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Abstract 

Human arm pose estimation or tracking is becoming an increasing sought after field of 

research due to the multitudes of uses it offers. With the start of Industry 4.0, Internet of 

Things (IoT) concept has made wireless data transfer into reality and hence, remote 

monitoring and control can be performed relatively inexpensive and portable. The 

applications can range from Virtual Reality gaming to training industrial robots as well 

as controlling surgical robots and stroke rehabilitation. For example: In the past, patients 

had to go periodically for rehabilitation to clinics and hospitals, can now do those same 

exercises at home using sensors that can send progress data over the internet to their 

doctors who can analyse the data and provide feedback. However, this technology is still 

not well-established and thus requires more research. This motivates the current study to 

work with this research topic. The objective of this project is to design and build an IoT 

based sensor system that can send its data wirelessly to a computer, which can then 

analyse the data and estimate the position of the human arm at remote location. The sensor 

used in this project is the BNO055 Inertial Measurement Unit, which is a low cost sensor 

incorporating a gyroscope, accelerometer and magnetometer to provide orientation and 

acceleration data. The medium for wireless data transfer is a Wi-Fi enabled Node MCU 

micro-controller. The sensor node will transfer data to a computer via Wi-Fi using a 

custom designed network protocol. A multi-threaded program running on the computer 

will perform Forward Kinematics on the wirelessly transferred data using an arm model 

created using the Denavit-Hartenberg convention. The Forward Kinematics approach has 

great advantage such as being easy to program and its faster computational speed, as 

compared to the conventional arm pose estimation algorithms. By using the developed 

arm pose tracking program, several important parameters such as positions of the elbow 

and wrist with reference to the shoulder joint, moving distance, angular movement speed 

and movement pattern of arm are successfully measured and estimated. The results of this 
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research show that for basic movements such as shoulder flexion, contraction or elbow 

flexion and contraction, the accuracy of tracking distance is more than 80 percent. For 

complicated movements like tracing shapes the accuracy ranges from 60 to 70 percent. 

For the purpose of tracking arm movements of stroke patients, the accuracy is adequate 

since the arm movement exercises for stroke rehabilitation consist of basic arm 

movements for which the proposed design has high accuracy. The proposed system also 

has high enough sampling and transmission frequency to accurately track fast arm 

movements which makes it ideal for the purpose of arm position estimation.  
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ABSTRAK 

Anggaran postur lengan manusia sedang menjadi satu bidang penyelidikan yang semakin 

popular kerana aplikasinya yang pelbagai. Dengan permulaan konsep Industri 4.0 dan 

Internet Benda, pemindahan data tanpa wayar telah menjadi realiti, maka pemantauan dan 

kawalan terpencil boleh dijalankan dengan mudah dan secara mudah alih. Aplikasinya 

pelbagai, seperti permainan Realiti Maya, latihan robot lengan industri, malahan juga 

untuk mengawal robot penbedahan dan robot pemulihan strok. Sebagai satu contoh: Pada 

seketika dahulu pesakit yang mengalami strok perlu menghadiri sesi pemulihan di 

hospital dan klinik dari masa ke semasa. Namun, sekarang pesakit-pesakit tersebut dapat 

menjalankan latihan yang sama di rumah sendiri dengan menggunakan sensor yang boleh 

menghantar data kemajuan seseorang pesakit kepada para doktor memalui internet. Para 

doktor tersebut kemudiannya boleh membuat analisis pada data yang diterima dan 

sejurusnya memberikan nasihat yang berpatutan. Namun demikian, bidang teknologi ini 

masih pada tahap pucuknya, dan memerlukan penyelidikan yang selanjutnya. Hal ini 

memberikan motivasi untuk menjalankan usaha penyelidikan yang digaris besarkan di 

dalam laporan projek ini. Projek ini mempunyai objektif untuk mereka bentuk dan 

membina satu system sensor Internet Benda yang boleh menghantar datanya secara tanpa 

wayar ke sebuah computer, yang kemudian boleh menganalisa data tersebut dan 

memberikan satu anggaran posisi lengan tangan manusia. Sensor yang digunakan dalam 

projek ini ialah Unit Pengukur Inertia BNO055 yang merupakan satu sensor berkos 

rendah yang mengandungi giroskop, akselerometer, dan magnetometer. BNO055 mampu 

digunakan untuk memberikan data orientasi dan pecutan. Medium yang digunakan untuk 

menghantar data secara tanpa wayar ialah noda MCU mikro-kawalan yang dilengkapkan 

dengan Wi-Fi. Noda sensor ini boleh menghantar data ke computer melalui Wi-Fi dan 

protocol rangkaian yang direka bentuk secara khas. Sebuah program yang dijalankan 

dalam computer pula akan melalukan pengiraan terjemahan ke hadapan pada data yang 
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diterima, dengan menggunakan konvensi Denavit-Hartenberg. Kaedah ini mempunyai 

kelebihan iaitu senang diprogramkan, dan lebih pantas jika dibandingkan dengan kaedah 

algoritma anggaran posisi lengan tangan manusia yang biasa. Dengan menggunakan 

program penjejakan posisi lengan tangan ini, beberapa parameter yang penting boleh 

diukurkan dan dianggarkan. Contohnya, posisi siku dan pergelangan tangan dari bahu, 

jauh pergerakan, kelajuan sudut pergerakan, dan corak pergerakan tangan. Hasil 

penyelidikan ini menunjukkan bahawa untuk pergerakan asas seperti pergerakan bahu 

atau siku, ketepatan jarak pergerakan yang diukur adalah lebih daripada 80 peratus. Bagi 

pergerakan yang lebih rumit pula peritus ketepatannya adalah dalam kadar 60 sehinggan 

70 peratus. Bagi tujuan mengukur pergerakan tangan pesakit strok, tahap ketepatan ini 

adalh mencukupi, kerana latihan pergerakan tangan untuk pemulihan strok hanya terdiri 

daripada pergerakan tangan yang asas di mana alat ini mempuyai ketepatan yang tinggi. 

Sistem yang dicadangkan juga mempunyai kadar pensampelan dan kadar penghantaran 

yang cukup tinggi untuk mengukur pergerakan tangan yang cepat. Dengan itu, hal ini 

menjadikan system yang direka bentuk ini sesuai untuk digunakan bagi tujuan 

penganggaran posisi tangan. 
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Chapter1: Introduction 

1.1 Introduction 

 

Human arm pose estimation refers to the ability of a software with the help of sensors 

to estimate or track the movements of a human arm. Human arm position or pose tracking 

has recently garnered much research effort. Teaching a computer to recognise and 

tracking human arm positions have widespread applications. For example, Gaming 

industry has always shown great interest in this field due to the shift in focus of customers 

from traditional controller games to Virtual Reality games. Virtual Reality games aim to 

provide an extremely immersive gaming experience. This experience relies on the 

customer to be able to control their game characters using their own limbs like arms. This 

requires the VR software to be able to track human limb movements. In industry arm 

estimation and tracking together with artificial intelligence is being used to teach robotic 

manipulators complicated movement sets that previously were very difficult to program. 

In the field of medicine, human arm tracking is being sought after as a viable tool to 

control surgical robots for when the surgeon is not physically present.  

1.2 Problem Statement 

 

In the past the only sensors being used in home rehabilitation of stroke patients were 

accelerometers. These sensors were used to measure activity count of daily activities. For 

a long time, this was the main rubric for improvement of stroke arm during home 

rehabilitation. In recent years, inertial measurement units (IMU) have been used to 

develop systems to more accurately measure range of motion and arm positions. But these 

systems have been developed more for the purpose of gaming and industry. Those that 

are developed for medical studies are not portable or wireless. In some cases, the human 

arm tracking system is portable but require the use of storage devices to log data which 

then have to be periodically uploaded so that analysis can be done. This deters active 
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monitoring and require technical knowledge on the part of the patient using such system 

at home. There is a need to develop a wireless arm tracking system for home rehabilitation 

monitoring for stroke patients that is portable, easy to use and more importantly low cost. 

1.3 Objectives of Research 

 

The objectives of this research are as follows: 

1. To develop a Wireless Internet of Things sensor system using the BNO055 Inertial 

Measurement Unit (IMU) 

2. To evaluate the performance of the human arm pose tracking program with forward 

kinematics algorithm. 
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Chapter 2: Literature review 

 

2.1 Use of sensors in medical rehabilitation 

 

Stroke is the leading cause of morbidity and Mortality in the world. There are almost 

50000 deaths per year in industrialized countries. Around half the survivors are left with 

disabilities. These impairments can range from loss of strength, change in muscle tone 

and loss or reduced movement. 30 % of the patients are left with loss of motor and sensory 

function in their upper limbs (Benjamin et al., 2017; Staff, 2019). In United States alone, 

600000 individuals have first-ever stroke. Fifty percent of survivors are older than 60 

years and 26 percent can’t perform daily life activities. This results in decreased activation 

and movement that can greatly affect everyday life (Oujamaa et al., 2009).  

Rehabilitation is the main recourse for stroke patients. Rehabilitation involves exercise 

routines that help the patient get back some of the movement and skills that they may 

have lost as a result of stroke. One of the therapies involved in rehabilitation is the range 

of motion therapy. This session involves certain exercises and treatments that ease the 

tension in the muscles, thereby increasing range of motion (Oujamaa et al., 2009). 

A study was conducted on the monitoring of use of upper extremities such as arm after 

transition from post stroke rehabilitation to discharge (Rand & Eng, 2015). This study 

monitored the functional abilities and use of affected arm through a period of 12 months 

after discharge. The premise of this study was that in previous studies based on the results 

of four weeks of post stroke therapy a recovery time of 8 months was predicted based on 

certain measurable parameters such as range of motion and muscle strength. But there 

was a disparity between the amount of daily use predicted and the actual amount of daily 

use. This disparity was due to the lack of studies monitoring daily use after post stroke 

rehabilitation patients are discharged. Traditional methods of monitoring arm use were 
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limited number of observations, self-reporting by patients using Motor activity logs and 

the REACH (Rating of everyday arm use in the community and home) scale. This study 

proposed use of accelerometers to accurately measure affected arm daily use and 

therefore correlate the predicted recovery time with the actual recovery time. In this study, 

patients who suffered stroke, were admitted to a rehabilitation program and were of age 

19 and above volunteered to be a part of this study. These subjects wore an accelerometer 

on each wrist as well as an accelerometer on the hips. The hip accelerometer is to measure 

the hip movement which can be used to identify arm movement due to walking. This can 

thus be eliminated to give arm movement from arm related activities. To measure activity 

the accelerometer integrates acceleration over windows of 15 seconds. Daily records were 

visually examined to insure no irregular or unexplainable activity was recorded. Daily 

activity of each arm was measured by taking the total activity of each arm in three days 

and dividing that by three. Daily use was also measured using self-questionnaires such as 

Motor Activity Logs (MAL). This study showed that activity of the stroke affected arm 

was only 35 percent of the daily activity of the non-affected arm (Rand & Eng, 2015). 

 

Gebruers et al. (2010) also discusses the use of accelerometers to measure the daily 

activity count of affected vs non affected arms in a stroke patient (Gebruers et al., 2010). 

Their study also brings attention to the traditional method of measuring daily activity 

which is via questionnaires such as MAL. The main disadvantage of such methods is that 

they depend on the patient’s honesty and ability to remember the activities done in a day, 

which represents a subjective evaluation. Accelerometers with threshold filters to filter 

out erratic movements have been used in previous studies to measure or log daily activity 

of arms of patients at home. These accelerometers have built in storage which stores the 

activity data. Another use of accelerometers with stroke patients was to measure the rate 
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of finger tapping. The rate of finger taps was measured by mounting a tri-axial 

accelerometer onto the index finger using a Velcro strap (Calautti et al., 2006). 

Patel et al. (2012) explored the use of wearable sensor systems for use in monitoring 

rehabilitation process of patients (Patel et al., 2012). Wearable sensor systems have the 

potential to help patients in areas where there is limited access to healthcare or medical 

services are far away. In united states 20 percent of patients live in rural areas whereas 

only 9 percent of the doctors work in rural areas. 

As shown in the Figure 2.1, wearable sensors can monitor physiological as well as 

movement data of the patients and transmit that data wirelessly to their physician, 

family members as well as emergency services.  

 

Figure 2.1: Wearable Sensor Monitoring System (Patel et al., 2012) 

Previously wearable sensor systems were big and cumbersome which made it 

uncomfortable and therefore not practical for long term use. Technology over the years 

have advanced enough that sensor systems have been made smaller, wireless, easy to use 

and comfortable to wear. For example, Figure 2.2 shows a very small and flexible sensor 

system that incorporates a micro-controller, an ECG sensor and a radio chip on a single 

PCB. 
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Figure 2.2: Wireless Micro-controller with ECG Sensor (Patel et al., 2012) 

Sensors can also now be incorporated into garments and clothing making it yet 

more convenient to wear these systems and therefore help in patient monitoring. For 

example, Figure 2.3 shows a comfortable body suit that incorporates a wide variety of 

sensors that can be worn under normal clothing. 

 

 

Figure 2.3: Sensors Incorporated in Clothing (Patel et al., 2012) 

The most important parts of any wearable sensor systems are the sensors which 

can measure a variety of physiological data and the wireless transmission hardware. 

Advancement in MEMS technology has enabled the size of sensors to be reduced. MEMS 
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batch fabrication process has also reduced the cost of these sensors. With advancements 

in communication technologies such as Radio Frequency (RF), Bluetooth and Wi-Fi 

sensor systems no longer need to be connected via wires. The gathered data can be sent 

via a gateway such as a home computer or mobile phones through the internet to the 

patient’s physician who can monitor and analyse the data to provide meaningful feedback. 

Mobile applications can also log data from sensor systems and have enough computing 

power to process and analyse according to programmed logic the said data and provide 

meaningful feedback. 

In the past years sensor technology has come a long way. Sensors to measure heart 

rate and blood oxygen level have been developed. For example the heart rate and blood 

oxygen monitoring sensor developed by Asada et al. (2003) comes in the form of a ring 

that can be worn on a finger. The sensor is completely self-contained and transmits its 

data via an RF transmitter (Asada et al., 2003). Corbishley and Rodriguez-Villegas (2008) 

developed a system in which a microphone mounted on a person’s neck can measure 

acoustic signals that are produced by breathing and use this data to calculate the 

respiratory rate with more than 90 percent accuracy (Corbishley & Rodriguez-Villegas, 

2008). Patterson et al. (2009) used flexible circuits to develop an ear worn low power 

PPG sensor to monitor heart rates (Patterson et al., 2009). 

Bio-chemical sensors have also been integrated into the field of wearable sensor 

systems. Dudde et al. (2006) developed a wearable minimal invasive sensor system that 

measures blood glucose level and administers the appropriate level of insulin. The system 

also incorporates Bluetooth so that data such as the amount of insulin administered and 

blood sugar levels can be sent to smart phone applications or computer for logging and 

analysing (Dudde et al., 2006). 

Curone et al. (2010) developed a garment for fire fighters, fitted with various 

sensors that can measure heart and respiration rate, blood oxygen levels, body 
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temperature and movement, as well as external conditions such as carbon dioxide and 

monoxide levels, temperature, humidity, etc. All this data is then analysed by the system 

which then warns the firefighter of dangerous elements in the environment. Also the 

system sends data to a control center so that they can be informed about the wellbeing of 

the fire fighter (Curone et al., 2010).  

In the field of rehabilitation wearable sensor systems, mostly include inertial 

sensors which can detect and track movements. Such sensors thanks to advancement in 

MEMS technology are cheap and use low power which makes them ideal for monitoring 

purposes. Home rehabilitation is an emerging field. In the previous years inertial sensors 

were the main sensors used in monitoring patient’s rehabilitation and exercises at home. 

Recently virtual reality gaming is being used to make home rehabilitation easier and more 

motivating. For example the valedo system developed by hacoma AG is a system of 

devices that help patients who are recovering from back injuries train their back. The 

system incorporates a game which keeps the patient motivated via game achievements 

and verbal and visual encouragement. Efforts like the myHeart Initiative have also been 

made to incorporate sensors in garments to make it more comfortable to be used in a home 

environment (Patel et al., 2012).  

For stroke rehabilitation at home, inertial sensors have been vastly used because of their 

compact size and cost effectiveness. In recent years with the widespread use of smart 

devices such as smartphone, smart wrist bands, etc, these devices are also a viable tool 

for long term monitoring. The reason behind this is that people use these devices every 

day and have them on their person during most times of the day. And these devices are 

equipped with inertial sensors such as accelerometers, gyroscopes and magnetometers. 

Therefore it is convenient to design monitoring applications around these devices 

(Šimaitytė et al., 2019). 
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2.2 Use of IMU in limb tracking 

IMUs or inertial measurement units have seen much use for the purpose of orientation 

and position detection because of their compactness and because they are relatively 

inexpensive.  

Atrsaei et al. (2018) utilized two MTx inertial sensors for the purpose of arm tracking. 

They mounted one of the sensors on the upper arm and one on the forearm as shown in 

Figure 2.4. 

 
Figure 2.4: IMU Sensors mounted on the arm (Atrsaei et al. 2018) 

 

To avoid singularities such as the gimbal lock, they used quaternions from the sensors 

to determine their orientation in space. They used the quaternion output with the 

accelerometer and magnetometer output to determine the linear velocities of each of the 

sensors. Using these velocities, the velocities for the elbow and the wrist joint are 

calculated with the assumption that the shoulder joint is rigid. Hence using the velocities 

of the elbow and wrist their relative positions are estimated. The results were compared 

with the results of a motion capture camera. The mean error between the position captured 
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by the camera and the position estimated by the IMU system was less than 6 cm (Atrsaei 

et al., 2018). 

 

Upper limb tracking in recent years have gained popularity because of an increased 

research focus due to its many uses in fields such as sports, gaming, robotics and medicine 

and rehabilitation. Different technologies have been used for the purpose of tracking 

including optical, magnetic, mechanical, acoustic and inertial measurement tracking 

systems.  

Mechanical tracking involves use of an exoskeleton mounted on the limb to be tracked 

and then using encoders measure the various joint angles. For example,  Gu et al. (2016) 

developed a lightweight mechanical hand exoskeleton that can be attached to a human 

hand. A force feedback unit attached to each finger of the exoskeleton measures the 

movement of each finger of the human hand.  (Gu et al., 2016) 

Acoustic tracking uses ultrasonic sensors to measure time of flight and triangulation 

to estimate the position of the entity to track. Wang et al. (2003) developed a system in 

which multiple small wireless acoustic sensors were placed in the vicinity of the object 

to track. And using the data from these sensors when the target moved, the position of the 

target was triangulated. The data from the sensors was wirelessly transmitted to a 

computer using ‘sink tree’ routing algorithm.(Wang et al., 2003) 

In magnetic tracking mini coils are mounted at various points on the limb to be tracked. 

A field transmitter is used to induce currents in these mini coils. The current intensity in 

these sensor coils is proportional to the distance of these sensor coils from the field 

transmitter. Therefore, the position in space of these sensors can then be calculated and 

hence the position of the limb. 
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Optical tracking uses multiple cameras to track marked position on a moving object 

and use 3D reconstruction algorithms to track objects. Multiple cameras are placed around 

the target to track. Markers are placed on various points on the target body. Each camera 

records the target from a different angle. When all the data is collected a computer 

algorithm ‘stitches’ all the different data into a single 3D point cloud. By identifying the 

markers, the algorithm can then track the movement of the different points on the target’s 

body.  

Inertial sensors make use of a gyroscope, accelerometer and a magnetometer mounted 

on a single chip to get orientation and acceleration data, in order to calculate the velocities 

and position of the object or entity to track. 

Zhu & Liang (2016) from the Stanford research group used one IMU sensor and one 

flex sensor to estimate the joint angles. Using a complementary filter to fuse the 

accelerometer and gyroscope readings from the IMU, they got the orientation of the IMU 

mounted on the upper arm and therefore the joint angles of the shoulder. They got the 

rotation angle of the elbow using a flex sensor. They then used a human arm model in 

unity software to track the actual arm using the orientation data from the sensors. Their 

error depended on proper placement of the sensors on the arm, where wrong placement 

would result in an offset between the actual position and estimated position (Zhu, 2016). 

Tian et al. (2015) aimed to eliminate the drift in the orientation and positional data 

given by the IMU sensors by fusing the IMU data with the sensor data from a Kinect 

device. An IMU was mounted on the subjects’ forearm and upper arm. An unscented 

Kalman filter is used to fuse the data from the accelerometer, gyroscope and 

magnetometer to provide a relatively accurate orientation and acceleration data. 

Positional data is estimated by double integrating the acceleration data with respect to 

time. This process causes the positional data to accumulate error over time, which is 

known as drift error. This error can be very large as demonstrated in this study. To help 
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reduce this error, the IMU data was fused with some geometrical constraints. One of these 

constraints was that since the elbow has only two degrees of freedom the angle of elbow 

abduction and adduction can be assumed to be very small. This assumption improved the 

result, but the accuracy was still not good enough. Therefore, the IMU data is fused with 

Kinect data to improve accuracy and remove the drift error. At the start the Kinect 

coordinate frame and global reference coordinate frame are not aligned. Therefore, before 

fusion a rotation is applied to the Kinect sensor data to align the Kinect coordinate frame 

with the global reference frame. 

Data flow model for the IMU-Kinect fusion system is shown in Figure 2.5. First, data 

are measured from both the Kinect and IMU and fused. Geometrical constraints are then 

applied to the resulting data. And using the constrained data positions of the upper and 

lower limb are estimated. Results for position estimation is obtained by doing the 

experiment once with only IMU and the second time with both IMU and Kinect. The 

results with Kinect were smoother and suffered less from drift errors (Tian et al., 2015). 

 

Figure 2.5: Data Flow Model for IMU-Kinect Fusion System (Tian et al 2015) 
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2.3 Forward Kinematics 

Kinematic is a branch of mechanics that involves defining a motion of an object 

without considering the cause of motion that is force. It is the use of geometry of the 

points on the object to find the position of those points after some motion. It involves a 

series of equations that uses said geometry to output Euclidean position of said points. 

Forward kinematics is the use of those kinematic equations to determine the position and 

orientation of an end-effector in a robot with reference to its base frame from its joint 

parameters. The position of the end-effector with reference to its base frame is known as 

the Euclidean position and it is written as a vector such as Eq. (2.1) (Spong et al., 2006). 

𝑃 =  (

𝑃𝑥

𝑃𝑦

𝑃𝑧

)                                                                   (2.1) 

Usually robots consist of a series of links connected by joints which can either be 

prismatic or revolute. Revolute joints are joints that rotate about an axis. Prismatic joints 

are joints that move linearly along an axis. The base of the robot is usually rigid, and all 

the links are connected to the base. Therefore, if geometry is being used to determine the 

position of the end-effector, the position will be with reference to the base frame since 

the end-effector is connected to it through the links and joints. Since the links in the robots 

have one degree of movement, they can move relative to the axis of rotation of its joint 

in case of revolute joint or linear along the axis in case of a prismatic joint. Therefore, to 

define the position and orientation of the link a separate coordinate frame is attached to 

the joint to which the link is attached. Since a robot comprises a series of connected links, 

each of the coordinate frames can be mapped onto the coordinate frame of the previous 

joint via a transformation. Since all the joints in the arm model used in this project are 

revolute joints, further discussion would be with respect to revolute joints only. A 

transformation of coordinate frame B to coordinate frame A will also map all the points 
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in frame B to frame A. The transformation can be described as a series of rotations and 

translations (Spong et al., 2006).  

A translation is the linear movement of a point in 3D space. A translation vector is of 

the same kind as in Eq. (2.1). To translate a point this translation vector is added to the 

point. A rotation involves multiplying a rotation matrix with a point to rotate that point 

about the origin of its coordinate frame. A rotation matrix is a combination of rotation 

about the three principal axes of the coordinate frame. To rotate a point B to a new point 

A the rotation matrix of the form in equation Eq. (2.2) is used. 

𝑅 = [ �̂�𝐵
𝐴  �̂�𝐵

𝐴  �̂�𝐵
𝐴 ] =  [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

]𝐵
𝐴                                           (2.2) 

Since a transformation is a combination of both rotations and translations, a 

transformation matrix is matrix combines these two operations in a single operation. A 

transformation matrix is usually in a format given in equation (3). 

  𝑇 = [ 𝑅𝐵
𝐴 𝑃𝐵

𝐴

0 0 0 1
 ]𝐵

𝐴                                             (2.3) 

Coming back to forward kinematics, finding the coordinates of the end-effector 

involves transforming the coordinate frame of the end-effector into the frame of the joint 

preceding it and repeat this process until the base frame is reached. This involves 

multiplying all the frame transformation matrices from the end-effector frame to the base 

frame. The combined transformation matrix will map the coordinates of the end-effector 

from its own coordinate frame to the base coordinate frame. 

Calculating the transformation matrices for each link/joint can be a tedious and 

lengthy, especially if there are three axes. To make assigning coordinate frames and 

matrix calculations, easier we will make use of the Denavits-Hartenberg Convention. In 

1955 Jacques Denavits and Richard Hartenberg came up with a standardized method of 

assigning coordinate frames to joints in a robotic manipulator (Lipkin, 2005). This 
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convention has a fixed set of rules to assign coordinate frames to the joints in a robotic 

manipulator. Once the coordinate frames are assigned to each joint, a set of four 

parameters can be determined for each frame. These parameters are known as DH 

parameters and they represent the rotations and translations needed to transform the frame 

into the coordinate frame of the previous frame. These parameters are namely ‘θ’, ‘d’, ‘α’ 

and ‘a’. 𝜃𝑖  denotes the amount of rotation required about axis 𝑍𝑛−1to align axes 𝑋𝑛−1 to 

𝑋𝑛 with ‘n’ representing the frame number. The value 𝑑𝑖 represents a translation along 

𝑍𝑛−1 axis. 𝛼𝑖 represents the rotation about axis 𝑋𝑛 to align axes 𝑍𝑛−1 with 𝑍𝑛. The value 

𝑎𝑖 represents a translation along the axis 𝑋𝑛. These parameters can be calculated as seen 

in Figure 2.6. 

 

Figure 2.6: Determining DH Parameters 

After determining these four parameters for each of the coordinate frames, DH 

convention provides a standard matrix format in which the DH parameters can be inserted 

to derive the transformation matrix which will transform one coordinate frame onto the 

previous frame. The standard matrix format is given by Eq. (2.4). 
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𝑇𝑖 = [

𝐶𝑜𝑠𝜃𝑖 −𝑆𝑖𝑛𝜃𝑖𝐶𝑜𝑠𝛼𝑖 𝑆𝑖𝑛𝜃𝑖𝑆𝑖𝑛𝛼𝑖 𝑎𝑖𝐶𝑜𝑠𝜃𝑖

𝑆𝑖𝑛𝜃𝑖 𝐶𝑜𝑠𝜃𝑖𝐶𝑜𝑠𝛼𝑖 −𝐶𝑜𝑠𝜃𝑖𝑆𝑖𝑛𝛼𝑖 𝑎𝑖𝑆𝑖𝑛𝜃𝑖

0
0

𝑆𝑖𝑛𝛼𝑖

0
𝐶𝑜𝑠𝛼𝑖

0
𝑑𝑖

1

 ]                   (2.4) 

Using this format, transformation matrices can be derived and then multiplied together 

to get the overall transformation matrix which will map the end-effector in the reference 

axes of the base frame, as shown in Eq. (2.5).  

𝑇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = ∏ 𝑇𝑛
𝑛
1                                         (2.5) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ·  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙𝑜𝑐𝑎𝑙             (2.6) 

 Once the overall transformation matrix is obtained. Eq. (2.6) is used to dot product 

the overall transformation matrix with the coordinates of the end effector in its local 

coordinate frame as shown in Figure 2.7 to get its coordinates in the reference coordinate 

frame.  

 

Figure 2.7: End effector relation to reference frame 

 Using the DH convention simplifies the process of calculating the transformation 

matrices for each linkage and joint. Without this convention, the transformation matrices 

would need to be calculated manually using trigonometry. This might be simple for 

systems with 2 or 3 degrees of freedom. But for systems with 6 to 7 degrees of freedom 

the manual process becomes extremely long and cumbersome.  

Determining position and orientation using forward kinematics works when the 

reference frame is fixed. This is the case for this research in which the shoulder is the 

reference and assumed to not be moving. In such cases forward kinematics method of 

position and orientation determination of end effector or wrist joint is preferred over 
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traditional methods like getting position from acceleration. The reason being that forward 

kinematics is easier to program in computer and it is less computationally intensive as 

compared to the traditional methods. 
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Chapter 3: Methodology 

One of our objectives in this project was to design a wearable IMU sensor module that 

can send its data wirelessly to either computer or smartphone. The methodology of 

developing the wireless IMU will be described next. 

3.1 Inertial Measurement Unit (IMU) 

IMU is a 3-in-1 sensor unit. An IMU contains an accelerometer, gyroscope and a 

magnetometer all on a single chip. The output data consists of quaternions, Euler angles, 

rotation vector, linear acceleration, gravity and heading. The IMU used in this project is 

the Adafruit BNO055 absolute orientation sensor as shown in Figure 3.1. 

 

Figure 3.1: BNO055 IMU Sensor 

It contains a 16 bit gyroscope, 14 bit accelerometer and a magnetometer. Along with 

these sensors this module also contains the complementary electronic components needed 

to make it an easily interfaceable module. This module also contains a high-speed ARM 
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Cortex M0 based processor which is tasked with taking the raw data from the 

accelerometer, gyroscope and magnetometer and fusing this data together into actual 3D 

space orientation. With other commercially available sensors only the raw data is 

available. This results in users spending weeks or months trying different filter algorithms 

to find one with required accuracy and speed. The BNO055 IMU module comes with a 

proprietary sensor fusion algorithm that can readily provide meaningful orientation data. 

Also, unlike other commercially available IMU sensors the BNO055 does its own 

calibration routine on start-up. This means that although a calibration run is 

recommended, it is not absolutely necessary and the sensor can be used as is. The 

BNO055 module is connected to a microcontroller by connecting its Vin pin to the 3.3V 

and the GND pin to the GND pin of the microcontroller. Then the SDA and SCL pins of 

the module are connected to the I2C pins of the microcontroller. 

 

Figure 3.2: BNO055 Axes Arrangement 

Figure 3.2 shows the axes of the BNO055 IMU sensor. The range for the X axis is 

from 0° to 360°. The range for the Z axis is from -180° to 180°. For the purpose of this 

project X and Z axis can be used as is since mathematically they are the same. However, 

the Y range is from 0° to 90° to 0° for 180° counterclock rotation, and 0° to -90° to 0° for 

180° clockwise rotation. This is maybe due to the inherent function of BNO055 to prevent 

gimbal lock from happening.  So this limits the rotation measurement to 90° in the Y axis. 
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Things become worse when the initial angle is not 0° which will further reduce the 

rotational measurement range. In this study, this issue can be tackled by carefully 

assigning this axis to suitable arm joint. This will be explained in the next section. 

3.2 The Micro-controller 

The micro-controller that was used in this project was the Node MCU as shown 

in Figure 3.3.  

 

Figure 3.3: NodeMCU Micro-controller 

The Node MCU is an open source Internet of things (IoT) platform which integrates a 

Tensilica Xtensa LX106 core with an Esp-12E wifi module. This makes the Node MCU 

a powerful standalone wifi solution for most IoT applications. The Node MCU is a 32 bit 

low-power micro-controller uni. It has a 10 bit analog to digital convertor, 2.4 Giga Hertz 

Wifi, an integrated TCP/IP protocol stack, an integrated power management unit that can 

incorporate a sleep mode and quick wakeup mode to save power and a lot of other useful 

features. It is a low power device, which can be powered via a small 9V battery which in 

addition to the compact size of the Node MCU makes it an ideal choice for portable wifi 
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applications. Another important aspect that made this micro-controller ideal for this 

project was its low cost. 

3.3 Power source 

For this project, a 9V rechargeable battery was used. This battery is easily rechargeable 

via a cellphone USB. To provide the Node MCU and IMU with a stable 5V, an LM2596 

DC-DC converter was used, its circuit is shown in Figure 3.4. 

 

Figure 3.4: DC-DC Step-down Voltage Regulator Circuit 

 

The LM2596 is a step-down voltage regulator which takes a higher unregulated 

voltage and steps it down to a regulated lower voltage. In our case a 9V DC input via the 

battery was stepped down to a stable 5V DC output which was then fed to the Node MCU 

and the IMU. This regulator can maintain this stable 5V DC output as long as the battery 

input stays above 6V considering the regulator’s dropout voltage of 0.9V. Since micro-

controller and the IMU both consumed about 80 mA of current during peak operation, 

the power draw from the battery is low and therefore the battery can last more than 8 

hours of continuous use which is sufficient for the purpose of this project. 

3.4 Programming languages 

In this project, two main programming languages were used to design the software for 

the wireless IMU based arm position estimation system. C++ for programming the micro-

controller and Python for the computer program. 

The IMU sensors are interfaced with the Node MCU Wi-Fi enabled micro-controller. 

This micro-controller uses C++ as its main programming environment. C++ is often the 
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programming software for multi device application development (Evans, 2011). This is 

due to the portability of C++. It has an extensive selection of libraries that handle all the 

low-level mechanisms and provides the user with an easy to understand user interface. 

The biggest benefit of C++ is that since it is a middle level language and can deal with 

system’s memory registers directly without needing an intermediary, it is faster than other 

programming languages. This makes it an ideal programming language for embedded 

applications. 

For the computer-side application, there are a wide variety of programming languages 

to choose from like Java, python, C++, JavaScript, etc. After going through the pros and 

cons, python was chosen as the programming language for the computer-side application. 

There are many positives about python that made it stand out. Firstly it is an extremely 

easy to use language. Programming in python is like writing pseudo-code in English. 

Unlike C++ or Java variables do not have to be implicitly declared. If we write A equals 

2 then the program knows that A is of the integer type. This makes it easy to program for 

beginner programmers. Python’s syntax allows programmers to use fewer lines of code, 

as compared to Java or C++. Python also has extensive library support. There are a 

multitude of libraries available that can provide users with easy to use functions for the 

purpose of applications ranging from mathematics to signal processing to robotics. 

Hence, Python was chosen as the programming language for the computer-side 

application of this project. 

For the purpose of presenting the result diagrams in a clear and well labelled manner 

MATLAB was used. Since the results from the python program was stored in a .csv 

format MATLAB was used to plot these results since MATLAB has good plotting and 

display options.  
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3.5 Design of the wearable sensor system 

3.5.1 Prototype Version 1 

The first prototype consisted of three IMUs connected to a single Node MCU micro-

controller. The idea was to reduce the overall cost by using a single micro-controller. 

Since the micro-controller only had one I2C input and each of the IMUs required an I2C 

connection, we used an I2C expander as shown in Figure 3.5. 

 

Figure 3.5: TCA9548A I2C Expander 

This TCA9548A I2C expander allows a micro-controller with a single I2C port to 

communicate with up to 8 I2C devices such as an IMU. In our case the Node MCU micro-

controller used this device to communicate with three BNO055 IMUs. This device works 

on the principles of multiplexing. The micro-controller first sends an address to the 

TCA9548A of the I2C device it wants to communicate with. That device can be connected 

to any of the eight ports ranging from SD0 SC0 to SD7 SC7. So for example the micro-

controller wants to communicate with the IMU connected to port 1 then the micro-

controller will first send the address of port 1 (SD1 SC1) to TCA9548A which will then 

redirect further communication from micro-controller (SDA SCA) to IMU on port 1 (SD1 

SC1). This procedure is repeated for all three IMUs.  
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Initial prototype of the wearable sensor system had the micro-controller with the power 

supply strapped to the part of the forearm that was closest to the wrist. The micro-

controller and the TCA9548A I2C expander were soldered together onto a double-sided 

PCB. This together with the power supply was attached to the arm using a small wrist 

band with buckles. The first IMU was attached to the upper arm close to the shoulder 

joint. The second IMU was attached to the upper forearm close to the elbow joint. And 

the third IMU was attached to the palm of the hand close to the wrist joint. The IMUs 

were attached to the arm using a mild adhesive double-sided tape for easy placement and 

removal. All of the IMUs were connected to the micro-controller via the TCA9548A chip 

using thin wires. 

 

Figure 3.6: Wearable Sensor Prototype Version 1 (a) Front View (b) Back View 

The idea behind this design was to limit the number of Wi-Fi micro-controllers to one 

in order to reduce cost as well as simplify the network protocol problem that will be 

discussed later. There were many issues with this design which later led to the 

development of another prototype with a different design. One of the issues was that there 

were too many parts in this wearable system that made wearing it time-consuming and 

difficult. Second was that there were too many wires going to and from the sensors. This 
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made debugging the circuit difficult in the case of electrical problems. The wires were 

also susceptible to breakage at the solder joints if the wires were moved around a lot. 

Also, due to the wires from the sensors spanning the length of the upper arm and forearm, 

the data coming from the sensors was susceptible to attenuation and picking up 

interference. Also, since the micro-controller had to multiplex between the three IMU 

sensors, this induced a delay between successive transmission which was around 0.01 

seconds. This delay is regardless of the transmission between the system and a computer 

server. Due to these issues a new prototype was made with a more compact design. 

3.5.2 Prototype Version 2 

Keeping the issues of the previous design in mind, this design revolved around making 

each sensor a modular sensor node. Each sensor node would contain an IMU sensor, a 

Node MCU micro-controller and a power source. All of these components were soldered 

onto a double-sided PCB. The power source for each node consists of a 9V battery and a 

5V regulator. The circuit is shown in Figure 3.7. 
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Figure 3.7: Electrical Connections for a IMU Sensor Node 

Although three of these nodes were made, only two of them are needed for arm 

tracking for the purpose of monitoring stroke rehabilitation. This was based on the 

number of sensors used in various papers and articles in the literature review. The benefit 

of this modular system is that adding the third node into the system is not difficult. Like 

the first design the first sensor node will be attached to the upper arm and the second node 

will be attached to the forearm. The nodes are attached via Velcro straps. The complete 

sensor node as well as mounting procedure can be seen in Figure 3.8.  Univ
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Figure 3.8: Wearable Sensor Node Version 2 (a) Front View (b) Back View (c) 

Sensor nodes mounted on the arm 

This design is an improvement over the previous design because it has only two 

wearable parts and since everything was on a single PCB there were no long wires. This 

solved the issues that long wires caused in the previous design. The issues with this design 

was that there was a need for synchronisation between the nodes and the computer. If 

there was no synchronisation depending on which node was switched on first, there would 

be a delay between the positional data of the first node and the second node. This issue 

was handled in the software which would be discussed later. Also, the cost of this design 

is more than the previous one because we are using more micro-controllers and more 

power supplies. But this is offset by the ease of use and more compact design. Also, since 

the sensors are the most expensive parts of this project the additional cost of the micro-

controller and power supply are not that big of an investment. The construction of each 
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node costed 40 RM while the sensor cost about 50 RM. This is a lot cheaper than for 

example the MTx inertial sensor which costs about $1000 each. This modular design also 

eliminated the use of the I2C expander since each IMU had its own micro-controller. This 

therefore removed the delay between successive data transmission that was induced by 

the multiplexing between the sensors in the previous design. Hence enabling the sensor 

nodes to send data at a higher frequency than the previous design. 

3.6 Network Protocol 

For this project, since data is being transmitted wirelessly it involves two devices to 

communicate with each other over Wi-Fi. In our case it involves communication between 

the computer and the IMU sensor nodes. So, we have a Wi-Fi router place in the vicinity 

of the sensor nodes and the computer. We first start the server program on the computer. 

The server listens for incoming connections. Then we switch on the nodes attached to the 

subject’s arms. The nodes have the IP address of the computer already programmed into 

it as well as the username and password of the Wi-Fi router. When the sensor nodes are 

switched on they connect to the Wi-Fi and then connect to the Master Computer. This is 

illustrated in Figure 3.9. Till this point this method of network protocol was same for both 

versions of the prototypes. The good aspect of the previous design was that there was 

only one Wi-Fi micro-controller which meant that once the single micro-controller 

connected to the computer, it could start sending positional data from all the IMU sensors 

in single data messages. The issue with our current design of multiple Wi-Fi enabled IMU 

nodes is that of synchronisation. If like the previous design the nodes start data 

transmission as soon as they connect to the computer, the data from the node that was 

switched on last would lag the data from the node that switched on before it. So, to rectify 

this issue a synchronisation part was added to the network protocol. Once the sensor nodes 

are connected to the computer, they waits for a “START” signal from the computer after 

which the sensor nodes will start data transmission. On the computers end the software 
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will first wait for all the nodes in the system to connect and only then it will broadcast a 

“START” signal to all the nodes in the system (Rhodes & Goerzen, 2014). All the nodes 

will receive this signal at roughly the same time and will start their individual data 

transmission. Hence, since they all start data transmission at roughly the same time, they 

will all be synchronised. The codes for the network protocol will be discussed further. 

Program codes are attached in Appendix B and C. 

 

Figure 3.9: Communication Flow in the System 

 

3.7 Forward Kinematics 

Forward Kinematics is a method of translating joint angles into the final end-effector 

position for a robotic manipulator. As discussed in the literature review a popular method 

of performing forward kinematics is to use Denavit-Hartenberg Convention. We want to 

model a human arm using DH Convention. DH convention involves dividing the 

manipulator (human arm in our case) in a series of joints and links. Frames of references 

and axes are attached to each joint. Based on the frame assignments, four parameters 

known as DH parameters are calculated for each joint in the manipulator. Using these 

four parameters, transformation matrices for each link/joint are determined. Each 

transformation matrix transforms the axis of one frame with the link to the reference 
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frame of the previous link/joint. So, if we multiply all the transformation matrices of all 

the joints/links we can get a combined matrix that can give the position of the end-effector 

in the reference frame of the base joint.  

Usually in a robotic manipulator, the base joint is fixed and assumed to not be moving. 

Since we are tracking arm movement with reference to the shoulder joint, we can assume 

that the shoulder is not moving linearly. Using this assumption, we can model the human 

arm as a robotic manipulator with the shoulder acting as the base.  

The human arm has 7 degrees of freedom of movement. The shoulder joint is a ball 

and socket joint that can rotate about its three principal axes and therefore has three 

degrees of freedom. The elbow joint is a hinge joint which can only rotate about one axis 

and hence has one degree of freedom. The wrist joint is again a ball and socket joint that 

can rotate about its three principal axes and therefore has three degrees of freedom. This 

gives a human arm a total of 7 degrees of freedom.  

In our model each of these degrees of freedom can be modelled as a revolute joint 

connected together with links. Figure 3.10 shows our human arm modelled as a series of 

kinematic joints and links. The Z axes represent the axes of rotation for each joint. 

 

Figure 3.10: DH Model for the Human Arm 

Each of these joints have been assigned a coordinate frame whose axes were 

determined using the rules of the DH convention. The link lengths connecting the three 
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shoulder joints are zero since physically the shoulder joint is one joint. Using DH 

convention shoulder and wrist joints can be modelled as three revolute joints lumped 

together with no link lengths in between. The links connecting the elbow joint with the 

shoulder and the wrist joints have lengths and they are the upper arm length and the 

forearm length respectively.  

As discussed in the literature review using this model and following the Denavit-

Hartenberg convention a set of four parameters known as DH parameters can be 

determined for the seven frames in the model. These parameters can be determined using 

a set of rules of the DH convention. Table 3.1 shows all the DH parameters for all the 

frames in our model. 

Table 3.1: DH Parameters for the Arm model 

Frame number, 

 

n 

Joint Angle 

 

θ (°) 

Frame 
alignment 

angle 

α (°) 

Frame 
translation 

along 𝑋𝑛 axis 

a (m) 

Frame 
translation 
along 𝑍𝑛−1 

d (m) 

1 𝜃1 90 0 0 

2 𝜃2 90 0 0 

3 𝜃3 -90 𝐿𝑠𝑒 0 

4 𝜃4 90 𝐿𝑒𝑤 0 

5 𝜃5 -90 0 0 

6 𝜃6 -90 0 0 

7 𝜃7 0 0 0 

 

𝜃1to 𝜃7 represent the joint variable which in our case are the joint angles or the angular 

position of the joints in their respective coordinate frames. 𝐿𝑠𝑒 represents the length of 

the upper arm from the shoulder joint to the elbow joint and this value is in meters. 𝐿𝑒𝑤 

represents the length of the forearm from the elbow joint to the wrist joint. For the sake 

Univ
ers

ity
 of

 M
ala

ya



32 
 

of uniformity, the upper arm and forearm lengths namely 𝐿𝑠𝑒 and 𝐿𝑒𝑤 have been chosen 

to be 0.36 m in this project. This can be modified in the program code. The joint variables 

are obtained using the orientation of the sensor nodes mounted on the human arm. As 

mentioned before, each sensor node has three degrees of freedom in terms of orientation. 

So, for the shoulder joint which requires three joint variables we can use the three axes 

output from the sensor node as those joint variables. For the yaw and pitch we used the X 

and Z axes since they have full range. For the roll we used the Y axis of the sensor since 

it had limited range and for our purpose the roll is kept to the minimum. For the elbow 

joint variable which has only one degree of freedom we can use either X or Z axis of the 

IMU. For the wrist joint which is the same as a shoulder joint we use the same convention 

used for the shoulder joint. Using these parameters, a transformation matrix can be 

determined for each frame that will transform that frame into the coordinate system of the 

preceding frame. Matrices in Eq. (3.1) - (3.7) are the transformation matrices for the seven 

joints/links in our model. For example, 𝑇1represents the transformation matrix that will 

map the coordinate frame of the first revolute joint in our model onto the coordinate frame 

of the shoulder base or reference coordinate frame. 

𝑇1 = [

𝑐𝑜𝑠𝜃1 −𝑠𝑖𝑛𝜃1𝑐𝑜𝑠900 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛900 0 ∗ 𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃1𝑐𝑜𝑠900 −𝑐𝑜𝑠𝜃1𝑠𝑖𝑛900 0 ∗ 𝑠𝑖𝑛𝜃1

0 𝑠𝑖𝑛900 𝑐𝑜𝑠900 0
0 0 0 1

] 

= [

𝑐𝑜𝑠𝜃1 0 𝑠𝑖𝑛𝜃1 0
𝑠𝑖𝑛𝜃1 0 −𝑐𝑜𝑠𝜃1 0

0 1 0 0
0 0 0 1

]                                           (3.1) 

 

𝑇2 = [

𝑐𝑜𝑠𝜃2 −𝑠𝑖𝑛𝜃2𝑐𝑜𝑠900 𝑠𝑖𝑛𝜃2𝑠𝑖𝑛900 0 ∗ 𝑐𝑜𝑠𝜃2

𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2𝑐𝑜𝑠900 −𝑐𝑜𝑠𝜃2𝑠𝑖𝑛900 0 ∗ 𝑠𝑖𝑛𝜃2

0 𝑠𝑖𝑛900 𝑐𝑜𝑠900 0
0 0 0 1

]     
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= [

𝑐𝑜𝑠𝜃2 0 𝑠𝑖𝑛𝜃2 0
𝑠𝑖𝑛𝜃2 0 −𝑐𝑜𝑠𝜃2 0

0 1 0 0
0 0 0 1

]                                                      (3.2) 

 

             𝑇3 = 

[
 
 
 
𝑐𝑜𝑠𝜃3 −𝑠𝑖𝑛𝜃3𝑐𝑜𝑠(−900) 𝑠𝑖𝑛𝜃3𝑠𝑖𝑛(−900) 𝐿𝑠𝑒 ∗ 𝑐𝑜𝑠𝜃3

𝑠𝑖𝑛𝜃3 𝑐𝑜𝑠𝜃3𝑐𝑜𝑠(−900) −𝑐𝑜𝑠𝜃3𝑠𝑖𝑛(−900) 𝐿𝑠𝑒 ∗ 𝑠𝑖𝑛𝜃3

0 𝑠𝑖𝑛(−900) 𝑐𝑜𝑠(−900) 0
0 0 0 1 ]

 
 
 
 

= [

𝑐𝑜𝑠𝜃3 0 −𝑠𝑖𝑛𝜃3 𝐿𝑠𝑒 ∗ 𝑐𝑜𝑠𝜃3

𝑠𝑖𝑛𝜃3 0 𝑐𝑜𝑠𝜃3 𝐿𝑠𝑒 ∗ 𝑠𝑖𝑛𝜃3

0 −1 0 0
0 0 0 1

]                                           (3.3) 

 

    𝑇4 = 

[
 
 
 
𝑐𝑜𝑠𝜃4 −𝑠𝑖𝑛𝜃4𝑐𝑜𝑠(900) 𝑠𝑖𝑛𝜃4𝑠𝑖𝑛(900) 𝐿𝑒𝑤 ∗ 𝑐𝑜𝑠𝜃4

𝑠𝑖𝑛𝜃4 𝑐𝑜𝑠𝜃4𝑐𝑜𝑠(900) −𝑐𝑜𝑠𝜃4𝑠𝑖𝑛(900) 𝐿𝑒𝑤 ∗ 𝑠𝑖𝑛𝜃4

0 𝑠𝑖𝑛(900) 𝑐𝑜𝑠(900) 0
0 0 0 1 ]

 
 
 
 

   = [

𝑐𝑜𝑠𝜃4 0 𝑠𝑖𝑛𝜃4 𝐿𝑒𝑤 ∗ 𝑐𝑜𝑠𝜃4

𝑠𝑖𝑛𝜃4 0 −𝑐𝑜𝑠𝜃4 𝐿𝑒𝑤 ∗ 𝑠𝑖𝑛𝜃4

0 1 0 0
0 0 0 1

]                                    (3.4) 

 

     𝑇5 = 

[
 
 
 
𝑐𝑜𝑠𝜃5 −𝑠𝑖𝑛𝜃5𝑐𝑜𝑠(−900) 𝑠𝑖𝑛𝜃5𝑠𝑖𝑛(−900) 0 ∗ 𝑐𝑜𝑠𝜃5

𝑠𝑖𝑛𝜃5 𝑐𝑜𝑠𝜃5𝑐𝑜𝑠(−900) −𝑐𝑜𝑠𝜃5𝑠𝑖𝑛(−900) 0 ∗ 𝑠𝑖𝑛𝜃5

0 𝑠𝑖𝑛(−900) 𝑐𝑜𝑠(−900) 0
0 0 0 1 ]

 
 
 
 

= [

𝑐𝑜𝑠𝜃5 0 −𝑠𝑖𝑛𝜃5 0
𝑠𝑖𝑛𝜃5 0 𝑐𝑜𝑠𝜃5 0

0 −1 0 0
0 0 0 1

]                                             (3.5) 

 

      𝑇6 = 

[
 
 
 
𝑐𝑜𝑠𝜃6 −𝑠𝑖𝑛𝜃6𝑐𝑜𝑠(−900) 𝑠𝑖𝑛𝜃6𝑠𝑖𝑛(−900) 0 ∗ 𝑐𝑜𝑠𝜃6

𝑠𝑖𝑛𝜃6 𝑐𝑜𝑠𝜃6𝑐𝑜𝑠(−900) −𝑐𝑜𝑠𝜃6𝑠𝑖𝑛(−900) 0 ∗ 𝑠𝑖𝑛𝜃6

0 𝑠𝑖𝑛(−900) 𝑐𝑜𝑠(−900) 0
0 0 0 1 ]

 
 
 
 

= [

𝑐𝑜𝑠𝜃6 0 −𝑠𝑖𝑛𝜃6 0
𝑠𝑖𝑛𝜃6 0 𝑐𝑜𝑠𝜃6 0

0 −1 0 0
0 0 0 1

]                                             (3.6) 
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𝑇7 = 

[
 
 
 
𝑐𝑜𝑠𝜃7 −𝑠𝑖𝑛𝜃7𝑐𝑜𝑠(00) 𝑠𝑖𝑛𝜃7𝑠𝑖𝑛(00) 0 ∗ 𝑐𝑜𝑠𝜃7

𝑠𝑖𝑛𝜃7 𝑐𝑜𝑠𝜃7𝑐𝑜𝑠(00) −𝑐𝑜𝑠𝜃7𝑠𝑖𝑛(00) 0 ∗ 𝑠𝑖𝑛𝜃7

0 𝑠𝑖𝑛(00) 𝑐𝑜𝑠(00) 0
0 0 0 1 ]

 
 
 
 

                 = [

𝑐𝑜𝑠𝜃7 −𝑠𝑖𝑛𝜃7 0 0
𝑠𝑖𝑛𝜃7 𝑐𝑜𝑠𝜃7 0 0

0 0 0 0
0 0 0 1

]                                                   (3.7) 

 

Since the position of the end-effector is in the frame of the last joint, in order to 

determine the position of the end-effector in the coordinate frame of the reference frame 

i.e. shoulder frame all the transformation matrices 𝑇1to 𝑇7 need to be multiplied together 

to give an overall transformation matrix as shown in Eq. (3.8). When a dot product is 

taken of this matrix with the coordinates of the end-effector in its frame, the result is the 

coordinates of the end-effector in the base or reference frame i.e. the shoulder frame. This 

is shown in Eq. (3.9). 

𝑇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = ∏ 𝑇𝑛 =7
1  𝑇1𝑇2𝑇3𝑇4𝑇5𝑇6𝑇7                (3.8) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ·  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙𝑜𝑐𝑎𝑙                 (3.9) 

3.8 Sensor node application program 

As mentioned earlier, a sensor node is an IMU interfaced with a Node MCU Wi-Fi 

enabled micro-controller. To get useful orientation data from this node to the computer, 

the micro-controller is programmed with an application written in C++ language (Evans, 

2011). Figure 3.11 shows the pseudocode for the sensor node application program. 
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Figure 3.11: Pseudocode for Sensor Node 

As can be seen in the pseudocode, each sensor node is assigned a unique ID. This ID 

is used by the program running on the computer to know which sensor node is sending 

its data and how to organise the data. On start-up the micro-controller initialises the 

inertial measurement unit (IMU) as well as connect to the Wi-Fi router. This is done by 

programming in the Wi-Fi username and password. The node then waits for the signal 

from the computer program to start transmission. It does this by entering a listen mode 

where it monitors all incoming messages for a specific message which in our case is 

“start”. After the node has received this message it exits the listen mode and starts 

transmitting data continuously. The data consists of a message along with the message 

length. The message consists of the unique ID for sensor node, orientation data and the 

current time at which the message is sent. This timestamp is used by the computer 

program to determine the transmission delay and frequency. 

3.9 Computer side application program 

The computer side program is slightly more complicated than the sensor node 

program. Usually in programming the program or application executes the code 

sequentially starting from the top to the bottom as can be seen in the program for the 

sensor nodes. The issue with this sequential execution is that since out computer program 
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has a lot of ‘moving’ parts to it, a whole iteration of getting a sensor node message, 

deciphering it and performing the required analysis on it would take too long. This will 

lead to long delays before other messages go through the same process. Therefore, the 

computer side program will start to lag the sensor nodes a lot which is not preferred.  

To rectify or at least improve the performance a lesson from large scale manufacturing 

can be implemented. In large scale factories to improve speed and efficiency large tasks 

are broken down into small tasks and there is a specialised operator for that task. This 

leads to a lot of small tasks being done simultaneously and then later combined to 

complete the original large task. In programming this parallel execution of tasks is known 

as multi-thread programming or multi-process programming. A thread can be thought of 

as that specialised worker in an assembly line who is given one aspect of a large product 

to work on. Threads can work on one aspect of a program in parallel with other threads 

to increase the speed and efficiency of the program (Zaccone, 2015). For this purpose, 

multi-thread programming was used for the computer side application program. 

The main program of the computer side application can be broken down into four 

subsections. They are receiving messages from sensor nodes, deciphering those 

messages, performing the required analysis on data from the messages and handling any 

user input. To cater to each of these four subsections a program thread is assigned to each 

of them. These four threads will work in parallel and pass data to each other using a 

programming structure known as queues. These queues are used to store data. And like 

real life queues the first data to be stored is also the first data to be retrieved later. Figure 

3.12 shows an overview of the computer side application program. 
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Figure 3.12: Computer Program Overview 

The start-up pseudocode for the compute side program can be seen in Figure 3.13. The 

program on initialisation waits for the server to listen for incoming connections. The 

program waits for all the sensor nodes to first connect to the computer. As the sensor 

nodes connect the program saves their connection information in an array based on the 

sensor nodes unique ID. Once all the nodes have connected to the computer the computer, 

it will broadcast a “start” transmission signal to all the nodes that are connected via the 

connection information stored earlier. Then, the program starts all the threads handling 

the four main aspects of the computer side application program. 

 

Figure 3.13: Pseudocode for Computer Program Startup 
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The pseudocode for the listener thread is given in Figure 3.14. This tread actively 

listens for all messages that are received in the network stream. It first looks for the 

message header preceding the message and it contains the length of the incoming 

message. The thread then reads that specified length of the message which is in form of 

bytes. The thread then decodes those bytes into a readable or parse able format. It then 

stores this message in a message queue for the reader thread to access. 

 

Figure 3.14: Pseudocode for Listen Thread 

The pseudocode for the reader thread is given in Figure 3.15. The reader thread first 

checks if there are any pending messages in the message queue. Since the listener thread 

has lesser operations than the reader thread it is slightly faster. Therefore, as long as the 

sensor nodes keep transmitting there will always be messages in the message queue. The 

reader thread retrieves the first message from the message queue and splits the message 

based on comma and ‘&’ separation. The thread then reads the tidied-up message to get 

the unique sensor ID, sensor orientation data and time stamp. The reader then sorts and 

stores this data in the data queue according to the unique ID, so that the thread doing the 

analysis knows which sensor node sent which data. 
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Figure 3.15: Pseudocode for Reader Thread 

The pseudocode for the analyser thread is given in Figure 3.16. This thread does all 

the analysis on the data from the sensor nodes. This thread is the most computation 

intensive thread of the four. This thread first checks if there is new data in the data queue. 

If there is this thread retrieves new data from the data queue. If the data is the first one, 

then it is stored as the reference orientation. Transformation matrices are then calculated 

using the orientation data from all the sensor nodes as follows Eqs. (3.1) - (3.7). The 

orientation of the sensor nodes is the absolute orientation of the node itself. For the 

forward kinematics the angles used in the determination of the transformation matrices 

of the joints are the angles from the principal axes of the coordinate frame of the joint 

itself. In Figure 3.17 for the shoulder joint angle ‘A’ is used as the joint parameter in 

determining one of the transformation matrices. This is obtained directly from the sensor 

node mounted on the upper arm. The issue comes with the sensor node mounted on the 

forearm. The sensor node will give the angle ‘B’ while to calculate the matrices for the 

wrist position angle ‘C’ is required. Angle ‘C’ can be calculated using equation (3.10). 

 

∠ 𝐶 =  ∠ 𝐵 −  ∠ 𝐴   (3.10) 
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Firstly, the transformation matrix is determined that will be used to transform the 

elbow joint position from its local frame to the shoulder base frame. This is shown in Eq. 

(3.11). 

𝑇𝑒𝑙𝑏𝑜𝑤
𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 = ∏ 𝑇𝑛 =3

1  𝑇1𝑇2𝑇3   (3.11) 

Taking a dot product of this matrix with the elbow joint position in its own or original 

frame will give the position of the elbow joint with reference to the shoulder joint. 

Another transformation matrix is determined that will transform the wrist joint position 

from its own frame into the shoulder base frame. This is shown in Eq. (3.12). 

𝑇𝑤𝑟𝑖𝑠𝑡
𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 = ∏ 𝑇𝑛 =7

1  𝑇1𝑇2𝑇3𝑇4𝑇5𝑇6𝑇7  (3.12) 

If the user wants to save this data, then this thread saves the calculated elbow position, 

wrist position and current time to a ‘.csv’ file. This thread also calculates the Euclidean 

distance travelled by the end effector. The thread does this by calculating the magnitudes 

of the vectors connecting the points in the path the end-effector travelled on. And then 

the total distance is calculated by combining all these small steps. This thread also 

calculates the time taken in each movement by making use of the time stamps. This data 

is also added to the plotter queue for the GUI thread. 
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Figure 3.16: Pseudocode for Analyser Thread 

 

 

Figure 3.17: Geometry of Arm Extension  

 

The GUI thread handles inputs from user as well as plot the data in form of a 3D graph. 

The GUI thread hosts a graphical user interface that can be seen in Figure 3.18. 
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Figure 3.18: The Graphical User Interface (GUI) 

The buttons allow user to start the program by the “start server button”. The user can 

reset the arm starting reference position by using the “reset arm position button”. The user 

can also save the wrist positions, elbow positions and time stamps by pressing the “Start 

record” and “Stop record” buttons. The status window shows useful information like 

which sensor nodes have connected and which buttons have been pressed. The GUI thread 

gets the data to plot from the Queue to which the analyser thread saved the arm positions. 

For the purpose of plotting the results, Matlab is used. The data stored in the ‘.csv’ 

files is used to plot the output of the tracking algorithm along with calculating the distance 

and the amount of time taken. The Matlab plotting code is attached as Appendix D. 
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Chapter 4: Results and discussion 

 

Our purpose for this project is to have the wearable sensor nodes track the arm 

movement of the wearer with decent accuracy. The expected accuracy is not too high 

since the output is not used for any position and orientation critical tasks. The function is 

to check the effectiveness of rehabilitation exercises done in a home setting. So, after 

every few days or weeks as per physician’s instructions, the patient will first wear the 

setup on their good arm and perform specific movements and then repeat the process on 

the stroke arm. The results can be used by physician to determine if any improvement has 

been made. This system can give useful data such as the total distance travelled during 

the movement, time taken and the angular speed. 

4.1 Transmission delay 

Figure 4.1 shows the transmission delay as the time taken for the sensor orientation 

data to be acquired from the IMU, transmitted over Wi-Fi and be available for use in 

analysis. As mentioned before this time calculation is possible because in every message 

of a sensor node we embedded a time stamp. This timestamp together with the receive 

time stamp can be used to calculate the transmission time or transmission delay in 

between consecutive messages received. Figure 4.1 shows a graph of transmission delays 

for several messages from the sensor nodes. It can be seen from the graph that the 

maximum delay is 0.2397 seconds, minimum delay is 0.0212 seconds and average delay 

is 0.0894 seconds. In the first prototype the I2C expander took 0.01 seconds to multiplex 

between each sensor. Therefore, a further delay of 0.02 seconds was being added which 

was increasing the average delay. Therefore, the modular sensor nodes are faster since 

there is no need for multiplexing.  
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Figure 4.1: Transmission Delay in Communication 

In the worst-case scenario, we will see the result of the arm movement about 0.2 

seconds after the movement has taken place. And on average the delay less than 0.1 

seconds which is almost negligible and acceptable for our purpose. 

4.2 Transmission Frequency 

Transmission frequency was calculated by taking the time taken to transmit ten 

messages from the sensor node to the computer. This time was then divided by ten to get 

the transmission time for one message and then the frequency is 1

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑡𝑖𝑚𝑒
 . Figure 

4.2 is the transmission frequency graph.  

 

Figure 4.2: Frequency of Transmission from Sensor Node 
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Maximum frequency achieved is 87.72 Hz, minimum frequency noted is 81.97 Hz and 

the average transmission frequency is 84.86 Hz. This means that on average the arm 

movement is sampled 84 times in one second. Since our purpose is to track the arm 

movements of a stroke patient this frequency is more than enough. Since, normal arm 

movement speed of a healthy person is not fast enough to lead to a loss of data at this 

sampling frequency. Therefore, if the frequency of transmission is enough for the normal 

arm it is more than enough for a stroke affected arm.  

4.3 Tracking ability 

4.3.1 Arm raised from side to front 

In this experiment the starting position of the human arm with the sensor nodes 

attached was vertical and by the side. The started position of the end effector or wrist joint 

is coordinates (0,0,-0.72) and this is because the length of the arm from shoulder to wrist 

is 0.72 m and the Z axis of our system is perpendicular to the ground. Then the arm was 

raised steadily to the front through a shoulder rotation of approximately 90 degrees. The 

movement to perform is the shoulder extension (figure 4.3) of close to 90 degrees. Figure 

4.4 shows the results of the arm tracking as viewed from the X axis or the side. The red 

lines show the arm positions at intervals of time. The red lines connect the shoulder joint 

with the elbow position and the wrist position. The origin denotes the shoulder joint which 

is the reference point for the elbow and wrist positions. The blue line shows the path taken 

by the end-effector or the wrist joint. As can be seen the system can track linear 

movements like the arm raise fairly accurately. 

 

Figure 4.3: Shoulder Flexion and Extension 
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Figure 4.4: Tracking Arm Raised (Side View) 

 

4.3.2 Arm raised to overhead 

The previous experiment was repeated with the arm being raised almost two thirds of the 

way overhead. Figure 4.5 shows the results of the arm tracking. The results can be seen 

tracing an arc as the human arm moved. This is as expected. As the arm moved past 90 

degrees the elbow joint started to flex which resulted in the wrist position and elbow 

position to no longer be parallel with reference to the shoulder joint. This can also be seen 

in figure 4.5.  

 

Figure 4.5: Tracking Arm Raised more than half way (Side View) 
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4.3.3 Elbow flexion 

The figure 4.6 shows the result of the tracking algorithm as it tracks the elbow flexing 

through almost 90 degrees from the side (X axis). The arm started with the arm vertical 

by the side. Then as the elbow was flexed the elbow joint slowly moved back a small 

amount and a bit outwards laterally similar to a bicep curl. This can be seen in the figure 

as the elbow position in the middle of the figure as moving back while the wrist position 

is shown to be tracing an arc. Figure 4.7 shows this movement more clearly. 

 

Figure 4.6: Tracking Elbow Flexion (Side View) 

 

Figure 4.7: Elbow Flexion (Back View) 
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The view point in figure 4.7 is as seen from the Y axis or from behind the elbow. The 

blue line again denotes the wrist positions. The green line denotes the elbow positions. 

As can be seen the elbow joint and wrist joints move to the side slightly as the elbow joint 

is flexed and wrist joint moves forward as well. 

4.3.4 Elbow flexion and shoulder lateral and medial rotations 

In this experiment the elbow was again flexed about almost 90 degrees and then the 

shoulder joint was rotated about the Y axis which is also called lateral or medial rotation 

as shown in figure 4.8. 

 

Figure 4.8: Shoulder Medial and Lateral Rotations 

The results of the arm tracking algorithm can be seen in figure 4.9. This view is from 

the side or X axis. As can be seen from the figure when the elbow is flexed the wrist 

position follows an arc as shown by the blue line in the figure. Once the flexion is 

complete the shoulder joint goes through a medial rotation which moves the elbow and 

wrist joint side to side. This can be seen in figure 4.10 which shows the movement from 

the Y axis or from behind the elbow. The elbow joint positions and wrist positions can be 

seen in the green and blue lines respectively. Once the medial rotation is done the arm is 

brought back down to starting position. 
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Figure 4.9: Elbow flexion and Shoulder Medial and Lateral Rotations (Side View) 

 

 

Figure 4.10: Elbow Flexion and Shoulder Rotations (Back View) 

 

4.3.5 Tracing a triangle in air 

This experiment although not necessary for the scope of our purpose, it was done to 

demonstrate a general tracking ability of this system. In this experiment the arm was 

raised from start position which is vertically by side of the body though about 90 degrees 

and then a rough triangle path was followed after which the arm was lowered. Figure 4.11 

shows the arm positions tracked by the wearable sensor nodes. The view is from the front 

which is the Y axis. 
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Figure 4.11: Making a Triangle in air (a) With arm positions shown (b) With end 
effector positions shown only 

As can be seen in the figure the virtual arm started from coordinates (0,0,0.72) or point 

(1) marked in the Figure 4.11 (b) and was raised via the shoulder joint to the front which 

is point (2). Then a rough triangular shape was traced in air which is from point (2) to (6), 

after which the virtual arm is lowered. This demonstrates basic tracking abilities of the 

system in which the vertical and horizontal extension and flexion of the shoulder joint is 

captured with acceptable accuracy. 

4.4 Accuracy of Tracking Distance 

In this experiment the distance measuring capability of the system was tested. The 

system can track distance travelled as well as the time taken by the exercise. Three tests 

were conducted.  

In the first test the human arm was extended from side to front. Figure 4.12 (a) shows 

the path followed by the arm on paper. This was achieved by standing next to the paper 

and moving the arm while holding a marker. The arc length or the actual distance traced 

by the wrist joint was 1.19 m.  
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Figure 4.12: Tracking Shoulder Flexion (a) Reference Path to Follow (b - c) Tracking 
Algorithm Output for Three Iterations 

This experiment was repeated three times and Figures 4.12 (b) to (d) show the results 

of the arm tracking algorithm. The average distance moved by the end-effector across the 

three experiments as calculated by the algorithm is 1.49 m. This gives an accuracy of 80 

percent.  

In the second test a parallelogram of perimeter 0.9 meters was traced by the human 

arm wearing the sensor nodes. Figure 4.13 shows the results of the tracking algorithm. 

 

Figure 4.13: Tracing a Parallelogram (a) Reference Parallelogram (b) Tracing 
Algorithm Output 
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The perimeter of the rectangle measured by the algorithm was 1.24 meters and the time 

taken to do this was 11.7 seconds. This time is calculated using the receive times of the 

messages from the sensor nodes. As can be seen the outline traced is very rough. This 

was due to unsteady hand movement while tracing with an out stretched arm. 

Nevertheless, the system achieved an accuracy of around 72 percent in this test.  

In the third test the outline of a cylinder of radius 0.12 meters was traced by the human 

arm with the sensor nodes. Expected should be a circle of radius 0.12 meters. Figure 4.14 

shows the results of the tracking algorithm. 

 

Figure 4.14: Tracing the outside of a Cylinder (a) Reference Circle Outline (b) Tracing 
Algorithm Output 

 

The result shows a very rough circle. The reason being that the straightened human 

arm was unsteady while tracing the outline. And the medial rotation about the shoulder 

may also account for some of the error. Tracing was done by moving the closed fist 

around the surface of the cylinder. This led to a shaky outline of the cylinder. The 

approximate radius of the traced circle after accounting for the offset of the sensor by the 

fist is 0.21 meters. Time taken to complete this test was 12.6 second. Once again this time 

is calculated using the receive times of the messages from the sensor nodes. So, for this 

case the accuracy is 60 percent.  
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Given the accuracy in the second and third test are a bit low which can be improved, 

the tests were outside the scope of the intended purpose. The intended purpose is the range 

of motion tests which usually involve arm movement in a single direction like the first 

test which has acceptable accuracy. 

4.5 Speed test 

This experiment was conducted to show the tracking results when the arm is moved at 

increasing speed. The arm again started vertical and hanging by the side. Then the arm 

was raised to the front. This movement was repeated three times at increasing arm 

movement speed. The first movement is considered as the reference speed and the 

subsequent movements are faster than this reference movement. The angular speed was 

calculated by the algorithm using Eq. (4.1). 

  𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑆𝑝𝑒𝑒𝑑 =  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑏𝑦 𝑒𝑛𝑑−𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟

𝐴𝑟𝑚𝐿𝑒𝑛𝑔𝑡ℎ ∗  𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 
                      (4.1) 

Figure 4.15 shows the results of the tracking algorithm. 

 

Figure 4.15: Shoulder Flexion at different speeds 
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 The actual speed was calculated by physically measuring the total angle the arm 

was rotated and then dividing it by the time taken for the movement. This is shown in Eq. 

(4.2). 

𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑆𝑝𝑒𝑒𝑑 =  
𝐴𝑐𝑢𝑎𝑙 𝐴𝑛𝑔𝑙𝑒 𝑜𝑓 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡
                       (4.2) 

As can be seen from the results that at lower speeds the resolution of the result is 

very fine. The resolution decreases at increasing speeds. Nevertheless, the resolution of 

tracking is enough to make sense of the movement. This is enough for our purpose where 

the stroke patient is expected to conduct these movements at a normal pace. 

4.6 Limitations 

As mentioned in the previous section the differentiable range of motion of the Y axis 

of the IMU sensor node is limited to theoretically 180 degrees which is -90° to 90°. But 

depending on the start orientation and positioning of the sensor node the range of motion 

can be even more limited. We assigned this axis for the medial and lateral rotation (figure 

4.8) of the shoulder since the stroke rehabilitation exercises use less of this rotation and 

more of the other rotations.  

Another limitation with our sensor node design is that our sensor node is thick. The 

reason being that since this was intended as a prototype through hole components were 

used which have larger dimensions than SMD components. This causes the IMU sensor 

to be slightly elevated from the mount point due to the other components being 

underneath. This causes un-wanted motion in the case of elbow flexion and shoulder 

lateral and medial rotations which give an imprecision in the results.  
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Chapter 5: Conclusion 

 

5.1 Summary 

 The first objective of this project was to design a modular IMU based wireless 

sensor system. The IMU sensor namely BNO055 was interfaced with the Node MCU 

micro-controller. The power source for this was a 9-volt battery together with a voltage 

regulator to regulate the voltage at 5 volts for the sensor node. All these components were 

soldered onto a double-sided PCB and Velcro straps were attached to make the node 

wearable. Two of these sensor nodes were built. The Node MCU micro-controller has a 

built in Wi-Fi chip that was used to connect to a computer via a Wi-Fi router. Network 

analysis results show a high frequency of message transmission and low transmission 

delay for our developed system. These results make our wireless sensor network system 

suitable for human arm movement tracking. 

 The second objective of this project was to develop a human arm position tracking 

algorithm. When the sensor nodes are switched on, they are connected to the computer 

via a Wi-Fi router. A program written in Python receives and deciphers the messages sent 

by the sensor nodes. To ensure high frequency of transmission from the sensor nodes all 

the analysis is done on the computer using Python. To track the human arm movement 

using the orientation data from the sensor nodes, a mathematical model was developed 

for the arm using Denavit-Hartenberg convention. Using this model and data from the 

sensor nodes on the arm, Forward Kinematics was performed on the data. The results of 

all the various movement tests show that this sensor system can track arm movements 

well for two of the three degrees of freedom for the shoulder joint. The lateral and medial 

rotations of the shoulder become erroneous past a certain point during rotation. This is 

due to the limited range of motion issue with the Y axis output of the BNO055 IMU 

sensor. For the purpose of tracking range of motion exercises for stroke patients, this issue 
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is mitigated because the shoulder lateral and medial rotations are kept to the minimum. 

The accuracy of tracking is about 80 percent for basic arm movements such as shoulder 

and elbow flexion and contraction and shoulder abduction and adduction. Accuracy for 

tracing complicated shapes is between 60 and 70 percent which is primarily due to human 

error in manually tracing objects and due to the limitations in the shoulder medial and 

lateral rotations.  

5.2 Future Recommendations 

 The dimensions of the sensor nodes can be reduced by making a custom printed 

circuit board (PCB) with the IMU sensor chip along with the micro-controller chip and 

voltage regulator and complementary electronics. A battery with a smaller form factor 

like a Lithium polymer battery can be used. These changes will make the sensor node 

thinner which will make the IMU sensor attach more securely to the arm and prevent error 

from shaking and slipping. 

 A higher accuracy IMU can also be used. Also, the DH parameters can be 

converted to use quaternions which are more accurate. Quaternions are better because 

they avoid problems like the gimbal lock which is linked to rotations using Euler angles. 

 Artificial Intelligence can also be implemented. A neural network model can be 

trained with a large dataset of arm movements so that the AI can recognise what 

movement the sensor node wearer has performed. An AI model trained with dataset of 

stroke patient arm movements can also be used to identify the type of stroke suffered by 

the patient and its severity. This can be used to relay diagnostic data to a doctor in the 

case that the doctor and patient are geographically separated.  

 Automatic data logging can also be implemented later. This can be done by using 

accelerometer data to determine if the arm has moved. If so, data logging can start and 

stop when the arm stops moving. 
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