Weighted Method are two common methods can be used to estimate 

areal rainfall. Areal rainfall estimated through these methods is still a single point value 

at the center of the river basin or catchment. These methods have been used widely in 

the hydrological application and it is still relevant today.  

2.3.1 Thiessen-polygon Method 

Thiessen-polygon method has been commonly used to estimate the basin or areal 

rainfall in the hydrological application included in the hydrologic software such as 

HEC-HMS. Its simplicity in concept and calculation make it easy and practical to be 

applied. The concept of Thiessen weight method is that the individual station will cover 

a certain area out of the total basin proportionally with adjacent stations. The Thiessen 

Polygon must be constructed first to calculate the coverage area of every station within 

the basin area as illustrated in Figure 2.1. The equation below is used to calculate the 

estimated areal rainfall. 

where,  

𝑃𝑡 = estimated areal rainfall 

 𝑃𝑡 =
∑𝑃𝑖 .  𝐴𝑖

∑𝐴𝑖
 Equation 2.1 
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𝑃𝑖 = recorded rainfall at i station 

𝐴𝑖 = coverage area of station i 

i    = number of stations (1, 2, 3,…, n) 

 

Figure 2.1: Typical example of Thiessen Polygon 

 

2.3.2 Inverse Distance Weighting Method 

Inverse Distance Weighting (IDW) scheme is a point-wise estimator. This scheme is 

manipulated to estimate areal rainfall which assuming that the value can be measured at 

the centroid of the basin. The centroid will be the reference to calculate the weight 

based on the distance to the nearest station in the quadrants as depicted by Figure 2.2. 

IDW relies on the theory that the interested interpolated point is more influenced by 

closer gauged location than by gauged location further away. In other words, if a set of 

values of gauged points are arrived at, then the values at ungauged points which located 

within the set can be calculated (Ly et al., 2011). Suppose that A, B, C and D are the 
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rain-gauge station and dA, dB, dC and dD are the distance, respectively. The estimated 

rainfall at point Y (point that under consideration) will be calculated as, 

 

 

Figure 2.2: Typical example of Inverse Distance Weight method. 

 

2.3.3 Geostatistical method 

The geostatistical method was originally developed to study mining activity (Journel 

& Huijbregts, 1978). It is an advanced method of studying spatial datasets in vast 

research fields. With the geostatistical method, the datasets are modeled based on the 

spatial variation between each data point and presented via semivariograms (Xu et al. 

(2013), Shaghaghian and Abedini (2013), Putthividhya and Tanaka (2012), F. Othman, 

Akbari, and Samah (2011), Zhang and Yao (2008), Garcia, Peters-Lidard, and Goodrich 

(2008), Cheng et al. (2008)).  
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A semivariogram is a graphical diagram that explains the relationship between the 

variability of a dataset and the distance of individual data in a certain direction. A 

typical semivariogram example is illustrated in Figure 2.3. The x-axis in the diagram is 

a group distance between two dataset locations, also known as separation lag. The y-

axis represents the variability measurement of the dataset group distance that is 

measured as semivariance. In addition, the geostatistical characteristics of the studied 

dataset are inferred from the semivariogram properties (sill, range and nugget) after 

fitting the studied dataset to an appropriate variogram model. In a typical 

semivariogram, the nugget is a value of initial variability in the smallest group distance, 

including the measurement error. The variability value rises from the initial value up to 

the sill, where the line is off or flattened. The sill value can be read from the 

semivariogram where the line is off and the partial sill is calculated by subtracting the 

nugget value from the sill. The range is the distance value extracted from the 

semivariogram at the sill’s location on the diagram that is beyond this range and where 

the autocorrelation measure is zero. 

 

Figure 2.3: Example of semivariogram. 

𝛾 ℎ  

Sill 

Partial 
sill 

Range, ∅𝑟 

Nugget 

Distance, ℎ 
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A dataset can be modeled using Equation 2.3,  

Where is  h  the semi-variance,   ( )g x g x h     is the difference value of paired 

dataset, and n  is the size of the dataset. The semivariogram properties are calculated 

using a variogram model that fits the dataset. Fitting the experimental dataset 

semivariogram to an appropriate variogram model is an important stage in the 

geostatistical analysis. Several variogram model candidates are available to fit the 

experimental dataset, for instance, Spherical, Tetraspherical, Pentaspherical, 

Exponential and Gaussian. The use of the variogram model depends on the purpose of 

the analysis. For instance, a study conducted by Z. Xuesong and Srinivasan (2009) to 

compare the geostatistical approaches used variogram that best fits the experimental 

data in each analysis. The approach to use the best fits variogram model is efficient in 

the analysis but it is not practical in other applied study since the experimental data has 

its own characteristic. More practical, the best variogram model fits the experimental 

dataset is selected for geostatistical analysis (Ly et al., 2011; F. Othman et al., 2011).  

In GIS application, 5 performance indicators of best-fit measure are available: root- 

mean standardized error, mean error, average standard error, root-mean-square 

standardized error and mean-square error (Johnston et al., 2003). However, to the best 

of knowledge, all studies of the Geostatistical analysis used only some indicator and 

none considered all indicators while fitting the variogram model. It is beneficial to 

recommend that to consider all indicators to evaluate the accuracy of spatial 

interpolation as well as the smoothness of the produced map.  

 𝛾 ℎ =
1

2𝑛
∑[𝑔 𝑥 − 𝑔 𝑥 + ℎ ]2 Equation 2.3 
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To conduct such a task, a multi-criteria decision-making tool which will be able to 

incorporate the indicators in the decision-making process such as Analytical Hierarchy 

Procedure (AHP) is needed. The AHP is a simple structured approach using the 

criterion and the alternative decisions in hierarchy form to analyze the decision-making 

process. It can consider both numerical and non-numerical form of criterion. Based on 

this reason, the AHP has offered a great opportunity to fill in the gap.  

2.3.3.1 Spatial Interpolation 

The variogram model is used to represent the spatial correlation of the 

experimental dataset using variography parameters. The variography parameters are 

then used for spatial interpolation process to estimate the ungauged rainfall. The general 

equation for spatial rainfall interpolation is as follows: 

Where 𝑧est is the estimated rainfall value at the location  𝑠𝑜  and 𝜆𝑖 is the weight 

associated with the observed value 𝑧 𝑠𝑖 . The weight 𝜆𝑖 is calculated based on the 

distance from the observed data to the predicted location and their spatial variation 

using the variogram model. The sum of all weights 𝜆𝑖 must be equal to 1 to ensure that 

the predicted value is unbiased.  

Based on the literature, the Kriging interpolation has multi variants. Among Kriging 

variants associated with the geostatistical method are Ordinary, Simple, Universal, 

Indicator, Probability, Disjunctive and Co-Kriging, and so many others. All of these 

Kriging variants quantify the spatial structure of the data and the prediction error.  

 𝑧est 𝑠𝑜 = ∑𝜆𝑖𝑧 𝑠𝑖 

𝑚

𝑖=1

 Equation 2.4 
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2.4 Application in Rain Gauge Network Optimization 

A rain gauge network needed to be optimized for an optimum number of stations in 

the network and their spatial distribution to ensure that the network would be able to 

collect sufficient and less variation in spatial rainfall data. To achieve this, the 

researcher had to set an objective function to be evaluated as indicator or criteria of 

design or optimization work. In the literature, most of the cases of rain gauge network 

optimization are minimizing the objective function and this depends on the variable that 

is selected as the objective function. For instance, Pardo-Igu´zquiza (1998) used the 

accuracy of mean areal rainfall and cost of data collection as an objective function that 

had to be minimized. On the other hand, there was a case of maximizing and 

minimizing the objective function simultaneously as studied by Volkmann et al. (2010).   

2.4.1 Statistical Method 

Optimization of the rain gauge network has been done by researchers using several 

methods. Earlier research on rain gauge network assessment has been conducted using 

classical methods, such as statistical and probabilistic approaches. Nemec and Askew 

(1986) explained the philosophy of hydrological network design using statistical 

moments of mean and variance. Sorman and Balkan (1983) applied the same statistical 

moments to redesign the rain gauge network in the Kizilirmak River basin. However, 

limitations with the statistical ability to explain precise rainfall data have encouraged the 

application of the probability theory. 

2.4.2 Probabilistic Method 

A probabilistic approach called the entropy method has also been used to design 

hydrological station networks. This method is also known as the Shannon Entropy 

(Shannon & Weaver, 1949) and can be utilized to model system information through 

transmitting and receiving information as entropy values. The probability distribution 
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logarithm serves to measure the entropy value. According to the literature, this method 

has been used to study the influence of seasonal discharge information on the discharge 

networks of river basins (Mishra & Coulibaly, 2014). Mishra and Coulibaly (2010) also 

applied the entropy method to assess a discharge station network in a Canadian river 

basin.  

A new entropy application approach called maximum information minimum 

redundancy (MIMR) was proposed by Chao, Singh, and Mishra (2012) to design a 

streamflow gauge and water level network. The entropy method has also been applied to 

evaluate rain gauge network performance for the appropriate selection of rain gauge 

stations in a number of studies by Krstanovic and Singh (1992a), Krstanovic and Singh 

(1992b), Yoo, Jung, and Lee (2008), Ridolfi, Montesarchio, Russo, and Napolitano 

(2011), Ridolfi et al. (2012) and Vivekanandan, Roy, and Chavan (2012). Moreover, 

this method has been coupled with the kriging technique to optimize the number of rain 

gauge stations in a network (Awadallah (2012), Chen, Wei, and Yeh (2008), Wei, 

Chiang, Wey, Yeh, and Cheng (2010) and Yeh, Chen, Wei, and Chen (2011)). In these 

studies, the locations of new stations were determined prior to be applying the 

methodology to evaluate the locations’ effectiveness. This method was able to prioritize 

the number of candidate stations within the studied network.  

The advantage of the entropy method in rain gauge network evaluation is that only 

rainfall data are needed. However, the entropy value is estimated and it is essentially 

dependent on the probability distribution used in the analysis. It is sensitive to the 

assumption in the probability distribution while making the estimation (Alfonso, 

Ridolfi, Gaytan-Aguilar, Napolitano, & Russo, 2014). Therefore, the entropy values 

depend on some assumptions that can influence the result.  
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2.4.3 Geostatistical approach 

Another method that is quite extensively used in designing and optimizing rain gauge 

network is a geostatistical method. The geostatistical analysis is a recent method of 

designing and optimizing rain gauge networks applied by researchers. It is a robust 

method of studying environmental datasets from spatial or spatiotemporal perspectives. 

The geostatistical method can estimate the variable values under study through spatial 

interpolation as well as estimated variance.  

Earlier publications of geostatistical applications for rain gauge network optimization 

are based on variance reduction, for instance, studies by Pardo-Igu´zquiza (1998), 

Barca, Passarella, and Uricchio (2008) and Cheng et al. (2008). Cheng et al. (2008) 

optimized a rain gauge network by introducing new stations and relocating existing 

stations based on the total areal percentage. Acceptable rainfall estimation accuracy was 

achieved at the stations and optimization was done based on trial and error. Pardo-

Igu´zquiza (1998) minimized the variance of data collection estimation and the cost of 

designing an optimal rain gauge network. In the mentioned study, the variance of 

estimation represented the accuracy measure of the areal rainfall estimated from 

synthetic rainfall datasets. The optimization algorithm was developed by coupling the 

geostatistical and simulated annealing methods. These methods exhibited the ability to 

make good rainfall data estimations in the optimized rainfall network. Barca et al. 

(2008) applied this method to extend an existing rain gauge network for crop protection 

purposes.  

Feki, Slimani, and Cudennec (2010) have carried out a research on rain-gauge 

network optimization using 3 types of kriging interpolation method (kriging with an 

external drift, regression-kriging and co-kriging) to map monthly rainfall data to 

evaluate the rain gauge network performance. The research has revealed that among 
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tested method the use of kriging with external drift and regression-kriging will generate 

isohyet map of monthly rainfall more likely with topographic pattern whereas co-

kriging method will generate a smooth isohyet map contour zone. To date, the 

geostatistical method has emerged in the latest publications on rain gauge network 

design and optimization, e.g. Putthividhya and Tanaka (2012), Shaghaghian and 

Abedini (2013) and Feki, Slimani, and Cudennec (2016).  

Geostatistical rainfall estimation is greatly dependent on the rain gauge network 

configuration. A good configuration tends to produce less variance, meaning that the 

spatial rainfall estimation is more accurate. As a general rule, every study on rain gauge 

network design requires to have an existing network of rain gauge in place before an 

optimal rain gauge network is configured. One could differentiate among various 

studies in reference to the support size of estimation. For instance, Pardo-Igu´zquiza 

(1998) and Barca et al. (2008) assessed optimal rain gauge networks based on the 

randomization of existing rain gauge networks. Pardo-Igu´zquiza (1998) also considered 

the support size for observation to be point-wise and that of estimation to be block-wise. 

Meanwhile, Cheng et al. (2008) adapted the support size for observation and estimation 

to be point-wise and employed trial and error on a predetermined rain gauge network to 

achieve an optimal rain gauge setup.  

Nonetheless, the predetermine approaches have a tendency for bias at certain stations 

selected. Therefore, evaluating each station in the network is an alternative way to 

counter this issue, for instance by applying the cross-validation technique. Yeasmin and 

Pasha (2008) applied leave-one-out (LOO) cross-validation to examine the optimal 

number of rain gauges based on estimated runoff by removing stations one by one. This 

approach is simple and appropriate for evaluating individual stations. However, 

revalidation is recommended by adding the rain gauge stations one by one into the 
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existing, base rain gauge network, since both approaches produce different station 

combinations. 

In such circumstance, the LOO cross-validation technique and geostatistical method 

have high potential to be used together to produce the best solutions, but the 

recommendation mentioned in the previous paragraph should be addressed. For 

instance, an opposite process to LOO has to be introduced as an enhancement of the 

LOO method to evaluate the station’s combination in a network. In other words, the 

cross-validation techniques can be used as a generator of the candidate of optimal rain 

gauge network. This can be coupled with geostatistical analysis for evaluating different 

station combinations. In addition, the geostatistical method is an advanced and robust 

method for the analysis of spatial datasets like spatial rainfall distribution produced by 

the rain gauge network.   

2.4.4 Artificial Intelligence and a combination of methods 

Another way of optimization method is tailoring an optimization method with others 

and this is also known as a hybrid approach. Ruiz-Cárdenas, Ferreira, and Schmidt 

(2010) adapted this approach to hybrid the genetic algorithm with local search operator 

and this algorithm has outperform the ordinary Genetic Algorithm and Simulated 

Annealing to design the ozone monitoring network. In hydrology field, Pardo-

Igu´zquiza (1998) used the advantages of a simulated annealing process to minimize the 

number and location of rainfall station to get its optimal number to estimate the spatial 

rainfall. However, the study was conducted using artificial rainfall data set.  

Geostatistical method combined with machine learning algorithm (artificial neural 

network) was tailored by Foresti, Pozdnoukhov, Tuia, and Kanevski (2010) to map 

precipitation data. This method was successfully applied to estimate the extreme 

precipitation in the study area. Aziz, Yusof, Daud, Yusop, and Kasno (2016) used the 
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variance reduction approach using the geostatistical and Particle Swarm Optimization 

(PSO) to determine number and location of optimal rain gauge network in Johor, 

Malaysia for Northeast monsoon season (November – February). The same approach 

was adapted by Attar, Abedini, and Akbari (2018) to design an optimum rain gauge 

network using geostatistical coupled with the Artificial Bee Colony (ABC). The method 

was able to priorities the rain gauge stations in south-western part of Iran (subtropical 

region), whereby the climate is long, hot, dry in summers and short, cool in winters. 

The intelligent algorithm is a robust approach to be applied for network optimization. 

However, the appropriate objective function coupled with the robust algorithm of 

optimization using an appropriate temporal resolution of input data will offer a great 

opportunity of getting expected result in research. Thus, the strategy of coupling or 

tailoring the process should be critically designed for research. The climate type and 

region of the study area are also important to consider.  

2.4.5 Rainfall Data for Optimization 

The primary input data for rain-gauge network optimization is rainfall depth from 

each station in the network. The rainfall depth is available in many temporal scales, for 

instances hourly, daily, monthly or annually. The appropriate temporal scale for analysis 

will justify the purpose of analysis. Thus, it is important to select the right temporal 

scale. 

The main criterion to determine the selection of rainfall dataset temporal scale is not 

only relying on the optimization objective but the climate characteristic of the study 

area as well. Feki et al. (2010) had selected monthly rainfall data in the arid area to 

compare the three interpolation methods of kriging series. The same temporal scale has 

been applied by Chen et al. (2008) in their research using kriging and entropy method to 

design rainfall network in Taiwan which is subtropical climate. Another study in 
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Taiwan, Cheng et al. (2008) adapted two temporal scales, first is the annual rainfall and 

second hourly rainfall to optimize the rain gauge network. The hourly rainfall was used 

to analyse different type of storms such as ‘Mei-Yu’, convective, typhoon and Frontal. 

Meanwhile, the annual rainfall was retrieved irrespective of storm type.  

In the tropical monsoon area, Putthividhya and Tanaka (2012) had used the monthly 

and annual rainfall data to redesign the optimal network and predict the spatial rainfall. 

A study on spatial rainfall characteristic for the tropical region with the almost fully 

urbanized area by F. Othman et al. (2011) had used daily rainfall data based on storm 

event in the semi-variogram analysis. The daily rainfall as well was adapted by Ly et al. 

(2011) to set up an algorithm for interpolation of spatially daily rainfall at basin scale 

using the geostatistical algorithm.  

Previous studies on evaluating or designing rainfall networks have used various 

rainfall data time intervals, from minute to annual scale. Most studies employed large 

time intervals, such as monthly and/or annual data (Feki et al. (2010), Chen et al. 

(2008), Yeh et al. (2011), Awadallah (2012), Putthividhya and Tanaka (2012), 

Vivekanandan et al. (2012), Shaghaghian and Abedini (2013); Yong, Hyunglok, 

Jongjin, and Minha (2014) and Feki et al. (2016)). To the best of the authors’ 

knowledge, only a few studies have used the daily time interval, for instance, 

Krstanovic and Singh (1992a, 1992b), Barca et al. (2008), Yoo et al. (2008) and Mishra 

and Coulibaly (2010). In an extensive study, Ridolfi et al. (2011) used multi-time 

interval data, in which more details of time scale resolution were analyzed for a better 

result. 

The temporal resolution of rainfall dataset must be chosen which is suitable to the 

climate of the study area. The type of storm in the study area should be distinguished 

prior to determining the form of temporal resolution of rainfall dataset. A tropical region 
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like in Malaysia, a convective rainfall is dominant especially in city areas like Kuala 

Lumpur. Based on the DID flood report, it may be noticed that the temporal pattern of 

rainfall events was inconsistent from one event to another. A short duration rainfall 

normally in 1 to 3 hours is likely to happen and the rainfall depth for this duration is 

equivalent to a daily rainfall record.  In such a case, the daily rainfall format is 

appropriate to be selected to avoid analysis complexity. Thus, it is better to limit the 

scope to focus on performance. 

2.5 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is one of the computational methods in computer 

science that solves the optimization problem via iteration process to improve the 

computed solution. It was introduced by Eberhart and Shi (1995) to simulate the social 

behaviour that imitates the movement a flock of birds of searching for their foods. From 

here, it was simplified to be an optimization operator of a problem. 

The PSO solves the optimization problem of a population of solutions which is also 

called as swarm of particles that distributed randomly in the swarm. The particles will 

move within the swarm to search the potential solution and each particle will interact 

with each other to find the best solution. In the searching process, the particles move in 

multi-direction of search space with different velocity towards the position of potential 

solutions. The searching process continued to another position with different velocity in 

the best current potential solution. The particles will keep moving until they stop at the 

same best solution.  

The PSO algorithm is easy to apply as compared with other mathematical 

computation methods. The simple analogy of the algorithm and less number of 

parameters to be considered makes it convenient to code using a computer. However, as 

a metaheuristic method, it does not offer a good convergence to the optimal solution. 
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Despite, the PSO has been applied to a vast research field as reviewed by Poli, 

Kennedy, and Blackwell (2007) and Poli (2008). 

To implement the PSO, the objective function, 𝑓 𝑥  to solve the problem must be 

determined. Variable 𝑥 is the solution to the problem of 𝑓 𝑥   that giving the objective 

function value either maximum or minimum and this depends on the objective to solve 

the problem. To search for a solution, the initial population  𝑃  with the number of 

particles  𝑁  has to develop within the upper and lower boundary limit of 𝑥 (XUL and 

XLL, respectively) and these particles move with initial velocity set  𝑉  as follows: 

 𝑃 = {𝑥1
𝑗
, 𝑥2

𝑗
, 𝑥3

𝑗
, … , 𝑥𝑁

𝑗
} Equation 2.5 

 𝑉 = {𝑣1
𝑗
, 𝑣2

𝑗
, 𝑣3

𝑗
, … , 𝑣𝑁

𝑗
} Equation 2.6 

Where, 𝑗 is the number of iterations and 𝑗 equal to zero is referred to as the initial value.

The objective function 𝑓 𝑥   is evaluated using 𝑃 value and it depends on the 

optimization problem (assume that to find the global minimum). At the early stage, the 

𝑃 value at 𝑗 equal to zero is assumed to be the personal best value (𝑝𝑝𝑏) for every 

particle. And the lowest 𝑝𝑝𝑏 value is assumed to be the global best value (𝑝𝑔𝑏). For the 

next iteration, the 𝑃 value is updated using the new computed 𝑉 value as in Equation 2.7 

and Equation 2.8 and the objective function is computed using the current 𝑃 value. The 

𝑝𝑝𝑏 value for each particle is updated by taking the 𝑝𝑝𝑏 value with the corresponding 

lowest objective function value. Whereas, the global best value (𝑝𝑔𝑏) is updated from 

the current lowest of 𝑝𝑝𝑏 value. This process is continued until all particles reach at the 

global best value.  

 
𝑣𝑝=1,2,…,𝑁

𝑗+1
= 𝑣𝑝=1,2,…,𝑁

𝑗
+ 𝑐1 × 𝑟1 × [𝑝𝑝𝑏 − 𝑥𝑝=1,2,…,𝑁

𝑗
] + 𝑐2 × 𝑟2

× [𝑝𝑔𝑏 − 𝑥𝑝=1,2,…,𝑁
𝑗

] 
Equation 2.7 
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 𝑥𝑝=1,2,…,𝑁
𝑗+1

= 𝑥𝑝=1,2,…,𝑁
𝑗

+ 𝑣𝑝=1,2,…,𝑁
𝑗+1  Equation 2.8 

Where, 

𝑐1 = a cognitive constant coefficient 

𝑐2 = a social constant coefficient 

𝑟1 and 𝑟2= random number independently selected from uniformly distributed in the 

interval of [0,1]. 

Again, the 𝑓 𝑥  values are computed using the current 𝑃 value. The 𝑝𝑝𝑏 value for 

each particle is updated by taking the 𝑝𝑝𝑏 value with the corresponding lowest 𝑓 𝑥  

value. Whereas, the 𝑝𝑔𝑏 is updated from the current 𝑝𝑝𝑏 value. This process is 

continued and stopped when all particles reach at the same global best value or the 

specified maximum number of iterations is reached. These conditions are distinguished 

as termination criteria and at this point, normally, the PSO is assumed to have 

converged to the solution of the problem. The general procedure of the PSO algorithm 

is illustrated in Figure 2.4. 

Univ
ers

ity
 of

 M
ala

ya



32 

 

Figure 2.4: A typical procedure of the PSO algorithm 

 

The drawback of PSO is the slow convergence towards the solution of the 

optimization problem. To overcome this problem Y. Shi and Eberhart (1998) have 

introduced the scaling factor called inertia weight  𝑤  which control the previous value 

of velocity and the current velocity. The inertia weight is able to improve the 

convergence of PSO by setting the inertia weight, decreasing linearly with iteration 
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from the maximum value  𝑤𝑚𝑎𝑥  of 0.9 to the minimum value  𝑤𝑚𝑖𝑛  of 0.4 as 

follows: 

 𝑤 = 𝑤𝑚𝑎𝑥 − (
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑗𝑚𝑎𝑥
) . 𝑗 

Equation 2.9 

Where 𝑗 and  𝑗𝑚𝑎𝑥 are the iteration number and maximum number of iterations, 

respectively. By incorporating the inertia weight into Equation 2.7, the updating 

equation for velocity becomes as follows: 

 
𝑣𝑝=1,2,…,𝑁

𝑗+1
= 𝑤 × 𝑣𝑝=1,2,…,𝑁

𝑗
+ 𝑐1 × 𝑟1 × [𝑝𝑝𝑏 − 𝑥𝑝=1,2,…,𝑁

𝑗
] + 𝑐2

× 𝑟2 × [𝑝𝑔𝑏 − 𝑥𝑝=1,2,…,𝑁
𝑗

] 
Equation 2.10 

  

The cognitive and social coefficients are considered the most dominant terms 

modified by various researcher to improve the learning rate of both components. 

However, in most standard PSO applications, for instance, in Mu, Cao, and Wang 

(2009) and Ravizi (2012), the 𝑐1 and 𝑐2 coefficients are set to 2.  

Safaei, Tavakkoli-Moghaddam, and Kiassat (2012) used the time-varying value for 

w, 𝑐1 and 𝑐2.  The initial and last value of w was [0.9, 0.4] and for the 𝑐1, it was [2.5, 

0.5]. Whereas, for the 𝑐2 term, a varying intervals of [0.5, 2.5] had been used. In another 

study by Eberhart and Shi (2001), they used the value of w which randomly varied in 

the range of [0.5, 1.0] that was calculated by [0.5+(rand/2)] and the 𝑐1 and 𝑐2 values 

were fixed as 1.494. These parameter values were found successful to track the 

optimization task of the dynamic system in their study.  

In the literature, the effort to improve the convergence characteristic of the PSO hss 

succeeded to solve the particular studied problem. However, to apply it to a discrete 
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problem such as rain gauge network optimization, modification on the PSO algorithm 

needs to be done. This is a new contribution to the hydrology field.  

2.5.1 PSO Application in Rain Gauge Network Optimization 

To the best of knowledge, the PSO has been used only by Aziz et al. (2016) as a tool 

of optimization for rain gauge network design. In their study, the swarm’s particles only 

randomly explore the possible optimum network based on the number of station 

selected by different particles. It is a great opportunity to explore the ability of the 

swarm’s particles of PSO to solve a new optimization problem of rain gauge network 

evaluation whereby all possible combination of stations by each number of stations 

selected are evaluated.  

Since then, early establishment of rain gauge network is based on ad-hoc assumption; 

the topology is more oriented toward being dense. Thus, the rain gauge network 

optimization problem consists of two problems, first, if the network is too dense the 

existing network is optimized for the optimum size and second if the network is sparse, 

it is expanded to the optimum size. Most of the studies regarding the rain gauge network 

evaluation or design are dealing with the first case, for instances Adhikary et al. (2015), 

Kar et al. (2015), Bakhtiari et al. (2013), Shaghaghian and Abedini (2013); 

Vivekanandan and Jagtap (2013a, 2013b).  The main reason for this is that the rain 

gauge network involves quite a huge allocation to the organizations for operation and 

maintenance. In fact, the allocation is directly proportional to the number of stations in 

the network and it is influenced by the economic condition of the organization.  In this 

perspective, a good review made by Mishra and Coulibaly (2009) stated that the 

reduction of hydrometric network density in Canada is due to the reduction in the 

allocation and also the changes of management focus of the government.  
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To optimize the network (irrespective of reduction and/or increase in the network 

size), it is all about to get the appropriate combination of stations to form an optimum 

network. It is similar to the combinatorial case where the intention is to choose a certain 

number of the stations without considering its sequences. This condition makes the rain 

gauge network optimization problem differ from the  case of travel salesman problem 

(TSP) that is solved using the PSO method as applied by Abdel-Kader (2011); Fan 

(2010); Goldbarg, Goldbarg, and Souza (2008); X. H. Shi, Liang, Lee, Lu, and Wang 

(2007); Tasgetiren, Suganthan, and Pan (2007); Y. Xuesong et al. (2012).  

In order to apply the PSO to solve the rain gauge network optimization problem, the 

PSO algorithm must have to go through the modification process. Since the PSO is used 

to solve a problem where the solution is in continuous number, thus it is essential to 

modify the algorithm to works for the discrete number as solution. This is an 

enhancement of PSO and it is fruitful to explore for a new contribution to the artificial 

intelligent and hydrologic application. 

2.6 Conclusion Remark 

Rain gauge network augmentation from the ad-hoc network has increased the density 

of the rain gauge. In an urban tropical catchment area like Klang river basin, at least 3 

networks have been developed for hydrological purposes such as flood monitoring and 

water resources study. The rain gauge station density is about 13 km2 per station, almost 

near to the maximum density recommended by the World Meteorological Organization 

(WMO). Indeed, these stations incurred a vast commitment in terms of maintenance 

costs. Thus, it is very essential to evaluate the existing rain gauge network for optimum 

size and prioritize the stations. 

One of the latest methods applied by researchers to optimize rain gauge networks is 

geostatistical analysis. It is a robust method of studying environmental datasets from 
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spatial or spatiotemporal perspectives, like rainfall. To enable the method to evaluate 

the existing rain gauge network through the optimization process, cross-validation 

technique with two different techniques as mentioned in the previous section are 

adapted in this study as a generator of the candidate of optimal rain gauge network prior 

to analysis for an optimum network. 

More advanced approach, the application of artificial intelligent of PSO has a great 

opportunity to apply for the rain gauge network optimization. The PSO is a well-

established method in research whereby it has a simple analogy of the algorithm, easy to 

apply compared to other methods, and less parameter to be considered makes the 

algorithm convenient to code using a computer. In addition, the method uses the actual 

variable value in the analysis. Moreover, the algorithm has been applied successfully for 

the same purpose in a tropical basin. However, the suggested improvements to 

overcome the slow convergence rate problem and to increase the ability of exploration 

of the swarm’s particles of PSO need to be considered. Therefore, modifications to the 

PSO algorithm are tailored to improve the method prior to applying it for a discrete 

problem such as rain gauge network optimization.  
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

This chapter elaborates in detail the methodology applied to fulfill the four objectives 

that have been determined to achieve the aim of this study. It begins with the description 

of the study area in section 3.2 and followed by section 3.3 which explains the general 

overview of the overall methodology.  

Next, the input data collection and classification process is elaborated in section 3.4, 

where all the required data are gathered and sorted according to the uses of the data in 

the methodologies. Then, preliminary data analysis is carried out and explained in 

section 3.5.  

In section 3.6, the methodology to achieve the first objective that is to select the 

semivariogram using the AHP method is presented. The methodologies for the second 

and third objectives are explained in section 3.7 which are to optimize the number of 

rain gauge in the rain gauge network using the Cross-Validation technique and modified 

Particle Swarm Optimization method.  

The last methodology elaborated in section 3.8 is to validate the optimized rain 

gauge network using an established hydrological model in order to achieve the fourth 

objective of this study. 

3.2 Description of Study Area 

The study area comprises the upper part of the Klang River basin (UKRB), which is 

located in the federal territory of Kuala Lumpur, Malaysia, and some parts of the state 

of Selangor (Figure 3.1). The UKRB approximately located between 101˚36ˊE to 

101˚51ˊE and 3˚4ˊE and 3˚24ˊE. The basin covers about 584 km2 of the catchment area. 

The northern part of the study area is about 1,366 m above sea level and is covered with 
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virgin forest. The southern part is a fully urbanized, almost flat city area, and located 

about 16 m above sea level. This area has a high density of residential population. 

The climate in the study area is influenced by the monsoon system which is 

categorized into 4 seasons, two main monsoons and two transitional monsoons. The 

main monsoon seasons occur from December to March (also known as the northeast 

monsoon) and from June to September (also known as the southwest monsoon). The 

transitional monsoons occur from March to June and September to December. Usually, 

the study area receives heavy convective rainfall in March, April, October and 

November. These four months received mean monthly rainfall more than 250mm. This 

scenario is explained by a long-term monthly mean (from 1 January 1995 to 31 

December 2015) as illustrated in Figure 3.2. In addition, the months of May and 

September received quite high rainfall amount which is more than 200mm. Based on the 

historical flood record, most of the flash flood events occurred in these months. In 

general, the annual and monthly mean rainfall received is relatively uniform with about 

2,573 mm per year and 216 mm per month.  
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Figure 3.1: Location of the research area. 

 

 

Figure 3.2: Long-term mean monthly rainfall in the study area. 
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3.3 Overview of Methodology 

The methodologies have been designed in this study according to the study’s 

objectives. They are inter-related one to another and started with the data collection and 

screening process.  The data are used in the geostatistical analysis to analyze the 

performance of the semivariogram models based on the performance indicators. The 

outputs from this analysis are evaluated using the AHP application to select the best 

semivariogram model to be used in the next geostatistical analysis. To the best 

knowledge, the geostatistical and AHP application is a new methodology in order to 

select the variogram model that fits to model the experimental rainfall dataset.  

Next, the selected semivariogram model is used in the geostatistical method in the 

optimization process to obtain the optimum rain gauge network size. Two new methods, 

cross-validation technique coupled with geostatistical and MPSO are proposed as 

optimization tools for a single objective of optimization problem based on the 𝐸𝑟𝑚𝑠.  

Finally, a hydrological lump-model of tank model for the study area is developed to 

validate the optimum rain gauge network produced by the optimization tasks. The 

summary of the methodology in this study is illustrated in Figure 3.3. 
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Figure 3.3: Summary of research methodology. 
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3.4 Input Data 

The UKRB contains three rain gauge networks available for hydrologic and water 

resource purposes, namely the Storm Water Management and Road Tunnel hydrological 

station (SMART), National Hydrological Network (NN) and Infobanjir Telematics’ 

Network (TN). All stations in these networks were installed with automatic rain gauges 

and equipped with telemetry devices except for NN, which is a non-telemetry station. 

The NN is in function since 1972 for general hydrological and water resource 

application purposes. Meanwhile, the TN was set up in 2000 to facilitate an online real-

time flood monitoring system by the Drainage and Irrigation Department (DID) via the 

Infobanjir webpage. SMART is the latest network designed in 2007 for the Storm 

Water Management and Road Tunnel Project to solve the flood problem in the Klang 

River basin and to reduce traffic congestions in the Kuala Lumpur city centre. All 

networks are operated and monitored separately by different divisions of Drainage and 

Irrigation Department (DID).  

3.4.1 Rainfall dataset and flood events 

As part of the study methodology, flood events in the study area are determined. The 

floods record in the period of 2007 to 2012 was investigated for flood events to collect 

rainfall data for analysis because SMART began to operate in 2007. Floods record was 

obtained from DID. 12 flood events during the period are available to be considered. All 

rainfall stations in the study area and adjacent to the boundary were determined. 

Preliminarily, 56 rainfall stations were available for consideration.  

To ensure robust analysis and results in this study, the flood events and rainfall 

datasets were examined. Good datasets were extracted based on the availability and 

completeness of rainfall data. For this purpose, the rainfall stations and flood events 

were filtered through the following process: 
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a. Rainfall stations with more than 10% missing data based on 12 flood events 

were rejected.  

b. The remaining rainfall stations were used to assess the validity of the flood 

events to be used according to 3 criteria:  

i. Percentage of rainfall stations with missing data. The flood events at 

stations with more than 10% missing data were rejected. Next, the 

remaining missing rainfall values for the station and for each flood event 

were estimated using the Inverse Distance Weight (IDW) method. 

ii. The average rainfall value for each flood event was computed and flood 

events whose average rainfall was less than or equal to 10 mm were 

removed from the analysis. The threshold value was adopted from DID, 

based on whose records, an average rainfall of 10 mm produced 

negligible or minor flood events. 

iii. The effective maximum rainfall value was determined for each flood 

event. Flood events with maximum rainfall of less than 60 mm were 

rejected as they may possibly generate insignificant floods according to 

the DID flood report. 

c. Flood events that met any one of the criteria in b were excluded from further 

analysis. The final flood events used in this study and brief rainfall information 

are tabulated in Table 3.1. 

The filtering process yielded 55 rainfall stations and 7 flood events. For each station, 

the daily and time series of 15 minutes time interval rainfall data were obtained from the 

DID hydrological database (NIWA-Tideda software version 4). The daily data set is 

used for rain gauge network optimization. Meanwhile, the 15-minute time series data is 

used to develop the hydrological model for validation of optimized rain gauge network. 

These stations are arranged in Table 3.2 according to network type and location in the 
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study area and are denoted as an existing rainfall network. The existing rainfall network 

consists of the TN, NN and SMART rainfall stations, wherein TN has 9 stations, 

SMART has 21 stations and NN has 25 stations. Forty-four stations are located in the 

study area, which consists of 8 TN stations, 17 NN stations and 19 SMART stations. 

The other 11 stations are located outside the study area, which consists of 8 NN stations, 

1 TN station and 2 SMART stations. The study area with 55 rain gauge stations and 

three networks was mapped on the Digital Elevation Model (DEM) of the study area, as 

illustrated in Figure 3.4. 

The methodology applied involved an optimization task to select the appropriate 

number of rain gauge stations located within the catchment area. Among the 44 stations 

in the catchment area, 19 stations (SMART station) have been designed according to the 

WMO guideline for flood monitoring purpose. Meanwhile, 25 stations (8 TN stations 

and 17 NN stations), are categorized as hypothetical redundant because they were 

installed based on ad-hoc assumption. This set of stations will be evaluated and selected 

to remain in the optimum rain gauge network. Thus, an optimum rain gauge network 

will be consists of 19 stations (SMART station) plus with the rain gauge stations 

selected from the hypothetical redundant station. Therefore, the expected result of an 

optimum number of stations in the study area could be 19 to 44 stations.  However, all 

55 rain gauge stations are used in the analysis, for which the rainfall data from all 

stations were required in the optimization task. Those hypothetical redundant stations 

are the first 25 stations listed in Table 3.2.  
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Table 3.1: Events of the daily rainfall data used in this study. 

Year Date 
Minimum 
Rainfall 

(mm) 

Maximum 
Rainfall 

(mm) 

Mean 
Rainfall 

(mm) 

Standard 
Deviation 

(mm) 

2009 
3 February 2009 0 100 19.1 25.15 
3 March 2009 0 134 38 28.01 

2011 
13 December 2011 0 142 36.1 30.47 
18 September 2011 0 87 31.1 24.08 

2012 
7 March 2012 0 239.5 78.4 55.09 
18 April 2012 0 111 19.3 25.49 

21 August 2012 0 130 24.5 27.74 
 

 

Figure 3.4: Location of the rain gauge stations mapped on DEM of the study 
area. 
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Table 3.2: List of rain gauge stations in the existing network. 

St
at

io
n 

ID
 

Station Name Lat (0N) Long (0E) 

N
et

w
or

k 

Po
si

tio
n1 

T01 JPSWilayah_Tele 3.1472 101.6875 TN In 
T02 LebohPasar_Tele 3.1126 101.6966 TN In 
T03 PandanIndah_Tele 3.1274 101.7526 TN In 
T04 AirPanas_monthly_Tele 3.1887 101.7224 TN In 
T05 BktAntarabangsa_Tele 3.1837 101.7727 TN In 
T06 KgCherasBaru_Tele 3.1101 101.7474 TN In 
T07 EmpanganBatu_Tele 3.2639 101.6819 TN In 
T08 SimpangTiga_Tele 3.2453 101.7153 TN In 
N03 Km10 Ulu Kelang di UK Height 3.1947 101.7797 NN In 
N04 Jln Sg. Udang di segambut 3.1938 101.6594 NN In 
N05 Kg. Berembang di Keramat 3.1660 101.7413 NN In 
N06 JPS Wilayah Persekutuan 3.1514 101.6847 NN In 
N07 Ldg. Edinburgh Site 2 3.1833 101.6333 NN In 
N08 Klm T. Banjir Batu PO di Empat Tin 3.2467 101.6833 NN In 
N09 JPS Ampang 3.1531 101.7489 NN In 
N10 Pemasokan Ampang 3.1583 101.8014 NN In 
N14 Kg. Sg. Tua 3.2722 101.6861 NN In 
N15 Taman Ehsan di Kepong 3.2466 101.6436 NN In 
N16 Ibu Bekalan Km. 16, Gombak 3.2681 101.7292 NN In 
N17 Empangan Genting Kelang 3.2361 101.7528 NN In 
N18 Ibu Bekalan Km. 11, Gombak 3.2361 101.7139 NN In 
N19 Kg.Kuala Seleh 3.2583 101.7681 NN In 

N20 Kg. Kerdas(This station shifted from 
Gombak Damsite)(SMART) 3.2458 101.7153 NN In 

N21 Jam. Petaling di Jln Kelang Lama 3.0809 101.6652 NN In 
N23 Air Terjun Sg.Batu 3.3347 101.7042 NN In 

S01 SMART_Apartment UIA at Jln 
Gombak 3.2780 101.7280 SMART In 

S02 SMART_Bukit Ampang at Jln 
Ampang Hulu Langat 3.1270 101.7880 SMART In 

S03 SMART_Bulatan Kg Pandan at Jln 
Tun Razak 3.1400 101.7170 SMART In 

S04 SMART_DS Sg Kelang Sg Ampang 
Confluence 3.1660 101.7430 SMART In 

S05 SMART_IBMBS at Kg Kemensah 3.2160 101.7900 SMART In 

S08 SMART_Kuala Seleh at Empangan 
Kelang Gate 3.2480 101.7680 SMART In 

S09 SMART_Pusat Pengajian Luar UM at 
Jln Gombak 3.3250 101.7530

0 SMART In 

S10 SMART_Sg Ampang at Bukit Belacan 3.1430 101.7870 SMART In 

S11 SMART_Sg Ampang at Kg Melayu 
Ampang 3.1530 101.7610 SMART In 
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Table 3.2, continued 

St
at

io
n 

ID
 

Station Name Lat (0N) Long (0E) 

N
et

w
or

k 

Po
si

tio
n1 

S12 SMART_Sg Batu at Jln Chendurah 3.1960 101.6790 SMART In 
S13 SMART_Sg Bunus at Jln Tun Razak 3.1790 101.7120 SMART In 

S14 SMART_Sg Gombak at Jln Changkat 
Tmn Greenwood 3.2260 101.7080 SMART In 

S15 SMART_Sg Kerayong at Jln Kuari 3.1070 101.7430 SMART In 

S16 SMART_Sg Kelang at Empangan 
Kelang Gate 3.2350 101.7500 SMART In 

S17 SMART_Sg Kelang at Jln AU 5C6 3.2020 101.7590 SMART In 
S18 SMART_Sg Kelang at Jln AU 31 3.1800 101.7570 SMART In 

S19 SMART_SM Pendidikan Khas at 
Genting Kelang 3.2040 101.7270 SMART In 

S20 SMART_The Peak at Tmn TAR 3.1780 101.7830 SMART In 
S21 SMART_Tmn Sri Sinar 3.1860 101.6530 SMART In 
N01 Sg. Raya Bt.9 Hulu Langat 3.0678 101.7719 NN Out 
N02 Sg. Serai Bt.12 Hulu Langat 3.0994 101.7975 NN Out 
N11 Batu 14, Hulu Langat(Balai Polis) 3.1114 101.8164 NN Out 
N12 Taman Templer 3.2969 101.6328 NN Out 
N13 Kg. Melayu Sg. Buloh 3.2161 101.5761 NN Out 
N22 Ldg. Sg. Gapi 3.4003 101.6225 NN Out 
N24 Genting Sempah 3.3681 101.7708 NN Out 
N25 Taman Desa Kelisa 3.4222 101.6664 NN Out 
T09 Serendah_Tele 3.3684 101.6068 TN Out 

S06 SMART_Kem Zone 6 at Sg Congkak 
Resorts 3.2250 101.8390 SMART Out 

S07 SMART_Kg Pangsun at Hulu Langat 3.1760 101.8560 SMART Out 
Note: 1In the catchment area. 
 

3.4.2 Discharge Data Sets 

Based on the filtered 7 flood events, discharge data set for the 15 minutes time 

interval at the final outlet of the UKRB that is near station N21 was obtained from the 

DID hydrological database (NIWA-Tideda software version 4). The discharge data set 

is used together with the rainfall data set to develop a hydrological model for the UKRB 

to validate the optimized rain gauge network. However, for the 7 flood events, only 4 
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events that have a complete time series of discharge data set. The discharge data set are 

tabulated in Table 3.3. 

Table 3.3: Discharge dataset and period of simulation used in the hydrologic 
model. 

Date Peak flood 
3 March 2009 3 March 2009, 06:30pm  

18 September 2011 18 September 2011, 04:00pm  
18 April 2012 18 April 2012, 06:15pm 

21 August 2012 21 August 2012, 06:00pm 
 

3.5 Preliminary Data Analysis 

The collected data sets were undergone preliminary analysis to explore and 

understand the characteristic of the data. This analysis is important to ensure that only 

good data sets are used and accurate approaches adopted in the further analysis of the 

optimization stage.  

3.5.1 Rainfall Data Analysis 

The rainfall datasets were analysed based on 2 indicators, descriptive statistics and 

correlation test between the rainfall amount and ground elevation. The descriptive 

statistics is used to compute the characteristic of the data such as mean, standard 

deviation, variance, the coefficient of variation, maximum and minimum value. These 

statistical parameters are essential to preliminarily estimate the optimum number of rain 

gauge station using the statistical method. 

Prior to using the rainfall data in the further analysis, the correlation of rainfall data 

(denoted as y) with the ground elevation (denoted as x) is assessed to check the 

availability of relationship between these variables. This is important to confirm for 

better geostatistical analysis done in the next analysis. The Pearson correlation test is 
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applied and the equation given in Equation 3.1 is used to calculate the Pearson 

correlation, r: 

 𝑟 =
∑ 𝑥 − 𝑥  𝑦 − 𝑦 

√∑ 𝑥 − 𝑥 2 ∑ 𝑦 − 𝑦 2
 

Equation 3.1 

Based on this formula, a strong positive correlation indicated if the value of r is close 

to +1, and if r is close to -1, a strong negative correlation is indicated. The elevation of 

the stations was extracted from the Digital Elevation Model (DEM) as illustrated in 

Figure 3.4. 

3.5.2 Discharge Data Analysis 

It is important to ensure a good response discharge data towards rainfall data. Thus, 

the correlation between rainfall and discharge data is checked using statistical 

correlation test. For this purpose, the Pearson correlation test as explained previously is 

used. The raw rainfall hyetograph would not be in same ordinate with the flood 

hydrograph with responsible for reproducing total hydrograph for an event. But, it is 

certain that the rising part of the hydrograph is generated by the rainfall. Thus, to enable 

the Equation 3.1 to compute the Pearson correlation, r the rainfall data within the rising 

part of hydrograph was accumulated. Then, the time-series of accumulated rainfall and 

discharge were used in Equation 3.1 to compute the Pearson correlation, r value.  

3.6 Methodology for the Selection of Variogram Model  

The methodology of selecting the most appropriate variogram model for spatial 

rainfall mapping using the AHP is presented. First of all, the geostatistical analysis is 

performed on 7 daily rainfall data to obtain the variography parameters (sill, range and 

nugget) for 5 variogram model candidates (Gaussian, Exponential, Pentaspherical, 

Spherical, and Tetraspherical). These parameter values are used to generate a spatial 

rainfall map with the prediction error indicators (root- mean standardized error, mean 
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error, average standard error, root-mean-square standardized error and mean-square 

error). The prediction error indicators are set as criteria in the AHP method and serve to 

evaluate the variogram model’s performance to produce the best spatial rainfall map. To 

select the best variogram model for spatial rainfall mapping, the AHP method is used to 

rank the best variogram models for the final decision.  

3.6.1 Geostatistical Method 

The geostatistical analysis is a way to study the environmental datasets related to 

space and time or the distribution of the datasets. Fundamentally it consists of three 

main elements. First, the candidate data are characterized based on the correlation of 

spatial data distribution using the variogram model. Second, the variogram model is 

applied to estimate the space-based data through an optimal interpolation method. Then, 

the distribution is simulated to generate the datasets for the space domain using the 

variogram model. Further details of the geostatistical analysis are explained by Journel 

and Huijbregts (1978), Goovaerts (1997) and Chiles and Delfiner (1999).     

In modeling the spatial correlation of an experimental dataset (in this study it is daily 

rainfall data) using geostatistical analysis, Equation 2.3 is used. Equation 2.3 yields the 

semi-variance since the product on the right side is divided by 2. The semi-variance is 

plotted against lag to produce the semivariogram. Then the experimental dataset is fitted 

to a curve that represents the spatial correlation of the variography parameters. The 

experimental semivariogram is fitted with the 5 variogram model candidates used to 

calculate the variography parameters for spatial rainfall mapping using the Kriging 

interpolation method. 

The Kriging interpolation variants, namely Ordinary, Simple, Universal, Indicator, 

Probability, Disjunctive and Co-Kriging, are associated with the geostatistical method. 

All of these Kriging variants quantify the spatial structure of the data and the prediction 
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error (Johnston et al., 2003). The selection of the Kriging method is dependent on the 

dataset used in this study. Since there is only one variable, that is the rainfall data used, 

and the constant mean of the dataset is assumed to be reasonable (Johnston et al., 2003), 

then the Ordinary Kriging (OK) method is adapted for the spatial interpolation stage. 

The geostatistical analysis is done using the ArcGIS 9.3 software toolbox.  

3.6.1.1 Ordinary Kriging and Semivariogram Model 

The OK method is used to estimate the value of spatial interpolation based on 

assumption that the observed data has constant mean but unknown within the study area 

(Johnston et al., 2003). The OK models the observed data using Equation 3.2;  

Where the 𝑅 𝑠  is the value for a location of  s in coordinate of (x, y),  is the 

constant mean and ( )s  is a random error.  

To estimate the value estR at the prediction location  os , OK uses the weighted 

average i of the observed value  iR s  as formed in Equation 3.3. The weight i is 

calculated based on the distance of observed data to the prediction location and their 

spatial variation using the variogram model. The sum of all weights i , must be equal to 

one to ensure that the predicted value is unbiased.  

Basically, the variogram models have similarity on the variography properties such 

as sill, range and nugget as illustrated in Figure 2.3. Theoretically, the semivariogram 

started at zero value. The measurement will be raised up to the sill where the line will be 

off or almost flat. However, due to the measurement error, the semivariogram has offset 

 𝑅 𝑠 = 𝜇 + 𝜀 𝑠  Equation 3.2 

 𝑅𝑒𝑠𝑡 𝑠𝑜 = ∑𝜆𝑖𝑅 𝑠𝑖 

𝑚

𝑖=1

 Equation 3.3 
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value at the origin called the nugget effect. This nugget is a value of initial variability in 

the smallest group distance (lag). The sill value can be read at where the line off and 

partial sill value can be calculated by the residual of the sill and the nugget value. The 

range is the lag value extracted from the diagram at the sill location on the diagram 

which if beyond this range, the autocorrelation measure is zero.  

The dissimilarity between the variogram models is due to how their mathematical 

equation presents the experimental data. The mathematical equations of variogram 

models are tabulated in Table 3.4. The spherical model presents the semivariogram 

curve linearly increasing at the early distance or lag and gradually change before it 

reaches the range. In contrast, the Gaussian model presents the parabolic form within 

the range value up to the sill. The Exponential model’s curve is quite similar to 

Spherical model at the early distance but exponentially increasing to the sill value as the 

distance increase to the range. The Tetraspherical and Pentaspherical are differentiated 

by the mathematical formula from other variogram model. The Gaussian can be 

unstable numerically in the kriging interpolation if the nugget effect is not considered.  
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Table 3.4 Mathematical equations of the variogram models 

Variogram 
Models 

Equations 

Spherical 

 

3
3 1   0
2 2,

                         

s r
r r

s

h h
for h

h

for h h


 

   
     

      


 

  

Tetraspherical 

 

3
2 2 22 21 1

3,   0

       

s

r r r r r r

s r

h h h h h
arcsin

h for h

for h

 

  
        
           
               

  


  

 

Pentaspherical 

 

3 5
15 5 3   0
8 4 8,

                         

s r
r r r

s

h h h
for h

h

for h h


 

     
        

         


 

  

Exponential 
 

3
, 1 exps

r

h
h  

  
    

   

  

Gaussian 
 

2

, 1 exp 3s
r

h
h  

   
      

     

  

Where, 

𝛾 ℎ, 𝜙  = semi-variance  

𝜙𝑠= sill 

𝜙𝑟= range 

ℎ= lag (distance different) between dataset pair 

3.6.1.2 Indicators of Spatial Rainfall Distribution Interpolation  

The accuracy of the spatial rainfall map produced by the geostatistical method is 

evaluated by spatial interpolation error using a cross-validation approach. For this 

purpose, hold-one-out cross-validation technique was applied where a station is 

removed one by one and the rainfall magnitude is estimated using the variogram 

parameters. Then, the spatial interpolation errors are computed by Root-Mean-Square-

Error (Erms), Average Standard Error (Eas), Mean Standardized Error (Ems) and Root-
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Mean-Square Standardized Error (Ermss). The respective equations for each indicator are 

listed below.  

Where;  

𝑅𝑜𝑏𝑠: Observed rainfall value at the rain gauge;  

𝑅𝑒𝑠𝑡: Interpolation estimated rainfall value at the rain gauge;  

𝜎 : Standard error of estimated value at the rain gauge;  

𝑛 : Number of rain gauge station.  

The best spatial rainfall map produced by the geostatistical method should have an 

appropriate value of each indicator. The Ems should be close to zero but the Ermss near 1. 

However, the Erms should be small and the Eas nears the Erms value. Most researchers 

considered one or 2 indicators in their studies because these criteria are rarely achieved. 

In this study, this problem is solved using the multi-criteria decision-making tool.  

 

 𝐸𝑟𝑚𝑠 = √
∑  𝑅𝑒𝑠𝑡 − 𝑅𝑜𝑏𝑠 2

𝑛
𝑖=1

𝑛
 Equation 3.4 

 𝐸𝑎𝑠 = √
∑ 𝜎𝑖

𝑛
𝑖=1

𝑛
 Equation 3.5 

 
𝐸𝑚𝑠 =

∑ (
 𝑅𝑒𝑠𝑡 − 𝑅𝑜𝑏𝑠 

𝜎𝑖
)
2

𝑛
𝑖=1

𝑛
 Equation 3.6 

 
𝐸𝑟𝑚𝑠𝑠 =

√∑ (
 𝑅𝑒𝑠𝑡 − 𝑅𝑜𝑏𝑠 

𝜎𝑖
)
2

𝑛
𝑖=1

𝑛
 Equation 3.7 
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3.6.2 Analytical Hierarchy Procedure (AHP) 

Analytical Hierarchy Procedure (AHP) is adapted to execute the multi-criteria 

decision making. The AHP is a simple structured approach of the criteria and the 

alternative decisions in hierarchy form to analyze the decision-making process. It is able 

to consider both numerical and non-numerical forms of criteria. Based on this reason, 

the AHP has been applied in vast application either technical or non-technical fields.  

The AHP method was applied to analyse the decision-making process to justify the 

best variogram model that produced an accurate spatial rainfall map by the geostatistical 

method. By using the Kriging interpolation technique, 5 alternatives of variogram 

models namely Spherical, Tetraspherical, Pentaspherical, Exponential, and Gaussian are 

structured for evaluation based on 4 spatial interpolation indicators (Erms, Eas, Ems and 

Ermss).  

The Analytical Hierarchy Procedure (AHP) was proposed by Thomas L. Saaty in the 

1970s. The AHP is a methodology of multi-criteria decision-making for qualitative or 

quantitative study through an evaluation of a set of variables in the hierarchical structure 

(Saaty, 1990). It consists of 4 evaluation stages in the hierarchical structures, i.e. 

modeling, assessment, ranking and conclusion. In the modeling stage of the hierarchical 

structure, the study objective is placed at the top of the structure. Meanwhile, the 

criteria, sub-criteria and alternatives are structured at the bottom. To rank the 

alternatives for a decision, the criteria and sub-criteria are evaluated to set the priority 

weights used to assess the alternatives’ attributes.  

3.6.2.1 Priority Weight of AHP’s Criteria 

The aim of this analysis is to select the best variogram model from 5 candidate 

models based on 4 prediction error criteria of spatial rainfall mapping. The AHP model 

used in this study is shown in Figure 3.5. Based on this figure, two steps of pairwise 
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matrix evaluation are involved, whereby the first step is to evaluate the pairwise matrix 

of 4 prediction error criterion of spatial rainfall mapping and the second step is for the 5 

candidate models of semivariogram. 

In the first step of pairwise matrix evaluation, the preference for each criterion is 

compared using the pairwise matrix comparison (Saaty, 1980). A comparative scale 

with numerical values of 1 to 9 represents the influence of one criterion on another 

(Saaty & Vargas, 1991). The criteria are labelled C1 for Erms, C2 for Eas, C3 for Ems and 

C4 for Ermss. These criteria are compared and tabulated in Table 3.5 and the assignment 

of numerical values is based on the best output of spatial rainfall mapping. To achieve 

the best spatial rainfall mapping (Johnston et al., 2003), criterion C2 must be the same 

as C1, which is the smallest value. Criterion C4 must be nearest to 1 but criterion C3 

must approach 0.  

 

Figure 3.5: AHP model for semivariogram model selection. 

 

Root-Mean-Square 
Error 

Mean Standardized 
Error 

Average 
Standard Error 

Selecting Variogram 
Model 

Root-Mean-
Square 
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Table 3.5: Comparative weighting score for pairwise matrix comparison.  

Criteria 

Comparative Weighting Score 

Criteria More importance than 

E
qu

al
  

Less importance than 

C1 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 C2 
C1 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 C3 
C1 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 C4 
C2 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 C3 
C2 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 C4 
C3 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 C4 
 

In a real case, spatial rainfall mapping that fulfils all these criteria is difficult to 

achieve. Furthermore, the Consistency Ratio (CR) of the pairwise matrix must be less 

than 0.1 to ensure the priority weights (PW) of the criteria are reliable for analysis and it 

is the measurement of the consistency of the decision as structured by the AHP. The PW 

is calculated by first assigning the comparative numerical value of the criterion. For 

instance, in Set 1, a comparative numerical value 4 is assigned for C1 over C3. This 

meant that C1 is more important than C3. In contrast, a comparative numerical value 

0.11 (or 1/9) is assigned for C1 over C4. This meant that the C4 is greatly important 

than C1. After the pairwise matrix is created, each comparative value is normalized 

using the sum of each column according to Equation 3.8, where the ijX is the 

normalized comparative numerical value, ijC is the comparative numerical value,
1

n

ij
i

C




is the sum of the column for the comparative value and notation of i and j is the row and 

column, respectively.  

 𝑋𝑖𝑗 =
𝐶𝑖𝑗

∑ 𝐶𝑖𝑗
𝑛
𝑖=1

 Equation 3.8 
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Then, the PW is calculated by averaging the normalized value of the comparative 

value for each row using Equation 3.9.  

Where the ∑ 𝑋𝑖𝑗
𝑛
𝑗=1  is the sum of the normalized comparative value of row and 𝑛 is the 

number of criteria.  

The CR value is computed using Equation 3.10, where the CI is the Consistency 

Index which calculated using Equation 3.11 and the RI is the Random Index. The RI 

value is representing the random consistency of developed pairwise matrix and the 

value is based on the number of criteria in AHP structure as tabulated in Table 3.6. 

Since the number of the criteria in this study is 4, then the RI value is 0.9. The max in 

Equation 3.11 is the value of the sum of the weighted sum of the pairwise matrix with 

the PW of each criterion.  

 

The numerical value selection of a pairwise matrix is crucial because it determines 

the consistency and robustness of the decision made. To achieve this, the pairwise 

matrix comparison using comparative numerical is simulated until the CR value is less 

than 0.1. As a result, there are 3 sets of pairwise matrices with different comparative 

numerical values and the associated priority weights are used in the analysis. A detailed 

calculation of PW and the CR is given by Coulter, Coakley, and Sessions (2006), 

Ishizaka and Lusti (2006) and Saaty (2008). 

 𝑃𝑊𝑖𝑗 =
∑ 𝑋𝑖𝑗

𝑛
𝑗=1

𝑛
 Equation 3.9 

 𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 Equation 3.10 

 𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 Equation 3.11 
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Table 3.6: Random Index for a number of criteria (Saaty, 1980) 

Number of 
criteria, n 1 2 3 4 5 6 7 

RI 0 0 0.58 0.9 1.12 1.24 1.32 
 

3.6.2.2 Semivariogram Model Evaluation  

The second step of pairwise matrix evaluation is to rank the candidate models of 

semivariogram using the PW of each criterion. The alternatives (variogram models) are 

evaluated using the criterion value and the PW value of the criterion in the first step. 

The criterion value of each alternatives is re-scale to the comparative scale of Saaty 

(1980), thus transforming the values to be dimensionless. Then the transformed value of 

the criterion for each alternative is used in the pairwise matrix evaluation of the 

candidate models of semivariogram to get the alternative’s priority weight (APW) using 

Equation 3.8 to Equation 3.11. 

To rank the alternatives for decision making, Equation 3.12 is used to calculate the 

alternatives’ weighted priority (AWP) value, where the 𝐴𝑊𝑖 is the alternative’s priority 

weight and n  is the number of criteria. The 𝑃𝑊𝑖 is the priority weight value for each 

criteria. The alternatives’ rank position is produced by sorting the AWP values from 

highest to lowest.  

The AHP method produced a rank for decision making for a single data set. 

However, in this study 7 rainfall data sets are used to select the best variogram model. 

The AHP results have different rank set of alternatives for each data set and it is unable 

to make a decision from multi-datasets. To overcome this problem, a new set of scores 

is introduced by multiplying the probability ( )rf of the alternatives being placed at a 

rank position with rS value. The value rf  is computed by counting the frequency of the 

 𝐴𝑊𝑃 =  ∑ 𝐴𝑊𝑖. 𝑃𝑊𝑖

𝑛

𝑖=1
 Equation 3.12 Univ
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alternatives placed at a rank position divided by the total number of the dataset (7 in this 

study). The rS value is a factor that consists of a set of numbers in descending order 

from 5 (number of alternatives) to 1. The rS value is assigned according to a rank 

position as tabulated in Table 3.7. The Final Score is then calculated by summing up the 

score as in Equation 3.13 where the r is the rank position. The Final Score value is 

sorted in descending order to produce the final rank for decision making. The best 

model to be used is the alternative that ranked in the top place.  

 

Table 3.7: rS value for each rank position 

Rank 
Position, r 1 2 3 4 5 

𝑺𝒓 5 4 3 2 1 
 

3.7 Methodology for Rain Gauge Network Optimization 

This section presents a discussion on the methodology for rain gauge network 

optimization used to obtain the optimal rain gauge network. It begins with an 

explanation of each method, followed by a detailed explanation of the proposed method 

application. Two new methods were introduced, namely, 1) cross-validation technique 

coupled with the geostatistical method and 2) MPSO method to optimize the number of 

rain gauge stations in the rain gauge network studied based on daily rainfall data. All 

developed algorithms are coded and analysed using MATLAB version R2013a, 

software by MathWork. 

 

 𝐹𝑖𝑛𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 =  ∑ 𝑓𝑟 . 𝑆𝑟

𝑟=1,2,3…

 
Equation 3.13 
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3.7.1 Coupling Cross Validation and Geostatistical (CV-Geo) 

This section discusses the cross-validation technique and geostatistical method used 

to obtain the optimal rain gauge network. It begins with an explanation of each method, 

followed by a detailed explanation of the proposed method application. In the proposed 

method, the cross-validation technique was coupled with the geostatistical method (CV-

Geo) to optimize the number of rain gauge stations in the rain gauge network studied 

based on daily rainfall data. 

Generally, the geostatistical analysis of different network configurations will produce 

different values of variography parameters and its associated spatial interpolation error. 

This concept was used to optimize the rain gauge number in the studied network. Also, 

the rain gauge network was configured with different combinations of rain gauge 

number using two different techniques adapted from the cross-validation approach, 

Leave-One-Out (LOO) and Add-One-In (AOI) whereby adapted from Bastin et al. 

(1984) and Kassim and Kottegoda (1991). Each network was analyzed to compute the 

variography parameters (sill, range, and nugget) and the spatial interpolation error. The 

rain gauge network with the lowest error value is usually identified as an optimized rain 

gauge network. In other words, the best rain gauge network configured.  

3.7.1.1 Leave-One-Out and Add-One-In Cross Validation Technique 

LOO cross-validation is commonly used to evaluate the performance of variables in 

a dataset. It involves a simple process of leaving out a variable from the dataset 

temporarily and evaluating the remaining variables for their performance. This process 

is repeated until all variables are evaluated and a conclusion is drawn regarding their 

performance.  

The LOO approach was employed in this study for optimization to generate a rain 

gauge network with 25 stations. Throughout the optimization process, the intention was 
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to remove one of the hypothetically ineffective rain gauge stations at a time before 

being combined into the existing network (as a candidate optimum rain gauge network) 

for evaluation based on the optimization criterion. It was assumed that the stations 

omitted in every repetition were unrelated to each other to produce a better optimized 

network. However, each station is in fact very important in a rain gauge network to 

produce an accurate spatial rainfall distribution. Thus, the LOO output required 

validation and in order to do so, the AOI cross-validation technique was introduced. 

AOI is essentially opposite of LOO. If LOO is intended to remove one station from 

the dataset, AOI is executed to temporarily transfer one station at a time from the 

dataset to be combined into the existing network (as an optimum rain gauge network 

candidate) prior to optimization criterion evaluation. It was assumed that the added 

stations should remain in the optimized network. Despite both techniques having 

different assumptions, it is essential to evaluate the results produced by both techniques 

for an unbiased decision. 

3.7.1.2 Geostatistical and Spatial Rainfall Interpolation  

At this stage, the geostatistical application is as explained in section 3.6.1. 

Meanwhile, the semivariogram model used is adopted from the result of methodology in 

section 3.6. The model used to fit the experimental dataset to calculate the 

semivariogram properties. Fitting the experimental dataset semivariogram to the 

variogram model is an important stage in the geostatistical analysis.  

To generate a smooth semivariogram curve, the Least Squares Method (LS) was 

adopted to fit the selected semivariogram model to the dataset. LS is a common method 

of fitting the spatial dataset to the candidate variogram model (Yoon & Lahiri, 2002). 

LS employs a simple estimation of the sum of squared error, Ess, between the 

semivariance of the dataset and the semivariance estimated by the variogram model 

Univ
ers

ity
 of

 M
ala

ya



63 

using variography properties. The aim of LS is to find the best variography property 

values (sill, nugget and range) of the spherical model that minimize Ess in Equation 3.14 

to produce the best semivariogram curve. The estimated variography properties are used 

to calculate Erms through the spatial interpolation method. 

 𝐸ss = ∑(𝛾 ℎ 𝑘 − 𝛾 ℎ, 𝑎 𝑠𝑝ℎ𝑘
)
2

𝑙

𝑘=1

 Equation 3.14 

 

Spatial interpolation was applied to re-estimate the rainfall value at the measured 

point using LOO cross-validation prior to calculating Erms. In this study, the Ordinary 

Kriging (OK) method was used to carry out spatial rainfall interpolation based on the 

assumption that the observed rainfall data had a constant mean but was unknown within 

the study area as explained in section 3.6.1.1. 

3.7.2 Modified Particle Swarm Optimization (MPSO) 

In this study, the MPSO was developed from the standard version of PSO to solve 

the rain gauge network optimization problem. The standard version of PSO algorithm 

relies on the velocity  𝑣𝑖  and the position of the swarm particles  𝑥𝑖  that was 

calculated using Equation 2.7 and Equation 2.8, respectively. Originally, both equations 

are applied to the real number problem. However, the rain gauge network optimization 

is a discrete problem, where an optimum network is selected from all possible 

combinations of a number of rain gauge stations. For instance, if 10 stations are selected 

from 25 stations, all possible combinations will be from 1 to 3,268,760, which are 

positive integer number. In this study, the set of positive integer number is set as 

determinant of the candidate optimum networks or domain of solution for PSO. Based 

on this reason, the original PSO is modified in this study. The modification process is 
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explained in next sub-section to enable that the PSO algorithm works for rain gauge 

network optimization case. 

3.7.2.1 Modification on PSO Equation 

The previous studies classified this problem as a discrete domain problem. Kennedy 

and Eberhart (1997) solved this problem using the binary-based approach. The 

algorithm was modified to ensure that the changes in the variables were updated, either 

zero or one in each iteration. It was a simple modification but had a significant 

improvement for the PSO performance that simply converted the velocity of the 

particles into integer form by the 𝑟𝑜𝑢𝑛𝑑 .   operator. This concept was applied by X. H. 

Shi et al. (2007) to solve the traveling salesman problem and the generalized traveling 

salesman problem. In their algorithm, the velocity was rounded to the nearest integer 

value and this solves the studied problems which involved the permutation of the 

salesman locations along his travel.  

Thus, in this study, the first modification was to suit the PSO algorithm for rain 

gauge network optimization problem. A similar approach as in X. H. Shi et al. (2007) 

was applied by implying the round operator (𝑟𝑜𝑢𝑛𝑑 .  ) into Equation 2.7. However, the 

𝑟𝑜𝑢𝑛𝑑 .   operator was introduced for each component in Equation 2.7. This was to 

ensure that the efficient interactions of cognitive and social components are preserved 

while exploring the swarm for the best position. This modification was represented in 

Equation 3.15. Meanwhile, the populations were still updated using Equation 2.8.  

𝑣𝑝=1,2,…,𝑁
𝑗+1

= 𝑟𝑜𝑢𝑛𝑑(𝑤 × 𝑣𝑝=1,2,…,𝑁
𝑗

)

+ 𝑟𝑜𝑢𝑛𝑑{𝑐1 × 𝑟1 × [𝑝𝑝𝑏 − 𝑥𝑝=1,2,…,𝑁
𝑗

]}

+ 𝑟𝑜𝑢𝑛𝑑{𝑐2 × 𝑟2 × [𝑝𝑔𝑏 − 𝑥𝑝=1,2,…,𝑁
𝑗

]} 

Equation 3.15 
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The first modification did not overcome the premature convergence issue. Therefore, 

the second modification was introduced to improve the modified PSO algorithm for 

better convergence behaviour. In the literature, extensive research was carried out to 

improve the convergence rate of PSO by modifying the value of the PSO’s parameters. 

For instance, Safaei et al. (2012) used the time-varying value for inertia weight, 

cognitive and social coefficient.  In their study, the initial and last value of inertia 

weight was [0.9, 0.4] and for the social coefficient was [2.5, 0.5]. In contrast, the 

cognitive coefficient used varying intervals of [0.5, 2.5]. In another study by Eberhart 

and Shi (2001), they used the value of w which randomly varied in the range of [0.5, 

1.0] that was calculated by [0.5+(rand/2)] and the 𝑐1 and 𝑐2 value were fixed as 1.494. 

These parameter values were found successful to track the optimization task of the 

dynamic system in their study.  

Motivated by the randomly varying concept, in this study, a randomized value was 

adopted for all parameters in the modified PSO algorithm to improve the convergence 

rate and learning rate of the cognitive and social component for a better solution. The 

range of values of the parameters was set up based on the established values in the 

literature for each parameter. The maximum value of the parameters was adopted from 

Ravizi (2012), where the maximum value used for w was 0.9, while for c1 and c2, was 

2.5, respectively. The minimum value for the parameters of 𝑤 was set as 0.1. On the 

other hand, the minimum value for the parameters value of 𝑐1 and 𝑐2 were set as 1.5 that 

is adopted and rounded up from Eberhart and Shi (2001). Based on these modification 

processes, the final version of the modified PSO is called MPSO. 

The MPSO algorithm was evaluated prior to use for the rain gauge network 

optimization process. For this purpose, the MPSO algorithm was compared to the 

standard modified PSO (SPSO) where this algorithm only used Equation 3.15 and 
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Equation 2.8 with the standard value of the parameters. In the evaluation process, the 

SPSO and MPSO were renamed as SPSO-IP and MPSO-IP, respectively where ‘-IP’ 

used to denote that the algorithms work for the positive integer number. The parameters 

values for both algorithms are tabulated in Table 3.8. 

Table 3.8: Parameters value of SPSO-IP and MPSO-IP 

Parameter Description SPSO-IP MPSO-IP 
Domain Variables form Integer Integer 

N Particle number 25 and 50 25 and 50 
Itermax Maximum number of iterations  1000 and 2000 

wmin Minimum inertia weight 0.4 Randomly 
from 0.1 to 0.9 wmax Maximum inertia weight 0.9 

c1 Cognitive coefficient 2 Randomly 
from 1.5 to 2.5 

c2 Social coefficient 2 Randomly 
from 1.5 to 2.5 

 

3.7.2.2 Evaluation process 

In the evaluation process, both PSO algorithms were applied to minimize five 

common test functions, namely Rosenbrock (𝑇𝐹1), Cube (𝑇𝐹2), Ackley (𝑇𝐹3), 

Grienwank (𝑇𝐹4) and Sphere (𝑇𝐹5) for their optimum best value. All of these test 

functions yield 0 as the optimum value. The equations of each test function are as stated 

in Equation 3.16 to Equation 3.20. 

 
𝑇𝐹1 = ∑[100 𝑥𝑖+1 − 𝑥2

𝑖 
2 +  𝑥𝑖 − 1 2]

𝑛−1

𝑖=1

 
Equation 3.16 

 
𝑇𝐹2 = ∑[100 𝑥𝑖+1 − 𝑥3

𝑖 
2 +  𝑥𝑖 − 1 2]

𝑛−1

𝑖=1

 
Equation 3.17 

 
𝑇𝐹3 = −20𝑒𝑥𝑝(−0.2√

1

𝑛
∑ 𝑥𝑖

2
𝑛

𝑖=1
) − 𝑒𝑥𝑝 (

1

𝑛
∑ 𝑐𝑜𝑠2𝜋𝑥𝑖

𝑛

𝑖=1
)

+ 20 + 𝑒 

Equation 3.18 

Univ
ers

ity
 of

 M
ala

ya



67 

 
𝑇𝐹4 = ∑

𝑥𝑖
2

4000

𝑛

𝑖=1

− ∏𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
)

𝑛

𝑖=1

+ 1 
Equation 3.19 

 
𝑇𝐹5 = ∑𝑥𝑖

2

𝑛

𝑖=1

 
Equation 3.20 

The testing was set up for 10 dimensions problem condition in a range of -30 to 30 

for each dimension. The tests were conducted for a different number of iterations and 

the number of swarm particles. By using two scenarios of swarm particles size (25 and 

50 swarm particle), the tests were executed for 1000 and 2000 iterations. Meanwhile, 

the maximum velocity is set at 10 per cent of the population size as applied by Xuedan, 

Qiang, Haiyan, and Lili (2009). The detailed specifications of the test function are 

tabulated in Table 3.9. 

Table 3.9: Testing Function parameters 

Test 
Function 

Function 
Name 

Dimension 
(n) 

Range 𝒇 𝒙  
Optimum 

value, 

Solution at 
Optimum Value, 

 𝒙  
TF1 Rosenbrock 10 [-30,30]n 0 1,1,1,1,1,1,1,1,1,1 
TF2 Cube 10 [-30,30]n 0 1,1,1,1,1,1,1,1,1,1 
TF3 Ackley 10 [-30,30]n 0 0,0,0,0,0, 

0,0,0,0,0 
TF4 Grienwank 10 [-30,30]n 0 0,0,0,0,0, 

0,0,0,0,0 
TF5 Sphere 10 [-30,30]n 0 0,0,0,0,0, 

0,0,0,0,0 
 

Two stages of performance evaluation were involved, at the first stage, both 

algorithms were executed for a single run to optimize the test function under the 

controlled values of random numbers of 𝑟1and 𝑟2. In other words, both algorithms at 

each iteration were applied using the same value of the random numbers 𝑟1and 𝑟2. This 

stage was important in order to evaluate the algorithm’s ability to converge to an 

optimized test function value in equal condition.  

Univ
ers

ity
 of

 M
ala

ya



68 

At the second stage, the algorithms were executed for a multi-consecutive run 

without controlling the random value c. The best result from the multi-consecutive run 

was selected to represent the optimization result. In addition, statistical analysis and 

hypothesis t-test was carried out on the multi-run result to justify the performance of the 

MPSO-IP algorithm. For this purpose, 50 multi-consecutive runs for both algorithms 

were adopted for sufficient statistical data analysis, as done by Yang, Yuan, Yuan, and 

Mao (2007).  

3.7.3 Application of Proposed Optimization Methods 

Prior to optimization, the existing rain gauge network (55 stations) was divided into 

two datasets: 1) a dataset containing the rain gauge stations being evaluated (25 

stations) and denoted by [R=(r1, r2, r3,…, rm)] and 2) a dataset of the remaining rain 

gauge stations (30 stations) denoted by [E=(e1, e2, e3,…, en)]. The E dataset contains 11 

stations located outside the study area. These stations are important for ensuring the 

continuity of the spatial interpolation of the distributed rainfall within the study area, 

especially at the catchment boundary. The interpolation of spatial rainfall distribution at 

the catchment boundary would be lost if the stations were not considered, which could 

increase the uncertainty and error of the rainfall distribution spatial interpolation. 

Every rain gauge station in each dataset contains spatial information of the longitude 

(x), latitude (y) and rainfall magnitude (z). A rain gauge station in each dataset is 

denoted as follows: 

 𝑟m =  𝑥m
𝑟 ,  𝑦m

𝑟 ,  𝑧m
𝑟   Equation 3.21 

 𝑒n =  𝑥n
𝑒 ,  𝑦n

𝑒 ,  𝑧n
𝑒  Equation 3.22 

Where m and n are the numbers of stations in the datasets, while r and e are the 

individual stations in the datasets, respectively.  
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The main objective of the optimization is to prioritize the rain gauge stations in the R 

dataset to produce an optimum number of rain gauge stations in the network. This task 

involves two stages of evaluation: 1) generating a candidate optimum rain gauge 

network using the stations selected from the R dataset and combining them with the E 

dataset, and 2) evaluating the candidate network based on the evaluation criteria by 

using the spatial information (x, y, z) of each station.  

3.7.3.1 Application of CV-Geo Method 

In the first stage of the optimization process, the stations were selected through LOO 

and AOI cross-validation. LOO was aimed to determine the stations that are less 

important in the optimal network. In contrast, AOI was assigned to determine the 

stations that are more important in the optimal network. The optimal network candidates 

generated by LOO and AOI were evaluated next using the geostatistical method for 

spatial interpolation error (Erms) based on the variography parameters. 

The geostatistical analysis of different network sizes produced different variography 

parameter values and associated spatial interpolation errors (Erms). By manipulating this 

relationship, optimization was carried out to determine the optimum rain gauge network 

for every number of rain gauges selected based on the lowest Erms. In other words, the 

Erms value was set as an optimization criterion in the optimization task. The 

methodology employed to evaluate the optimized rain gauge network in this study is 

summarized and presented in Figure 3.6. 
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Figure 3.6: Summary of the CV-Geo method employed to optimize the number 
of rain gauges in the network. 
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3.7.3.2 Application of MPSO Method 

Application of the MPSO method has a different approach from the previous method 

to create rain gauge network candidates and to optimize it. The MPSO maintains the 

original PSO algorithm that is creating the domain of solution before the optimization 

process is executed.  

To generate a domain of solution, all possible combinations of rain gauge station 

based on the number of rainfall stations required relative to the total number of rain 

stations evaluated (set R) is created. Each combination of optimum network candidates 

is generated where non-repeated rain gauge station is allowed. These optimum network 

candidates are distinguished by their position in the domain of solution. For example, to 

get a domain solution for networks that contain 10-station out of 25 stations, 3 268 760 

candidates of optimum network generated and for each network, the stations were 

combined non-repeatedly. The network candidates were distinguished by their position 

from 1 to 3 268 760 as an ID solution as illustrated below:  

Table 3.10: ID of candidate rain gauge network of a domain solution for 
networks that contain 10-station out of 25 stations 

ID 
solution 1 2 3 4 5 6 7 … 3268760 

ra
in

 g
au

ge
 st

at
io

n 

r1 r1 r1 r1 r1 r1 r1 … r16 
r2 r2 r2 r2 r2 r2 r2 … r17 
r3 r3 r3 r3 r3 r3 r3 … r18 
r4 r4 r4 r4 r4 r4 r4 … r19 
r5 r5 r5 r5 r5 r5 r5 … r20 
r6 r6 r6 r6 r6 r6 r6 … r21 
r7 r7 r7 r7 r7 r7 r7 … r22 
r8 r8 r8 r8 r8 r8 r8 … r23 
r9 r9 r9 r9 r9 r9 r9 … r24 
r10 r11 r12 r13 r14 r15 r16 … r25 
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The optimization process is executed to optimize the rain gauge network that has 1 to 

25 stations from the R dataset, one after another. The domain of solution for each size of 

networks is then generated as explained in the previous paragraph. Next, the MPSO 

algorithm is applied to optimize (reducing the objective function value) that is analyzed 

using the geostatistical method as explained in Chapter 2 and subchapter 3.6.2 to obtain 

an optimum network for a respective number of stations selected. This process is 

repeated for a network size of 1 to 24 stations to obtain an optimum rain gauge network 

for each network size based on the lowest spatial interpolation error (Erms). The 

summary of the MPSO application is summarized in Figure 3.7. 
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Figure 3.7: Summary of the MPSO method employed to optimize the number of 
rain gauges in the network. 
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3.7.3.3 Objective Function of optimization  

The configured rain gauge networks are evaluated using spatial interpolation error. 

The evaluation objective is to produce the networks with less spatial interpolation error 

and this is measured as Root-Mean-Square-Error (Erms). The Erms is adapted to be the 

performance indicator in network evaluation and optimization. The Erms value is 

minimized in both methods.  

To calculate the Erms value, considering a network to be analyzed, one by one station 

in the network is omitted and the rainfall value at the omitted point is estimated using 

the value of variography model parameters. Using these estimated values the Erms is 

calculated using Equation 3.23 below. An effective network should produce Erms value 

close to zero or the lowest as compared with other networks. The Erms is expressed as: 

 𝐸𝑟𝑚𝑠 = √∑ 𝑅𝑜𝑏𝑠 − 𝑅𝑒𝑠𝑡 2
𝑛

𝑖=1

 Equation 3.23 

Where; 

𝑅𝑜𝑏𝑠: Observed rainfall value at the rain gauge; 

𝑅𝑒𝑠𝑡: Interpolated estimate rainfall value at the rain gauge; 

𝑛: Number of rain gauge station. 

3.8 Verification of Optimized Rain Gauge Network by Hydrological Tank 

Model 

The optimized rain gauge network is verified using hydrological lump-model to 

confirm the reliability of rainfall data produced to simulate the observed flow. In the 

verification stage, the effect on the hydrologic model efficiency is examined by 

different input rainfall datasets.  
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For this purpose, the Modified Tank Model by DID is employed as the hydrological 

model. Figure 3.8 illustrates the verification process of the optimized rain gauge 

network. In the model development stage, the Tank Model for Upper Klang river basin 

(TM-UKRB) is developed through an automated calibration technique using PSO 

method to obtain the appropriate TM-UKRB’s parameters value. Then, the model is 

validated based on the model efficiency to simulate the observed flow. The TM-UKRB 

with calibrated parameters is used to simulate the observed flow using the rainfall data 

sets produced by the existing network and optimized network to compare the results.  
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Figure 3.8: Flow chart of Tank Model development and application for 
verification of optimized rain gauge network 
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3.8.1 Tank Model Development 

The development of TM-UKRB involves three processes such as model set up, 

calibration and validation of the model. The processes are explained in the following 

section. 

3.8.1.1 Tank Model Set Up 

The TM-UKRB was set up using three tanks organized in vertical order as depicted 

in Figure 3.9. The top tank represents the topsoil layer and rainfall as an input. It 

modeled the hydrological process that consists of rainfall, surface evaporation, 

infiltration into the next soil layer, storage volume, maximum storage depth and surface 

runoff. The subsequent tank represents the intermediate soil layer. The infiltration from 

the top tank is the main input to the tank’s storage. This tank modeled the interaction 

between the input and intermediate runoff as well as infiltration that percolated into the 

last tank that counts the tank storage constricted by its maximum depth of storage. The 

last tank represents the base flow generated by the storage in the tank as the residue of 

the infiltration from the intermediate tank and the available storage without further 

infiltration. The combination of surface runoff, intermediate flow and base flow is the 

total flow of the river basin. 

The TM-UKRB has 12 parameters that influence the hydrological process to produce 

the total flow of the river basin from rainfall, as tabulated in Table 3.11. The total flow 

is calculated using the parameters in the hydrologic process which is computed as 

follows: 

Step 1: The rainfall (RF) over the river basin (Tank 1) will be affected by evaporation 

loses (Ev1) and increases the initial tank storage (TS1) up to the maximum 

storage depth (X1). If the storage in the Tank 1 exceeds the X1, then the surface 

flow (Q1) will be produced by the tank, otherwise, the flow is zero. The current 
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storage (TS1) in the tank is the residue of storage by the Q1. The infiltration (I1) 

into the second tank is calculated by multiplying the infiltration coefficient (K4) 

by the current tank storage. This process is explained in Equation 3.24, Equation 

3.25 and Equation 3.26, respectively. 

 𝑇𝑆10 = 𝑅𝐹 − 𝐸𝑣1 + 𝑇𝑆1 Equation 3.24 

 𝑄1 = 𝐾1 𝑇𝑆1 − 𝑋1 𝑀 𝑖𝑓 𝑇𝑆1 > 𝑋1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑄1 = 0 Equation 3.25 

 𝐼1 = 𝐾4 𝑇𝑆1 − 𝑄1  Equation 3.26 

 

Step 2: The infiltration (I1) from the first tank will be percolated into the second tank 

storage (TS2) and increases the current storage. If the tank storage more than the 

maximum storage depth (X2), the intermediate flows (Q2) will be generated out 

of the second tank. The current storage in the tank is the residue of storage by 

the Q2. The infiltration (I2) into the second tank is calculated by multiplying the 

infiltration coefficient (K5) by the current tank storage. This process is explained 

in Equation 3.27, Equation 3.28 and Equation 3.29, respectively. 

 𝑇𝑆20 = 𝐼1 + 𝑇𝑆2 Equation 3.27 

 𝑄2 = 𝐾2 𝑇𝑆2 − 𝑋2 𝑀 𝑖𝑓 𝑇𝑆2 > 𝑋2, otherwise Q2 = 0 Equation 3.28 

 𝐼2 = 𝐾4 𝑇𝑆2 − 𝑄2  Equation 3.29 

 

Step 3: The infiltration (I2) from the second tank will be percolated into the last tank 

storage (TS3) and increases its current storage. The baseflow (Q3) is generated 

by multiplying the runoff coefficient (K3) by TS3 as in Equation 3.31. 

 𝑇𝑆3 = 𝐼2 + 𝑇𝑆30 Equation 3.30 
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 𝑄3 = 𝐾3. TS3 Equation 3.31 

 

Step 4: The total flow (QT) out from the river basin is the summation of the Q1, Q2 and 

Q3. 

 𝑄𝑇 = 𝑄1 + 𝑄2 + 𝑄3 Equation 3.32 

 

All elements in the hydrological process of tank model are measured in millimetre 

(mm). Thus, to convert the flow into the System International unit (m3/s), QT is 

multiplied by the river basin area and divided by the time interval in second (s). This 

hydrological process is coded and simulated using MATLAB version R2013a, software 

of MathWork. 

 

 

Figure 3.9: Tank Model set up for TM-UKRB 
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Table 3.11: TM-UKRB model’s parameters 

No. Parameter Description  
1 TS1 Storage coefficient in Tank 1 
2 TS2 Storage coefficient in Tank 2 
3 TS3 Storage coefficient in Tank 3 
4 Ev1 Evaporation of water body in Tank 1 
5 M Power coefficient of storage to calculate the direct runoff in 

Tank 1 
6 X1 Level of storage in Tank 1 just before the Q1 generated 
7 X2 Level of storage in Tank 2 just before the Q2 generated 
8 K1 Runoff coefficient in Tank 1 
9 K2 Runoff coefficient in Tank 2 
10 K3 Runoff coefficient in Tank 3 
11 K4 Infiltration coefficient for infiltration occurred from Tank 1 
12 K5  Infiltration coefficient for infiltration occurred from Tank 2 
 

3.8.1.2 Calibration and Validation of TM-UKRB Parameters 

The areal rainfall data series in the 15-minute interval is used as input data to the 

TM-UKRB. It is calculated using the Thiessen Polygon method by rainfall data series of 

the rain gauge network. The rainfall data series is used to simulate flow at the 

calibration point which is located at the final outlet of the river basin (at station N21, Sg 

Klang at Jalan Klang Lama). Based on the seven flood events as given in Table 3.1, 

only four flood events have sufficient discharge data that can be utilized for calibration 

and validation of the model as tabulated in Table 3.12. The data dated on 18 September 

2011 is used for calibration and the rest of data are used for the validation process.  

Table 3.12: Calibration and validation data 

Date Period of simulation 
3 March 2009 3 March 2009, 00:00am to 4 March 2009, 06:00am 

18 September 2011 18 September 2011, 00:00am to 18 September 2011, 06:00am 
18 April 2012 18 April 2012, 00:00am to 19 April 2012, 06:00am 

21 August 2012 21 August 2012, 00:00am to 22 August 2012, 06:00am 
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The TM-UKRB is calibrated and validated based on the Nash-Sutcliffe efficiency 

index (NSE) to ensure the reliability value of the model parameters (Nash & Sutccliffe, 

1970). The NSE is calculated as:  

 
𝑁𝑆𝐸 = 1 −

∑ 𝑄𝑖 − 𝐹𝑖 
2

∑ 𝑄𝑖 − 𝑄 2
 

Equation 3.33 

Where, 

𝑄𝑖= the simulated flow at time i 

Q  = the average observed flow, ∑𝑄𝑖

𝑁
 

𝐹𝑖=observed flow at time i 

N  = number of data 

The automatic calibration approach is employed using the SPSO method. The SPSO 

is used to maximize the objective function that is the NSE of the model. The SPSO 

specification for the calibration process is set as follows:  

a. 12 dimensions to represent 12 model parameters 

b. maximum number of iterations of 1000 

c. 25 number of swarm particles 

d. the lower and the upper limit of each parameter are tabulated in Table 3.13 

below. 
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Table 3.13: The lower and upper limit of model parameters 

Parameter Lower limit Upper limit 
TS1 0 35 
TS2 0 25 
TS3 0 20 
Ev1 0 1 
M 1.001 1.6 
X1 0 25 
X2 0 15 
K1 0.0001 0.3 
K2 0.0001 0.3 
K3 0.0001 0.3 
K4 0.0001 0.3 
K5 0.0001 0.3 

 

The calibrated parameters of TM-UKRB are evaluated via sensitivity analysis (SA). 

The SA is carried out to assess which parameters influence the model efficiency most. It 

is also important for a better evaluation of the parameters and better estimation of model 

output to reduce the uncertainty in the model (Lenhart, Eckhardt, Fohrer, & Frede, 

2002). The SA is conducted by using one-at-a-time method (OAT) where the sensitivity 

of the parameters are calculated by changing a parameter value independently at a time 

while the rest of parameters are held at the calibrated value (Hamby, 1995). The range 

of changing for the value of the parameter that is from -50% to +50% of the calibrated 

value is used to compute the NSE value. The Sensitivity Index (SI) is used for 

sensitivity measurement (Hoffman & Gardner, 1983) and calculated based on Equation 

3.34, where i is the number of parameters. 

 
𝑆𝐼𝑖 =

𝑁𝑆𝐸𝑖
𝑚𝑎𝑥 − 𝑁𝑆𝐸𝑖

𝑚𝑖𝑛

𝑁𝑆𝐸𝑖
𝑚𝑎𝑥  

Equation 3.34 

 

In addition, the Pearson correlative, r and coefficient of determination, R2 of the 

simulated hydrograph and the observed hydrograph is used to evaluate the model 
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efficiency. The R2 is calculated using Equation 3.35, where p is the simulated value and 

q is the observed value. 

 
𝑅2 =

𝑛∑𝑝𝑞 − ∑𝑝.∑ 𝑞

√[𝑛∑𝑝2 −  ∑𝑝 2][𝑛 ∑𝑞2 −  ∑𝑞 2]
 

Equation 3.35 

 

3.8.2 Application of TM-UKRB for optimized rain gauge network verification 

The main objective of the TM-UKRB development is as a tool to validate the 

optimized rain gauge network. The TM-UKRB is used to simulate the observed flow 

using different rainfall datasets which are produced by each optimized rain gauge 

network for 4 flood events which are used in the calibration and validation process 

(Table 3.12 and Table 3.13).  

The areal rainfall data series in the 15-minute interval for each optimized rain gauge 

network is calculated using the Thiessen Polygon method and used as input data to the 

TM-UKRB to simulate the observed flow. The NSE of the model and the relative error 

of the hydrograph are calculated to analyse the reliability of the optimized rain gauge 

network.  

 

Univ
ers

ity
 of

 M
ala

ya



84 

CHAPTER 4: RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter presents and discusses the results of the methodology described in 

Chapter 3. Basically, this chapter presents 5 results i.e. data input for preliminary 

analysis, the best semivariogram model selected, PSO algorithm modification, 

optimization of the rain gauge network and the validation of the optimal station 

network.  

The preliminary data analysis (rainfall and discharge) result has been presented in 

section 4.2 to give a general description of the data used in this study. The descriptive 

statistical values of the datasets have been used and in addition, the Pearson correlation 

is adopted for rainfall-elevation and rainfall-discharge relationships evaluation before 

the geostatistical method is employed in subsequent methodologies.  

In section 4.3, the results of the new application of geostatistical and AHP methods 

to select the semivariogram model are discussed. The selected best semivariogram 

model is used in the rain gauge network optimization process. 

One of the novelties of this thesis is the application of the modified PSO method in 

the rain gauge network optimization process. Thus, the experimental results of how this 

method is modified are presented in section 4.4. Next, in section 4.5, the results of the 

optimization of the rain gauge network using two new methods, CV-Geo and MPSO 

were presented and discussed.  

The validation result of the optimum network produced using the hydrological tank 

model has been presented in section 4.6. This section also presents the performance of 

the optimum rain gauge network to simulate flood events for different rainfall data from 

the optimum rain gauge network. 
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4.2 The result of Preliminary Data Analysis 

4.2.1 Descriptive Statistic and Preliminary Number of Stations 

The utilization of statistical nature is a conventional method applied to design the 

appropriate rain gauge number from the base network. It gives a basic guide to 

determine the required number of rain gauge stations in a network using the statistic 

parameters value and spatial variation of rainfall data set. In this case, the coefficient of 

spatial variation of rainfall (Cv) from the base network is utilized for determining the 

optimum number of rain gauges. If there are already some rain gauges in the catchment, 

the optimal number of stations that should exist to have an assigned percentage of error 

in the estimation of mean rainfall is obtained by statistical analysis as: 

 
𝑁 = (

𝐶𝑣

ɛ
)
2

 Equation 4.1 

where, 

N = optimal number of stations, 

ɛ = allowable degree of error in the estimate of mean rainfall and 

Cv = coefficient of variation of rainfall values at then existing m stations. 

If there are m stations in a catchment and P1, P2,........Pm is the recorded rainfall at a 

known time at 1, 2,........m station, then the coefficient of variation 

Cv is calculated as: 

 
𝐶𝑣 =

100 × 𝜎𝑚−1

𝑃̅
 Equation 4.2 

Where 

 

𝜎𝑚−1 =

√∑ 𝑃𝑖
2 − 𝑚 × 𝑃̅2𝑚

𝑖=1

 𝑚 − 1 
 Equation 4.3 
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Pi is daily average precipitation at i station and 𝑃̅ is the average rainfall of ‘m’ 

number of stations, given by: 

 
𝑃̅ =

∑ 𝑃𝑖
𝑚
𝑖=1

𝑚
 Equation 4.4 

For purpose of Cv calculation, σm-1 is used when number of stations, m, in the 

network is less than 30 otherwise σm can also be used. In this study, N is generated 

using three ɛ values, 10%, 15% and 20% to evaluate the appropriate number of rain 

gauge stations. 

The calculated N values were plotted against ɛ and the result is illustrated by Figure 

4.1. The result showed that at ɛ=10% (the common value applied) the number of 

stations will be in a range of 41 to 164. This range is considered too vast for the study 

area as the catchment area is about 584km2. According to the WMO‘s guide for the 

urban area, the recommended number of stations shall be in a range of 29 (20km2 per 

station) to 58 (10km2 per station) number of stations. To trade off the number of the 

station by increasing the ɛ=15% and ɛ=20%, the range is decreased to a range of 18 to 

73 stations and 10 to 41 stations, respectively. It is observed that the range was reduced 

when the allowable degree of error, ɛ increased. In such a case, it is difficult to 

determine the right number of stations as accuracy remained as the main factor. 

However, this could be as a preliminary benchmark. The result of all statistical 

parameter values including Cv and N for each ɛ is tabulated in Table 4.1.  
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Figure 4.1: Optimum number of rain gauge stations, N 

Table 4.1: The descriptive statistical value of rainfall datasets.  
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4.2.2 Rainfall-Elevation Correlation 

One of the advantages of using geostatistical methods is that some of the criteria that 

relate to one another can be used in the analysis. In this study, the rainfall data used may 

have a relationship with the station's elevation. If a significant relationship exists, the 

elevation factor should be taken into account in the geostatistical analysis to obtain an 

accurate result. 

To determine the correlation between rain data with elevation, Pearson correlation (r) 

is used. The results are illustrated in Figure 4.2 until Figure 4.8. The r value results are 

in a range of -0.393 to 0.185. A strong negative correlation indicated if the value of r is 

close to -1. Thus, this result shows that there is no correlation between the rainfall 

amount and the station’s elevation for all datasets. In addition, the computed coefficient 

of determination, R2 in a range of -1.174 to -0.495, which indicated the same inference. 

This analysis is quite simple but essential to the geostatistical analysis. To obtain an 

accurate result from the geostatistical analysis all elements that have good correlation 

should be incorporated into the analysis. However, based on the result, it is justified that 

for this study the elevation is not needed to be incorporated in the geostatistical analysis.  
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Figure 4.2: Pearson correlation, r between rainfall and elevation for 3 February 
2009 

 

Figure 4.3: Pearson correlation, r between rainfall and elevation for 3 March 
2009 
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Figure 4.4: Pearson correlation, r between rainfall and elevation for 18 
September 2011 

 

Figure 4.5: Pearson correlation, r between rainfall and elevation for 13 
December 2011 
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Figure 4.6: Pearson correlation, r between rainfall and elevation for 7 March 
2012 

 

Figure 4.7: Pearson correlation, r between rainfall and elevation for 18 April 
2012 
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Figure 4.8: Pearson correlation, r between rainfall and elevation for 21 August 
2012 

 

4.2.3 Rainfall-Discharge Correlation  
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hydrological modeling. A good correlation will produce an accurate model and vice 
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In this study, only four discharge datasets are available. The r values were computed 

and the result is presented in Figure 4.9. Based on the result, the lowest and maximum r 

values calculated are 0.723 and 0.771, respectively. These values indicated that a good 
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Figure 4.9: Pearson correlation, r between rainfall and discharge. 

 

4.3 Selection of the Best Semivariogram Model  

The successful selection of the best semivariogram model relied on the priority 

weight of criteria and sub-criteria designed in the AHP’s model. For this purpose, in this 

section, the priority weight of AHP model is presented and discussed. Next, the 

evaluation result on alternatives of the semivariogram model is discussed in detail to 

select the best.   

4.3.1 AHP’s Priority Weight  
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In Set 1, criterion C4 had 71.3% influences on the decision, but criterion C3 had the 

least influence with only 4.6%. Criteria C1 and C2 had an equal influence of 12.1%. 

However, in Set 2 and Set 3 criterion C4 still had the greatest weight, but criterion C3 

increased up to 26.7% in Set 2 and 20.6%, in Set 3. Meanwhile, criteria C1 and C2 had 

the influence of only 6% and 8.5% on the decision, respectively. In other words, in Set 1 

the dominant criterion was C4 (Ermss) and there was no emphasis on criterion C3 (Ems). 

On the other hand, in Set 2 and Set 3, criterion C4 remained important with the same 

contribution as criterion C3 on the evaluation process. These 3 scenarios are employed 

to ensure the robustness of the decision made by AHP 

Table 4.2: Results of priority weight and its associated comparative numerical 
value and Consistency Ratio of pairwise matrix comparison of the criteria versus 

objective 

Set No. Priority 
Weight Factor C1 C2 C3 C4 Consisten

cy Ratio 

1 

0.121 C1 1.00 1.00 4.00 0.11 

0.095 
0.121 C2 1.00 1.00 4.00 0.11 
0.046 C3 0.25 0.25 1.00 0.11 
0.713 C4 9.00 9.00 9.00 1.00 

2 

0.060 C1 1.00 1.00 0.20 0.11 

0.012 
0.060 C2 1.00 1.00 0.20 0.11 
0.267 C3 5.00 5.00 1.00 0.33 
0.612 C4 9.00 9.00 3.00 1.00 

3 

0.085 C1 1.00 1.00 0.33 0.17 

0.039 
0.085 C2 1.00 1.00 0.33 0.17 
0.206 C3 3.00 3.00 1.00 0.20 
0.623 C4 6.00 6.00 5.00 1.00 

 

4.3.2 Selected Semivariogram Model 

At this stage, the Final Score value is used to evaluate the alternatives. Based on the 

Final Score value the variogram models are ranked for decision making. The results of 

the variogram model rank based on the Final Score value for each set is tabulated in 

Table 4.3. Based on the table, each set unanimously resulted in the same model ranking 
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at the top, that is, the Spherical model. The minimum Spherical model’s score value is 

3.56 (in Set 2) compared with the maximum score in this study that is 5. This means 

that the Spherical model demonstrated good performance to fulfil all criteria with at 

least 71.2% and the maximum performance is 75.6% (score of 3.78 in Set 1).  

The Gaussian and Tetraspherical models are ranked second and third in Set 2 and Set 

3, respectively. In contrast, for Set 1 the Pentaspherical ranked second followed by the 

Gaussian model in third place. The Gaussian model’s score recorded was equal in Set 2 

and Set 3 with 3.56. This score is equal to the minimum score of the Spherical model. 

This result signifies that the Spherical and Gaussian models perform well in producing a 

spatial rainfall map that fulfils the criteria explained by Johnston et al. (2003). As for 

the rest, the performances of the variogram models were average and were ranked by 

the AHP method in bottom place.  

Table 4.3: Results of the variogram model ranking based on the Final Score 
value 

Pairwise 
Matrix Set  Set 1 Set 2 Set 3 

V
ar

io
gr

am
 m

od
el

 r
an

k 
po

si
tio

n 

1 Spherical 3.78 Spherical 3.56 Spherical 3.67 

2 Pentaspherical 3.11 Gaussian 3.56 Gaussian 3.56 

3 Gaussian 2.89 Tetraspherical 3.00 Tetraspherical 2.78 

4 Tetraspherical 2.89 Exponential 2.56 Pentaspherical 2.67 

5 Exponential 2.33 Pentaspherical 2.33 Exponential 2.33 

 

This result was compared with the findings by F. Othman et al. (2011). They 

conducted an analysis of a storm event on spatial rainfall distribution in the same study 

area. By using a total of 28 rain gauge stations, they found that the Gaussian model had 

slightly better performance in producing spatial rainfall estimation compared to the 
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Spherical and Exponential models. There is a good agreement on the findings regarding 

the performance of the Gaussian and Exponential models. But contradiction arises for 

the Spherical model. Applying the AHP method has ranked the Spherical model at the 

top, indicating that the model has good performance.  

This is possibly due to 2 reasons, one of which is the number of rain gauge stations 

selected. There were 55 stations selected in this study, which is twice more than by F. 

Othman et al. (2011). Thus, network density in this study is much greater. In the 

geostatistical analysis, the accuracy of spatial rainfall distribution is reliant on the 

density of the network used (Goovaerts, 1999). The higher the density of the rain gauge 

network used, the more accurate the spatial rainfall map produced is.  

The second reason is the storm event selected for analysis. In this study, the rainfall 

data were extracted based on recent flood events on a cumulative, daily basis covering 

the years 2009 until 2012. This is to ensure that the data extracted for analysis are data 

with a good response from a hydrological perspective. However, F. Othman et al. 

(2011) selected storm events from the same year. According to the findings of Feki et 

al. (2010), the estimated variance and interpolation system in the geostatistical analysis 

are sensitive to season and region. As aforementioned, the climate feature in this study 

area is influenced by the monsoon seasons. 

The difference in performance between the Spherical and Gaussian can be explained 

by how the model presents the correlation of the semivariogram within the range value. 

The Gaussian has a high response to the nugget effect but the Spherical is not. The 

nugget effect contributes to high error while the model used in the spatial interpolation 

process at unmeasured points. This factor caused the Gaussian to perform less than the 

Spherical model. Thus, it is important to assess the variography structure of these two 

models that are represented by variography parameters to justify the result.  
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The variography parameters values of the data sets for the Spherical and Gaussian 

model are tabulated in Table 4.4. The Nuggets recorded by Gaussian are higher than 

Spherical but the sill values do not much differ. The range values are higher for the 

Spherical model. This result shows that the Spherical model has better variography 

structure than Gaussian because the Spherical has a lower nugget and has higher range 

value. This meant that the Spherical has a more spatial correlation at longer distance and 

less measurement error. By using the variography structure, semivariogram of Spherical 

and Gaussian for two selected data sets are plotted in Figure 4.10. It shows that the 

Spherical model fits the data set slightly better as compared to the Gaussian model.   

Table 4.4: Results of variography parameter value from geostatistical analysis 

Date Variogram 
Model Range (km) Nugget Semi variance / 

Sill 

3 February 2009 
Spherical 14.714 205.05 652.8 
Gaussian 12.592 272.31 654.89 

3 March 2009 
Spherical 11.949 127.07 861.10 
Gaussian 10.245 252.02 862.73 

18 September 2011 
Spherical 18.956 385.66 658.18 
Gaussian 16.772 429.15 662.97 

13 December 2011 
Spherical 7.144 585.02 1069.82 
Gaussian 6.085 660.12 1070.51 

7 March 2012 
Spherical 13.535 272.92 3776.92 
Gaussian 11.162 719.44 3768.34 

18 April 2012 
Spherical 16.057 44.624 712.594 
Gaussian 14.160 150.79 722.88 

21 August 2012 
Spherical 14.557 38.027 917.687 
Gaussian 13.317 182.77 941.37 
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(a) 

 

(b) 
Figure 4.10: Semivariogram generated by Spherical and Gaussian models, a) 

rainfall data on 3 March 2009 and b) rainfall data on 18 April 2012. 

 

A good spatial rainfall map can be produced by a good semivariogram structure. 

Apparently, based on the semivariogram structure, the Spherical model is able to 

produce good spatial rainfall map. Spatial rainfall maps for the same selected events are 

generated and shown in Figure 4.11. The figure illustrated that the spatial rainfall map 

produced by the Spherical model is smoother than that with the Gaussian model, 

especially in the area marked with a red boundary. The smooth line in Spherical is 

produced from accurate spatial interpolation. The smooth line justifies that the model 

has better spatial interpolation as explained in the previous paragraph.  
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(a) 

 

(b) 

 

(c) 

 

(d) 
 

Figure 4.11: Spatial rainfall map generated by, a) Spherical model for rainfall 
data on 3 March 2009, b) Gaussian model for rainfall data on 3 March 2009, c) 
Spherical model for rainfall data on 18 April 2012 and d) Gaussian model for 

rainfall data on 18 April 2012 
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4.3.3 Semivariogram of Existing Rain Gauge Network 

Prior to optimizing the rain gauge network, it is important to know the variogram 

properties of the existing rain gauge network. For this purpose, the geostatistical 

analysis was conducted on the existing network that contained 55 rain gauge stations 

with seven rainfall datasets. Detailed of variogram parameters values are tabulated in 

Table 4.5. Based on Table 4.5, the rainfall dataset for 7 March 2009 had the highest sill 

value of 3 703.179 mm2. The remaining datasets had sill values ranging from 450.123 

mm2 (18 September 2011) to 1 017.863 mm2 (21 August 2012). Although high 

differences in sill values were recorded, the semivariogram of the datasets was plotted 

with more or less similar range values except for the rainfall data on 13 December 2012 

(3.754 km). The mean range value was about 13.289 km, whereas the maximum value 

was 18.182 km. Among the datasets, the rainfall data for 18 September 2011 had the 

highest nugget (246.107 mm2). Besides, three datasets (13 December 2011, 18 April 

2012 and 21 August 2012) recorded nugget values very close to zero. The computed 

Erms value of spatial interpolation error was in the 19.505 to 33.175 range with a mean 

Erms value of 25.184.  

Table 4.5: Value of variogram parameters of the existing network and their 
corresponding Erms value for selected flood events. 

Flood Event Sill, 𝑪𝟏 Range, a 
(km) Nugget, 𝑪𝒐 Erms 

3 February 2009 693.097 15.341 47.137 23.891 
3 March 2009 930.505 12.118 23.511 24.281 
18 September 2011 450.123 16.109 246.107 24.636 
13 December 2011 983.093 3.754 2.376 × 10-8 33.175 
7 March 2012 3703.179 13.532 41.483 30.389 
18 April 2012 992.719 18.182 4.359 × 10-8 20.408 
21 August 2012 1017.863 13.989 1.106 × 10-8 19.505 
Mean 1 252.940 13.289 51.177 25.184 
Maximum Value 3 703.179 18.182 246.107 33.175 
Minimum Value 450.123 3.754 1.106 ×10-8 19.505 
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4.4 The evaluation result of MPSO-IP 

The objective of this evaluation was to assess the convergence rate of the MPSO-IP 

against the SPSO-IP to minimize the test functions value for two scenarios. The first 

scenario is both algorithms were run at one time using similar value of 𝒓𝟏 and 𝒓𝟐 by 

controlling the value every number of iterations. Second scenario is to run the 

algorithms for 50 consecutive run without controlling the value of 𝒓𝟏 and 𝒓𝟐. The 

convergence rate denoted as 𝑐𝑟 was defined as the ratio of the residue iteration where 

the swarm particles reached the best-optimized value over the maximum number of 

iterations. It was calculated using Equation 4.5 and the 𝑐𝑟 value should be in a range of 

[0, 1]. For a specific number of N and maximum number of iterations, the higher 𝑐𝑟 

value illustrated the better performance of the algorithms to reach to the solution of the 

problem.  

 𝑐𝑟 = 1 −
𝑖𝐵

𝐼𝑚𝑎𝑥
 Equation 4.5 

Where,   𝑖𝐵 = number of iteration for the best value, and 

𝐼𝑚𝑎𝑥 = maximum number of iterations (1000 or 2000) 

For this purpose, the SPSO-IP and MPSO-IP algorithms were coded and run using 

MATLAB R2013a. All evaluation stages explained in Chapter 3 were run using a laptop 

with Intel Core i7-2.4GHz processor and 8 GB memory. The obtained results were 

analyzed to evaluate the performance of the algorithms in terms of the convergence rate 

and the minimized best value for each test function. 

4.4.1 Controlled Value of Random Number (𝒓𝟏 and 𝒓𝟐) 

The SPSO-IP and MPSO-IP algorithms were run with similar value of random 

numbers but different value of maximum number of iterations, 𝐼𝑚𝑎𝑥 and N. Two values 

of N (25 and 50) and 𝐼𝑚𝑎𝑥 (1000 and 2000) were applied in this study. The test results 
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for 𝐼𝑚𝑎𝑥 of 1000 and 2000 iterations for different N values are tabulated in Table 4.6 

and Table 4.7, respectively.  

Based on the results, apparently the MPSO-IP has higher 𝑐𝑟 value for all test 

functions, irrespective of the value of both N sizes and 𝐼𝑚𝑎𝑥. The MPSO-IP has 

recorded the minimum average value of 𝑐𝑟 as lower as 0.852 (for N=50 and for 𝐼𝑚𝑎𝑥 of 

1000). On the other hands, the SPSO-IP has recorded the maximum average value of 𝑐𝑟 

as higher as 0.419 (for N=50 and for 𝐼𝑚𝑎𝑥 of 2000). In term of the average number of 

iteration wherein the algorithms stop at the best-optimized value for both 𝐼𝑚𝑎𝑥 values, 

the MPSO-IP has stop at 58 numbers of iterations for N equal to 25 and 148 number of 

iterations for N equal to 50. According to Equation 4.5, the value of 𝑐𝑟 will be increased 

if the 𝐼𝑚𝑎𝑥 increased and 𝑖𝐵 was unchanged. Therefore, the 𝑐𝑟 value for MPSO-IP has 

increased and its value was higher than the 𝑐𝑟 value of SPSO-IP. These finding 

indicated that the MPSO-IP was independent of the maximum number of iterations. 

Meanwhile, SPSO-IP is still dependent on the maximum number of iterations. 

Since, the MPSO-IP is likely independent of the maximum number of iterations, the 

comparisons of the best-optimized value of the test function were done based on the N 

value to assess the behavior of the algorithms for the same 𝐼𝑚𝑎𝑥. Based on results in 

Table 4.6 and Table 4.7, for 𝐼𝑚𝑎𝑥 values of 1000, the MPSO-IP has reached to the 

actual best value of the test function for TF1 when N value increased from 25 to 50 but 

not for SPSO-IP. In contracts, the SPSO-IP has slightly better result for TF2 as 

compared to MPSO-IP. As for the TF3 and TF5, the results show that both algorithms 

are equally performed for both values of N. However, both algorithms produced best-

optimized value slightly higher for TF4 when N value increased from 25 to 50. 

For 𝐼𝑚𝑎𝑥 values of 2000, both the MPSO-IP and SPSO-IP have reached the actual 

best value of the test function for TF1 when N value increased from 25 to 50. In 
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contracts, the SPSO-IP has slightly better result for TF2 as compared to MPSO-IP. The 

TF3 and TF5 results show that no changes for both algorithms. On the other hands, for 

TF4 MPSO-IP has produced lower best-optimized value for both values of N as 

compared to SPSO-IP.  

In this evaluation, the random numbers in both algorithms were controlled to ensure 

that the same set of random numbers was applied in the test. Thus, the results produced 

by both algorithms were comparable. Based on the observation, it is can be inferred that 

the MPSO-IP and SPSO-IP are equally performed to minimize the test functions value. 

The obvious different performance between both algorithms is that the MPSO-IP has 

advantage to converge the solution faster as compared to SPSO-IP. These inferences 

were justified by the convergences graph of each TF for each test condition as plotted in 

Figure 4.12 to Figure 4.21. The only disadvantage can be noticed is that the possibility 

of the algorithms trapped at the global solution. 

Table 4.6: Results of single runs with a controlled random number for 1000 
iterations. 

Test 
Function Algorithm 

N=25 N=50 

Best 
Value 

Iteration 
at Best 
Value 

𝒄𝒓 Best 
Value 

Iteration 
at Best 
Value 

𝒄𝒓 

TF1 
SPSO-IP 9.000 853 0.147 16.000 848 0.152 
MPSO-IP 4.000 117 0.883 0.000 194 0.806 

TF2 
SPSO-IP 102.000 811 0.189 9.000 505 0.495 
MPSO-IP 205.000 56 0.944 205.000 111 0.889 

TF3 
SPSO-IP 8.88E-

16 812 
0.188 8.88E-

16 
802 0.198 

MPSO-IP 8.88E-
16 44 0.956 

8.88E-
16 

55 
0.945 

TF4 
SPSO-IP 0.0710 804 0.196 0.0943 805 0.195 
MPSO-IP 0.0862 31 0.969 0.0929 326 0.674 

TF5 
SPSO-IP 0 812 0.188 0 546 0.454 
MPSO-IP 0 44 0.956 0 55 0.945 

Average 
SPSO-IP  818 0.182  701 0.299 
MPSO-IP  58 0.942  148 0.852 
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Table 4.7: Results of single runs with a controlled random number for 2000 
iterations. 

Test 
Function 

Algorithm 

N=25 N=50 

Best 
Value 

Iteration 
at Best 
Value 

𝒄𝒓 Best 
Value 

Iteration 
at Best 
Value 

𝒄𝒓 

TF1 
SPSO-IP 16.000 1674 0.163 0.000 1634 0.183 
MPSO-IP 4.000 117 0.942 0.000 194 0.903 

TF2 
SPSO-IP 0.000 1663 0.169 0 1534 0.233 
MPSO-IP 205.000 56 0.972 205 111 0.945 

TF3 
SPSO-IP 8.88E-

16 1602 0.199 8.88E-
16 996 0.502 

MPSO-IP 8.88E-
16 44 0.978 

8.88E-
16 55 0.973 

TF4 
SPSO-IP 0.1587 623 0.689 0.1011 623 0.689 
MPSO-IP 0.0862 31 0.985 0.0929 326 0.837 

TF5 
SPSO-IP 0 1154 0.423 0 1029 0.486 
MPSO-IP 0 44 0.978 0 55 0.973 

Average 
SPSO-IP  1343 0.329  1163 0.419 
MPSO-IP  58 0.971  148 0.926 

 

 

a) 

 

b) 
Figure 4.12: Convergence graphs of TF1 (N=25) for a) 1000 iterations b) 2000 

iterations. 
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a) 

 

b) 
Figure 4.13: Convergence graphs of TF2 (N=25) for a) 1000 iterations b) 2000 

iterations. 

 

a) 

 

b) 
Figure 4.14: Convergence graphs of TF3 (N=25) for a) 1000 iterations b) 2000 

iterations. 

 

 

a) 

 

b) 
Figure 4.15: Convergence graphs of TF4 (N=25) for a) 1000 iterations b) 2000 

iterations. 
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a) 

 

b) 
Figure 4.16: Convergence graphs of TF5 (N=25) for a) 1000 iterations b) 2000 

iterations. 

 

a) 

 

b) 
Figure 4.17: Convergence graphs of TF1 (N=50) for a) 1000 iterations b) 2000 

iterations. 

 

 

a) 

 

b) 
Figure 4.18: Convergence graphs of TF2 (N=50) for a) 1000 iterations b) 2000 

iterations. 
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a) 

 

b) 
Figure 4.19: Convergence graphs of TF3 (N=50) for a) 1000 iterations b) 2000 

iterations. 

 

a) 

 

b) 
Figure 4.20: Convergence graphs of TF4 (N=50) for a) 1000 iterations b) 2000 

iterations. 

 

a) 

 

b) 
Figure 4.21: Convergence graphs of TF5 (N=50) for a) 1000 iterations b) 2000 

iterations.  
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4.4.2 Multi-run with Uncontrolled Value of Random Number 

In literature, most of the PSO algorithms did not reach to the actual optimum value 

of the test function, for instances in Safaei et al. (2012), Jin (2011) and X. H. Shi et al. 

(2007). The success of the optimization task using the PSO algorithm can be assured by 

the repetition of the runs. Indeed, it is a common practice in the optimization task to 

solve the high dimension of the test function. In this study, all test functions were set to 

10 dimensions problem. In the single run test with controlled random number values, it 

apparently showed that some of the test functions did not reach the actual optimum 

value, which was zero. Thus, for the next stage of the evaluation, 50 consecutive runs 

were applied and the lowest best result of the optimum value was extracted to represent 

the optimization result. 

The extracted best value of the multi-run test result with uncontrolled random 

number value for 1000 and 2000 maximum number of iterations are tabulated in Table 

4.8 and Table 4.9, respectively. Based on the result, for both maximum number of 

iterations and the N size, the TF1, TF2 and TF5 reached the target optimized the best 

value. However, the TF3 did not reach the target best value, but both algorithms had the 

equal best value for both maximum number of iterations and N size. This was quite 

similar for TF4 with N=25; however, for the test with N=50 and both iterations, only the 

SPSO-IP reached the target best value. Regardless, for the best value of both maximum 

number of iterations and N size, the MPSO-IP had a higher 𝑐𝑟 value.   
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Table 4.8: Results of the best value extracted from 50 runs with an uncontrolled 
random number for 1000 iterations. 

  N=25 N=50 

Test 
Function Algorithm Best 

Value 

Iteration 
at Best 
Value 

𝒄𝒓 Best 
Value 

Iteration 
at Best 
Value 

𝒄𝒓 

TF1 
SPSO-IP 0.000 472 0.528 0.000 811 0.189 
MPSO-IP 0.000 47 0.953 0.000 162 0.838 

TF2 
SPSO-IP 0.000 820 0.180 0.000 554 0.446 
MPSO-IP 0.000 44 0.956 0.000 61 0.939 

TF3 
SPSO-IP 8.88E-

16 377 0.623 8.88E-
16 334 0.666 

MPSO-IP 8.88E-
16 30 0.970 

8.88E-
16 19 0.981 

TF4 
SPSO-IP 0.0312 862 0.138 0 885 0.115 
MPSO-IP 0.0312 58 0.942 0.0312 31 0.969 

TF5 
SPSO-IP 0 377 0.623 0 334 0.666 
MPSO-IP 0 30 0.970 0 19 0.981 

Average 
SPSO-IP  581 0.418  583 0.416 
MPSO-IP  48 0.958  58 0.942 

 

Table 4.9: Results of the best value extracted from 50 runs with an uncontrolled 
random number for 2000 iterations. 

  N=25 N=50 

Test 
Function Algorithm Best 

Value 

Iteration 
at Best 
Value 

𝒄𝒓 Best 
Value 

Iteration 
at Best 
Value 

𝒄𝒓 

TF1 
SPSO-IP 0.000 1671 0.165 0.000 1199 0.401 
MPSO-IP 0.000 291 0.855 0.000 92 0.954 

TF2 
SPSO-IP 0.000 1075 0.463 0.000 905 0.548 
MPSO-IP 0.000 47 0.977 0.000 51 0.975 

TF3 
SPSO-IP 8.88E-

16 
709 0.646 8.88E-

16 
571 0.715 

MPSO-IP 8.88E-
16 33 0.984 

8.88E-
16 18 0.991 

TF4 
SPSO-IP 0.0246 1604 0.198 0 1333 0.334 
MPSO-IP 0.0246 53 0.974 0.0246 219 0.891 

TF5 
SPSO-IP 0 709 0.646 0 571 0.715 
MPSO-IP 0 33 0.984 0 18 0.991 

Average 
SPSO-IP  1153 0.424  916 0.523 
MPSO-IP  91 0.955  79 0.960 
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Based on these results, it can be inferred that the MPSO-IP had the ability to 

optimize the test functions to the actual optimum value with high convergence rate, 

irrespective of the iteration and N size. In contrast, the SPSO-IP had very low 

convergence rate, though it had the equal ability to reach the actual optimum value. 

These inferences indicated that the MPSO-IP had a better performance in terms of the 

convergence rate as compared to SPSO-IP, but they were equal in terms of producing a 

reliable result. To justify the inferences, a t-test of paired two samples for means that 

was applied by Safaei et al. (2012) in their analysis was used to compare the 

optimization results of 50 consecutive runs.  

The statistical t-test at a significant level of α=0.05 with 49 degree of freedom (𝑑𝑓) 

which was the critical 𝑡0.05 that was equal to 2.01 was used to compare the mean 

optimized test function value, µ that was obtained from MPSO-IP and SPSO-IP. In this 

test, the output from MPSO-IP was assessed; it was statistically different from the 

SPSO-IP output. At this point, a hypothesis was developed as (Null hypothesis, Ho: µ1 

(MPSO-IP) = µ2 (SPSO-IP), which meant that the mean optimized value of MPSO-IP 

was equal to the mean optimized value of SPSO-IP. Thus, it implied that MPSO-IP and 

SPSO-IP had equal performance. Alternative hypothesis, Ha: µ1 (MPSO-IP) > µ2 

(SPSO-IP), inferred that the mean optimized value of MPSO-IP was higher than SPSO-

IP. In other words, SPSO-IP was better than MPSO-IP.  

The obtained results from the hypothesis test are tabulated in Table 4.10. The results 

showed that all tests were to accept the Ho and only 4 tests came out to reject the Ho 

which involved TF2 and TF4. The rejection of TF2 occurred at 2000 maximum number 

of iterations and both sizes of N. The rejection result in TF4 occurred when the N=50 for 

both iterations. In these cases, the SPSO-IP was better than the MPSO-IP. 
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Table 4.10: Statistical t-test between MPSO-IP and SPSO-IP algorithms for 
1000 and 2000 iterations and 25 swarm particle sizes at α=0.05. 
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Best 
Value Mean 

St
an

da
rd

  
D

ev
ia

tio
n 

tcal Result 

1000 

25 

TF1 
SPSO-IP 0 17.3 17.1217 

0.858 Accep
t Ho MPSO-

IP 
0 20.26 14.5642 

TF2 
SPSO-IP 0 152.96 248.227

1 
0.007 Accep

t Ho MPSO-
IP 0 153.28 148.056

3 

TF3 
SPSO-IP 8.8818×1

0-16 
8.8818×1

0-16 0 
1.769 Accep

t Ho MPSO-
IP 

8.8818×1
0-16 0.0735 0.2941 

TF4 
SPSO-IP 0.0312 0.1148 0.0534 

0.499 Accep
t Ho MPSO-

IP 0.0312 0.1209 0.0664 

TF5 
SPSO-IP 0 0 0 

1.769 Accep
t Ho MPSO-

IP 0 0.06 0.2399 

50 

TF1 
SPSO-IP 0 10.66 11.1860 

-
1.235 

Accep
t Ho MPSO-

IP 0 8 10.7457 

TF2 
SPSO-IP 0 68.3 149.957

9 
0.729 Accep

t Ho MPSO-
IP 

0 87.84 121.555
5 

TF3 
SPSO-IP 8.8818×1

0-16 
8.8818×1

0-16 0 
*NA *NA 

MPSO-
IP 

8.8818×1
0-16 

8.8818×1
0-16 0 

TF4 
SPSO-IP 0 0.1030 0.0599 

2.320 Reject 
Ho MPSO-

IP 0.0312 0.1322 0.0647 

TF5 
SPSO-IP 0 0 0 

*NA *NA MPSO-
IP 0 0 0 

*NA – Not applicable. 
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Table 4.10, continued 
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Value Mean 
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tcal Result 

2000 

25 

TF1 
SPSO-IP 0 13.48 13.6161 

0.441 Accep
t Ho MPSO-

IP 
0 14.88 14.7699 

TF2 
SPSO-IP 0 56.1 125.821

4 
3.915 Reject 

Ho MPSO-
IP 0 194.02 228.201

4 

TF3 
SPSO-IP 8.8818×1

0-16 
8.8818×1

0-16 0 
1.000 Accep

t Ho MPSO-
IP 

8.8818×1
0-16 0.0245 0.1733 

TF4 
SPSO-IP 0.0245 0.1120 0.0491 

1.093 Accep
t Ho MPSO-

IP 0.0246 0.1228 0.0465 

TF5 
SPSO-IP 0 0 0 

1.000 Accep
t Ho MPSO-

IP 0 0.02 0.1414 

50 

TF1 
SPSO-IP 0 58.32 358.363

8 -
0.883 

Accep
t Ho MPSO-

IP 
0 13.52 16.3161 

TF2 
SPSO-IP 0 42.04 98.9172 

2.231 Reject 
Ho MPSO-

IP 
0 91.46 115.654 

TF3 
SPSO-IP 8.8818×1

0-16 
8.8818×1

0-16 0 
*NA *NA 

MPSO-
IP 

8.8818×1
0-16 

8.8818×1
0-16 0 

TF4 
SPSO-IP 0 0.0957 0.0422 

4.252 Reject 
Ho MPSO-

IP 0.0246 0.1358 0.0553 

TF5 
SPSO-IP 0 0 0 

*NA *NA MPSO-
IP 0 0 0 

*NA – Not applicable. 
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It was observed that 4 tests were unable to be executed, which involved the TF3 and 

TF5 for both maximum number of iterations and N=50. This was due to the equal results 

computed by both algorithms for the 50 consecutive runs. Thus, it made no difference at 

all between the paired mean and as a consequence, the t-test was unable to be applied. 

In other words, both algorithms were equal in performances.  

 

4.5 Optimization of Rain Gauge Network 

The rain gauge network has been optimized using geostatistical methods through two 

different optimization approaches, cross-validation and MPSO. For cross-validation 

method, LOO and AOI were applied to configure the optimum rain gauge network. 

LOO and AOI are opposite to each other in the way of configuring the best rain gauge 

network, where LOO reduces the number of rain gauge stations; on the others hand, 

AOI expands network size from the base network size to existing network size. 

Meanwhile, MPSO applies swarms intelligence to get the best network out of all 

combinations of the stations. 

This subchapter presents the results and findings of the optimization process using 

the methodology that has been designed as described in Chapter 3. 

4.5.1 Optimum Rain Gauge Network 

The main objective of this study is to obtain the optimal number of rain gauge 

stations in the network. Prior to optimizing the network, a candidate optimal network 

was configured by cross-validation technique, LOO and AOI.  The AOI was introduced 

to re-validate the LOO and to explore the configured candidate networks for the better 

optimal network because the LOO would be biased towards certain rainfall datasets. 

Both methods will come up with Erms values for every size of the optimal network. The 
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rain gauge network optimization results based on the Erms value of spatial interpolation 

error for LOO and AOI were plotted against the total number of rain gauge stations in 

the optimized network. The results are illustrated in Figure 4.22, (a) to (g). 

Generally, the results show that the Erms value is not necessarily lowest for maximum 

or a minimum number of stations in the network, in fact, the lower Erms occurs between 

the minimum and a maximum number of stations. However, there are results that had 

shown the almost equal value of Erms for different size of networks as plotted in the 

subplot a for the LOO technique, subplot d for AOI technique and subplot g for both 

techniques. Another characteristic exhibited by the results is the availability of multi-

point of minimum Erms value as shown in subplot c for both technique and f for AOI. It 

is important to emphasize that this study was conducted based on the single objective of 

the optimization process. Thus, the network with the lowest Erms was selected as the 

best-optimized network for both techniques and for each data set. It is worth it to 

incorporate the cost in the optimization as in Alfonso, Lobbrecht, and Price (2010) but 

the information from DID stated that the cost of operation and maintenance of each 

station are equal for the study area. In this case, the cost will incline with the increasing 

of the number of stations which mean that the selection of an optimal network will 

always go to the lower number of station irrespective the Erms value even though the 

appearances of lowest value. In addition, in an optimization case, the maximum or 

minimum value of the objective function is the target to achieve.  
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(a) 3 February 2009 

 

 

(b) 3 March 2009 

Figure 4.22, continued 
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(c) 18 September 2011 

 

 

(d) 13 December 2011 

Figure 4.22, continued 
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(e) 7 March 2012 

 

 

(f) 18 April 2012 and 

Figure 4.22, continued 
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(g) 21 August 2012. 

Figure 4.22: Plotting of Erms against the total number of stations in the network 
for the optimization result of CV-Geo (LOO and AOI) and MPSO. 

 

Further assessment is carried out on the best-optimized network based on the lowest 

Erms value and the Mean Absolute Error, Ema was calculated as a measurement of the 

average Erms of each number of subset stations. For each Erms, their corresponding of the 

subset stations selected and the overlap stations between the LOO, AOI and MPSO 

were extracted from Figure 4.22 and tabulated in Table 4.11. In addition, the 

information on the total number of stations in the optimum network and their density 

were calculated and tabulated in Table 4.12.  

The results given by all methods for each dataset were differed except for 21 August 

2012, which had an Erms value of 15.12. All methods presented similar results for the 

total number of stations in the network (36) with 17 selected subset stations and the 
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overlap of the selected subset stations (17) as well. Another quite similar result from all 

methods was the rainfall dataset for 7 March 2012. The numbers of stations in the 

network for LOO, AOI and MPSO were 40, 41 and 38, respectively, and the Erms values 

were very close (28.122, 28.165 and 28.39, respectively). The AOI method produced 22 

subset stations, which is one station more than LOO (21 stations). Meanwhile, the 

MPSO produced 19 subset stations and 18 subset stations were found overlapped.  

Another almost similar Erms value result was for the rainfall dataset on 13 December 

2011. The Erms values computed for LOO, AOI and MPSO were 19.026, 19.175 and 

19.106, respectively. For this dataset, LOO selected two stations more for the total 

number of stations in the network and the selected subset stations than AOI (32 and 13, 

respectively). On the other hand, the MPSO produced 16 subset stations to form an 

optimal network contained a total of 35 numbers of stations. Out of the subset station 

selected by all method, 11 stations were found overlapped. 
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Table 4.11: Summary of Erms and Ema of optimized rain gauge network by CV-
Geo (LOO and AOI) and MPSO with selected subset stations. 

Rainfall 
Data Error 

Methods 
Existing LOO AOI MPSO 

3 Feb 2009 

Erms Optimum 23.891 10.195 11.219 9.966 
Ema - 11.554 16.660 11.518 

Number of 
selected stations 25 16 7 14 

Overlap Station 5 

3 March 
2009 

Erms Optimum 24.281 14.075 15.704 13.923 
Ema - 16.469 17.853 15.610 

Number of 
selected stations 25 15 21 15 

Overlap Station 13 

18 Sept 
2011 

Erms Optimum 24.636 14.368 10.724 9.274 
Ema - 16.924 13.504 12.668 

Number of 
selected stations 25 15 6 6 

Overlap Station 1 

13 Dec 
2011 

Erms Optimum 33.175 19.026 19.175 19.106 
Ema - 21.338 21.049 20.941 

Number of 
selected stations 25 15 13 16 

Overlap Station 11 

7 March 
2012 

Erms Optimum 30.389 28.122 28.165 28.390 
Ema - 30.811 30.939 30.745 

Number of 
selected stations 25 21 22 19 

Overlap Station 18 

18 April 
2012 

Erms Optimum 20.408 9.239 6.146 3.249 
Ema - 11.958 10.600 8.310 

Number of 
selected stations 25 12 10 11 

Overlap Station 4 

21 Aug 
2012 

Erms Optimum 19.505 15.120 15.120 15.120 
Ema - 16.798 15.943 16.713 

Number of 
selected stations 25 17 17 17 

Overlap Station 17 
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Table 4.12: The summary result of the total number of stations in the optimum 
network and their density by CV-Geo (LOO and AOI) and MPSO. 

Flood Event 
Total Number of Station* Density, km2/station* 

LOO AOI MPSO LOO AOI MPSO 
3-Feb-09 35 26 33 16.7 22.5 17.7 
3-Mar-09 34 40 34 17.2 14.6 17.2 
18-Sep-11 34 25 25 17.2 23.4 23.4 
13-Dec-11 34 32 35 17.2 18.3 16.7 
7-Mar-12 40 41 38 14.6 14.2 15.4 
18-Apr-12 31 29 30 18.8 20.1 19.5 
21-Aug-12 36 36 36 16.2 16.2 16.2 

Mean 34 32 33 16.8 18.5 18.0 
Minimum 31 25 25 18.8 23.4 23.4 
Maximum 40 41 38 14.6 14.2 15.4 
Noted = *only stations located inside the catchment area considered. 

The optimized networks produced by both methods were different in terms of the 

network size for each dataset. The minimum total numbers of stations in the optimized 

network by LOO is 31 stations. However, the AOI and the MPSO have produced an 

equal minimum number of stations (25 stations each). Meanwhile, the maximum 

numbers of stations were 40, 41, and 38, respectively. These results made the mean total 

numbers of stations were produced by LOO, AIO and MPSO were 34, 32 and 33, 

respectively and it can be concluded that the optimal size of rain gauge network is a 

range of 25 to 41 stations. These figures were compared with the output of the statistical 

result in subchapter 4.2.1, where at ɛ values of 20%, the range of stations is 10 to 41 

stations. Between these two ranges, the statistical method has a wider range of value but 

both have a similar maximum range, 41 stations. A wider range of stations indicates the 

inconsistency of the network size. Moreover, the WMO’s guide proposed the station s 

range between 29 to 58 stations for an urban area. Thus, the CV-Geo and MPSO results 

likely fulfil the WMO’s guideline. 
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The density of the total number of stations in the optimized network over the study 

area was calculated and compared with the standard set by the World Meteorological 

Organization (WMO). For municipal areas, the WMO standard is the range of 10 km2 to 

20 km2 per station (World Meteorological Organization, 2008). In this study, LOO 

fulfilled the WMO standard for all datasets with a minimum density of 18.8 km2 per 

station and the maximum density of 14.6km2 per station. The AOI, three out of seven 

results produced a density of more than 20 km2 per station whereas, the average and 

minimum station densities are fulfilled by the WMO requirement. The MPSO come out 

with only one result that has density more than 20 km2 but the average and minimum 

station densities have still met the WMO standard. 

It is essential to note that the configuration of candidate networks was actually pre-

determined for CV-Geo (LOO and AOI), with 325 candidate optimal networks 

considered in the optimization process for each flood event. In actual application, 

station selection in the network configuration was based on a combinatorial case (Pardo-

Igu´zquiza, 1998). For instance, the number of possible combinations to select a subset 

of stations (r) from the number of stations (N) was determined with equation (8). 

 𝐶𝑟 =
𝑁!

𝑟!  𝑁 − 𝑟 !
𝑁  Equation 4.6 

The actual number of possible combinations based on the total of 25 stations ranged 

from 25 to 5,200,300. In the geostatistical analysis, different network configurations 

will produce different variography structures that are used for the spatial interpolation 

task, which will result in different error values. In this study, the combinatorial case has 

been incorporated in the MPSO to enhance the ability to explore more possible 

combinations. Based on the result in Table 4.11, MPSO comes out with 4 datasets that 

have the lowest Erms value and 6 datasets with lowest Ema value. These results proved 

that the MPSO has slightly better performance compared to the CV-Geo. 
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4.5.1.1 Variography structure of the optimized network.  

The network optimized in this study should have had a better variography structure 

than the existing network after optimization. To investigate this matter, the variogram 

properties of each best network for each dataset (Table 4.11 and Table 4.12) were 

extracted and compared with the existing network. The comparison of variogram 

properties for the existing and optimized networks with both methods is tabulated in 

Table 4.13. The sill value comparison in the table indicates little difference after the 

number of stations was optimized. The mean sill value of the existing network was 

1,252.94mm2, whereas with LOO, AOI and MPSO the values were 1,158.82 mm2 

1,293.82 mm2 and 1,245.30 mm2, respectively. However, there was an increase in the 

range value for both methods. AOI recorded the highest range of 15.59 km compared to 

LOO with 14.14 km, which is due to the low number of stations configured by both 

methods. Thus, a lower number of stations in the rain gauge network increased the 

range value. This also indicates that the rainfall data of the optimized network had a 

better correlation among stations. 

The nugget values after the network was optimized were tremendously reduced 

compared with the existing network. MPSO recorded the lowest mean nugget value of 

0.28 mm, whereas LOO produced a nugget value of 35.1 mm compared with the 

existing network value of 51.18 mm. Moreover, the existing network had a minimum 

nugget value of 1.106x10-8 mm, which reduced to 4.7x10-9 mm for LOO and 4.32x10-10 

mm for AOI following network optimization. These results showed that both methods 

improved the variogram structure for the nugget value, especially the MPSO method. 

Apparently, the optimized networks produced the lowest spatial interpolation error, 

which was the reason for nugget value improvement with both methods. 
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Although the optimized network by both techniques has a lowest spatial rainfall 

interpolation error, better variography structures and less variance of interpolation, it is 

important to prioritize the evaluated stations to distinguish which stations are classified 

as redundant in the network. The redundant stations could be removed in the first place 

to obtain an optimal network and perhaps rely on the financial constraint. Thus, we were 

conducted redundant station evaluation to prioritize them. 
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Table 4.13: The comparison of variogram parameters values between the existing network and optimized network by CV-Geo (LOO and 
AOI) and MPSO. 

 
Sill, ɣ Range, a (km) Nugget 

Existing LOO AOI MPSO Existing LOO AOI MPSO Existing LOO AOI MPSO 
3-Feb-09 693.097 494.519 828.514 558.166 15.341 12.815 19.690 11.411 47.140 1.400E-08 3.840E-09 1.962 
3-Mar-09 930.505 1112.163 1042.418 1079.950 12.118 16.863 16.058 15.780 23.510 2.550E-08 8.870E-08 5.846E-08 
18-Sep-11 450.123 491.922 1094.234 719.263 16.109 19.783 19.469 13.567 246.100 246.000 0.799 1.286E-08 
13-Dec-11 983.093 1048.175 954.911 986.235 3.754 6.082 5.235 5.652 2.376E-08 4.700E-09 1.800E-07 2.872E-07 
7-Mar-12 3703.179 3544.457 3737.750 3697.311 13.532 13.348 14.863 13.562 41.480 1.630E-07 19.600 1.390E-06 
18-Apr-12 992.719 591.834 569.865 866.255 18.182 16.153 19.864 19.701 4.359E-08 1.030E-08 4.320E-10 6.483E-08 
21-Aug-12 1017.863 828.638 828.638 809.925 13.989 13.950 13.950 13.623 1.106E-08 8.370E-08 8.370E-08 1.143E-07 

Mean 1252.940 1158.815 1293.761 1245.301 13.289 14.142 15.590 13.328 51.176 35.143 2.914 0.280 
Mini 450.123 491.922 569.865 558.166 3.754 6.082 5.235 5.652 1.106E-08 4.700E-09 4.320E-10 1.286E-08 
Max 3703.179 3544.457 3737.750 3697.311 18.182 19.783 19.864 19.701 246.100 246.000 19.600 1.962 
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4.5.1.2 Redundant rain gauge station 

In rain gauge network optimization, the result may depend on the type of rainfall 

event used. The optimized network will consist of different rain gauge stations from an 

event to another, but there will be certain stations that appear frequently in the 

optimized network. In this study, the optimization task carried out using the datasets 

showed there were stations that overlapped frequently for every event (Table 4.11), 

which demonstrated the great importance to the network. In contrast, a few stations 

were incorporated in the optimized network less frequently and these can be considered 

redundant stations with less influence on the spatial rainfall distribution.  

Therefore, to prioritize the hypothetical redundant stations selected for the optimized 

network using the two methods with seven flood events, the frequency rate (Fr) was 

calculated by dividing the station frequency by the total number of flood events (seven). 

The Fr value signifies the station’s importance to remain in the rain gauge network and 

the redundant station should have a lower Fr value. The Fr value was in the [0, 1] range 

and it was sorted in descending order, as seen in Table 4.14. The Fr value also plotted 

for a better presentation of which station is often selected in the optimized network as 

shown in Figure 4.23. To evaluate the redundant station, first, the threshold Fr value of 

0.5 was set to benchmark the redundant station. Those stations with Fr values below 0.5 

were deemed less important. Then the stations in this category were checked for overlap 

between the two methods.  

Based on the results, 6 stations were below the LOO threshold value. On the other 

hand, the AOI and MPSO resulted in 9 and 10 stations, respectively. Those stations 

were compared with the stations overlapping in threshold Fr value and there were only 

four stations (T06, N08, N15, and N20). These four stations can be inferred to be 

ineffective and were classified as redundant stations. An analysis of individual stations 
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indicated that stations T06 and N20 had the lowest average rainfall depths (16.7 mm 

and 26.8 mm respectively) for seven flood events. Smaller rainfall value is normally 

less effect on the spatial rainfall interpolation and thus these stations were likely 

ineffective.  In addition, these stations were located quite close to another station, which 

was not listed as redundant. For instance, station N20 is adjacent to station T08 at a 

distance of only 5.57 m. Meanwhile, station T06 is separate at a distance of 599.17 m 

from station S15. Station N08 and N15 are located on the west side of the catchment 

area, which has fewer stations. This indicates the needs for additional stations to 

improve the interpolation error of this area. For this reason, it was good to relocate T06 

and N20 to the west to enhance the sparse stations in this area. This is an improvement 

opportunity to be explored in future studies since it was not included in the scope of this 

study. The Fr values are plotted in Figure 4.23 for a better representation of which 

stations are often selected in an optimized network.  

The four redundant stations were also evaluated using the variability of receiving 

rainfall along the available records and were measured as the probability of zero rainfall 

that is calculated by 𝑃 𝑧 = 0 = 1 − 𝑝, where 𝑝 is the probability of wet days in which 

the station recorded non-zero rainfall values. This evaluation is adopted from Yoo et al. 

(2008) where it is used in their study to compare the mixed and continuous distribution 

function’s application on entropy theory for rain gauge network evaluation. However, 

the probability of zero rainfall is adopted to validate the selection of redundant stations 

based on the higher probability of zero rainfall value. The higher probability value of 

zero rainfall shown that the location is less efficient to gauge rainfall thus it’s justified 

the selection of the station as redundant. 

As mentioned earlier, the N20 is very close to T08 and meanwhile, the T06 is near to 

the S15. Thus, the P values of N20 and T06 were compared to those of T08 and S15, 
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respectively. It was observed that N20 and T06 had higher P values (0.648 and 0.671, 

respectively) than T08 and S15 (0.55 and 0.507, respectively). This supports the reason 

why N20 and T06 can be classified as redundant stations but not T08. However, both 

N08 and N15 had moderate P values (0.436 and 0.451, respectively).  

Table 4.14: Frequency rate, Fr of subset stations chosen in the optimized rain 
gauge network. 

LOOCV AOI PSO 
ID Fr ID Fr ID Fr 
N14 1.00 N19 1.00 T03 0.86 
N19 0.86 N10 0.86 T05 0.86 
T05 0.86 T05 0.71 N14 0.86 
T07 0.86 N09 0.71 N19 0.86 
N04 0.86 T01 0.71 T07 0.71 
N18 0.86 T08 0.71 N04 0.71 
T03 0.71 N18 0.57 N06 0.71 
N06 0.71 T03 0.57 N10 0.71 
N09 0.71 N06 0.57 N23 0.71 
T01 0.71 N16 0.57 N05 0.57 
N16 0.71 N21 0.57 N07 0.57 
N21 0.71 T02 0.57 N09 0.57 
T02 0.71 N05 0.57 N16 0.57 
N10 0.57 T04 0.57 N18 0.57 
N05 0.57 N07 0.57 N21 0.57 
N23 0.57 N03 0.57 T01 0.43 
T04 0.57 N14 0.43 T02 0.43 
T08 0.57 T07 0.43 T04 0.43 
N17 0.57 N04 0.43 T06 0.43 
N07 0.43 N23 0.43 T08 0.43 
N03 0.43 N17 0.43 N03 0.43 
T06 0.43 N08 0.43 N17 0.43 
N08 0.43 T06 0.29 N08 0.29 
N20 0.29 N15 0.29 N15 0.14 
N15 0.14 N20 0.14 N20 0.14 
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 (a)  (b)   (c)  

Figure 4.23: Frequency rate (Fr) map of stations remaining in the optimal network: a) optimized by LOO, b) optimized by AOI and c) 
optimized by MPSO. 
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4.6 TM-UKRB development   

The optimal network that is without the redundant stations was evaluated to simulate 

the flood events used in the optimization process. The network should be able to 

simulate the flood events with a satisfactory level of model efficiency compared to the 

simulation used the existing network. For this purpose, the methodology that was 

explained in Chapter 3 is applied and the results are presented and discussed. The result 

is presented in two parts, first is the calibration result and second is the performance of 

the optimized network to simulate the flood events. 

4.6.1 Calibration and Validation Result of TM-UKRB 

The TM-UKRB model parameters are calibrated using SPSO for the best NSE value 

and the model performance was evaluated using three performance indicators, NSE, r 

and R2. The calibration result of TM-UKRB model parameters and model performance 

indicators are tabulated in Table 4.15.  

Table 4.15: The calibration result of TM-UKRB 

Calibration date on 18 September 2011 Parameter Value 

Performance Indicator 
NSE 0.9937 

r 0.9968 
R2 0.9937 

Model Parameter 

Ts1 7.6854 
Ts2 2.3234 
Ts3 0.2534 
Ev 0.5884 
M 1.1851 
X1 15.1911 
X2 9.0543 
K1 0.0381 
K2 0.1087 
K3 0.2106 
K4 0.0969 
K5 0.0137 
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Based on this result, the hydrologic model of TM-UKRB has demonstrated high 

model efficiency. The calibration process produced NSE values greater than 0.9. This 

result is supported by the r and R2 values which are also more than 0.9. As all indicators 

value showed high model efficiency and a strong correlation between the simulated and 

observed flood, the TM-UKRB is expected to be a substantial model.  

The TM-UKRB model’s parameter values have undergone validation process and the 

results of validations are tabulated in Table 4.16. Based on this table, the high NSE 

values for validation results were produced. The minimum NSE value for validation 

recorded for data dated on 3 March 2009. Meanwhile, the maximum value is recorded 

by data on 21 August 2012, 0.9406. Based on this result, the model with the calibrated 

value parameters can be considered as a good model to be used for hydrologic 

simulation. The calibration hydrograph is illustrated in Figure 4.24. For further analysis, 

the calibrated parameters values of TM-UKRB were evaluated for sensitivity towards 

the model efficiency using Sensitivity Index (SI). 

Table 4.16: The NSE value for validation process 

Calibration Validation 
18 September 2011 3 March 2009 18 April 2012 21 August 2012 

0.99370 0.85970 0.93230 0.94060 
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Figure 4.24: Hydrograph of calibration result using rainfall data on 18 
September 2011. 

 

A sensitivity analysis was conducted on the parameters using OAT approach and the 

result is presented in Figure 4.25. The figure shows that at the NSE more than 0.9, 5 

parameters, K4, X2, EV, X1 and K2 effect the performance of the model significantly. 

Graphically, three parameters, namely K4, X2, and EV are very sensitive for both 

increase and decrease. However, X1 and K2 are only sensitive as the value decrease. 

The SI value for all parameters was calculated using Equation 3.34 and tabulated in 

Table 4.17. The SI value less than 0.05 is considered as very less sensitive to negligible 

and on the other hand, SI more than 0.05 is considered as a medium to high sensitive 

(Lenhart et al., 2002). Based on the result, five parameters mentioned above have a 

higher SI value (more than 0.05). The K4 has the highest SI value, 0.426406. 

Meanwhile, X2, Ev and X1 have more or less similar value (0.26824, 0.240243 and 
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0.235316, irrespectively). On the other hand, K2 has a SI value of 0.114811. The rest of 

the parameters have SI value less than 0.01. Theoretically, the K4 is representing the 

infiltration rate of the topsoil layer and K2 is representing the runoff coefficient of the 

intermediate flow and the X1 and X2 are representing maximum storage that can be 

retained by the topsoil and intermediate soil layer. These parameters are very sensitive 

to calibrate in hydrological tank model. However, from Figure 4.25, the sensitive 

parameters are able to contribute a high NSE value (0.9) of the model in a range of 

±25% in changes. Within this range, the parameters can be considered as a robust set of 

parameter for the TM-UKRB model. 

 

Figure 4.25: Sensitivity analysis of Upper Sg Klang Tank Model parameter. 
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Table 4.17: Sensitivity Index, SI of TM-UKRB Model Parameter 

Parameters SI 
Ts1 0.028553 
Ts2 0.006521 
Ts3 0.000484 
Ev 0.240243 
M 0.046975 
X1 0.235316 
X2 0.26824 
K1 0.007564 
K2 0.114811 
K3 0.005041 
K4 0.426406 
K5 0.027215 

 

4.6.2 Optimal Network Performance in Simulating Flood Events 

The optimal network without the four redundant stations was preliminarily evaluated 

to simulate the flood events used in the optimization process. The network should be 

able to simulate the flood events with a satisfactory level of model efficiency than the 

existing network. For this purpose, a hydrological Tank Model, TM-UKRB was used to 

simulate floods at stations located downstream of the catchment area near station N21.  

The hydrograph of the simulation results are plotted in Figure 4.26 and the 

performance indicators values of the simulation results are tabulated in Table 4.18. 

Based on the result, all datasets have NSE, r and R2 values more than 0.75, which are 

efficient enough to simulate a flood hydrograph, except for the datasets on 18 April 

2012, where the results of NSEopt recorded less than 0.5. For this dataset, the four 

redundant stations deteriorated the model efficiency. This dataset also recorded the 

highest Absolute Error (AE) values of 47.4%, in contrast, the rest of the results have AE 
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value less than 10%. These results are possibly due to the characteristics of the rainfall 

events (e.g. convective or stratified), which are not included in the scope of this study.  

Even the performance indicators showed that the optimal network has a good 

performance to simulate the flood hydrograph; however, the comparison of the observed 

and simulated hydrographs showed that two datasets have similar hydrograph shapes. 

The rest of the datasets dated in the year 2012 did not simulate the flood very well at the 

high flow level, especially dataset on 18 April 2012. However, the dataset on 21 August 

2012 has good rising and falling hydrograph part but did not reach a similar observed 

high flow. Based on the literature, a river transformation project called ‘river of life’ 

was implemented in early 2012 (A. R. Othman & Majid, 2016). One of the scopes of the 

project is to redevelop the river channel for beautification purpose. This is possibly the 

main reason why the model can not simulate the flood hydrograph for the datasets. 

Nonetheless, the model can be improved by re-calibrating it with the optimal rainfall 

network, as suggested by Bardossy and Das (2008).  

Table 4.18: Validation of the optimal rain gauge network 

Date NSEref NSEopt r R2 AE (%) 
3 March 2009 0.8597 0.794 0.9015 0.8127 7.64 

18 September 2011 0.9937 0.9862 0.9960 0.9920 0.75 
18 April 2012 0.9323 0.4904 0.9229 0.8517 47.40 

21 August 2012 0.9406 0.8555 0.9753 0.9511 9.05 
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(a) 3 March 2009 

 

(b) 18 September 2011 

Figure 4.26, continued 

0

5

10

15

0

100

200

300

400

500

600

700

800

3/
2/

09
 9

:4
5 

PM
3/

2/
09

 1
0:

45
 P

M
3/

2/
09

 1
1:

45
 P

M
3/

3/
09

 1
2:

45
 A

M
3/

3/
09

 1
:4

5 
A

M
3/

3/
09

 2
:4

5 
A

M
3/

3/
09

 3
:4

5 
A

M
3/

3/
09

 4
:4

5 
A

M
3/

3/
09

 5
:4

5 
A

M
3/

3/
09

 6
:4

5 
A

M
3/

3/
09

 7
:4

5 
A

M
3/

3/
09

 8
:4

5 
A

M
3/

3/
09

 9
:4

5 
A

M
3/

3/
09

 1
0:

45
 A

M
3/

3/
09

 1
1:

45
 A

M
3/

3/
09

 1
2:

45
 P

M
3/

3/
09

 1
:4

5 
PM

3/
3/

09
 2

:4
5 

PM
3/

3/
09

 3
:4

5 
PM

3/
3/

09
 4

:4
5 

PM
3/

3/
09

 5
:4

5 
PM

3/
3/

09
 6

:4
5 

PM
3/

3/
09

 7
:4

5 
PM

3/
3/

09
 8

:4
5 

PM
3/

3/
09

 9
:4

5 
PM

3/
3/

09
 1

0:
45

 P
M

3/
3/

09
 1

1:
45

 P
M

3/
4/

09
 1

2:
45

 A
M

3/
4/

09
 1

:4
5 

A
M

3/
4/

09
 2

:4
5 

A
M

3/
4/

09
 3

:4
5 

A
M

3/
4/

09
 4

:4
5 

A
M

3/
4/

09
 5

:4
5 

A
M

3/
4/

09
 6

:4
5 

A
M

3/
4/

09
 7

:4
5 

A
M

B
as

in
 r

ai
nf

al
l, 

m
m

D
is

ch
ar

ge
, m

3 /s

Time

BRF Observed Simulation

0

5

10

15

0

100

200

300

400

500

600

9/
17

/1
1 

9:
47

 P
M

9/
17

/1
1 

10
:4

7 
PM

9/
17

/1
1 

11
:4

7 
PM

9/
18

/1
1 

12
:4

7 
A

M
9/

18
/1

1 
1:

47
 A

M
9/

18
/1

1 
2:

47
 A

M
9/

18
/1

1 
3:

47
 A

M
9/

18
/1

1 
4:

47
 A

M
9/

18
/1

1 
5:

47
 A

M
9/

18
/1

1 
6:

47
 A

M
9/

18
/1

1 
7:

47
 A

M
9/

18
/1

1 
8:

47
 A

M
9/

18
/1

1 
9:

47
 A

M
9/

18
/1

1 
10

:4
7 

A
M

9/
18

/1
1 

11
:4

7 
A

M
9/

18
/1

1 
12

:4
7 

PM
9/

18
/1

1 
1:

47
 P

M
9/

18
/1

1 
2:

47
 P

M
9/

18
/1

1 
3:

47
 P

M
9/

18
/1

1 
4:

47
 P

M
9/

18
/1

1 
5:

47
 P

M
9/

18
/1

1 
6:

47
 P

M
9/

18
/1

1 
7:

47
 P

M
9/

18
/1

1 
8:

47
 P

M
9/

18
/1

1 
9:

47
 P

M
9/

18
/1

1 
10

:4
7 

PM
9/

18
/1

1 
11

:4
7 

PM
9/

19
/1

1 
12

:4
7 

A
M

9/
19

/1
1 

1:
47

 A
M

9/
19

/1
1 

2:
47

 A
M

9/
19

/1
1 

3:
47

 A
M

9/
19

/1
1 

4:
47

 A
M

9/
19

/1
1 

5:
47

 A
M

9/
19

/1
1 

6:
47

 A
M

9/
19

/1
1 

7:
47

 A
M

B
as

in
 r

ai
nf

al
l, 

m
m

D
is

ch
ar

ge
, m

3 /s

Time

BRF Observed Simulation

Univ
ers

ity
 of

 M
ala

ya



137 

 

(c) 18 April 2012 

 

(d) 21 August 2012 

Figure 4.26: Comparison of the observed and simulated flood hydrograph of the 
optimal rain gauge network. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

This chapter briefly summarizes the findings and highlighting the contributions of 

this thesis.  Recommendations are also presented for the new direction of future 

research. 

The aim of this thesis is to optimize the number of rain gauges for effective rainfall 

data acquisition in a specific catchment. For this purpose, the geostatistical approach is 

adopted in the optimization process where two different tools of optimization, the 

Cross-Validation technique, and MPSO method are applied. To achieve this aim, four 

objectives have been determined. The selection of the semivariogram model for spatial 

interpolation process has been executed using the AHP method to achieve the first 

objective. The second objective, the PSO algorithm is modified (distinguished as 

MPSO) for a rain gauge network optimization problem. Then, the third objective, the 

existing rain gauge network is optimized for an optimal number of stations to gain an 

optimized network. The last objective is to validate the optimized rain gauge network by 

simulating flood events using a hydrological Tank Model. The conclusions of each 

objective are discussed in the next subchapter. 

5.2 The selection of the appropriate semivariogram model 

A Multi-criteria Decision-making method, namely the AHP is adopted to evaluate 

the performance of a variogram model to produce the best spatial rainfall map. 

Geostatistical analysis was applied to study the spatial structure of the cumulative daily 

rainfall data in the upper Klang River basin. Four criteria were determined as 

performance indicators of a spatial rainfall map: root-mean-square error, average 

standard error, means standardized error and root-mean-square standardized error, to 
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assess the five variogram model candidates, i.e. Spherical, Tetraspherical, 

Pentaspherical, Exponential, and Gaussian.  

The AHP results indicate that the Spherical and Gaussian models indicate effective 

performance to produce a spatial rainfall map that fulfills the performance indicators. 

Two out of three sets of priority weights used in this study had both these models 

ranked in top place with scores of at least 3.56. Moreover, the Spherical model was 

found to be slightly better than the Gaussian model because all priority weight sets had 

similar results that ranked the Spherical model in the first place. The smoothness of the 

contour map represents the spatial rainfall distribution generated by the Spherical 

model, justifying its performance. 

5.3 The performance of MPSO 

The PSO algorithm was modified and distinguished as MPSO to solve the integer-

based optimization problem such as a rain gauge network optimization problem. The 

modifications of the original PSO were made. However, the simplicity of the algorithm 

was preserved. The algorithms have been tested for two scenarios, a single run test for 

the controlled and uncontrolled Random Number (𝑟1 and 𝑟2) value and multi-run test for 

the uncontrolled Random Number (𝑟1 and 𝑟2) value. Based on the tests conducted, the 

conclusions on MPSO performance could be outlined as follows:  

1. For both test scenarios, the MPSO had a better convergence rate (cr) compared to 

the SPSO, regardless of the maximum number of iterations and particles swarm 

size (N). The MPSO has recorded the average cr value as lower as 0.852 

meanwhile the SPSO only recorded the average cr value as higher as 0.523. The 

MPSO was also found iteration independent since the algorithm used fully 

randomized parameters value. Furthermore, the MPSO was able to converge to 
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the lowest best value for the test functions similar to SPSO. However, both 

algorithms have the potential to trap the global value.  

2. The MPSO has been observed to have an equal ability as the SPSO to give 

reliable optimization results. A statistical t-test of the paired two samples 

between the MPSO and the SPSO results failed to reject the null hypothesis (the 

mean optimized value by MPSO was equal to the mean optimized value by 

SPSO). 

5.4 The rain gauge network optimization  

In this study, two optimization processes have been developed by coupling cross-

validation with geostatistical analysis and MPSO to prioritize the rain gauge stations in 

a network through optimization. The method was applied to optimize the number of 

stations in a rain gauge network in a tropical urban area. The total daily rainfall data 

from 55 rain gauge stations were used to perform the optimization process for 7 flood 

events. The aim of optimization was to reduce the number of rain gauge stations in the 

existing network for an optimal network. Four important points are summarized as 

follows: 

1. By using the two new methods, CV-Geo and MPSO, the number of stations in 

the existing rain gauge network could be optimized based on the lowest Erms 

value of the spatial interpolation error. However, at the lowest Erms value, both 

approaches resulted in a different total number of stations in the optimized rain 

gauge network.  

2.  The optimized rain gauge network exhibited a better semivariogram structure, 

especially in the nugget value that has been drastically improved by both 

methods. However, MPSO had shown a slightly better nugget value since it has 

recorded the lowest value of the nugget.  
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3. The MPSO is the modified version of SPSO which has been purposely 

developed to solve the rain gauge network optimization problem. The MPSO 

performance is acknowledged as the application to optimize the number of rain 

gauge network. This is one of the novelties in this study, which is to contribute 

to the hydrological and swarm intelligent applications to solve a practical 

problem of rain gauge network optimization. 

4. In the current study area, the rain gauge stations were prioritized based on their 

importance in the network (represented by Fr value). Four stations, namely T06, 

N08, N15, and N20 have been considered ineffective and could, therefore, be 

relocated within the study area or eliminated from the existing network.  

5. A preliminary evaluation of the optimized network without the four mentioned 

stations showed satisfactory results in flood simulation using a lump hydrologic 

model. Three out of four flood simulations have yielded the NSE, r, and R2 

values more than 0.75, which have indicated that the optimized network is 

efficient enough to produce rainfall data to simulate a flood hydrograph. 

5.5 Recommendations for future research 

The recommendation for future research is primarily to improve the optimization 

method developed in this study for a better result, and the recommendations are as 

follows: 

1. Despite the fact that the MPSO method has been found to have good optimization 

performance, the application of the method in the optimization of the rain gauge 

network has indicated the possibility of the method to trap at global value. It is 

essential to explore the other improvement needed by the method. Moreover, it is 

important to highlight that the value of the parameter of the algorithm was an 

ensemble from the previous study. Thus, it is suggested in the future to adopt an 
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advanced method to do the calibration process to enhance the algorithm’s 

parameters value. To this end, the MPSO-IP has been applied in a real 

optimization problem, and it is also an opportunity to apply it to solve other 

similar problems in future studies.  

2. This study adopted a single-objective of the optimization problem where the 

spatial interpolation error as the objective function was minimized to gain the 

optimal size of the rain gauge network. The reason why a single objective case 

was adopted was because both novel optimization tools developed in this study 

are new in hydrological network design, to the best of knowledge. However, an 

essential fact regarding the application of both methods in other fields is that their 

ability to solve a multi-objective optimization problem. Thus, it is a great 

contribution to apply the hydrological network design using a multi-objective 

optimization approach in future studies. For instance, incorporating the NSE of 

the hydrologic simulation as another objective function to optimize the rain 

gauge network. 

3. A new age hydrological research will allow the application of radar rain 

measurement as input data. Currently, the advancement of radar technology and 

the increased computer capacity have encouraged its application in hydrological 

research. One of the advantages of radar rain data is that the availability of the 

spatial rain information that can be utilized to enhance the spatial interpolation 

process by the geostatistical method. This offers a great perspective to utilize the 

radar rain and ground rain measurements as input data for the optimal design of a 

rain gauge network. In this case, the optimum rain gauge network would be more 

robust for both conditions. 
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