
MINING STACK OVERFLOW TO RECOMMEND JAVA 
API CLASSES USING WORD EMBEDDING AND TOPIC 

MODELLING 

 

 

 

 

LEE WAI KEAT 

 

 

 

 

 

FACULTY OF COMPUTER SCIENCE AND 
INFORMATION TECHNOLOGY 

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

 
  
 2019

Univ
ers

ity
 of

 M
ala

ya



MINING STACK OVERFLOW TO RECOMMEND 
JAVA API CLASSES USING WORD EMBEDDING AND 

TOPIC MODELLING 
 

 

 

 

LEE WAI KEAT 

 

 
DISSERTATION SUBMITTED IN PARTIAL 

FULFILMENT OF THE REQUIREMENTS FOR THE 
DEGREE OF MASTER OF SOFTWARE ENGINEERING 

(SOFTWARE TECHNOLOGY) 

 

FACULTY OF COMPUTER SCIENCE AND 
INFORMATION TECHNOLOGY 

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

 
 

2019 
Univ

ers
ity

 of
 M

ala
ya



ii 

UNIVERSITY OF MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate:    (I.C/Passport No:   ) 

Matric No:   

Name of Degree:  

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): 

Field of Study: 

    I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature  Date: 

Subscribed and solemnly declared before, 

Witness’s Signature  Date: 

Name: 

Designation:

Univ
ers

ity
 of

 M
ala

ya



iii 

MINING STACK OVERFLOW TO RECOMMEND JAVA API CLASSES 

USING WORD EMBEDDING AND TOPIC MODELLING 

ABSTRACT 

To reduce development effort, today’s software development technologies rely heavily 

on reusable components provided by Application Programming Interfaces (APIs). 

However, studies have found that APIs are of poor usability and programmers find it 

difficult to use them. A number of factors affect the usability and learning of an API. The 

most critical one is the API documentation. Therefore, it is unsurprising that developers 

look for alternative information sources to learn APIs. One such sources is the crowd 

documentation of APIs that are available in Community Question and Answer (CQA) 

websites, such as Stack Overflow (SO). Studies have shown that the large volume of data 

in SO make it suitable for data mining and analytics for APIs. Following that, this research 

aims to: 1) identify Java programmers’ common Java programming problems based on 

their level of expertise, by analyzing Java-related duplicate discussion posts in SO (Study 

1); 2) to address the lexical gap between natural language queries and Java APIs 

documentation, and the lexical gap between natural language queries and the Java 

programming codes, by designing and implementing an approach for recommending Java 

API classes for programmers’ natural language queries using data mined from SO (Study 

2). Existing studies have found that SO questions/discussion posts have a wide coverage 

on Java API.  Java was chosen in this research as it is a long established and popular 

programming language. Study 1 found that the novice group is the top contributor and 

the expert group contributes significantly lower to duplicate questions asked in SO, and 

the most common problem Java programmers face is understanding and/or fixing errors 

but expert programmers’ question more about the reasons behind some Java 

programming concepts. The proposed approach in Study 2 employs Natural Language 

Processing techniques, namely, word embedding and topic modelling, and heuristic rules 
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to produce the Java API classes recommendations. The benchmarking of the performance 

of the proposed approach against existing state-of-the-art approach using four metrics 

(Top-K accuracy, Mean Recall @ K, Mean Reciprocal Rank @ K and Mean Average 

Precision @ K) shows that the proposed approach performs better. The proposed 

approach was implemented in a Java API classes recommender running on a server and 

an Eclipse IDE’s plug-in (APIRecJ) was implemented as the front-end to access the 

recommender’s functionalities. The results of the user evaluation study show that 

APIRecJ is generally useful in searching for Java API classes relevant to the 

programmers’ queries. In summary, the contribution of this research are:  a set of common 

Java programming problems and Java API classes that Java programmers struggle with, 

that Java educators and learning resources can devote more attention to; an approach for 

recommending relevant Java API classes for programmers’ queries that outperforms 

existing approaches; a Java API classes recommender; and an Eclipse IDE’s plug-in that 

provides assistance on Java API classes relevant to the programmers’ queries within the 

IDE. 

Keywords: Mining Stack Overflow, Java API Class Recommender, Word Embedding, 

Topic Modelling 
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MELOMBONG STACK OVERFLOW UNTUK MENGESYORKAN KELAS API 

JAVA DENGAN MENGGUNAKAN PENYEMATAN PERKATAAN DAN 

PEMODELAN TOPIK 

ABSTRAK 

Untuk meringankan beban dalam membina aplikasi perisian, cara untuk membina 

aplikasi perisian pada zaman ini adalah menggunakan komponen yang boleh diguna 

semula melalui Application Programming Interface (API). Walaubagaimanapun, 

kebanyakan kajian mendapati bahawa API sukar diguna oleh pengatur cara. Terdapat 

pelbagai faktor menyebabkan API sukar diguna dan dipelajari. Faktor yang terutama ialah 

dokumentasi API. Oleh sebab itu, pengatur cara mencari sumber maklumat alternatif 

untuk mempelajari API iaitu melalui laman web yang berkaitan dengan komuniti soal dan 

jawab, seperti Stack Overflow (SO). Kajian menunjukkan bahawa jumlah data yang besar 

dalam SO menjadikannya sesuai untuk perlombongan data dan analisis untuk API. 

Dengan itu, kajian ini bertujuan untuk: 1) mengenal pasti masalah pengaturcaraan umum 

di kalangan pengatur cara Java berdasarkan tahap kepakaran mereka, dengan 

menganalisis duplikasi perbincangan yang berkaitan dengan Java dalam SO (Kajian 1); 

2) menangani jurang leksikal antara pertanyaan bahasa semulajadi dan dokumentasi API, 

dan jurang leksikal antara pertanyaan bahasa semulajadi dan kod pengaturcaraan Java, 

dengan mereka bentuk dan melaksanakan kaedah untuk mengesyorkan kelas API Java 

untuk pertanyaan bahasa semulajadi pengatur cara menggunakan data SO (Kajian 2). 

Kajian dahulu telah mendapati bahawa soalan atau perbincangan dalam SO mempunyai 

liputan yang luas dalam Java API. Oleh itu, Java telah dipilih dalam kajian ini kerana ia 

adalah bahasa pengaturcaraan yang mantap dan popular. Kajian 1 mendapati bahawa 

kumpulan pemula adalah penyumbang utama kepada soalan-soalan yang ditanyakan 

dalam SO dan kumpulan pakar menyumbang jauh lebih rendah daripada  kumpulan 

pemula. Masalah yang paling biasa dihadapi oleh pengaturcara Java adalah memahami 

Univ
ers

ity
 of

 M
ala

ya



vi 

atau membetulkan kesilapan tetapi pengaturcara yang berpengalaman mempersoalkan 

lebih lanjut mengenai sebab di sebalik beberapa konsep pengaturcaraan Java. Kaedah 

yang dicadangkan dalam Kajian 2 menggunakan teknik pemprosesan bahasa semula jadi, 

iaitu, kata penyematan perkataan dan pemodelan topik, dan peraturan heuristik untuk 

menghasilkan cadangan kelas API. Kajian 2 juga menggunakan empat metrik (Top-K 

accuracy, Mean Recall @ K, Mean Reciprocal Rank @ K dan Mean Average Precision 

@ K) untuk melaksanakan penandaarasan prestasi terhadap kaedah yang dicadangkan 

dan kaedah yang sedia ada. Kaedah yang dicadangkan telah menghasilkan keputusan 

dengan lebih baik. Kaedah yang dicadangkan dilaksanakan dalam pengesyorkan kelas 

API yang berfungsi sebagai pelayan dan pemalam untuk pembangunan persekitaran 

bersepadu Eclipse (APIRecJ) berfungsi sebagai antaramuka untuk mengakses fungsi 

pelayan. Hasil kajian penilaian pengguna menunjukkan bahwa APIRecJ bermanfaat 

dalam mencari kelas API Java yang relevan dengan pertanyaan para programmer. Secara 

ringkas, sumbangan penyelidikan ini termasuk: satu set masalah pemprograman Java 

biasa dan kelas API Java yang didapati sukar kepada para pengatur cara Java dan 

memerlukan perhatian daripada para pengajar dan sumber belajar Java; satu kaedah untuk 

mengesyorkan kelas API Java yang berkaitan untuk pertanyaan pengaturcara; pengesyor 

kelas API Java; dan APIRecJ yang memberikan bantuan dengan mengesyor kelas API 

Java yang berkaitan dengan pertanyaan pengatur cara dalam pembangunan persekitaran 

bersepadu Eclipse. 

 

Keywords: Melombong Stack Overflow, Mengesyorkan Kelas API Java, Penyematan 

Perkataan, Pemodelan Topik. 
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CHAPTER 1: INTRODUCTION 

The use of Application Programming Interfaces (APIs) in software development 

projects has become inevitable. However, a number of factors affected the usability of an 

API, and it has been found that API documentation is the most severe obstacle faced by 

developers in learning and using a new API. One of the contributing reasons is the lexical 

gap between the programmers’ expressions of their programming problem queries and 

the descriptions used in the official APIs documentation. The increasing popularity of 

Community Question and Answer (CQA) websites such as Stack Overflow (SO) (2019b) 

shows that developers have turned to crowd API documentation to seek help for their 

programming problems. 

Following that, this research leverages SO’s crowd documentation of Java API to 

investigate what are the most common programming problems faced by Java 

programmers, and to address the issue of lexical gap between natural language queries 

and Java API documentation, and lexical gap between the natural language queries and 

the programming codes, by developing an approach that employs Natural Language 

Processing (NLP) techniques (in particular, word embedding and topic modelling) to 

recommend Java API classes for the developers’ programming queries. 

This chapter presents the background that motivates this research, problem 

statement, research objectives, research questions, and scope of the research. It also 

outlines the research methodology, research contributions and the remaining chapters of 

this thesis. 
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1.1 Background and Motivation 

The proliferation of computers and mobile devices has opened up programming to 

the mainstream. Nowadays, anyone interested in developing software can learn 

programming by using resources available online. To reduce development effort, today’s 

software development technologies rely heavily on reusable components provided by 

Application Programming Interfaces (APIs) (Robillard, 2009). APIs include frameworks, 

libraries, toolkits and software development kits (Myers & Stylos, 2016). The core 

advantage of using APIs is developers could reuse or extend code done by others without 

the need to start from scratch (Myers & Stylos, 2016) 

There are a lot of publicly available API resources for programmer, such as Java 

Software Development Kit (JDK) which contains the official APIs for the Java 

programming language. As JDK is continually being developed and improved from time 

to time, the Java API has become larger and more diversified as more features are 

included in the newer versions. For example, JDK 6 has 3793 classes, JDK 7 has 4024 

classes and JDK 8 has 4240 classes (2010) . This could result in poor API usability, which 

means, the API is difficult to use (Robillard, 2009).   

API usability not only related to the learnability of APIs unfamiliar to developers 

but also includes providing the appropriate functionality and ways to access it (Myers & 

Stylos, 2016).  A few studies had investigated the reasons of why APIs are difficult to use 

and identified what could be done to address the issues. For example, there are studies on 

API usability and API learning obstacles (Myers & Stylos, 2016; Robillard, 2009; 

Robillard & Deline, 2011).  

There is a variety of factors that impact API usability: the complexity of the API, 

naming convention, support of caller’s perspective, documentation, API consistency and 

so on (Zibran, Eishita, & Roy, 2011). The complexity of an API is related to its size; the 
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larger the size, the higher the complexity and the lower the usability. In terms of API 

naming convention, descriptive names are preferred over abbreviated names (Zibran et 

al., 2011). To support caller’s perspective, API should always explicitly show how to 

invoke functions or features. As for the API documentation, it should always be clear, 

complete and up to date. At the same time, API should be designed consistently by 

adhering to common conventions.           

Among the aforementioned factors, API documentation plays an essential role in 

API usability. A survey conducted by Robillard and Deline (2011) found that the most 

severe obstacle faced by developers learning a new API is the API documentation. This 

could be due to most programmers learn APIs by reading the corresponding 

documentations, but these documentations have a number of limitations in supporting the 

learning of APIs: insufficient examples, incomplete content, lack of reference on how to 

use the API to achieve specific tasks, not in desired format, lack of documentation on 

high-level aspects of the API such as design or rationale (Robillard, 2009). 

Due to the limitation of APIs documentation, it is unsurprising that developers look 

for alternative information sources to learn APIs. One of the sources is Community 

Question and Answer (CQA) websites, such as Stack Overflow (SO) (Parnin, Treude, 

Grammel, & Storey, 2012).  

 

1.2 Problem Statement 

Using API is not only a difficult task for novice programmers, even experienced 

developers could find it difficult (Myers & Stylos, 2016). In the area of APIs 

documentation, there exist three types of gaps or mismatches between the programmers’ 

expressions of their programming problem queries and the descriptions used in official 
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APIs documentation: the lexical gap between the programmers’ natural language queries 

and the APIs documentation, the lexical gap between the programmers’ natural language 

queries and programming code, and the Task-API knowledge gap. 

Generally, being new to a programming language, programmers might not know 

the right terms to use to search for relevant API elements (such as class, interface, or 

method) from official API documentations. This could be due to a lexical gap or mismatch 

between the terms programmers use in their natural language queries (English language) 

and the terms used in API documentations (programming languages) (Ye, Shen, Ma, 

Bunescu, & Liu, 2016).  Since different terms or words could be used to express the same 

meaning, the terms programmers use to search could be different from the terms used in 

API documentations even though both are referring to the same thing, causing a futile 

search. 

Moreover, Java programmers with insufficient knowledge in programming 

terminology such as API classes possibly could not describe their programming problems 

properly. They spend a lot of effort in searching for explanations for unknown 

terminologies and explanations for exceptions or error messages to solve their program 

errors (Xia et al., 2017).   

Besides learning about APIs from APIs documentation, several studies have 

discovered that programmers often spend their time in searching for reusable code 

examples by using web search engines or code search engines (Bajracharya & Lopes, 

2012; Rahman, Roy, & Lo, 2018; Xia et al., 2017). One contributing reason is APIs 

documentation do not provide sufficient code usage examples (Parnin et al., 

2012).However, traditional web search engines or code search engines usually perform 

poorly with natural language queries that use natural terms only, compare to queries that 

use code terms (Bajracharya & Lopes, 2012). A term is a natural term if it contains only 
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the alphabets from the English language and it can be found in a dictionary of English 

words, whereas, code terms also contain numerical symbols or other symbols and could 

not be found in a English dictionary (Bajracharya & Lopes, 2012). This could be regarded 

as a lexical gap between natural language queries and programming source code. 

Besides that, there exists a Task-API knowledge gap between programmers’ task 

descriptions and official API documentations (Huang, Xia, Xing, Lo, & Wang, 2018). 

The API documentations focus on describing the API structures and functionalities and 

leave out the information on their purposes which could be matched to the programmers’ 

tasks descriptions to return API elements relevant to the tasks. 

 

1.3 Research Questions 

The research questions (RQs) for this research are: 

RQ1:  What are Java programmers’ common Java programming problems?  

RQ2: How to design an approach that recommends relevant Java API classes for 

Java programming questions by mining discussion posts in SO? 

RQ3: What is the performance of the approach? 

RQ4:  How to develop a plug-in for an Integrated Development Environment 

(IDE) to serve as the front-end that interact with the Java API class 

recommender? 

RQ5:  How useful is the plug-in?  
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1.4 Research Objectives 

 This research aims to identify the common programming problems faced by Java 

programmers, and to address the first two lexical gaps mentioned in the previous section, 

namely, the lexical gap between natural language queries and Java APIs documentation, 

and the lexical gap between natural language queries and the Java programming codes, 

by using data mined from Stack Overflow (SO). The reasons of choosing Java and SO 

are given in Section 1.5. 

The specific research objectives (ROs) are: 

RO1: To identify Java programmers’ common Java programming problems 

based on their level of expertise, by analyzing Java-related duplicate 

discussion posts in SO.  

This objective involves mining and analyzing duplicate Java questions/ discussion 

posts in SO. Since duplicate questions in SO are in fact the same questions that different 

programmers repeatedly asked in different contexts, they can be used as surrogates to 

common questions asked in SO. These common questions are in fact common Java 

programming problems that Java programmers struggle with. The level of expertise is 

determined based on the askers’ reputation scores in SO. 

 

RO2: To develop an approach that recommends relevant Java API classes for 

Java programming questions by mining discussion posts in SO. 

The proposed approach employs NLP techniques, namely, word embedding and topic 

modelling, on discussion posts extracted from SO to produce the Java API classes 

recommendations. The proposed approach is implemented in a Java API class 
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recommender to recommend Java API classes in the form of a ranked-list for the 

respective user’s query or programming question described in natural language. 

RO3: To evaluate the performance of the approach. 

Performance metrics from other existing studies are employed to evaluate the 

performance of the proposed approach. 

RO4: To develop a plug-in for an IDE to serve as the front-end to the proposed 

approach implemented in the Java API class recommender. 

The IDE’s plug-in serves as the front-end that provides a user interface for 

programmers to interact with the Java API class recommender. 

RO5: To evaluate the usefulness of the plug-in. 

A user evaluation study where participants were recruited to use the plug-in was used 

to evaluate the usefulness of the plug-in.     

 

1.5 Scope of Research 

Java programming language is an object-oriented, class-based and architecture 

neutral programming language which works similarly to C and C++ programming 

languages but less complicated (Gosling & McGilton, 1995). In the 2019 SO developers 

survey, Java was ranked the 5th most popular technology, C was ranked the 11th and C++ 

was ranked the 9th (2019a).  Since 2008, the number of Java questions been asked in SO 

yearly is also higher compared to C and C++ questions (2019c). In addition, Java 

programming language is a long established and a popular programming language for 

many years (2019).  
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CQA websites have gained a lot of popularity recently due to the development of 

web technologies that improve the interactions between Internet users. A popular example 

is Stack Exchange (2019c), which is a network of over a hundred of CQA websites 

covering different topics. SO is the earliest website created in Stack Exchange network 

in 2008 and has become the most popular computer programming related website. Since 

its inception, SO has been providing a knowledge sharing platform between 

inexperienced programmers and experienced programmers through the asking and 

answering of numerous programming questions. As of 6 July 2019, SO has 18 million 

questions asked with 71% answered, 27 million answers, 11 million registered users, 9.2 

million visits per day, and a traffic of 6.2k questions asked daily (2019d). The massive 

volume of crowd-generated data in SO makes it a suitable repository for data mining and 

analytics of crowd documentation of APIs (Parnin et al., 2012).  

Some existing studies have shown that SO questions/posts have a wide coverage 

on Java API. The study by Parnin et al. (2012) shows that questions in SO have covered 

77% of the total Java API classes. Furthermore, a recent work by Rahman, Roy, and Lo 

(2016) shows that about 65% of the classes from each of the 11 core Java API packages 

of Standard Java Edition 6 (2019) were used in Java posts in SO. The core Java API 

packages are: java.lang, java.util, java.io, java.math, java.nio, java.applet, java.net, 

java.security, java.awt, java.sql and javax.swing.  

The popularity of the Java programming language, the huge number of Java 

questions available in SO and the wide coverage on Java API in SO posts, motivated this 

research to focus on the Java programming language and on mining Java questions and 

associated Java API from SO. 
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1.6 Research Methodology 

This section gives a brief explanation of the research methodology adopted in this 

study. The full details can be found in Chapter 3. This research started with a literature 

review on APIs documentation usability, limitations of the official or conventional APIs 

documentation, crowd documentation and its benefits, existing work on finding common 

Java Programming problems, recommendation systems in Software Engineering, existing 

work on API recommenders. Besides that, the review also included data mining in SO 

and popular data mining techniques. 

From the research gaps identified from the literature review, the research 

objectives and research questions were formulated. To address RO1, duplicate Java 

questions in SO were mined and analyzed to identify Java programming questions that 

were repeatedly asked as this would give insights to common Java programming 

problems faced by Java programmers. 

To address RO2, an approach that recommends relevant Java API classes for 

programming questions or queries described in natural language, was designed and 

implemented by making use of NLP techniques and discussion posts extracted from SO. 

The performance of the proposed approach was benchmarked (RO3) against existing 

work by using four established metrics, namely, Top-10 Accuracy, Mean Recall @ 10 

(MR@10), Mean Reciprocal Rank @ 10 (MRR@10) and Mean Average Precision @ 10 

(MAP@10).  

Subsequently, a plug-in for Eclipse IDE was developed to serve as the front-end 

to the proposed approach implemented in the Java API class recommender (RO4). The 

usefulness of the plug-in was evaluated in a user evaluation study (RO5). 
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The results of the benchmarking of the proposed approach and the user evaluation 

of the plug-in were analyzed and findings were reported. In addition, the common Java 

Programming problems identified were also reported.  

 

1.7 Research Contributions 

The key contributions of this research are:   

1. Common Java programming problems encountered by programmers of 

different levels of expertise, identified from SO, the most popular computer 

programming related website. In addition, the top Java API classes related to 

these common Java programming problems were also found. These provide 

insights on common Java programming problems/topics and Java API classes 

that Java programmers struggle with. Java educators and learning resources 

can devote more attention to these areas (for example, understanding and 

fixing errors) to help learners in picking up the required knowledge and skills. 

2. An approach that employs heuristic rules, word embedding and topic 

modelling techniques in recommending relevant Java API classes for Java 

programming questions described in natural language was developed. The 

approach outperforms existing approaches in terms of four performance 

metrics, by achieving 84.83% in Top-10 Accuracy, 0.58 in MRR@10, 50.68% 

in MAP@10 and 58.76% in MAP@10. These results demonstrate that the 

proposed approach has improved the existing state-of-the-art approach by 

3.22% in Top-10 Accuracy, 0.03 in MRR@10, 2.83% in MAP@10 and by 

0.89% in MR@10. 

3. A Java API class recommender that incorporated the proposed approach was 

developed. 
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4. A plug-in for Eclipse IDE that serves as front-end to the Java API class 

recommender was developed. The use of this plug-in when writing Java 

programs in Eclipse IDE allows the programmers to describe their Java 

programming problems in natural language and search for Java API classes 

that are relevant to the programming problems and view similar questions that 

have been asked in SO. All these actions can be performed within the Eclipse 

IDE without leaving the IDE.  The user evaluation of the plug-in shows that it 

is a useful tool for programmers particularly in answering questions that 

search for relevant Java API classes. 

 

1.8 Thesis Organization 

This thesis consists of eight chapters. The remaining of this thesis is structured into 

the chapters described below:  

Chapter 2 presents the literature review performed by this research. This includes 

APIs documentation usability, limitations of the official or conventional APIs 

documentation, crowd documentation and its benefits, existing work on finding common 

Java Programming problems, recommendation systems in Software Engineering, existing 

work on API recommenders. Besides that, this chapter also provides an overview of data 

mining in SO and popular data mining techniques. 

Chapter 3 gives the full details of the research methodology adopted in this research.  

It describes the key steps conducted in this research to achieve the research objectives, 

and how the key steps were conducted in terms of techniques, tools, technologies used, 

where applicable. 
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Chapter 4 presents the study on the common Java programming problems by mining 

discussion posts from SO (Study 1).  It articulates the relevant database structure in SO, 

data extraction, and analysis conducted to identify the common Java programming 

problems.  It also includes the results and comparison with related work. 

Chapter 5 describes the proposed approach for recommending Java API classes. It 

describes the two phases involved, with the steps in each phase, and the techniques 

employed. This chapter also explains the implementation of a Java API class 

recommender that incorporates the proposed approach. The Java API class recommender 

runs on a server and serves as the back-end that processes a programmer’s query and 

returns the recommended Java API classes. It also describes the implementation of an 

Eclipse’s plug-in that serves as the front-end to the back-end recommender. Take note 

that Study 2 refers to all the things related to the proposed approach (the approach itself, 

its benchmarking, the Java API classes recommender and plug-in developed, and the user 

evaluation study conducted to evaluate the usefulness of the plug-in).  

Chapter 6 presents the benchmarking of the proposed approach against existing 

approaches. It explains the four performance metrics used, the benchmarking results, and 

comparison with existing studies.  

Chapter 7 describes the user evaluation study conducted to evaluate the usefulness 

of the plug-in. It includes the design of pilot study and user evaluation study, the results 

of both and discussion of user evaluation results. 

Chapter 8 presents the conclusion of this research.  It includes the answering of the 

research questions, a revisit of research contributions, threats to validity of the results, 

and outline possible future work. 
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CHAPTER 2: LITERATURE REVIEW 

Studies have shown the poor usability of APIs and found API documentation to be 

one of the main obstacles that affects API usability. The literature review begins with a 

critical review on the inadequacies of conventional API documentation and highlights 

how a recently-emerged API documentation style, known as, crowd documentation, can 

complement the conventional API documentation. Besides that, the literature review also 

includes existing work on finding common Java Programming problems, 

recommendation systems in software engineering, existing work on API recommenders, 

an overview of data mining in SO and popular data mining techniques, and summarizes 

the gaps found. 

 

2.1 Usability of APIs Documentation 

An API documentation is a software documentation that is designed by a small 

group of people for many potential users to refer and learn about how to use the API 

(Parnin et al., 2012). Generally, it is not an easy task to maintain API documentation as 

the documentation contains highly-structured information. If software engineers do not 

update documentation in a timely manner, information in API documentation would most 

likely become stale or obsolete (Parnin et al., 2012). Sometimes, API documentation 

could contains incorrect information such as minor typos and incorrect description, for 

instance inconsistencies between a function description and what actually the function 

does (Zibran et al., 2011).  

Moreover, it has been found that developers face a number of obstacles when 

learning new APIs, such as obstacles related to learning resources, API structure, 

developer background, technical environment or process (Robillard & Deline, 2011). 
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Among these obstacles, learning resources is the most severe obstacle and factor that 

needs to be considered when designing API documentation (a type of learning resource) 

have been identified: documentation of intent, code examples, matching APIs with 

scenarios, penetrability of the API, and format and presentation (Robillard & Deline, 

2011). 

 The first factor, documentation of intent, requires that API documentation includes 

information about the rationale behind API design decisions, and how the API is supposed 

to be used as intended by the API designers. The second factor is the complexity of code 

examples given in API documentation. Small examples showing API usage patterns that 

involves more than one method call will be more useful than single-call examples as the 

formers show how methods/classes can be used together to achieve specific goals. 

Examples should also demonstrate “best practices” for using an API. 

The third factor is matching task scenarios with specific API elements that support 

the scenarios. For example, “drawing a circle on the screen” scenario should be matched 

with the exact method that draws a circle on the screen. The fourth factor, penetrability, 

requires that the internal working of API to be made transparent or penetrable to the 

developers (such as, methods that perform multiple high-level tasks in a single operation, 

and the performance aspect), while maintaining certain opacity through encapsulation and 

information hiding.  

The last factor is the documentation format. API documentation with insufficient 

information, trivial examples showing a single method call, over emphasis on member-

level completeness rather than conceptual level, fragmented collections of hyperlinked 

pages versus coherent continuous documents, make it an undesirable resource to learn the 

API.  
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It is important to note that the factors above were derived from the obstacles that 

developers faced when learning new APIs using APIs documentation. This shows that 

there are weaknesses in APIs documentation. 

 

2.2 Crowd Documentation of APIs 

CQA websites create a socially-mediated form of software documentation, namely, 

crowd documentation, which “is a collection of web resources, where a large group of 

contributors, the crowd, curate and contribute to the collection.” (Parnin et al., 2012, p. 

3). Parnin et al. (2012) found that APIs documentation are often lack of examples and 

explanations. In contrast, crowd documentation of APIs has the advantages over official 

APIs documentation because: many code examples and explanation on API elements, 

numerous questions asked that lead to the same API elements, different opinions on the 

different solutions, votes on answers and questions, and tags for searching (Parnin et al., 

2012). An API element refers to “a named entity belonging to an API, such as a class, 

interface, or method” (Parnin et al., 2012, p. 4). 

Using crowd documentation of APIs could lower API learning curve as it is able to 

complement the insufficient API usage examples provided in APIs documentation. This 

is because crowd documentation such as SO contains knowledge that is written by many 

and read by many, for example, a question asked in SO could be answered by many people 

(Parnin et al., 2012). The mechanism of crowd documentation relies on minimal 

contributions from individual through social media, such as asking a question or 

answering a question. 

The programming questions created in SO are significantly diverse and covering 

different types of topics and technologies, for example, programming problems in 
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different languages, software algorithm, software tools and so on (2019i). An existing 

study has performed topic modelling analysis on SO questions to find insights into what 

aspects of programming are difficult to understand (Allamanis & Sutton, 2013).  Besides 

that, several studies have indicated that the large volume of data in SO make it suitable 

for data mining and analytics for APIs (Rahman et al., 2016; Rigby & Robillard, 2013; 

Subramanian & Holmes, 2013). One supporting reason is SO discussion posts contain a 

large amount of high quality source code snippets (Subramanian & Holmes, 2013).  

In fact, some of the existing studies have shown that SO questions/posts have a 

wide coverage on Java API. The study by Parnin et al. (2012) shows that questions in SO 

have covered 77% of the total Java API classes. Furthermore, a recent work by Rahman 

et al. (2016) shows that about 65% of the classes from each of the 11 core Java API 

packages of Standard Java Edition 6 (2019) were used in Java posts in SO. The core Java 

API packages are: java.lang, java.util, java.io, java.math, java.nio, java.applet, java.net, 

java.security, java.awt, java.sql and javax.swing. The findings from the two studies 

mentioned in this paragraph show that SO is the right place for this research to mine for 

questions related to Java API. 

 

2.3 Common Java Programming Problems 

Existing studies that focus on Java programming problems are mainly targeted at 

students who are enrolled in introductory programming subject or novice programmers 

who started to learns Java programming (Hristova, Misra, Rutter, & Mercuri, 2003; Mow, 

2012). These existing studies found that the most common Java programming problems 

faced by students are closely linked to programming errors such as syntax error( for 

example, confusion in using the assignment operator) (Hristova et al., 2003). Moreover, 
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the syntax error could probably lead to another common programming error, which is, 

“Variable not found”, where students fail to declare a variable (Mow, 2012). 

Other than the studies that focus on novice programmer’s Java programming 

problems, there is a recent study on common Java programming problems that focuses 

on secure coding practice. The study investigated what are popular security features being 

frequently asked, common obstacles that prevent developers from implementing secure 

code and common security vulnerabilities in Java programming (Meng, Nagy, Yao, 

Zhuang, & Arango-Argoty, 2018). Another study focuses on common problems in using 

cryptography Java API. This study identified the common cryptography tasks developers 

performed and the reasons developers having difficulties in using cryptographic 

algorithms correctly (Nadi, Krüger, Mezini, & Bodden, 2016). 

In addition, other existing work that focus on finding common problems related to 

subjects taken by students (such as design patterns, software architecture, and so on) and 

programming problems by mining SO can be found in Section 2.6. 

The review of the existing work on common Java programming problems shows 

that there is limited work in this area, particularly in terms of core Java API usage and the 

common Java programming problems faced by Java programmers of different levels of 

expertise. This research aims to address this in the first research objective.  

 

2.4 Recommendation Systems in Software Engineering  

Recommendation Systems in Software Engineering (RSSE) refers to software 

applications that recommend valuable information items for a software engineering task 

in a given context (Robillard, Walker, & Zimmermann, 2009). RSSE helps in many kinds 

of software developer activities, from code reuse to bug reporting (Robillard et al., 2009). 
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This is mainly because software engineering domain has a large information space 

comprising different sources such as project source code, project history, communication 

archives and others, causing software developers to spend a lot of time in searching for 

relevant information (Robillard et al., 2009). 

 

2.4.1 Recommended Items  

RSSE equipped with data mining techniques is popular and effective as many 

different types of information items can be recommended. Some of the information items 

(Robillard et al., 2009) are:  

Source Code within a Project: A recommender can help a developer in navigating 

the source code in one’s own project, such as by predicting which parts of the source code 

the developer would like to reuse or view, or by assisting in completing code by 

recommending methods that have been defined in the project. 

Reusable Source Code: A recommender can assist a developer to discover 

inherently reusable API elements (such as classes and methods) that can be used to 

complete a task, by ranking results containing API elements that are relevant to the 

developer’s task. 

Code Examples:  A recommender can also return reusable source code examples 

or snippets that match a developer’s requirements, to demonstrate the correct usage of 

API elements. 
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2.4.2 Steps in RSSE design  

Generally, there are four major steps in designing RSSE: pre-processing of data, 

capturing of context, producing the recommendations, and presenting the 

recommendations (Robillard et al., 2009).  

Data pre-processing is the step used to convert the raw data retrieved from data 

sources into a standardized format, for example, replacing missing values and detecting 

outliers. In designing a recommender system that uses the posts in SO, a lot of irrelevant 

information existed in the posts that are expressed in natural language and this has to be 

removed. 

Capturing of context is the step used to extract task information from a user query 

in order to produce the recommendation. For example, capturing the user’s intent of 

looking for specific source code example or API elements. 

Producing recommendations involves executing the recommendation algorithms 

to select and recommend the more relevant instead of the less relevant items. 

Presenting recommendations is the step used to summarize and present the 

recommendations to the user, for example, in the form of a ranked list of items based on 

the user’s potential interest. 

 

2.5 Existing studies on API Recommender 

This section reviews existing studies on API recommender that aim at improving 

API usability. These studies can be classified into four categories: API elements search, 

API documentation navigation, API discoverability and API invocation. It is important to 

note that some of these studies used the same term to refer to their approaches and the 
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corresponding recommender tools that they built that incorporated the approaches. For 

example, in Rahman et al. (2016), the same term “RACK” was used to refer to the 

approach and also the recommender tool.  

 

2.5.1 API Elements Search 

API elements search focuses on recommending API elements from code examples 

or snippets. Rahman et al. (2016) first discovered the limitation of existing search engines 

in searching for code examples and developed an API recommender called RACK.  RACK 

provides Top-1 search or Top-K search on API classes that match a user’s query (Rahman 

et al., 2016). In a more recent study, the creators of RACK focused on reformulating a 

user’s query with relevant API keywords for a better code search result and produced 

NLP2API tool (Rahman et al., 2018). Another recent study in this category is Huang et 

al. (2018) that focused on recommending API methods and summarizing output with 

supplementary information such as API descriptions and code examples that are related 

to a user’s query. They produced an API recommender for their study, named BIKER. 

 

2.5.2 API Documentation Navigation 

Treude, Robillard, and Dagenais (2015) is the first study that aimed to produces a 

new documentation structure by conceptualizing tasks as specific programming actions 

that have been described in the documentation. They developed a prototype named 

TaskNavigator that extracts development tasks from software documentation 

automatically and provides assistance in navigating API documentation. A field study 

proved that TaskNavigator provides meaningful and helpful solution to developers 
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compared to conventional API documentation with web page links that describe 

everything from design philosophies to the APIs (Treude et al., 2015). 

Similarly, there is another study, Zhu, Hua, Zou, Xie, and Zhao (2017) aimed to 

generate task-oriented API learning guide by using discussion threads and source code in 

SO. Their study used a similar conceptual technique as in TaskNavigator but differed 

slightly by categorizing the extracted tasks in hierarchy order with a tool named 

APITasks.  

 

2.5.3 API Discoverability  

API discoverability studies differs from API elements search studies in the sense 

that the former aim at discovering patterns in code when a user is performing the coding 

and suggesting relevant API elements, whereas the latter require a user’s query as the 

input to perform searching for and returning of relevant API elements. 

Santos and Myers (2017) focused on discovering design patterns in the source 

code to provide assistance on how to use API. Their study used information related to 

design pattern and code completion mechanisms (Santos & Myers, 2017). They produced 

a code completion Eclipse plug-in named Dacite for the discovery of API elements 

(Santos & Myers, 2017). Dacite complements APIs with design annotations, which 

document design decisions for API types, methods, and parameters. Java annotation 

refers to “marker which associates information with a program construct, but has no effect 

at run time” (Gosling, Joy, Steele, Bracha, & Buckley, 2014, p. 310). By using Dacite, 

developers would be able to discover and use the common design patterns suggested by 

the tool. The result of their user study showed that Dacite helps programmers to 

accomplish given tasks in shorter time (Santos & Myers, 2017).  
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Besides that, (Ichinco, Hnin, & Kelleher, 2017) tried to address the issue of novice 

programmers’ frequent unawareness of available API methods. They developed a 

prototype named Example Guru, which is a tool that suggests context-relevant API 

methods by inspecting programmers’ code written when using Looking Glass API, a 

block-based programming language. Example Guru was tested with novice programmers 

and showed promising results, for example, novice programmers who used it learned to 

use more API methods compared to those who did not use it. However, the authors noted 

that the use of hand-coded rules to check for code changes in order to suggest API 

information makes it non-scalable. 

 

2.5.4 API Invocation  

Zamanirad, Benatallah, Barukh, Casati, and Rodriguez (2017) implemented 

robotic automatic processing that is able to understand natural language user expressions 

and perform API invocations in RESTful programming language. They developed 

BotBase that converts natural language user expressions into API invocations. BotBase 

enables beginners learn how to perform application development without any prior 

programming knowledge. The bot, which is the processor of BotBase, is able to identify 

the most relevant user’s intention from the user’s input expression and select the APIs 

that meet the user’s requirement (Zamanirad et al., 2017). However, the bot has two 

limitations. It can only invoke a single API call at a time, meaning it cannot execute 

dynamic process workflow that calls a series or combination of API calls. Secondly, it is 

a conversational bot that works in stateless environment. This indicates that the bot will 

not have a record of API calls that have been invoked in previous conversation. 

 

Univ
ers

ity
 of

 M
ala

ya



42 

2.5.5 Summary of API Recommenders 

Table 2.1 summarizes the corresponding API recommender tools produced by the 

studies reviewed in the previous section in terms of the type of API language supported, 

SO mining and whether the recommenders was developed as IDE plug-ins or standalone 

applications. Most of these API recommenders were developed for the Java programming 

language and they were often developed as a standalone application rather than a plug-in 

for an IDE. Half of these API recommenders mined and used data from SO for 

recommendation purpose.  API elements search tool (such as NLP2API, BIKER, RACK) 

are the most relevant to this research because these API recommenders also focus on 

mining information from SO and recommending API elements (such as API classes or 

API methods) to the users. As mentioned earlier, it is important to note that some of these 

studies used the same term to refer to their approaches and the corresponding 

recommender tools that they built that incorporated the approaches. For example, in 

Rahman et al.’s study, the same term “RACK” was used to refer to the approach and also 

the recommender tool (Rahman et al., 2016).  
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Table 2.1 : Summary of API Recommenders 

 Name of API 
recommender 

Category IDE Plug-
in 

API 
Language  

Mining 
from SO 
(Yes/No) 

1 RACK 

(Rahman et al., 2016) 

API Elements 
Search 

 

Eclipse 

Java Yes 

2 NLP2API  

(Rahman et al., 2018) 

API Elements 
Search 

X Java Yes 

3 BIKER 

(Huang et al., 2018) 

API Elements 
Search 

X Java Yes 

4 TaskNavigator 

(Treude et al., 2015) 

API 
Documentation 
Navigation 

X Python No 

5 APITasks 

(Zhu et al., 2017) 

API 
Documentation 
Navigation 

X Java Yes 

6 Dacite 

(Santos & Myers, 
2017) 

API 
Discoverability 

 

Eclipse 

Java No 

7 Example Guru 

(Ichinco et al., 2017) 

API 
Discoverability 

X Looking 
Glass 

No 

8 BotBase 

(Zamanirad et al., 
2017) 

API Invocation X RESTful  No 
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2.6 Data Mining in SO 

The term data mining means “the process of discovering interesting patterns and 

knowledge from large amounts of data” (Han, Pei, & Kamber, 2011, p. 8). As SO 

community is growing larger and generating vast number of users’ data, it has become a 

valuable source for data mining.  

In recent years, there are studies that aimed to discover trends or insights from SO 

data by using different types of techniques, such as statistics, machine learning, 

information retrieval (IR), pattern recognition and others (Ahasanuzzaman, 

Asaduzzaman, Roy, & Schneider, 2016; Ahasanuzzaman, Asaduzzaman, Roy, & 

Schneider, 2018; Joorabchi, English, & Mahdi, 2016). The main purposes of data mining 

are characterization and discrimination; mining of frequent patterns, associations, and 

correlations; classification and regression; clustering analysis; and outlier analysis (Han 

et al., 2011).  

This section reviews some of the existing studies that utilize data mining for 

characterization and discrimination, mining of frequent patterns, associations, 

classification and regression, clustering analysis, and outlier analysis.  

 

2.6.1 Characterization and Discrimination 

There are many classes of data within data entries, for example, in SO, there are 

classes of discussion topics related to different programming languages. Thus, data 

characterization and discrimination are used to derive concise and precise classes within 

the data. Data characterization aims to summarize the general characteristics or features 

of a target class of data; whereas data discrimination is referring to the comparison of the 
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general features of the target class with one or a set of comparative classes (Han et al., 

2011).  

There is a study that focuses on finding the characteristics of SO posts by using 

tags since tags could reveal the topics covered in SO. Their findings include what kinds 

of questions have been asked, the most used tags, and, number of answer per question 

(Treude, Barzilay, & Storey, 2011).  

Apart from that, there is also Education Data Mining (EDM) study that mines SO 

to discover subject-related difficulties, for example, calculating the frequency of 

questions related to software design patterns, software architecture, computer network 

security problems and others (Joorabchi et al., 2016). Analyzing these discussion posts in 

SO community could reveal interesting insight on common problems faced by both 

experienced and novice programmers (Joorabchi et al., 2016). Furthermore, mining the 

vast amount of user-generated data in SO community able to provide educators an in-

depth look on the challenges faced by programming learner and address any gaps in their 

teaching (Joorabchi et al., 2016). Joorabchi et al. (2016) has performed text mining in SO 

to retrieve frequently-asked topics and categories in computer programming. The study 

listed the difficult topics in learning programming that require more attention, for example 

the top 3 highest occurrence topics in SO are “Same-origin policy”, “SQL injection” and 

“Model–view–controller” (Joorabchi et al., 2016). Hence, the result from text mining in 

SO can also be used as supplementary material to enhance students’ programming 

learning process by educators.  
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2.6.2 Mining of Frequent Pattern, Associations, and Correlations 

Frequent patterns are patterns that occur frequently in data and often lead to 

association and correlations relationships within the data (Han et al., 2011). The main 

purpose of mining frequent patterns is to identify frequent co-occurrence patterns of a set 

of items from dataset. For example, milk and bread are frequently purchased together in 

grocery stores, and therefore, there is a strong association relationship between milk and 

bread. On the other hand, correlations measure the strength and confidence level of the 

association relationship. 

Mining SO to discover frequent patterns can be seen in API elements search tools. 

For example, RACK mines associations and correlation patterns from SO data, where it 

extracts word tokens from the SO users’ questions and associates these tokens to API 

candidates to form a ‘Token-API’ pair (Rahman et al., 2016). BIKER also mines for 

association patterns in SO, and calculates the similarities between users’ queries and SO 

questions (Huang et al., 2018).  

 

2.6.3 Classification and Regression 

Classification means “the process of finding a model (or function) that describes 

and distinguishes data classes or concepts” (Han et al., 2011, p. 18). The process of 

classification includes building a model from a set of training data where the data is 

labelled with known classes and the built model is used to predict data with unknown 

class. The main difference between classification and regression is classification predicts 

the categorical labels for item, while a regression model predicts continuous values, for 

example, numerical data values rather than discrete class labels (Han et al., 2011). 
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A study has performed classification in SO to identify duplicate posts as this could 

help to automatically detect repeated questions or problems asked by SO community 

(Ahasanuzzaman et al., 2016). A more recent study classified discussion posts in SO in 

terms of API issues, such as, documentation errors, backward incompatibility, 

incompatibility of the APIs with underlying operating systems, and so on 

(Ahasanuzzaman et al., 2018).  

 

2.6.4 Clustering Analysis 

Cluster analysis is the process of partitioning a set of data objects into subsets by 

using clustering algorithm and leads to the discovery of previously unknown groups 

within the data (Han et al., 2011). An existing study, (Allamanis & Sutton, 2013) applied 

Latent Dirichlet Allocation (LDA) on SO data and found interesting clusters (word co-

occurrences), such as general topics, problem-specific topics and topics related to specific 

technologies, for example, topics in Java programming language. 

 

2.6.5 Outlier Analysis 

Outlier refers to “data object that deviates significantly from the rest of the objects, 

as if it were generated by a different mechanism” (Han et al., 2011, p. 544). There are 

various approaches in outlier detection including statistical methods, proximity-based 

methods, clustering-based methods and classification-based methods. A prior study, (Xia, 

Lo, Correa, Sureka, & Shihab, 2016) performed outlier analysis to detect poor quality 

questions in SO, such as off-topic questions that ask questions not related to programming 

or software engineering activities.  
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2.7 Data Mining Techniques 

Data mining incorporates different types of techniques from other domains such as 

statistic, information retrieval (IR), machine learning (ML) and others (Han et al., 2011). 

Among these techniques, IR is one of the essential techniques to find relevant information 

from vast amount of data by using probabilistic approaches such as building a language 

model and building a topic model (Han et al., 2011). Language model is a probability 

function that calculates word occurrence in documents, while topic model is a probability 

function that calculates topics distributed over the vocabularies in documents (Han et al., 

2011).  

Besides IR techniques, machine learning becomes widely used in data mining 

research as it allows a program to learn complex patterns automatically and make 

intelligent decision based on the input data. For example, a computer program would be 

able to recognize and label the duplicate questions after learning from a set of existing 

questions. Neural network is one of the prominent approaches in machine learning for 

data classification (Han et al., 2011). It is a collection of connected neuron-like processing 

units with the advantages of high tolerance of noisy data and a great ability in classifying 

patterns. 

In recent years, researchers incorporate IR techniques with machine learning 

techniques to train better language model and topic model. In the area of API 

recommenders using SO data, BIKER and NLP2API tools were built using IR techniques 

incorporated with machine learning techniques (Huang et al., 2018; Rahman et al., 2016; 

Rahman et al., 2018). This could be due to training model using machine learning 

algorithm enables automatic learning of word similarity between user queries and 

questions in SO. During the recommendation phase, these API recommenders would be 
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able to select and retrieve a set of similar questions based on the similarity score 

calculated.  

The next section reviews two popular IR approaches that incorporate machine 

learning techniques, namely, word embedding and topic modelling. 

 

2.7.1 Word Embedding 

 Traditional IR method such as one-hot encoding is commonly used for building 

language model (Zhang et al., 2016). One-hot encoding transforms terms in numeric 

representation. For example, given two sentences, “I enjoy playing TT” and “I like 

playing TT”, Figure 2.1 shows the unique words and one-hot encoding for both sentences  

(Ayyadevara, 2018). One-hot encoding often creates a high-dimensional vector when the 

vocabulary size is big (where the number of unique words is large). This subsequently 

leads to a vocabulary mismatch problem due to the difficulty in identifying similar terms, 

for example, “like” and “enjoy”, which are synonymous to each other (Ayyadevara, 2018; 

Zhang et al., 2016). 

 

Figure 2.1: Example of One-hot Encoding (Ayyadevara, 2018) 
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To mitigate the aforementioned problem, researchers began to incorporate neural 

network in IR techniques to train better language model, known as word embedding. 

Word2Vec is a word embedding model that uses a simple three layers of neural network 

to learn words representations (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). The 

three layers are input layer, hidden layer and output layer. All the layers are fully connected 

and produce a single output. When training a language model with word embedding 

technique, the final output of the neural network is a vector representation for all the terms 

in the input document. There are two different word embedding algorithms in Word2Vec, 

which are Continuous Bag of Words (CBOW) and skip-gram, meant for different usage. 

CBOW predicts the current word for the given context while skip-gram predicts the 

surrounding words for the given current word (Mikolov, Chen, Corrado, & Dean, 2013). 

Taking the following sentence as an example, “The quick brown fox jumped over the 

dog.”, Figure 2.2 and Figure 2.3 show the input and output of CBOW and skip-gram 

(Ayyadevara, 2018). 

 

Figure 2.2: Example of CBOW (Ayyadevara, 2018) 
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Figure 2.3: Example of Skip-gram (Ayyadevara, 2018) 

Word2Vec has some disadvantages: CBOW loses the order of words and skip-gram 

has little sense about the semantics of the words as it considers words order within a short 

context (Le & Mikolov, 2014). Therefore, a more recent study proposed 

ParagraphVector, also known as Doc2Vec, which learns the continuous distributed 

vector representations for pieces of texts (Le & Mikolov, 2014).  The concept of Doc2Vec 

is based on Word2Vec’s but Word2Vec learns similarities between words while Doc2Vec 

learns similarities between sentences, paragraphs or documents (Le & Mikolov, 2014; 

Mikolov, Sutskever, et al., 2013). 

Ye et al. (2016) is the first study that acknowledged the lexical gap between natural 

language queries and descriptions in API documentation, and they addressed it by 

applying word embedding technique to train a language model using API documentation. 

Later, Huang et al. (2018) and Rahman and Roy (2018) also addressed the lexical gap by 

applying word embedding technique to train a language model but they used SO data 

since SO posts is large in number and contain a mixture of API elements’ terms and 

natural language terms. 
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2.7.2 Topic Modelling 

Topic models are developed to automate extracting, indexing and searching 

information from large structured and unstructured text documents (Chen, Thomas, & 

Hassan, 2016). Besides that, topic models can be used to perform additional text analysis 

tasks such as, clustering, summarizing, and inferring links within the corpus (Chen et al., 

2016). Topic modelling, also known as document clustering, is an unsupervised learning 

technique used to discover topics within a documents or paragraphs. When there is a lot 

of documents and limitation in summarizing all the documents, topic modelling technique 

proves helpful by extracting the topics within the documents automatically. 

Latent Dirichlet Allocation (LDA) is one of the popular topic modelling technique 

that automatically discovers unobserved or hidden structures from text corpus using 

statistical properties, such as word frequency (Blei, Ng, & Jordan, 2003; Chen et al., 2016; 

Porteous et al., 2008). LDA is also known as a generative probabilistic model that 

calculates topic probability within a text corpus (Blei et al., 2003). Generative 

probabilistic model is a combination of generative process and probabilistic modelling. 

Generative process is “the imaginary random process by which the model assumes the 

documents arose” (Blei, 2012, p. 77). Probabilistic topic modelling is defined as “a suite 

of algorithms that aim to discover and annotate large archives of documents with thematic 

information” (Blei, 2012, p. 78). In the simplest form, the main concept of LDA topic 

modelling is the reasoning about how text corpus is represented by a mixture of topics 

and topics are characterized from the distribution of the words within the corpus (Blei et 

al., 2003). Figure 2.4 shows an example of applying LDA model to a text corpus, where 

topic is a collection of words, document is a mixture of corpus-wide topics and word is 

drawn from one of those topics (Blei, 2012).The advantage of LDA is fast, simple and 

does not require training data (Chen et al., 2016). LDA can be applied directly to raw, 

Univ
ers

ity
 of

 M
ala

ya



53 

unstructured text and the processing size is scalable to millions of documents (Porteous 

et al., 2008). 

 

Figure 2.4: Example of LDA Model Application (Blei, 2012) 

Some prior studies (Allamanis & Sutton, 2013; Joorabchi et al., 2016) have 

successfully applied LDA model in SO to discover common programming problems. In 

addition, Chen et al. (2016) surveyed over hundreds of studies (167 articles) in SE domain 

that used topic models and found that nearly two-third (66%) of the studies employed 

LDA for topic modelling. They also found that most of the studies used the basic topic 

models as black boxes without changing the underlying implementation or parameters 

(Chen et al., 2016).  
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2.8 Comparison of Existing Approaches in API Elements Search 

This section compares the approaches adopted by three API recommender studies 

(RACK, NLP2API, BIKER) in terms of the techniques used. These studies fall under the 

API elements search category (refer to Section 2.5.1) and also recommend Java API 

elements for users’ queries using SO posts. As mentioned in Section 2.5.1, these studies 

used the same term to refer to their approaches and the corresponding recommender tools 

that they built that incorporated the approaches.  

All these studies including this research incorporated their approaches into the 

corresponding recommender tools that they built. Following that, the techniques were 

organized under the four major steps of designing RSSEs (Section 2.4.2).  Table 2.2 

summarizes the comparison of the techniques of the approaches. 
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Table 2.2: Summary of Techniques used in API Elements Search 

 

 

For data pre-processing, RACK (Rahman et al., 2016) performs tokenization, stop 

words removal, and stemming. Stemming analyses inflected word forms and extracts the 

root of each of the words by stripping the suffixes from the words (Kettunen, Kunttu, & 

Järvelin, 2005). For example, extract “generat” from “generates” by deleting “es” from 

the word “generates”.  

Studies Data Pre-
processing 

Capturing of 
context 

Producing 
Recommendati
ons 

Presenting 
Recommendat
ions 

RACK 

(Rahman 
et al., 
2016) 

 Tokenization 
 Removal of 

Stop words  
 Stemming 

 Token-API 
Mapping 
Database 

 Island 
parsing 

 

 Keyword-
API Co-
occurrence 
(KAC) 

 Keyword-
Keyword 
Coherence 
(KKC) 

 API 
Likelihood 

 API 
Coherence 

 Top-K 
results 

NLP2API 

(Rahman 
& Roy, 
2018) 

 Tokenization 
 Removal of 

stop words, 
punctuation 
marks and 
programming 
keywords 

 Pseudo-
Relevance 
Feedback 
(PRF) 

 Lucene 
 FastText 
 TF-IDF 
 PageRank 

 Borda score 
calculator 

 Query-API 
proximity 

 Top-K 
results 

BIKER 

(Huang et 
al., 2018) 

 Tokenization 
 Stemming 

 Word2Vec 
 Inverse 

Document 
Frequency 
(IDF) 

 Two 
heuristic 
methods 

 Similarity 
Score for 
Ranking 
Candidate 
APIs 
(SimSO and 
SimDoc) 

 

 Top-K 
results 

 API 
methods 
descriptions 

 Similar 
questions 
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For capturing of context, RACK creates Token-API mapping pairs database that 

associates the natural language word tokens (from the respective SO question) and API 

classes tokens (from the SO question’s accepted answer). This created Token-API 

mapping pairs. An example is the list of natural language tokens “generat, md5, hash” is 

associated to a API token “MessageDigest”.  

RACK adopts island parsing method for API classes extraction. Island parsing is 

a method that specifies rules to extract items of interest (such as code elements) and ignore 

uninteresting items (such as free form text) (Rigby & Robillard, 2013). A prior study has 

used island parser with Java Language Specification (Gosling et al., 2014) to identify 

code terms from text using regular expressions (Rigby & Robillard, 2013).   

For producing the recommendations, RACK employs two heuristic metric 

calculation, which are Keyword-API Co-occurrence (KAC) and Keyword-Keyword 

Coherence (KKC) (Rahman et al., 2016). KAC helps to capture relationships between 

keywords and APIs such as co-occurrences or associations. KKC identifies coherent 

keyword pairs which are then used for obtaining candidate API classes that are 

functionally relevant to those pairs. RACK measures API Likelihood and API Coherence 

to produce Top-K results. API Likelihood estimates the probability of co-occurrence of a 

candidate API with an associated keyword. API Coherence estimates the relevance of a 

candidate API to multiple keywords from the query simultaneously. For presenting the 

recommendations, RACK presents a list of Top-K results. 

For data pre-processing, NLP2API (Rahman & Roy, 2018) applies removal of 

stop words, punctuation marks and programming keywords, tokenization but not 

stemming. For capturing of context, NLP2API uses Pseudo-Relevance Feedback (PRF), 

Lucene, and FastText (Rahman & Roy, 2018). PRF is employed to extract software-

specific words that are relevant to a given query, and to use these words for query 
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reformulation (Nie, Jiang, Ren, Sun, & Li, 2016). Lucene is an open source API for 

building applications with search-related tasks such as indexing and querying (Białecki, 

Muir, Ingersoll, & Imagination, 2012). FastText is a word embedding algorithm that 

focuses on sub-word representations and does not require any pre-processing 

(Bojanowski, Grave, Joulin, & Mikolov, 2017). In addition, NLP2API uses two term 

weighting methods, Term Frequency - Inverse Document Frequency (TF-IDF)(Singhal, 

2001) and PageRank (Brin & Page, 1998) to extract Java API classes from SO answers. 

TF-IDF is a term weighting algorithm formulated based on term frequency and document 

frequency. Term Frequency (TF) implied that words that repeat multiple times in a 

document are considered salient; whereas, document frequency implied that words that 

appear in many documents are considered common and not indicative of document 

content, this weighting method is called inverse document frequency (IDF) (Singhal, 

2001). For producing the recommendations, NLP2API uses Borda score calculation and 

Query-API proximity. Borda count is a popular election method where the voters sort 

their political candidates in order of preference  (Black, Hashimzade, & Myles, 2009). 

Query-API proximity analyses the global contexts of keywords within query, and 

measures the semantic proximity between the query and the candidate API classes. 

(Rahman & Roy, 2018). For presenting the recommendation, NLP2API displays the Top-

K API classes. 

BIKER (Huang et al., 2018) recommends two types of Java API elements, namely, 

classes and methods (Huang et al., 2018). For data pre-processing, BIKER performs 

tokenization and stemming on data retrieved from SO. BIKER performs two major steps 

in capturing of context, which are, retrieval of similar questions and detection of Java API 

elements. BIKER uses Inverse Document Frequency (IDF) and Word2Vec to retrieve 

similar questions. In addition, BIKER uses two heuristic methods to detect Java API 

elements. The first is using regular expressions to check whether every hyperlink in each 
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answer links to the official Java API documentation site. Secondly, BIKER checks the 

plain text contained in each answer against a dictionary that stores the names of all Java 

API elements from the official documentation site to identify whether there is any match 

of API elements. For producing the recommendations, BIKER calculates the similarity 

score for ranking candidate Java API elements by using a combination of two scores, 

namely SimSO and SimDoc (Huang et al., 2018). SimSO measures the similarity between 

the query and the question title of a similar question. SimDoc measures the similarity 

between the query and the Java API element’s description in the official Java API 

documentation. For presenting the recommendations, BIKER displays a list of Top-K 

results which include Java API methods (and corresponding classes), description of the 

API methods and similar questions that matched the query. 

 

2.9 Limitation of Existing Approaches in API Elements Search 

To sum up, the first research gap found in existing studies on API Elements Search 

is the language model used by the corresponding API recommenders were often trained 

at the “word” level rather than the “sentence” level. NLP2API applied FastText and 

BIKER applied Word2Vec, which are word embedding algorithms targeting the “word” 

level. RACK study did not apply language model in its approach. As mentioned in Section 

2.7.1 earlier, the limitations of word embedding algorithms that learn similarities at 

“word” level are: loses the order of words or has little sense about the semantics of the 

words due to considering words order within a short context. To cope with these 

limitations, word embedding algorithm that learns similarities at “sentences”, 

“paragraphs” or “documents“ has been proposed. This study employed word embedding 

algorithm due to the reason above. 
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The second research gap is these API recommenders often employed multiple 

techniques in API recommendation. As can be seen in Table 2.2, RACK and NLP2API 

employed ten different techniques and BIKER employed nine in their approaches. The 

number of different techniques employed increases the complexity of the respective 

framework. Employing fewer techniques will help to simplify the framework. 

Lastly, there is a lack of work that provides API recommenders as plug-ins of an 

IDE, which could promote better usability and user friendliness of the recommenders. 

Only RACK did that but not NLP2API and BIKER. 

Table 2.3: Summary of Limitation of Existing Approaches in API Elements 
Search 

API Element Search 
Study/Tool 

Language Model Total Techniques 
Employed 

IDE Plug-in 

RACK 

(Rahman et al., 2016) 
Not Applicable 10 Yes 

NLP2API 

(Rahman & Roy, 
2018) 

Word-level (FastText) 10 No 

BIKER 

(Huang et al., 2018) 

Word-level 
(Word2vec) 9 No 

 

2.10 Chapter Summary 

As programmers are getting more involved in web collaboration communities, these 

communities have contributed a large amount of user-generated data with useful 

information and produced crowd documentation for different APIs. Many studies aimed 

to obtain useful insights through crowd documentation but there is limited work on 

common programming problems particularly on using core Java API. Besides that, 

recommendation systems or recommenders employing data mining techniques have been 

used in the SE domain. However, there are limitations found in existing API 
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recommenders such as language model used by the corresponding API recommenders 

were often trained at the “word” level rather than the “sentence” level, employed multiple 

techniques, and lack of work that provides API recommenders as plug-ins of an IDE. 

Thus, this research aimed to bridge these gaps by conducting two studies and the key 

steps involved are explained in details in the following chapter. 
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CHAPTER 3: RESEARCH METHODOLOGY 

This chapter details the research methodology employed in this research. It 

describes the key steps conducted in this research to achieve the research objectives, and 

how the key steps were conducted in terms of techniques, tools, technologies used, where 

applicable. Figure 3.1 shows the nine (9) key steps (together with the associated research 

objectives where applicable) of the research methodology. To simplify the writing, the 

“identification of common Java programming problems” is called Study 1 and those 

related to the proposed approach (its development, benchmarking, plug-in, and user 

evaluation study) is called Study 2. 

The research methodology employed in Study 1 is quantitative research.  Study 1 

involved research activity such as using counter to measure occurrence for duplicate 

question. On the other hand, research methodology employed in Study 2 is mixed method 

which consists of both and qualitative research. Quantitative research involved research 

activity such as calculation for performance benchmark, while qualitative research 

involved research activity such as gathering feedback from users and draw conclusion 

based on the result of user evaluation study. 

Quantitative research was employed in Study 1, where data mined from Stack 

Overflow was analysed quantitatively  to find the number of duplicate Java questions, top 

duplicate Java questions and their corresponding top Java API classes, based on the 

askers’ level of expertise. 

Study 2 employed both quantitative and qualitative research. Quantitative research 

was used in the benchmarking of the proposed approach where the metrics were 

calculated based on their formulas. Besides that, quantitative research was also used in 

user evaluation study where the correctness of Java API classes found by participants are 
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calculated. Qualitative research was used in user evaluation study where questionnaire 

was used to asks the participants’ opinions on the features of APIRecJ. 

 

 

Figure 3.1: Research Methodology 

 

3.1 Literature Review 

The first key step is the literature review conducted on APIs documentation 

usability, limitations of the official or conventional APIs documentation, crowd 

documentation and its benefits, existing work on finding common Java Programming 

problems, recommendation systems in Software Engineering, existing work on API 

recommenders. Besides that, the review also included data mining in SO and popular data 

mining techniques. 
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3.2 Definition of Research Objectives and Research Questions 

Based on the literature review, the key limitations found in existing studies are:  

i) Limited work on common problems in Java programming, particularly in 

terms of core Java API usage and the common Java programming problems 

faced by Java programmers of different levels of expertise. 

ii) In terms of API recommenders,  

a. A lack of language models at sentence level instead of word level. 

b. Multiple techniques employed in the design of existing API 

recommenders.  

iii) Lack of work that provides API recommenders as plug-ins of an IDE, which 

could promote better usability and user friendliness of the recommenders. 

Based on the problems highlighted above, the research objectives and research 

questions were defined for this research, focusing on identifying common Java 

programming problems from SO, and developing an approach for Java API classes 

recommendation that uses word embedding and topic modelling techniques on discussion 

posts extracted from SO. 

 

3.3 Data Collection  

This research made use of data extracted from SO. This data consists of data 

generated by or from SO’s users. This data such as questions and answers in SO 

discussion posts, information about the registered users, and so on, is stored and 

maintained by SO in multiple databases.  

There are two methods used to retrieve data from SO in existing studies, which 

are, using the data dump (Ahasanuzzaman et al., 2016) and a query tool (Rahman et al., 
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2016). The first method is getting the data dump archive files released by Stack Exchange 

(2019e) and replicating the databases in a local machine. The second method is using the 

“Stack Exchange Data Explorer (SEDE)” (2019b), a web-based query tool provided by 

Stack Exchange. SEDE displays a list of data dictionary that describes the schema of 

database and query input for retrieving data by using Structured Query Language (SQL) 

statements (Chamberlin & Boyce, 1974). The advantages of using SEDE as compared to 

using data dump files are SEDE retrieves the latest and updated data, and provides instant 

access to SO data using SQL queries. Contrarily, data dump files are released periodically 

and require additional setup and installation to load the database and access the data. 

However, SEDE can only retrieve at most 50,000 records of data. 

This research employed SEDE in extracting data from SO. This was done by 

retrieving the data in batches using the unique identifier of each discussion post and 

merging all the batch files into a single file. The extracted data comprises of SO data 

dating from the inception of SO (15 September 2008) to the data retrieval date (6 July 

2019).  

It is important to note that the data collection for Study 1 and Study 2 are different. 

The data collection for Study 1 retrieved a set of duplicate posts related to Java, while the 

data collection for Study 2 retrieved a set of posts related to Java. The codes to extract the 

data for Study 1 and Study 2 are given in Appendix B and Appendix C, respectively. 

 

3.4 Development of Approach 

 The next key step is the development of an approach that aimed to assist 

programmers by recommending a list of relevant Java API classes for their natural 

language queries. This is to achieve RO2. There are two major phases in the proposed 

Univ
ers

ity
 of

 M
ala

ya



65 

approach which are preparation phase and recommendation phase. The techniques 

employed in the proposed approach are word embedding, topic modelling and heuristic 

rules. The proposed approach is incorporated into a Java API class recommender created 

as a backend server which exposes the services for performing Java API classes 

recommendation. The technologies used in the development of the approach are listed in 

Table 3.1. 

Table 3.1: Technologies Used in the Development of the Approach  

Programming 
Language 

Technology Name and Description 

Python 3.6  Gensim - Open source NLP and ML libraries 
 BeautifulSoup - Open source library for XML text 

processing 
 Pandas - Open source library for CSV file processing 
 Flask - Open source library for server 
 PyInstaller - Open source library for packaging python 

script into executable window platform file 
 

3.5 Identification of common Java programming problems        

To achieve RO1, the data collected for Study 1 was analyzed to identify the 

common Java programming problems. There are three questions formulated at the 

beginning of the study, which are related to the distribution of duplicate Java questions in 

SO based on the askers’ level of expertise, top duplicate Java questions in SO based on 

askers’ level of expertise and top Java API classes required by the top duplicate Java 

questions in SO based on the askers’ level of expertise. A duplicate question refers to a 

question that has been asked and answered before by the SO community (Stack Overflow, 

2019j). 

As a result, Study 1 answered the first question with a group of SO users who 

frequently ask duplicate Java questions in SO. Besides that, Study 1 answered the second 

question with the Top-10 duplicate Java questions in SO and revealed the significant 
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critical area in using Java API. In addition, the most common problem faced by Java 

programmers are derived from these top-10 duplicate Java questions in SO based on 

askers’ level of expertise. Finally, Study 1 answered the third question with the Top-30 

Java API classes required by the Top-10 duplicate Java questions in SO and discovered 

the Java API classes that Java programmers struggle with. 

 

3.6 Benchmarking of Approach 

 In this key step, the proposed approach is evaluated in term of its performance by 

using 4 established performance metrics used by existing studies. The measured metrics 

were compared to existing baseline studies in Java API class recommendation. This is to 

achieve RO3. 

The four metrics are: (a) Top-K accuracy, (b) Mean Recall @ K (MR@K), (c) Mean 

Reciprocal Rank @ K (MRR@K), (d) Mean Average Precision @ K (MAP@K). These 

metrics measure the information retrieval (IR) performance and the recommendation 

performance of the proposed approach. For the former, these metrics assess the 

performance of the proposed approach in retrieving set of relevant API classes. For the 

latter, these metrics assess the performance of the proposed approach in returning relevant 

API classes at the top positions and less relevant API classes at the bottom positions of 

the ranked results list. 

 

3.7 Development of Plug-in 

To make it easier for the programmers to use the developed Java API class 

recommender, a plug-in for Eclipse IDE that functions as the front-end or client for 

programmers to access the recommender’s functionalities, was developed. Table 3.2 
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shows the technologies used in implementing the plug-in. The plug-in was developed by 

creating an Eclipse plug-in project. Its user interface was designed using Java Swing 

components that receive user query and display query result. The plug-in functions as the 

requestor, which sends user query to Java API class recommender and returns a set of 

Java API classes and similar questions to user. 

Table 3.2: Technologies Used in the Development of the Plug-in  

Programming 
Language 

Technology Name and Description 

Java 1.8  Eclipse Oxygen – IDE for java development 
 Eclipse Plug-in Developer SDK – Libraries for developing 

Eclipse plug-in 
 

3.8 User Evaluation Study 

A user evaluation study was conducted to evaluate the usefulness of the plug-in 

(APIRecJ) including the features implemented in the developed Java API class 

recommender. The user evaluation study involved recruiting participants to use Google 

search engine and to use the plug-in to search for and state Java API classes that are 

relevant to three pre-defined programming questions/tasks. The participants then 

completed a questionnaire survey comprising multiple-choice questions, Likert scale 

questions and open-ended questions. The questionnaire asks about participants’ 

educational background, level of Java programming skill, other programming languages 

known and the level of skill, and Software Development Kits (SDKs) familiar with, 

opinions on the features of APIRecJ, whether they prefer Google search engine or 

APIRecJ and their reasons for their preference, and usefulness of having API class 

recommender such as APIRecJ and the reasons. 
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3.9 Interpretation of Result and Conclusion 

Study 1 provided the distribution of duplicate Java questions based on askers’ level 

of expertise, top-10 master Java questions based on askers’ level of expertise and top-30 

Java API classes required by the top duplicate Java questions based on askers’ level of 

expertise. These results were discussed. 

For Study 2, the benchmarking results against existing studies were discussed in 

terms of aspects of improvement; the user evaluation study’s results in terms of the 

usefulness of the plug-in were also discussed. 

 

3.10 Chapter Summary 

The research methodology provides a comprehensive detail on how this research 

was carried out. This covers the key steps conducted in this research to achieve the 

research objectives, and how the key steps were conducted in terms of techniques, tools, 

technologies used, where applicable.   
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CHAPTER 4: COMMON JAVA PROGRAMMING PROBLEMS  

This chapter presents Study 1 conducted in this research, which is, the identification 

of common Java programming problems from SO. It explains the relevant terms and 

concepts, questions for Study 1, database structures in SO, and how the extraction of 

duplicate questions, and code snippets and Java API classes were performed. This chapter 

also includes the results found for each questions and comparison with related work. 

 

4.1 Questions for Study 1 

This Study 1 aimed to leverage SO’s crowd documentation of Java APIs to investigate 

what are the most common programming questions asked by or frequently asked 

questions of the Java community based on their level of expertise. This was done by 

mining and analysing duplicate Java questions/posts in SO. The level of expertise was 

determined based on the askers’ reputation scores in SO. A duplicate question refers to a 

question that has been asked and answered before by the SO community (2019j). 

Duplicate questions can also be regarded as “questions that are asked to solve the same 

problem” (Ahasanuzzaman et al., 2016).  

Since duplicate questions are the same questions that different programmers 

repeatedly asked, they can be used as surrogates to common questions asked in SO. Doing 

that can help in identifying common Java programming problems/topics that Java 

programmers struggle with. 
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The specific questions (Qs) for Study 1 are:  

Q1: What is the distribution of duplicate Java questions in SO based on the askers’ level 

of expertise?  

Q2: What are the top duplicate Java questions in SO based on askers’ level of expertise? 

Q3: What are the top Java API classes required by the top duplicate Java questions in 

SO based on the askers’ level of expertise? 

 

4.2 Database Structure in SO 

SO works as a discussion forum where registered users in SO can ask 

programming questions by creating new discussion threads to be answered by others. 

Hence, discussion posts in SO typically consists of a question and multiple replies. SO 

has given guidelines on how to construct a question Error! Bookmark not defined.. A q

uestion’s title should record the description that summarizes the specific problem. The 

question body should start with a more detailed description of the problem faced; has just 

enough code for reproducing the problem, has link to live example of the problem if 

possible; code, data or error log in text and not image forms. The question should include 

all relevant tags, and proof-read before posting. 

Figure 4.1 shows a partial data model for the SO database. The script used to 

visualize the data model is provided by SO community (2019; 2019a). The tables used 

for extracting the duplicate Java questions are: Posts, PostTypes, PostLinks, Tags, 

PostTags and Users tables. The Posts table stores all the discussion posts in SO with 

unique primary key Ids. The PostTypeId attribute with a value of "1" indicates that the 

post is a question and a value of "2" means that the post is an answer. If the post is a 
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question post, the Title attribute records the question’s title and the Body attribute records 

the description of the question. If the post is an answer post, the Title attribute will be 

empty and the Body attribute will store the answer description. Each question in SO can 

be tagged with a set of labels and all the tags are stored in the Tags table with unique Ids. 

The tags for a question are recorded in Tags attribute of the Posts table and the tag's name 

are stored in TagName attribute of the Tags table. For example, discussion posts with 

“java” tag can be regarded as Java-related posts, which are related to the Java 

programming language. 

The Users table stores all registered SO users with unique Ids. The Reputation 

attribute records the “reputation” the user acquired since he or she joined SO. “Reputation 

is a rough measurement of how much the community trusts the user” (2019h). It is earned 

by convincing the community that you know what you are talking about. The higher the 

reputation of a user, the more privileges the user gets and will have access to more features 

on the site. A user’s reputation score will increase or decrease depending how the 

community perceives the quality of the user’s posts. For example, if the user’s question 

is voted up, his or her reputation will increase by 5; if the user’s answer is marked 

“accepted”, the user’s reputation will increase by 15; and if the user’s question or answer 

is voted down, his or her reputation will decrease by 2. 
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Figure 4.1: Partial Data Model for SO Database 

  

4.3 Extraction of Duplicate Questions  

SO provides a set of guidance to its users on how to ask questions in SO, for 

example, what types of questions should be avoided, how to ask a good question, and so 

on (2019d). Despite SO recommendation that the askers search previous posts before 

asking a new question, duplicate questions sharply increase after September 2012 and 

analysis of tags showed that the “java” tag has the highest number of duplicate questions 

(Ahasanuzzaman et al., 2016). The reasons that duplicates happened are (Ahasanuzzaman 

et al., 2016): askers did not search SO first before asking a question, titles of master 

questions do not match askers intended questions, domain difference despite task 
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similarity, descriptive and difficult to understand, too concise to properly understand, lack 

of knowledge about the problem and terminology/buzzwords. 

 Duplicate questions are seen as problematic due to the following reasons: may 

cause the asker unnecessarily wait in getting answer when the question has already been 

asked and answered previously (Ahasanuzzaman et al., 2016) (Zhang, Lo, Xia, & Sun, 

2015), and difficulty in finding correct answers in one place (Silva, Paixão, & de Almeida 

Maia, 2018). SO community moderators’ do not remove or delete duplicate questions 

since similar questions can be described differently or exist in different contexts. However, 

this research regards duplicate questions as an opportunity to identify the common 

programming questions asked by programmers which could give us insights on the 

common programming problems/topics that programmers struggle with. 

A duplicate question is a question that has been asked and answered before in SO. 

The site moderators (elected by the SO community through popular vote) and users with 

high reputation (more than 3000) are able to close later questions as duplicate questions 

(i.e. the non-master question) and provide the reference links to the respective first-time 

asked question (i.e. the master question) (Ahasanuzzaman et al., 2016). 

 The relationships between a master question and its duplicate questions are 

recorded in the PostLinks table. Each master-duplicate relationship is captured as a record 

in the PostLinks table with a unique Id. The PostId attribute is a foreign key which is 

linked to Id attribute in Posts table that records the identifier of the master question. The 

identifier of the duplicate question is stored in RelatedPostId attribute. The attribute 

LinkTypeId describes the type of relationship between the question identified by PostId 

and the question identified by RelatedPostId. For instance, a master-duplicate relationship 

is signified by a value of “3” in the LinkTypeId attribute.  

Univ
ers

ity
 of

 M
ala

ya



74 

The collection of duplicate Java questions was retrieved using SEDE with relevant 

SQL statements. For Q1, all the master questions were retrieved and their duplicate 

questions were counted based on the groups of users defined using the reputation score 

(Section 2.2.2). For Q2, the top-10 master questions based on the groups of users were 

extracted. The scripts used for extraction are provided in Appendix B. 

Figure 4.2 illustrates an example of a master question in SO whereas Figure 4.3 

illustrates an example of a duplicate question (non-master question) in SO. 

 

Figure 4.2: Master Question (2019g) 

 

 

Figure 4.3: Duplicate Question (Non-Master Question) (2019e) 
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4.4 Extraction of Code Snippets and API Classes 

For Q3, after extracting the duplicate Java questions and saved them in CSV files, 

the following filtering steps were performed:    

Step 1: Extract all master questions that have accepted answers. 

Step 2: Extract code snippets from the accepted answers.  

Step 3: Extract Java API classes from the code snippets by using a set of heuristic 

rules implemented in Python scripts. 

Among all the answers to the master question, only the accepted answer of the 

master question is considered because an existing study on one domain showed that 65% 

of accepted answers contain source code (Subramanian & Holmes, 2013). Since code 

snippets frequently refer to specific API (Subramanian & Holmes, 2013), these filtering 

steps focused on Java code snippets and ignored other information in the accepted answer 

(such as plain text description, hyperlink, logs, comments and others). The code snippets 

were obtained by extracting the content enclosed by the “<code>” and “</code>” tags. 

As in (Subramanian & Holmes, 2013), the extraction of API classes considered only code 

snippets that had at least 3 lines of code because anything less is lack of surrounding 

context needed to understand an API.  Table 4.1 shows the heuristic rules used in Step 3, 

together with the justifications and some examples. 
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Table 4.1: Heuristic Rules for Extracting Java API Classes 

No. Heuristic Rule Justification Example 
Input Java API class 

extracted by the 
heuristic rule 

1 Extract class 
names from 
‘import’ 
statements 

One way to 
use/access a Java 
API class/interface 
in a Java program is 
by using an 
“import” statement 
to specify the 
packages where the 
class/interface 
resides. Class 
names extracted 
from the ‘import’ 
statements are 
classes that might 
be relevant to the 
respective question. 

import java.io. 

FileInputStream; 

FileInputStream 

2 Extract 
reference types 
of reference 
variables  

The reference type 
of a reference 
variable is a 
class/interface that 
is relevant to the 
respective question. 
 
 
 
 

InputStream is = 
new 
FileInputStream(); 

InputStream  
 

3 Extract the 
name of the 
constructor 
method located 
right after a 
‘new’ keyword 

 

 

 

  

The name of the 
constructor method 
used indicates the 
reference type of the 
object instantiated. 
This reference type 
is a class that is 
relevant to the 
respective question. 

InputStream is = 
new 
FileInputStream(); 

FileInputStream  
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4 Validate API 
classes 
extracted by the 
first three 
heuristic rules 
by checking 
with API 
classes 
extracted from 
the Java API 
documentation 
for Java 
Standard 
Edition 8 and 
Java Enterprise 
Edition 8. 

Code snippets 
might contain Java 
API classes spelled 
wrongly or in the 
wrong letter cases. 
Therefore, 
candidate API 
classes have to be 
checked against the 
valid API class 
names extracted 
from the API 
documentation. 
This heuristic rule 
helps to eliminate 
invalid API classes. 

inputStream 

 

INPUTStream 

 

InputStem 

InputStream 

 

InputStream 

 

- 

 

4.5 Results and Discussion 

This section presents the results and discussion of Study 1 with regard to the 3 

questions the study aimed to answer.  This section also includes the comparison with 

related work. 

 

4.5.1 Data Extracted 

From the data, 27589 master questions that have duplicate questions are found 

and extracted. A user has the option to “accept” an answer to his or her question, thereby 

making the answer the “accepted answer” (2019f) . Only 21623 (78%) of the extracted 

master questions have accepted answers. This could probably due to accepting an answer 

is not mandatory and not all user came back to the site to accept an answer. Only 10763 

(39%) master questions have code snippets in their accepted answers. This shows that 

60% of the accepted answers do not use code examples in providing solutions for the 

questions. There are 6631 (24%) master questions found having Java API classes in their 

accepted answers’ code snippets. This means that only about a quarter of the master 
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questions contain solutions that make use of Java API classes. Figure 4.4 illustrates the 

number of remaining master questions after each filtering step. 

 

Figure 4.4: Overlapping Relationships within Data Collection 

 

4.5.2 Q1: What is the distribution of duplicate Java questions in SO based on the 

askers’ level of expertise? 

 Users’ reputation scores in SO are used as an approximation to their level of 

expertise or experience. As in (Ahasanuzzaman et al., 2016); Ahasanuzzaman et al. 

(2018), those with lower reputation scores are regarded as having lesser expertise or 

experience, and those with higher reputation scores as more expert or experienced. Three 

groups of SO users are defined based on their reputation scores: novice group with 

reputation score less than 100; experienced group with reputation score in between 100 

and 10000, inclusive; and expert group with reputation score above 10000. 

 To answer Q1, the number of duplicate Java questions asked by each of the three 

groups are identified. Table 4.2 shows the results. The total duplicate Java questions is 
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62,553, with two-third contributed by the novice group, 31% contributed by experienced 

group, and 3% contributed by the expert group. 

Table 4.2: Distribution of Duplicate Java Questions Based on Askers’ Level of 
Expertise  

Level of Expertise Number of duplicate Java questions 
Novice Group 

(reputation < 100) 41452 (66%) 

Experienced Group 
(100 < reputation < 10000) 19249 (31%) 

Expert Group 
(reputation > 10000) 1852 (3%) 

 

4.5.3 Q2: What are the top duplicate Java questions in SO based on askers’ level 

of expertise? 

To investigate Q2, the top-10 master Java questions for the three groups of users 

(Table 4.3) are identified. The middle column of Table 4.3 shows the titles of the master 

questions and the count column shows the number of duplicate questions for the 

corresponding master question.  

As shown in Table 4.3, the top two duplicate Java questions of the novice and 

experienced groups are related to how to solve NullPointerException and how to compare 

String, with the frequency of novice asking these questions significantly higher than 

experienced group. Only a few from the expert group posted similar questions, with 

duplication counts below 10. 

 The majority of the top duplicate Java questions of the novice and the experienced 

groups, and one-third of the questions of the expert group are related to understanding 

and/or fixing exceptions and errors. For instances, compilation error, 

NullPointerException, and ArrayIndexOutOfBoundsException. On the contrary, the 

number of duplicate questions related to reasoning of the Java programming concepts are 
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the highest in the expert group, and rare in the experienced and novice groups. For 

example, “….Why are Java generics not implicitly polymorphic?”, “Why don't Java's +=, 

-=, *=, /= compound assignment operators require casting”, and so on.  

The Top-10 duplicate questions can be regarded as the most common Java 

programming problems/topics that Java programmers struggle with. Our results show that 

the most common problem Java programmers face is understanding and/or fixing errors. 

However, this is not the case for the expert programmers, as they question more about the 

reason of some Java programming concepts.  It is important to note that the expert rarely 

asked duplicate Java questions in SO. This study in fact identified the top-30 duplicate 

Java questions in SO based on the askers’ level of expertise and this is provided in 

Appendix A. 

Table 4.3: Top-10 Master Java Questions Based on Askers’ Level of Expertise   

Level of Expertise Top-10 master Java Questions Duplication 
Count 

Novice Group 1. What is a NullPointerException, and how do 
I fix it? 

5009 

2. How do I compare strings in Java? 1631 
3. What causes a 
java.lang.ArrayIndexOutOfBoundsException 
and how do I prevent it? 

554 

4. Scanner is skipping nextLine() after using 
next() or nextFoo()? 

420 

5. How do I fix 
android.os.NetworkOnMainThreadException? 

345 

6. What does a "Cannot find symbol" 
compilation error mean? 

297 

7. Unfortunately MyApp has stopped. How can 
I solve this? 

223 

8. How do I print my Java object without getting 
"SomeType@2f92e0f4"? 

210 

9. What's the simplest way to print a Java array? 203 
10. Why is my Spring @Autowired field null? 133 

Experienced Group 1. What is a NullPointerException, and how do 
I fix it? 

606 

2. How do I compare strings in Java? 274 
3. How do I fix 
android.os.NetworkOnMainThreadException? 

116 
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4. Is List<Dog> a subclass of List<Animal>? 
Why are Java generics not implicitly 
polymorphic? 

96 

5. Why is my Spring @Autowired field null? 92 
6. How do I write a correct micro-benchmark in 
Java? 

52 

7. How to fix 
java.lang.UnsupportedClassVersionError: 
Unsupported major.minor version 

49 

8. Why does Spring MVC respond with a 404 
and report "No mapping found for HTTP 
request with URI [...] in DispatcherServlet"? 

49 

9. Iterating through a Collection, avoiding 
ConcurrentModificationException when 
removing objects in a loop 

44 

10. Java string to date conversion 41 
Expert Group 1. Is List<Dog> a subclass of List<Animal>? 

Why are Java generics not implicitly 
polymorphic? 

10 

2. Iterating through a Collection, avoiding 
ConcurrentModificationException when 
removing objects in a loop 

8 

3. How do I compare strings in Java? 8 
4. What is a NullPointerException, and how do 
I fix it? 

7 

5. Why don't Java's +=, -=, *=, /= compound 
assignment operators require casting? 

6 

6. How do I fix 
android.os.NetworkOnMainThreadException? 

5 

7. When do you use Java's @Override 
annotation and why? 

5 

8. In Java, what is the best way to determine the 
size of an object? 

5 

9. How to create a generic array in Java? 5 
10. Why use getters and setters/accessors? 5 
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4.5.4 Q3: What are the top Java API classes required by the top duplicate Java 

questions in SO based on the askers’ level of expertise? 

Table 4.4 shows the top-30 Java API classes (and the packages they belong) 

required by the top duplicate Java questions in SO based on the askers’ level of expertise. 

Note that only 27 Java API classes were found for the expert group. 

The results show that some of the most frequent Java API classes required by the 

top duplicate Java questions of all expertise groups are from java.lang, java.util, 

javax.swing, java.text, java.io and java.net packages. Nevertheless, for these six 

packages, there are some overlaps and differences in terms of the specific Java API 

classes found for each expertise group, as shown in Table 4.4. 

Other than that, Java API classes from java.awt package were also found for the 

novice group but not for the other two groups. This package mainly contains classes use 

for developing the graphical user interface of Java programs (2019). This shows that 

novice programmers require more help in using these API classes in developing user 

interface.  

Another difference is, the DateTimeFormatter and ResultSet classes were found for 

the experienced and expert groups but not for the novice group. This could be due to these 

two classes are used in more advanced topics and novices have not encounter them. 

DateTimeFormatter is related to formatter for printing and parsing date-time objects. 

ResultSet is related to SQL query of database. 
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Table 4.4: Top-30 Java API Classes Required by the Top Duplicate Java 
Questions Based on Askers’ Level of Expertise 

Level of Expertise Java API Class 
Novice Group java.lang: String, Object, StringBuilder 

java.awt: EventQueue, Dimension, ActionEvent, 
BufferedImage, Graphics2D, Color, 
ActionListener, BorderLayout 
java.util: ArrayList, Date, HashMap, Scanner, 
List, Calendar, Matcher, Pattern, Random 
javax.swing: JFrame, JPanel, JButton, JLabel 
java.text: SimpleDateFormat, 
java.io: File, BufferedReader, IOException, 
InputStream, 
java.net:  URL 

Experienced Group java.lang: String, Object, StringBuilder, 
Integer, Process, Thread 
java.util: ArrayList, Date, HashMap, Scanner, 
List, Calendar, Matcher, Pattern, HashSet 
javax.swing: JFrame, JPanel,  JLabel, 
Document 
java.text: SimpleDateFormat, DateFormat 
java.io: File, BufferedReader, IOException, 
InputStream, FileInputStream, 
FileOutputStream 
java.net:  URL  
java.time: DateTimeFormatter  
 java.sql: ResultSet 

Expert Group java.lang: String, Object, StringBuilder, 
Integer, Process, Thread, Method 
java.util: ArrayList, Date, HashMap, Scanner, 
List, Calendar, Pattern, HashSet 
javax.swing: JPanel,  JLabel 
java.text: SimpleDateFormat, DateFormat 
java.io: File, BufferedReader, IOException, 
InputStream 
java.net:  URL 

java.time: DateTimeFormatter 
java.sql: ResultSet 

 

4.5.5 Summary of Results 

Study 1 investigated which group of SO users frequently ask duplicate Java 

questions in SO site. The results show that the novice group is the top contributor and the 

expert group contributes significantly lower to this. The top-10 duplicate Java questions 

in SO were identified and it was found that the most common problem Java programmers 
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face is understanding and/or fixing errors. However, this is not the case for the expert 

programmers, as they question more about the reason of some Java programming 

concepts. Additionally, the top-30 Java API classes required by the top-10 duplicate Java 

questions in SO were identified and the main findings are: some of the most frequent Java 

API classes required by the top duplicate Java questions of all expertise groups are from 

java.lang, java.util, javax.swing, java.text, java.io and java.net packages; novice 

programmers ask more duplicate questions related to classes in java.awt package 

compared to experienced and expert programmers; experienced and expert programmers 

but not the novice asked duplicate questions related to classes used in more advanced 

topics such as querying of database. 

In summary, Study 1 provides insights on common Java programming 

problems/topics and Java API classes that Java programmers struggle with. Java 

educators and learning resources can devote more attention to these areas to help learners 

in picking up the required knowledge and skills. 

 

4.6 Comparison with Related Work 

Prior study has shown that SO users who have the least experience (less than 100 

reputation score) posted the highest number of duplicate questions regardless of the 

programming language (Ahasanuzzaman et al., 2016). Our study focused only on Java 

questions and our finding shows similar result where novices tend to ask more duplicate 

questions compared to more experienced users.  

An existing study investigating topics discussed in SO questions using clustering 

technique found that one of the major categories of questions asked is concepts that been 

coded but do not work (Allamanis & Sutton, 2013). The finding of Study 1 is in line with 
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this study, and found that Java programmers frequently ask questions related to 

understanding and/or fixing errors. 

A study on the characteristics of SO posts on API issues found that SO users with 

less than 100 reputation score and those with more than 10000 reputation score ask less 

API issue-related questions, as compared to those having reputation score between 100 - 

10000 (Ahasanuzzaman et al., 2018). Study 1 differs in the sense that its scope focused 

on duplicate questions and the Java domain. 

 

4.7 Chapter Summary 

Study 1 was conducted to identify the common Java programming problems using 

duplicate questions retrieved from SO. Duplicate questions from SO can be regarded as 

common questions asked in SO and used to identify common Java programming 

problems/topics that Java programmers face. The common problems/topics serve as 

important areas that Java educators and learners could pay more attention to. The next 

chapter explains the proposed approach for recommending Java API classes performed 

in the Study 2 of this research. 
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CHAPTER 5: THE PROPOSED APPROACH 

 This chapter presents the approach focused on Java API classes recommendation 

using SO data. There are mainly five subsections in this chapter. First subsection provides 

the overview of proposed approach with techniques employed; second and third 

subsection elaborate on two major phases in the proposed approach, which are preparation 

phase and recommendation phase, respectively. In fourth subsection, the API 

recommenders in API element search category (in Section 2.5.1) are discussed, 

particularly on the techniques used in their works. The fifth subsection explains on the 

development of recommender, which details on how to develop plug-in that serve as an 

interface for the proposed approach. 

 

5.1 Overall Design of the Proposed Approach 

Figure 5.1 illustrates the overall design of the proposed approach. The proposed 

approach comprises of a preparation phase and a recommendation phase. The preparation 

phase involves four steps and the recommendation phase involves three steps, which are 

explained in detail in the following sections.  In Figure 5.1, the steps are represented by 

rectangles. 
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Figure 5.1: Overall Design of the Proposed Approach 
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5.2 Preparation Phase 

There are four steps in the preparation phase:  

1. Acquiring training data by extracting Java-related posts from SO; 

2. Pre-processing extracted posts (training data) and split them into two 

datasets, namely, Questions dataset and Answers dataset;  

3. Use a set of heuristic rules to extract Java API classes from the Answers 

dataset. The extracted Java API classes serve as candidate classes, which 

are classes that might be recommended to a user based on his or her query; 

4. Use the Questions dataset as input to train and produce a Doc2Vec (Le & 

Mikolov, 2014) word embedding model. 

There are three datasets produced in the preparation phase, which are training 

data, Answers dataset and Questions dataset. These datasets are stored in different files 

in Comma-Separated Value (CSV) format. The training data includes the questions’ 

identifiers (QuestionId) and their title (QuestionTitle) and accepted answer 

(AcceptedAnswer). The Answers dataset includes the questions’ identifier and their 

accepted answer and corresponding Java API classes extracted (APIClasses). The 

Questions dataset includes the questions’ identifier and their title. Table 5.1 shows the 

columns contained in each of the dataset. 

Table 5.1: Columns in Dataset 

Dataset Column Name 

Training Data QuestionId, QuestionTitle, AcceptedAnswer 

Answers QuestionId, AcceptedAnswer, APIClasses 

Questions QuestionId, QuestionTitle 
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5.2.1 Step 1: Acquiring Training Data  

The training data was extracted from SO by using the same web-based query tool 

named SEDE (Section 3.3) used in Study 1 (Chapter 4). All the discussion posts tagged 

with a “java” tag and having an accepted answer were retrieved for this study. As a result, 

the training data comprises Java posts that have accepted answers. 

It is important to note that this training data is much larger from the dataset used 

to find the common Java programming problems in Study 1. It contains 632,078 

discussion posts comprising of all Java discussion posts with accepted answers, whereas 

the dataset in Study 1 only contains 27,589 discussion posts comprising only master and 

duplicate Java discussion posts. This larger amount of training data is suitable for building 

a word embedding model, as can be seen in the amount of data used by existing studies 

in building language models, namely, RACK that used 344,086, BIKER that used 

1,347,908 and NLP2API that used 656,538 Java related discussion posts  (Huang et al., 

2018; Rahman & Roy, 2018; Rahman et al., 2016).  

 

5.2.2 Step 2: Pre-processing Training Data 

In this step, the training data was pre-processed to remove irrelevant information 

in order to train better word embedding model and to obtain better performance in 

recommendation. There are various pre-processing techniques, such as, data cleaning, 

data reduction, data transformation and data integration (Han et al., 2011). The purpose 

of data cleaning is to remove noise from data while data reduction is about reducing data 

size by aggregating and eliminating redundant features. Data transformation is related to 

data normalization, which is, transforming the data to fall within a smaller or common 

range such as [-1, 1] or [0.0, 1.0]. Data integration is related to merging data from multiple 

sources into a coherent data store.  Only data cleaning was used in this research to pre-
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process the training data, since the training data does not require elimination of redundant 

features, normalization or merging from multiple sources. 

Data cleaning technique was applied to all the questions’ titles in the training data 

to remove the noise in the titles. The data cleaning involves three steps: tokenization, 

removal of noise, and lemmatization. First, tokenization was carried out where a 

question’s title was tokenized. For example, the tokenization of the title “How to convert 

Integer to String?” generates seven tokens, which are, “How”, “to”, “convert”, “Integer”, 

“to”, “String”, and “?”.  

Next, removal of noise was performed on the resulting tokens. The noise includes 

English stop words and punctuation marks. English stop words are words that have no 

significant meaning, such as ‘the’, ‘this’, ‘a’ and so on, and are of high occurrence.  The 

noise can be regarded as random errors or variations in text (Han et al., 2011). After the 

noise removal, only four tokens remained for the given example: “How”, “convert”, 

“Integer”, and “String”. The tokenization and removal of noise were performed using the 

Natural Language Toolkit (NLTK) library, an open source statistical NLP library (Loper 

& Bird, 2002).  

In addition, the remaining tokens was lemmatized with the WordNet model, a 

lexical database that describes semantic relationships for words in English language 

(Miller, 1995). Lemmatization is a well-known IR technique to retrieve the base form of 

a word, (Kettunen et al., 2005). For example, retrieve the base form “write” from 

“writing” and “wrote”. 

Lastly, the training data was split into a Questions dataset and an Answers dataset, 

stored tin two different csv files. As can be seen in Table 5.1, the Questions dataset 

contains the SO questions’ identifiers and their titles. At this point of time, the Answers 
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dataset contains the SO questions’ identifiers and their accepted answers but not the 

corresponding Java API classes. The scripts and algorithm used for extraction are 

provided in Appendix C. 

 

5.2.3 Step 3: Extracting Java API Classes 

To extract the Java API classes, the first three heuristic rules used by Study 1 

(Table 4.1 in Chapter 4) and two additional heuristic rules were used (Table 5.2). The 

first additional heuristic rule is to extract and validate API classes candidates produced 

by the first three heuristic rules. All API classes candidates were checked against the 

classes’ names found in Java API documentation for Java Standard Edition (JavaSE) 8 

and Java Enterprise Edition (JavaEE) 8. If an API class candidate is in wrong letter cases, 

it will be converted to the correct letter cases. It is important to note that, different from 

heuristic rule 4 in Study 1, this heuristic rule does not remove API class candidates which 

are not listed in the Java API documentation. This is because these API classes candidate 

could be from third-parties Java API libraries and relevant to a user’s query and should 

appear in the recommended API classes.  

The second additional heuristic rule is removing two high occurrence API classes, 

which are, String and ArrayList classes. These two classes (especially the String class) 

are used in most programs and is less likely to be addressing any specific programming 

question or task.  

The Java API classes that remain at the end of the application of the five heuristic 

rules are stored in the Answers dataset’s “APIClasses” column at the respective row. 
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Table 5.2: Additional Heuristic Rules for Extracting Java API Classes 

  

5.2.4 Step 4: Training Word Embedding Model 

There is a number of steps involved in training the word embedding model: i) 

filtering of data; ii) creating tagged document; iii) training with Doc2Vec algorithm. The 

purpose of filtering of data is to reduce the Questions dataset to include only those 

questions having the occurrence of Java API classes in the code snippets in their accepted 

answers. This was done by checking against the Answers dataset that contains the Java 

No. Heuristic 
Rule 

Justification Example 
Input Java API 

class 
extracted 
by the 
heuristic 
rule 

1 Extract and 
validate API 
class 
candidates 
produced by 
the first three 
heuristic rules 
by checking 
with API class 
names 
extracted from 
the Java API 
documentation 
for Java SE 8 
and Java EE 8. 

All valid Java API 
class candidates could 
be in the wrong letter 
cases. Therefore, all 
API class candidates  
were checked against 
the valid API class 
names extracted from 
the API documentation 
and converted to the 
correct letter cases if 
wrong letter cases 
occurred. This 
heuristic rule helps to 
eliminate invalid API 
class candidate. 

 

inputStream 

INPUTStream 

InputStem 

- 

InputStream   

InputStem 

2 Remove String 
and ArrayList 
classes  

These two classes 
(especially the String 
class) are used in most 
programs and is less 
likely to be addressing 
any specific 
programming 
question. Removing 
them could improve 
relevant API class 
candidates. 

InputStream 
 
String 

ArrayList 

InputStream 

- 

- 
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API classes based on the “QuestionId”. The resulting Questions dataset consists of only 

178,159 questions, which is 28% of the original size of the Questions dataset. 

In the second step of training the word embedding model, a tagged document 

containing two information, the indexes of the questions and the questions’ titles, was 

created. The indexes of the questions were created in an ascending order based on the 

order of the questions in the Questions dataset.  

In the final step of training the word embedding model, the tagged document was 

used as the input data to train the Doc2Vec word embedding model by using the Doc2Vec 

algorithm. The Doc2Vec algorithm was implemented in Python programming language 

by using the open source Gensim library (Rehurek & Sojka, 2010). After the model was 

trained, it was saved into a binary file format to be used later by the recommendation 

phase in retrieving similar questions. The resulting trained model treated each of the 

question as a document and contained the similarity scores between each of the questions.  

This research used Doc2Vec algorithm because it calculates word similarity at the 

“sentence level”. It is able to calculate a continuous distributed vector representation for 

pieces of texts, which makes it a better algorithm than Word2Vec.  

 

5.3 Recommendation Phase 

There are three major steps in the recommendation phase:  

1. Pre-process user query;  

2. Retrieve similar questions using Doc2Vec model and retrieve their 

respective answers and Java API classes that have been extracted in the 

preparation phase,  
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3. Select relevant Java API classes from the set of Java API classes by using 

the topic modelling algorithm, Latent Dirichlet Allocation (LDA) (Blei et 

al., 2003) and return a list of ranked Java API classes to the user.  

 

5.3.1 Step 1: Pre-processing User Query 

In this step, a user’s query is pre-processed the same way the training data was pre-

processed in the preparation phase and for the same reason. This involves the 

tokenization, removal of stop words and punctuation marks, and lemmatization (Section 

5.2.2).  

 

5.3.2 Step 2: Retrieving Similar Questions and Their Respective Answers and 

Java API Classes 

In this step, the remaining word tokens in the pre-processed user query are used 

to retrieve a set of similar questions from the questions dataset by using the Doc2Vec 

model. The Doc2Vec model calculates the similarity score between the query’s tokens 

and returns a set of similar questions. At most one hundred questions having similarity 

score above seventy percent are returned because subsequent questions not in the top one 

hundred and having lower similarity score are less relevant to the respective user’s query. 

The following explains what happen in Steps 1 and 2 by using an example, with 

the results shown in Figure 5.2. The query is “How to create a digital signature and sign 

data?”. First, the query is pre-processed where it was tokenized, stop words and 

punctuation marks were removed, and lemmatized. The five remaining word tokens are, 

‘create’, ‘digital’, ‘signature’, ‘sign’ and ‘data’. This is shown as the first line of output 

in Figure 5.2.  
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Subsequently, these word tokens were compared with the questions dataset by 

using Doc2Vec model. Doc2Vec returned a set of question indexes having similarity 

scores above seventy percent. The second line of output in Figure 5.2 shows the index 

(‘92907’) of the similar question from the tagged document and the similarity score of 

0.758030891418457 between the word tokens and this similar question. The third line of 

output in Figure 5.2 shows the question’s identifier or “QuestionId” (‘10703416’) of the 

similar question retrieved from the Questions dataset by using the question index 

(‘92907’) from the tagged document (Step 2a in Figure 5.1). The identifiers of similar 

questions are used to retrieve their corresponding answers and Java API classes from the 

Answers dataset (Step 2b and Step 2c in Figure 5.1). 

 

Figure 5.2: An Example of Output of Step 2 of Recommendation Phase 

 

5.3.3 Step 3: Selecting Relevant Java API Classes and Return a Ranked List of 

Java API Classes 

To select relevant Java API classes from the Java API classes produced by the 

previous step, topic modelling is used to measure how relevant the Java API classes are 

to the respective query. The basic LDA algorithm is used in this research for topic 

modelling since it is widely used for automatic extraction of topics from a corpus of text 

documents and a topic is a collection of words that co-occurred frequently in the 
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documents of the corpus (Chen et al., 2016). Therefore, the LDA algorithm was 

implemented using Python programming language and open source Gensim library 

(Rehurek & Sojka, 2010).   

For each of query, the Java API classes extracted from the previous step are used 

as the input to the LDA algorithm to produce an output comprising of a single topic and 

ten words (with probability scores) that are related to the topic for the particular query. 

The rationale for a single topic is, generally a user’s query contains the description of a 

single programming problem. The ten words that are related to the topic correspond to 

the top-10 Java API classes that are relevant to the query.  

The following explains what happens in Step 3 by using the same example used 

to explain Steps 1 and 2. The output in Figure 5.3 shows a single topic at index 0 with 10 

words (Java API class candidates) that are relevant to the topic of the query in descending 

order of probability scores: ‘Signature’ with the probability score of 0.022, ‘InputStream’ 

with the probability score of 0.017, ‘CMSSignedData’ with the probability score of 0.015, 

and so on. The higher the probability score of a word, the more likely the word is related 

to the topic. For example, ‘Signature’ word having the highest probability score is the 

most relevant word to the topic of the respective query. 

Figure 5.3: An Example of Output of Step 3 of Recommendation Phase 
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5.4 Summary of Techniques used in the Proposed Approach 

Table 5.3 summarizes the techniques used in the proposed approach in the same 

format as Table 2.2 where other existing approaches of API Elements Search are 

compared. 

Table 5.3: Summary of Techniques used in Proposed Approach 

 

 

For the proposed approach, there is a total of seven techniques being employed. It 

is important to note that as illustrated in Table 2.2, existing studies employed nine to ten 

different techniques in their approaches. In comparison, with fewer techniques the 

proposed approach is less complex, and yet achieves better benchmarking results. For 

data pre-processing, the approach employs tokenization, removal of stop words and 

punctuation marks and lemmatization to the raw data. For capturing of context from the 

SO questions and answers, the approach employs Doc2Vec word embedding algorithm 

to calculate similarity scores between questions retrieved and produces a Doc2Vec model. 

In addition, five heuristic rules were employed to extract Java API classes from the 

answers of the questions. For producing the recommendations, the proposed approach 

employs LDA topic modelling algorithm in selecting relevant Java API classes. For 

presenting the recommendations, the proposed approach employs a list of top-10 ranked 

Java API classes.  
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5.5 Development of the Java API Class Recommender and the Plug-in 

The approach was developed as a Java API class recommender, which is a web 

application that runs on a back-end server. A plug-in for Eclipse IDE, named APIRecJ 

was developed to serve as the front-end to the recommender. 

 

5.5.1 Architecture Design of Java API Class Recommender and the Plug-in 

The plug-in works as the front-end that interacts with the users to obtain their query 

and to display results to them. The plug-in passes the query and invokes the 

recommendation service provided by the Java API class recommender to initiate the 

searching of relevant Java API classes for the query.  

The Java API class recommender is a standalone web application running on Flask 

web framework. The recommender accesses the pre-trained Doc2Vec model to find 

questions similar to the query, and retrieves their respective answers and Java API classes, 

selects relevant Java API classes and returns a ranked list of Java API classes to the plug-

in for display on the plug-in’s user interface.  

Figure 5.4 illustrates the deployment architecture design of the plugin, APIRecJ and 

the Java API class recommender. The Java API class recommender web application and 

APIRecJ can be deployed on different physical machines running Windows operating 

system. Both of the machines are integrated in the same network using a client-server 

architecture style via Transmission Control Protocol/Internet Protocol (TCP/IP). 
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Figure 5.4: Deployment Architecture of the Plug-in and the Java API Class 
Recommender 

 

5.5.2 Requirements of the Java API Class Recommender  

This section presents the functional requirements and non-functional requirements 

of the Java API Class Recommender. Functional requirements describe the functionalities 

provided by the recommender. Non-functional requirements are requirements concerning 

the quality attributes of the recommender or the recommender’s operation such as its 

performance. 

Both functional and non-functional requirements of are tested using plug-in. 

These testing are manually verified by checking on the request message (user query) and 

response (list of API classes and similar questions) displayed on the plug-in user interface. 
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5.5.2.1 Functional Requirements 

Table 5.4 shows the functional requirements of the Java API Class Recommender.  

Table 5.4: Functional Requirements of Java API Class Recommender 

No. Functional Requirements Description 

1. Get client request message To obtain client request message which 

contains a user’s query. 

2. Find  Java API classes To pass the user’s query to the incorporated 

proposed approach for recommending Java API 

classes. 

3. Return Java API classes and 

similar SO questions’ 

identifier 

To return Java API classes and similar SO 

questions’ identifier in a single response 

 

5.5.2.2 Non-Functional Requirements 

Table 5.5 shows the non-functional requirements of the Java API Class 

Recommender. 

Table 5.5: Non-Functional Requirements of Java API Class Recommender 

No. Non-Functional 

Requirement 

Description 

1. Performance The recommender loads or re-loads the 

pre-trained Doc2Vec model within 10 

seconds and returns the results within 2-5 

seconds.  
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2. Reliability The recommender receives and processes 

a single request at a time with less than 10 

seconds response time. If not, 

recommender will respond with an error 

message to the client’s request. 

 

 

5.5.2.3 Testing on Functional and Non-Functional Requirements 

Table 5.6, Table 5.7 and Table 5.8 shows the test cases for functional requirements of 

the Java API Class Recommender. Table 5.9 and Table 5.10 shows the test cases for non-

functional requirements of the Java API Class Recommender. 

 

Table 5.6: Test Cases for Functional Requirement (1) of Java API Class 
Recommender 

Test  

Objective: 

Get client request message 

Description: Request message from plug-in is received. 

Inputs:  Query 1: How to write an Object to file in Java? 

Query 2: How do I reverse the order of array elements? 

Steps: 1. Open Eclipse. 

2. Open APIRecJ plug-in. 

3. Provide “Query 1” or “Query 2” in “Question” text box. 
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4. Observe message on Java API class recommender’s  output console. 

Expected 

Outputs: 

Message received by Java API class recommender and print on output 

console. 

Actual 

Outputs: 

Query 1: How to write an Object to file in Java? 

 

Query 2: How do I reverse the order of array elements? 

 

Result: Pass 

 

Table 5.7: Test Cases for Functional Requirement (2) of Java API Class 
Recommender 

Test 

Objective: 

Find Java API classes. 

Description: Extract user query from request message for recommendation search 

and perform recommendation. 

Inputs:  

 

Query 1: How to write an Object to file in Java? 

Query 2: How do I reverse the order of array elements? 

Steps: 

 

1. Open Eclipse. 

2. Open APIRecJ plugin. 

3. Provide “Query 1” or “Query 2” in “Question” text box. 

4. Observe message on Java API class recommender’s  output console. 
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Expected 

Outputs: 

Recommendation steps print on output console. 

Actual 

Outputs: 

 

Query 1: How to write an Object to file in Java? 

 

Query 2: How do I reverse the order of array elements? 

 

Result: Pass 

 

Table 5.8: Test Cases for Functional Requirement (3) of Java API Class 
Recommender 

Test 

Objective: 

Return Java API classes and similar SO questions identifier 

Description: Returned response message with a list of Java API classes and similar 

SO questions identifier to plug-in. 

Inputs:  

 

Query 1: How to write an Object to file in Java?  

Query 2: How do I reverse the order of array elements? 

Steps: 1. Open Eclipse 

2. Open APIRecJ plugin 

3. Provide “Query 1” or “Query 2” in “Question” text box. 
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4. Observe message on Java API class recommender’s  output console. 

Expected 

Outputs: 

Return message with a list of  Java API classes and similar SO questions 

identifier print on output console. 

Actual 

Outputs: 

 

Query 1: How to write an Object to file in Java? 

 

Query 2: How do I reverse the order of array elements? 

 

Result: Pass 

 

Table 5.9: Test Cases for Non-Functional Requirement (1) of Java API Class 
Recommender 

Test 

Objective: 

Performance 

Description: The recommender returned the results less than 10 seconds when loads 

or re-loads the pre-trained Doc2Vec. The recommender returned the 
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results within 2-5 seconds without loads or re-loads the pre-trained 

Doc2Vec. 

Inputs:  

 

Query 1: How to write an Object to file in Java? 

Query 2: How do I reverse the order of array elements? 

Steps: 

 

1. Open Eclipse 

2. Open APIRecJ plugin 

3.  Provide “Query 1” or “Query 2” in “Question” text box. 

4. Observe message on Java API class recommender’s  output console. 

Expected 

Outputs: 

Message returned within 10 seconds 

Actual 

Outputs: 

Query 1: How to write an Object to file in Java? 
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Query 2: How do I reverse the order of array elements? 

 

Result:  Pass 

 

Table 5.10: Test Cases for Non-Functional Requirement (2) of Java API Class 
Recommender 

Test 

Objective: 

Reliability 

Description: When recommendation failed, recommender responds with an error 

message to the client’s request. 

Inputs:  

 

Query 1: 2338 @@## !!! 23423 

Query 2: snfnsiof npfdfjisj ofs 

Steps: 1. Open Eclipse 

2. Open APIRecJ plugin 

3. Provide “Query 1” or “Query 2” in “Question” text box. 

4. Observe message on Java API class recommender’s  output console. 
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Expected 

Outputs: 

Returns error message with “RecommendationError” value for API 

classes and empty value for list of question identifier 

Actual 

Outputs: 

Query 1: 2338 @@## !!! 23423 

 

Query 2: snfnsiof npfdfjisj ofs 

 

Result: Pass 

 

5.5.3 Requirements of the Plug-in 

This section presents the functional requirements and non-functional requirements 

of the plug-in, named APIRecJ. There are a variety of Java IDE available in the market, 

for example, Eclipse (2019), IntelliJ IDEA (2019), NetBeans (2019) and others. In this 

research, the plug-in is specifically built for Eclipse IDE since it is more suitable for real 

world applications, execute Java APIs with high performance and provides free 

subscription as compared to IntelliJ IDEA which can be costly (Al-Jepoori & Bennett, 

2018). Besides that, there is an existing study that claimed that Eclipse is better than 

NetBeans because less start up time is required and it is simple to get started with (Kavitha 

& Sindhu, 2015). 
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5.5.3.1 Functional Requirements 

Table 5.11 shows the functional requirements of the plug-in.  

Table 5.11: Functional Requirements of Plug-in 

No. Functional Requirements Description 

1. Get user query To obtain the user’s query. 

2. Find relevant Java API 

classes 

To pass the user’s query to the Java API class 

recommender and access it’s functionalities 

for recommending Java API classes. 

3. Display relevant Java API 

classes 

To display Java API classes that are relevant 

to the user’s query that are returned by the 

Java API class recommender. 

4. Display similar SO 

questions 

To display SO questions similar to the user’s 

query that are returned by the Java API class 

recommender. 

5. Filter similar SO questions To display similar SO questions for Java API 

classes that are selected by the user only. 

 

An exemplar usage of the plug-in is as follows: A user enters his or her natural 

language query describing the programming question or problem faced through the user 

interface of the plug-in. The plug-in obtains the query and sends a request (together with 

the query as input) to the Java API class recommender running on the server. The 

recommender processes the request and returns a response comprising a list of 

recommended Java API classes and the corresponding similar SO questions to the plug-
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in. At most ten Java API classes would be recommended and at most one hundred similar 

SO questions would be returned to the plug-in.  

 

5.5.3.2 Non-Functional Requirements 

Table 5.12 shows the non-functional requirements of the plug-in. It is important to 

note that these non-functional requirements are also dependent on the performance and 

reliability of the recommender running on the server. 

Table 5.12: Non-Functional Requirements of Plug-in 

No. Non-Functional 

Requirement 

Description 

1. Performance The plug-in will display the results within 2-5 

seconds and within 10 seconds when the 

recommender loads or re-loads the pre-trained 

Doc2Vec model.  

2. Reliability The plug-in will display an error message to the 

user if an error message is returned by the 

recommender or connection error occurred 

when connecting to the recommender.  

 

5.5.4 Implementation of the Java API Class Recommender and the Plug-in 

The proposed approach was implemented in the Java API class recommender 

developed as a web application. The web application was developed and deployed using 

Flask (2019), which is a web framework written in Python programming language. A 

web framework is a software framework that supports that development of web 

Univ
ers

ity
 of

 M
ala

ya



110 

applications and provides a standard way to build and deploy web applications (2019).  

The recommender listens to requests from client and responds with a set of Java API 

classes and similar questions in JavaScript Object Notation (JSON) format. In order to 

run the web application on any Windows-based machine without Python installation, the 

web application and all its dependencies files were packaged into a single execution file 

with “.exe” extension by using the open source PyInstaller (2019) library. 

The plug-in was developed by creating an Eclipse plug-in project. Its user interface 

was designed using Java Swing components. Input to the backend server is sent as a POST 

request. The completed Eclipse plug-in project was then exported as an Eclipse feature 

project to compile the Eclipse plug-in project into a single compressed file. The 

compressed file is used to perform a new plugin installation in an Eclipse IDE through 

the installation manager. 

 

5.5.4.1 User Interface of Plug-in  

Figure 5.5 illustrates the four main sections of the plug-in’s user interface. In the 

figure, they are labelled with numbers. Section 1 comprises an input textbox for users to 

enter their programming task question or query, and a “Find” button for them to initiate 

the search for Java API classes relevant to the query. 

Section 2 displays the top-10 Java API classes returned or recommended by the 

Java API Class Recommender developed by this research in terms of checkboxes. A user 

can choose the Java API classes that they are interested in by selecting the corresponding 

checkboxes. This will cause the plug-in to display only similar SO questions for the 

chosen Java API classes and exclude similar SO questions for non-chosen Java API 

classes.  
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Section 3 displays a list of the titles of the similar SO questions that are associated 

to the Java API classes selected by the user in Section 2. The user can click on a question 

title in the list and Section 4 will display the details of the corresponding question. The 

exact question on SO is located by appending the identifier to hyperlink in the following 

format, “https://stackoverflow.com/q/identifier”, where identifier value is the question 

identifier.   
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Figure 5.5: User Interface Design of the Plug-in 

 

3a. A list of questions from Stack 

Overflow that are similar to the 

programming question entered in 

Step 1 is displayed here.  

1. This box allows a user to enter 

his or her programming question. 2. Clicking the “Find” button will 

activate the search. 

3b. The API classes relevant to the questions listed in Step 3a. are 

displayed here as checkboxes. The checkboxes can be selected to 

filter the questions displayed in Step 3a. 

4. The questions can be selected by clicking 

them. For example, Question 3 is selected here. 

5. The details of the question selected in Step 

4 and its answer from Stack Overflow will be 

displayed here. 

4 

3 

2 

1 
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5.6 Chapter Summary 

In brief, this chapter discusses on the overall design of the proposed approach and 

summarizes all the techniques employed in this study. Moreover, this chapter details the 

phases, input and output in each step of the proposed approach. Furthermore, the 

techniques used in the proposed approach and existing studies are summarized based on 

major steps of designing RSSE. Then, the proposed approach is incorporated into Java 

API class recommender and followed by developing an IDE plug-in. All the essential 

plug-in requirements are listed out, which include functional requirements and non-

functional requirements. Next, architecture design of plug-in’s integration with Java API 

class recommender using deployment diagram and the user interface of the plug-in are 

illustrated. The next chapter discusses on how evaluation is performed on the proposed 

approach. 
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CHAPTER 6: PERFORMANCE AND BENCHMARKING OF APPROACH 

This chapter discusses the evaluation performed on the proposed approach. The 

evaluation study mainly intended to measure the performance of the proposed approach 

in recommending relevant API classes. Besides, the same evaluation dataset and 

evaluation metrics in prior study are used to obtain a comparable result. At the end of the 

evaluation, the results obtained are discussed and benchmarked against existing baseline 

studies. 

 

6.1 Evaluation Dataset 

To benchmark the proposed approach, this research used the evaluation dataset 

(2019a) provided by NLP2API study (Rahman et al., 2018), the most recent work on 

mining SO data for Java API classes recommendation. This evaluation dataset contains 

310 code search queries and the corresponding Java API classes relevant to the respective 

query. Code search queries are queries that are described in natural language and used for 

searching for relevant code snippets, and are termed “natural language queries” in this 

research. The API classes found in the relevant code snippets are known as the ground 

truth API classes for the respective query.  

The natural language queries in the evaluation dataset and their ground truth Java 

API classes were extracted from programming tutorial websites, for instances, KodeJava 

(2019), CodeJava (2019) and Java2s (2019). For example, the query “How do I compress 

or zip a directory recursively?” has “ZipOutputStream”, “ZipEntry”, “FileOutputStream” 

and “FileInputStream” as its ground truth Java API classes. Figure 6.1 shows some 

examples of the queries in the evaluation dataset.  
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Figure 6.1: Examples of the Queries in the Evaluation Dataset  

 

6.2 Evaluation Metrics 

The existing studies of the same genre as this research, namely, RACK (Rahman et 

al., 2016) and NLP2API (Rahman & Roy, 2018) used four metrics to evaluate the 

performance of their approaches in recommending API classes for queries. BIKER 

(Huang et al., 2018) used two out of the four metrics to evaluate their approaches in 

recommending API classes and methods.  

This research used the same four metrics to benchmark the performance of the 

proposed approach. These metrics are:  

(a) Top-K accuracy 

(b) Mean Recall @ K (MR@K) 

(c) Mean Reciprocal Rank @ K (MRR@K)  

 
 
 
 

 
          

 

Ground Truth API Classes Natural Language Query 
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(d) Mean Average Precision @ K (MAP@K). 

Top-K accuracy, MR@K, MRR@K and MAP@K are the evaluation metrics that 

measure on the recommendation performance and information retrieval (IR) performance 

of the proposed approach. These metrics not only use to assess the correctness of the 

proposed approach in retrieve set of relevant API classes but also examine on whether the 

proposed approach able to return ranked result by select the relevant result at top position 

and less relevant result at the bottom position. Thus, the proposed approach should 

archive a high score in all the performance metrics to prove that the approach has return 

majority highly relevant API classes and less irrelevant result. In addition, the approach 

should also able to return user a list of relevant items earlier and user need not to browse 

through the entire list to search for relevant answer. 

In the following subsections, the metrics are explained by using two query 

examples. The depth of the returned result is set at ten for all the metrics. In other words, 

the value of K is ten and only the top-10 Java API classes returned by the approach are 

taken into consideration. This is because the baseline studies (RACK and NLP2API) 

achieved the best performance for the four metrics when k is 10.  

6.2.1 Top-K accuracy 

Top-K accuracy refers to the percentage of the search query for which at least one 

API class is correctly recommended within the Top-K results by recommendation 

technique (Rahman et al., 2018). Its formula is defined in Equation (Eq) 1  (Rahman et 

al., 2018). 

Eq 1: 

Top-K Accuracy (Q) = 
∑ 𝑖𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝑞,   𝐾)𝑞∈𝑄

|𝑄|
% 
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Q denotes the set of all queries, q denotes a query that is a member of (∈) set Q, 

|Q| denotes the size of the set of query, ∑ denotes the sum of isCorrect function for each 

q in Q, and K denotes the top-k Java API classes returned by the approach. The isCorrect 

function returns a value of 1 if the approach returns at least one relevant Java API class 

for query q, and a value of 0 if the approach returns none of the relevant Java API classes 

for query q.  A relevant Java API class refers to a Java API class that can be found in the 

set of ground truth Java API classes for query q.  

Table 6.1 shows an example of calculation for Top-K Accuracy metric with K 

equals to 10. For Query 1, isCorrect function returns a value of 0 since none of the Java 

API classes returned by the approach (i.e. “List” and “ArrayList”) matches with any of 

the ground truth Java API classes. For Query 2, isCorrect function returns a value of 1 

since at least one (in fact two in this case) of the Java API classes returned by the approach 

(i.e. “Properties” or “Session”) matches with ground truth Java API classes. The Top-K 

accuracy of the approach for this dataset that comprises only two queries is 50%, and is 

calculated by dividing the number of queries having value 1 returned by the isCorrect 

function with the total number of queries in the dataset and then multiplying the output 

with 100. 

Table 6.1: Example of Calculation for Top-10 Accuracy 

Query Ground Truth 
Java API Class 

Results 
Returned 
by 
Approach 

Calculation 

Query 1: 
How to 
create a 
digital 
signature and 
sign data? 

Signature, 
PrivateKey, 
KeyPairGenerator 
SecureRandom, 
KeyPair 

List, 
ArrayList 

𝑖𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(q1, ("List", "ArrayList"))  

= 0 

Query 2: 
How do I 
send an 
HTML 
email? 

Properties, 
Session, 
Message, 
MimeMessage, 
InternetAddress 

Properties, 
Session 

𝑖𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(q2, ("Properties", "Session")) 
= 1 
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  Top-10 
Accuracy 
(Q) 

∑ 𝑖𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝑞, 𝐾)𝑞∈𝑄

|𝑄|
 𝑥 100 

                            

                   =  
0+1

|2|
 𝑥 100 

                        =  
1

2
 𝑥 100 

                   =  50 % 

 
 

6.2.2 Mean Recall @ K (MR@K) 

Recall@K refers to the percentage of ground truth Java API classes that are 

correctly recommended for a query in the Top-K results by an approach  (Rahman et al., 

2018). MR@K averages such measures for all queries in the dataset. Its formula is defined 

in Eq 2 (Rahman et al., 2018).   

Eq 2: 

MR@K (Q) = 
1

|𝑄|
∑

|𝑟𝑒𝑠𝑢𝑙𝑡(𝑞,𝐾)∩𝑔𝑟𝑜𝑢𝑛𝑑(𝑞)|

|𝑔𝑟𝑜𝑢𝑛𝑑(𝑞)|𝑞∈𝑄  

Q denotes the set of all queries, q denotes a query that is a member of (∈) set Q, 

|Q| denotes the size of the set of query, result(q, K) refers to Top-K recommended APIs 

by the approach, and ground(q) refers to ground truth API classes for each query q ∈ Q. 

The larger the value of MR@K, the better the recommendation approach is. 

Table 6.2 shows an example of calculation for MR@K metric with K equals to 

10. The recall@10 for Query 1 is 0 since none of the Java API classes returned by the 

approach (i.e. “List” and “ArrayList”) matches with any of Query 1’s ground truth Java 

API classes. The recall@10 for Query 2 is 0.40 since the two Java API classes returned 
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by the approach (i.e. “Properties” or “Session”) matches with two of the five ground truth 

Java API classes of Query 2. The MR@10 of the proposed approach for this dataset that 

comprises only two queries is 0.20, and is calculated by dividing the sum of recall@10 

for each query in the dataset with the total number of queries in the dataset. 

Table 6.2: Example of Calculation for MR@10 

Query Ground Truth 
Java API Class 

Results 
Returned 
by 
Approach 

Calculation 

Query 1: 
How to 
create a 
digital 
signature and 
sign data? 

Signature, 
PrivateKey, 
KeyPairGenerator 
SecureRandom, 
KeyPair 

List, 
ArrayList 

|𝑟𝑒𝑠𝑢𝑙𝑡(𝑞1,𝐾)∩𝑔𝑟𝑜𝑢𝑛𝑑(𝑞1)|

|𝑔𝑟𝑜𝑢𝑛𝑑(𝑞1)|
 = 

0

5
 = 0 

Query 2: 
How do I 
send an 
HTML 
email? 

Properties, 
Session, 
Message, 
MimeMessage, 
InternetAddress 

Properties, 
Session 

|𝑟𝑒𝑠𝑢𝑙𝑡(𝑞2,𝐾)∩𝑔𝑟𝑜𝑢𝑛𝑑(𝑞2)|

|𝑔𝑟𝑜𝑢𝑛𝑑(𝑞2)|
  = 

2

5
 =0.40 

  MR@10 
(Q) 

1

|𝑄|
∑

|𝑟𝑒𝑠𝑢𝑙𝑡(𝑞, 𝐾) ∩ 𝑔𝑟𝑜𝑢𝑛𝑑(𝑞)|

|𝑔𝑟𝑜𝑢𝑛𝑑(𝑞)|
𝑞∈𝑄

  

 

                      = 
1

|2|
 (0 + 0.4) 

                      = 
0.4

2
  

                      = 0.2 

 
 

6.2.3 Mean Reciprocal Rank @ K (MRR@K) 

Reciprocal Rank @ K refers to the multiplicative inverse of the rank of the first 

relevant API class in the Top-K results returned by the approach (Rahman et al., 2018). 

Mean Reciprocal Rank @ K averages such measures for all queries (q ∈ Q) in the dataset. 

Its formula is defined in Eq 3 (Rahman et al., 2018).   
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Eq 3: 

MRR@K (Q) = 
1

|𝑄|
∑

1

𝑟𝑎𝑛𝑘(𝑞,𝐾)𝑞∈𝑄  

Q denotes the set of all queries, q denotes a query that is a member of (∈) set Q, |Q| 

denotes the size of the set of query, rank(q, K) returns the rank of the first correct API 

from a ranked list of size K. If no correct API class or code segment is found within the 

Top-K positions, then rank(q, K) returns ∞.  It returns 1 for the correct result at the 

topmost position of a ranked list. Following that, MRR can take a maximum value of 1 

and a minimum value of 0. The bigger the MRR value is, the better the approach is. 

Table 6.3 shows an example of calculation for MRR@K metric with K equals to 

10. For Query 1, rank(Query 1, 10) returns a value of ∞ since none of the Java API 

classes returned by the approach (i.e. “List” and “ArrayList”) matches with any of the 

ground truth Java API classes. Therefore, Reciprocal Rank @ 10 for Query 1 is 0. For 

Query 2, rank(Query 2, 10) returns a value of 1, since the two Java API classes returned 

by the approach (i.e. “Properties” or “Session”) matches with two of the five ground truth 

Java API classes and the rank of the first relevant API class returned (i.e. “Properties”) is 

1, which is the topmost position of the ranked list returned by the approach. The 

MRR@10 of the proposed approach for this dataset that comprises only two queries is 

0.5, and is calculated by dividing the sum of Reciprocal Rank @ 10 for each query in the 

dataset with the total number of queries in the dataset. 
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Table 6.3: Example of Calculation for MRR@10 

Query Ground Truth 
Java API Class 

Results 
Returned 
by 
Approach 

Calculation 

Query 1: 
How to 
create a 
digital 
signature and 
sign data? 

Signature, 
PrivateKey, 
KeyPairGenerator 
SecureRandom, 
KeyPair 

List, 
ArrayList 

1

𝑟𝑎𝑛𝑘(𝑞,𝐾)
 = 

1

∞
 = 0 

Query 2: 
How do I 
send an 
HTML 
email? 

Properties, 
Session, 
Message, 
MimeMessage, 
InternetAddress 

Properties, 
Session 

1

𝑟𝑎𝑛𝑘(𝑞,𝐾)
   = 

1

1
 =1 

  MRR@10 
(Q) 

1

|𝑄|
∑

1

𝑟𝑎𝑛𝑘(𝑞, 𝐾)
𝑞∈𝑄

   

 

=
1

|2|
 (0 + 1) 

                 =  
1

2
 

                 = 0.5 

 
 

6.2.4 Mean Average Precision @ K (MAP@K) 

Precision @ K calculates the precision at the occurrence of every single relevant 

API class in the ranked list (Rahman et al., 2018). Average Precision @ K (AP@K) 

averages the precision @ K for all relevant items within Top-K results for a particular 

query. Mean Average Precision @ K is the mean of Average Precision @ K for all queries 

(Q) from the dataset and the formula is defined in Eq 4 (Rahman et al., 2018). 
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Eq 4: 

AP @ K = 
∑ 𝑃𝑘 × 𝑟𝑒𝑙𝑘

𝐾
𝑘=1

|𝑅𝑅|
 

MAP @ K = 
∑ 𝐴𝑃@𝐾(𝑞)𝑞∈𝑄

|𝑄|
 

K refers to number of top results considered, relk denotes the relevance function of 

kth result in the ranked list that returns either 1 (relevant) or 0 (irrelevant) and Pk denotes 

the precision at kth result. |RR| is the set of relevant results for a query. Q denotes the set 

of all queries, q denotes a query that is a member of (∈) set Q, |Q| denotes the size of the 

set of queries. 

Table 6.4 shows an example of calculation for MAP@K metric with K equals to 

10. AP@10 for Query 1 is 0 since none of the Java API classes returned by the approach 

(i.e. “List” and “ArrayList”) matches with any of the ground truth Java API classes.  

For Query 2, the first API class returned is relevant (rel1 = 1) and it can be found at 

the first position of the five ground truth Java API classes, so P1 × rel1 = 1

1
× 1 = 1. The 

second API class returned is also relevant (rel2 = 1) and can be found at the second 

position out of the four remaining ground truth Java API classes, so P2 × rel2  =  2

2
× 1 =

1. Following that, AP@10 for Query 2 is 0.4. The MAP@10 of the proposed approach 

for this dataset that comprises only two queries is 0.2, and is calculated by dividing the 

sum of AP@10 for each query in the dataset with the total number of queries in the 

dataset. 
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Table 6.4: Example of Calculation for MAP@10 

Query Ground Truth 
Java API Class 

Results 
Returned 
by 
Approach 

Calculation 

Query 1: 
How to 
create a 
digital 
signature 
and sign 
data? 

Signature, 
PrivateKey, 
KeyPairGenerator 
SecureRandom, 
KeyPair 

List, 
ArrayList 

∑ 𝑃𝑘 × 𝑟𝑒𝑙𝑘
𝐾
𝑘=1

|𝑅𝑅|
  

= 
(
0
1

×0)+(
0
2

×0)+(
0
3

×0)+(
0
4

×0)+(0
5

×0)

5
   

= 0 

 
Query 2: 
How do I 
send an 
HTML 
email? 

Properties, 
Session, 
Message, 
MimeMessage, 
InternetAddress 

Properties, 
Session 

∑ 𝑃𝑘 × 𝑟𝑒𝑙𝑘
𝐾
𝑘=1

|𝑅𝑅|
   

=
(

1

1
×1)+(

2

2
×1)+(

2

3
×0)+(

2

4
×0)+(

2

5
×0)

5
  

=  
1+1+0+0+0

5
  

= 0.4 

 
  MAP@10 

(Q) 
∑ 𝐴𝑃@𝐾(𝑞)𝑞∈𝑄

|𝑄|
   

 

=
(0 + 0.4)

|2|
  

                    = 
0.4

2
 

                   = 0.2 
 

6.3 Benchmarking of Proposed Approach  

This research used the evaluation tool (2019b) published by NLP2API authors to 

benchmark the proposed approach by using the four metrics and the benchmarking only 

considered the top-10 results returned by the approach. The benchmarking results show 

that the proposed approach achieves 84.83% for Top-10 Accuracy, 0.58 for MRR@10, 
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50.68% for MAP@10 and 58.76% for MR@10. The proposed approach shows an 

improvement of 3.22% in Top-10 Accuracy, 0.03 in MRR@10, 2.83% in MAP@10 and 

0.89% in MR@10, when compared to the best state-of-the-art approach in Java API 

classes recommendation, namely, NLP2API.  

Table 6.5 shows the results of the benchmarking. However, the proposed approach 

was not compared against the BIKER study because it focused on API methods 

recommendation and was not benchmarked using the NLP2API’s evaluation dataset. 

Furthermore, the BIKER study used only the MRR and MAP metrics in evaluating their 

work. 

There are two possible reasons the proposed approach achieves higher scores for 

the four metrics. The first possible reason is the proposed approach validates the Java API 

classes using the Java documentation and this removes some of the invalid API classes 

from the result returned. Hence, the result comprises more accurate Java API classes and 

this contributes to the improvement in Top-10 accuracy and MR@10.  

The second possible reason is the proposed approach removes two Java API classes 

(“String” and “ArrayList”) that are of high occurrence but are unlikely to be the relevant 

Java API classes for the query. These two classes would probably occupy the top positions 

in the ranked list of Java API classes returned. By removing them, other relevant Java 

API classes can be recommended at a higher position on the list, resulting in better 

MRR@10 and MAP@10.  

The proposed approach does not show significant improvement in MR@10. The 

proposed approach still returns some false negative results and is unable to remove all 

irrelevant Java API classes effectively. This is because the heuristic rules employed are 

unable to remove non Java API classes (for example, custom classes such as Student, 
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ClassA, TestClass, or classes from other APIs) that might appear in the sample codes in 

SO. 

Table 6.5 : Benchmarking of Proposed Approach against Existing Approaches 

Approach Top-10 
Accuracy MRR@10 MAP@10 MR@10 

RACK 

(Rahman et al., 2016) 
77.10% 0.39 36.38% 39.22% 

NLP2API 

(Rahman & Roy, 2018) 
81.61% 0.55 47.85% 57.87% 

Proposed Approach  

 
84.83% 0.58 50.68% 58.76% 

Proposed Approach’s 
improvement over 
NLP2API 

3.22% 0.03 2.83% 0.89% 

 

6.4 Chapter Summary 

This chapter details the evaluation dataset and four metrics (with examples) used to 

evaluate the performance of the proposed approach. This chapter also presents the 

benchmarking of the proposed approach with the existing studies by employing the four 

metrics. The benchmarking results proved that the proposed approach slightly 

outperforms baseline studies. The next chapter explains the user evaluation study 

performed on the developed plug-in. 
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CHAPTER 7: USER EVALUATION STUDY 

This chapter presents the evaluation of plug-in as well as the developed Java API 

class recommender which incorporates the proposed approach in this research. There are 

mainly five subsections in this chapter. The first subsection describes the pilot study 

design and the second subsection discusses on the pilot study results. The third subsection 

demonstrates user evaluation study design and the fourth subsection illustrates the user 

evaluation results. Lastly, the fifth subsection concludes on the discussion of user 

evaluation results.  

 

7.1 User Evaluation Study 

This section presents the user evaluation study conducted to evaluate the usefulness 

of the plug-in (front-end) and the Java API class recommender running on the backend 

server. It also describes the results collected from the pilot study conducted prior to the 

user evaluation study.  

 

7.1.1 Pilot Study Design 

The purpose of the pilot study was to gather feedback to refine the plug-in and the 

design of the user evaluation study. Basically, participants were recruited to use APIRecJ 

to find relevant Java API classes for three programming questions given and to use 

Google search engine for the same purpose. The estimated duration of participation for 

the study is forty to forty-five minutes. 
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The participant recruitment criteria are: 

1) The first programming language learned is Java, and 

2) Obtained at least a grade ‘B’ in an introductory Java programming course.  

 

The data collection instrument of the pilot study consists of the following sections: 

 Introduction Section – This section provides an overview and the purpose of the 

study, recruitment criteria, terms and condition of participation, and researchers’ 

contact details. 

 Section 1 (Introduction to APIRecJ) - This section explains the features of 

APIRecJ by showing its UI and how to use the features. 

 Section 2 (Part A) that consists of the tasks to be performed, namely, using Google 

search engine to search for Java API classes that are relevant to the three 

programming questions given; to state the start time and finish time of working 

on each programming question; and to state three most relevant Java API classes 

for each of the programming questions given. 

 Section 2 (Part B) that consists of the tasks to be performed, namely, using 

APIRecJ to search for Java API classes that are relevant to the three programming 

questions given (same questions as Part A); and for each question, look for code 

snippets from the answers of the similar Stack Overflow questions returned by 

APIRecJ and list the Java API classes that are relevant to the question and state 

the three most relevant Java API classes for the programming question; to state 

the start time and finish time of working on each programming question. 

 Section 3 comprising of a questionnaire with two parts. Part A of the questionnaire 

asks about participants’ educational background, level of Java programming skill, 
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other programming languages known and the level of skill, and Software 

Development Kits (SDKs) familiar with. Part B of the questionnaire asks the 

participants’ opinions on the features of APIRecJ, whether they prefer Google 

search engine or APIRecJ and their reasons for their preference, and usefulness of 

having API class recommender such as APIRecJ and the reasons. 

The three programming questions given to the participants require the use of certain 

Java API classes. They are: 

Programming Question 1: How to write an Object to file in Java? 

Programming Question 2: How do I reverse the order of array elements? 

Programming Question 3: How do I convert Date to String? 

The order of Part A and Part B of Section 2 is reversed for alternate participant. In 

other words, the first participant will perform Part A followed by Part B, the second 

participant will perform Part B followed by Part A, the third participant will perform Part 

A followed by Part B, and so on. 

 

7.1.2 Pilot Study Results 

Two participants (denoted as P1 and P2) participated in the pilot study. Both of the 

participants are first year computer science undergraduate students from the Faculty of 

Computer Science & Information Technology, University Malaya, who scored an ‘A’ in 

the introductory programming subject (WIX1002 Fundamentals of Programming) they 

took in their undergraduate study. In terms of the level of Java programming skill, they 

chose the option of “junior” level that represents that they know about designing classes, 

interfaces and exception handling. In terms of other programming languages, P1 has 
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programming knowledge in C++ and Dart, while P2 only has programming knowledge 

in C++. In terms of the SDKs that they are familiar with, P1 and P2 selected Java SE, the 

standard/default API for Java programming. 

Table 7.1 shows the results of using Google search engine and APIRecJ to search 

for Java API classes for the three programming questions given. Participants are required 

to provide three most relevant API classes for each of question.  

Based on the findings, the average correctness of Java API classes found by using 

APIRecJ for Q1 is 66.67% and average time taken is 3.5 minutes. However, the average 

correctness of Java API classes found by using Google search engine for Q1 is 83.33% 

and average time taken is 2 minutes. 

For Q2, the average correctness of Java API classes found by using APIRecJ is 50% 

and average time taken is 1.5 minutes. However, the average correctness of Java API 

classes found by using Google search engine is 66.67% and average time taken is 3 

minutes.  

For Q3, the average correctness of Java API classes found by using APIRecJ is 50% 

and average time taken is 2.5 minutes. However, the average correctness of Java API 

classes found by using Google search engine is 50% and average time taken is 2 minutes. 
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Table 7.1: Summary of Section 2 Result in Pilot Study 

Participants Programming 
Question 

APIRecJ (Part A) 

 

Google search engine 
(Part B) 

 Correct 
APIs 

Time 
Required 
(min) 

Correct 
APIs 

Time 
Required 
(min) 

P1* Q1 2 3 3 2 
Q2 1 2 3 3 
Q3 2 2 1 2 

P2# Q1 2 4 2 2 
Q2 2 1 1 3 
Q3 1 3 2 2 

Average 
Correctness 
(%) 

Q1 66.67 83.33 
Q2 50 66.67 
Q3 50 50 

Average Time 
Required (min) 

Q1 3.5 2 
Q2 1.5 3 
Q3 2.5 2 

 Note:  

* indicate participant perform Part A followed by Part B 

# indicate participant perform Part B followed by Part A 
 

Section 3 (Part B) Result: Both P1 and P2 agreed that it is easy to find the 

relevant Java API classes by using APIRecJ (Question 1), that it is helpful to have the 

Java API classes recommended as filters in searching for relevant Java API classes 

(Question 2) and that it is helpful to have similar Stack Overflow questions as they 

provide suggestions for searching for relevant Java API classes (Question 3). 

Both P1 and P2 prefer to use APIRecJ instead of Google search engine for 

searching relevant Java API classes for their programming questions (Question 4) 

because of more efficient and ease of use (Question 5). P2 gave another reason, which is, 

“By using Google, we have to go through each website one-by-one and we might not be 

able to find the answers that we wanted, however APIRecJ solved this by displaying the 

list of questions available and also the APIs used which is very clear to users”.  
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P1 stated a “Yes” when asked whether it is useful to have an API class 

recommender tool such as APIRecJ that helps to find relevant information on API (such 

as API classes) when doing programming (Question 6) and PI gave the reason of “It helps 

to save the hassle of going back and forth looking and searching between different 

websites for guidance”, Similarly, P2 stated a “Yes” and gave the reason of “I would be 

able to know which API can help me perform the job and I can make comparisons since 

all the options has been displayed. Also, I would be able to check whether I'm using them 

correctly.” 

 

7.1.3 User Evaluation Study Design 

Based on the findings from the pilot study, the answer options of Question 2 

(“What is your level of Java programming skill?”) of Part A of the questionnaire were 

improved.  The original options were: 

a) Junior – Design classes, interfaces and exception handling,  

b) Intermediate – Knowledge on algorithm efficiency for Java collections 

framework and JVM 

c) Advanced – Knowledge on multi-threaded programming, concurrency issues, 

managing life cycle and priority of threads.  

The options were improved to better descriptions of the levels of Java 

programming skill comprising of four options, which are:  

a) Beginner – Basic understanding on Java programming, for example, Hello 

World program 
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b) Junior – Design and programming using classes, interfaces and exception 

handling 

c) Intermediate – Produce quality program and understand algorithm efficiency 

for each of the Java collections framework 

d) Advanced – Programming using almost all Java framework component 

including multi-threaded programming, concurrency issues, managing life cycle and 

priority of threads 

 

7.1.4 User Evaluation Results  

Two participants (denoted as P3 and P4) participated in the user evaluation study. 

Both are first year computer science undergraduate students from the Faculty of 

Computer Science & Information Technology, University Malaya, who scored an ‘A’ in 

the introductory programming subject (WIX1002 Fundamentals of Programming) they 

took in their undergraduate study.  

In terms of the level of Java programming skill, they chose the option of “junior” 

level that represents that they know about designing and programming using classes, 

interfaces, and exception handling. In terms of other programming languages, P3 has 

programming knowledge in three other programming languages, which are C++, Python 

and Dart, while P4 has programming knowledge in Visual Basic and Dart. Both are 

familiar with the Java SE SDK but P4 is also familiar with Android SDK, which is a Java 

API developed specifically for mobile phone operating system. 
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Table 7.2 shows the results of using Google search engine and APIRecJ to search 

for Java API classes for the three programming questions given. Participants are required 

to provide three most relevant API classes for each of question.  

Based on the findings, the average correctness of Java API classes found by using 

APIRecJ for Q1 is 66.67% and average time taken is 4 minutes. However, the average 

correctness of Java API classes found by using Google search engine for Q1 is 100% and 

average time taken is 2 minutes. 

For Q2, the average correctness of Java API classes found by using APIRecJ is 50% 

and average time taken is 5 minutes. However, the average correctness of Java API 

classes found by using Google search engine is 83.33% and average time taken is 2.5 

minutes.  

For Q3, the average correctness of Java API classes found by using APIRecJ is 

100% and average time taken is 3 minutes. However, the average correctness of Java API 

classes found by using Google search engine is 50% and average time taken is 1.5 minutes 
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Table 7.2: Summary of Section 2 Result in User Evaluation Study 

Participants Programming 
Question 

APIRecJ (Part A) Google search engine 
(Part B) 

 Correct 
APIs 

Time 
Required 
(min) 

Correct 
APIs 

Time 
Required 
(min) 

P3# Q1 2 4 3 2 
Q2 2 4 2 2 
Q3 3 3 1 2 

P4* Q1 2 4 3 2 
Q2 1 6 2 3 
Q3 3 3 2 1 

Average 
Correctness 
(%) 

Q1 66.67 100 
Q2 50 83.33 
Q3 100 50 

Average Time 
Required (min) 

Q1 4 2 
Q2 5 2.5 
Q3 3 1.5 

 Note:  

* indicate participant perform Part A followed by Part B 

# indicate participant perform Part B followed by Part A 
 

Section 3 (Part B) Result: For Questions 1 – 3, participants were asked to rate 

the features of APIRecJ using a 5-point Likert scale (1 - “Strongly Disagree”, 2 – 

“Disagree”, 3 – “Neither Agree nor Disagree”, 4 – “Agree” and 5 – “Strongly Agree”). 

Participants were asked to circle their chosen option for each of these Likert scale 

questions and to state the reason if he or she chose the option of 3 or below.  

Question 1 states “It is easy to find the relevant Java API classes by using 

APIRecJ. If your response is 3 and below, please state the obstacles of finding the relevant 

Java API classes.” P3 agreed that it is easy to find the relevant Java API classes by using 

APIRecJ but P4 disagreed on this and stated “If I'm forced to only use APIRecJ, it's quite 

frustrating, like for question 3, it showed result of String to Date even I typed Date to 

String.”.   
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Question 2 states “It is helpful to have the Java API classes recommended as filters 

in searching for relevant Java API classes. If your response is 3 and below, please state 

why it is not helpful to have the Java API classes as filters in searching for relevant Java 

API classes.”. P3 agreed that it is helpful to have the Java API classes recommended as 

filters in searching for relevant Java API classes. However, P4 neither agreed nor 

disagreed and stated “For most people, when we want to search for a solution, we don’t 

know an API for it existed, so showing a long list of Java API without reading its 

documentation doesn’t help much”.  

Question 3 states “It is helpful to have similar Stack Overflow questions as they 

provide suggestions for searching for relevant Java API classes. If your response is 3 and 

below, please state why the similar Stack Overflow questions are not helpful in finding 

relevant Java API classes.” Both P3 and P4 agreed that it is helpful to have similar Stack 

Overflow questions as they provide suggestions for searching for relevant Java API 

classes. 

 Question 4 states “Which one do you prefer to use for searching relevant Java API 

classes for your programming questions?” and there are two options given, which are 

APIRecJ and Google search engine. P3 chose APIRecJ and P4 chose Google search 

engine. 

  Question 5 states “What are your reasons for your answer for the previous 

question? You can select more than one option” and there are three options given, which 

are, “More efficient (Less searching effort)”, “Ease of use”, and “More relevant 

information”. P3 preferred to use APIRecJ because it is more efficient and because of 

ease of use and gave other reason of “APIRecJ can get all the API class related to my 

question instantly”. In contrast, P4 preferred to use Google search engine because of more 

relevant information. 
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 Question 6 states “Is it useful to have an API class recommender tool such as 

APIRecJ that helps you to find relevant information on API (such as API classes) when 

you are doing programming? Yes/No. Please state your reason.”. P3 selected “Yes” and 

gave the reason of “It is easy to find a list of useful API regarding my question. However, 

to understand more about on API's function, I will choose to use google and maybe refer 

more to Java Oracle”. Similarly, P4 selected “Yes” and gave the reason of “More option 

is always better, considering Google doesn’t always return Stack Overflow results, 

cannot show list of all API that could solve my problem”. 

 

7.1.5 Discussion of User Evaluation Results  

 The user evaluation results (Question 1 of Part B of questionnaire) show that 

APIRecJ occasionally recommends less relevant result. This is probably because it 

requires the query to be in the form of a longer text description in order to get a better 

result. For example, instead of using “How do I convert Date to String?” as the query, P4 

used “Date to String” as the query and APIRecJ returned a less relevant results. Another 

possible reason could be the relevance of the recommended results is dependent on the 

programming question. This can be seen in the user evaluation results, where Google 

performed better for Q1 and slightly better for Q2 but APIRecJ performed better for Q3.  

P3 (Question 6 of Part B of questionnaire) and P4 (Question 2 of Part B of 

questionnaire) also pointed out that returning a list of Java API classes might not be useful 

because programmers are frequently unfamiliar with Java API names and require more 

assistance in terms of API description and usage. This probably could be the reason for 

more time required to understand Java API when using APIRecJ. Therefore, it would be 

more helpful if APIRecJ could include more information such as API descriptions from 

the Java documentation. 
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Although the two participants have different preference of APIRecJ or Google 

(Question 4), P4 that preferred Google indicated that it is useful to have an API class 

recommender tool such as APIRecJ that helps to find relevant information on API (such 

as API classes) when are doing programming, because Google search engine does not 

always return Stack Overflow results and cannot show a list of all APIs that could solve 

the problem (Question 6). In addition, APIRecJ’s feature of providing the similar Stack 

Overflow questions received positive feedback (Question 3). This shows that APIRecJ is 

generally useful. 

 

7.2 Chapter Summary 

This chapter explains the evaluation of plug-in carried out to measure the usefulness 

of the developed plug-in. The evaluation is consisting of two major studies, which are 

pilot study and user evaluation study. Therefore, the evaluation begins with designing a 

data collection instrument for the pilot study and improved for the user evaluation study. 

As a result, four participants are recruited for both of the evaluation study, where two 

participants participated in the pilot study and another two participants participated in the 

user evaluation study. Participants were recruited to use APIRecJ to find relevant Java 

API classes for three programming questions given and to use the Google search engine 

for the same purpose. Based on the results gathered from data collection instrument, the 

developed plug-in can be considered useful for programmers. Univ
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CHAPTER 8: CONCLUSION 

This chapter presents the conclusion of this research. It includes the answering of 

the research questions, a revisit of research contributions, threats to validity of the results, 

and outline of possible future work. 

 

8.1 Answering of Research Questions (RQs) 

This section re-states the RQs of this research and summarizes how they were 

achieved and the answers to these RQs. 

 

RQ1: What are Java programmers’ common Java programming problems?  

 RQ1 was achieved by mining and analyzing duplicate Java questions/posts in SO. 

Since duplicate questions are the same questions that different programmers repeatedly 

asked in different contexts, they can be used as surrogates to common questions asked in 

SO. These common questions are in fact common Java programming problems/topics that 

Java programmers struggle with.  

The level of expertise was determined based on the askers’ reputation scores in SO. It 

was found that the novice group is the top contributor and the expert group contributes 

significantly lower to duplicate questions. The top-10 duplicate Java questions in SO 

(Table 4.3) were identified and it was found that the most common problem Java 

programmers face is understanding and/or fixing errors. However, this is not the case for 

the expert programmers, as they question more about the reason of some Java 

programming concepts.  
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The top-30 Java API classes required by the top-10 duplicate Java questions in SO were 

also identified (Table 4.4) and the main findings are: some of the most frequent Java API 

classes required by the top duplicate Java questions of all expertise groups are from 

java.lang, java.util, javax.swing, java.text and java.io packages; novice programmers ask 

duplicate questions related to classes in java.awt package but not the experienced and 

expert programmers; experienced and expert programmers but not the novice asked 

duplicate questions related to classes used in more advanced topics such query of database. 

 

RQ2: How to design an approach that recommends relevant Java API classes for Java 

programming questions by mining discussion posts in SO? 

To answer RQ2, an approach in recommending Java API classes was proposed 

and the approach was implemented into the Java API class recommender developed in 

this research. The approach is built based on the common steps in designing RSSE and 

adopted some NLP techniques (Doc2Vec word embedding and LDA topic modelling) 

and a number of heuristic rules for Java API classes extraction.  

The proposed approach is developed into a backend server that functions as a Java 

API classes recommender. A plug-in for Eclipse IDE, APIRecJ was developed to serve 

as the front-end to access the recommender’s functionalities. APIRecJ is responsible for 

getting user’s query, making service call to backend recommender and displaying the 

results to the user. Indirectly, the lexical gap between the programmers’ natural language 

queries and the APIs documentation, and programming code, could be reduced by using 

APIRecJ and the Java API class recommender that links the programmers’ natural 

language queries to relevant Java API classes. 
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RQ3: What is the performance of the approach?    

RQ3 was achieved by benchmarking the performance of the proposed approach 

against the existing studies on Java API classes recommendation that made use of SO’s 

discussion posts. For consistency and comparison, evaluation dataset and evaluation 

metrics from existing studies were used. The four performance metrics used were Top-

10 accuracy, MR@10, MRR@10 and MAP@10. The benchmarking results demonstrate 

that the proposed approach has improved the existing state-of-the-art baseline result by 

3.22% in Top-10 Accuracy, 0.03 in MRR@10, 2.83% in MAP@10 and 0.89% in 

MR@10.  

 

RQ4: How useful is the plug-in? 

To answer RQ4, a user evaluation study preceded by a pilot study was conducted. 

Participants were recruited to use APIRecJ to find relevant Java API classes for three 

programming questions given and to use Google search engine for the same purpose, and 

subsequently answer a questionnaire. 

The user evaluation results show that APIRecJ occasionally recommends less 

relevant result. This could be due to the relevance of the recommended results is 

dependent on the programming question. The evaluation results also shows that: 1)  it 

would be more helpful if APIRecJ could include more information such as API 

descriptions from the Java documentation, apart from returning the Java API classes.; 2) 

it is useful to have an API class recommender tool such as APIRecJ that helps to find 

relevant information on API (such as API classes) when are doing programming, because 

Google search engine does not always return Stack Overflow results and cannot show a 
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list of all APIs that could solve the problem; 3) APIRecJ’s feature of providing the similar 

Stack Overflow questions received positive feedback. 

 

8.2 A Revisit of Research Contributions 

The contributions of this research are as below:   

1. Common Java programming problems encountered by programmers of 

different levels of expertise, identified from SO, the most popular computer 

programming related website. In addition, the top Java API classes related to 

these common Java programming problems were also found. These provide 

insights on common Java programming problems/topics and Java API classes 

that Java programmers struggle with. Java educators and learning resources 

can devote more attention to these areas (for example, understanding and 

fixing errors) to help learners in picking up the required knowledge and skills. 

2. An approach that employs heuristic rules, word embedding and topic 

modelling techniques in recommending relevant Java API classes for Java 

programming questions described in natural language. The approach 

outperforms existing approaches in terms of four performance metrics, by 

achieving 84.83% in Top-10 Accuracy, 0.58 in MRR@10, 50.68% in 

MAP@10 and 58.76% in MAP@10. These results demonstrate that the 

proposed approach has improved the existing state-of-the-art approach by 

3.22% in Top-10 Accuracy, 0.03 in MRR@10, 2.83% in MAP@10 and by 

0.89% in MR@10. 

3. A Java API class recommender that incorporated the proposed approach. 

4. A plug-in (APIRecJ) for Eclipse IDE that serves as front-end to the Java API 

class recommender. The use of this plug-in when writing Java programs in 
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Eclipse IDE allows the programmers to describe their Java programming 

problems in natural language and search for Java API classes that are relevant 

to the programming problems and view similar questions that have been asked 

in SO. All these actions can be performed within the Eclipse IDE without 

leaving the IDE.  The user evaluation of APIRecJ shows that it is a useful tool 

for programmers particularly in answering questions that search for relevant 

Java API classes. 

 

In summary, the plug-in coupled with the back-end Java API class recommender 

that incorporates the proposed approach helps to reduce the lexical gap between the 

programmers’ natural language queries and the Java APIs documentation (in particular, 

the Java API classes names), and the lexical gap between the natural language queries 

and Java programming codes, and helps to complement official APIs documentation 

which have poor usability, by applying data mining techniques on Stack Overflow crowd 

documentation of Java APIs. 

 

8.3 Threats to Validity of Results 

There are some threats that could possibly affect the results of this research. First 

of all, as there is an ongoing high volume of user-generated questions in SO, this could 

cause different results to be found since the results depend on the SO data retrieved at a 

particular point of time. As mentioned, information in SO are changing rapidly, using 

online query tool at different time could produce different result. Alternatively, the data 

can be retrieved by using data dump. Unfortunately, the limitation is the process to 

replicate the SO database requires high computing resources which is not available for 

this research. Secondly, the fourth heuristic rule in Study 1 (Table 4.1) and Study 2 (Table 
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5.2) validate the extracted Java API classes against a list of actual API classes extracted 

from the Java API documentation. The list needs to be updated if new classes are added 

to the Java API when the language evolves.  

Lastly, the small number of participants who took part in the user evaluation study 

causing its results to be non-generalizable. Two were recruited for the pilot study. Two 

were recruited for the user evaluation study due to time constraint. All the participants 

are Computer Science undergraduate students from the Faculty of Computer Science and 

Information Technology, University Malaya, who have completed their first year of study 

and scored an ‘A’ in the introductory Java programming subject. Despite the small 

number, the participants have similar educational background, and good level of skill in 

Java programming, and, the user evaluation results show that it is generally useful to have 

a tool such as APIRecJ built in this research. It is important to note that the main focus of 

this research is the proposed approach and the benchmarking of the approach using the 

four performance metrics shows that it outperforms existing approaches in all the 

performance metrics.  The plug-in evaluated in the user evaluation study is just the front-

end to the underlying recommender that incorporates the approach. 

 

8.4 Future Work 

Possible future work includes designing a more generalized and robust method in 

extracting Java API classes rather than using heuristic rules on coding conventions; 

extend the research to also include recommendation of methods of Java API classes; 

extend the plug-in to include more information from the Java API documentation (as 

recommended by the participants in the user evaluation study). 
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