
MINING STACK OVERFLOW TO RECOMMEND JAVA
API CLASSES USING WORD EMBEDDING AND TOPIC

MODELLING

LEE WAI KEAT

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

 2019

Univ
ers

ity
 of

 M
ala

ya

MINING STACK OVERFLOW TO RECOMMEND
JAVA API CLASSES USING WORD EMBEDDING AND

TOPIC MODELLING

LEE WAI KEAT

DISSERTATION SUBMITTED IN PARTIAL

FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SOFTWARE ENGINEERING

(SOFTWARE TECHNOLOGY)

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2019
Univ

ers
ity

 of
 M

ala
ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: (I.C/Passport No:)

Matric No:

Name of Degree:

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Field of Study:

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

MINING STACK OVERFLOW TO RECOMMEND JAVA API CLASSES

USING WORD EMBEDDING AND TOPIC MODELLING

ABSTRACT

To reduce development effort, today’s software development technologies rely heavily

on reusable components provided by Application Programming Interfaces (APIs).

However, studies have found that APIs are of poor usability and programmers find it

difficult to use them. A number of factors affect the usability and learning of an API. The

most critical one is the API documentation. Therefore, it is unsurprising that developers

look for alternative information sources to learn APIs. One such sources is the crowd

documentation of APIs that are available in Community Question and Answer (CQA)

websites, such as Stack Overflow (SO). Studies have shown that the large volume of data

in SO make it suitable for data mining and analytics for APIs. Following that, this research

aims to: 1) identify Java programmers’ common Java programming problems based on

their level of expertise, by analyzing Java-related duplicate discussion posts in SO (Study

1); 2) to address the lexical gap between natural language queries and Java APIs

documentation, and the lexical gap between natural language queries and the Java

programming codes, by designing and implementing an approach for recommending Java

API classes for programmers’ natural language queries using data mined from SO (Study

2). Existing studies have found that SO questions/discussion posts have a wide coverage

on Java API. Java was chosen in this research as it is a long established and popular

programming language. Study 1 found that the novice group is the top contributor and

the expert group contributes significantly lower to duplicate questions asked in SO, and

the most common problem Java programmers face is understanding and/or fixing errors

but expert programmers’ question more about the reasons behind some Java

programming concepts. The proposed approach in Study 2 employs Natural Language

Processing techniques, namely, word embedding and topic modelling, and heuristic rules

Univ
ers

ity
 of

 M
ala

ya

iv

to produce the Java API classes recommendations. The benchmarking of the performance

of the proposed approach against existing state-of-the-art approach using four metrics

(Top-K accuracy, Mean Recall @ K, Mean Reciprocal Rank @ K and Mean Average

Precision @ K) shows that the proposed approach performs better. The proposed

approach was implemented in a Java API classes recommender running on a server and

an Eclipse IDE’s plug-in (APIRecJ) was implemented as the front-end to access the

recommender’s functionalities. The results of the user evaluation study show that

APIRecJ is generally useful in searching for Java API classes relevant to the

programmers’ queries. In summary, the contribution of this research are: a set of common

Java programming problems and Java API classes that Java programmers struggle with,

that Java educators and learning resources can devote more attention to; an approach for

recommending relevant Java API classes for programmers’ queries that outperforms

existing approaches; a Java API classes recommender; and an Eclipse IDE’s plug-in that

provides assistance on Java API classes relevant to the programmers’ queries within the

IDE.

Keywords: Mining Stack Overflow, Java API Class Recommender, Word Embedding,

Topic Modelling

Univ
ers

ity
 of

 M
ala

ya

v

MELOMBONG STACK OVERFLOW UNTUK MENGESYORKAN KELAS API

JAVA DENGAN MENGGUNAKAN PENYEMATAN PERKATAAN DAN

PEMODELAN TOPIK

ABSTRAK

Untuk meringankan beban dalam membina aplikasi perisian, cara untuk membina

aplikasi perisian pada zaman ini adalah menggunakan komponen yang boleh diguna

semula melalui Application Programming Interface (API). Walaubagaimanapun,

kebanyakan kajian mendapati bahawa API sukar diguna oleh pengatur cara. Terdapat

pelbagai faktor menyebabkan API sukar diguna dan dipelajari. Faktor yang terutama ialah

dokumentasi API. Oleh sebab itu, pengatur cara mencari sumber maklumat alternatif

untuk mempelajari API iaitu melalui laman web yang berkaitan dengan komuniti soal dan

jawab, seperti Stack Overflow (SO). Kajian menunjukkan bahawa jumlah data yang besar

dalam SO menjadikannya sesuai untuk perlombongan data dan analisis untuk API.

Dengan itu, kajian ini bertujuan untuk: 1) mengenal pasti masalah pengaturcaraan umum

di kalangan pengatur cara Java berdasarkan tahap kepakaran mereka, dengan

menganalisis duplikasi perbincangan yang berkaitan dengan Java dalam SO (Kajian 1);

2) menangani jurang leksikal antara pertanyaan bahasa semulajadi dan dokumentasi API,

dan jurang leksikal antara pertanyaan bahasa semulajadi dan kod pengaturcaraan Java,

dengan mereka bentuk dan melaksanakan kaedah untuk mengesyorkan kelas API Java

untuk pertanyaan bahasa semulajadi pengatur cara menggunakan data SO (Kajian 2).

Kajian dahulu telah mendapati bahawa soalan atau perbincangan dalam SO mempunyai

liputan yang luas dalam Java API. Oleh itu, Java telah dipilih dalam kajian ini kerana ia

adalah bahasa pengaturcaraan yang mantap dan popular. Kajian 1 mendapati bahawa

kumpulan pemula adalah penyumbang utama kepada soalan-soalan yang ditanyakan

dalam SO dan kumpulan pakar menyumbang jauh lebih rendah daripada kumpulan

pemula. Masalah yang paling biasa dihadapi oleh pengaturcara Java adalah memahami

Univ
ers

ity
 of

 M
ala

ya

vi

atau membetulkan kesilapan tetapi pengaturcara yang berpengalaman mempersoalkan

lebih lanjut mengenai sebab di sebalik beberapa konsep pengaturcaraan Java. Kaedah

yang dicadangkan dalam Kajian 2 menggunakan teknik pemprosesan bahasa semula jadi,

iaitu, kata penyematan perkataan dan pemodelan topik, dan peraturan heuristik untuk

menghasilkan cadangan kelas API. Kajian 2 juga menggunakan empat metrik (Top-K

accuracy, Mean Recall @ K, Mean Reciprocal Rank @ K dan Mean Average Precision

@ K) untuk melaksanakan penandaarasan prestasi terhadap kaedah yang dicadangkan

dan kaedah yang sedia ada. Kaedah yang dicadangkan telah menghasilkan keputusan

dengan lebih baik. Kaedah yang dicadangkan dilaksanakan dalam pengesyorkan kelas

API yang berfungsi sebagai pelayan dan pemalam untuk pembangunan persekitaran

bersepadu Eclipse (APIRecJ) berfungsi sebagai antaramuka untuk mengakses fungsi

pelayan. Hasil kajian penilaian pengguna menunjukkan bahwa APIRecJ bermanfaat

dalam mencari kelas API Java yang relevan dengan pertanyaan para programmer. Secara

ringkas, sumbangan penyelidikan ini termasuk: satu set masalah pemprograman Java

biasa dan kelas API Java yang didapati sukar kepada para pengatur cara Java dan

memerlukan perhatian daripada para pengajar dan sumber belajar Java; satu kaedah untuk

mengesyorkan kelas API Java yang berkaitan untuk pertanyaan pengaturcara; pengesyor

kelas API Java; dan APIRecJ yang memberikan bantuan dengan mengesyor kelas API

Java yang berkaitan dengan pertanyaan pengatur cara dalam pembangunan persekitaran

bersepadu Eclipse.

Keywords: Melombong Stack Overflow, Mengesyorkan Kelas API Java, Penyematan

Perkataan, Pemodelan Topik.

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation to my supervisor,

Dr Su Moon Ting for her supervision and assistance from early stages of this research

through to the completion of this thesis. Without her insightful comments, this research

would have never been accomplished.

Most importantly, I wish to express my gratitude to my parents and family for their

continuous support.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

Abstract ... iii

Abstrak ... v

Acknowledgements .. vii

Table of Contents .. viii

List of Figures ... xiv

List of Tables .. xv

List of Symbols and Abbreviations .. xvii

List of Appendices ... xix

CHAPTER 1: INTRODUCTION .. 20

1.1 Background and Motivation .. 21

1.2 Problem Statement ... 22

1.3 Research Questions .. 24

1.4 Research Objectives... 25

1.5 Scope of Research.. 26

1.6 Research Methodology .. 28

1.7 Research Contributions .. 29

1.8 Thesis Organization ... 30

CHAPTER 2: LITERATURE REVIEW .. 32

2.1 Usability of APIs Documentation .. 32

2.2 Crowd Documentation of APIs ... 34

2.3 Common Java Programming Problems ... 35

2.4 Recommendation Systems in Software Engineering ... 36

2.4.1 Recommended Items .. 37

Univ
ers

ity
 of

 M
ala

ya

ix

2.4.2 Steps in RSSE design ... 38

2.5 Existing studies on API Recommender ... 38

2.5.1 API Elements Search .. 39

2.5.2 API Documentation Navigation ... 39

2.5.3 API Discoverability .. 40

2.5.4 API Invocation ... 41

2.5.5 Summary of API Recommenders ... 42

2.6 Data Mining in SO ... 44

2.6.1 Characterization and Discrimination .. 44

2.6.2 Mining of Frequent Pattern, Associations, and Correlations 46

2.6.3 Classification and Regression .. 46

2.6.4 Clustering Analysis .. 47

2.6.5 Outlier Analysis .. 47

2.7 Data Mining Techniques.. 48

2.7.1 Word Embedding ... 49

2.7.2 Topic Modelling ... 52

2.8 Comparison of Existing Approaches in API Elements Search 54

2.9 Limitation of Existing Approaches in API Elements Search 58

2.10 Chapter Summary .. 59

CHAPTER 3: RESEARCH METHODOLOGY ... 61

3.1 Literature Review .. 62

3.2 Definition of Research Objectives and Research Questions 63

3.3 Data Collection .. 63

3.4 Development of Approach ... 64

3.5 Identification of common Java programming problems .. 65

3.6 Benchmarking of Approach ... 66

Univ
ers

ity
 of

 M
ala

ya

x

3.7 Development of Plug-in ... 66

3.8 User Evaluation Study ... 67

3.9 Interpretation of Result and Conclusion .. 68

3.10 Chapter Summary .. 68

CHAPTER 4: COMMON JAVA PROGRAMMING PROBLEMS 69

4.1 Questions for Study 1 .. 69

4.2 Database Structure in SO ... 70

4.3 Extraction of Duplicate Questions ... 72

4.4 Extraction of Code Snippets and API Classes ... 75

4.5 Results and Discussion .. 77

4.5.1 Data Extracted .. 77

4.5.2 Q1: What is the distribution of duplicate Java questions in SO based on the

askers’ level of expertise? .. 78

4.5.3 Q2: What are the top duplicate Java questions in SO based on askers’ level

of expertise? ... 79

4.5.4 Q3: What are the top Java API classes required by the top duplicate Java

questions in SO based on the askers’ level of expertise? 82

4.5.5 Summary of Results ... 83

4.6 Comparison with Related Work .. 84

4.7 Chapter Summary .. 85

CHAPTER 5: THE PROPOSED APPROACH ... 86

5.1 Overall Design of the Proposed Approach .. 86

5.2 Preparation Phase... 88

5.2.1 Step 1: Acquiring Training Data .. 89

5.2.2 Step 2: Pre-processing Training Data ... 89

Univ
ers

ity
 of

 M
ala

ya

xi

5.2.3 Step 3: Extracting Java API Classes ... 91

5.2.4 Step 4: Training Word Embedding Model ... 92

5.3 Recommendation Phase ... 93

5.3.1 Step 1: Pre-processing User Query .. 94

5.3.2 Step 2: Retrieving Similar Questions and Their Respective Answers and

Java API Classes .. 94

5.3.3 Step 3: Selecting Relevant Java API Classes and Return a Ranked List of

Java API Classes .. 95

5.4 Summary of Techniques used in the Proposed Approach 97

5.5 Development of the Java API Class Recommender and the Plug-in..................... 98

5.5.1 Architecture Design of Java API Class Recommender and the Plug-in .. 98

5.5.2 Requirements of the Java API Class Recommender 99

5.5.2.1 Functional Requirements ... 100

5.5.2.2 Non-Functional Requirements .. 100

5.5.2.3 Testing on Functional and Non-Functional Requirements...... 101

5.5.3 Requirements of the Plug-in ... 107

5.5.3.1 Functional Requirements ... 108

5.5.3.2 Non-Functional Requirements .. 109

5.5.4 Implementation of the Java API Class Recommender and the Plug-in . 109

5.5.4.1 User Interface of Plug-in ... 110

5.6 Chapter Summary .. 113

CHAPTER 6: PERFORMANCE AND BENCHMARKING OF APPROACH ... 114

6.1 Evaluation Dataset ... 114

6.2 Evaluation Metrics ... 115

6.2.1 Top-K accuracy .. 116

6.2.2 Mean Recall @ K (MR@K) ... 118

Univ
ers

ity
 of

 M
ala

ya

xii

6.2.3 Mean Reciprocal Rank @ K (MRR@K) ... 119

6.2.4 Mean Average Precision @ K (MAP@K) ... 121

6.3 Benchmarking of Proposed Approach ... 123

6.4 Chapter Summary .. 125

CHAPTER 7: USER EVALUATION STUDY .. 126

7.1 User Evaluation Study ... 126

7.1.1 Pilot Study Design .. 126

7.1.2 Pilot Study Results ... 128

7.1.3 User Evaluation Study Design ... 131

7.1.4 User Evaluation Results ... 132

7.1.5 Discussion of User Evaluation Results... 136

7.2 Chapter Summary .. 137

CHAPTER 8: CONCLUSION ... 138

8.1 Answering of Research Questions (RQs) .. 138

8.2 A Revisit of Research Contributions ... 141

8.3 Threats to Validity of Results .. 142

8.4 Future Work ... 143

References .. 144

APPENDIX A: TOP-30 MASTER JAVA QUESTIONS BASED ON ASKERS’

LEVEL OF EXPERTISE .. 150

APPENDIX B1: STUDY 1-CODE SNIPPET FOR DATA COLLECTION 155

APPENDIX B2: STUDY 1- ALGORITHM FOR API CLASS EXTRACTION 156

APPENDIX C1: STUDY 2-CODE SNIPPET FOR DATA COLLECTION 157

APPENDIX C2: STUDY 2-ALGORITHM FOR API CLASS EXTRACTION 158

APPENDIX C3: STUDY 2-CODE SNIPPET FOR DOC2VEC 159

Univ
ers

ity
 of

 M
ala

ya

xiii

APPENDIX C4: STUDY 2-CODE SNIPPET FOR LDA 160

APPENDIX C5: STUDY 2-CODE SNIPPET FOR FLASK 161

APPENDIX D: STUDY 2-DATA COLLECTION INSTRUMENT FOR USER

EVALUATION STUDY .. 162

Univ
ers

ity
 of

 M
ala

ya

xiv

LIST OF FIGURES

Figure 2.1: Example of One-hot Encoding (Ayyadevara, 2018) 49

Figure 2.2: Example of CBOW (Ayyadevara, 2018) .. 50

Figure 2.3: Example of Skip-gram (Ayyadevara, 2018) ... 51

Figure 2.4: Example of LDA Model Application (Blei, 2012) 53

Figure 3.1: Research Methodology ... 62

Figure 4.1: Partial Data Model for SO Database .. 72

Figure 4.2: Master Question (2019g) .. 74

Figure 4.3: Duplicate Question (Non-Master Question) (2019e) 74

Figure 4.4: Overlapping Relationships within Data Collection 78

Figure 5.1: Overall Design of the Proposed Approach ... 87

Figure 5.2: An Example of Output of Step 2 of Recommendation Phase 95

Figure 5.3: An Example of Output of Step 3 of Recommendation Phase 96

Figure 5.4: Deployment Architecture of the Plug-in and the Java API Class Recommender
 ... 99

Figure 5.5: User Interface Design of the Plug-in .. 112

Figure 6.1: Examples of the Queries in the Evaluation Dataset 115

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF TABLES

Table 2.1 : Summary of API Recommenders ... 43

Table 2.2: Summary of Techniques used in API Elements Search................................. 55

Table 2.3: Summary of Limitation of Existing Approaches in API Elements Search 59

Table 3.1: Technologies Used in the Development of the Approach 65

Table 3.2: Technologies Used in the Development of the Plug-in 67

Table 4.1: Heuristic Rules for Extracting Java API Classes ... 76

Table 4.2: Distribution of Duplicate Java Questions Based on Askers’ Level of Expertise
 ... 79

Table 4.3: Top-10 Master Java Questions Based on Askers’ Level of Expertise 80

Table 4.4: Top-30 Java API Classes Required by the Top Duplicate Java Questions Based
on Askers’ Level of Expertise ... 83

Table 5.1: Columns in Dataset .. 88

Table 5.2: Additional Heuristic Rules for Extracting Java API Classes 92

Table 5.3: Summary of Techniques used in Proposed Approach 97

Table 5.4: Functional Requirements of Java API Class Recommender 100

Table 5.5: Non-Functional Requirements of Java API Class Recommender 100

Table 5.6: Test Cases for Functional Requirement (1) of Java API Class Recommender
 ... 101

Table 5.7: Test Cases for Functional Requirement (2) of Java API Class Recommender
 ... 102

Table 5.8: Test Cases for Functional Requirement (3) of Java API Class Recommender
 ... 103

Table 5.9: Test Cases for Non-Functional Requirement (1) of Java API Class
Recommender ... 104

Table 5.10: Test Cases for Non-Functional Requirement (2) of Java API Class
Recommender ... 106

Univ
ers

ity
 of

 M
ala

ya

xvi

Table 5.11: Functional Requirements of Plug-in .. 108

Table 5.12: Non-Functional Requirements of Plug-in .. 109

Table 6.1: Example of Calculation for Top-10 Accuracy ... 117

Table 6.2: Example of Calculation for MR@10 ... 119

Table 6.3: Example of Calculation for MRR@10 .. 121

Table 6.4: Example of Calculation for MAP@10 .. 123

Table 6.5 : Benchmarking of Proposed Approach against Existing Approaches 125

Table 7.1: Summary of Section 2 Result in Pilot Study ... 130

Table 7.2: Summary of Section 2 Result in User Evaluation Study 134

Univ
ers

ity
 of

 M
ala

ya

xvii

LIST OF SYMBOLS AND ABBREVIATIONS

API : Application Programming Interface

CBOW : Continuous Bag of Words

CQA : Community Question and Answer

CSV : Comma-Separated Value

EDM : Education Data Mining

IDE : Integrated Development Environment

IDF : Inverse Document Frequency

IR : Information Retrieval

JavaEE : Java Enterprise Edition (EE)

JavaSE : Java Standard Edition (SE)

JDK : Java Development Kit

JSON : JavaScript Object Notation

KAC : Keyword-API Co-occurrence

KKC : Keyword-Keyword Coherence

LDA : Latent Dirichlet Allocation

MAP : Mean Average Precision

ML : Machine Learning

MR : Mean Recall

MRR : Mean Reciprocal Rank

NLP : Natural Language Processing

NLTK : Natural Language Toolkit

PRF : Pseudo-Relevance Feedback

RSSE : Recommendation Systems in Software Engineering

SDK : Software Development Kit

Univ
ers

ity
 of

 M
ala

ya

xviii

SEDE : Stack Exchange Data Explorer

SO : Stack Overflow

SQL : Structured Query Language

TCP/IP : Transmission Control Protocol/Internet Protocol

TF-IDF : Term Frequency - Inverse Document Frequency

Univ
ers

ity
 of

 M
ala

ya

xix

LIST OF APPENDICES

Appendix A: Top-30 Master Java Questions Based on Askers’ Level of

Expertise.……………………………………………………………............

150

Appendix B1: Study 1-Code Snippet for Data Collection………………..... 155

Appendix B2: Study 1-Algorithm for API Class Extraction………...……... 156

Appendix C1: Study 2-Code Snippet for Data Collection………………..... 157

Appendix C2: Study 2-Algorithm for API Class Extraction………...……... 158

Appendix C3: Study 2-Code Snippet for Doc2Vec………………............... 159

Appendix C4: Study 2-Code Snippet for LDA………………...................... 160

Appendix C5: Study 2-Code Snippet for Flask………………...................... 161

Appendix D: Study 2-Data Collection Instrument for User Evaluation

Study………...

162

Univ
ers

ity
 of

 M
ala

ya

20

CHAPTER 1: INTRODUCTION

The use of Application Programming Interfaces (APIs) in software development

projects has become inevitable. However, a number of factors affected the usability of an

API, and it has been found that API documentation is the most severe obstacle faced by

developers in learning and using a new API. One of the contributing reasons is the lexical

gap between the programmers’ expressions of their programming problem queries and

the descriptions used in the official APIs documentation. The increasing popularity of

Community Question and Answer (CQA) websites such as Stack Overflow (SO) (2019b)

shows that developers have turned to crowd API documentation to seek help for their

programming problems.

Following that, this research leverages SO’s crowd documentation of Java API to

investigate what are the most common programming problems faced by Java

programmers, and to address the issue of lexical gap between natural language queries

and Java API documentation, and lexical gap between the natural language queries and

the programming codes, by developing an approach that employs Natural Language

Processing (NLP) techniques (in particular, word embedding and topic modelling) to

recommend Java API classes for the developers’ programming queries.

This chapter presents the background that motivates this research, problem

statement, research objectives, research questions, and scope of the research. It also

outlines the research methodology, research contributions and the remaining chapters of

this thesis.

Univ
ers

ity
 of

 M
ala

ya

21

1.1 Background and Motivation

The proliferation of computers and mobile devices has opened up programming to

the mainstream. Nowadays, anyone interested in developing software can learn

programming by using resources available online. To reduce development effort, today’s

software development technologies rely heavily on reusable components provided by

Application Programming Interfaces (APIs) (Robillard, 2009). APIs include frameworks,

libraries, toolkits and software development kits (Myers & Stylos, 2016). The core

advantage of using APIs is developers could reuse or extend code done by others without

the need to start from scratch (Myers & Stylos, 2016)

There are a lot of publicly available API resources for programmer, such as Java

Software Development Kit (JDK) which contains the official APIs for the Java

programming language. As JDK is continually being developed and improved from time

to time, the Java API has become larger and more diversified as more features are

included in the newer versions. For example, JDK 6 has 3793 classes, JDK 7 has 4024

classes and JDK 8 has 4240 classes (2010) . This could result in poor API usability, which

means, the API is difficult to use (Robillard, 2009).

API usability not only related to the learnability of APIs unfamiliar to developers

but also includes providing the appropriate functionality and ways to access it (Myers &

Stylos, 2016). A few studies had investigated the reasons of why APIs are difficult to use

and identified what could be done to address the issues. For example, there are studies on

API usability and API learning obstacles (Myers & Stylos, 2016; Robillard, 2009;

Robillard & Deline, 2011).

There is a variety of factors that impact API usability: the complexity of the API,

naming convention, support of caller’s perspective, documentation, API consistency and

so on (Zibran, Eishita, & Roy, 2011). The complexity of an API is related to its size; the

Univ
ers

ity
 of

 M
ala

ya

22

larger the size, the higher the complexity and the lower the usability. In terms of API

naming convention, descriptive names are preferred over abbreviated names (Zibran et

al., 2011). To support caller’s perspective, API should always explicitly show how to

invoke functions or features. As for the API documentation, it should always be clear,

complete and up to date. At the same time, API should be designed consistently by

adhering to common conventions.

Among the aforementioned factors, API documentation plays an essential role in

API usability. A survey conducted by Robillard and Deline (2011) found that the most

severe obstacle faced by developers learning a new API is the API documentation. This

could be due to most programmers learn APIs by reading the corresponding

documentations, but these documentations have a number of limitations in supporting the

learning of APIs: insufficient examples, incomplete content, lack of reference on how to

use the API to achieve specific tasks, not in desired format, lack of documentation on

high-level aspects of the API such as design or rationale (Robillard, 2009).

Due to the limitation of APIs documentation, it is unsurprising that developers look

for alternative information sources to learn APIs. One of the sources is Community

Question and Answer (CQA) websites, such as Stack Overflow (SO) (Parnin, Treude,

Grammel, & Storey, 2012).

1.2 Problem Statement

Using API is not only a difficult task for novice programmers, even experienced

developers could find it difficult (Myers & Stylos, 2016). In the area of APIs

documentation, there exist three types of gaps or mismatches between the programmers’

expressions of their programming problem queries and the descriptions used in official

Univ
ers

ity
 of

 M
ala

ya

23

APIs documentation: the lexical gap between the programmers’ natural language queries

and the APIs documentation, the lexical gap between the programmers’ natural language

queries and programming code, and the Task-API knowledge gap.

Generally, being new to a programming language, programmers might not know

the right terms to use to search for relevant API elements (such as class, interface, or

method) from official API documentations. This could be due to a lexical gap or mismatch

between the terms programmers use in their natural language queries (English language)

and the terms used in API documentations (programming languages) (Ye, Shen, Ma,

Bunescu, & Liu, 2016). Since different terms or words could be used to express the same

meaning, the terms programmers use to search could be different from the terms used in

API documentations even though both are referring to the same thing, causing a futile

search.

Moreover, Java programmers with insufficient knowledge in programming

terminology such as API classes possibly could not describe their programming problems

properly. They spend a lot of effort in searching for explanations for unknown

terminologies and explanations for exceptions or error messages to solve their program

errors (Xia et al., 2017).

Besides learning about APIs from APIs documentation, several studies have

discovered that programmers often spend their time in searching for reusable code

examples by using web search engines or code search engines (Bajracharya & Lopes,

2012; Rahman, Roy, & Lo, 2018; Xia et al., 2017). One contributing reason is APIs

documentation do not provide sufficient code usage examples (Parnin et al.,

2012).However, traditional web search engines or code search engines usually perform

poorly with natural language queries that use natural terms only, compare to queries that

use code terms (Bajracharya & Lopes, 2012). A term is a natural term if it contains only

Univ
ers

ity
 of

 M
ala

ya

24

the alphabets from the English language and it can be found in a dictionary of English

words, whereas, code terms also contain numerical symbols or other symbols and could

not be found in a English dictionary (Bajracharya & Lopes, 2012). This could be regarded

as a lexical gap between natural language queries and programming source code.

Besides that, there exists a Task-API knowledge gap between programmers’ task

descriptions and official API documentations (Huang, Xia, Xing, Lo, & Wang, 2018).

The API documentations focus on describing the API structures and functionalities and

leave out the information on their purposes which could be matched to the programmers’

tasks descriptions to return API elements relevant to the tasks.

1.3 Research Questions

The research questions (RQs) for this research are:

RQ1: What are Java programmers’ common Java programming problems?

RQ2: How to design an approach that recommends relevant Java API classes for

Java programming questions by mining discussion posts in SO?

RQ3: What is the performance of the approach?

RQ4: How to develop a plug-in for an Integrated Development Environment

(IDE) to serve as the front-end that interact with the Java API class

recommender?

RQ5: How useful is the plug-in?

Univ
ers

ity
 of

 M
ala

ya

25

1.4 Research Objectives

 This research aims to identify the common programming problems faced by Java

programmers, and to address the first two lexical gaps mentioned in the previous section,

namely, the lexical gap between natural language queries and Java APIs documentation,

and the lexical gap between natural language queries and the Java programming codes,

by using data mined from Stack Overflow (SO). The reasons of choosing Java and SO

are given in Section 1.5.

The specific research objectives (ROs) are:

RO1: To identify Java programmers’ common Java programming problems

based on their level of expertise, by analyzing Java-related duplicate

discussion posts in SO.

This objective involves mining and analyzing duplicate Java questions/ discussion

posts in SO. Since duplicate questions in SO are in fact the same questions that different

programmers repeatedly asked in different contexts, they can be used as surrogates to

common questions asked in SO. These common questions are in fact common Java

programming problems that Java programmers struggle with. The level of expertise is

determined based on the askers’ reputation scores in SO.

RO2: To develop an approach that recommends relevant Java API classes for

Java programming questions by mining discussion posts in SO.

The proposed approach employs NLP techniques, namely, word embedding and topic

modelling, on discussion posts extracted from SO to produce the Java API classes

recommendations. The proposed approach is implemented in a Java API class

Univ
ers

ity
 of

 M
ala

ya

26

recommender to recommend Java API classes in the form of a ranked-list for the

respective user’s query or programming question described in natural language.

RO3: To evaluate the performance of the approach.

Performance metrics from other existing studies are employed to evaluate the

performance of the proposed approach.

RO4: To develop a plug-in for an IDE to serve as the front-end to the proposed

approach implemented in the Java API class recommender.

The IDE’s plug-in serves as the front-end that provides a user interface for

programmers to interact with the Java API class recommender.

RO5: To evaluate the usefulness of the plug-in.

A user evaluation study where participants were recruited to use the plug-in was used

to evaluate the usefulness of the plug-in.

1.5 Scope of Research

Java programming language is an object-oriented, class-based and architecture

neutral programming language which works similarly to C and C++ programming

languages but less complicated (Gosling & McGilton, 1995). In the 2019 SO developers

survey, Java was ranked the 5th most popular technology, C was ranked the 11th and C++

was ranked the 9th (2019a). Since 2008, the number of Java questions been asked in SO

yearly is also higher compared to C and C++ questions (2019c). In addition, Java

programming language is a long established and a popular programming language for

many years (2019).

Univ
ers

ity
 of

 M
ala

ya

27

CQA websites have gained a lot of popularity recently due to the development of

web technologies that improve the interactions between Internet users. A popular example

is Stack Exchange (2019c), which is a network of over a hundred of CQA websites

covering different topics. SO is the earliest website created in Stack Exchange network

in 2008 and has become the most popular computer programming related website. Since

its inception, SO has been providing a knowledge sharing platform between

inexperienced programmers and experienced programmers through the asking and

answering of numerous programming questions. As of 6 July 2019, SO has 18 million

questions asked with 71% answered, 27 million answers, 11 million registered users, 9.2

million visits per day, and a traffic of 6.2k questions asked daily (2019d). The massive

volume of crowd-generated data in SO makes it a suitable repository for data mining and

analytics of crowd documentation of APIs (Parnin et al., 2012).

Some existing studies have shown that SO questions/posts have a wide coverage

on Java API. The study by Parnin et al. (2012) shows that questions in SO have covered

77% of the total Java API classes. Furthermore, a recent work by Rahman, Roy, and Lo

(2016) shows that about 65% of the classes from each of the 11 core Java API packages

of Standard Java Edition 6 (2019) were used in Java posts in SO. The core Java API

packages are: java.lang, java.util, java.io, java.math, java.nio, java.applet, java.net,

java.security, java.awt, java.sql and javax.swing.

The popularity of the Java programming language, the huge number of Java

questions available in SO and the wide coverage on Java API in SO posts, motivated this

research to focus on the Java programming language and on mining Java questions and

associated Java API from SO.

Univ
ers

ity
 of

 M
ala

ya

28

1.6 Research Methodology

This section gives a brief explanation of the research methodology adopted in this

study. The full details can be found in Chapter 3. This research started with a literature

review on APIs documentation usability, limitations of the official or conventional APIs

documentation, crowd documentation and its benefits, existing work on finding common

Java Programming problems, recommendation systems in Software Engineering, existing

work on API recommenders. Besides that, the review also included data mining in SO

and popular data mining techniques.

From the research gaps identified from the literature review, the research

objectives and research questions were formulated. To address RO1, duplicate Java

questions in SO were mined and analyzed to identify Java programming questions that

were repeatedly asked as this would give insights to common Java programming

problems faced by Java programmers.

To address RO2, an approach that recommends relevant Java API classes for

programming questions or queries described in natural language, was designed and

implemented by making use of NLP techniques and discussion posts extracted from SO.

The performance of the proposed approach was benchmarked (RO3) against existing

work by using four established metrics, namely, Top-10 Accuracy, Mean Recall @ 10

(MR@10), Mean Reciprocal Rank @ 10 (MRR@10) and Mean Average Precision @ 10

(MAP@10).

Subsequently, a plug-in for Eclipse IDE was developed to serve as the front-end

to the proposed approach implemented in the Java API class recommender (RO4). The

usefulness of the plug-in was evaluated in a user evaluation study (RO5).

Univ
ers

ity
 of

 M
ala

ya

29

The results of the benchmarking of the proposed approach and the user evaluation

of the plug-in were analyzed and findings were reported. In addition, the common Java

Programming problems identified were also reported.

1.7 Research Contributions

The key contributions of this research are:

1. Common Java programming problems encountered by programmers of

different levels of expertise, identified from SO, the most popular computer

programming related website. In addition, the top Java API classes related to

these common Java programming problems were also found. These provide

insights on common Java programming problems/topics and Java API classes

that Java programmers struggle with. Java educators and learning resources

can devote more attention to these areas (for example, understanding and

fixing errors) to help learners in picking up the required knowledge and skills.

2. An approach that employs heuristic rules, word embedding and topic

modelling techniques in recommending relevant Java API classes for Java

programming questions described in natural language was developed. The

approach outperforms existing approaches in terms of four performance

metrics, by achieving 84.83% in Top-10 Accuracy, 0.58 in MRR@10, 50.68%

in MAP@10 and 58.76% in MAP@10. These results demonstrate that the

proposed approach has improved the existing state-of-the-art approach by

3.22% in Top-10 Accuracy, 0.03 in MRR@10, 2.83% in MAP@10 and by

0.89% in MR@10.

3. A Java API class recommender that incorporated the proposed approach was

developed.

Univ
ers

ity
 of

 M
ala

ya

30

4. A plug-in for Eclipse IDE that serves as front-end to the Java API class

recommender was developed. The use of this plug-in when writing Java

programs in Eclipse IDE allows the programmers to describe their Java

programming problems in natural language and search for Java API classes

that are relevant to the programming problems and view similar questions that

have been asked in SO. All these actions can be performed within the Eclipse

IDE without leaving the IDE. The user evaluation of the plug-in shows that it

is a useful tool for programmers particularly in answering questions that

search for relevant Java API classes.

1.8 Thesis Organization

This thesis consists of eight chapters. The remaining of this thesis is structured into

the chapters described below:

Chapter 2 presents the literature review performed by this research. This includes

APIs documentation usability, limitations of the official or conventional APIs

documentation, crowd documentation and its benefits, existing work on finding common

Java Programming problems, recommendation systems in Software Engineering, existing

work on API recommenders. Besides that, this chapter also provides an overview of data

mining in SO and popular data mining techniques.

Chapter 3 gives the full details of the research methodology adopted in this research.

It describes the key steps conducted in this research to achieve the research objectives,

and how the key steps were conducted in terms of techniques, tools, technologies used,

where applicable.

Univ
ers

ity
 of

 M
ala

ya

31

Chapter 4 presents the study on the common Java programming problems by mining

discussion posts from SO (Study 1). It articulates the relevant database structure in SO,

data extraction, and analysis conducted to identify the common Java programming

problems. It also includes the results and comparison with related work.

Chapter 5 describes the proposed approach for recommending Java API classes. It

describes the two phases involved, with the steps in each phase, and the techniques

employed. This chapter also explains the implementation of a Java API class

recommender that incorporates the proposed approach. The Java API class recommender

runs on a server and serves as the back-end that processes a programmer’s query and

returns the recommended Java API classes. It also describes the implementation of an

Eclipse’s plug-in that serves as the front-end to the back-end recommender. Take note

that Study 2 refers to all the things related to the proposed approach (the approach itself,

its benchmarking, the Java API classes recommender and plug-in developed, and the user

evaluation study conducted to evaluate the usefulness of the plug-in).

Chapter 6 presents the benchmarking of the proposed approach against existing

approaches. It explains the four performance metrics used, the benchmarking results, and

comparison with existing studies.

Chapter 7 describes the user evaluation study conducted to evaluate the usefulness

of the plug-in. It includes the design of pilot study and user evaluation study, the results

of both and discussion of user evaluation results.

Chapter 8 presents the conclusion of this research. It includes the answering of the

research questions, a revisit of research contributions, threats to validity of the results,

and outline possible future work.

Univ
ers

ity
 of

 M
ala

ya

32

CHAPTER 2: LITERATURE REVIEW

Studies have shown the poor usability of APIs and found API documentation to be

one of the main obstacles that affects API usability. The literature review begins with a

critical review on the inadequacies of conventional API documentation and highlights

how a recently-emerged API documentation style, known as, crowd documentation, can

complement the conventional API documentation. Besides that, the literature review also

includes existing work on finding common Java Programming problems,

recommendation systems in software engineering, existing work on API recommenders,

an overview of data mining in SO and popular data mining techniques, and summarizes

the gaps found.

2.1 Usability of APIs Documentation

An API documentation is a software documentation that is designed by a small

group of people for many potential users to refer and learn about how to use the API

(Parnin et al., 2012). Generally, it is not an easy task to maintain API documentation as

the documentation contains highly-structured information. If software engineers do not

update documentation in a timely manner, information in API documentation would most

likely become stale or obsolete (Parnin et al., 2012). Sometimes, API documentation

could contains incorrect information such as minor typos and incorrect description, for

instance inconsistencies between a function description and what actually the function

does (Zibran et al., 2011).

Moreover, it has been found that developers face a number of obstacles when

learning new APIs, such as obstacles related to learning resources, API structure,

developer background, technical environment or process (Robillard & Deline, 2011).

Univ
ers

ity
 of

 M
ala

ya

33

Among these obstacles, learning resources is the most severe obstacle and factor that

needs to be considered when designing API documentation (a type of learning resource)

have been identified: documentation of intent, code examples, matching APIs with

scenarios, penetrability of the API, and format and presentation (Robillard & Deline,

2011).

 The first factor, documentation of intent, requires that API documentation includes

information about the rationale behind API design decisions, and how the API is supposed

to be used as intended by the API designers. The second factor is the complexity of code

examples given in API documentation. Small examples showing API usage patterns that

involves more than one method call will be more useful than single-call examples as the

formers show how methods/classes can be used together to achieve specific goals.

Examples should also demonstrate “best practices” for using an API.

The third factor is matching task scenarios with specific API elements that support

the scenarios. For example, “drawing a circle on the screen” scenario should be matched

with the exact method that draws a circle on the screen. The fourth factor, penetrability,

requires that the internal working of API to be made transparent or penetrable to the

developers (such as, methods that perform multiple high-level tasks in a single operation,

and the performance aspect), while maintaining certain opacity through encapsulation and

information hiding.

The last factor is the documentation format. API documentation with insufficient

information, trivial examples showing a single method call, over emphasis on member-

level completeness rather than conceptual level, fragmented collections of hyperlinked

pages versus coherent continuous documents, make it an undesirable resource to learn the

API.

Univ
ers

ity
 of

 M
ala

ya

34

It is important to note that the factors above were derived from the obstacles that

developers faced when learning new APIs using APIs documentation. This shows that

there are weaknesses in APIs documentation.

2.2 Crowd Documentation of APIs

CQA websites create a socially-mediated form of software documentation, namely,

crowd documentation, which “is a collection of web resources, where a large group of

contributors, the crowd, curate and contribute to the collection.” (Parnin et al., 2012, p.

3). Parnin et al. (2012) found that APIs documentation are often lack of examples and

explanations. In contrast, crowd documentation of APIs has the advantages over official

APIs documentation because: many code examples and explanation on API elements,

numerous questions asked that lead to the same API elements, different opinions on the

different solutions, votes on answers and questions, and tags for searching (Parnin et al.,

2012). An API element refers to “a named entity belonging to an API, such as a class,

interface, or method” (Parnin et al., 2012, p. 4).

Using crowd documentation of APIs could lower API learning curve as it is able to

complement the insufficient API usage examples provided in APIs documentation. This

is because crowd documentation such as SO contains knowledge that is written by many

and read by many, for example, a question asked in SO could be answered by many people

(Parnin et al., 2012). The mechanism of crowd documentation relies on minimal

contributions from individual through social media, such as asking a question or

answering a question.

The programming questions created in SO are significantly diverse and covering

different types of topics and technologies, for example, programming problems in

Univ
ers

ity
 of

 M
ala

ya

35

different languages, software algorithm, software tools and so on (2019i). An existing

study has performed topic modelling analysis on SO questions to find insights into what

aspects of programming are difficult to understand (Allamanis & Sutton, 2013). Besides

that, several studies have indicated that the large volume of data in SO make it suitable

for data mining and analytics for APIs (Rahman et al., 2016; Rigby & Robillard, 2013;

Subramanian & Holmes, 2013). One supporting reason is SO discussion posts contain a

large amount of high quality source code snippets (Subramanian & Holmes, 2013).

In fact, some of the existing studies have shown that SO questions/posts have a

wide coverage on Java API. The study by Parnin et al. (2012) shows that questions in SO

have covered 77% of the total Java API classes. Furthermore, a recent work by Rahman

et al. (2016) shows that about 65% of the classes from each of the 11 core Java API

packages of Standard Java Edition 6 (2019) were used in Java posts in SO. The core Java

API packages are: java.lang, java.util, java.io, java.math, java.nio, java.applet, java.net,

java.security, java.awt, java.sql and javax.swing. The findings from the two studies

mentioned in this paragraph show that SO is the right place for this research to mine for

questions related to Java API.

2.3 Common Java Programming Problems

Existing studies that focus on Java programming problems are mainly targeted at

students who are enrolled in introductory programming subject or novice programmers

who started to learns Java programming (Hristova, Misra, Rutter, & Mercuri, 2003; Mow,

2012). These existing studies found that the most common Java programming problems

faced by students are closely linked to programming errors such as syntax error(for

example, confusion in using the assignment operator) (Hristova et al., 2003). Moreover,

Univ
ers

ity
 of

 M
ala

ya

36

the syntax error could probably lead to another common programming error, which is,

“Variable not found”, where students fail to declare a variable (Mow, 2012).

Other than the studies that focus on novice programmer’s Java programming

problems, there is a recent study on common Java programming problems that focuses

on secure coding practice. The study investigated what are popular security features being

frequently asked, common obstacles that prevent developers from implementing secure

code and common security vulnerabilities in Java programming (Meng, Nagy, Yao,

Zhuang, & Arango-Argoty, 2018). Another study focuses on common problems in using

cryptography Java API. This study identified the common cryptography tasks developers

performed and the reasons developers having difficulties in using cryptographic

algorithms correctly (Nadi, Krüger, Mezini, & Bodden, 2016).

In addition, other existing work that focus on finding common problems related to

subjects taken by students (such as design patterns, software architecture, and so on) and

programming problems by mining SO can be found in Section 2.6.

The review of the existing work on common Java programming problems shows

that there is limited work in this area, particularly in terms of core Java API usage and the

common Java programming problems faced by Java programmers of different levels of

expertise. This research aims to address this in the first research objective.

2.4 Recommendation Systems in Software Engineering

Recommendation Systems in Software Engineering (RSSE) refers to software

applications that recommend valuable information items for a software engineering task

in a given context (Robillard, Walker, & Zimmermann, 2009). RSSE helps in many kinds

of software developer activities, from code reuse to bug reporting (Robillard et al., 2009).

Univ
ers

ity
 of

 M
ala

ya

37

This is mainly because software engineering domain has a large information space

comprising different sources such as project source code, project history, communication

archives and others, causing software developers to spend a lot of time in searching for

relevant information (Robillard et al., 2009).

2.4.1 Recommended Items

RSSE equipped with data mining techniques is popular and effective as many

different types of information items can be recommended. Some of the information items

(Robillard et al., 2009) are:

Source Code within a Project: A recommender can help a developer in navigating

the source code in one’s own project, such as by predicting which parts of the source code

the developer would like to reuse or view, or by assisting in completing code by

recommending methods that have been defined in the project.

Reusable Source Code: A recommender can assist a developer to discover

inherently reusable API elements (such as classes and methods) that can be used to

complete a task, by ranking results containing API elements that are relevant to the

developer’s task.

Code Examples: A recommender can also return reusable source code examples

or snippets that match a developer’s requirements, to demonstrate the correct usage of

API elements.

Univ
ers

ity
 of

 M
ala

ya

38

2.4.2 Steps in RSSE design

Generally, there are four major steps in designing RSSE: pre-processing of data,

capturing of context, producing the recommendations, and presenting the

recommendations (Robillard et al., 2009).

Data pre-processing is the step used to convert the raw data retrieved from data

sources into a standardized format, for example, replacing missing values and detecting

outliers. In designing a recommender system that uses the posts in SO, a lot of irrelevant

information existed in the posts that are expressed in natural language and this has to be

removed.

Capturing of context is the step used to extract task information from a user query

in order to produce the recommendation. For example, capturing the user’s intent of

looking for specific source code example or API elements.

Producing recommendations involves executing the recommendation algorithms

to select and recommend the more relevant instead of the less relevant items.

Presenting recommendations is the step used to summarize and present the

recommendations to the user, for example, in the form of a ranked list of items based on

the user’s potential interest.

2.5 Existing studies on API Recommender

This section reviews existing studies on API recommender that aim at improving

API usability. These studies can be classified into four categories: API elements search,

API documentation navigation, API discoverability and API invocation. It is important to

note that some of these studies used the same term to refer to their approaches and the

Univ
ers

ity
 of

 M
ala

ya

39

corresponding recommender tools that they built that incorporated the approaches. For

example, in Rahman et al. (2016), the same term “RACK” was used to refer to the

approach and also the recommender tool.

2.5.1 API Elements Search

API elements search focuses on recommending API elements from code examples

or snippets. Rahman et al. (2016) first discovered the limitation of existing search engines

in searching for code examples and developed an API recommender called RACK. RACK

provides Top-1 search or Top-K search on API classes that match a user’s query (Rahman

et al., 2016). In a more recent study, the creators of RACK focused on reformulating a

user’s query with relevant API keywords for a better code search result and produced

NLP2API tool (Rahman et al., 2018). Another recent study in this category is Huang et

al. (2018) that focused on recommending API methods and summarizing output with

supplementary information such as API descriptions and code examples that are related

to a user’s query. They produced an API recommender for their study, named BIKER.

2.5.2 API Documentation Navigation

Treude, Robillard, and Dagenais (2015) is the first study that aimed to produces a

new documentation structure by conceptualizing tasks as specific programming actions

that have been described in the documentation. They developed a prototype named

TaskNavigator that extracts development tasks from software documentation

automatically and provides assistance in navigating API documentation. A field study

proved that TaskNavigator provides meaningful and helpful solution to developers

Univ
ers

ity
 of

 M
ala

ya

40

compared to conventional API documentation with web page links that describe

everything from design philosophies to the APIs (Treude et al., 2015).

Similarly, there is another study, Zhu, Hua, Zou, Xie, and Zhao (2017) aimed to

generate task-oriented API learning guide by using discussion threads and source code in

SO. Their study used a similar conceptual technique as in TaskNavigator but differed

slightly by categorizing the extracted tasks in hierarchy order with a tool named

APITasks.

2.5.3 API Discoverability

API discoverability studies differs from API elements search studies in the sense

that the former aim at discovering patterns in code when a user is performing the coding

and suggesting relevant API elements, whereas the latter require a user’s query as the

input to perform searching for and returning of relevant API elements.

Santos and Myers (2017) focused on discovering design patterns in the source

code to provide assistance on how to use API. Their study used information related to

design pattern and code completion mechanisms (Santos & Myers, 2017). They produced

a code completion Eclipse plug-in named Dacite for the discovery of API elements

(Santos & Myers, 2017). Dacite complements APIs with design annotations, which

document design decisions for API types, methods, and parameters. Java annotation

refers to “marker which associates information with a program construct, but has no effect

at run time” (Gosling, Joy, Steele, Bracha, & Buckley, 2014, p. 310). By using Dacite,

developers would be able to discover and use the common design patterns suggested by

the tool. The result of their user study showed that Dacite helps programmers to

accomplish given tasks in shorter time (Santos & Myers, 2017).

Univ
ers

ity
 of

 M
ala

ya

41

Besides that, (Ichinco, Hnin, & Kelleher, 2017) tried to address the issue of novice

programmers’ frequent unawareness of available API methods. They developed a

prototype named Example Guru, which is a tool that suggests context-relevant API

methods by inspecting programmers’ code written when using Looking Glass API, a

block-based programming language. Example Guru was tested with novice programmers

and showed promising results, for example, novice programmers who used it learned to

use more API methods compared to those who did not use it. However, the authors noted

that the use of hand-coded rules to check for code changes in order to suggest API

information makes it non-scalable.

2.5.4 API Invocation

Zamanirad, Benatallah, Barukh, Casati, and Rodriguez (2017) implemented

robotic automatic processing that is able to understand natural language user expressions

and perform API invocations in RESTful programming language. They developed

BotBase that converts natural language user expressions into API invocations. BotBase

enables beginners learn how to perform application development without any prior

programming knowledge. The bot, which is the processor of BotBase, is able to identify

the most relevant user’s intention from the user’s input expression and select the APIs

that meet the user’s requirement (Zamanirad et al., 2017). However, the bot has two

limitations. It can only invoke a single API call at a time, meaning it cannot execute

dynamic process workflow that calls a series or combination of API calls. Secondly, it is

a conversational bot that works in stateless environment. This indicates that the bot will

not have a record of API calls that have been invoked in previous conversation.

Univ
ers

ity
 of

 M
ala

ya

42

2.5.5 Summary of API Recommenders

Table 2.1 summarizes the corresponding API recommender tools produced by the

studies reviewed in the previous section in terms of the type of API language supported,

SO mining and whether the recommenders was developed as IDE plug-ins or standalone

applications. Most of these API recommenders were developed for the Java programming

language and they were often developed as a standalone application rather than a plug-in

for an IDE. Half of these API recommenders mined and used data from SO for

recommendation purpose. API elements search tool (such as NLP2API, BIKER, RACK)

are the most relevant to this research because these API recommenders also focus on

mining information from SO and recommending API elements (such as API classes or

API methods) to the users. As mentioned earlier, it is important to note that some of these

studies used the same term to refer to their approaches and the corresponding

recommender tools that they built that incorporated the approaches. For example, in

Rahman et al.’s study, the same term “RACK” was used to refer to the approach and also

the recommender tool (Rahman et al., 2016).

Univ
ers

ity
 of

 M
ala

ya

43

Table 2.1 : Summary of API Recommenders

 Name of API
recommender

Category IDE Plug-
in

API
Language

Mining
from SO
(Yes/No)

1 RACK

(Rahman et al., 2016)

API Elements
Search

Eclipse

Java Yes

2 NLP2API

(Rahman et al., 2018)

API Elements
Search

X Java Yes

3 BIKER

(Huang et al., 2018)

API Elements
Search

X Java Yes

4 TaskNavigator

(Treude et al., 2015)

API
Documentation
Navigation

X Python No

5 APITasks

(Zhu et al., 2017)

API
Documentation
Navigation

X Java Yes

6 Dacite

(Santos & Myers,
2017)

API
Discoverability

Eclipse

Java No

7 Example Guru

(Ichinco et al., 2017)

API
Discoverability

X Looking
Glass

No

8 BotBase

(Zamanirad et al.,
2017)

API Invocation X RESTful No

Univ
ers

ity
 of

 M
ala

ya

44

2.6 Data Mining in SO

The term data mining means “the process of discovering interesting patterns and

knowledge from large amounts of data” (Han, Pei, & Kamber, 2011, p. 8). As SO

community is growing larger and generating vast number of users’ data, it has become a

valuable source for data mining.

In recent years, there are studies that aimed to discover trends or insights from SO

data by using different types of techniques, such as statistics, machine learning,

information retrieval (IR), pattern recognition and others (Ahasanuzzaman,

Asaduzzaman, Roy, & Schneider, 2016; Ahasanuzzaman, Asaduzzaman, Roy, &

Schneider, 2018; Joorabchi, English, & Mahdi, 2016). The main purposes of data mining

are characterization and discrimination; mining of frequent patterns, associations, and

correlations; classification and regression; clustering analysis; and outlier analysis (Han

et al., 2011).

This section reviews some of the existing studies that utilize data mining for

characterization and discrimination, mining of frequent patterns, associations,

classification and regression, clustering analysis, and outlier analysis.

2.6.1 Characterization and Discrimination

There are many classes of data within data entries, for example, in SO, there are

classes of discussion topics related to different programming languages. Thus, data

characterization and discrimination are used to derive concise and precise classes within

the data. Data characterization aims to summarize the general characteristics or features

of a target class of data; whereas data discrimination is referring to the comparison of the

Univ
ers

ity
 of

 M
ala

ya

45

general features of the target class with one or a set of comparative classes (Han et al.,

2011).

There is a study that focuses on finding the characteristics of SO posts by using

tags since tags could reveal the topics covered in SO. Their findings include what kinds

of questions have been asked, the most used tags, and, number of answer per question

(Treude, Barzilay, & Storey, 2011).

Apart from that, there is also Education Data Mining (EDM) study that mines SO

to discover subject-related difficulties, for example, calculating the frequency of

questions related to software design patterns, software architecture, computer network

security problems and others (Joorabchi et al., 2016). Analyzing these discussion posts in

SO community could reveal interesting insight on common problems faced by both

experienced and novice programmers (Joorabchi et al., 2016). Furthermore, mining the

vast amount of user-generated data in SO community able to provide educators an in-

depth look on the challenges faced by programming learner and address any gaps in their

teaching (Joorabchi et al., 2016). Joorabchi et al. (2016) has performed text mining in SO

to retrieve frequently-asked topics and categories in computer programming. The study

listed the difficult topics in learning programming that require more attention, for example

the top 3 highest occurrence topics in SO are “Same-origin policy”, “SQL injection” and

“Model–view–controller” (Joorabchi et al., 2016). Hence, the result from text mining in

SO can also be used as supplementary material to enhance students’ programming

learning process by educators.

Univ
ers

ity
 of

 M
ala

ya

46

2.6.2 Mining of Frequent Pattern, Associations, and Correlations

Frequent patterns are patterns that occur frequently in data and often lead to

association and correlations relationships within the data (Han et al., 2011). The main

purpose of mining frequent patterns is to identify frequent co-occurrence patterns of a set

of items from dataset. For example, milk and bread are frequently purchased together in

grocery stores, and therefore, there is a strong association relationship between milk and

bread. On the other hand, correlations measure the strength and confidence level of the

association relationship.

Mining SO to discover frequent patterns can be seen in API elements search tools.

For example, RACK mines associations and correlation patterns from SO data, where it

extracts word tokens from the SO users’ questions and associates these tokens to API

candidates to form a ‘Token-API’ pair (Rahman et al., 2016). BIKER also mines for

association patterns in SO, and calculates the similarities between users’ queries and SO

questions (Huang et al., 2018).

2.6.3 Classification and Regression

Classification means “the process of finding a model (or function) that describes

and distinguishes data classes or concepts” (Han et al., 2011, p. 18). The process of

classification includes building a model from a set of training data where the data is

labelled with known classes and the built model is used to predict data with unknown

class. The main difference between classification and regression is classification predicts

the categorical labels for item, while a regression model predicts continuous values, for

example, numerical data values rather than discrete class labels (Han et al., 2011).

Univ
ers

ity
 of

 M
ala

ya

47

A study has performed classification in SO to identify duplicate posts as this could

help to automatically detect repeated questions or problems asked by SO community

(Ahasanuzzaman et al., 2016). A more recent study classified discussion posts in SO in

terms of API issues, such as, documentation errors, backward incompatibility,

incompatibility of the APIs with underlying operating systems, and so on

(Ahasanuzzaman et al., 2018).

2.6.4 Clustering Analysis

Cluster analysis is the process of partitioning a set of data objects into subsets by

using clustering algorithm and leads to the discovery of previously unknown groups

within the data (Han et al., 2011). An existing study, (Allamanis & Sutton, 2013) applied

Latent Dirichlet Allocation (LDA) on SO data and found interesting clusters (word co-

occurrences), such as general topics, problem-specific topics and topics related to specific

technologies, for example, topics in Java programming language.

2.6.5 Outlier Analysis

Outlier refers to “data object that deviates significantly from the rest of the objects,

as if it were generated by a different mechanism” (Han et al., 2011, p. 544). There are

various approaches in outlier detection including statistical methods, proximity-based

methods, clustering-based methods and classification-based methods. A prior study, (Xia,

Lo, Correa, Sureka, & Shihab, 2016) performed outlier analysis to detect poor quality

questions in SO, such as off-topic questions that ask questions not related to programming

or software engineering activities.

Univ
ers

ity
 of

 M
ala

ya

48

2.7 Data Mining Techniques

Data mining incorporates different types of techniques from other domains such as

statistic, information retrieval (IR), machine learning (ML) and others (Han et al., 2011).

Among these techniques, IR is one of the essential techniques to find relevant information

from vast amount of data by using probabilistic approaches such as building a language

model and building a topic model (Han et al., 2011). Language model is a probability

function that calculates word occurrence in documents, while topic model is a probability

function that calculates topics distributed over the vocabularies in documents (Han et al.,

2011).

Besides IR techniques, machine learning becomes widely used in data mining

research as it allows a program to learn complex patterns automatically and make

intelligent decision based on the input data. For example, a computer program would be

able to recognize and label the duplicate questions after learning from a set of existing

questions. Neural network is one of the prominent approaches in machine learning for

data classification (Han et al., 2011). It is a collection of connected neuron-like processing

units with the advantages of high tolerance of noisy data and a great ability in classifying

patterns.

In recent years, researchers incorporate IR techniques with machine learning

techniques to train better language model and topic model. In the area of API

recommenders using SO data, BIKER and NLP2API tools were built using IR techniques

incorporated with machine learning techniques (Huang et al., 2018; Rahman et al., 2016;

Rahman et al., 2018). This could be due to training model using machine learning

algorithm enables automatic learning of word similarity between user queries and

questions in SO. During the recommendation phase, these API recommenders would be

Univ
ers

ity
 of

 M
ala

ya

49

able to select and retrieve a set of similar questions based on the similarity score

calculated.

The next section reviews two popular IR approaches that incorporate machine

learning techniques, namely, word embedding and topic modelling.

2.7.1 Word Embedding

 Traditional IR method such as one-hot encoding is commonly used for building

language model (Zhang et al., 2016). One-hot encoding transforms terms in numeric

representation. For example, given two sentences, “I enjoy playing TT” and “I like

playing TT”, Figure 2.1 shows the unique words and one-hot encoding for both sentences

(Ayyadevara, 2018). One-hot encoding often creates a high-dimensional vector when the

vocabulary size is big (where the number of unique words is large). This subsequently

leads to a vocabulary mismatch problem due to the difficulty in identifying similar terms,

for example, “like” and “enjoy”, which are synonymous to each other (Ayyadevara, 2018;

Zhang et al., 2016).

Figure 2.1: Example of One-hot Encoding (Ayyadevara, 2018)

Univ
ers

ity
 of

 M
ala

ya

50

To mitigate the aforementioned problem, researchers began to incorporate neural

network in IR techniques to train better language model, known as word embedding.

Word2Vec is a word embedding model that uses a simple three layers of neural network

to learn words representations (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). The

three layers are input layer, hidden layer and output layer. All the layers are fully connected

and produce a single output. When training a language model with word embedding

technique, the final output of the neural network is a vector representation for all the terms

in the input document. There are two different word embedding algorithms in Word2Vec,

which are Continuous Bag of Words (CBOW) and skip-gram, meant for different usage.

CBOW predicts the current word for the given context while skip-gram predicts the

surrounding words for the given current word (Mikolov, Chen, Corrado, & Dean, 2013).

Taking the following sentence as an example, “The quick brown fox jumped over the

dog.”, Figure 2.2 and Figure 2.3 show the input and output of CBOW and skip-gram

(Ayyadevara, 2018).

Figure 2.2: Example of CBOW (Ayyadevara, 2018)

Univ
ers

ity
 of

 M
ala

ya

51

Figure 2.3: Example of Skip-gram (Ayyadevara, 2018)

Word2Vec has some disadvantages: CBOW loses the order of words and skip-gram

has little sense about the semantics of the words as it considers words order within a short

context (Le & Mikolov, 2014). Therefore, a more recent study proposed

ParagraphVector, also known as Doc2Vec, which learns the continuous distributed

vector representations for pieces of texts (Le & Mikolov, 2014). The concept of Doc2Vec

is based on Word2Vec’s but Word2Vec learns similarities between words while Doc2Vec

learns similarities between sentences, paragraphs or documents (Le & Mikolov, 2014;

Mikolov, Sutskever, et al., 2013).

Ye et al. (2016) is the first study that acknowledged the lexical gap between natural

language queries and descriptions in API documentation, and they addressed it by

applying word embedding technique to train a language model using API documentation.

Later, Huang et al. (2018) and Rahman and Roy (2018) also addressed the lexical gap by

applying word embedding technique to train a language model but they used SO data

since SO posts is large in number and contain a mixture of API elements’ terms and

natural language terms.

Univ
ers

ity
 of

 M
ala

ya

52

2.7.2 Topic Modelling

Topic models are developed to automate extracting, indexing and searching

information from large structured and unstructured text documents (Chen, Thomas, &

Hassan, 2016). Besides that, topic models can be used to perform additional text analysis

tasks such as, clustering, summarizing, and inferring links within the corpus (Chen et al.,

2016). Topic modelling, also known as document clustering, is an unsupervised learning

technique used to discover topics within a documents or paragraphs. When there is a lot

of documents and limitation in summarizing all the documents, topic modelling technique

proves helpful by extracting the topics within the documents automatically.

Latent Dirichlet Allocation (LDA) is one of the popular topic modelling technique

that automatically discovers unobserved or hidden structures from text corpus using

statistical properties, such as word frequency (Blei, Ng, & Jordan, 2003; Chen et al., 2016;

Porteous et al., 2008). LDA is also known as a generative probabilistic model that

calculates topic probability within a text corpus (Blei et al., 2003). Generative

probabilistic model is a combination of generative process and probabilistic modelling.

Generative process is “the imaginary random process by which the model assumes the

documents arose” (Blei, 2012, p. 77). Probabilistic topic modelling is defined as “a suite

of algorithms that aim to discover and annotate large archives of documents with thematic

information” (Blei, 2012, p. 78). In the simplest form, the main concept of LDA topic

modelling is the reasoning about how text corpus is represented by a mixture of topics

and topics are characterized from the distribution of the words within the corpus (Blei et

al., 2003). Figure 2.4 shows an example of applying LDA model to a text corpus, where

topic is a collection of words, document is a mixture of corpus-wide topics and word is

drawn from one of those topics (Blei, 2012).The advantage of LDA is fast, simple and

does not require training data (Chen et al., 2016). LDA can be applied directly to raw,

Univ
ers

ity
 of

 M
ala

ya

53

unstructured text and the processing size is scalable to millions of documents (Porteous

et al., 2008).

Figure 2.4: Example of LDA Model Application (Blei, 2012)

Some prior studies (Allamanis & Sutton, 2013; Joorabchi et al., 2016) have

successfully applied LDA model in SO to discover common programming problems. In

addition, Chen et al. (2016) surveyed over hundreds of studies (167 articles) in SE domain

that used topic models and found that nearly two-third (66%) of the studies employed

LDA for topic modelling. They also found that most of the studies used the basic topic

models as black boxes without changing the underlying implementation or parameters

(Chen et al., 2016).

Univ
ers

ity
 of

 M
ala

ya

54

2.8 Comparison of Existing Approaches in API Elements Search

This section compares the approaches adopted by three API recommender studies

(RACK, NLP2API, BIKER) in terms of the techniques used. These studies fall under the

API elements search category (refer to Section 2.5.1) and also recommend Java API

elements for users’ queries using SO posts. As mentioned in Section 2.5.1, these studies

used the same term to refer to their approaches and the corresponding recommender tools

that they built that incorporated the approaches.

All these studies including this research incorporated their approaches into the

corresponding recommender tools that they built. Following that, the techniques were

organized under the four major steps of designing RSSEs (Section 2.4.2). Table 2.2

summarizes the comparison of the techniques of the approaches.

Univ
ers

ity
 of

 M
ala

ya

55

Table 2.2: Summary of Techniques used in API Elements Search

For data pre-processing, RACK (Rahman et al., 2016) performs tokenization, stop

words removal, and stemming. Stemming analyses inflected word forms and extracts the

root of each of the words by stripping the suffixes from the words (Kettunen, Kunttu, &

Järvelin, 2005). For example, extract “generat” from “generates” by deleting “es” from

the word “generates”.

Studies Data Pre-
processing

Capturing of
context

Producing
Recommendati
ons

Presenting
Recommendat
ions

RACK

(Rahman
et al.,
2016)

 Tokenization
 Removal of

Stop words
 Stemming

 Token-API
Mapping
Database

 Island
parsing

 Keyword-
API Co-
occurrence
(KAC)

 Keyword-
Keyword
Coherence
(KKC)

 API
Likelihood

 API
Coherence

 Top-K
results

NLP2API

(Rahman
& Roy,
2018)

 Tokenization
 Removal of

stop words,
punctuation
marks and
programming
keywords

 Pseudo-
Relevance
Feedback
(PRF)

 Lucene
 FastText
 TF-IDF
 PageRank

 Borda score
calculator

 Query-API
proximity

 Top-K
results

BIKER

(Huang et
al., 2018)

 Tokenization
 Stemming

 Word2Vec
 Inverse

Document
Frequency
(IDF)

 Two
heuristic
methods

 Similarity
Score for
Ranking
Candidate
APIs
(SimSO and
SimDoc)

 Top-K
results

 API
methods
descriptions

 Similar
questions

Univ
ers

ity
 of

 M
ala

ya

56

For capturing of context, RACK creates Token-API mapping pairs database that

associates the natural language word tokens (from the respective SO question) and API

classes tokens (from the SO question’s accepted answer). This created Token-API

mapping pairs. An example is the list of natural language tokens “generat, md5, hash” is

associated to a API token “MessageDigest”.

RACK adopts island parsing method for API classes extraction. Island parsing is

a method that specifies rules to extract items of interest (such as code elements) and ignore

uninteresting items (such as free form text) (Rigby & Robillard, 2013). A prior study has

used island parser with Java Language Specification (Gosling et al., 2014) to identify

code terms from text using regular expressions (Rigby & Robillard, 2013).

For producing the recommendations, RACK employs two heuristic metric

calculation, which are Keyword-API Co-occurrence (KAC) and Keyword-Keyword

Coherence (KKC) (Rahman et al., 2016). KAC helps to capture relationships between

keywords and APIs such as co-occurrences or associations. KKC identifies coherent

keyword pairs which are then used for obtaining candidate API classes that are

functionally relevant to those pairs. RACK measures API Likelihood and API Coherence

to produce Top-K results. API Likelihood estimates the probability of co-occurrence of a

candidate API with an associated keyword. API Coherence estimates the relevance of a

candidate API to multiple keywords from the query simultaneously. For presenting the

recommendations, RACK presents a list of Top-K results.

For data pre-processing, NLP2API (Rahman & Roy, 2018) applies removal of

stop words, punctuation marks and programming keywords, tokenization but not

stemming. For capturing of context, NLP2API uses Pseudo-Relevance Feedback (PRF),

Lucene, and FastText (Rahman & Roy, 2018). PRF is employed to extract software-

specific words that are relevant to a given query, and to use these words for query

Univ
ers

ity
 of

 M
ala

ya

57

reformulation (Nie, Jiang, Ren, Sun, & Li, 2016). Lucene is an open source API for

building applications with search-related tasks such as indexing and querying (Białecki,

Muir, Ingersoll, & Imagination, 2012). FastText is a word embedding algorithm that

focuses on sub-word representations and does not require any pre-processing

(Bojanowski, Grave, Joulin, & Mikolov, 2017). In addition, NLP2API uses two term

weighting methods, Term Frequency - Inverse Document Frequency (TF-IDF)(Singhal,

2001) and PageRank (Brin & Page, 1998) to extract Java API classes from SO answers.

TF-IDF is a term weighting algorithm formulated based on term frequency and document

frequency. Term Frequency (TF) implied that words that repeat multiple times in a

document are considered salient; whereas, document frequency implied that words that

appear in many documents are considered common and not indicative of document

content, this weighting method is called inverse document frequency (IDF) (Singhal,

2001). For producing the recommendations, NLP2API uses Borda score calculation and

Query-API proximity. Borda count is a popular election method where the voters sort

their political candidates in order of preference (Black, Hashimzade, & Myles, 2009).

Query-API proximity analyses the global contexts of keywords within query, and

measures the semantic proximity between the query and the candidate API classes.

(Rahman & Roy, 2018). For presenting the recommendation, NLP2API displays the Top-

K API classes.

BIKER (Huang et al., 2018) recommends two types of Java API elements, namely,

classes and methods (Huang et al., 2018). For data pre-processing, BIKER performs

tokenization and stemming on data retrieved from SO. BIKER performs two major steps

in capturing of context, which are, retrieval of similar questions and detection of Java API

elements. BIKER uses Inverse Document Frequency (IDF) and Word2Vec to retrieve

similar questions. In addition, BIKER uses two heuristic methods to detect Java API

elements. The first is using regular expressions to check whether every hyperlink in each

Univ
ers

ity
 of

 M
ala

ya

58

answer links to the official Java API documentation site. Secondly, BIKER checks the

plain text contained in each answer against a dictionary that stores the names of all Java

API elements from the official documentation site to identify whether there is any match

of API elements. For producing the recommendations, BIKER calculates the similarity

score for ranking candidate Java API elements by using a combination of two scores,

namely SimSO and SimDoc (Huang et al., 2018). SimSO measures the similarity between

the query and the question title of a similar question. SimDoc measures the similarity

between the query and the Java API element’s description in the official Java API

documentation. For presenting the recommendations, BIKER displays a list of Top-K

results which include Java API methods (and corresponding classes), description of the

API methods and similar questions that matched the query.

2.9 Limitation of Existing Approaches in API Elements Search

To sum up, the first research gap found in existing studies on API Elements Search

is the language model used by the corresponding API recommenders were often trained

at the “word” level rather than the “sentence” level. NLP2API applied FastText and

BIKER applied Word2Vec, which are word embedding algorithms targeting the “word”

level. RACK study did not apply language model in its approach. As mentioned in Section

2.7.1 earlier, the limitations of word embedding algorithms that learn similarities at

“word” level are: loses the order of words or has little sense about the semantics of the

words due to considering words order within a short context. To cope with these

limitations, word embedding algorithm that learns similarities at “sentences”,

“paragraphs” or “documents“ has been proposed. This study employed word embedding

algorithm due to the reason above.

Univ
ers

ity
 of

 M
ala

ya

59

The second research gap is these API recommenders often employed multiple

techniques in API recommendation. As can be seen in Table 2.2, RACK and NLP2API

employed ten different techniques and BIKER employed nine in their approaches. The

number of different techniques employed increases the complexity of the respective

framework. Employing fewer techniques will help to simplify the framework.

Lastly, there is a lack of work that provides API recommenders as plug-ins of an

IDE, which could promote better usability and user friendliness of the recommenders.

Only RACK did that but not NLP2API and BIKER.

Table 2.3: Summary of Limitation of Existing Approaches in API Elements
Search

API Element Search
Study/Tool

Language Model Total Techniques
Employed

IDE Plug-in

RACK

(Rahman et al., 2016)
Not Applicable 10 Yes

NLP2API

(Rahman & Roy,
2018)

Word-level (FastText) 10 No

BIKER

(Huang et al., 2018)

Word-level
(Word2vec) 9 No

2.10 Chapter Summary

As programmers are getting more involved in web collaboration communities, these

communities have contributed a large amount of user-generated data with useful

information and produced crowd documentation for different APIs. Many studies aimed

to obtain useful insights through crowd documentation but there is limited work on

common programming problems particularly on using core Java API. Besides that,

recommendation systems or recommenders employing data mining techniques have been

used in the SE domain. However, there are limitations found in existing API

Univ
ers

ity
 of

 M
ala

ya

60

recommenders such as language model used by the corresponding API recommenders

were often trained at the “word” level rather than the “sentence” level, employed multiple

techniques, and lack of work that provides API recommenders as plug-ins of an IDE.

Thus, this research aimed to bridge these gaps by conducting two studies and the key

steps involved are explained in details in the following chapter.

Univ
ers

ity
 of

 M
ala

ya

61

CHAPTER 3: RESEARCH METHODOLOGY

This chapter details the research methodology employed in this research. It

describes the key steps conducted in this research to achieve the research objectives, and

how the key steps were conducted in terms of techniques, tools, technologies used, where

applicable. Figure 3.1 shows the nine (9) key steps (together with the associated research

objectives where applicable) of the research methodology. To simplify the writing, the

“identification of common Java programming problems” is called Study 1 and those

related to the proposed approach (its development, benchmarking, plug-in, and user

evaluation study) is called Study 2.

The research methodology employed in Study 1 is quantitative research. Study 1

involved research activity such as using counter to measure occurrence for duplicate

question. On the other hand, research methodology employed in Study 2 is mixed method

which consists of both and qualitative research. Quantitative research involved research

activity such as calculation for performance benchmark, while qualitative research

involved research activity such as gathering feedback from users and draw conclusion

based on the result of user evaluation study.

Quantitative research was employed in Study 1, where data mined from Stack

Overflow was analysed quantitatively to find the number of duplicate Java questions, top

duplicate Java questions and their corresponding top Java API classes, based on the

askers’ level of expertise.

Study 2 employed both quantitative and qualitative research. Quantitative research

was used in the benchmarking of the proposed approach where the metrics were

calculated based on their formulas. Besides that, quantitative research was also used in

user evaluation study where the correctness of Java API classes found by participants are

Univ
ers

ity
 of

 M
ala

ya

62

calculated. Qualitative research was used in user evaluation study where questionnaire

was used to asks the participants’ opinions on the features of APIRecJ.

Figure 3.1: Research Methodology

3.1 Literature Review

The first key step is the literature review conducted on APIs documentation

usability, limitations of the official or conventional APIs documentation, crowd

documentation and its benefits, existing work on finding common Java Programming

problems, recommendation systems in Software Engineering, existing work on API

recommenders. Besides that, the review also included data mining in SO and popular data

mining techniques.

Univ
ers

ity
 of

 M
ala

ya

63

3.2 Definition of Research Objectives and Research Questions

Based on the literature review, the key limitations found in existing studies are:

i) Limited work on common problems in Java programming, particularly in

terms of core Java API usage and the common Java programming problems

faced by Java programmers of different levels of expertise.

ii) In terms of API recommenders,

a. A lack of language models at sentence level instead of word level.

b. Multiple techniques employed in the design of existing API

recommenders.

iii) Lack of work that provides API recommenders as plug-ins of an IDE, which

could promote better usability and user friendliness of the recommenders.

Based on the problems highlighted above, the research objectives and research

questions were defined for this research, focusing on identifying common Java

programming problems from SO, and developing an approach for Java API classes

recommendation that uses word embedding and topic modelling techniques on discussion

posts extracted from SO.

3.3 Data Collection

This research made use of data extracted from SO. This data consists of data

generated by or from SO’s users. This data such as questions and answers in SO

discussion posts, information about the registered users, and so on, is stored and

maintained by SO in multiple databases.

There are two methods used to retrieve data from SO in existing studies, which

are, using the data dump (Ahasanuzzaman et al., 2016) and a query tool (Rahman et al.,

Univ
ers

ity
 of

 M
ala

ya

64

2016). The first method is getting the data dump archive files released by Stack Exchange

(2019e) and replicating the databases in a local machine. The second method is using the

“Stack Exchange Data Explorer (SEDE)” (2019b), a web-based query tool provided by

Stack Exchange. SEDE displays a list of data dictionary that describes the schema of

database and query input for retrieving data by using Structured Query Language (SQL)

statements (Chamberlin & Boyce, 1974). The advantages of using SEDE as compared to

using data dump files are SEDE retrieves the latest and updated data, and provides instant

access to SO data using SQL queries. Contrarily, data dump files are released periodically

and require additional setup and installation to load the database and access the data.

However, SEDE can only retrieve at most 50,000 records of data.

This research employed SEDE in extracting data from SO. This was done by

retrieving the data in batches using the unique identifier of each discussion post and

merging all the batch files into a single file. The extracted data comprises of SO data

dating from the inception of SO (15 September 2008) to the data retrieval date (6 July

2019).

It is important to note that the data collection for Study 1 and Study 2 are different.

The data collection for Study 1 retrieved a set of duplicate posts related to Java, while the

data collection for Study 2 retrieved a set of posts related to Java. The codes to extract the

data for Study 1 and Study 2 are given in Appendix B and Appendix C, respectively.

3.4 Development of Approach

 The next key step is the development of an approach that aimed to assist

programmers by recommending a list of relevant Java API classes for their natural

language queries. This is to achieve RO2. There are two major phases in the proposed

Univ
ers

ity
 of

 M
ala

ya

65

approach which are preparation phase and recommendation phase. The techniques

employed in the proposed approach are word embedding, topic modelling and heuristic

rules. The proposed approach is incorporated into a Java API class recommender created

as a backend server which exposes the services for performing Java API classes

recommendation. The technologies used in the development of the approach are listed in

Table 3.1.

Table 3.1: Technologies Used in the Development of the Approach

Programming
Language

Technology Name and Description

Python 3.6 Gensim - Open source NLP and ML libraries
 BeautifulSoup - Open source library for XML text

processing
 Pandas - Open source library for CSV file processing
 Flask - Open source library for server
 PyInstaller - Open source library for packaging python

script into executable window platform file

3.5 Identification of common Java programming problems

To achieve RO1, the data collected for Study 1 was analyzed to identify the

common Java programming problems. There are three questions formulated at the

beginning of the study, which are related to the distribution of duplicate Java questions in

SO based on the askers’ level of expertise, top duplicate Java questions in SO based on

askers’ level of expertise and top Java API classes required by the top duplicate Java

questions in SO based on the askers’ level of expertise. A duplicate question refers to a

question that has been asked and answered before by the SO community (Stack Overflow,

2019j).

As a result, Study 1 answered the first question with a group of SO users who

frequently ask duplicate Java questions in SO. Besides that, Study 1 answered the second

question with the Top-10 duplicate Java questions in SO and revealed the significant

Univ
ers

ity
 of

 M
ala

ya

66

critical area in using Java API. In addition, the most common problem faced by Java

programmers are derived from these top-10 duplicate Java questions in SO based on

askers’ level of expertise. Finally, Study 1 answered the third question with the Top-30

Java API classes required by the Top-10 duplicate Java questions in SO and discovered

the Java API classes that Java programmers struggle with.

3.6 Benchmarking of Approach

 In this key step, the proposed approach is evaluated in term of its performance by

using 4 established performance metrics used by existing studies. The measured metrics

were compared to existing baseline studies in Java API class recommendation. This is to

achieve RO3.

The four metrics are: (a) Top-K accuracy, (b) Mean Recall @ K (MR@K), (c) Mean

Reciprocal Rank @ K (MRR@K), (d) Mean Average Precision @ K (MAP@K). These

metrics measure the information retrieval (IR) performance and the recommendation

performance of the proposed approach. For the former, these metrics assess the

performance of the proposed approach in retrieving set of relevant API classes. For the

latter, these metrics assess the performance of the proposed approach in returning relevant

API classes at the top positions and less relevant API classes at the bottom positions of

the ranked results list.

3.7 Development of Plug-in

To make it easier for the programmers to use the developed Java API class

recommender, a plug-in for Eclipse IDE that functions as the front-end or client for

programmers to access the recommender’s functionalities, was developed. Table 3.2

Univ
ers

ity
 of

 M
ala

ya

67

shows the technologies used in implementing the plug-in. The plug-in was developed by

creating an Eclipse plug-in project. Its user interface was designed using Java Swing

components that receive user query and display query result. The plug-in functions as the

requestor, which sends user query to Java API class recommender and returns a set of

Java API classes and similar questions to user.

Table 3.2: Technologies Used in the Development of the Plug-in

Programming
Language

Technology Name and Description

Java 1.8 Eclipse Oxygen – IDE for java development
 Eclipse Plug-in Developer SDK – Libraries for developing

Eclipse plug-in

3.8 User Evaluation Study

A user evaluation study was conducted to evaluate the usefulness of the plug-in

(APIRecJ) including the features implemented in the developed Java API class

recommender. The user evaluation study involved recruiting participants to use Google

search engine and to use the plug-in to search for and state Java API classes that are

relevant to three pre-defined programming questions/tasks. The participants then

completed a questionnaire survey comprising multiple-choice questions, Likert scale

questions and open-ended questions. The questionnaire asks about participants’

educational background, level of Java programming skill, other programming languages

known and the level of skill, and Software Development Kits (SDKs) familiar with,

opinions on the features of APIRecJ, whether they prefer Google search engine or

APIRecJ and their reasons for their preference, and usefulness of having API class

recommender such as APIRecJ and the reasons.

Univ
ers

ity
 of

 M
ala

ya

68

3.9 Interpretation of Result and Conclusion

Study 1 provided the distribution of duplicate Java questions based on askers’ level

of expertise, top-10 master Java questions based on askers’ level of expertise and top-30

Java API classes required by the top duplicate Java questions based on askers’ level of

expertise. These results were discussed.

For Study 2, the benchmarking results against existing studies were discussed in

terms of aspects of improvement; the user evaluation study’s results in terms of the

usefulness of the plug-in were also discussed.

3.10 Chapter Summary

The research methodology provides a comprehensive detail on how this research

was carried out. This covers the key steps conducted in this research to achieve the

research objectives, and how the key steps were conducted in terms of techniques, tools,

technologies used, where applicable.

Univ
ers

ity
 of

 M
ala

ya

69

CHAPTER 4: COMMON JAVA PROGRAMMING PROBLEMS

This chapter presents Study 1 conducted in this research, which is, the identification

of common Java programming problems from SO. It explains the relevant terms and

concepts, questions for Study 1, database structures in SO, and how the extraction of

duplicate questions, and code snippets and Java API classes were performed. This chapter

also includes the results found for each questions and comparison with related work.

4.1 Questions for Study 1

This Study 1 aimed to leverage SO’s crowd documentation of Java APIs to investigate

what are the most common programming questions asked by or frequently asked

questions of the Java community based on their level of expertise. This was done by

mining and analysing duplicate Java questions/posts in SO. The level of expertise was

determined based on the askers’ reputation scores in SO. A duplicate question refers to a

question that has been asked and answered before by the SO community (2019j).

Duplicate questions can also be regarded as “questions that are asked to solve the same

problem” (Ahasanuzzaman et al., 2016).

Since duplicate questions are the same questions that different programmers

repeatedly asked, they can be used as surrogates to common questions asked in SO. Doing

that can help in identifying common Java programming problems/topics that Java

programmers struggle with.

Univ
ers

ity
 of

 M
ala

ya

70

The specific questions (Qs) for Study 1 are:

Q1: What is the distribution of duplicate Java questions in SO based on the askers’ level

of expertise?

Q2: What are the top duplicate Java questions in SO based on askers’ level of expertise?

Q3: What are the top Java API classes required by the top duplicate Java questions in

SO based on the askers’ level of expertise?

4.2 Database Structure in SO

SO works as a discussion forum where registered users in SO can ask

programming questions by creating new discussion threads to be answered by others.

Hence, discussion posts in SO typically consists of a question and multiple replies. SO

has given guidelines on how to construct a question Error! Bookmark not defined.. A q

uestion’s title should record the description that summarizes the specific problem. The

question body should start with a more detailed description of the problem faced; has just

enough code for reproducing the problem, has link to live example of the problem if

possible; code, data or error log in text and not image forms. The question should include

all relevant tags, and proof-read before posting.

Figure 4.1 shows a partial data model for the SO database. The script used to

visualize the data model is provided by SO community (2019; 2019a). The tables used

for extracting the duplicate Java questions are: Posts, PostTypes, PostLinks, Tags,

PostTags and Users tables. The Posts table stores all the discussion posts in SO with

unique primary key Ids. The PostTypeId attribute with a value of "1" indicates that the

post is a question and a value of "2" means that the post is an answer. If the post is a

Univ
ers

ity
 of

 M
ala

ya

71

question post, the Title attribute records the question’s title and the Body attribute records

the description of the question. If the post is an answer post, the Title attribute will be

empty and the Body attribute will store the answer description. Each question in SO can

be tagged with a set of labels and all the tags are stored in the Tags table with unique Ids.

The tags for a question are recorded in Tags attribute of the Posts table and the tag's name

are stored in TagName attribute of the Tags table. For example, discussion posts with

“java” tag can be regarded as Java-related posts, which are related to the Java

programming language.

The Users table stores all registered SO users with unique Ids. The Reputation

attribute records the “reputation” the user acquired since he or she joined SO. “Reputation

is a rough measurement of how much the community trusts the user” (2019h). It is earned

by convincing the community that you know what you are talking about. The higher the

reputation of a user, the more privileges the user gets and will have access to more features

on the site. A user’s reputation score will increase or decrease depending how the

community perceives the quality of the user’s posts. For example, if the user’s question

is voted up, his or her reputation will increase by 5; if the user’s answer is marked

“accepted”, the user’s reputation will increase by 15; and if the user’s question or answer

is voted down, his or her reputation will decrease by 2.

Univ
ers

ity
 of

 M
ala

ya

72

Figure 4.1: Partial Data Model for SO Database

4.3 Extraction of Duplicate Questions

SO provides a set of guidance to its users on how to ask questions in SO, for

example, what types of questions should be avoided, how to ask a good question, and so

on (2019d). Despite SO recommendation that the askers search previous posts before

asking a new question, duplicate questions sharply increase after September 2012 and

analysis of tags showed that the “java” tag has the highest number of duplicate questions

(Ahasanuzzaman et al., 2016). The reasons that duplicates happened are (Ahasanuzzaman

et al., 2016): askers did not search SO first before asking a question, titles of master

questions do not match askers intended questions, domain difference despite task

Univ
ers

ity
 of

 M
ala

ya

73

similarity, descriptive and difficult to understand, too concise to properly understand, lack

of knowledge about the problem and terminology/buzzwords.

 Duplicate questions are seen as problematic due to the following reasons: may

cause the asker unnecessarily wait in getting answer when the question has already been

asked and answered previously (Ahasanuzzaman et al., 2016) (Zhang, Lo, Xia, & Sun,

2015), and difficulty in finding correct answers in one place (Silva, Paixão, & de Almeida

Maia, 2018). SO community moderators’ do not remove or delete duplicate questions

since similar questions can be described differently or exist in different contexts. However,

this research regards duplicate questions as an opportunity to identify the common

programming questions asked by programmers which could give us insights on the

common programming problems/topics that programmers struggle with.

A duplicate question is a question that has been asked and answered before in SO.

The site moderators (elected by the SO community through popular vote) and users with

high reputation (more than 3000) are able to close later questions as duplicate questions

(i.e. the non-master question) and provide the reference links to the respective first-time

asked question (i.e. the master question) (Ahasanuzzaman et al., 2016).

 The relationships between a master question and its duplicate questions are

recorded in the PostLinks table. Each master-duplicate relationship is captured as a record

in the PostLinks table with a unique Id. The PostId attribute is a foreign key which is

linked to Id attribute in Posts table that records the identifier of the master question. The

identifier of the duplicate question is stored in RelatedPostId attribute. The attribute

LinkTypeId describes the type of relationship between the question identified by PostId

and the question identified by RelatedPostId. For instance, a master-duplicate relationship

is signified by a value of “3” in the LinkTypeId attribute.

Univ
ers

ity
 of

 M
ala

ya

74

The collection of duplicate Java questions was retrieved using SEDE with relevant

SQL statements. For Q1, all the master questions were retrieved and their duplicate

questions were counted based on the groups of users defined using the reputation score

(Section 2.2.2). For Q2, the top-10 master questions based on the groups of users were

extracted. The scripts used for extraction are provided in Appendix B.

Figure 4.2 illustrates an example of a master question in SO whereas Figure 4.3

illustrates an example of a duplicate question (non-master question) in SO.

Figure 4.2: Master Question (2019g)

Figure 4.3: Duplicate Question (Non-Master Question) (2019e)

Univ
ers

ity
 of

 M
ala

ya

75

4.4 Extraction of Code Snippets and API Classes

For Q3, after extracting the duplicate Java questions and saved them in CSV files,

the following filtering steps were performed:

Step 1: Extract all master questions that have accepted answers.

Step 2: Extract code snippets from the accepted answers.

Step 3: Extract Java API classes from the code snippets by using a set of heuristic

rules implemented in Python scripts.

Among all the answers to the master question, only the accepted answer of the

master question is considered because an existing study on one domain showed that 65%

of accepted answers contain source code (Subramanian & Holmes, 2013). Since code

snippets frequently refer to specific API (Subramanian & Holmes, 2013), these filtering

steps focused on Java code snippets and ignored other information in the accepted answer

(such as plain text description, hyperlink, logs, comments and others). The code snippets

were obtained by extracting the content enclosed by the “<code>” and “</code>” tags.

As in (Subramanian & Holmes, 2013), the extraction of API classes considered only code

snippets that had at least 3 lines of code because anything less is lack of surrounding

context needed to understand an API. Table 4.1 shows the heuristic rules used in Step 3,

together with the justifications and some examples.

Univ
ers

ity
 of

 M
ala

ya

76

Table 4.1: Heuristic Rules for Extracting Java API Classes

No. Heuristic Rule Justification Example
Input Java API class

extracted by the
heuristic rule

1 Extract class
names from
‘import’
statements

One way to
use/access a Java
API class/interface
in a Java program is
by using an
“import” statement
to specify the
packages where the
class/interface
resides. Class
names extracted
from the ‘import’
statements are
classes that might
be relevant to the
respective question.

import java.io.

FileInputStream;

FileInputStream

2 Extract
reference types
of reference
variables

The reference type
of a reference
variable is a
class/interface that
is relevant to the
respective question.

InputStream is =
new
FileInputStream();

InputStream

3 Extract the
name of the
constructor
method located
right after a
‘new’ keyword

The name of the
constructor method
used indicates the
reference type of the
object instantiated.
This reference type
is a class that is
relevant to the
respective question.

InputStream is =
new
FileInputStream();

FileInputStream

Univ
ers

ity
 of

 M
ala

ya

77

4 Validate API
classes
extracted by the
first three
heuristic rules
by checking
with API
classes
extracted from
the Java API
documentation
for Java
Standard
Edition 8 and
Java Enterprise
Edition 8.

Code snippets
might contain Java
API classes spelled
wrongly or in the
wrong letter cases.
Therefore,
candidate API
classes have to be
checked against the
valid API class
names extracted
from the API
documentation.
This heuristic rule
helps to eliminate
invalid API classes.

inputStream

INPUTStream

InputStem

InputStream

InputStream

-

4.5 Results and Discussion

This section presents the results and discussion of Study 1 with regard to the 3

questions the study aimed to answer. This section also includes the comparison with

related work.

4.5.1 Data Extracted

From the data, 27589 master questions that have duplicate questions are found

and extracted. A user has the option to “accept” an answer to his or her question, thereby

making the answer the “accepted answer” (2019f) . Only 21623 (78%) of the extracted

master questions have accepted answers. This could probably due to accepting an answer

is not mandatory and not all user came back to the site to accept an answer. Only 10763

(39%) master questions have code snippets in their accepted answers. This shows that

60% of the accepted answers do not use code examples in providing solutions for the

questions. There are 6631 (24%) master questions found having Java API classes in their

accepted answers’ code snippets. This means that only about a quarter of the master

Univ
ers

ity
 of

 M
ala

ya

78

questions contain solutions that make use of Java API classes. Figure 4.4 illustrates the

number of remaining master questions after each filtering step.

Figure 4.4: Overlapping Relationships within Data Collection

4.5.2 Q1: What is the distribution of duplicate Java questions in SO based on the

askers’ level of expertise?

 Users’ reputation scores in SO are used as an approximation to their level of

expertise or experience. As in (Ahasanuzzaman et al., 2016); Ahasanuzzaman et al.

(2018), those with lower reputation scores are regarded as having lesser expertise or

experience, and those with higher reputation scores as more expert or experienced. Three

groups of SO users are defined based on their reputation scores: novice group with

reputation score less than 100; experienced group with reputation score in between 100

and 10000, inclusive; and expert group with reputation score above 10000.

 To answer Q1, the number of duplicate Java questions asked by each of the three

groups are identified. Table 4.2 shows the results. The total duplicate Java questions is

Univ
ers

ity
 of

 M
ala

ya

79

62,553, with two-third contributed by the novice group, 31% contributed by experienced

group, and 3% contributed by the expert group.

Table 4.2: Distribution of Duplicate Java Questions Based on Askers’ Level of
Expertise

Level of Expertise Number of duplicate Java questions
Novice Group

(reputation < 100) 41452 (66%)

Experienced Group
(100 < reputation < 10000) 19249 (31%)

Expert Group
(reputation > 10000) 1852 (3%)

4.5.3 Q2: What are the top duplicate Java questions in SO based on askers’ level

of expertise?

To investigate Q2, the top-10 master Java questions for the three groups of users

(Table 4.3) are identified. The middle column of Table 4.3 shows the titles of the master

questions and the count column shows the number of duplicate questions for the

corresponding master question.

As shown in Table 4.3, the top two duplicate Java questions of the novice and

experienced groups are related to how to solve NullPointerException and how to compare

String, with the frequency of novice asking these questions significantly higher than

experienced group. Only a few from the expert group posted similar questions, with

duplication counts below 10.

 The majority of the top duplicate Java questions of the novice and the experienced

groups, and one-third of the questions of the expert group are related to understanding

and/or fixing exceptions and errors. For instances, compilation error,

NullPointerException, and ArrayIndexOutOfBoundsException. On the contrary, the

number of duplicate questions related to reasoning of the Java programming concepts are

Univ
ers

ity
 of

 M
ala

ya

80

the highest in the expert group, and rare in the experienced and novice groups. For

example, “….Why are Java generics not implicitly polymorphic?”, “Why don't Java's +=,

-=, *=, /= compound assignment operators require casting”, and so on.

The Top-10 duplicate questions can be regarded as the most common Java

programming problems/topics that Java programmers struggle with. Our results show that

the most common problem Java programmers face is understanding and/or fixing errors.

However, this is not the case for the expert programmers, as they question more about the

reason of some Java programming concepts. It is important to note that the expert rarely

asked duplicate Java questions in SO. This study in fact identified the top-30 duplicate

Java questions in SO based on the askers’ level of expertise and this is provided in

Appendix A.

Table 4.3: Top-10 Master Java Questions Based on Askers’ Level of Expertise

Level of Expertise Top-10 master Java Questions Duplication
Count

Novice Group 1. What is a NullPointerException, and how do
I fix it?

5009

2. How do I compare strings in Java? 1631
3. What causes a
java.lang.ArrayIndexOutOfBoundsException
and how do I prevent it?

554

4. Scanner is skipping nextLine() after using
next() or nextFoo()?

420

5. How do I fix
android.os.NetworkOnMainThreadException?

345

6. What does a "Cannot find symbol"
compilation error mean?

297

7. Unfortunately MyApp has stopped. How can
I solve this?

223

8. How do I print my Java object without getting
"SomeType@2f92e0f4"?

210

9. What's the simplest way to print a Java array? 203
10. Why is my Spring @Autowired field null? 133

Experienced Group 1. What is a NullPointerException, and how do
I fix it?

606

2. How do I compare strings in Java? 274
3. How do I fix
android.os.NetworkOnMainThreadException?

116

Univ
ers

ity
 of

 M
ala

ya

81

4. Is List<Dog> a subclass of List<Animal>?
Why are Java generics not implicitly
polymorphic?

96

5. Why is my Spring @Autowired field null? 92
6. How do I write a correct micro-benchmark in
Java?

52

7. How to fix
java.lang.UnsupportedClassVersionError:
Unsupported major.minor version

49

8. Why does Spring MVC respond with a 404
and report "No mapping found for HTTP
request with URI [...] in DispatcherServlet"?

49

9. Iterating through a Collection, avoiding
ConcurrentModificationException when
removing objects in a loop

44

10. Java string to date conversion 41
Expert Group 1. Is List<Dog> a subclass of List<Animal>?

Why are Java generics not implicitly
polymorphic?

10

2. Iterating through a Collection, avoiding
ConcurrentModificationException when
removing objects in a loop

8

3. How do I compare strings in Java? 8
4. What is a NullPointerException, and how do
I fix it?

7

5. Why don't Java's +=, -=, *=, /= compound
assignment operators require casting?

6

6. How do I fix
android.os.NetworkOnMainThreadException?

5

7. When do you use Java's @Override
annotation and why?

5

8. In Java, what is the best way to determine the
size of an object?

5

9. How to create a generic array in Java? 5
10. Why use getters and setters/accessors? 5

Univ
ers

ity
 of

 M
ala

ya

82

4.5.4 Q3: What are the top Java API classes required by the top duplicate Java

questions in SO based on the askers’ level of expertise?

Table 4.4 shows the top-30 Java API classes (and the packages they belong)

required by the top duplicate Java questions in SO based on the askers’ level of expertise.

Note that only 27 Java API classes were found for the expert group.

The results show that some of the most frequent Java API classes required by the

top duplicate Java questions of all expertise groups are from java.lang, java.util,

javax.swing, java.text, java.io and java.net packages. Nevertheless, for these six

packages, there are some overlaps and differences in terms of the specific Java API

classes found for each expertise group, as shown in Table 4.4.

Other than that, Java API classes from java.awt package were also found for the

novice group but not for the other two groups. This package mainly contains classes use

for developing the graphical user interface of Java programs (2019). This shows that

novice programmers require more help in using these API classes in developing user

interface.

Another difference is, the DateTimeFormatter and ResultSet classes were found for

the experienced and expert groups but not for the novice group. This could be due to these

two classes are used in more advanced topics and novices have not encounter them.

DateTimeFormatter is related to formatter for printing and parsing date-time objects.

ResultSet is related to SQL query of database.

Univ
ers

ity
 of

 M
ala

ya

83

Table 4.4: Top-30 Java API Classes Required by the Top Duplicate Java
Questions Based on Askers’ Level of Expertise

Level of Expertise Java API Class
Novice Group java.lang: String, Object, StringBuilder

java.awt: EventQueue, Dimension, ActionEvent,
BufferedImage, Graphics2D, Color,
ActionListener, BorderLayout
java.util: ArrayList, Date, HashMap, Scanner,
List, Calendar, Matcher, Pattern, Random
javax.swing: JFrame, JPanel, JButton, JLabel
java.text: SimpleDateFormat,
java.io: File, BufferedReader, IOException,
InputStream,
java.net: URL

Experienced Group java.lang: String, Object, StringBuilder,
Integer, Process, Thread
java.util: ArrayList, Date, HashMap, Scanner,
List, Calendar, Matcher, Pattern, HashSet
javax.swing: JFrame, JPanel, JLabel,
Document
java.text: SimpleDateFormat, DateFormat
java.io: File, BufferedReader, IOException,
InputStream, FileInputStream,
FileOutputStream
java.net: URL
java.time: DateTimeFormatter
 java.sql: ResultSet

Expert Group java.lang: String, Object, StringBuilder,
Integer, Process, Thread, Method
java.util: ArrayList, Date, HashMap, Scanner,
List, Calendar, Pattern, HashSet
javax.swing: JPanel, JLabel
java.text: SimpleDateFormat, DateFormat
java.io: File, BufferedReader, IOException,
InputStream
java.net: URL

java.time: DateTimeFormatter
java.sql: ResultSet

4.5.5 Summary of Results

Study 1 investigated which group of SO users frequently ask duplicate Java

questions in SO site. The results show that the novice group is the top contributor and the

expert group contributes significantly lower to this. The top-10 duplicate Java questions

in SO were identified and it was found that the most common problem Java programmers

Univ
ers

ity
 of

 M
ala

ya

84

face is understanding and/or fixing errors. However, this is not the case for the expert

programmers, as they question more about the reason of some Java programming

concepts. Additionally, the top-30 Java API classes required by the top-10 duplicate Java

questions in SO were identified and the main findings are: some of the most frequent Java

API classes required by the top duplicate Java questions of all expertise groups are from

java.lang, java.util, javax.swing, java.text, java.io and java.net packages; novice

programmers ask more duplicate questions related to classes in java.awt package

compared to experienced and expert programmers; experienced and expert programmers

but not the novice asked duplicate questions related to classes used in more advanced

topics such as querying of database.

In summary, Study 1 provides insights on common Java programming

problems/topics and Java API classes that Java programmers struggle with. Java

educators and learning resources can devote more attention to these areas to help learners

in picking up the required knowledge and skills.

4.6 Comparison with Related Work

Prior study has shown that SO users who have the least experience (less than 100

reputation score) posted the highest number of duplicate questions regardless of the

programming language (Ahasanuzzaman et al., 2016). Our study focused only on Java

questions and our finding shows similar result where novices tend to ask more duplicate

questions compared to more experienced users.

An existing study investigating topics discussed in SO questions using clustering

technique found that one of the major categories of questions asked is concepts that been

coded but do not work (Allamanis & Sutton, 2013). The finding of Study 1 is in line with

Univ
ers

ity
 of

 M
ala

ya

85

this study, and found that Java programmers frequently ask questions related to

understanding and/or fixing errors.

A study on the characteristics of SO posts on API issues found that SO users with

less than 100 reputation score and those with more than 10000 reputation score ask less

API issue-related questions, as compared to those having reputation score between 100 -

10000 (Ahasanuzzaman et al., 2018). Study 1 differs in the sense that its scope focused

on duplicate questions and the Java domain.

4.7 Chapter Summary

Study 1 was conducted to identify the common Java programming problems using

duplicate questions retrieved from SO. Duplicate questions from SO can be regarded as

common questions asked in SO and used to identify common Java programming

problems/topics that Java programmers face. The common problems/topics serve as

important areas that Java educators and learners could pay more attention to. The next

chapter explains the proposed approach for recommending Java API classes performed

in the Study 2 of this research.

Univ
ers

ity
 of

 M
ala

ya

86

CHAPTER 5: THE PROPOSED APPROACH

 This chapter presents the approach focused on Java API classes recommendation

using SO data. There are mainly five subsections in this chapter. First subsection provides

the overview of proposed approach with techniques employed; second and third

subsection elaborate on two major phases in the proposed approach, which are preparation

phase and recommendation phase, respectively. In fourth subsection, the API

recommenders in API element search category (in Section 2.5.1) are discussed,

particularly on the techniques used in their works. The fifth subsection explains on the

development of recommender, which details on how to develop plug-in that serve as an

interface for the proposed approach.

5.1 Overall Design of the Proposed Approach

Figure 5.1 illustrates the overall design of the proposed approach. The proposed

approach comprises of a preparation phase and a recommendation phase. The preparation

phase involves four steps and the recommendation phase involves three steps, which are

explained in detail in the following sections. In Figure 5.1, the steps are represented by

rectangles.

 Univ
ers

ity
 of

 M
ala

ya

87

Figure 5.1: Overall Design of the Proposed Approach

Univ
ers

ity
 of

 M
ala

ya

88

5.2 Preparation Phase

There are four steps in the preparation phase:

1. Acquiring training data by extracting Java-related posts from SO;

2. Pre-processing extracted posts (training data) and split them into two

datasets, namely, Questions dataset and Answers dataset;

3. Use a set of heuristic rules to extract Java API classes from the Answers

dataset. The extracted Java API classes serve as candidate classes, which

are classes that might be recommended to a user based on his or her query;

4. Use the Questions dataset as input to train and produce a Doc2Vec (Le &

Mikolov, 2014) word embedding model.

There are three datasets produced in the preparation phase, which are training

data, Answers dataset and Questions dataset. These datasets are stored in different files

in Comma-Separated Value (CSV) format. The training data includes the questions’

identifiers (QuestionId) and their title (QuestionTitle) and accepted answer

(AcceptedAnswer). The Answers dataset includes the questions’ identifier and their

accepted answer and corresponding Java API classes extracted (APIClasses). The

Questions dataset includes the questions’ identifier and their title. Table 5.1 shows the

columns contained in each of the dataset.

Table 5.1: Columns in Dataset

Dataset Column Name

Training Data QuestionId, QuestionTitle, AcceptedAnswer

Answers QuestionId, AcceptedAnswer, APIClasses

Questions QuestionId, QuestionTitle

Univ
ers

ity
 of

 M
ala

ya

89

5.2.1 Step 1: Acquiring Training Data

The training data was extracted from SO by using the same web-based query tool

named SEDE (Section 3.3) used in Study 1 (Chapter 4). All the discussion posts tagged

with a “java” tag and having an accepted answer were retrieved for this study. As a result,

the training data comprises Java posts that have accepted answers.

It is important to note that this training data is much larger from the dataset used

to find the common Java programming problems in Study 1. It contains 632,078

discussion posts comprising of all Java discussion posts with accepted answers, whereas

the dataset in Study 1 only contains 27,589 discussion posts comprising only master and

duplicate Java discussion posts. This larger amount of training data is suitable for building

a word embedding model, as can be seen in the amount of data used by existing studies

in building language models, namely, RACK that used 344,086, BIKER that used

1,347,908 and NLP2API that used 656,538 Java related discussion posts (Huang et al.,

2018; Rahman & Roy, 2018; Rahman et al., 2016).

5.2.2 Step 2: Pre-processing Training Data

In this step, the training data was pre-processed to remove irrelevant information

in order to train better word embedding model and to obtain better performance in

recommendation. There are various pre-processing techniques, such as, data cleaning,

data reduction, data transformation and data integration (Han et al., 2011). The purpose

of data cleaning is to remove noise from data while data reduction is about reducing data

size by aggregating and eliminating redundant features. Data transformation is related to

data normalization, which is, transforming the data to fall within a smaller or common

range such as [-1, 1] or [0.0, 1.0]. Data integration is related to merging data from multiple

sources into a coherent data store. Only data cleaning was used in this research to pre-

Univ
ers

ity
 of

 M
ala

ya

90

process the training data, since the training data does not require elimination of redundant

features, normalization or merging from multiple sources.

Data cleaning technique was applied to all the questions’ titles in the training data

to remove the noise in the titles. The data cleaning involves three steps: tokenization,

removal of noise, and lemmatization. First, tokenization was carried out where a

question’s title was tokenized. For example, the tokenization of the title “How to convert

Integer to String?” generates seven tokens, which are, “How”, “to”, “convert”, “Integer”,

“to”, “String”, and “?”.

Next, removal of noise was performed on the resulting tokens. The noise includes

English stop words and punctuation marks. English stop words are words that have no

significant meaning, such as ‘the’, ‘this’, ‘a’ and so on, and are of high occurrence. The

noise can be regarded as random errors or variations in text (Han et al., 2011). After the

noise removal, only four tokens remained for the given example: “How”, “convert”,

“Integer”, and “String”. The tokenization and removal of noise were performed using the

Natural Language Toolkit (NLTK) library, an open source statistical NLP library (Loper

& Bird, 2002).

In addition, the remaining tokens was lemmatized with the WordNet model, a

lexical database that describes semantic relationships for words in English language

(Miller, 1995). Lemmatization is a well-known IR technique to retrieve the base form of

a word, (Kettunen et al., 2005). For example, retrieve the base form “write” from

“writing” and “wrote”.

Lastly, the training data was split into a Questions dataset and an Answers dataset,

stored tin two different csv files. As can be seen in Table 5.1, the Questions dataset

contains the SO questions’ identifiers and their titles. At this point of time, the Answers

Univ
ers

ity
 of

 M
ala

ya

91

dataset contains the SO questions’ identifiers and their accepted answers but not the

corresponding Java API classes. The scripts and algorithm used for extraction are

provided in Appendix C.

5.2.3 Step 3: Extracting Java API Classes

To extract the Java API classes, the first three heuristic rules used by Study 1

(Table 4.1 in Chapter 4) and two additional heuristic rules were used (Table 5.2). The

first additional heuristic rule is to extract and validate API classes candidates produced

by the first three heuristic rules. All API classes candidates were checked against the

classes’ names found in Java API documentation for Java Standard Edition (JavaSE) 8

and Java Enterprise Edition (JavaEE) 8. If an API class candidate is in wrong letter cases,

it will be converted to the correct letter cases. It is important to note that, different from

heuristic rule 4 in Study 1, this heuristic rule does not remove API class candidates which

are not listed in the Java API documentation. This is because these API classes candidate

could be from third-parties Java API libraries and relevant to a user’s query and should

appear in the recommended API classes.

The second additional heuristic rule is removing two high occurrence API classes,

which are, String and ArrayList classes. These two classes (especially the String class)

are used in most programs and is less likely to be addressing any specific programming

question or task.

The Java API classes that remain at the end of the application of the five heuristic

rules are stored in the Answers dataset’s “APIClasses” column at the respective row.

Univ
ers

ity
 of

 M
ala

ya

92

Table 5.2: Additional Heuristic Rules for Extracting Java API Classes

5.2.4 Step 4: Training Word Embedding Model

There is a number of steps involved in training the word embedding model: i)

filtering of data; ii) creating tagged document; iii) training with Doc2Vec algorithm. The

purpose of filtering of data is to reduce the Questions dataset to include only those

questions having the occurrence of Java API classes in the code snippets in their accepted

answers. This was done by checking against the Answers dataset that contains the Java

No. Heuristic
Rule

Justification Example
Input Java API

class
extracted
by the
heuristic
rule

1 Extract and
validate API
class
candidates
produced by
the first three
heuristic rules
by checking
with API class
names
extracted from
the Java API
documentation
for Java SE 8
and Java EE 8.

All valid Java API
class candidates could
be in the wrong letter
cases. Therefore, all
API class candidates
were checked against
the valid API class
names extracted from
the API documentation
and converted to the
correct letter cases if
wrong letter cases
occurred. This
heuristic rule helps to
eliminate invalid API
class candidate.

inputStream

INPUTStream

InputStem

-

InputStream

InputStem

2 Remove String
and ArrayList
classes

These two classes
(especially the String
class) are used in most
programs and is less
likely to be addressing
any specific
programming
question. Removing
them could improve
relevant API class
candidates.

InputStream

String

ArrayList

InputStream

-

-

Univ
ers

ity
 of

 M
ala

ya

93

API classes based on the “QuestionId”. The resulting Questions dataset consists of only

178,159 questions, which is 28% of the original size of the Questions dataset.

In the second step of training the word embedding model, a tagged document

containing two information, the indexes of the questions and the questions’ titles, was

created. The indexes of the questions were created in an ascending order based on the

order of the questions in the Questions dataset.

In the final step of training the word embedding model, the tagged document was

used as the input data to train the Doc2Vec word embedding model by using the Doc2Vec

algorithm. The Doc2Vec algorithm was implemented in Python programming language

by using the open source Gensim library (Rehurek & Sojka, 2010). After the model was

trained, it was saved into a binary file format to be used later by the recommendation

phase in retrieving similar questions. The resulting trained model treated each of the

question as a document and contained the similarity scores between each of the questions.

This research used Doc2Vec algorithm because it calculates word similarity at the

“sentence level”. It is able to calculate a continuous distributed vector representation for

pieces of texts, which makes it a better algorithm than Word2Vec.

5.3 Recommendation Phase

There are three major steps in the recommendation phase:

1. Pre-process user query;

2. Retrieve similar questions using Doc2Vec model and retrieve their

respective answers and Java API classes that have been extracted in the

preparation phase,

Univ
ers

ity
 of

 M
ala

ya

94

3. Select relevant Java API classes from the set of Java API classes by using

the topic modelling algorithm, Latent Dirichlet Allocation (LDA) (Blei et

al., 2003) and return a list of ranked Java API classes to the user.

5.3.1 Step 1: Pre-processing User Query

In this step, a user’s query is pre-processed the same way the training data was pre-

processed in the preparation phase and for the same reason. This involves the

tokenization, removal of stop words and punctuation marks, and lemmatization (Section

5.2.2).

5.3.2 Step 2: Retrieving Similar Questions and Their Respective Answers and

Java API Classes

In this step, the remaining word tokens in the pre-processed user query are used

to retrieve a set of similar questions from the questions dataset by using the Doc2Vec

model. The Doc2Vec model calculates the similarity score between the query’s tokens

and returns a set of similar questions. At most one hundred questions having similarity

score above seventy percent are returned because subsequent questions not in the top one

hundred and having lower similarity score are less relevant to the respective user’s query.

The following explains what happen in Steps 1 and 2 by using an example, with

the results shown in Figure 5.2. The query is “How to create a digital signature and sign

data?”. First, the query is pre-processed where it was tokenized, stop words and

punctuation marks were removed, and lemmatized. The five remaining word tokens are,

‘create’, ‘digital’, ‘signature’, ‘sign’ and ‘data’. This is shown as the first line of output

in Figure 5.2.

Univ
ers

ity
 of

 M
ala

ya

95

Subsequently, these word tokens were compared with the questions dataset by

using Doc2Vec model. Doc2Vec returned a set of question indexes having similarity

scores above seventy percent. The second line of output in Figure 5.2 shows the index

(‘92907’) of the similar question from the tagged document and the similarity score of

0.758030891418457 between the word tokens and this similar question. The third line of

output in Figure 5.2 shows the question’s identifier or “QuestionId” (‘10703416’) of the

similar question retrieved from the Questions dataset by using the question index

(‘92907’) from the tagged document (Step 2a in Figure 5.1). The identifiers of similar

questions are used to retrieve their corresponding answers and Java API classes from the

Answers dataset (Step 2b and Step 2c in Figure 5.1).

Figure 5.2: An Example of Output of Step 2 of Recommendation Phase

5.3.3 Step 3: Selecting Relevant Java API Classes and Return a Ranked List of

Java API Classes

To select relevant Java API classes from the Java API classes produced by the

previous step, topic modelling is used to measure how relevant the Java API classes are

to the respective query. The basic LDA algorithm is used in this research for topic

modelling since it is widely used for automatic extraction of topics from a corpus of text

documents and a topic is a collection of words that co-occurred frequently in the

Word Tokens

index

indexindeinindex

Question Identifier

index

indexindeinindex

Question Index and Similarity Score

Univ
ers

ity
 of

 M
ala

ya

96

documents of the corpus (Chen et al., 2016). Therefore, the LDA algorithm was

implemented using Python programming language and open source Gensim library

(Rehurek & Sojka, 2010).

For each of query, the Java API classes extracted from the previous step are used

as the input to the LDA algorithm to produce an output comprising of a single topic and

ten words (with probability scores) that are related to the topic for the particular query.

The rationale for a single topic is, generally a user’s query contains the description of a

single programming problem. The ten words that are related to the topic correspond to

the top-10 Java API classes that are relevant to the query.

The following explains what happens in Step 3 by using the same example used

to explain Steps 1 and 2. The output in Figure 5.3 shows a single topic at index 0 with 10

words (Java API class candidates) that are relevant to the topic of the query in descending

order of probability scores: ‘Signature’ with the probability score of 0.022, ‘InputStream’

with the probability score of 0.017, ‘CMSSignedData’ with the probability score of 0.015,

and so on. The higher the probability score of a word, the more likely the word is related

to the topic. For example, ‘Signature’ word having the highest probability score is the

most relevant word to the topic of the respective query.

Figure 5.3: An Example of Output of Step 3 of Recommendation Phase

Topic

index

indexindeini

ndex

Probability score of

word indexindeinindex Word (API Class

Candidate)

Univ
ers

ity
 of

 M
ala

ya

97

5.4 Summary of Techniques used in the Proposed Approach

Table 5.3 summarizes the techniques used in the proposed approach in the same

format as Table 2.2 where other existing approaches of API Elements Search are

compared.

Table 5.3: Summary of Techniques used in Proposed Approach

For the proposed approach, there is a total of seven techniques being employed. It

is important to note that as illustrated in Table 2.2, existing studies employed nine to ten

different techniques in their approaches. In comparison, with fewer techniques the

proposed approach is less complex, and yet achieves better benchmarking results. For

data pre-processing, the approach employs tokenization, removal of stop words and

punctuation marks and lemmatization to the raw data. For capturing of context from the

SO questions and answers, the approach employs Doc2Vec word embedding algorithm

to calculate similarity scores between questions retrieved and produces a Doc2Vec model.

In addition, five heuristic rules were employed to extract Java API classes from the

answers of the questions. For producing the recommendations, the proposed approach

employs LDA topic modelling algorithm in selecting relevant Java API classes. For

presenting the recommendations, the proposed approach employs a list of top-10 ranked

Java API classes.

Studies Data Pre-
processing

Capturing of
context

Producing
Recommenda
tions

Presenting
Recommendati
ons

The
Proposed
Approach

 Tokenization
 Removal of

stop words and
punctuation
marks

 Lemmatization

 Doc2Vec
 Five

heuristic
rules

 LDA Topic
Modelling

 Top-K
results

Univ
ers

ity
 of

 M
ala

ya

98

5.5 Development of the Java API Class Recommender and the Plug-in

The approach was developed as a Java API class recommender, which is a web

application that runs on a back-end server. A plug-in for Eclipse IDE, named APIRecJ

was developed to serve as the front-end to the recommender.

5.5.1 Architecture Design of Java API Class Recommender and the Plug-in

The plug-in works as the front-end that interacts with the users to obtain their query

and to display results to them. The plug-in passes the query and invokes the

recommendation service provided by the Java API class recommender to initiate the

searching of relevant Java API classes for the query.

The Java API class recommender is a standalone web application running on Flask

web framework. The recommender accesses the pre-trained Doc2Vec model to find

questions similar to the query, and retrieves their respective answers and Java API classes,

selects relevant Java API classes and returns a ranked list of Java API classes to the plug-

in for display on the plug-in’s user interface.

Figure 5.4 illustrates the deployment architecture design of the plugin, APIRecJ and

the Java API class recommender. The Java API class recommender web application and

APIRecJ can be deployed on different physical machines running Windows operating

system. Both of the machines are integrated in the same network using a client-server

architecture style via Transmission Control Protocol/Internet Protocol (TCP/IP).

Univ
ers

ity
 of

 M
ala

ya

99

Figure 5.4: Deployment Architecture of the Plug-in and the Java API Class
Recommender

5.5.2 Requirements of the Java API Class Recommender

This section presents the functional requirements and non-functional requirements

of the Java API Class Recommender. Functional requirements describe the functionalities

provided by the recommender. Non-functional requirements are requirements concerning

the quality attributes of the recommender or the recommender’s operation such as its

performance.

Both functional and non-functional requirements of are tested using plug-in.

These testing are manually verified by checking on the request message (user query) and

response (list of API classes and similar questions) displayed on the plug-in user interface.

Univ
ers

ity
 of

 M
ala

ya

100

5.5.2.1 Functional Requirements

Table 5.4 shows the functional requirements of the Java API Class Recommender.

Table 5.4: Functional Requirements of Java API Class Recommender

No. Functional Requirements Description

1. Get client request message To obtain client request message which

contains a user’s query.

2. Find Java API classes To pass the user’s query to the incorporated

proposed approach for recommending Java API

classes.

3. Return Java API classes and

similar SO questions’

identifier

To return Java API classes and similar SO

questions’ identifier in a single response

5.5.2.2 Non-Functional Requirements

Table 5.5 shows the non-functional requirements of the Java API Class

Recommender.

Table 5.5: Non-Functional Requirements of Java API Class Recommender

No. Non-Functional

Requirement

Description

1. Performance The recommender loads or re-loads the

pre-trained Doc2Vec model within 10

seconds and returns the results within 2-5

seconds.

Univ
ers

ity
 of

 M
ala

ya

101

2. Reliability The recommender receives and processes

a single request at a time with less than 10

seconds response time. If not,

recommender will respond with an error

message to the client’s request.

5.5.2.3 Testing on Functional and Non-Functional Requirements

Table 5.6, Table 5.7 and Table 5.8 shows the test cases for functional requirements of

the Java API Class Recommender. Table 5.9 and Table 5.10 shows the test cases for non-

functional requirements of the Java API Class Recommender.

Table 5.6: Test Cases for Functional Requirement (1) of Java API Class
Recommender

Test

Objective:

Get client request message

Description: Request message from plug-in is received.

Inputs: Query 1: How to write an Object to file in Java?

Query 2: How do I reverse the order of array elements?

Steps: 1. Open Eclipse.

2. Open APIRecJ plug-in.

3. Provide “Query 1” or “Query 2” in “Question” text box.

Univ
ers

ity
 of

 M
ala

ya

102

4. Observe message on Java API class recommender’s output console.

Expected

Outputs:

Message received by Java API class recommender and print on output

console.

Actual

Outputs:

Query 1: How to write an Object to file in Java?

Query 2: How do I reverse the order of array elements?

Result: Pass

Table 5.7: Test Cases for Functional Requirement (2) of Java API Class
Recommender

Test

Objective:

Find Java API classes.

Description: Extract user query from request message for recommendation search

and perform recommendation.

Inputs:

Query 1: How to write an Object to file in Java?

Query 2: How do I reverse the order of array elements?

Steps:

1. Open Eclipse.

2. Open APIRecJ plugin.

3. Provide “Query 1” or “Query 2” in “Question” text box.

4. Observe message on Java API class recommender’s output console.

Univ
ers

ity
 of

 M
ala

ya

103

Expected

Outputs:

Recommendation steps print on output console.

Actual

Outputs:

Query 1: How to write an Object to file in Java?

Query 2: How do I reverse the order of array elements?

Result: Pass

Table 5.8: Test Cases for Functional Requirement (3) of Java API Class
Recommender

Test

Objective:

Return Java API classes and similar SO questions identifier

Description: Returned response message with a list of Java API classes and similar

SO questions identifier to plug-in.

Inputs:

Query 1: How to write an Object to file in Java?

Query 2: How do I reverse the order of array elements?

Steps: 1. Open Eclipse

2. Open APIRecJ plugin

3. Provide “Query 1” or “Query 2” in “Question” text box.

Univ
ers

ity
 of

 M
ala

ya

104

4. Observe message on Java API class recommender’s output console.

Expected

Outputs:

Return message with a list of Java API classes and similar SO questions

identifier print on output console.

Actual

Outputs:

Query 1: How to write an Object to file in Java?

Query 2: How do I reverse the order of array elements?

Result: Pass

Table 5.9: Test Cases for Non-Functional Requirement (1) of Java API Class
Recommender

Test

Objective:

Performance

Description: The recommender returned the results less than 10 seconds when loads

or re-loads the pre-trained Doc2Vec. The recommender returned the

Univ
ers

ity
 of

 M
ala

ya

105

results within 2-5 seconds without loads or re-loads the pre-trained

Doc2Vec.

Inputs:

Query 1: How to write an Object to file in Java?

Query 2: How do I reverse the order of array elements?

Steps:

1. Open Eclipse

2. Open APIRecJ plugin

3. Provide “Query 1” or “Query 2” in “Question” text box.

4. Observe message on Java API class recommender’s output console.

Expected

Outputs:

Message returned within 10 seconds

Actual

Outputs:

Query 1: How to write an Object to file in Java?

Univ
ers

ity
 of

 M
ala

ya

106

Query 2: How do I reverse the order of array elements?

Result: Pass

Table 5.10: Test Cases for Non-Functional Requirement (2) of Java API Class
Recommender

Test

Objective:

Reliability

Description: When recommendation failed, recommender responds with an error

message to the client’s request.

Inputs:

Query 1: 2338 @@## !!! 23423

Query 2: snfnsiof npfdfjisj ofs

Steps: 1. Open Eclipse

2. Open APIRecJ plugin

3. Provide “Query 1” or “Query 2” in “Question” text box.

4. Observe message on Java API class recommender’s output console.

Univ
ers

ity
 of

 M
ala

ya

107

Expected

Outputs:

Returns error message with “RecommendationError” value for API

classes and empty value for list of question identifier

Actual

Outputs:

Query 1: 2338 @@## !!! 23423

Query 2: snfnsiof npfdfjisj ofs

Result: Pass

5.5.3 Requirements of the Plug-in

This section presents the functional requirements and non-functional requirements

of the plug-in, named APIRecJ. There are a variety of Java IDE available in the market,

for example, Eclipse (2019), IntelliJ IDEA (2019), NetBeans (2019) and others. In this

research, the plug-in is specifically built for Eclipse IDE since it is more suitable for real

world applications, execute Java APIs with high performance and provides free

subscription as compared to IntelliJ IDEA which can be costly (Al-Jepoori & Bennett,

2018). Besides that, there is an existing study that claimed that Eclipse is better than

NetBeans because less start up time is required and it is simple to get started with (Kavitha

& Sindhu, 2015).

Univ
ers

ity
 of

 M
ala

ya

108

5.5.3.1 Functional Requirements

Table 5.11 shows the functional requirements of the plug-in.

Table 5.11: Functional Requirements of Plug-in

No. Functional Requirements Description

1. Get user query To obtain the user’s query.

2. Find relevant Java API

classes

To pass the user’s query to the Java API class

recommender and access it’s functionalities

for recommending Java API classes.

3. Display relevant Java API

classes

To display Java API classes that are relevant

to the user’s query that are returned by the

Java API class recommender.

4. Display similar SO

questions

To display SO questions similar to the user’s

query that are returned by the Java API class

recommender.

5. Filter similar SO questions To display similar SO questions for Java API

classes that are selected by the user only.

An exemplar usage of the plug-in is as follows: A user enters his or her natural

language query describing the programming question or problem faced through the user

interface of the plug-in. The plug-in obtains the query and sends a request (together with

the query as input) to the Java API class recommender running on the server. The

recommender processes the request and returns a response comprising a list of

recommended Java API classes and the corresponding similar SO questions to the plug-

Univ
ers

ity
 of

 M
ala

ya

109

in. At most ten Java API classes would be recommended and at most one hundred similar

SO questions would be returned to the plug-in.

5.5.3.2 Non-Functional Requirements

Table 5.12 shows the non-functional requirements of the plug-in. It is important to

note that these non-functional requirements are also dependent on the performance and

reliability of the recommender running on the server.

Table 5.12: Non-Functional Requirements of Plug-in

No. Non-Functional

Requirement

Description

1. Performance The plug-in will display the results within 2-5

seconds and within 10 seconds when the

recommender loads or re-loads the pre-trained

Doc2Vec model.

2. Reliability The plug-in will display an error message to the

user if an error message is returned by the

recommender or connection error occurred

when connecting to the recommender.

5.5.4 Implementation of the Java API Class Recommender and the Plug-in

The proposed approach was implemented in the Java API class recommender

developed as a web application. The web application was developed and deployed using

Flask (2019), which is a web framework written in Python programming language. A

web framework is a software framework that supports that development of web

Univ
ers

ity
 of

 M
ala

ya

110

applications and provides a standard way to build and deploy web applications (2019).

The recommender listens to requests from client and responds with a set of Java API

classes and similar questions in JavaScript Object Notation (JSON) format. In order to

run the web application on any Windows-based machine without Python installation, the

web application and all its dependencies files were packaged into a single execution file

with “.exe” extension by using the open source PyInstaller (2019) library.

The plug-in was developed by creating an Eclipse plug-in project. Its user interface

was designed using Java Swing components. Input to the backend server is sent as a POST

request. The completed Eclipse plug-in project was then exported as an Eclipse feature

project to compile the Eclipse plug-in project into a single compressed file. The

compressed file is used to perform a new plugin installation in an Eclipse IDE through

the installation manager.

5.5.4.1 User Interface of Plug-in

Figure 5.5 illustrates the four main sections of the plug-in’s user interface. In the

figure, they are labelled with numbers. Section 1 comprises an input textbox for users to

enter their programming task question or query, and a “Find” button for them to initiate

the search for Java API classes relevant to the query.

Section 2 displays the top-10 Java API classes returned or recommended by the

Java API Class Recommender developed by this research in terms of checkboxes. A user

can choose the Java API classes that they are interested in by selecting the corresponding

checkboxes. This will cause the plug-in to display only similar SO questions for the

chosen Java API classes and exclude similar SO questions for non-chosen Java API

classes.

Univ
ers

ity
 of

 M
ala

ya

111

Section 3 displays a list of the titles of the similar SO questions that are associated

to the Java API classes selected by the user in Section 2. The user can click on a question

title in the list and Section 4 will display the details of the corresponding question. The

exact question on SO is located by appending the identifier to hyperlink in the following

format, “https://stackoverflow.com/q/identifier”, where identifier value is the question

identifier.

Univ
ers

ity
 of

 M
ala

ya

112

Figure 5.5: User Interface Design of the Plug-in

3a. A list of questions from Stack

Overflow that are similar to the

programming question entered in

Step 1 is displayed here.

1. This box allows a user to enter

his or her programming question. 2. Clicking the “Find” button will

activate the search.

3b. The API classes relevant to the questions listed in Step 3a. are

displayed here as checkboxes. The checkboxes can be selected to

filter the questions displayed in Step 3a.

4. The questions can be selected by clicking

them. For example, Question 3 is selected here.

5. The details of the question selected in Step

4 and its answer from Stack Overflow will be

displayed here.

4

3

2

1

Univ
ers

ity
 of

 M
ala

ya

113

5.6 Chapter Summary

In brief, this chapter discusses on the overall design of the proposed approach and

summarizes all the techniques employed in this study. Moreover, this chapter details the

phases, input and output in each step of the proposed approach. Furthermore, the

techniques used in the proposed approach and existing studies are summarized based on

major steps of designing RSSE. Then, the proposed approach is incorporated into Java

API class recommender and followed by developing an IDE plug-in. All the essential

plug-in requirements are listed out, which include functional requirements and non-

functional requirements. Next, architecture design of plug-in’s integration with Java API

class recommender using deployment diagram and the user interface of the plug-in are

illustrated. The next chapter discusses on how evaluation is performed on the proposed

approach.

Univ
ers

ity
 of

 M
ala

ya

114

CHAPTER 6: PERFORMANCE AND BENCHMARKING OF APPROACH

This chapter discusses the evaluation performed on the proposed approach. The

evaluation study mainly intended to measure the performance of the proposed approach

in recommending relevant API classes. Besides, the same evaluation dataset and

evaluation metrics in prior study are used to obtain a comparable result. At the end of the

evaluation, the results obtained are discussed and benchmarked against existing baseline

studies.

6.1 Evaluation Dataset

To benchmark the proposed approach, this research used the evaluation dataset

(2019a) provided by NLP2API study (Rahman et al., 2018), the most recent work on

mining SO data for Java API classes recommendation. This evaluation dataset contains

310 code search queries and the corresponding Java API classes relevant to the respective

query. Code search queries are queries that are described in natural language and used for

searching for relevant code snippets, and are termed “natural language queries” in this

research. The API classes found in the relevant code snippets are known as the ground

truth API classes for the respective query.

The natural language queries in the evaluation dataset and their ground truth Java

API classes were extracted from programming tutorial websites, for instances, KodeJava

(2019), CodeJava (2019) and Java2s (2019). For example, the query “How do I compress

or zip a directory recursively?” has “ZipOutputStream”, “ZipEntry”, “FileOutputStream”

and “FileInputStream” as its ground truth Java API classes. Figure 6.1 shows some

examples of the queries in the evaluation dataset.

Univ
ers

ity
 of

 M
ala

ya

115

Figure 6.1: Examples of the Queries in the Evaluation Dataset

6.2 Evaluation Metrics

The existing studies of the same genre as this research, namely, RACK (Rahman et

al., 2016) and NLP2API (Rahman & Roy, 2018) used four metrics to evaluate the

performance of their approaches in recommending API classes for queries. BIKER

(Huang et al., 2018) used two out of the four metrics to evaluate their approaches in

recommending API classes and methods.

This research used the same four metrics to benchmark the performance of the

proposed approach. These metrics are:

(a) Top-K accuracy

(b) Mean Recall @ K (MR@K)

(c) Mean Reciprocal Rank @ K (MRR@K)

Ground Truth API Classes Natural Language Query

Univ
ers

ity
 of

 M
ala

ya

116

(d) Mean Average Precision @ K (MAP@K).

Top-K accuracy, MR@K, MRR@K and MAP@K are the evaluation metrics that

measure on the recommendation performance and information retrieval (IR) performance

of the proposed approach. These metrics not only use to assess the correctness of the

proposed approach in retrieve set of relevant API classes but also examine on whether the

proposed approach able to return ranked result by select the relevant result at top position

and less relevant result at the bottom position. Thus, the proposed approach should

archive a high score in all the performance metrics to prove that the approach has return

majority highly relevant API classes and less irrelevant result. In addition, the approach

should also able to return user a list of relevant items earlier and user need not to browse

through the entire list to search for relevant answer.

In the following subsections, the metrics are explained by using two query

examples. The depth of the returned result is set at ten for all the metrics. In other words,

the value of K is ten and only the top-10 Java API classes returned by the approach are

taken into consideration. This is because the baseline studies (RACK and NLP2API)

achieved the best performance for the four metrics when k is 10.

6.2.1 Top-K accuracy

Top-K accuracy refers to the percentage of the search query for which at least one

API class is correctly recommended within the Top-K results by recommendation

technique (Rahman et al., 2018). Its formula is defined in Equation (Eq) 1 (Rahman et

al., 2018).

Eq 1:

Top-K Accuracy (Q) =
∑ 𝑖𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝑞, 𝐾)𝑞∈𝑄

|𝑄|
%

Univ
ers

ity
 of

 M
ala

ya

117

Q denotes the set of all queries, q denotes a query that is a member of (∈) set Q,

|Q| denotes the size of the set of query, ∑ denotes the sum of isCorrect function for each

q in Q, and K denotes the top-k Java API classes returned by the approach. The isCorrect

function returns a value of 1 if the approach returns at least one relevant Java API class

for query q, and a value of 0 if the approach returns none of the relevant Java API classes

for query q. A relevant Java API class refers to a Java API class that can be found in the

set of ground truth Java API classes for query q.

Table 6.1 shows an example of calculation for Top-K Accuracy metric with K

equals to 10. For Query 1, isCorrect function returns a value of 0 since none of the Java

API classes returned by the approach (i.e. “List” and “ArrayList”) matches with any of

the ground truth Java API classes. For Query 2, isCorrect function returns a value of 1

since at least one (in fact two in this case) of the Java API classes returned by the approach

(i.e. “Properties” or “Session”) matches with ground truth Java API classes. The Top-K

accuracy of the approach for this dataset that comprises only two queries is 50%, and is

calculated by dividing the number of queries having value 1 returned by the isCorrect

function with the total number of queries in the dataset and then multiplying the output

with 100.

Table 6.1: Example of Calculation for Top-10 Accuracy

Query Ground Truth
Java API Class

Results
Returned
by
Approach

Calculation

Query 1:
How to
create a
digital
signature and
sign data?

Signature,
PrivateKey,
KeyPairGenerator
SecureRandom,
KeyPair

List,
ArrayList

𝑖𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(q1, ("List", "ArrayList"))

= 0

Query 2:
How do I
send an
HTML
email?

Properties,
Session,
Message,
MimeMessage,
InternetAddress

Properties,
Session

𝑖𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(q2, ("Properties", "Session"))
= 1

Univ
ers

ity
 of

 M
ala

ya

118

 Top-10
Accuracy
(Q)

∑ 𝑖𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝑞, 𝐾)𝑞∈𝑄

|𝑄|
 𝑥 100

 =
0+1

|2|
 𝑥 100

 =
1

2
 𝑥 100

 = 50 %

6.2.2 Mean Recall @ K (MR@K)

Recall@K refers to the percentage of ground truth Java API classes that are

correctly recommended for a query in the Top-K results by an approach (Rahman et al.,

2018). MR@K averages such measures for all queries in the dataset. Its formula is defined

in Eq 2 (Rahman et al., 2018).

Eq 2:

MR@K (Q) =
1

|𝑄|
∑

|𝑟𝑒𝑠𝑢𝑙𝑡(𝑞,𝐾)∩𝑔𝑟𝑜𝑢𝑛𝑑(𝑞)|

|𝑔𝑟𝑜𝑢𝑛𝑑(𝑞)|𝑞∈𝑄

Q denotes the set of all queries, q denotes a query that is a member of (∈) set Q,

|Q| denotes the size of the set of query, result(q, K) refers to Top-K recommended APIs

by the approach, and ground(q) refers to ground truth API classes for each query q ∈ Q.

The larger the value of MR@K, the better the recommendation approach is.

Table 6.2 shows an example of calculation for MR@K metric with K equals to

10. The recall@10 for Query 1 is 0 since none of the Java API classes returned by the

approach (i.e. “List” and “ArrayList”) matches with any of Query 1’s ground truth Java

API classes. The recall@10 for Query 2 is 0.40 since the two Java API classes returned

Univ
ers

ity
 of

 M
ala

ya

119

by the approach (i.e. “Properties” or “Session”) matches with two of the five ground truth

Java API classes of Query 2. The MR@10 of the proposed approach for this dataset that

comprises only two queries is 0.20, and is calculated by dividing the sum of recall@10

for each query in the dataset with the total number of queries in the dataset.

Table 6.2: Example of Calculation for MR@10

Query Ground Truth
Java API Class

Results
Returned
by
Approach

Calculation

Query 1:
How to
create a
digital
signature and
sign data?

Signature,
PrivateKey,
KeyPairGenerator
SecureRandom,
KeyPair

List,
ArrayList

|𝑟𝑒𝑠𝑢𝑙𝑡(𝑞1,𝐾)∩𝑔𝑟𝑜𝑢𝑛𝑑(𝑞1)|

|𝑔𝑟𝑜𝑢𝑛𝑑(𝑞1)|
 =

0

5
 = 0

Query 2:
How do I
send an
HTML
email?

Properties,
Session,
Message,
MimeMessage,
InternetAddress

Properties,
Session

|𝑟𝑒𝑠𝑢𝑙𝑡(𝑞2,𝐾)∩𝑔𝑟𝑜𝑢𝑛𝑑(𝑞2)|

|𝑔𝑟𝑜𝑢𝑛𝑑(𝑞2)|
 =

2

5
 =0.40

 MR@10
(Q)

1

|𝑄|
∑

|𝑟𝑒𝑠𝑢𝑙𝑡(𝑞, 𝐾) ∩ 𝑔𝑟𝑜𝑢𝑛𝑑(𝑞)|

|𝑔𝑟𝑜𝑢𝑛𝑑(𝑞)|
𝑞∈𝑄

 =
1

|2|
 (0 + 0.4)

 =
0.4

2

 = 0.2

6.2.3 Mean Reciprocal Rank @ K (MRR@K)

Reciprocal Rank @ K refers to the multiplicative inverse of the rank of the first

relevant API class in the Top-K results returned by the approach (Rahman et al., 2018).

Mean Reciprocal Rank @ K averages such measures for all queries (q ∈ Q) in the dataset.

Its formula is defined in Eq 3 (Rahman et al., 2018).

Univ
ers

ity
 of

 M
ala

ya

120

Eq 3:

MRR@K (Q) =
1

|𝑄|
∑

1

𝑟𝑎𝑛𝑘(𝑞,𝐾)𝑞∈𝑄

Q denotes the set of all queries, q denotes a query that is a member of (∈) set Q, |Q|

denotes the size of the set of query, rank(q, K) returns the rank of the first correct API

from a ranked list of size K. If no correct API class or code segment is found within the

Top-K positions, then rank(q, K) returns ∞. It returns 1 for the correct result at the

topmost position of a ranked list. Following that, MRR can take a maximum value of 1

and a minimum value of 0. The bigger the MRR value is, the better the approach is.

Table 6.3 shows an example of calculation for MRR@K metric with K equals to

10. For Query 1, rank(Query 1, 10) returns a value of ∞ since none of the Java API

classes returned by the approach (i.e. “List” and “ArrayList”) matches with any of the

ground truth Java API classes. Therefore, Reciprocal Rank @ 10 for Query 1 is 0. For

Query 2, rank(Query 2, 10) returns a value of 1, since the two Java API classes returned

by the approach (i.e. “Properties” or “Session”) matches with two of the five ground truth

Java API classes and the rank of the first relevant API class returned (i.e. “Properties”) is

1, which is the topmost position of the ranked list returned by the approach. The

MRR@10 of the proposed approach for this dataset that comprises only two queries is

0.5, and is calculated by dividing the sum of Reciprocal Rank @ 10 for each query in the

dataset with the total number of queries in the dataset.

Univ
ers

ity
 of

 M
ala

ya

121

Table 6.3: Example of Calculation for MRR@10

Query Ground Truth
Java API Class

Results
Returned
by
Approach

Calculation

Query 1:
How to
create a
digital
signature and
sign data?

Signature,
PrivateKey,
KeyPairGenerator
SecureRandom,
KeyPair

List,
ArrayList

1

𝑟𝑎𝑛𝑘(𝑞,𝐾)
 =

1

∞
 = 0

Query 2:
How do I
send an
HTML
email?

Properties,
Session,
Message,
MimeMessage,
InternetAddress

Properties,
Session

1

𝑟𝑎𝑛𝑘(𝑞,𝐾)
 =

1

1
 =1

 MRR@10
(Q)

1

|𝑄|
∑

1

𝑟𝑎𝑛𝑘(𝑞, 𝐾)
𝑞∈𝑄

=
1

|2|
 (0 + 1)

 =
1

2

 = 0.5

6.2.4 Mean Average Precision @ K (MAP@K)

Precision @ K calculates the precision at the occurrence of every single relevant

API class in the ranked list (Rahman et al., 2018). Average Precision @ K (AP@K)

averages the precision @ K for all relevant items within Top-K results for a particular

query. Mean Average Precision @ K is the mean of Average Precision @ K for all queries

(Q) from the dataset and the formula is defined in Eq 4 (Rahman et al., 2018).

Univ
ers

ity
 of

 M
ala

ya

122

Eq 4:

AP @ K =
∑ 𝑃𝑘 × 𝑟𝑒𝑙𝑘

𝐾
𝑘=1

|𝑅𝑅|

MAP @ K =
∑ 𝐴𝑃@𝐾(𝑞)𝑞∈𝑄

|𝑄|

K refers to number of top results considered, relk denotes the relevance function of

kth result in the ranked list that returns either 1 (relevant) or 0 (irrelevant) and Pk denotes

the precision at kth result. |RR| is the set of relevant results for a query. Q denotes the set

of all queries, q denotes a query that is a member of (∈) set Q, |Q| denotes the size of the

set of queries.

Table 6.4 shows an example of calculation for MAP@K metric with K equals to

10. AP@10 for Query 1 is 0 since none of the Java API classes returned by the approach

(i.e. “List” and “ArrayList”) matches with any of the ground truth Java API classes.

For Query 2, the first API class returned is relevant (rel1 = 1) and it can be found at

the first position of the five ground truth Java API classes, so P1 × rel1 = 1

1
× 1 = 1. The

second API class returned is also relevant (rel2 = 1) and can be found at the second

position out of the four remaining ground truth Java API classes, so P2 × rel2 = 2

2
× 1 =

1. Following that, AP@10 for Query 2 is 0.4. The MAP@10 of the proposed approach

for this dataset that comprises only two queries is 0.2, and is calculated by dividing the

sum of AP@10 for each query in the dataset with the total number of queries in the

dataset.

Univ
ers

ity
 of

 M
ala

ya

123

Table 6.4: Example of Calculation for MAP@10

Query Ground Truth
Java API Class

Results
Returned
by
Approach

Calculation

Query 1:
How to
create a
digital
signature
and sign
data?

Signature,
PrivateKey,
KeyPairGenerator
SecureRandom,
KeyPair

List,
ArrayList

∑ 𝑃𝑘 × 𝑟𝑒𝑙𝑘
𝐾
𝑘=1

|𝑅𝑅|

=
(
0
1

×0)+(
0
2

×0)+(
0
3

×0)+(
0
4

×0)+(0
5

×0)

5

= 0

Query 2:
How do I
send an
HTML
email?

Properties,
Session,
Message,
MimeMessage,
InternetAddress

Properties,
Session

∑ 𝑃𝑘 × 𝑟𝑒𝑙𝑘
𝐾
𝑘=1

|𝑅𝑅|

=
(

1

1
×1)+(

2

2
×1)+(

2

3
×0)+(

2

4
×0)+(

2

5
×0)

5

=
1+1+0+0+0

5

= 0.4

 MAP@10

(Q)
∑ 𝐴𝑃@𝐾(𝑞)𝑞∈𝑄

|𝑄|

=
(0 + 0.4)

|2|

 =
0.4

2

 = 0.2

6.3 Benchmarking of Proposed Approach

This research used the evaluation tool (2019b) published by NLP2API authors to

benchmark the proposed approach by using the four metrics and the benchmarking only

considered the top-10 results returned by the approach. The benchmarking results show

that the proposed approach achieves 84.83% for Top-10 Accuracy, 0.58 for MRR@10,

Univ
ers

ity
 of

 M
ala

ya

124

50.68% for MAP@10 and 58.76% for MR@10. The proposed approach shows an

improvement of 3.22% in Top-10 Accuracy, 0.03 in MRR@10, 2.83% in MAP@10 and

0.89% in MR@10, when compared to the best state-of-the-art approach in Java API

classes recommendation, namely, NLP2API.

Table 6.5 shows the results of the benchmarking. However, the proposed approach

was not compared against the BIKER study because it focused on API methods

recommendation and was not benchmarked using the NLP2API’s evaluation dataset.

Furthermore, the BIKER study used only the MRR and MAP metrics in evaluating their

work.

There are two possible reasons the proposed approach achieves higher scores for

the four metrics. The first possible reason is the proposed approach validates the Java API

classes using the Java documentation and this removes some of the invalid API classes

from the result returned. Hence, the result comprises more accurate Java API classes and

this contributes to the improvement in Top-10 accuracy and MR@10.

The second possible reason is the proposed approach removes two Java API classes

(“String” and “ArrayList”) that are of high occurrence but are unlikely to be the relevant

Java API classes for the query. These two classes would probably occupy the top positions

in the ranked list of Java API classes returned. By removing them, other relevant Java

API classes can be recommended at a higher position on the list, resulting in better

MRR@10 and MAP@10.

The proposed approach does not show significant improvement in MR@10. The

proposed approach still returns some false negative results and is unable to remove all

irrelevant Java API classes effectively. This is because the heuristic rules employed are

unable to remove non Java API classes (for example, custom classes such as Student,

Univ
ers

ity
 of

 M
ala

ya

125

ClassA, TestClass, or classes from other APIs) that might appear in the sample codes in

SO.

Table 6.5 : Benchmarking of Proposed Approach against Existing Approaches

Approach Top-10
Accuracy MRR@10 MAP@10 MR@10

RACK

(Rahman et al., 2016)
77.10% 0.39 36.38% 39.22%

NLP2API

(Rahman & Roy, 2018)
81.61% 0.55 47.85% 57.87%

Proposed Approach

84.83% 0.58 50.68% 58.76%

Proposed Approach’s
improvement over
NLP2API

3.22% 0.03 2.83% 0.89%

6.4 Chapter Summary

This chapter details the evaluation dataset and four metrics (with examples) used to

evaluate the performance of the proposed approach. This chapter also presents the

benchmarking of the proposed approach with the existing studies by employing the four

metrics. The benchmarking results proved that the proposed approach slightly

outperforms baseline studies. The next chapter explains the user evaluation study

performed on the developed plug-in.

Univ
ers

ity
 of

 M
ala

ya

126

CHAPTER 7: USER EVALUATION STUDY

This chapter presents the evaluation of plug-in as well as the developed Java API

class recommender which incorporates the proposed approach in this research. There are

mainly five subsections in this chapter. The first subsection describes the pilot study

design and the second subsection discusses on the pilot study results. The third subsection

demonstrates user evaluation study design and the fourth subsection illustrates the user

evaluation results. Lastly, the fifth subsection concludes on the discussion of user

evaluation results.

7.1 User Evaluation Study

This section presents the user evaluation study conducted to evaluate the usefulness

of the plug-in (front-end) and the Java API class recommender running on the backend

server. It also describes the results collected from the pilot study conducted prior to the

user evaluation study.

7.1.1 Pilot Study Design

The purpose of the pilot study was to gather feedback to refine the plug-in and the

design of the user evaluation study. Basically, participants were recruited to use APIRecJ

to find relevant Java API classes for three programming questions given and to use

Google search engine for the same purpose. The estimated duration of participation for

the study is forty to forty-five minutes.

Univ
ers

ity
 of

 M
ala

ya

127

The participant recruitment criteria are:

1) The first programming language learned is Java, and

2) Obtained at least a grade ‘B’ in an introductory Java programming course.

The data collection instrument of the pilot study consists of the following sections:

 Introduction Section – This section provides an overview and the purpose of the

study, recruitment criteria, terms and condition of participation, and researchers’

contact details.

 Section 1 (Introduction to APIRecJ) - This section explains the features of

APIRecJ by showing its UI and how to use the features.

 Section 2 (Part A) that consists of the tasks to be performed, namely, using Google

search engine to search for Java API classes that are relevant to the three

programming questions given; to state the start time and finish time of working

on each programming question; and to state three most relevant Java API classes

for each of the programming questions given.

 Section 2 (Part B) that consists of the tasks to be performed, namely, using

APIRecJ to search for Java API classes that are relevant to the three programming

questions given (same questions as Part A); and for each question, look for code

snippets from the answers of the similar Stack Overflow questions returned by

APIRecJ and list the Java API classes that are relevant to the question and state

the three most relevant Java API classes for the programming question; to state

the start time and finish time of working on each programming question.

 Section 3 comprising of a questionnaire with two parts. Part A of the questionnaire

asks about participants’ educational background, level of Java programming skill,

Univ
ers

ity
 of

 M
ala

ya

128

other programming languages known and the level of skill, and Software

Development Kits (SDKs) familiar with. Part B of the questionnaire asks the

participants’ opinions on the features of APIRecJ, whether they prefer Google

search engine or APIRecJ and their reasons for their preference, and usefulness of

having API class recommender such as APIRecJ and the reasons.

The three programming questions given to the participants require the use of certain

Java API classes. They are:

Programming Question 1: How to write an Object to file in Java?

Programming Question 2: How do I reverse the order of array elements?

Programming Question 3: How do I convert Date to String?

The order of Part A and Part B of Section 2 is reversed for alternate participant. In

other words, the first participant will perform Part A followed by Part B, the second

participant will perform Part B followed by Part A, the third participant will perform Part

A followed by Part B, and so on.

7.1.2 Pilot Study Results

Two participants (denoted as P1 and P2) participated in the pilot study. Both of the

participants are first year computer science undergraduate students from the Faculty of

Computer Science & Information Technology, University Malaya, who scored an ‘A’ in

the introductory programming subject (WIX1002 Fundamentals of Programming) they

took in their undergraduate study. In terms of the level of Java programming skill, they

chose the option of “junior” level that represents that they know about designing classes,

interfaces and exception handling. In terms of other programming languages, P1 has

Univ
ers

ity
 of

 M
ala

ya

129

programming knowledge in C++ and Dart, while P2 only has programming knowledge

in C++. In terms of the SDKs that they are familiar with, P1 and P2 selected Java SE, the

standard/default API for Java programming.

Table 7.1 shows the results of using Google search engine and APIRecJ to search

for Java API classes for the three programming questions given. Participants are required

to provide three most relevant API classes for each of question.

Based on the findings, the average correctness of Java API classes found by using

APIRecJ for Q1 is 66.67% and average time taken is 3.5 minutes. However, the average

correctness of Java API classes found by using Google search engine for Q1 is 83.33%

and average time taken is 2 minutes.

For Q2, the average correctness of Java API classes found by using APIRecJ is 50%

and average time taken is 1.5 minutes. However, the average correctness of Java API

classes found by using Google search engine is 66.67% and average time taken is 3

minutes.

For Q3, the average correctness of Java API classes found by using APIRecJ is 50%

and average time taken is 2.5 minutes. However, the average correctness of Java API

classes found by using Google search engine is 50% and average time taken is 2 minutes.

Univ
ers

ity
 of

 M
ala

ya

130

Table 7.1: Summary of Section 2 Result in Pilot Study

Participants Programming
Question

APIRecJ (Part A)

Google search engine
(Part B)

 Correct
APIs

Time
Required
(min)

Correct
APIs

Time
Required
(min)

P1* Q1 2 3 3 2
Q2 1 2 3 3
Q3 2 2 1 2

P2# Q1 2 4 2 2
Q2 2 1 1 3
Q3 1 3 2 2

Average
Correctness
(%)

Q1 66.67 83.33
Q2 50 66.67
Q3 50 50

Average Time
Required (min)

Q1 3.5 2
Q2 1.5 3
Q3 2.5 2

 Note:

* indicate participant perform Part A followed by Part B

indicate participant perform Part B followed by Part A

Section 3 (Part B) Result: Both P1 and P2 agreed that it is easy to find the

relevant Java API classes by using APIRecJ (Question 1), that it is helpful to have the

Java API classes recommended as filters in searching for relevant Java API classes

(Question 2) and that it is helpful to have similar Stack Overflow questions as they

provide suggestions for searching for relevant Java API classes (Question 3).

Both P1 and P2 prefer to use APIRecJ instead of Google search engine for

searching relevant Java API classes for their programming questions (Question 4)

because of more efficient and ease of use (Question 5). P2 gave another reason, which is,

“By using Google, we have to go through each website one-by-one and we might not be

able to find the answers that we wanted, however APIRecJ solved this by displaying the

list of questions available and also the APIs used which is very clear to users”.

Univ
ers

ity
 of

 M
ala

ya

131

P1 stated a “Yes” when asked whether it is useful to have an API class

recommender tool such as APIRecJ that helps to find relevant information on API (such

as API classes) when doing programming (Question 6) and PI gave the reason of “It helps

to save the hassle of going back and forth looking and searching between different

websites for guidance”, Similarly, P2 stated a “Yes” and gave the reason of “I would be

able to know which API can help me perform the job and I can make comparisons since

all the options has been displayed. Also, I would be able to check whether I'm using them

correctly.”

7.1.3 User Evaluation Study Design

Based on the findings from the pilot study, the answer options of Question 2

(“What is your level of Java programming skill?”) of Part A of the questionnaire were

improved. The original options were:

a) Junior – Design classes, interfaces and exception handling,

b) Intermediate – Knowledge on algorithm efficiency for Java collections

framework and JVM

c) Advanced – Knowledge on multi-threaded programming, concurrency issues,

managing life cycle and priority of threads.

The options were improved to better descriptions of the levels of Java

programming skill comprising of four options, which are:

a) Beginner – Basic understanding on Java programming, for example, Hello

World program

Univ
ers

ity
 of

 M
ala

ya

132

b) Junior – Design and programming using classes, interfaces and exception

handling

c) Intermediate – Produce quality program and understand algorithm efficiency

for each of the Java collections framework

d) Advanced – Programming using almost all Java framework component

including multi-threaded programming, concurrency issues, managing life cycle and

priority of threads

7.1.4 User Evaluation Results

Two participants (denoted as P3 and P4) participated in the user evaluation study.

Both are first year computer science undergraduate students from the Faculty of

Computer Science & Information Technology, University Malaya, who scored an ‘A’ in

the introductory programming subject (WIX1002 Fundamentals of Programming) they

took in their undergraduate study.

In terms of the level of Java programming skill, they chose the option of “junior”

level that represents that they know about designing and programming using classes,

interfaces, and exception handling. In terms of other programming languages, P3 has

programming knowledge in three other programming languages, which are C++, Python

and Dart, while P4 has programming knowledge in Visual Basic and Dart. Both are

familiar with the Java SE SDK but P4 is also familiar with Android SDK, which is a Java

API developed specifically for mobile phone operating system.

Univ
ers

ity
 of

 M
ala

ya

133

Table 7.2 shows the results of using Google search engine and APIRecJ to search

for Java API classes for the three programming questions given. Participants are required

to provide three most relevant API classes for each of question.

Based on the findings, the average correctness of Java API classes found by using

APIRecJ for Q1 is 66.67% and average time taken is 4 minutes. However, the average

correctness of Java API classes found by using Google search engine for Q1 is 100% and

average time taken is 2 minutes.

For Q2, the average correctness of Java API classes found by using APIRecJ is 50%

and average time taken is 5 minutes. However, the average correctness of Java API

classes found by using Google search engine is 83.33% and average time taken is 2.5

minutes.

For Q3, the average correctness of Java API classes found by using APIRecJ is

100% and average time taken is 3 minutes. However, the average correctness of Java API

classes found by using Google search engine is 50% and average time taken is 1.5 minutes

Univ
ers

ity
 of

 M
ala

ya

134

Table 7.2: Summary of Section 2 Result in User Evaluation Study

Participants Programming
Question

APIRecJ (Part A) Google search engine
(Part B)

 Correct
APIs

Time
Required
(min)

Correct
APIs

Time
Required
(min)

P3# Q1 2 4 3 2
Q2 2 4 2 2
Q3 3 3 1 2

P4* Q1 2 4 3 2
Q2 1 6 2 3
Q3 3 3 2 1

Average
Correctness
(%)

Q1 66.67 100
Q2 50 83.33
Q3 100 50

Average Time
Required (min)

Q1 4 2
Q2 5 2.5
Q3 3 1.5

 Note:

* indicate participant perform Part A followed by Part B

indicate participant perform Part B followed by Part A

Section 3 (Part B) Result: For Questions 1 – 3, participants were asked to rate

the features of APIRecJ using a 5-point Likert scale (1 - “Strongly Disagree”, 2 –

“Disagree”, 3 – “Neither Agree nor Disagree”, 4 – “Agree” and 5 – “Strongly Agree”).

Participants were asked to circle their chosen option for each of these Likert scale

questions and to state the reason if he or she chose the option of 3 or below.

Question 1 states “It is easy to find the relevant Java API classes by using

APIRecJ. If your response is 3 and below, please state the obstacles of finding the relevant

Java API classes.” P3 agreed that it is easy to find the relevant Java API classes by using

APIRecJ but P4 disagreed on this and stated “If I'm forced to only use APIRecJ, it's quite

frustrating, like for question 3, it showed result of String to Date even I typed Date to

String.”.

Univ
ers

ity
 of

 M
ala

ya

135

Question 2 states “It is helpful to have the Java API classes recommended as filters

in searching for relevant Java API classes. If your response is 3 and below, please state

why it is not helpful to have the Java API classes as filters in searching for relevant Java

API classes.”. P3 agreed that it is helpful to have the Java API classes recommended as

filters in searching for relevant Java API classes. However, P4 neither agreed nor

disagreed and stated “For most people, when we want to search for a solution, we don’t

know an API for it existed, so showing a long list of Java API without reading its

documentation doesn’t help much”.

Question 3 states “It is helpful to have similar Stack Overflow questions as they

provide suggestions for searching for relevant Java API classes. If your response is 3 and

below, please state why the similar Stack Overflow questions are not helpful in finding

relevant Java API classes.” Both P3 and P4 agreed that it is helpful to have similar Stack

Overflow questions as they provide suggestions for searching for relevant Java API

classes.

 Question 4 states “Which one do you prefer to use for searching relevant Java API

classes for your programming questions?” and there are two options given, which are

APIRecJ and Google search engine. P3 chose APIRecJ and P4 chose Google search

engine.

 Question 5 states “What are your reasons for your answer for the previous

question? You can select more than one option” and there are three options given, which

are, “More efficient (Less searching effort)”, “Ease of use”, and “More relevant

information”. P3 preferred to use APIRecJ because it is more efficient and because of

ease of use and gave other reason of “APIRecJ can get all the API class related to my

question instantly”. In contrast, P4 preferred to use Google search engine because of more

relevant information.

Univ
ers

ity
 of

 M
ala

ya

136

 Question 6 states “Is it useful to have an API class recommender tool such as

APIRecJ that helps you to find relevant information on API (such as API classes) when

you are doing programming? Yes/No. Please state your reason.”. P3 selected “Yes” and

gave the reason of “It is easy to find a list of useful API regarding my question. However,

to understand more about on API's function, I will choose to use google and maybe refer

more to Java Oracle”. Similarly, P4 selected “Yes” and gave the reason of “More option

is always better, considering Google doesn’t always return Stack Overflow results,

cannot show list of all API that could solve my problem”.

7.1.5 Discussion of User Evaluation Results

 The user evaluation results (Question 1 of Part B of questionnaire) show that

APIRecJ occasionally recommends less relevant result. This is probably because it

requires the query to be in the form of a longer text description in order to get a better

result. For example, instead of using “How do I convert Date to String?” as the query, P4

used “Date to String” as the query and APIRecJ returned a less relevant results. Another

possible reason could be the relevance of the recommended results is dependent on the

programming question. This can be seen in the user evaluation results, where Google

performed better for Q1 and slightly better for Q2 but APIRecJ performed better for Q3.

P3 (Question 6 of Part B of questionnaire) and P4 (Question 2 of Part B of

questionnaire) also pointed out that returning a list of Java API classes might not be useful

because programmers are frequently unfamiliar with Java API names and require more

assistance in terms of API description and usage. This probably could be the reason for

more time required to understand Java API when using APIRecJ. Therefore, it would be

more helpful if APIRecJ could include more information such as API descriptions from

the Java documentation.

Univ
ers

ity
 of

 M
ala

ya

137

Although the two participants have different preference of APIRecJ or Google

(Question 4), P4 that preferred Google indicated that it is useful to have an API class

recommender tool such as APIRecJ that helps to find relevant information on API (such

as API classes) when are doing programming, because Google search engine does not

always return Stack Overflow results and cannot show a list of all APIs that could solve

the problem (Question 6). In addition, APIRecJ’s feature of providing the similar Stack

Overflow questions received positive feedback (Question 3). This shows that APIRecJ is

generally useful.

7.2 Chapter Summary

This chapter explains the evaluation of plug-in carried out to measure the usefulness

of the developed plug-in. The evaluation is consisting of two major studies, which are

pilot study and user evaluation study. Therefore, the evaluation begins with designing a

data collection instrument for the pilot study and improved for the user evaluation study.

As a result, four participants are recruited for both of the evaluation study, where two

participants participated in the pilot study and another two participants participated in the

user evaluation study. Participants were recruited to use APIRecJ to find relevant Java

API classes for three programming questions given and to use the Google search engine

for the same purpose. Based on the results gathered from data collection instrument, the

developed plug-in can be considered useful for programmers. Univ
ers

ity
 of

 M
ala

ya

138

CHAPTER 8: CONCLUSION

This chapter presents the conclusion of this research. It includes the answering of

the research questions, a revisit of research contributions, threats to validity of the results,

and outline of possible future work.

8.1 Answering of Research Questions (RQs)

This section re-states the RQs of this research and summarizes how they were

achieved and the answers to these RQs.

RQ1: What are Java programmers’ common Java programming problems?

 RQ1 was achieved by mining and analyzing duplicate Java questions/posts in SO.

Since duplicate questions are the same questions that different programmers repeatedly

asked in different contexts, they can be used as surrogates to common questions asked in

SO. These common questions are in fact common Java programming problems/topics that

Java programmers struggle with.

The level of expertise was determined based on the askers’ reputation scores in SO. It

was found that the novice group is the top contributor and the expert group contributes

significantly lower to duplicate questions. The top-10 duplicate Java questions in SO

(Table 4.3) were identified and it was found that the most common problem Java

programmers face is understanding and/or fixing errors. However, this is not the case for

the expert programmers, as they question more about the reason of some Java

programming concepts.

Univ
ers

ity
 of

 M
ala

ya

139

The top-30 Java API classes required by the top-10 duplicate Java questions in SO were

also identified (Table 4.4) and the main findings are: some of the most frequent Java API

classes required by the top duplicate Java questions of all expertise groups are from

java.lang, java.util, javax.swing, java.text and java.io packages; novice programmers ask

duplicate questions related to classes in java.awt package but not the experienced and

expert programmers; experienced and expert programmers but not the novice asked

duplicate questions related to classes used in more advanced topics such query of database.

RQ2: How to design an approach that recommends relevant Java API classes for Java

programming questions by mining discussion posts in SO?

To answer RQ2, an approach in recommending Java API classes was proposed

and the approach was implemented into the Java API class recommender developed in

this research. The approach is built based on the common steps in designing RSSE and

adopted some NLP techniques (Doc2Vec word embedding and LDA topic modelling)

and a number of heuristic rules for Java API classes extraction.

The proposed approach is developed into a backend server that functions as a Java

API classes recommender. A plug-in for Eclipse IDE, APIRecJ was developed to serve

as the front-end to access the recommender’s functionalities. APIRecJ is responsible for

getting user’s query, making service call to backend recommender and displaying the

results to the user. Indirectly, the lexical gap between the programmers’ natural language

queries and the APIs documentation, and programming code, could be reduced by using

APIRecJ and the Java API class recommender that links the programmers’ natural

language queries to relevant Java API classes.

Univ
ers

ity
 of

 M
ala

ya

140

RQ3: What is the performance of the approach?

RQ3 was achieved by benchmarking the performance of the proposed approach

against the existing studies on Java API classes recommendation that made use of SO’s

discussion posts. For consistency and comparison, evaluation dataset and evaluation

metrics from existing studies were used. The four performance metrics used were Top-

10 accuracy, MR@10, MRR@10 and MAP@10. The benchmarking results demonstrate

that the proposed approach has improved the existing state-of-the-art baseline result by

3.22% in Top-10 Accuracy, 0.03 in MRR@10, 2.83% in MAP@10 and 0.89% in

MR@10.

RQ4: How useful is the plug-in?

To answer RQ4, a user evaluation study preceded by a pilot study was conducted.

Participants were recruited to use APIRecJ to find relevant Java API classes for three

programming questions given and to use Google search engine for the same purpose, and

subsequently answer a questionnaire.

The user evaluation results show that APIRecJ occasionally recommends less

relevant result. This could be due to the relevance of the recommended results is

dependent on the programming question. The evaluation results also shows that: 1) it

would be more helpful if APIRecJ could include more information such as API

descriptions from the Java documentation, apart from returning the Java API classes.; 2)

it is useful to have an API class recommender tool such as APIRecJ that helps to find

relevant information on API (such as API classes) when are doing programming, because

Google search engine does not always return Stack Overflow results and cannot show a

Univ
ers

ity
 of

 M
ala

ya

141

list of all APIs that could solve the problem; 3) APIRecJ’s feature of providing the similar

Stack Overflow questions received positive feedback.

8.2 A Revisit of Research Contributions

The contributions of this research are as below:

1. Common Java programming problems encountered by programmers of

different levels of expertise, identified from SO, the most popular computer

programming related website. In addition, the top Java API classes related to

these common Java programming problems were also found. These provide

insights on common Java programming problems/topics and Java API classes

that Java programmers struggle with. Java educators and learning resources

can devote more attention to these areas (for example, understanding and

fixing errors) to help learners in picking up the required knowledge and skills.

2. An approach that employs heuristic rules, word embedding and topic

modelling techniques in recommending relevant Java API classes for Java

programming questions described in natural language. The approach

outperforms existing approaches in terms of four performance metrics, by

achieving 84.83% in Top-10 Accuracy, 0.58 in MRR@10, 50.68% in

MAP@10 and 58.76% in MAP@10. These results demonstrate that the

proposed approach has improved the existing state-of-the-art approach by

3.22% in Top-10 Accuracy, 0.03 in MRR@10, 2.83% in MAP@10 and by

0.89% in MR@10.

3. A Java API class recommender that incorporated the proposed approach.

4. A plug-in (APIRecJ) for Eclipse IDE that serves as front-end to the Java API

class recommender. The use of this plug-in when writing Java programs in

Univ
ers

ity
 of

 M
ala

ya

142

Eclipse IDE allows the programmers to describe their Java programming

problems in natural language and search for Java API classes that are relevant

to the programming problems and view similar questions that have been asked

in SO. All these actions can be performed within the Eclipse IDE without

leaving the IDE. The user evaluation of APIRecJ shows that it is a useful tool

for programmers particularly in answering questions that search for relevant

Java API classes.

In summary, the plug-in coupled with the back-end Java API class recommender

that incorporates the proposed approach helps to reduce the lexical gap between the

programmers’ natural language queries and the Java APIs documentation (in particular,

the Java API classes names), and the lexical gap between the natural language queries

and Java programming codes, and helps to complement official APIs documentation

which have poor usability, by applying data mining techniques on Stack Overflow crowd

documentation of Java APIs.

8.3 Threats to Validity of Results

There are some threats that could possibly affect the results of this research. First

of all, as there is an ongoing high volume of user-generated questions in SO, this could

cause different results to be found since the results depend on the SO data retrieved at a

particular point of time. As mentioned, information in SO are changing rapidly, using

online query tool at different time could produce different result. Alternatively, the data

can be retrieved by using data dump. Unfortunately, the limitation is the process to

replicate the SO database requires high computing resources which is not available for

this research. Secondly, the fourth heuristic rule in Study 1 (Table 4.1) and Study 2 (Table

Univ
ers

ity
 of

 M
ala

ya

143

5.2) validate the extracted Java API classes against a list of actual API classes extracted

from the Java API documentation. The list needs to be updated if new classes are added

to the Java API when the language evolves.

Lastly, the small number of participants who took part in the user evaluation study

causing its results to be non-generalizable. Two were recruited for the pilot study. Two

were recruited for the user evaluation study due to time constraint. All the participants

are Computer Science undergraduate students from the Faculty of Computer Science and

Information Technology, University Malaya, who have completed their first year of study

and scored an ‘A’ in the introductory Java programming subject. Despite the small

number, the participants have similar educational background, and good level of skill in

Java programming, and, the user evaluation results show that it is generally useful to have

a tool such as APIRecJ built in this research. It is important to note that the main focus of

this research is the proposed approach and the benchmarking of the approach using the

four performance metrics shows that it outperforms existing approaches in all the

performance metrics. The plug-in evaluated in the user evaluation study is just the front-

end to the underlying recommender that incorporates the approach.

8.4 Future Work

Possible future work includes designing a more generalized and robust method in

extracting Java API classes rather than using heuristic rules on coding conventions;

extend the research to also include recommendation of methods of Java API classes;

extend the plug-in to include more information from the Java API documentation (as

recommended by the participants in the user evaluation study).

Univ
ers

ity
 of

 M
ala

ya

144

REFERENCES

Ahasanuzzaman, M., Asaduzzaman, M., Roy, C. K., & Schneider, K. A. (2016). Mining
duplicate questions in stack overflow. Paper presented at the Proceedings of the
13th International Conference on Mining Software Repositories.

Ahasanuzzaman, M., Asaduzzaman, M., Roy, C. K., & Schneider, K. A. (2018).
Classifying stack overflow posts on API issues. Paper presented at the 2018 IEEE
25th International Conference on Software Analysis, Evolution and
Reengineering (SANER).

Al-Jepoori, M., & Bennett, D. (2018). Understanding of the programming techniques by
using a complex case study to teach advanced object-oriented programming.

Allamanis, M., & Sutton, C. (2013). Why, when, and what: analyzing stack overflow
questions by topic, type, and code. Paper presented at the Proceedings of the 10th
Working Conference on Mining Software Repositories.

Apache NetBeans. (2019). Apache NetBeans. Retrieved from https://netbeans.org

Ayyadevara, V. K. (2018). Pro Machine Learning Algorithms: A Hands-On Approach to
Implementing Algorithms in Python and R: Apress.

Bajracharya, S. K., & Lopes, C. V. (2012). Analyzing and mining a code search engine
usage log. Empirical Software Engineering, 17(4-5), 424-466.

Białecki, A., Muir, R., Ingersoll, G., & Imagination, L. (2012). Apache lucene 4. Paper
presented at the SIGIR 2012 workshop on open source information retrieval.

Black, J., Hashimzade, N., & Myles, G. (2009). A Dictionary of Economics: Oxford
University Press.

Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-
84. doi:10.1145/2133806.2133826

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan), 993-1022.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with
subword information. Transactions of the Association for Computational
Linguistics, 5, 135-146.

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems, 30(1-7), 107-117.

Chamberlin, D. D., & Boyce, R. F. (1974). SEQUEL: A structured English query
language. Paper presented at the Proceedings of the 1974 ACM SIGFIDET (now
SIGMOD) workshop on Data description, access and control.

Univ
ers

ity
 of

 M
ala

ya

145

Chen, T.-H., Thomas, S. W., & Hassan, A. E. (2016). A survey on the use of topic models
when mining software repositories. Empirical Software Engineering, 21(5), 1843-
1919.

CodeJava. (2019). CodeJava.net - Java Tutorials, Code. Retrieved from
https://www.codejava.net/

Eclipse IDE. (2019). Eclipse IDE. Retrieved from https://www.eclipse.org/eclipseide/

Flask. (2019). Flask | The Pallets Projects. Retrieved from
https://palletsprojects.com/p/flask/

GitHub. (2019). Stack Exchange Data Explorer Entity Relationship Diagram. Retrieved
from https://github.com/leerssej/SEDESchema

Gosling, J., Joy, B., Steele, G. L., Bracha, G., & Buckley, A. (2014). The Java Language
Specification, Java SE 8 Edition: Addison-Wesley Professional.

Gosling, J., & McGilton, H. (1995). The Java language environment. Sun Microsystems
Computer Company, 2550.

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques: Elsevier.

Hristova, M., Misra, A., Rutter, M., & Mercuri, R. (2003). Identifying and correcting Java
programming errors for introductory computer science students. ACM SIGCSE
Bulletin, 35(1), 153-156.

Huang, Q., Xia, X., Xing, Z., Lo, D., & Wang, X. (2018). API method recommendation
without worrying about the task-API knowledge gap. Paper presented at the
Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering - ASE 2018, Montpellier, France.

Ichinco, M., Hnin, W. Y., & Kelleher, C. L. (2017). Suggesting API Usage to Novice
Programmers with the Example Guru. Paper presented at the Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems - CHI '17,
Denver, Colorado, USA.

IntelliJ IDEA. (2019). IntelliJ IDEA Retrieved from https://www.jetbrains.com/idea/

Java2s. (2019). Programming Tutorials and Source Code. Retrieved from
http://www.java2s.com/

Java Platform SE 6. (2019). Java Platform, Standard Edition 6 API Specification
Retrieved from https://docs.oracle.com/javase/6/docs/api/

Java Platform SE 8. (2019). java.awt (Java Platform SE 8). Retrieved from
https://docs.oracle.com/javase/8/docs/api/java/awt/package-summary.html

Joorabchi, A., English, M., & Mahdi, A. E. (2016). Text mining stackoverflow: An insight
into challenges and subject-related difficulties faced by computer science learners.
Journal of Enterprise Information Management, 29(2), 255-275.

Univ
ers

ity
 of

 M
ala

ya

146

Kavitha, S., & Sindhu, S. (2015). Comparison of integrated development environment
debugging tools : Eclipse vs Netbeans.

Kettunen, K., Kunttu, T., & Järvelin, K. (2005). To stem or lemmatize a highly
inflectional language in a probabilistic IR environment? Journal of
Documentation, 61(4), 476-496.

KodeJava. (2019). Kode Java | Learn Java by Example. Retrieved from
https://kodejava.org/

Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents.
Paper presented at the International conference on machine learning.

Loper, E., & Bird, S. (2002). NLTK: the natural language toolkit. arXiv preprint
cs/0205028.

Meng, N., Nagy, S., Yao, D., Zhuang, W., & Arango-Argoty, G. (2018). Secure coding
practices in java: Challenges and vulnerabilities. Paper presented at the 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Paper presented
at the Advances in neural information processing systems.

Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the
ACM, 38(11), 39-41.

Mow, I. T. C. (2012). Analyses of student programming errors in Java programming
courses. Journal of Emerging Trends in Computing and Information Sciences,
3(5), 739-749.

Myers, B. A., & Stylos, J. (2016). Improving API usability. Communications of the ACM,
59(6), 62-69.

Nadi, S., Krüger, S., Mezini, M., & Bodden, E. (2016). Jumping through hoops: Why do
Java developers struggle with cryptography APIs? Paper presented at the
Proceedings of the 38th International Conference on Software Engineering.

Nie, L., Jiang, H., Ren, Z., Sun, Z., & Li, X. (2016). Query expansion based on crowd
knowledge for code search. IEEE Transactions on Services Computing, 9(5), 771-
783.

Parnin, C., Treude, C., Grammel, L., & Storey, M.-A. (2012). Crowd documentation:
Exploring the coverage and the dynamics of API discussions on Stack Overflow.
Georgia Institute of Technology, Tech. Rep.

Porteous, I., Newman, D., Ihler, A., Asuncion, A., Smyth, P., & Welling, M. (2008). Fast
collapsed gibbs sampling for latent dirichlet allocation. Paper presented at the

Univ
ers

ity
 of

 M
ala

ya

147

Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining.

PyInstaller. (2019). PyInstaller. Retrieved from https://www.pyinstaller.org/

Rahman, M. M. (2019a). RACK-Replication-Package/oracle-310.txt Retrieved from
https://github.com/masud-technope/RACK-Replication-
Package/blob/master/oracle-310.txt

Rahman, M. M. (2019b). Replication package of RACK : Automated Query
Reformulation for Code Search using Crowdsourced Knowledge Retrieved from
https://github.com/masud-technope/RACK-Replication-Package

Rahman, M. M., & Roy, C. (2018). Effective reformulation of query for code search using
crowdsourced knowledge and extra-large data analytics. Paper presented at the
2018 IEEE International Conference on Software Maintenance and Evolution
(ICSME).

Rahman, M. M., Roy, C. K., & Lo, D. (2016, 14-18 March 2016). RACK: Automatic API
Recommendation Using Crowdsourced Knowledge. Paper presented at the 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER).

Rahman, M. M., Roy, C. K., & Lo, D. (2018). Automatic query reformulation for code
search using crowdsourced knowledge. Empirical Software Engineering, 1-56.

Rehurek, R., & Sojka, P. (2010). Software framework for topic modelling with large
corpora. Paper presented at the In Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks.

Rigby, P. C., & Robillard, M. P. (2013). Discovering essential code elements in informal
documentation. Paper presented at the 2013 35th International Conference on
Software Engineering (ICSE).

Robillard, M., Walker, R., & Zimmermann, T. (2009). Recommendation systems for
software engineering. IEEE software, 27(4), 80-86.

Robillard, M. P. (2009). What Makes APIs Hard to Learn? Answers from Developers.
IEEE software, 26(6), 27-34. doi:10.1109/ms.2009.193

Robillard, M. P., & Deline, R. (2011). A field study of API learning obstacles. Empirical
Softw. Engg., 16(6), 703-732. doi:10.1007/s10664-010-9150-8

Santos, A. L., & Myers, B. A. (2017). Design annotations to improve API discoverability.
Journal of Systems and Software, 126, 17-33. doi:10.1016/j.jss.2016.12.036

Silva, R. F., Paixão, K., & de Almeida Maia, M. (2018). Duplicate question detection in
stack overflow: A reproducibility study. Paper presented at the 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering
(SANER).

Univ
ers

ity
 of

 M
ala

ya

148

Singhal, A. (2001). Modern information retrieval: A brief overview. IEEE Data Eng.
Bull., 24(4), 35-43.

Stack Exchange. (2019a). Meta Stack Exchange: Database schema documentation for the
public data dump and SEDE. Retrieved from
https://meta.stackexchange.com/questions/2677/database-schema-
documentation-for-the-public-data-dump-and-sede

Stack Exchange. (2019b). Query Stack Overflow - Stack Exchange Data Explorer
Retrieved from https://data.stackexchange.com/stackoverflow/query/new

Stack Exchange. (2019c). Stack Exchange. Retrieved from https://stackexchange.com

Stack Exchange. (2019d). Stack Exchange All Sites Traffic. Retrieved from
https://stackexchange.com/sites?view=list#traffic

Stack Exchange. (2019e). Stack Exchange Data Dump. Retrieved from
https://archive.org/details/stackexchange

Stack Overflow. (2010). Stack Overflow: How many classes are there in Java standard
edition? Retrieved from https://stackoverflow.com/questions/3112882/how-
many-classes-are-there-in-java-standard-edition

Stack Overflow. (2019a). Developer Survey Results 2019 Retrieved from
https://insights.stackoverflow.com/survey/2019#technology

Stack Overflow. (2019b). Stack Overflow. Retrieved from https://stackoverflow.com/

Stack Overflow. (2019c). Stack Overflow Trends. Retrieved from
https://insights.stackoverflow.com/trends?tags=java%2Cc%2Cc%2B%2B

Stack Overflow. (2019d). Stack Overflow: How do I ask a good question? Retrieved from
https://stackoverflow.com/help/how-to-ask

Stack Overflow. (2019e). Stack Overflow: NullPointerException when Creating an Array
of objects [duplicate]. Retrieved from
https://stackoverflow.com/questions/1922677/

Stack Overflow. (2019f). Stack Overflow: What does it mean when an answer is
"accepted"? Retrieved from https://stackoverflow.com/help/accepted-answer

Stack Overflow. (2019g). Stack Overflow: What is a NullPointerException, and how do
I fix it? Retrieved from https://stackoverflow.com/questions/218384/

Stack Overflow. (2019h). Stack Overflow: What is reputation? How do I earn (and lose)
it? Retrieved from https://stackoverflow.com/help/whats-reputation

Stack Overflow. (2019i). Stack Overflow: What topics can I ask about here? Retrieved
from https://stackoverflow.com/help/on-topic

Stack Overflow. (2019j). Stack Overflow: Why are some questions marked as duplicate?
Retrieved from https://stackoverflow.com/help/duplicates

Univ
ers

ity
 of

 M
ala

ya

149

Subramanian, S., & Holmes, R. (2013). Making sense of online code snippets. Paper
presented at the Proceedings of the 10th Working Conference on Mining Software
Repositories.

TIOBE. (2019). TIOBE Index for November 2019. Retrieved from
https://www.tiobe.com/tiobe-index/

Treude, C., Barzilay, O., & Storey, M.-A. (2011). How do programmers ask and answer
questions on the web?: Nier track. Paper presented at the Software Engineering
(ICSE), 2011 33rd International Conference on.

Treude, C., Robillard, M. P., & Dagenais, B. (2015). Extracting Development Tasks to
Navigate Software Documentation. IEEE Transactions on Software Engineering,
41(6), 565-581. doi:10.1109/tse.2014.2387172

Wikipedia. (2019). Web Framework - Wikipedia. Retrieved from
https://en.wikipedia.org/wiki/Web_framework

Xia, X., Bao, L., Lo, D., Kochhar, P. S., Hassan, A. E., & Xing, Z. (2017). What do
developers search for on the web? Empirical Software Engineering, 22(6), 3149-
3185.

Xia, X., Lo, D., Correa, D., Sureka, A., & Shihab, E. (2016). It takes two to tango: Deleted
stack overflow question prediction with text and meta features. Paper presented at
the 2016 IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC).

Ye, X., Shen, H., Ma, X., Bunescu, R., & Liu, C. (2016). From word embeddings to
document similarities for improved information retrieval in software engineering.
Paper presented at the Proceedings of the 38th International Conference on
Software Engineering - ICSE '16, Austin, Texas.

Zamanirad, S., Benatallah, B., Barukh, M. C., Casati, F., & Rodriguez, C. (2017).
Programming bots by synthesizing natural language expressions into API
invocations. Paper presented at the Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, Urbana-
Champaign, IL, USA.

Zhang, Y., Lo, D., Xia, X., & Sun, J.-L. (2015). Multi-factor duplicate question detection
in stack overflow. Journal of Computer Science and Technology, 30(5), 981-997.

Zhang, Y., Rahman, M. M., Braylan, A., Dang, B., Chang, H.-L., Kim, H., . . . Khetan,
V. (2016). Neural information retrieval: A literature review. arXiv preprint
arXiv:1611.06792.

Zhu, Z., Hua, C., Zou, Y., Xie, B., & Zhao, J. (2017). Automatically Generating Task-
Oriented API Learning Guide. Paper presented at the Proceedings of the 9th Asia-
Pacific Symposium on Internetware - Internetware'17, Shanghai, China.

Zibran, M. F., Eishita, F. Z., & Roy, C. K. (2011). Useful, but usable? factors affecting
the usability of APIs. Paper presented at the 2011 18th Working Conference on
Reverse Engineering.

Univ
ers

ity
 of

 M
ala

ya

