
REAL-TIME ANOMALY DETECTION USING CLUSTERING IN BIG
DATA TECHNOLOGIES

RIYAZ AHAMED ARIYALURAN HABEEB

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2019

Univ
ers

iti
Mala

ya

REAL-TIME ANOMALY DETECTION USING
CLUSTERING IN BIG DATA TECHNOLOGIES

RIYAZ AHAMED ARIYALURAN HABEEB

THESIS SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2019

Univ
ers

iti
Mala

ya

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Riyaz Ahamed Ariyaluran Habeeb

Registration/Matric No.: WHA140019

Name of Degree: Doctor of Philosophy

Title of Thesis: Real-Time Anomaly Detection using Clustering in Big Data Technologies

Field of Study: Computer Science

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and sufficiently
and the title of the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University
of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and
that any reproduction or use in any form or by any means whatsoever is prohibited
without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action or any
other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:
Designation:

ii

Univ
ers

iti
Mala

ya

REAL-TIME ANOMALY DETECTION USING CLUSTERING IN BIG DATA

TECHNOLOGIES

ABSTRACT

The advent of connected devices and omnipresence of Internet have paved way for intruders

to attack networks, which leads to cyber-attack, financial loss, information theft and cyber

war. Hence, network security analytics has become an important area of concern and

has gained intensive attention among researchers, off late, specifically in the domain of

anomaly detection in network, which is considered crucial for network security. However,

critical reviews have identified that the existing approaches are inefficient in processing

data to detect anomalies due to the amassment of massive volumes of data through the

connected devices. Therefore, it is crucial to propose a framework that effectively handles

real time big data processing and detect anomalies in networks. In this regard, this

research attempted to address the issue of accuracy in anomalies detection in real time. To

begin with, the existing state-of-the-art techniques related to anomaly detection, real-time

big data technologies and machine learning algorithms have been critically reviewed

to identify the problems. Subsequently, comparative analysis to further establish the

problems has been carried out via utilization of various existing algorithms which were

then validated using three openly available datasets. Based on the outcome of the analysis,

this research proposed a novel framework namely real-time anomaly detection based on big

data technologies (RTADBDT), along with supporting implementation algorithms. The

framework comprises of BroIDS, Flume, Kafka, Spark Streaming, Spark MLlib, Matplot

and HBase. The BroIDS processes the existing datasets and generates various log files

such as HTTP which is used in this research while Flume component reads and tracks the

incoming packet data blocks. Kafka comprises repository of messages, categorized into

iii

Univ
ers

iti
Mala

ya

different topics, with each category further divided into numerous partitions comprising of

well-arranged and absolute sequence of messages. Meanwhile, Spark Streaming effectively

provides illustrious abstraction known as DStream, signifying an uninterrupted stream of

data whereas Spark MLlib leverages algorithmic optimizations of MLlib and applies them

in the proposed algorithms. Ultimately, the processed data has been visualised by using

Matplot and stored via HBase. The proposed framework was validated to substantiate its

efficacy particularly in terms of accuracy, memory consumption and execution time by

performing critical comparative analysis using internal, external and statistical techniques.

The performance of the proposed framework was assessed using mathematical expressions

derived in this research and also by conducting comparative analysis. All the analysis has

proven that the proposed framework’s technique has outperformed other existing techniques

in terms of accuracy, memory consumption and execution time. The significance of this

research can be attributed to wide spectrum in the body of knowledge, with the proposed

framework serve as a backbone in real-time anomaly detection with increased accuracy,

minimised memory consumption and shortened execution time. Furthermore, when

implemented, this framework shall enable an organization to instantly detect anomaly in

real-time while having potential for a more effective fault tolerance and scalability.

Keywords: Anomaly detection, Real-time big data processing, Clustering.

iv

Univ
ers

iti
Mala

ya

PENGESANAN ANOMALI MASA NYATA MENGGUNAKAN

PENGKLUSTERAN DALAM TEKNOLOGI DATA RAYA

ABSTRAK

Kemunculan peranti bersambung dan penggunaan Internet telah membuka jalan bagi

penceroboh untuk menyerang rangkaian, yang membawa kepada serangan siber, kerugian

kewangan, kecurian maklumat dan perang siber. Oleh itu, analisis keselamatan rangkaian

telah menjadi fokus utama dan telah mendapat perhatian intensif di kalangan para

penyelidik kebelakangan ini, khususnya dalam pengesanan anomali dalam rangkaian,

yang dianggap penting untuk keselamatan rangkaian. Walaubagaimanapun, ulasan-ulasan

kritikal telah mengenal pasti bahawa pendekatan-pendekatan yang sedia ada tidak cekap

dalammemproses data untukmengesan anomali disebabkan pengumpulan data secara besar-

besaran melalui peranti-peranti yang berhubung antara satu sama lain. Oleh itu, adalah

penting untuk mencadangkan satu rangka kerja yang berkesan mengendalikan pemprosesan

data besar dalam masa nyata serta mengesan anomali dalam rangkaian. Maka, kajian ini

cuba menangani isu ketepatan pengesanan anomali dalam masa nyata. Sebagai permulaan,

teknik sedia ada yang berkaitan dengan pengesanan anomali, teknologi data besar dalam

masa nyata dan algoritma pembelajaran mesin telah dikaji secara kritikal untuk mengenal

pasti masalah. Seterusnya, analisis perbandingan untuk menyelesaikan masalah telah

dijalankan melalui penggunaan pelbagai algoritma sedia ada yang kemudiannya disahkan

menggunakan tiga himpunan data yang diperolehi secara terbuka. Berdasarkan hasil

analisis, penyelidikan ini mencadangkan rangka kerja baru iaitu pengesanan anomali masa

nyata berdasarkan teknologi data besar (RTADBDT) dan algoritma untuk pelaksanaan

model ke dalam rangka kerja. Kerangka ini terdiri daripada BroIDS, Flume, Kafka,

Spark Streaming, Spark MLlib, Matplot dan HBase. BroIDS memproses himpunan

v

Univ
ers

iti
Mala

ya

data yang sedia ada dan menjana pelbagai fail log seperti HTTP yang digunakan dalam

penyelidikan ini manakala komponen Flume membaca dan menjejaki blok paket data

yang masuk. Selain itu, Kafka terdiri daripada repositori mesej, dikategorikan ke dalam

topik yang berbeza, dengan setiap kategori selanjutnya dibahagikan kepada banyak

bahagian yang terdiri daripada urutan mesej yang disusun dengan sempurna dan mutlak.

Sementara itu, Spark Streaming berkesan menyediakan abstraksi yang terkenal dikenali

sebagai DStream, menandakan aliran data yang tidak terganggu manakala Spark MLlib

menggunakan pengoptimuman algoritma MLlib dan menggunakannya dalam algoritma

yang dicadangkan. Kemudian, data yang diproses telah digambarkan dengan menggunakan

Matplot dan disimpan melalui HBase. Secara keseluruhan, rangka kerja dicadangkan dan

disahkan untuk membuktikan keberkesanan khususnya dari segi ketepatan, penggunaan

memori dan masa pelaksanaan dengan melakukan analisis perbandingan secara kritikal

menggunakan teknik dalaman, luaran dan statistik. Prestasi rangka kerja yang dicadangkan

dinilai pula dengan menggunakan ungkapan matematik yang dihasilkan melalui kajian ini

disamping melakukan analisis perbandingan. Semua analisis telah membuktikan bahawa

teknik rangka kerja yang dicadangkan telah mengatasi teknik sedia ada yang lain dari

segi ketepatan, penggunaan ingatan dan masa pelaksanaan. Kepentingan kajian ini boleh

dikaitkan dengan spektrum yang luas dalam bidang pengetahuan relevan, dengan kerangka

yang dicadangkan berfungsi sebagai tulang belakang dalam pengesanan anomali masa

nyata dengan peningkatan ketepatan, penggunaan memori dan masa pelaksanaan yang

lebih rendah. Lebih-lebih lagi, apabila dilaksanakan, rangka kerja ini akan membolehkan

sesebuah organisasi untuk mengesan anomali dengan serta-merta dalam masa nyata

sementara berpotensi untuk lebih keberkesanan dalam toleransi sesar dan pengubahan

skala.

Kunci kata: Pengesanan anomali, Pemprosesan data raya masa nyata, Pengklusteran.

vi

Univ
ers

iti
Mala

ya

ACKNOWLEDGEMENTS

All praise to the Almighty Allah, the All-Compassionate, the All-Merciful, for His

countless and endless blessings which enable me to complete this thesis. Throughout the

course of this research, I was fortunate enough to meet wonderful people and receive a

great deal of support from them while pursuing my PhD at University of Malaya, Malaysia.

Without them, it would not be possible to finish my dissertation.

I will start with deepest gratitude to my supervisors, Prof. Dr. Abdullah Gani and Dr.

Fariza Nasaruddin for their commitment and continuous guidance from the early stages to

the completion of this thesis. Meetings and discussions with them enable me to identify

not only my thesis area, but also my strengths which I would hold on to the next chapter of

my career.

I would also like to express my profound appreciation to Dr. Anjum Naveed, Dr. Ejaz

Ahmed, Dr. Ibrahim Abaker, Dr. Hasan Jamil and Mr. AbdelMuttlib Ibrahim for their

supports and encouragement during my thesis completion. I am also deeply indebted and

grateful to Mr. Ahamed Rasmi, Mr. Mohamed Ahzam Amanullah and Mr. Abdul Salam

Nainar for their assistance.

No words would be able to convey my true feelings and gratitude to my beloved family

whom has been a source of inspiration for me. This appreciation is especially to my dear

parents who always pray for me and provides me comfort during my difficult times. Also,

words cannot express how grateful I am to my dearest brother Imtiyas for his great support.

He had always been a wonderful advisor for me.

To my beloved wife, Zurul Aisya, who not only very caring and tolerance, but also

instrumental in assisting me with the thesis. I would not have been able to go through

this without her support. Special hugs and kisses to my son Rais, who not only gives me

vii

Univ
ers

iti
Mala

ya

inspiration but also motivation to finish this thesis so that I can spend more time to see

his adorable antics. It is also not an exaggeration to be very grateful and indebted to my

siblings’ in-law for their tremendous support and prayers.

Finally, thank you to all the members and support staff at the Centre for Mobile Cloud

Computing, Wisma R & D and FSKTM for lending their support and resources.

viii

Univ
ers

iti
Mala

ya

TABLE OF CONTENTS

Abstract ... iii

Abstrak .. v

Acknowledgements ... vii

Table of Contents .. ix

List of Figures ... xvii

List of Tables... xx

CHAPTER 1: INTRODUCTION .. 1

1.1 Domain Background .. 1

1.1.1 Anomaly detection... 3

1.1.2 Real-time Big data processing... 3

1.1.3 Machine Learning ... 4

1.2 Research motivation... 5

1.3 Statement of the problem ... 7

1.4 Statement of Objectives ... 8

1.5 Proposed methodology .. 9

1.6 Outline of Thesis.. 12

CHAPTER 2: REAL-TIME ANOMALY DETECTION BASED ON BIG

DATA TECHNOLOGIES.. 15

2.1 Real-time Big Data Processing Technologies .. 16

2.1.1 Spark.. 16

2.1.2 Storm ... 17

ix

Univ
ers

iti
Mala

ya

2.1.3 Flink .. 18

2.1.4 Kinesis ... 19

2.1.5 Samza .. 20

2.1.6 Apache S4.. 20

2.1.7 Hadoop ... 21

2.2 Current anomalies detection techniques .. 25

2.2.1 Clustering Algorithms .. 28

2.3 Anomaly detection with big data technologies .. 31

2.4 Machine learning algorithms with big data ... 33

2.5 State-of-the-Art machine learning algorithm with real-time big data

processing technologies for anomalies detection... 36

2.6 Taxonomy of Real-time big data processing technologies for anomaly

detection. .. 45

2.6.1 Techniques ... 47

2.6.1.1 Nearest Neighbours (NN).. 47

2.6.1.2 Bayesian Networks (BN)... 48

2.6.1.3 Support Vector Machine (SVM) ... 48

2.6.1.4 Decision tree.. 49

2.6.1.5 Random Forest (RF) .. 49

2.6.1.6 Fuzzy Logic algorithm .. 50

2.6.1.7 Principal Component Analysis .. 50

2.6.1.8 Ant Colony Optimization .. 50

2.6.1.9 Hierarchical Temporal Memory (HTM).................................. 51

2.6.2 Applications .. 51

2.6.2.1 Modern network traffic scenario: .. 51

x

Univ
ers

iti
Mala

ya

2.6.2.2 Mobile Cloud: ... 52

2.6.2.3 Autonomous vehicles scenario: ... 53

2.6.2.4 Healthcare scenario: .. 53

2.6.2.5 Insider Trading Detection:... 54

2.6.2.6 Safety Critical Detection: .. 54

2.6.3 Anomalies.. 55

2.6.3.1 Point anomalies ... 55

2.6.3.2 Contextual anomalies .. 55

2.6.3.3 Collective anomalies ... 55

2.6.4 Anomaly Detection Modes.. 56

2.6.4.1 Supervised anomaly detection... 56

2.6.4.2 Semi-supervised anomaly detection.. 56

2.6.4.3 Unsupervised anomaly detection... 56

2.6.5 Data .. 56

2.6.5.1 Structured data... 56

2.6.5.2 Semi structured data .. 57

2.6.5.3 Unstructured data .. 57

2.6.6 Big Data processing .. 57

2.6.6.1 Spark.. 57

2.6.6.2 Storm ... 57

2.6.6.3 Kafka ... 58

2.6.6.4 Flume... 58

2.6.6.5 Amazon Kinesis .. 58

2.6.6.6 Hadoop ... 58

2.6.7 Record categories ... 58

xi

Univ
ers

iti
Mala

ya

2.6.7.1 Host-based ... 58

2.6.7.2 Network-based... 59

2.7 Evaluation metrics for clustering algorithm and system performance................. 59

2.8 Research challenges ... 61

2.8.1 Redundancy ... 61

2.8.2 Computational cost.. 61

2.8.3 Nature of Input data .. 62

2.8.4 Noise and missing value .. 62

2.8.5 Parameters Selection ... 63

2.8.6 Inadequate Architecture... 63

2.8.7 Data visualizations .. 64

2.8.8 Heterogeneity of data .. 64

2.8.9 Accuracy.. 65

2.8.10 Scalability.. 65

2.9 Conclusion ... 67

CHAPTER 3: PROBLEM ANALYSIS ... 70

3.1 Empirical study: Experimental setup .. 70

3.1.1 Cloud Environment ... 71

3.1.2 Algorithms... 72

3.1.2.1 K-Means .. 72

3.1.2.2 Isolation Forest .. 73

3.1.2.3 Spectral Clustering ... 73

3.1.2.4 HDBSCAN.. 74

3.1.3 Datasets ... 74

xii

Univ
ers

iti
Mala

ya

3.1.4 Feature Extraction ... 74

3.2 Performance Measuring Parameters .. 77

3.2.1 Accuracy.. 77

3.2.2 Memory consumption ... 77

3.2.3 Execution time .. 78

3.3 Results and Analysis .. 78

3.3.1 Accuracy.. 78

3.3.2 Memory Usage .. 78

3.3.3 Execution time .. 79

3.4 Discussions .. 81

3.5 Conclusion .. 82

CHAPTER 4: FRAMEWORK .. 83

4.1 Framework for Real-Time Anomaly Detection Based on Big Data Technologies 84

4.1.1 BroIDS... 84

4.1.2 Flume... 85

4.1.3 Kafka ... 86

4.1.4 Spark Streaming .. 87

4.1.5 Spark MLilb and Scala .. 89

4.1.6 HBase .. 90

4.1.7 Matplotlib and Python ... 91

4.2 Real-Time Anomaly Detection Process Using Flowchart.................................... 93

4.3 Proposed Algorithms ... 94

4.4 Performance Evaluation Metrics of the Proposed Framework 97

4.4.1 Accuracy.. 97

xiii

Univ
ers

iti
Mala

ya

4.4.2 Memory Consumption... 98

4.4.3 Execution Time ... 99

4.5 Distinctive Features of the Proposed Algorithms .. 101

4.5.1 Real-Time Processing ... 101

4.5.2 Uninterruption of incoming data ... 102

4.5.3 Accuracy.. 102

4.5.4 Memory Consumption... 103

4.5.5 Fault Tolerance .. 103

4.5.6 Execution Time ... 103

4.5.7 Scalability.. 104

4.6 Conclusion ... 104

CHAPTER 5: EVALUATION .. 106

5.1 Experimental Setup.. 106

5.2 Dataset ... 108

5.3 Data Collection for RTADBDT Framework .. 109

5.4 Performance Evaluation Methods .. 109

5.4.1 Accuracy.. 110

5.4.1.1 Silhouette index... 110

5.4.1.2 Calinski and Harabaz .. 110

5.4.1.3 Adjusted rand score ... 111

5.4.1.4 Normalized mutual info score ... 112

5.4.1.5 Confusion matrix... 112

5.4.1.6 Precision .. 113

5.4.1.7 Recall... 113

xiv

Univ
ers

iti
Mala

ya

5.4.1.8 F1-Score .. 113

5.4.1.9 Matthews correlation coefficient ... 113

5.4.1.10 Consumption of memory... 115

5.4.1.11 Execution time... 115

5.5 Data Collected for Analyzing the Anomaly Detection Accuracy 116

5.5.1 Silhouette Index... 116

5.5.2 Adjusted Rand Index method .. 118

5.5.3 Normalized Mutual Info (NMI)... 122

5.5.3.1 Data collected for cluster validation.. 124

5.6 Data Collected for Process Execution Time .. 132

5.7 Data Collected for Spark Streaming Execution Time.. 135

5.8 Data Collected for Framework of Memory Consumption 136

5.9 Conclusion ... 138

CHAPTER 6: RESULTS AND DISCUSSION ... 140

6.1 RTADBDT Evaluation Parameters .. 140

6.2 RTADBDT Performance Analysis on Accuracy.. 141

6.2.1 Silhouette Index... 141

6.2.2 Calinski and Harabaz... 143

6.2.3 Adjusted Rand Score ... 145

6.2.4 Normalized Mutual Info (NMI)... 148

6.2.5 Precision .. 149

6.2.6 Recall... 152

6.2.7 F1 Score... 154

6.2.8 Matthews’s Correlation Coefficient ... 157

xv

Univ
ers

iti
Mala

ya

6.2.9 Kappa... 160

6.3 RTADBDT Performance Analysis on Execution Time 161

6.4 RTADBDT Performance Analysis on Memory Consumption 163

6.5 Conclusion ... 164

CHAPTER 7: CONCLUSION ... 167

7.1 Reappraisal of the Research Objectives ... 167

7.2 Research Contributions .. 170

7.2.1 Thematic Taxonomy .. 170

7.2.2 Framework for Real-Time Anomaly Detection Based on Big Data

Technologies .. 170

7.2.3 Proposed Algorithms... 171

7.2.4 Mathematical Model for Validation .. 171

7.2.5 Performance Evaluation of Proposed Solution.. 171

7.2.6 Statistical and Evaluation Techniques ... 172

7.3 Publications.. 172

7.4 Significance and Limitations of the Proposed Solution....................................... 173

7.5 Future Work ... 174

References ... 176

xvi

Univ
ers

iti
Mala

ya

LIST OF FIGURES

Figure 1.1: The flow control of different stages in big data processing and

anomaly detection... 2

Figure 1.2: Approach to statement of the problem ... 7

Figure 1.3: Graphical outline of thesis.. 12

Figure 2.1: Historical evolution and trends of anomaly detection techniques and

big data technologies .. 37

Figure 2.2: The process of real time big data processing technologies for

anomaly detection... 46

Figure 2.3: Findings from the literature review ... 68

Figure 3.1: Accuracy of existing algorithms... 79

Figure 3.2: Memory consumption of existing algorithms... 80

Figure 3.3: Execution time of existing algorithms.. 81

Figure 4.1: Implementation of BroIDS in the proposed framework 84

Figure 4.2: Flume Source Collection Architecture ... 86

Figure 4.3: Topic creation in Kafka .. 87

Figure 4.4: Work flow of Spark streaming processing.. 88

Figure 4.5: Interaction between Spark streaming and Spark MLlib 90

Figure 4.6: Proposed framework for real-time anomaly detection based on big

data technologies .. 92

Figure 4.7: Flow diagram of the proposed RTADBDT framework. 93

Figure 5.1: Execution flow for proposed framework... 107

Figure 5.2: Illustrate the data collection process flow for proposed framework 109

xvii

Univ
ers

iti
Mala

ya

Figure 5.3: Evaluation techniques and its steps for proposed algorithm..................... 115

Figure 5.4: Confusion matrix for SSWLOFCC algorithm on DARPA dataset........... 129

Figure 5.5: Confusion matrix for SSWLOFCC algorithm on MACCDC dataset....... 129

Figure 5.6: Confusion matrix for SSWLOFCC algorithm on DEFCON21 dataset.... 130

Figure 5.7: Confusion matrix for local factor outlier algorithm on DARPA datasets. 130

Figure 5.8: Confusion matrix for local factor outlier algorithm on MACCDC datasets130

Figure 5.9: Confusion matrix for local factor outlier algorithm on DEFCON21

datasets ... 131

Figure 5.10: Confusion matrix for Agglomerative Clustering algorithm on

DARPA dataset ... 131

Figure 5.11: Confusion matrix for Agglomerative Clustering algorithm on

MACCDC dataset ... 131

Figure 5.12: Confusion matrix for Agglomerative Clustering algorithm on

DEFCON21 datasets .. 132

Figure 5.13: Flowchart of collecting execution time on proposed framework.............. 133

Figure 6.1: Silhouette Scoring of SSWLOFCC for DARPA dataset 142

Figure 6.2: Silhouette Scoring of SSWLOFCC for MACCDC dataset 142

Figure 6.3: Silhouette scoring of SSWLOFCC for DEFCON21 dataset 143

Figure 6.4: Calinski and Harabaz of SSWLOFCC for DARPA dataset...................... 144

Figure 6.5: Calinski and Harabaz of SSWLOFCC for MACCDC datasets 144

Figure 6.6: Calinski and Harabaz of SSWLOFCC for DEFCON21 datasets 145

Figure 6.7: Comparison of accuracy between existing and proposed

SSWLOFCC algorithms on DARPA dataset.. 146

Figure 6.8: Comparison of accuracy between existing and proposed

SSWLOFCC algorithms on MACCDC dataset.. 147

xviii

Univ
ers

iti
Mala

ya

Figure 6.9: Comparison of accuracy between for existing and proposed

SSWLOFCC algorithms on DEFCON21 dataset..................................... 148

Figure 6.10: Comparison of normalized mutual info score with three different

datasets on proposed SSWLOFCC algorithm .. 149

Figure 6.11: Precision score for DARPA dataset .. 150

Figure 6.12: Precision score for MACCDC dataset .. 150

Figure 6.13: Precision score for DEFCON21 dataset ... 151

Figure 6.14: Recall score for DARPA dataset ... 152

Figure 6.15: Recall score for MACCDC dataset... 153

Figure 6.16: Recall score for DEFCON21 dataset .. 154

Figure 6.17: F1 score for DARPA dataset ... 155

Figure 6.18: F1 score for MACCDC dataset... 156

Figure 6.19: F1 score for DEFCON21 dataset .. 157

Figure 6.20: Matthews correlation coefficient for DARPA dataset 158

Figure 6.21: Matthews correlation coefficient for MACCDC dataset........................... 159

Figure 6.22: Matthews correlation coefficient for DEFCON21 dataset 159

Figure 6.23: Kappa for all three datasets... 161

Figure 6.24: Execution time for proposed SSWLOFCC compared with two

existing algorithm in three different datasets.. 162

Figure 6.25: Spark Streaming execution time for proposed SSWLOFCC

algorithm on three different datasets .. 162

Figure 6.26: Memory consumption for proposed SSWLOFCC compared with

two existing algorithm in three different dataset 164

xix

Univ
ers

iti
Mala

ya

LIST OF TABLES

Table 1.1: Proposed research methodology .. 11

Table 2.1: Comparison of the features of recent real-time big data processing

technologies.. 23

Table 2.2: Advantages and disadvantages of existing real-time big data

processing technologies. .. 24

Table 2.3: Existing anomalies detection techniques.. 32

Table 2.4: Existing anomaly detection and big data Technologies 34

Table 2.5: Overview of big data processing technologies for anomaly detection

using machine learning .. 43

Table 2.6: Summary of commercial platform and solution for big data streaming

analytics.. 44

Table 2.7: Evaluation techniques .. 60

Table 2.8: Leading evaluation techniques used for anomaly detection 60

Table 2.9: Summary of research challenges and recommendation for future

research directions.. 66

Table 3.1: Specification of the cloud platform.. 71

Table 3.2: Features extracted for anomaly detection... 76

Table 4.1: Tools used in the proposed framework with their version number 91

Table 4.2: Symbols and explanations.. 101

Table 5.1: Confusion matrix explanation table ... 112

Table 5.2: Analysis of the internal cluster quality for three different dataset.............. 117

xx

Univ
ers

iti
Mala

ya

Table 5.3: Comparison of accuracy between existing and proposed algorithms

on DARPA dataset.. 118

Table 5.4: Comparison of accuracy between existing and proposed algorithms

on MACCDC Dataset... 119

Table 5.5: Comparison of accuracy between existing and proposed algorithms

on DEFCON21 Dataset.. 120

Table 5.6: Proposed algorithm normalized mutual info score is compared for

three different datasets.. 123

Table 5.7: Cluster data processed by SSWLOFCC algorithm for DARPA dataset..... 126

Table 5.8: Cluster data processed by SSWLOFCC algorithm for MACCDC dataset. 127

Table 5.9: Cluster data processed by SSWLOFCC algorithm for DEFCON21 dataset.128

Table 5.10: Comparison of the execution time results obtained from proposed

solutions with six different algorithms for DARPA, MACCDC, and

DEFCON21 datasets. ... 134

Table 5.11: Comparison of framework execution time of proposed SSWLOFCC

algorithm for DARPA, MACCDC, and DEFCON21 datasets. 135

Table 5.12: Comparison of memory consumption results from proposed

solutions with six different algorithms for DARPA, MACCDC, and

DEFCON21 datasets. ... 137

Table 6.1: Precision score for DARPA dataset.. 150

Table 6.2: Precision score for MACCDC dataset.. 151

Table 6.3: Precision score for DEFCON21 dataset... 151

Table 6.4: Recall score for DARPA dataset... 153

Table 6.5: Recall score for MACCDC dataset .. 154

Table 6.6: Recall score for DEFCON21 dataset.. 154

xxi

Univ
ers

iti
Mala

ya

Table 6.7: F1 score for DARPA dataset .. 156

Table 6.8: F1 score for MACCDC dataset .. 156

Table 6.9: F1 Score for DEFCON21 Dataset .. 157

Table 6.10: Matthews correlation coefficient for DARPA dataset................................. 158

Table 6.11: Matthews correlation coefficient for MACCDC dataset 159

Table 6.12: Matthews correlation coefficient for DEFCON21 dataset 160

Table 6.13: Kappa value for DARPA, MACCDC, and DEFCON21 datasets............... 160

xxii

Univ
ers

iti
Mala

ya

LIST OF SYMBOLS AND ABBREVIATIONS

ACM Association for Computing Machinery

API Application Programming Interface

ARI Adjusted Rand Index

AWS Amazon Web Services

BN Bayesian Networks

CANN Cluster Center and Nearest Neighbour

DBSCAN Density-based Spatial Clustering of Application with Noise

DDOS Distributed Denial-of-Service

DNS Domain Name System

DOS Denial-of-Service

ETL Extract, Transform, Load

HDBSCAN Hierarchical Density-Based Spatial Clustering of Application with Noise

HDFS Hadoop Distributed File System

HTM Hierarchical Temporal Memory

HTTP HyperText Transfer Protocol

IBM International Business Machines

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IOT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

JVM Java Virtual Machine

KCL Kinesis Client Library

xxiii

Univ
ers

iti
Mala

ya

KNN K-Nearest Neighbours

LOF Local Outlier Factor

LTE Long-Term Evolution

MAC Media Access Control

MIME Multi-Purpose Internet Mail Extensions

ML Machine Learning

NMI Normalized Mutual Info

NN Nearest Neighbours

OC-SVM One Class Support Vector Machine

PAAS Platform as a service

PCA Principal Component Analysis

RAM Random Access Memory

RDD Resilient Distributed Dataset

RF Random Forest

RI Rand Index

RTADBDT Real-Time Anomaly Detection based on Big Data Technologies

R2L Root to Local attacks

SAMOA Scalable Advanced Massive Online Analysis

SIEM Security Information and Event Management

SMTP Simple Mail Transfer Protocol

SOM Self-Organizing Map

SSWLOFCC Streaming Sliding Window LOF Coreset Clustering

SVM Support Vector Machine

TCP/UDP Transmission Control Protocol/User Datagram Protocol

U2R User to Root attack

xxiv

Univ
ers

iti
Mala

ya

WEKA Waikato Environment for Knowledge Analysis

XML eXtensible Markup Language

YARN Yet Another Resource Negotiator

xxv

Univ
ers

iti
Mala

ya

CHAPTER 1: INTRODUCTION

Every year, the usage of connected devices increases tremendously, which contributes

to the growth of real-time network data with high velocity and huge volume. Conversely,

threats on networks in the form of intrusions become inevitable, which needs to be

discovered in real-time. As the first step of defence to detect threat, it becomes crucial to

identify anomaly in the network data.

This chapter presents an overview of the research carried out in this thesis. This

research has encompassed the fundamentals of anomaly detection and real-time big data

technologies, to enable the readers to understand the domain of our research. The chapter

has been organised as follows: Section 1.1 introduces anomaly detection, real-time big

data technologies and machine learning. This followed by the motivation of the research in

section 1.2. The research gap presented in section 1.3 which details the issues associated

with threat detection, utilization of resources, which leads to the synopsis of problem

statement. The aim and objectives of this research are presented in section 1.4, whereas

the overview of our research methodology is presented in section 1.5. Lastly, the section

1.6 summarizes the organization of the chapters in this research.

1.1 Domain Background

In this section, an overview of anomaly detection, real-time big data technologies and

machine learning are presented to offer the fundamental knowledge on the research domain.

Figure 1.1 illustrates bottom up sequence of real-time big data processing for anomaly

detection, where various smart devices are communicated via network technologies. Such

devices generate a lot of sensor data, which are stored in cloud and other storages devices.

These stored datasets collected from sensors devices are processed with big data processing

technologies, such as, Hadoop, Spark, Apache storm, and the results are used for analysis

1

Univ
ers

iti
Mala

ya

and anomaly detections using machine learning algorithms.

Spark Storm S4 Kafka Flume Hive

HBase Hadoop Real-time big data processing technologies

Figure 1.1: The flow control of different stages in big data processing and anomaly
detection

2

Univ
ers

iti
Mala

ya

1.1.1 Anomaly detection

Anomaly detection is an important problem that has been researched within diverse

research areas and application domains (Buczak & Guven, 2016) (Chandola, Banerjee, &

Kumar, 2009). Anomaly detection refers to the process of finding patterns in data that

do not conform to expected behaviour. These non-conforming patterns are often referred

to as anomalies, outliers, discordant observations, exceptions, aberrations, surprises,

peculiarities, or contaminants in different applications domains. Anomaly detections find

extensive use in a wide variety of applications such as, networking monitoring, healthcare,

smart devices, smart cities, Internet of things, fraud detection, cloud, and much more. For

example, an anomalous traffic pattern in a computer network could mean that a hacked

computer is sending out sensitive data to an unauthorized destination (Chandola et al.,

2009). In particular, network monitoring helps to detect threat from various network

infrastructure elements, such as MAC spoofing, IP Spoofing, TCP/UDP fanout, Duplicate

IP, Duplicate MAC, Virus detection, bandwidth anomaly detection and connection rate

detection. Additionally, anomaly detection helps to track the profiles of normal day to day

activities of every system, application, or network (Buczak & Guven, 2016).

1.1.2 Real-time Big data processing

Real-time big data processing is critical than any other processing application, because,

it is essential for the uninterrupted monitoring of events, messages, processes in the network

infrastructure (Cloud Strategy Partners, 2015). Furthermore, fast data is generated for

network monitoring from hardware and software. For example, the log file that can be

rapidly changing in-memory data set, however, in fast data, the data dynamically changes

in certain time intervals varied between seconds and milliseconds. The huge quantity

of data that arrive continuously to the pipeline can be in any format such as, structured,

unstructured, and semi-structured. These data contain the detailed information about the

3

Univ
ers

iti
Mala

ya

messages and events. Streamed data are positioned in the big data analytics for p(Caliński

& Harabasz, 1974)rocessing, and then big data analytics will help to make the analysis

and decision for further process. Adoption of streaming architecture will guarantee the

efficient and seamless communication between the sensing devices and network (Hashem

et al., 2016). A Large amount of real-time data can be processed with the following tools:

Storm, Splunk, S4, SAP Hana, Spark (Yaqoob et al., 2016). With connected devices

continuously collecting, processing, and storing massive amounts of data, it is evident that

we are living in the era of big data. (Hashem et al., 2015) have defined a set of techniques

and technologies that require new forms of integration to uncover large hidden values from

the big data that are diverse, complex and of a massive scale. i. Furthermore, collecting

and processing big data provide new opportunities to use the machine learning algorithms

along with dynamic statistical analysis. These contribute to a more reliable real-time

solution to network anomaly detection problems (Prosak, Gangopadhyay, & Garg, 2019).

1.1.3 Machine Learning

The main objective of the machine learning is to allow a system to learn from the past

or present and use the knowledge to make predictions or decisions regarding unknown

future events(Landset, Khoshgoftaar, Richter, & Hasanin, 2015). Machine learning can be

applied to different industries, like banking, autonomous car, manufacturing, retail industry,

marketing, networking, and general science, including chemistry, physics, medicine,

bioscience, pharmaceutical, insurance, energy, and sustainability.

Several machine learning algorithms have been proposed and used for mining mean-

ingful information from the data through preparation and validation using categorized

datasets. These algorithms are classified into two major categories, such as supervised and

unsupervised. In real-time applications, the machine learning algorithm needs to analyse a

continuous sequence of data occurring in real-time. When compared to batch processing,

4

Univ
ers

iti
Mala

ya

the entire dataset is not available in runtime. Furthermore, real-time application requires

to process data in sequential form as they arrive, and make decisions online (Ahmad,

Lavin, Purdy, & Agha, 2017). Manipulating and modifying the existing machine learning

system will satisfy the market needs to increase the conservation of energy and increase

the computational cost (Al-Jarrah, Yoo, Muhaidat, Karagiannidis, & Taha, 2015).

Traffic amongmachines has become an essential portion of today’s network environment

and will escalate even more in the near future. It is expected to produce exceptional traffic

patterns that will challenge network administrators to learn and track the threat in the

network. Existing machine learning techniques are incompatible for addressing big data

classification problems, and are incapable of handling unstructured data, which are essential

to produce high accuracy for high-velocity data, and ineffective for multiple learning

tasks and also for computational efficiency. Computational complexity has exponentially

risen in high dimensional data that fail to fulfil current needs. In this context, various

machine learning algorithms, such as Nearest Neighbours, Bayesian Networks, Support

Vector Machines, Decision Trees, Random Forest, Ant Colony Optimization, Fuzzy logic,

Principal Component Analysis are discussed in this research.

The above sections had discussed the importance of anomaly detection, real-time big

data processing, machine learning and noted most used algorithms for anomaly detection.

1.2 Research motivation

This section describes the motivation for anomaly detection through real-time big data

processing technologies.

According to report by, Cisco ("Cisco VNI Forecast and Methodology, 2015-2020,"

2016) forecasted that, 2.3 Zettabytes of Internet protocol(IP) traffic would go across the

Internet in 2020, which will be 879 Exabyte more from 2015. This leads to a lapse in

the existing security analytics to detect the threats in real time. Furthermore, Cisco also

5

Univ
ers

iti
Mala

ya

reported that 71 percent of total IP traffic in 2020 is expected to be generated from non-PC

devices (smart devices) such as, tablets, smart watches, smartphones, smart bands, video

game consoles, television set-top devices, smart key chains, smart bulbs, smart security

cameras, smart TVs, and smart locks (Kerner, 2016). This leads to a huge volume of

data to be analysed in real time with high velocity and more varieties, which fulfil the

characteristics of big data, which are volume, velocity and variety.

Meanwhile, non-PC devices pose a huge security threat, if they are not monitored in real

time. In October 2016, large organizations such as, CNN, Twitter, Reddit, The Guardian,

and Netflix in US and Europe were massively attacked via smart home devices (Woolf,

2016). In addition, new threats are expected to emerge in 2021 as hackers find new ways

to attack smart devices and protocols (Jones, 2016).

According to (Gartner, 2018) the expenditures towards worldwide security spending

might reach an amount of 124 Billion dollar by the end of 2019. Universally, organizations

are expected to be extra conscious of the security risk, due to the inefficient and inadequate

protection against attacks by the existing technologies. The U.S. Federal Cybersecurity

Market Forecast has been estimated to reach 22 Billion dollar by 2022, which will constitute

a steady compound annual growth rate of 4.4 percentage (Ohio, 2017). Further, this will

drive the newnorms ofmachine learning solutions to replace Security Information andEvent

Management (SIEM) of traditional anti-virus within the next five years (helpnetsecurity,

2017). It has also been highlighted that in new generation applications, data stream

processing has emerged as one of the potential research areas, in which, data continuously

flows into the processing site.

6

Univ
ers

iti
Mala

ya

1.3 Statement of the problem

This section presents the statement of the problem associated with the domain of

this research. Detecting anomalies in real-time is important to ensure network security.

Practically, it is difficult to detect threats in real-time due to the limitations of existing

approaches. The limitations can be attributed to many factors, which can be regarded as

‘causes’ of problem, which eventually restrict the efficacy of real-time anomaly detection

that can be termed as ‘effect’. Figure 1.2 illustrates the causes and events and their

association towards statement of the problem. It is called causal-effect relationship

approach to formulate the research problem.

Figure 1.2: Approach to statement of the problem

Real-time analysis of anomalies in an incoming data streams is challenged by the

magnitude of threat, the volume and velocity of the data. Given these challenges, current

7

Univ
ers

iti
Mala

ya

techniques for accurate anomaly detection are often characterised by exorbitant execution

time and a bulk memory usage which make any detections insufficient with the context of

real-time intervention. Additionally, storing, processing and analysing the incoming data,

able to explain the threat and outcome would act as a feedback of the future detections,

although offer no value in on-the-spot remedial actions. This is equally challenged by

storage, fault tolerance and scalability issues. Apart from these, the existing approaches

suffer from interoperability problems which deter the efficiency of existing framework.

The massive amounts of data generated in real time have inhibited the performances of

network analysts in terms of scaling the abundant volume of data. Hence it is crucial to

produce network security analytics performance reports in the real-time, and not just to be

generated from existing monthly and weekly log data. Furthermore, increasing numbers

of new types of threat have become common in networks, every day, but the existing

monitoring tools have become obsolete to detect those threat due to the huge volume,

velocity, variety, and veracity of data received for analysis. It is crucial to immediately

process the data collected to detect any potential threat in the network, however, the existing

traditional monitoring tools are incapable of handling big data, and therefore struggle to

continuously monitor network infrastructure and detect the anomaly behaviour and threats

(Raguseo, 2018).

In conclusion, existing anomaly detection techniques for real-time analysis is still at the

premature stage with numerous of flaws.

1.4 Statement of Objectives

This research aimed to enhance framework for anomaly detection by means of real-time

big data technologies and machine learning algorithm. The research objectives listed

below provide the direction of this research:

8

Univ
ers

iti
Mala

ya

1. To review the state-of-the-art anomaly detection techniques and real-time big data

technologies with respect to the performance issues of real-time anomaly detection.

2. To investigate various anomaly detection algorithms to evaluate accuracy, execution

time, and memory consumption in real-time anomaly detection

3. To propose and implement a new framework for improving accuracy, minimizing

memory consumption and shorten execution time.

4. To evaluate the performance of the proposed framework by comparing and validating

it with other existing techniques

The principal objective of this research is developing a real-time big data processing for

anomaly detection using clustering algorithm, mainly aimed at enhancing the detection

accuracy and minimizing the execution time and memory consumption.

1.5 Proposed methodology

This research comprises of four stages to enable the accomplishment of the research

objectives (see section 1.4).

The four objectives listed above will be achieved through the four stages. The first stage

reviews the past researches in the three domains such as, anomaly detection, real-time

big data technologies and machine learning, this will help us to ascertain the research

gap and identify the potential problems. This study will meticulously analyse a number

of present technologies and adoption of real-time big data applications. These existing

technologies will be classified as corresponding solutions. Our initial investigation has

revealed that in the area of real time anomaly detection there are still a number of issues

remain unaddressed (see Chapter 2 for brief discussion about these challenges).

The next stage of research investigates the research problem by means of simulation,

which leads to the development of an application for real-time anomaly detection. Further-

9

Univ
ers

iti
Mala

ya

more, the accuracy of anomaly detection by the existing applications will be tested along

with performance factors such execution time and memory consumption, which will lead

to the identification of the research problem.

In the third stage a composite algorithms based on clustering will be developed and

integrated with big data technologies for improving the detection of anomalies.

The fourth stage focuses on the validation of the proposed framework and will be

equated with current applications. Additionally, a various statistical analysis will be carried

out to establish the outcome. Table 1.1 outlines the proposed research methodology.

10

Univ
ers

iti
Mala

ya

Ta
bl
e
1.
1:

Pr
op

os
ed

re
se
ar
ch

m
et
ho

do
lo
gy

O

B

J

E

C

T

I V

E

To
 re

vi
ew

 th
e

st
at

e-
of

-th
e-

ar
t a

no
m

al
y

de
te

ct
io

n
te

ch
ni

qu
es

 a
nd

 re
al

-ti
m

e
bi

g
da

ta
 te

ch
no

lo
gi

es
 w

ith

re
sp

ec
t t

o
th

e
pe

rfo
rm

an
ce

is

su
es

 o
f r

ea
l-t

im
e

an
om

al
y

de
te

ct
io

n.

To
 in

ve
st

ig
at

e
va

rio
us

an

om
al

y
de

te
ct

io
n

al
go

rit
hm

s
to

 e
va

lu
at

e
ac

cu
ra

cy
,

ex
ec

ut
io

n
tim

e,
 a

nd
 m

em
or

y
co

ns
um

pt
io

n
in

 re
al

-ti
m

e
an

om
al

y
de

te
ct

io
n

To
 p

ro
po

se
 a

nd

im
pl

em
en

t a
 n

ew

fra
m

ew
or

k
fo

r i
m

pr
ov

in
g

ac
cu

ra
cy

, m
in

im
iz

in
g

m
em

or
y

co
ns

um
pt

io
n

an
d

sh
or

te
n

ex
ec

ut
io

n
tim

e.

To
 e

va
lu

at
e

th
e

pe
rfo

rm
an

ce
 o

f a

pr
op

os
ed

 fr
am

ew
or

k
by

co

m
pa

rin
g

an
d

va
lid

at
in

g
it

w
ith

ot

he
r e

xi
st

in
g

te
ch

ni
qu

es
.

A

C

T

I V

I T

I E

S

•
A

na
ly

zi
ng

 &

sy
nt

he
si

zi
ng

 th
e

m
er

its

an
d

fla
w

s o
f p

re
se

nt

te
ch

ni
qu

es

•
C

on
du

ct
in

g
a

qu
al

ita
tiv

e
co

m
pa

ris
on

.
•

G
ro

up
in

g
th

e
re

le
va

nt

w
or

ks
 in

 th
e

fo
rm

 o
f

ta
xo

no
m

y.

•
D

is
co

ve
rin

g
th

e
op

en

is
su

es

•
D

es
ig

n
ex

pe
rim

en
t s

et
up

•

Se
le

ct
in

g
an

d
va

lid
at

in
g

su
ita

bl
e

da
ta

se
t f

or
 th

e
ex

pe
rim

en
t

•
U

si
ng

 th
re

e
di

ff
er

en
t

cl
us

te
rin

g
al

go
rit

hm
s

pe
rfo

rm
in

g
ex

pe
rim

en
t t

o
de

te
ct

 th
e

ac
cu

ra
cy

 o
f

an
om

al
y,

 m
em

or
y

us
ag

e
an

d
ex

ec
ut

io
n

tim
e

fo
r r

ea
l

tim
e

lo
gs

•

C
rit

ic
al

ly
 a

na
ly

si
ng

 th
e

re
su

lts
 o

f t
he

 e
xp

er
im

en
t

•
D

es
ig

ni
ng

 c
om

po
si

te

cl
us

te
rin

g
al

go
rit

hm

•
D

ev
el

op
in

g
a

bi
g

da
ta

 fr
am

ew
or

k
fo

r
re

al
-ti

m
e

an
om

al
y

de
te

ct
io

n
w

ith

en
ha

nc
ed

 a
cc

ur
ac

y,

an
d

m
in

im
iz

ed

m
em

or
y

co
ns

um
pt

io
n,

ex

ec
ut

io
n

tim
e

•

Im
pl

em
en

tin
g

th
e

pr
op

os
ed

 a
lg

or
ith

m
.

•
D

is
co

ve
rin

g
th

e
pe

rfo
rm

an
ce

m

ea
su

rin
g

m
et

ric
s

•
A

na
ly

si
ng

 w
ith

 th
e

ou
tc

om
e

of
 e

xi
st

in
g

fra
m

ew
or

k.

•
U

se
 a

pp
ro

pr
ia

te
 st

at
is

tic
al

an

al
ys

is
 to

 si
gn

ify
 th

e
re

su
lts

.
•

V
al

id
at

in
g

- c
om

pa
rin

g
w

ith

ex
is

tin
g

re
al

-ti
m

e
an

om
al

y
de

te
ct

io
n

ap
pl

ic
at

io
ns

.
•

V
al

id
at

in
g

m
at

he
m

at
ic

al

ex
pr

es
si

on
 a

nd
 e

xp
er

im
en

t
re

su
lts

.

O

U

T

P

U

T

Id
en

ti
fy

 p
o
te

n
ti

a
l

p
ro

b
le

m

P
ro

b
le

m
 e

st
a
b

li
sh

m
en

t

F
ra

m
ew

o
rk

 w
it

h

cl
u

st
er

in
g
 a

lg
o
ri

th
m

a
n

d
 r

ea
l-

ti
m

e
b

ig
 d

a
ta

te
ch

n
o
lo

g
ie

s

V
er

if
ic

a
ti

o
n

 a
n

d
 v

a
li

d
a
ti

o
n

 o
f

S
o
lu

ti
o
n

11

Univ
ers

iti
Mala

ya

1.6 Outline of Thesis

Figure 1.3: Graphical outline of thesis

The outline of this thesis is graphically presented in Figure 1.3. This thesis presents an

in-depth investigation on real-time detection using big data technology, entitled “Real-time

anomaly detection using clustering in big data technologies”. Apart from this present

chapter, this thesis comprises of 6 more chapters, each one presenting holistic discussion

about the different parts of research.

Chapter 2 focuses on the review of existing literature related to detection of anomalies

in real-time big data technologies. This review enlightens our knowledge about the

existing anomaly detection techniques using big data technologies, which will subsequently

help us to identify the crucial problems of the present applications, particularly in terms

of accuracy of detection and significant performance aspects such as, utilization of

memory and computational time. Apart from this, the chapter also emphasizes a number

12

Univ
ers

iti
Mala

ya

of unsupervised clustering algorithm based anomaly detection applications; this study

has also proposed a taxonomy to categorize the existing literature based on big data

technology, anomaly detection, machine learning techniques, modes, data, and application.

Ultimately, the research challenges and recommendations for future researchers have also

been presented.

Chapter 3 presents the analytical report about the impact of clustering algorithms in

anomaly detection specifically related to the precision of detection, utilization of memory,

and computational time as against the traditional methods of real-time anomaly detection.

The research problem, specifics of experimental setup, performance metrics, experimental

bounds, datasets, and the outcome of evaluation are also presented in this chapter.

Subsequently, in Chapter 4 , a novel framework for composite clustering algorithm for

detection of anomaly using real-time big data technologies has been proposed. The proposed

framework is aimed at addressing the pertaining issues such as inadequate detection accuracy

rate, consumption of huge volume of memory and expansive computational cost.

These pseudo-code of clustering algorithms are presented in this chapter. Further-

more, the unique features of proposed hybrid algorithm have been presented. As the

proposed framework is developed by hybrid big data technologies such as, Flume, Kakfa,

Spark Streaming, Spark MLlib, and HBase. The hybridization facilitates to accomplish

performance goals and enhance real-time anomaly detection.

The Chapter 5 details the processing of the collected data for the evaluation of the

proposed solutions. The tools used for validating the results have also been explained,

followed by the details of performance parameters, experimental setup and the statistical

methods used for validating the accuracy of the data collected from the model and proposed

solutions.

The effectiveness of the proposed solutions has been presented in Chapter 6 by

13

Univ
ers

iti
Mala

ya

analyzing the collected results, which have been presented in Chapter 5. This chapter

presents the various features of processing, accuracy rate anomaly detection in real-time,

utilization of memory, and computational time. Furthermore, details about the evaluation

of the mathematical expression with the experiment results have also been presented, along

with comparative analysis of the performance parameter of the proposed framework as

against the existing solution in terms of accuracy, memory consumption and execution

time.

Chapter 7 presents the major contributions of the thesis by explaining the accomplish-

ment of the research objectives. The findings of the research work has been summarized,

and the importance of the proposed solutions has also been highlighted. The presentation

of research limitations and directions for future works concludes this chapter and the thesis

on the whole.

14

Univ
ers

iti
Mala

ya

CHAPTER 2: REAL-TIME ANOMALY DETECTION BASED ON BIG DATA
TECHNOLOGIES

This chapter aims to identify the most significant shortcomings of Real-Time Anomaly

Detection based on Big Data Technologies (RTADBDT) and likewise, examined the

problem that was highlighted in Chapter 1. To achieve this, this research has have

investigated the recent research efforts focused on RTADBDT. This research has analysed

several problems hindering the adoption of RTADBDT and proposed corresponding

solutions by devising a taxonomy. The roots of RTADBDT and taxonomies as techniques,

application, anomalies, modes, data, big data processing, and the record categories have

been analysed. The similarities and differences among proposed solutions have been

analysed in terms of their advantages and disadvantages. This research has also compared

the literature based on objectives. Further, this chapter advocates that problems that stem

from the intrinsic characteristics of RTADBDT, by identifying several new principles.

Finally, several research challenges have been presented to be investigated in this research.

This chapter comprises of the following sub-sections: Section 2.1 carries the details of

contemporary studies related to real-time big data technologies followed by a tabulation

of comparison on the important features, advantages and disadvantages of those studies.

Section 2.2 presents the limitations of the existing anomalies detection techniques and pros

and cons of the most popular clustering algorithms. Details of the investigations about

diverse big data technologies employed for detecting anomalies have been presented in

section 2.3. Furthermore the significance of machine learning and big data technologies

has been presented in section 2.4. Critical evaluation of real time big data processing

for detecting anomalies by means of machine learning algorithms has been presented

in section 2.5 along with their limitations. Taxonomy of real-time big data processing

15

Univ
ers

iti
Mala

ya

technologies for anomaly detection has been presented in section 2.6. Next, the identified

evaluation metrics for determining the precision of clustering and system performance of

the real-time big data processing and anomaly detection have been presented in section 2.7.

Moreover, the research challenges associated with real-time anomaly detection have been

presented in section 2.8. Ultimately, the concluding observations have been presented in

section 2.9.

2.1 Real-time Big Data Processing Technologies

Some of the contemporary real-time big data technologies employed for various anomaly

detection have been critically analysed in this sub section. Generally, several real-time big

data technologies have been employed to collect, pre-process, analyse, and store different

types of data generated from networks, not limited to Spark, Hadoop, Storm, Samza, Flink,

Kinesis, and S4. The technological working mechanism of these applications have been

discussed in the taxonomy section. However, this subsection mainly compares the salient

features, pros and cons of above mentioned technologies.

2.1.1 Spark

Apache Spark, a potent processing structure comprises of a user friendly tool to

effectively analyse different types of data. (Rettig, Khayati, CudrMauroux, & Pirkowski,

2015) have proposed a new approach to evaluate online anomaly detection with two metrics,

using entropy and pearson correlation. Moreover, big data streaming components, such as

Kafka queues and Spark Streaming have been used to assure the generality and scalability

issues. Nonetheless, complex processes are involved in handling data and also huge time

is consumed for even periodic batch processing.

(Fang, Liu, & Lei, 2016) have employed a streaming algorithm in Spark Streaming

framework identifies the click requests of users, and restructures interactions between the

16

Univ
ers

iti
Mala

ya

users and browsers. They have validated their proposed model with HTTP traffic data from

mobile cellular network. Spark Streaming has accomplished the low latency and real-time

identification on main requests. The integrated window in the Spark Streaming retains a

state depending on the incoming data from the data stream. In addition, Resilient distributed

dataset (RDD) generates a slide interval of window period, and each RDD comprises 10

minutes of traffic data. Ultimately, the Spark engine of the streaming algorithms process

the RDDs. It is notable that, the above study did not measure performance parameters

such as execution time and usage of memory.

2.1.2 Storm

Apache Storm is a stream processing model, which centres on exceedingly low latency

and has been regarded as the suitable choice for workloads that need optimal real-time

processing. This model is capable of dealing with huge volume of data and yield less

latency outcomes as against other existing models.

(Celebi, Kingravi, & Vela, 2013) have proposed a real-time data analytics framework

based on Apache Storm to monitor smart home applications. This framework is capable of

rapidly processing the sensed and historical data and streams, making use of IoT devices and

embedded computing systems at the edge of the IoT network. Furthermore, Apache Storm

has been widely utilised to examine spatio-temporal data streams, and it also facilitates

centralized and global level environmental management. The Storm cluster comprises of

master and worker nodes, where the former executes the Nimbus daemons, in charge for

allocating tasks to the worker node and executes a supervisor daemons. Nevertheless, the

need of manual configuration for every IoT device to the Apache Storm is the disadvantage

that makes it difficult to adopt the framework; moreover the above framework had been

evaluated only against one category of dataset.

Off late, (Ficco, Pietrantuono, & Russo, 2018) have investigated the problems associated

17

Univ
ers

iti
Mala

ya

with aging manifestations in the apache Storm. They have identified that the Storm

generates persistent anomalous behaviourism that inhibits some topologies from functioning

constantly as the result of internal resource management tool, which is inclined by the

garbage collector and the memory assigned to worker processes.

Consequently, Storm is subjected to several issues in the long run not limited to memory

utilization, response latency, load balancing and other aging issues.

2.1.3 Flink

Apache Flink is a stream processing framework capable of dealing with batch tasks,

where the batches are just regarded as data streams with limited restrictions, and therefore

considers batch processing as a subset of stream processing.

(Qadah, Mock, Alevizos, & Fuchs, 2018) have proposed a distributed online prediction

system based on Apache Flink framework for analysing user-defined patterns over numerous

substantial streams ofmovement activities. In addition, this approach is based on conjoining

probabilistic event pattern prediction models on multiple predictor nodes with a distributed

online learning protocol for constantly learning the parameters of a global prediction model

and effectively sharing them among the predictors. Preliminary investigations reveal that

distributed online predicition model perform effectively with Apache Flink; however, the

outcomes of Apache Flink have to be evaluated with other existing applications and it is

essential to consider other performance metrics for evaluation purposes.

(Rivetti, Busnel, & Gal, 2017) have proposed a real-time event based anomaly detection

application for manufacturing sector using Apache Flink. The proposed application

delivers job task instances into task manager processes, each holding configurable number

of slots. Given n slots in a task manager, each has access to a n-th of the task manager

available memory, it mught possess any number of threads and tasks instances.

Precisely, it is too early to consider Flink for machine learning adoption. This is due

18

Univ
ers

iti
Mala

ya

to very negligible algorithms are supported by flinkml, and no commercial software has

utilise it for their platform. Additionally, only few open source community are working

on the flinkml resulting in lack of support for the adopting Flink for machine learning

applications.

2.1.4 Kinesis

Kinesis is a part of Amazon’s service that deals with real-time processing of streaming

data on the cloud. This module is intensely incorporated with other Amazon services by

means of connectors, such as S3, Redshift, and DynamoDB, to constitute a complete Big

Data architecture. Kinesis comprises of Kinesis Client Library (KCL), which enables

to develop applications and employ stream data for dashboards, alerts, or even dynamic

pricing (Jayanthi, Sumathi, & Sriperumbudur, 2016).

In this regard, Dong Yuan et.al. (2015) have proposed a framework by incorporating

cloud services with a network of IoT devices. They have utilised amazon kinesis for

receiving data from all the mobile access points. Kinesis has also been used to process

those access point data and stored in the Amazon S3 for further analysis. However, the

proposed framework has not been evaluated on any performance parameters to prove its

efficiency (Yuan, Jin, Grundy, & Yang, 2015).

Additionally (Srikanth & Reddy, 2016) have highlighted latency issues and inefficiency

of the framework in handling stragglers as major problems of Amazon Kinesis. Data

arriving at inconsistent time interval is called stragglers. In this case, Amazon Kinesis

cannot handle the stragglers issues which is considered one of the challenge in real-time

analytics.

19

Univ
ers

iti
Mala

ya

2.1.5 Samza

A distributed stream processing framework, Apache Samza is compactly integrated

with the Apache Kafka messaging system. (Kleppmann & Kreps, 2015) have examined the

design of Kafka and Samza and identified that it facilitates the development of composite

applications by composing a small number of simple primitives - replicated logs and

stream operators.

(Noghabi et al., 2017) have proposed a Samza based distributed system that processes

real-time streams, along with pre-processing of entire data streams. Furthermore, they

have evaluated the recovery time of the system from failures. In addition, the proposed

system supports very large scale of data despite limited memory, by combining local disk

storage, an efficient changelog and caching. Nevertheless, in terms of real-time detection,

Samza faces reliability challenges.

Precisely, Samza is advantageous due to its low latency and recoverability as against

other real-time technologies. Nevertheless, when machine learning is embedded into

Samza architecture it experiences a huge drop in the processing time and gets hindered with

portability issues. Furthermore, lack of interactive mode and higher memory consumption

for processing makes it less efficient to be applied with real-time machine learning

algorithms.

2.1.6 Apache S4

In case of processing event streams, the Java based Apache S4 is regarded as a general

purpose, scalable, distributed platform. The S4 comprises of a smallest component known

as processing element (PE), which operates on a data subset, or a partition of the entire data,

depending on the design. Furthermore, the Apache S4 has been designed by combining

MapReduce and the Actors model. All the nodes in the cluster are identical and lacks

centralized control. On the other hand, load balancing is one of the major challenges with

20

Univ
ers

iti
Mala

ya

S4 (Neumeyer, Robbins, Nair, & Kesari, 2010).

(Xhafa, Naranjo, & Caballé, 2015) have proposed and evaluated S4 for big data stream

processing using global flight monitoring system. They have used cluster environment

using 50-70 znodes under zookeper services. They have achieved very fast process time

per flight. However, heterogeneity of computing znodes in the Apache S4 clusters were

not suitable for processing due to high incoming data rate for real-time processing. Hence,

windowing which is an important function to integrate machine learning for any analysis

is not possible in Apache S4. Consequently, Apache S4 cannot be incorporated in any

machine learning and big data framework.

2.1.7 Hadoop

(Cui & He, 2016) have analysed many other anomaly detection models, where machine

learning was most widely used, whereas, growing number of network traffic restrict the

systems, since they need to perform complex calculation. In addition, the authors have

proposed a model to yield better performance in detecting anomaly using Hadoop, HDFS,

MapReduce, cloud, and machine learning algorithms. In fact, real time input data streaming

were not addressed.

At the same time, another study used big data technologies, such as Hadoop, Hive

and Mahout to implement scalable quasi-real-time intrusion detection system to detect

peer-to-peer botnet using random forests (Singh, Guntuku, Thakur, & Hota, 2014). In

which, Hive platform provides the distributed environment for sniffing and processing

network traces and extraction of dynamic network features. However, the challenges

related to memory consumption and execution time were not addressed for performance

evaluation.

Of late, (Bao et al., 2018) have proposed anomaly detection algorithms that trace

sequence data and uses a probabilistic suffix tree to detect problems from console logs. It

21

Univ
ers

iti
Mala

ya

used Hadoop ecosystem to process and analyse the console log data; however, the proposed

algorithm involved batch processing and not on real-time. In addition, performance metrics

such as, memory consumption and execution time were not addressed. Mostly, Hadoop

was developed to support the batch processing applications. In some of the real-time

applications, Hadoop are used to do batch processing separately on their architecture.

Moreover, embedding two different technologies for real-time and batch processing in

the same architecture raise some issues such as integration, higher memory consumption

and adoptability issues. Therefore, Hadoop is not suitable for a framework in this study

as it is not capable to assist both batch and real-time processing in our work. Table

2.1 shows the comparison of various recent real-time big data processing technologies

features. Similarly, Table 2.2 detailed the advantages and disadvantages of real-time big

data processing technologies.

22

Univ
ers

iti
Mala

ya

Ta
bl
e
2.
1:

C
om

pa
ri
so
n
of

th
e
fe
at
ur
es

of
re
ce
nt

re
al
-ti
m
e
bi
g
da

ta
pr
oc
es
sin

g
te
ch
no

lo
gi
es

R
ea

l-
ti

m
e

B
ig

 D
a

ta

te
c
h

n
o

lo
g

ie
s

P
ro

g
ra

m
in

g

L
a

n
g

u
a

g
es

A
b

st
ra

ct
io

n

E
x
ec

u
ti

o
n

M
o

d
el

A
ss

o
ci

a
te

d

M
L

 t
o
o

ls

M
a

ch
in

e
L

ea
rn

in
g

 C
o

m
p

a
ti

b
il

it
y

In

m

e
m

o
ry

p
ro

ce
ss

in
g

F
a

u
lt

to
le

ra
n

ce

R
es

o
u

rc
e

M
a

n
a

g
em

e
n

t

S
p

a
r
k

Sc

al
a,

Py

th
on

, J
av

a,

R

R
D

D

B
at

ch
,

st
re

am
in

g
M

Ll
ib

,
M

ah
ou

t,
H

2O

C
la

ss
ifi

ca
tio

n,

R
eg

re
ss

io
n,

C

lu
st

er
in

g,

D
ec

is
io

n
Tr

ee
s.

Y
es

Y

es

Y
A

R
N

,
M

es
os

,
St

an
d-

al
on

e

S
to

r
m

Ja

va
, R

ub
y

Sp

ou
ts

,
B

ol
ts,

To

po
lo

gi
es

St
re

am
in

g
SA

M
O

A

N
ot

 su
pp

or
te

d
fo

r m
ac

hi
ne

 le
ar

ni
ng

.
Y

es

Y
es

Y

A
R

N
, s

ta
nd

-a
lo

ne

F
li

n
k

Ja

va

an
d

Sc
al

a

D
at

as
et

B

at
ch

,
st

re
am

in
g

Fl
in

k-
M

L,

SA
M

O
A

M

ul
tip

le
 li

ne
ar

 re
gr

es
si

on
,

SV
M

,
K

-N
ea

re
st

 N
ei

gh
bo

ur
s,

M
in

M
ax

 S
ca

le
r.

Y
es

Y

es

Y
A

R
N

,
M

es
os

,
st

an
d-

al
on

e

K
in

es
is

Ja

va

an
d

C
++

K

in
es

is

C
lie

nt

Li
br

ar
y

B
at

ch
,

st
re

am
in

g
Sp

ar
kM

L,

M
xN

et
/T

e
ns

or
Fl

ow

Li
ne

ar
 L

ea
rn

er
,

Fa
ct

or
iz

at
io

n
M

ac
hi

ne
s,

N
eu

ra
l T

op
ic

 M
od

el
lin

g
Pr

in
ci

pa
l C

om
po

ne
nt

 A
na

ly
si

s
(P

C
A

),
D

ee
pA

R
 fo

re
ca

st
in

g.

N
o

Y
es

Id

en
tit

y
an

d
A

cc
es

s
M

an
ag

em
en

t (
IA

M
)

S
a

m
za

Ja

va

to
pi

cs
,

pa
rti

tio
ns

,
br

ok
er

s,
pr

od
uc

er
,

co
ns

um
er

s

St
re

am
in

g

M
ah

ou
t

D
ec

is
io

n
Tr

ee
,

A
da

pt
iv

e
m

od
el

 ru
le

,
C

ol
la

bo
ra

tiv
e

fil
te

rin
g,

A

ss
oc

ia
tio

n
ru

le
 le

ar
ni

ng
.

N
o

Y
es

Y

A
R

N

S
4

Ja

va

Pr
oc

es
si

ng

El
em

en
ts

St
re

am
in

g
M

ah
ou

t
D

ec
is

io
n

Tr
ee

,
A

da
pt

iv
e

m
od

el
 ru

le
,

C
ol

la
bo

ra
tiv

e
fil

te
rin

g,

A
ss

oc
ia

tio
n

ru
le

 le
ar

ni
ng

.

N
o

Y
es

Y

A
R

N
,

H
a

d
o

o
p

Ja

va
, P

yt
ho

n
M

ap
R

ed
uc

e
B

at
ch

M

ah
ou

t
Lo

gi
st

ic
 re

gr
es

si
on

,
N

ai
ve

 B
ay

es
,

R
an

do
m

 F
or

es
t

K
-m

ea
ns

,
fu

zz
y,

sp

ec
tra

l c
lu

st
er

in
g,

pr

in
ci

pa
l c

om
po

ne
nt

 a
na

ly
si

s,

C
hi

 sq
ua

re
d,

A

ss
oc

ia
tio

n
ru

le
 le

ar
ni

ng
.

N
o

Y
es

Y

A
R

N

23

Univ
ers

iti
Mala

ya

Table 2.2: Advantages and disadvantages of existing real-time big data processing
technologies.

Technologies Advantages Disadvantages

Spark Scalable
 High throughput
 Both batch and streaming

 Share memory with different applications.
 No separate file management.
 Iterative processing.

Storm Easy to use
 Scalable
 Fault-tolerant

 No support for batch processing.
 Less reliability,
 No automatic load balancing

Flink Cross-platform
 Highly Flexible
 Both batch and streaming.

 Less APIs
 Bit Slower
 Only one data processing core component.

Kinesis Durability
 Elasticity
 Easier aggregation of data

 High Cost
 Complicated process.
 Scalability Issue.

Samza fault-tolerant
 High-level abstractions
 Delivery guarantee

 Less reliability
 Less accuracy of recovery

S4 Scalable
 Fault-tolerant
 Pluggable platform

 Lack of the dynamic load balancing
 No centralized administration
 Complex configuration

Hadoop Easy integration
 Scalable
 Batch processing

 No Caching
 Slow processing speed
 No Real-time Data Processing

In the above section real-time big data technologies used for various applications

have been discussed. These technologies when incorporated with the machine learning

algorithms have their own pros and cons in terms of: performance, inadequacy in detection,

longer execution time, and higher memory consumption. Among the various real-time big

data technologies discussed above, the Apache Spark and Flink have more potential to

be included for real-time anomaly detection using big data technologies when compared

to others. However, Spark Streaming is more convenient with numerous libraries to be

embedded with the machine learning as compared to the Flink. Furthermore, Spark

streaming also supports the unsupervised algorithm in their architecture.

24

Univ
ers

iti
Mala

ya

2.2 Current anomalies detection techniques

This sub-section critically analyses various existing techniques used for detecting

anomalies. A hybrid Support Vector Machine (SVM) and ant colony network were

designed to produce a high performance intrusion detection system, which contains parallel

phases to detect the anomaly in real time (Feng, Zhang, Hu, & Huang, 2014). Combining

SVM with ant colony achieves better performance in accuracy rate and faster running

time than other traditional methods. Nonetheless, efficiency of the algorithms needs to

be compared with existing techniques to show the major different between the proposed

designs.

In addition, pcStream algorithm based framework has been used to evaluate three

different types of attacks and to detect the data leakage, malware, and device thefts. It is

a stream clustering algorithm, mainly applied for dynamically detecting and managing

temporal contexts. Choosing parameter can be demanding for very extensive training time.

The framework uses non-exhaustive grid search over this parameter to establish network

parameter (Mirsky, Shabtai, Shapira, Elovici, & Rokach, 2017). Nevertheless, there is a

need to determine the proficiency of the proposed framework to be in line with current

approach of anomaly detection.

Meanwhile, a robust random cut forest technique has been used to perform dynamic

data stream over anomalies detection, which treats different dimensions independently

(Guha, Mishra, Roy, & Schrijvers, 2016). Its helps to preserve pairwise distance, which

will be important for computation and anomaly detection. Consequently, the analytical

result shows that the algorithm promises to fight against the false alarm. However, dataset

size is the one of the constraints for robust random cut forest technique.

In one class support vector machine (OC-SVM) high unbalanced problems of clas-

sification is used to find the positive data for detection of DDOS attack in application

25

Univ
ers

iti
Mala

ya

layer. OC-SVM abstract sorts’ data from users’ session and cluster these data to build user

behavioural model (She, Wen, Lin, & Zheng, 2017). However, low acceptance level for

feature selection is the limitation of OC-SVM

Another one-class support vector machine algorithm (Maglaras & Jiang, 2014) had been

trained to trace the offline network and also detect anomalies in the real time. OC-SVM is

an addition to the support vector algorithms to the occasion of unlabelled data, exclusively

for detection of outliers. It assists the map input data into a high dimensional feature space

and continual finding of maximal margin hyperplane, which utmost splits training data

from the original source. Yet, the dataset used for evaluation by the authors were smaller

in size when compared to the openly available larger datasets.

Furthermore, Cluster center and nearest neighbour (CANN) algorithm is a model

proposed by (W.-C. Lin, Ke, & Tsai, 2015), which is capable of identifying both, similar

and dissimilar classes for a given dataset. Moreover, it has increased the effectiveness

and efficiency of anomaly detection. CANN comprises of the following three stages: (i)

clustering technique to extract cluster center, (ii) measure and sum the distance between

all the data of the given dataset and, (iii) cluster centers. Nevertheless, low acceptance

level of feature demonstration with regards to a better quality in the pattern detection is a

significant pitfall.

Besides, expectation maximization algorithm had been utilized to model an anomaly

detection, using structural time series for the industrial Ethernet traffic system. The system

decomposes the traffic into four components, based on a model, which has definite meaning

for detection (Lai, Liu, Song, Wang, & Gao, 2016). This model helps to improve the

performance of measuring abnormal and low false alarm rate, although, updating the

parameter is a complex process.

In addition, a hybrid one-class support vector machine and deep belief nets model has

26

Univ
ers

iti
Mala

ya

been proposed for anomaly detection with high dimensional and large-scale dataset (Erfani,

Rajasegarar, Karunasekera, & Leckie, 2016). This architecture has significant detection

rate and eases the computational complexity of training and testing the model. It also

helps to approach the complexity and scalability problems of one SVM. Despite the ability

to provide detection in high dimension, the architecture is restricted in non-convex loss

function.

Online local adaptive multivariate smoothing model had been proposed to engage the

high false alarm rate in network intrusion detection system (Grill, Pevný, & Rehak, 2017).

In which, HTTP proxy logs dataset are collected from networks of different companies for

evaluation. In this technique, true anomaly score are improved concurrently detecting the

time and space. However, inefficiency in selecting more accurate parameters to set for

algorithm is a challenge.

Self-organizing maps (SOM) (C. Yin, Zhang, & Kim, 2017) is one of the well-known

clustering algorithms, which has been used to detect the anomalous threat in mobile

devices. The process consists of three types of evaluation benchmarks, which are accuracy

rate, precision rate, and recall rate. The result proves that improved SOM can produce

higher accuracy rate for openly available KDD Cup99 datasets. At the same time, it

consumes longer time to find the initial weight vector and the proposed setup should be

evaluated with mobile devices.

Moreover, enhanced support vector (Ramamoorthi, Subbulakshmi, & Shalinie, 2011) is

famous for detecting anomaly in real time applications. It provides the better classification

accuracy for incoming flows, as an attack or normal flow. This model has increased the

classification accuracy using weight assignment for real-time instances. Nonetheless, the

complexity in selecting the parameter for this algorithm is a bottleneck.

The hidden semi-markov model (Bang, Cho, & Kang, 2017) is used to detect anomaly

27

Univ
ers

iti
Mala

ya

in wireless sensor actuator network based on the Long-Term Evolution (LTE) signalling

traffic. This model improves the detection sensitivity result, and shows more attack alarms

with false positive and true negative ration. Despite that, longer time duration and unknown

size for training dataset makes it complex to perform.

Lastly, Hierarchical temporal memory (Lavin & Ahmad, 2015) based model is used to

test and measure open source data for anomaly detection on streaming data. In this model,

Numenta anomaly benchmark broad and solid assessment tools are used for real-world

anomaly detection. Regardless, the efficiency of the proposed techniques were not provided

on the basis of performance and false detection.

In the above section various anomaly detection techniques from different domains had

been discussed. All these techniques have their own strengths and challenges in terms of

anomaly detection. Especially, clustering and support vector machine techniques provide

more promising accuracy, compared to other techniques. However consuming longer time

duration for training model and inefficiency in choosing the specific parameters are the

challenges of the models.

2.2.1 Clustering Algorithms

This sub-section critically analyses various clustering algorithms used for real-time

anomaly detection.

Unsupervised algorithm focuses on the data that does not contain any labelling

information and it does not need a separate training and testing phase (Habeeb et al.,

2018). Many unsupervised machine learning algorithms have been used for anomaly

detection (Ahmad et al., 2017). Unquestionably, clustering helps to classify the patterns

into groups and further it supports to obtain insight, classification and compressing of

data (Celebi et al., 2013).Subsequently,less computational point in clustering algorithms

have outperformed other unsupervised machine learning algorithms (Muller et al., 2018).

28

Univ
ers

iti
Mala

ya

Particularly in clustering, the K-means algorithm is most widely used due to various

reasons namely, simplicity, adaptability, time and storage complexity, invariant to data

ordering and guaranteed coverage. Furthermore, K-means has been used to initialize

other clustering algorithms, such as Hierarchical Density-Based Spatial Clustering of

Applications with Noise (HDBSCAN) and Spectral clustering (Celebi et al., 2013)(Chen,

Song, Bai, Lin, & Chang, 2011).

The K-means clustering algorithm congregates the objects as K disjoint clusters

depending on their characteristics (Mnz, Li, & Carle, 2007). The objects that possess

identical characteristics are amassed in the same cluster. Münz, G., et al. (Mnz et al.,

2007) proposed flow-based anomaly detection scheme based on the K-means clustering

algorithm. The fundamental features of the clusters are used as patterns to facilitate

operationally effective detection of anomalies based on distance in new monitoring data.

Even though, it provides promising result, the system failed to address the challenges of

memory consumption and execution time of the proposed scheme. Another study, has also

proposed a multi-level hybrid intrusion detection model using support vector machine

and modified K-means algorithms (Al-Yaseen, Othman, & Nazri, 2017). This model

has remarkably enhanced the performance of classifier and reduced the training time of

classifier. However, this model also faced the challenge of memory overflow. At the same

time (Celebi et al., 2013) have compared and evaluated various initialization methods

developed for K-means algorithm. In performance evaluation, five effective quality criteria,

such as initial Sum of Squared Error (SSE), final SSE, Normalized Rand, Number of

iterations and CPU time were used to measure besides memory consumption.

Additionally, clustering membership of data instance (e.g. Small subset of eigenvectors

of a graph Laplacian matrix) has been determined by implementing basic clustering

techniques in Spectral Clustering. This is generally employed for addressing spectral

29

Univ
ers

iti
Mala

ya

optimization issues. In addition the m-eigenvectors have been considered as an m-step

iterative bi-clustering method, wherein, all consecutive iterations seek a bi-clustering in

the space orthogonal to the first (m-1) bi-clustering space.

In some cases, Spectral Clustering have better performance when compared to other

traditional clustering techniques, such as K-means and hierarchical clustering (Nian, Zhang,

Tayal, Coleman, & Li, 2016). Moreover, spectral clustering has been used to develop a

novel spectral ranking approach for anomaly detection, which produces an anomaly ranking

based on the majority class or depending on two main patterns, additionally, the positive

or negative smaller class order generates ranking reference. Furthermore the proposed

algorithm was evaluated for Receiver Operating Characteristic curves. Nevertheless,

memory consumption and execution time were not covered in evaluation metrics.

Isolation trees constitute the Isolation Forest, where, each instance is separated from one

another. The tree structures of the learned groups produce anomaly records, this approach

evades the computation of costly distance or density measures (Stripling, Baesens, Chizi, &

vanden Broucke, 2018)(Puggini & McLoone, 2018). They have proposed a method based

on isolation forest algorithm for streaming data using sliding window. In which, for each

instance of sliding windows, a score was generated to detect the concept drift. Evaluation

results prove to be effective, but no comparison was carried out with existing approaches,

and performance metrics were not evaluated for computational complexity (Ding & Fei,

2013). Similarly, in another study, Isolation Forest was used for dimensionality reducing

pre-processing step to enhance the interpretability of isolation forest model and improve

the performance on anomaly detection (Puggini & McLoone, 2018).

In the Hierarchical Density-Based Spatial Clustering of Applications with Noise

(HDBSCAN) the number of clusters are calculated automatically and it is able to handle

clusters with different density and shapes (Abdullah & Chanderan, 2017). Furthermore,

30

Univ
ers

iti
Mala

ya

noise and outliers were identified easily. In addition, (Abdullah & Chanderan, 2017)

have developed a malware behaviour detection system based on HDBSCAN that groups

malware samples. This system identifies anonymous malware, and also addresses the

issues of asymmetric and anonymous malware from the data, and employs single-linkage

clustering techniques. Precision and recall were used for evaluation metrics. While, none

of the computation performance metrics were evaluated in that method.

Table 2.3 shows different anomalies detection techniques with their domains. All these

algorithms have their own pros and cons. In terms of anomaly detection, a matured state

batch data processing is an added advantage; which is not in the case of real time processing.

Meanwhile, in terms of the accuracy of batch processing, higher percentage in detection

rate is an advantage as against the real-time processing accuracy rate. Furthermore, in batch

processing anomaly detection memory consumption is not high, but real-time anomaly

detection consumes higher memory. In terms of execution time, batch processing anomaly

detection takes shorter algorithm execution time when compared to real-time anomaly

detection. This leads to this present research to propose a new composite clustering

algorithm for anomaly detection to address all the existing challenges.

2.3 Anomaly detection with big data technologies

The non-stop gathering of streaming of traffic data by the network hints the big data

problems that fulfil the basic criteria of big data, which are volume, variety, and velocity

(Suthaharan, 2014). On the other hand, another study has highlighted the network

monitoring for security problems, associated with the 4 V’s of big data, such as variety,

veracity, volume, and velocity. A large amount of network data were processed efficiently in

real time using big data analytics and also early detection of the various network attacks. In

a traditional database, interconnections were through using data synchronization techniques

which are not required in the big data analytics (Camacho, Macia-Fernandez, Diaz-Verdejo,

31

Univ
ers

iti
Mala

ya

Table 2.3: Existing anomalies detection techniques

Domain Techniques References

Smartphone

pcStream algorithm (Mirsky et al., 2017)

Self-organizing maps (C. Yin et al., 2017)

Network &

Wireless

network

Hybrid of One-class Support Vector Machines (1SVM) & Deep

Belief Nets(DBN)

(Erfani et al., 2016)

Combines a Support Vector Machine with an Ant Colony

Network

(Feng et al., 2014)

One-Class Support Vector Machine. (Maglaras & Jiang, 2014)

Block-based One-Class Neighbor Machine and Recursive

Kernel-based online

(T. Ahmed, Oreshkin, &

Coates, 2007)

Online Local Adaptive Multivariate Smoothing (Grill et al., 2017)

Random cut forest (Guha et al., 2016)

Cluster center and nearest neighbor (W.-C. Lin et al., 2015)

One Class Support Vector Machine (She et al.)

Enhanced Support Vector Machine. (Ramamoorthi et al., 2011)

Expectation Maximization (EM) algorithm (Lai et al., 2016)

Hidden Semi-Markov Model (Bang et al., 2017)

Hierarchical Temporal Memory (Lavin & Ahmad, 2015)

Earth Science Expectation Maximization – Clustering (Q. Liu et al., 2017)

Oil

Production

Bayesian Gaussian Markov Random Fields (Idé, Khandelwal, &

Kalagnanam, 2016)

& Garcia-Teodoro, 2014). Furthermore few other studies have addressed use cases related

to big data and network security, which were malware beacon activity detection in a

malware infected machine attached to an outside IP address to get instructions from the

command and control centre. Nonetheless, such type connections are undetected in the

huge legitimate traffic, especially when the malware traffic happens over port 80, where

32

Univ
ers

iti
Mala

ya

HTTP web traffic occurs. Designing big data analytics for this scenario will help to identify

what happens to the network, such as a number of bytes transferred over a certain period.

Furthermore, it helps to compare old and new patterns from log files accessed for months

via graph-theoretic analysis(D. Lin, 2013) (S. Liu, 2015).

Anomalies in data collected from a sensor network can indicate the data analysts which

of the sensors are broken down or detecting events are fascinating (Chandola et al., 2009).

Besides, collected sensor network might contain different types of data, such as binary,

discrete, continuous, audio, video, which falls under characteristics of big data. Therefore,

combining big data analytics to identify the threat detection has become crucial part

in current environment. Table 2.4 shows the technologies used in different anomalous

detection in big data technologies.

2.4 Machine learning algorithms with big data

Machine learning is the data that powers the models whereby the models get trained well

using enormous amount of data to predict accuracy. The new era of big data is catapulting

machine learning to the forefront of research and various industrial applications without

leaving the network environment. The production of big data has forced us to rethink not

just data processing frameworks, but implementations of machine learning algorithms to

perform intelligent operations.

Today, the problem of big data collections is often solved through distributed storage

systems, which are designed to carefully control access and management in a fault-tolerant

manner. One solution to the problem of big data objects in machine learning is through

parallelization of algorithms. Data parallelism, where the data is divided into more

manageable pieces, and each subset is computed simultaneously or task parallelism, in

which, the algorithm is divided into steps that can be performed concurrently. Furthermore,

when developing big data processing engines various number of tools can be used for

33

Univ
ers

iti
Mala

ya

Table 2.4: Existing anomaly detection and big data Technologies

Anomalous Hadoop Storm Spark Flume Kafka HBase Others References

Host misbehaviour ✓

(Gonçalves,
Bota, &
Correia, 2015)

Web server ✓
(Lee & Lee,
2011)

Threat Detection ✓ ✓ ✓ ✓
(Lobato, Lopez,
& Duarte,
2016)

Network &
Hardware ✓ ✓

(Rettig,
Khayati, Cudré-
Mauroux, &
Piórkowski,
2015)

Power
Consumption ✓ Hive (X. Liu &

Nielsen, 2016)
Hardware &
resource usage ✓ ✓ ✓ (Solaimani et

al., 2016)

Network

✓ ✓
(Rathore,
Ahmad, & Paul,
2016a)

✓ ✓

(Dromard,
Roudière, &
Owezarski,
2015)

 ✓

(Casas,
D'Alconzo,
Zseby, &
Mellia, 2016)

✓ ✓ ✓

(S. Zhao,
Chandrashekar,
Lee, & Medhi,
2015)

Cloud log ✓ (Cui & He,
2016)

Malware in mobile ✓ MongoDB
(McNeil,
Shetty, Guntu,
& Barve, 2016)

machine learning algorithms for real-time analysis. Researchers have come up with few

selection criteria for machine learning into big data processing, which are scalability, speed,

coverage, usability, and extensibility of the algorithms that support well with big data

34

Univ
ers

iti
Mala

ya

processing (Landset et al., 2015). The rapidly growing network data has moves the machine

learning towards the distributed and real-time processing. This scenario is challenged by

the inability to appropriately detect anomaly using traditional tool for machine learning.

Integrating the hybrid machine learning algorithms for the big data processing will help

to increase the percentage of producing accuracy in results and also reveal the hidden

knowledge of the big data, which are associations, sequences, classification, forecasting,

anomalies, and clustering among the data.

This research has discussed some of the existing machine learning algorithms related to

big data processing challenges. (L. Zhou, Pan, Wang, & Vasilakos, 2017) have presented

a three phased framework of machine learning on big data (MLBiD), which includes

pre-processing, learning, and evaluation. Furthermore, it identifies the various challenges

and opportunities in this domain for upcoming years. They have also proposed a taxonomy

with supervised and unsupervised learning, reinforcement, and data availability. Moreover,

they have summarized several research issues, which includes new big data machine

learning architecture that seamlessly support the real-time processing with massive volume

of heterogeneous data.

(Fernández, Carmona, del Jesus, & Herrera, 2016) have addressed various issues

related to the data distribution and parallelization of the present algorithms and with

fuzzy representation. Furthermore, challenges of different big data technologies were also

discussed which includes Hadoop ecosystem (HDFS, HBASE, YARN,Map Reduce pro-

gramming), Spark major concept resilient distributed datasets(RDD), FlinkML, including

data pre-processing, supervised learning, and recommender systems.

Besides, (Suthaharan, 2014) has focused on various problems and challenges when

combining big data and machine learning for network intrusion traffic. Due to time

sensitive applications and prediction in network intrusion detection, it needs extremely

35

Univ
ers

iti
Mala

ya

capable big data technologies to tackle the recent problems. As well as some of the major

problems, such as network topology, communication and security, associated with big data

were addressed.

There are various factors stopping the existing machine learning algorithms to incorpo-

rate for real-time application due to most of the existing machine learning algorithms were

developed for batch processing application, and not for real-time. In addition, existing

architecture struggle to provide operation for real-time pipelining for incoming data and

windowing of micro batches to apply for any machine learning algorithms.

2.5 State-of-the-Art machine learning algorithm with real-time big data pro-
cessing technologies for anomalies detection

This sub-section critically analyses real time big data processing for anomalous detection

through machine learning algorithms and their limitation.

(McNeil, Shetty, Guntu, & Barve, 2016) have analysed the available tools to detect

malware in the mobile devices; however, these tools failed to integrate group user profiling,

which helps to automated behaviour driven dynamic analysis on targeted malware detection.

Furthermore, they have proposed scalable real-time anomalies detection and notification

of targeted malware in mobile devices (SCREDENT) architecture, to classify, detect, and

predict targeted malware in real-time. Even so, evaluation of that proposed architecture

failed to give the promising result. In Figure 2.1 present a timeline of the historical

evolution and trends for anomaly detection techniques and big data technologies. Figure

2.1 highlights various algorithms and big data technologies which are being used in this

research. The timeline shows the years in which the algorithms and technologies has been

developed for anomaly detection and big data framework.

36

Univ
ers

iti
Mala

ya

Fi
gu

re
2.
1:

H
ist
or
ic
al

ev
ol
ut
io
n
an

d
tr
en
ds

of
an

om
al
y
de
te
ct
io
n
te
ch
ni
qu

es
an

d
bi
g
da

ta
te
ch
no

lo
gi
es

37

Univ
ers

iti
Mala

ya

Moreover,(Lobato, Lopez, & Duarte, 2016) have reviewed existing security approach,

such as security information and event management(SIEM) build, to handle the data

gathering and process in single point. Apart from that, it produces huge amount of

false alarm. In addition, they have proposed an architecture to detect threat using steam

processing and machine learning in real time. This architecture combines the benefit of

real-time streaming through batch processing over a past available dataset and reduction of

human involvement to the system. The proposed system also helps to detect the known

and zero-day attack for attack classification and anomaly. However, the proposed system is

weak on the accuracy of the dataset used for the experiment, in spite of openly available

dataset, such as KDD dataset.

Meanwhile,(Gonçalves, Bota, & Correia, 2015) have presented challenges in complex

network infrastructure, which contains information of the number of devices stored in the

vast logs file. Therefore, extracting meaningful information from that logs is demanding.

The novel approach for assessing security logs of the various infrastructure devices to

discover misbehaving hosts using machine learning and data mining techniques. The

proposed approach has two phases. Firstly, executing a set of steps for defining and

configuring the detection mechanism, and secondly executing the detection mechanism in

runtime. Nevertheless, the experimental setup is based on batch processing, and efficiency

of the output is not accurate enough and high human intervention is also needed to automate

some of the process.

Another study reveals that out of many other anomaly detection models, the machine

learning has been most widely used, whereas growing number of network traffic challenges

the existing system, since it needs to perform complex calculation (Cui & He, 2016). In

addition, a model was proposed to yield better performance in detecting anomaly using

Hadoop, HDFS, Mapreduce, cloud and machine learning algorithms. Further, weka

38

Univ
ers

iti
Mala

ya

interface was used in the model to evaluate accuracy and efficiency with naive bayes,

decision tree and support vector machine algorithm. In fact implementation of cloud

infrastructure and real time input data streaming were not addressed well.

Besides, (Rettig et al., 2015) have addressed challenges in detecting anomalies in the

streaming data, mainly focusing on generality and scalability. They have proposed a new

approach to evaluate online anomaly detection with two metrics, using entropy and pearson

correlation. Moreover, big data streaming components, such as Kafka queues and Spark

Streaming are used to assure the generality and scalability issues. Nonetheless, complex

processes were limited to handle by the data and also long time duration for periodic batch

processing.

Most of the current anomaly detection methods have been employed to handle the batch

processing model, which needs to be setup manually and has to be trained to discover the

threats. Nevertheless, these models have a low reliability and scalability, and used for

non-real time detection (Wang et al., 2018). Furthermore, a study proposed hierarchical

temporal memory model, which can predict the flow of data in real-time depending on

the state of the previous learning. However, simulated dataset were used for evaluation as

against an openly available attack dataset, and also, processing performance and efficiency

has to improve for proposed model (Wang et al., 2018).

A study has proposed a novel framework for real-time network traffic anomaly detection

based on machine learning algorithms to deal with large amount of real-time data in

scalable manner and to be fault-tolerant (S. Zhao, Chandrashekar, Lee, & Medhi, 2015).

The idea is to incorporate existing machine learning with big data processing framework

in order to perform real-time processing and analyse the real-time network-flow. Using

such technologies; the authors were able to get promising real-time network anomaly

detection results. However, accuracy still needs to be improved, and visualization tools for

39

Univ
ers

iti
Mala

ya

understanding lively behaviours have to be incorporated.

In recent years, user group profiling has been a major threat in malicious mobile attacks,

in this context, a study has proposed a scalable solution for real time anomalies detection

to predict targeted malware in real time (McNeil et al., 2016). Moreover, the proposed

solution is based on notification of the target malware in mobile devices in order to

minimize the number of parallel dynamic analysis by joining the behaviour-triggering

probability approach and the user groups. The result shows proactive, adaptive alerts to

individual users, however, it consumes a lot of computational time.

Furthermore, a real-time intrusion detection system has been also proposed based

on apache Hadoop for ultra-high speed big data environment (Rathore, Ahmad, & Paul,

2016), which detects unknown network attacks using machine learning algorithm. The

proposed intrusion detection system architecture has four layers, which are: (i) data

gathering, (ii) pre-processing and load balancing, (iii) analysis, and (iv) decision making

layer. The system presents nine parameters for classification for feature selection scheme

in pre-processing stage. The results show that even using various classifiers, such as

REPTree, J48, random forest tree, support vector and Naïve Bayes, only J48 and REPTree

have performed better, in terms of accuracy at the cost of high memory consumption.

Likewise, (Juvonen, Sipola, &Hämäläinen, 2015) have proposed a framework for finding

abnormal behaviour from http log. Additionally, it also compared random projection,

principal component analysis and diffusion map algorithms for anomaly detection using

high-dimensional data in real time. The memory usage and speed of all the three algorithms

were tested. However, simulated logs were used instead of openly available datasets and

scalability of the framework is unknown.

Similarly, a novel real-time anomaly detection framework has been proposed based

on dynamic cloud resource scheduling (Solaimani, Iftekhar, Khan, Thuraisingham, &

40

Univ
ers

iti
Mala

ya

Ingram, 2014). The idea is to monitor the virtual machine stream data performance,

such as CPU load, memory usage and I/O. The study used a distributed framework like

Apache Storm to deal with performance stream data and make decision without delay.

The proposed framework has illustrated its effectiveness by offering a real-time complex

analytic functionality over stream data. Additionally another study has evaluated various

algorithms for anomalies detection in real-time based on execution time, CPU usage, and

the number of anomalies. The objective is to monitor the streaming log data generated

in the national educational network (Hasani, 2017). However, it did not focus on the

scalability, and efficiency, moreover small sized dataset were used for analysis.

In addition, a new method for data driven Quality Management in industry processes

has been proposed, which allows a multidimensional analysis of the anomalies and their

real-time detection in the running system (Stojanovic, Dinic, Stojanovic, & Stojadinovic,

2016). The system proposed has been based on learning the normal behaviour of the

system (based on past data) and detecting an anomalous behaviour in the real-time (by

processing real-time data). The approach revolutionizes the way the quality control will be

applied in complex processes with many nonlinearly correlated parameters. Nevertheless,

accuracy and efficiency were not addressed in the method.

Besides the above, another study has also proposed a real-time threat detection system

based on stream processing and machine learning algorithms, which helps to detect the

known threats and classify them. Nevertheless, this approach has high latency with

responses time, and the results were not analysed on the memory usage and duration

(Lobato et al., 2016).

Lastly, (X. Liu & Nielsen, 2016) have revealed that the existing anomaly detection

models for smart grid are mostly based on offline mode, and they also consume huge

amount of energy. In addition, they have proposed a method to detect anomaly, using

41

Univ
ers

iti
Mala

ya

in-memory distributed framework. The framework contains Spark Streaming and lambda

system. Its major advantage is to support scalable live streaming for real-time detection.

However, the framework took longer time duration to train the model. Consequently

scheduling of real-time task was unknown.

All the above discussed approaches and their limitations demand reassessing the

framework design to support the anomaly detection. Especially, an advance real time big

data analytics for anomaly detection using machine learning will bring promising and

improved performance and accuracy for anomaly detection.

Industries might face more challenges with emerging new set of technologies, such

as cloud to the edge, data from IoT, smart devices, intelligent things, block chains,

connected home, virtual reality, 5G, quantum computing, serverless and PaaS. However,

sophisticated advance anomalous detection techniques using machine learning and big data

should be adequate to handle those challenges. Table 2.5 reveals the big data processing

technologies for anomaly detection using machine learning. Table 2.6 describes the number

of commercial platforms, which have integrated machine learning, big data technologies

into their anomalous detection.

42

Univ
ers

iti
Mala

ya

Table 2.5: Overview of big data processing technologies for anomaly detection using
machine learning

Domain Finding ML Techniques Reference

Telecommunication

and Mobile network

Extracting information from the

security logs are trivial

Unsupervised – Clustering

(Expectation- Maximization

algorithm) and Supervised linear

classification

WEKA software used

 (Gonçalves et al.,

2015)

Detecting anomalies in the streaming

data

Pearson correlation pipeline (Rettig et al., 2015)

Existing framework do not integrate

group user profiling which helps to

perform targeted malware detection.

K-means clustering, Markov

models

 (McNeil et al., 2016)

Network traffic

Huge amount of traffic data delay the

response time to detect the threats –

Scalability and Accuracy - Memory

consumption and searching

complexity – boosting accuracy

Principal Component Analysis (Lee & Lee, 2011)

Current security approaches are single

point, and generate huge amount of

false alarm.

Decision trees algorithms,

Artificial Neural Network,

Support Vector Machine

 (Lobato et al., 2016)

Smart grid Detection models are based on

offline. Huge amount of training data

are required.

Periodic autoregression with an

exogenous variable.

 (X. Liu & Nielsen,

2016)

Cloud environment Increasing network traffic data is a

bottleneck for an existing system,

which has to perform the complex

calculation.

Naïve Bayes, Decision Tree and

Support Vector Machine (Weka

Interface)

 (Cui & He, 2016;

Shirdastian, Laroche,

& Richard, 2017)

43

Univ
ers

iti
Mala

ya

Table 2.6: Summary of commercial platform and solution for big data streaming
analytics

Product name Description Architecture

Components

Machine

Learning

Source

Anodot Anodot platform automatically selects

the appropriate algorithm to exhibit the

data pattern from available options and

adjust it over time, based on real-time,

mainly for anomaly detection

Hadoop, Spark, Hive,

anomaly detection

engine.

Yes (Dror, 2017)

Numenta Numenta platform can work with both,

predictable and highly unpredictable

platform. The algorithm works with

continuously learning algorithm, so that

data are automatically handled without

human intervention.

No access to architecture

component of the system.

Yes (Lavin & Ahmad,

2015)

Microsoft

azure stream

analytics

Azure stream analytics is real-time

analytic computations on streaming

data to provide multiple solutions. It

combines azure streaming analytics and

apache storm on azure HDinsight, using

PaaS solution.

Kafka, RabbitMQ,

ActiveMQ

Apache storm, azure

stream analytics

Hbase, HDFS.

Yes (Branscombe, 2015)

WSO2

analytics

WSo2 analytics platform an one stop

centre, which is capable to collect and

analyse various IoT

sensor data, which do real-time and

batch threat analysis using a machine

learning algorithm

Event receivers, Siddhi

event, Apache spark,

Caasandra, Hbase

No ("Introducing WSO2

Data Analytics

Server," 2015)

Striim Striim is end-to-end in-memory

streaming platform used for

infrastructure critical application.

Data lake, Kafka,

NoSQL, Hadoop, Hbase.

Yes (Wilkes, 2016)

Tibco

streamBase

TIBCO streamBase is the event

processing platform, which develop,

host, execute, and integrate the

predictive analytics in big time real

time.

Hadoop, spark. Kafka,

Flume, casssandra,Hbase.

No ("TIBCO StreamBase

and the TIBCO

Accelerator for

Apache Spark," 2017)

44

Univ
ers

iti
Mala

ya

2.6 Taxonomy of Real-time big data processing technologies for anomaly de-
tection.

This section highlights and proposes a taxonomy for the anomaly detection, big data,

and machine learning. A taxonomy of real-time big data processing for anomaly detection

is classified into different categories, which are, techniques, application, anomalies, modes,

data, big data processing, and the record categories. Figure 2.2 shows the classified

taxonomy of real-time big data processing for anomaly detection, based on the set of

parameters found in majority of the literature review.

45

Univ
ers

iti
Mala

ya

Ta
xo
n
o
m
y

A
p

p
li
c
a
ti

o
n

s

M
o

d
e

rn
 N

e
tw

o
rk

 T
ra

ff
ic

M
o

b
il
e
 C

lo
u

d

A
u

to
n

o
m

o
u

s
 V

e
h

ic
le

s

T
e
c
h

n
iq

u
e
s

N
e
a

re
s
t

N
e
ig

h
b

o
u

rs

M
o

d
e

s

S
u

p
e

rv
is

e
d

 a
n

o
m

a
ly

d
e
te

c
ti

o
n

S
e
m

i-
S

u
p

e
rv

is
e
d

 a
n

o
m

a
ly

d
e
te

c
ti

o
n

U
n

s
u

p
e
rv

is
e
d

 a
n

o
m

a
ly

d
e
te

c
ti

o
n

B
a
y

e
s
ia

n
 N

e
tw

o
rk

s

H
e
a

lt
h

c
a
re

A
n

o
m

a
li
e

s

P
o

in
t

A
n

o
m

a
li
e
s

C
o

n
te

x
tu

a
l
A

n
o

m
a
li
e
s

C
o

ll
e
c

ti
v
e
 A

n
o

m
a

li
e
s

In
s

id
e
r

T
ra

d
in

g
 D

e
te

c
ti

o
n

S
a
fe

ty
 c

ri
ti

c
a
l

D
e
c

is
io

n
 T

re
e

s

P
ri

n
c
ip

a
l
C

o
m

p
o

n
e
n

t

A
n

a
ly

s
is

R
a
n

d
o

m
 F

o
re

s
t

S
u

p
p

o
rt

 V
e
c
to

r

M
a
c
h

in
e
s

B
ig

 D
a
ta

P
ro

c
e
s
s

in
g

S
p

a
rk

S
to

rm

K
a
fk

a

F
lu

m
e

D
a
ta

S
tr

u
c
tu

re
d

S
e
m

i

s
tr

u
c
tu

re
d

U
n

s
tr

u
c
tu

re
d

A
m

a
z
o

n
 K

in
e
s

is

R
e
c

o
rd

C
a
te

g
o

ri
e
s

H
o

s
t-

b
a
s
e
d

 d
a

ta

N
e
tw

o
rk

-b
a
s
e
d

d
a
ta

F
u

z
z
y
 L

o
g

ic

H
a
d

o
o

p

A
n

t
C

o
lo

n
y
 O

p
ti

m
iz

a
ti

o
n

H
ie

ra
rc

h
ic

a
l
T

e
m

p
o

ra
l

M
e
m

o
ry

Fi
gu

re
2.
2:

Th
e
pr
oc
es
so

fr
ea
lt
im

e
bi
g
da

ta
pr
oc
es
sin

g
te
ch
no

lo
gi
es

fo
r
an

om
al
y
de
te
ct
io
n

46

Univ
ers

iti
Mala

ya

2.6.1 Techniques

Among a vast group of anomaly detection techniques accessible, this research has ex-

amined the following seven major techniques: Nearest Neighbours (Wauters & Vanhoucke,

2017), Bayesian network (Mascaro, Nicholso, & Korb, 2014), Support vector machine

(Aburomman & Reaz, 2017), Decision trees (Muniyandi, Rajeswari, & Rajaram, 2012),

Random forest (Farnaaz & Jabbar, 2016), Fuzzy logic (Hamamoto, Carvalho, Sampaio,

Abrão, & Proença, 2017), Principal component analysis (Hamamoto et al., 2017).

2.6.1.1 Nearest Neighbours (NN)

Nearest Neighbours depends on the utilization of distance measures. NN method

embraces the entire sampling set and incorporates the information in the set, and as well as

the coveted grouping for respective item. The distance between each item in the sampling

set must be processed for the purpose of classifying the points, wherein, the k closet

passages in the sampling set is considered as the point in far distance. However, the

shortcoming of the NN is the similarity measure, which leads to misclassification of points

because of its inefficiency in accurately calculating distance between them, particularly

while classifying small subset of the features (Su, 2011a). Historical data is employed to

identify nearest neighbours at a given data point. The applications of the Nearest Neighbour

method usually revolves around the similar domain of artificial intelligence methods, which

are classification and prediction. The initial k-Nearest Neighbour has been deployed

as a predictor and allowed to benchmark its accuracy and scalability. Nonetheless, the

algorithm have outflows in concerning memory requirements and computation complexity

in terms of anomaly detection (Wauters & Vanhoucke, 2017).

47

Univ
ers

iti
Mala

ya

2.6.1.2 Bayesian Networks (BN)

Bayesian Networks have been broadly utilized for grouping issues. BN comprises

of qualitative and quantities parts. The qualitative part of the system is spoken to by a

coordinated non-cyclic graph, whose nodes denote the random factors in the problem

domain and whose edges systematize significance relations between the factors they

interface. The quantitative part of the model comprised of an arrangement of probability

distributions on each node (Cozar, Puerta, & Gamez, 2017). Bayesian Networks can be

used for detecting anomalies within vessel tracks. Dynamic and static network are produced

by using Bayesian Networks learner on an Automated Identification System data, which

has been supplemented with real-world data, which proved distinct and complementary

strengths in identifying anomalies (Mascaro et al., 2014).

2.6.1.3 Support Vector Machine (SVM)

Support Vector Machine has been used to construct a decision boundary, which has

the most extreme edge between the typical data set and the source (S. Yin, Zhu, & Jing,

2014). SVM is a classifier in light of finding a separating hyperplane in the feature space

between two classes is such a path, to the point that, the distance between the hyperplane

and the open data points of each class is increased. The approach depends on minimized

classification threat as opposed to on optimal classification. Especially helpful when the

number of features, m, is high and the number of data points, n, is low (m»n) (Buczak

& Guven, 2016). Moreover, SVM is a robust classifier, used for many classification

tasks such as, network intrusion detection. The main focus is extending two-class SVM

classifiers to multi-class classifiers. This method is the most effective for classifying the

samples from the NSL-KDD dataset, such a classifier is crucial in intrusion detection

system (Aburomman & Reaz, 2017).

48

Univ
ers

iti
Mala

ya

2.6.1.4 Decision tree

Decision tree is a tree-like structure that has leaves, which denote to groupings

and divisions, which thusly state to the conjunctions of highlights that prompt those

classification. The outstanding known techniques for naturally fabricating decision tress

are the ID3 and C4.5 algorithms. The two algorithms formulate decision tress from an

arrangement of training data utilizing the idea of data entropy (Buczak & Guven, 2016).

In addition, a decision tree refines its decision boundaries on each cluster by acquiring

knowledge from the subgroups within the cluster. The results from the decision trees in

each cluster are exploited and a final conclusion is made decision trees (Muniyandi et

al., 2012). Clustering helps to group the normal and abnormal data points in anomaly

detection.

2.6.1.5 Random Forest (RF)

Random Forest is a collaborative classifier that is used to improve the accuracy. It

consists of two stages such as, feature selection, and classification(Farnaaz & Jabbar,

2016). Random forest generates multiple decision trees from random subsets of data. Each

of them capturing different regularities, since random subset of the instances are in the

interest (Promod & Jacob, 2016). One of the major advantages of the Random forest is

that it yields low classification errors when compared with other traditional classification

algorithms. The Random forest can be used to detect four types of attacks like DOS, probe,

U2R and R2L (Farnaaz & Jabbar, 2016). Likewise, RF has been used in botnet detection

due to its high accuracy in prediction and ability to handle diverse bots, based on data

characterized by a very large number and diverse types of descriptors (Singh et al., 2014)

Yet, when working with large dataset and complex estimation procedures, the RF consumes

lot of computational time (Genuer, Poggi, Tuleau-Malot, & Villa-Vialaneix, 2017).

49

Univ
ers

iti
Mala

ya

2.6.1.6 Fuzzy Logic algorithm

Fuzzy Logic algorithm is capable of making rational decisions in an environment that

is imprecise, uncertain, and incomplete. It uses time interval to detect an anomaly in

the network. Moreover, exponentially weighted moving average techniques are applied

to calculate threshold values, which represent more recent higher weight (Hamamoto,

Carvalho, Sampaio, Abrão, & Proença Jr, 2018).

2.6.1.7 Principal Component Analysis

Principal Component Analysis creates a digital signature for traffic characterization

of a network segment. It is a statistical procedure used to decrease those dimensional

multivariate issues by examining those difference for every variable among all response

measurement. Furthermore, the response information can be symbolised by a reduced fixed

set of dimensions without much loss of information (Hamamoto et al., 2017). Besides, it

analyses noteworthy information data from logs to find the important activity time intervals

among the data set, and afterward diminish them, so this new set can professionally

characterize the consistent conduct of a network segment (Fernandes, Rodrigues, &

Proença, 2015).

2.6.1.8 Ant Colony Optimization

Ant Colony Optimization is inspired by the ability of ants to find the shortest path

between their colonies to the food sources. Ant Colony Optimization is where a population

of agents competing and globally asynchronous, cooperate with one another to find an

optimal solution. Ant Colonization Optimization and Dynamic Time Wrapping methods

have been used in the environment of pattern recognition and anomaly detection (Fernandes,

Carvalho, Rodrigues, & Proença, 2016).

50

Univ
ers

iti
Mala

ya

2.6.1.9 Hierarchical Temporal Memory (HTM)

Hierarchical Temporal Memory is capable of predicting the flow of data in real-time,

based on the condition of the precedence in learning. Moreover, HTM has been widely

employed for detecting anomalous in distributed real-time systems, mainly due its capability

in yielding highly accurate detection. This techniques comprise of a solid framework

which helps in better estimation, categorisation, and generating continuous time based data

sequence, online. The HTM is also used to detect anomalous sequences on the vehicular

controller area network bus, which sends alarm signal during abnormal conditions (Wang

et al., 2018). Furthermore, HTM is employed to robustly detect anomalies on a variety of

data streams, which mainly deals with noisy data and to minimize false positives (Ahmad

et al., 2017).

2.6.2 Applications

In this sub-sectionmajor application scenarios in the area of real-time big data processing

for anomalous detection have been discussed. The growth of IOT contributes for different

number of applications with sensors that produce important data that changes over time

(E. Ahmed et al., 2017). In fact, detecting anomaly in that data can help to overcome many

challenges for organizations. Interestingly, challenges and limitations associated with some

of the applications like network intrusion, healthcare, image processing, fraud detection,

safety critical applications, and insider trading detection application have been discussed.

2.6.2.1 Modern network traffic scenario:

Present IoT infrastructures use various connected and mobile devices, and the machine-

to-machine communication generates large scale of sensor data every second, and the

generated data are stored in the cloud. These data are heterogeneous in nature with a

variety of parameters such as, IP address, data transfer speed, volume, etc. (Xie & Chen,

51

Univ
ers

iti
Mala

ya

2017). The heterogeneous data generated from these devices should be monitored and

collected in real-time to be patterned for detecting abnormal behaviour.

2.6.2.2 Mobile Cloud:

Smartphones provide a wide variety of sensors integrated in one device, allowing

monitoring, processing, measuring, locating the device anytime. Multimedia sensors like

the microphone, dual-camera, and finger print sensors integrated in smartphones allow

to employ them in a wide variety of applications (García, Tomás, Parra, & Lloret, 2018).

All these data generated from sensors needs to be stored and processed in cloud due to

resource shortage in the mobile device (Karim et al., 2017). Cloud computing technologies

for mobile devices offer an innovative method of delivering IT services efficiently, like IT

services that are available at all times and omnipresent (Ali, Shrestha, Soar, & Wamba,

2018).

Particularly, cloud computing helps mobile health services to provide access for

electronic healthcare system. For example, remote data processing and monitoring, remote

consultation, and digital multimedia data (Y. Zhao, Ni, & Zhou, 2017). Moreover, all

these services contribute for the growth of big data in their services. In recent days, many

of the cloud service providers like Amazon, Google cloud, Microsoft, IBM, Oracle and

others major organizations are adopting big data technologies into their cloud platform for

superior process, storage and analysis. All these data in the cloud needs to be monitored

in real-time to detect any abnormal behaviour such as data theft, patient illness, origin

or separating of new diseases from different demographic, cloud infrastructure such as

memory usage, power consumption, cooling system.

52

Univ
ers

iti
Mala

ya

2.6.2.3 Autonomous vehicles scenario:

These driverless vehicles have redefined the ecosystem of automotive industries,

accompanied by enormous big data generated by connected devices in vehicles(Ger, 2017).

Attackers have begun to target these connected vehicles data to hack the vehicles, which

can help them to control the entire system, and disable the vehicle anytime. Now, most of

the modern vehicles are equipped with a number of modules, such as in-vehicle networks

(IVN) including, engine controls units (ECU), body control modules (BCM), smartphone

integration module, which provide critical functionalities for control and safety of the

vehicles (Symantec, 2016). These modules need to be analysed in real time to detect the

anomalies in the vehicles, which includes sudden increase of speed, radar sensors detection,

camera sensing, abnormal petrol consumption, sudden engine failure, inappropriateness in

changing lanes, and inaccurate object detection.

2.6.2.4 Healthcare scenario:

Real-time anomaly detection helps in monitoring services of the patients to detect the

anomalies in real-time and timely manner. This helps the hospital and caretakers to make

a wise decision, especially as elderly people living alone are becoming a social problem

for community and governments (Yasumoto, Yamaguchi, & Shigeno, 2016). The data can

have several abnormal patient conditions or instrument errors, human errors, or focus on

detecting disease outbreaks in a specific area. These records consist of various types of

features such as, patient age, gender, height, sugar level, blood details, which need to be

analysed with high accuracy (Chandola et al., 2009). In addition, growing numbers of

compatible IoT devices help healthcare industry to collect and analyse massive data.

Furthermore, current medical technologies produce various types of multimedia data

such as, high quality videos, image, graphics, and sound files. These multimedia data

contain rich and complex information, which help in diagnosing and monitoring diseases.

53

Univ
ers

iti
Mala

ya

Moreover, computing requirements of multimedia solutions for healthcare have led to the

employment of cloud services for e-healthcare system (García et al., 2018). On the other

hand, incorporating multimedia data into electronic health records face big data challenges

and these data needs to be monitored in real-time to detect any abnormal behaviour in the

system.

2.6.2.5 Insider Trading Detection:

In stock markets, data changes in milliseconds and anomaly detection techniques have

been used to detect the insider trading early. People make illegal profits by leaking the

inside information before the actual information is made available to the public. The

information could be of pending merger, acquisition, a terrorist attack, judgment on

the particular industry or any other relevant information that affect the stock prices of

any specific industry. Insider trading can be detected by identifying anomalous trading

activities in the market. It has to be detected in real time manner to prevent people from

making illegal profits (Chandola et al., 2009).

2.6.2.6 Safety Critical Detection:

For safety-critical system, attackers begin targeting mobile connected vehicles, and

vehicle-to-vehicle communications networks to enter into the controls units and body

control modules, which provide critical data about the vehicles. Besides, these mobile

devices store, process and access critical data from the cloud infrastructure. Here anomalies

detecting techniques can help to monitor or notify the vehicle at what time it has been

attacked, or just malfunctioning.

Conversely, all the above use case scenarios reveal that there are still challenges and

difficulties in using existing anomaly detection techniques. Furthermore, every day

increasing numbers of new types of threat are found in the connected devices. Current

54

Univ
ers

iti
Mala

ya

monitoring technologies are challenged to detect the anomalies because of the growing

volume, variety, and velocity of data received for the analysis

2.6.3 Anomalies

This sub-section briefly overviews three different categories of anomaly such as point,

contextual, and collective anomalies in real time anomalous detection.

2.6.3.1 Point anomalies

Point anomalies happen when data points are observed upside or downside of normal

points in the available dataset (Hayes & Capretz, 2015). For example, User-to-root (U2R)

and remote-to-local (R2L) attacks are best known for point anomaly. In fact data point helps

to point the unauthorized access from a remote and local access privileges (M. Ahmed,

Mahmood, & Hu, 2016).

2.6.3.2 Contextual anomalies

Contextual anomalies discover association in datasets and detect differences in their

external behaviour characteristics, and will label anomalous effects in the data. For example

power consumption of an office building was found to be far greater during midday, and

during a work day, as against night, and during weekends (Hayes & Capretz, 2015).

2.6.3.3 Collective anomalies

Collective anomalies is a group of related data instances, which act differently corre-

sponding to the whole dataset, In fact, these set of data instances is termed a collected

anomaly. For instance, DoS attack best suits the collective anomaly, these attack produces

various connection request to web server, out of that, only a single request is reliable

(M. Ahmed et al., 2016).

55

Univ
ers

iti
Mala

ya

2.6.4 Anomaly Detection Modes

This section discusses different types of modes that are commonly used in anomaly

detection.

2.6.4.1 Supervised anomaly detection

Supervised anomaly detection techniques detect anomaly based on generating a set

of grouping rules that aid in predicting future data. An example of supervised anomaly

detection is classification-based anomaly detection (Kakavand, Mustapha, Mustapha,

Abdullah, & Riahi, 2015).

2.6.4.2 Semi-supervised anomaly detection

Semi-supervised anomaly detection is an approach that models only the normal records.

The other records are labelled as outliers in the testing phase (Kakavand et al., 2015).

2.6.4.3 Unsupervised anomaly detection

Unsupervised anomaly detection focuses on the data that does not contain any labelling

information and it does not need a separate training and testing phase. A general example

is clustering based anomaly detection (Kakavand et al., 2015).

2.6.5 Data

This section details the different types of data used in anomaly detection.

2.6.5.1 Structured data

Structured data is tabular data found in spreadsheets or relational databases (Gandomi

& Haider, 2015). Structured data can be processed more efficiently for anomaly detection

compared to semi structured or unstructured data.

56

Univ
ers

iti
Mala

ya

2.6.5.2 Semi structured data

Semi structured data fall between the structured and unstructured data groups. These

data do not conform to strict standards. An example of semi structured data is XML

(Gandomi & Haider, 2015). Compared to structured data, the semi structured data lacks

proper formatting and is time consuming for anomaly detection.

2.6.5.3 Unstructured data

Unstructured data does not follow any strict format or sequences. Examples of

unstructured data are social media contents, images, audio, IoT sensor data, and video

(Gandomi & Haider, 2015). The processing of unstructured data for anomaly detection is

time and memory consuming, and require lot of resources.

2.6.6 Big Data processing

The state-of-the-art technologies utilize different types of big data tools in a variety of

domains, this section discuss those big data tools used for anomaly detection.

2.6.6.1 Spark

Spark is an open source big data tool used for data processing (Solaimani, Iftekhar, et

al., 2014). Spark receives data from Kafka and processes it in real-time, using machine

learning algorithms for anomaly detection.

2.6.6.2 Storm

Storm is a data application programming framework that is used to write applications

for rapidly processing large amounts of data (Ranjan, 2014). Storm is a tool similar to

Spark that processes data in real time, they both have their own pros and cons.

57

Univ
ers

iti
Mala

ya

2.6.6.3 Kafka

Kafka is mainly utilized for constructing data pipelines in real-time. It is also useful for

developing online streaming applications. This technology can be horizontally gauged, fool

proof, and rapidly swift, hence it is mostly popularly used in number of sectors (Assunção,

Calheiros, Bianchi, Netto, & Buyya, 2015).

2.6.6.4 Flume

Flume is a distributed service used for real-time data collection, temporary storage, and

delivery of data to a target (Birjali, Beni-Hssane, & Erritali, 2017).

2.6.6.5 Amazon Kinesis

Amazon Kinesis is a distributed message queuing framework (Ranjan, 2014). It is

capable of handling large data size and large pipelines, furthermore, the output generated

by Kinesis can be applied to machine learning algorithms.

2.6.6.6 Hadoop

Hadoop is one of the most popular big data technology frameworks, which helps to

solve this scalability problem by the Hadoop distributed file system (HDFS). It has been

used to store large amounts of data across multiple nodes of commercial hardware (Landset

et al., 2015).

2.6.7 Record categories

In this section different types of record categories that have been used in anomaly

detection have been elaborated.

2.6.7.1 Host-based

Host-based data contains incoming and outgoing network traffic of an individual device

on a network (Sahasrabuddhe, Naikade, Ramaswamy, Sadliwala, & Futane, 2017). The

58

Univ
ers

iti
Mala

ya

host based data can be processed for anomaly detection using different machine learning

algorithms in a single host.

2.6.7.2 Network-based

Network-based data contains network traffic to and from all devices in a network

(Sahasrabuddhe et al., 2017). It can be processed for anomaly detection using different

machine learning algorithms all the devices connected network. The network based data

facilities detection of anomalies based on the pattern generated from the sensor data (L.

Wang, 2017).

The above sections had thoroughly discussed, the various existing anomaly detection

techniques, applications, categories and modes of anomaly detection, types of data, big

data processing technologies, and record categories.

2.7 Evaluation metrics for clustering algorithm and system performance

In this section various evaluation metrics for determining cluster accuracy and system

performance of the real-time big data processing and anomaly detection are discussed. In

the case of cluster quality and accuracy, the evaluation metrics have been categorized into

three main classes: internal and external measures, which are based on the internal or

external information used for the cluster evaluation. The most popular internal and external

techniques such as Silhouette coefficient, Sum of Squared Errors, Calinski and Harabaz for

internal and normalized mutual info, adjusted rand score and F-measure for external as have

been employed (Xu & Tian, 2015)(Kremer et al., 2011)(Amini, Wah, & Saboohi, 2014).

Likewise, for the measurement of the clusters accuracy, statistical techniques such as

confusion matrix, Precision, Recall, F1 score and Kappa, Matthew’s coefficient have been

utilized (Aghabozorgi, Shirkhorshidi, & Wah, 2015)(Kokate, Deshpande, Mahalle, & Patil,

2018). Selected evaluation techniques have been listed in the Table 2.7 and description of

59

Univ
ers

iti
Mala

ya

Table 2.7: Evaluation techniques

Internal
techniques

External
techniques

Statistical
techniques

Performance
measurement

Silhouette coefficient adjusted rand score Precision, Recall Memory consumption
Calinski and harabaz normalized mutual info F1 Score, Kappa Execution time

Matthew’s coefficient

the evaluation techniques are discussed in chapter 5. Table 2.8 summarize the finding on

leading evaluation techniuqes mostly used by researchers for anomaly detection.

Similarly, based on this literature review, this research has discovered many Spark

Streaming performance evaluation parameters, such as processing time, execution time,

algorithm run time, job completion time and usage of memory (Bharill, Tiwari, & Malviya,

2016)(Tang & Fong, 2018).

Table 2.8: Leading evaluation techniques used for anomaly detection

References

/Evaluation Techniques
Silhouette

Calinski

and

harabaz

Normalized

Mutual

Info

Adjusted

Rand

Score

Precision Recall
F1-

Score
Kappa

Matthew’s

coefficient

(Saitta, Raphael, & Smith,

2008)

 ✓ ✓

(Y. Liu, Li, Xiong, Gao, & Wu,

2010)

✓ ✓

(Goldstein & Uchida, 2016)

 ✓ ✓ ✓

(Xu & Tian, 2015)

✓ ✓ ✓ ✓

(Dahiya & Srivastava, 2018) ✓ ✓ ✓ ✓

(Kremer et al., 2011) ✓ ✓ ✓

(Goix, 2016)

 ✓ ✓ ✓

(Tomašev & Radovanovic,

2016)

✓ ✓ ✓

(J. Zhou et al., 2010)
✓ ✓ ✓ ✓ ✓

(Aghabozorgi et al., 2015)
✓ ✓ ✓ ✓ ✓

(Marir, Wang, Feng, Li, & Jia,

2018) ✓ ✓ ✓ ✓

(Hafsa & Jemili, 2019)
 ✓ ✓ ✓

(Bharill et al., 2016)
 ✓ ✓ ✓ ✓ ✓

(Othman, Ba-Alwi, Alsohybe, &

Al-Hashida, 2018) ✓ ✓

(Amini, Wah, & Saboohi, 2014)
✓ ✓ ✓ ✓ ✓ ✓

(Kabore, Kermarrec, & Lenca,

2018) ✓ ✓ ✓

(Juvonen & Sipola, 2014)
✓ ✓ ✓

(Celebi, Aslandogan, &

Bergstresser, 2005) ✓

60

Univ
ers

iti
Mala

ya

2.8 Research challenges

This section emphasizes the most important research challenges in real-time big data

processing technologies for anomaly detection. State-of-the-art techniques in anomalous

detection, real-time big data processing, and machine learning have been surveyed to

identify the research challenges, recommendation and future research directions.

2.8.1 Redundancy

Dealing with large amount of data generated from various network sensors in real-time

is a critical factor in big data management, particularly due to the constant repetition of

previously generated data. Even though, the existing big data processing technologies,

such as Hadoop and Spark frameworks have been developed for handling data replication

across multiple clusters, still these technologies are inadequate in addressing the challenges

related to data redundancy, data quality, inconsistency and cost of maintaining storage

(Bhadani & Jothimani, 2016). Moreover, these technologies lack schema to minimize

redundancy and are not capable enough to store huge amount of data (Hashem et al.,

2015). Hence, it becomes essential to design a framework that is capable of addressing

and minimising redundancy issues aimed at catering present and future needs.

2.8.2 Computational cost

A number of studies have focused on merging or incorporating several techniques to

increase the performance of anomaly detection, which leads to increase in computation

cost (W.-C. Lin et al., 2015). Moreover, high dimensionality combined with large sample

size creates issues, such as heavy computational cost and algorithmic instability (Fan, Han,

& Liu, 2014). Therefore, using big data technologies along with cloud will address the

computational cost issue, by incorporating parallel and distributed processing, which helps

to build multiple clusters leading to minimization of the computation cost. The mass

61

Univ
ers

iti
Mala

ya

production of high chips and processors has reducing their costs, hence utilization of these

hardware will increase the power of systems that helps to process huge volume of data in

real-time, resulting in reducing in computational cost.

2.8.3 Nature of Input data

In an aspect of any model built, the first thing to look into is the nature of input data.

Input data is the collection of data instances, such as object, record, point, vector, pattern,

event, case, sample, observation, entity. They are various set of attributes for each data

instances, such as variable, characteristics, features, field, and dimension. It has two

different types of attributes such as binary, categorical or continuous. Each data instance

mostly falls under the category of either, univariate or multivariate. The diverse nature

of input data makes the anomaly detection techniques struggle in selecting appropriate

algorithm to handle that specific data. Basically, anomaly detection techniques will vary

based on nature of attributes in that application (Chandola et al., 2009). This issue will be

addressed by developing hybrid unsupervised machine learning algorithm in our proposed

framework.

2.8.4 Noise and missing value

The streaming data in network sensor consist of different types of data, such as binary,

discrete, continuous, audio, video, and image. These data collected from various deployed

sensors via a communication channel includes noise and missing values, due to the

incoming speed of data (Chandola et al., 2009). Noise and missing values can produce

high probabilities for rising the false positive alarm in anomalous detection. Huge quantity

of unrelated features produce noise in the input data, which bypass the true anomalies

(Erfani et al., 2016). These issue will be addressed by incorporating auto noise cleansing

module in the detection framework. The auto cleansing module will also address the

62

Univ
ers

iti
Mala

ya

missing value issue by adding NA symbol to datasets.

2.8.5 Parameters Selection

Finding the appreciate parameters for any machine learning algorithms can be challeng-

ing (Mirsky et al., 2017). Especially when dealing with real-time anomaly detection, it

is essential to consider single, multiple and hyper parameters before choosing them. In

addition, a set of parameters that works well at the early stages of the evolution process

may not perform well at the later stages and vice versa (Sarker, Elsayed, & Ray, 2014).

Parameters were one of themajor contributors that decide the performance of the algorithms.

Further, it can give huge impact or delay to training the model. Alternatively, we can work

on the parameter-free algorithm in identifying the node partitions in streaming, directed,

bipartite graphs, and monitor their evolution over time to detect events (Akoglu, Tong, &

Koutra, 2015). Employing the likes of eccentricity techniques will address this challenge

because it will minimise parameter selection.

2.8.6 Inadequate Architecture

The existing architecture are capable of handling anomaly detection in batch processing

and less volume of data, however, they are incapable of handling big data in real-time.

Organizations are working to produce the big data architecture to perform better, but

when it comes to real-time data it is fundamentally a different architecture than big data.

Components of the real-time architecture have to merge application and analytics to propose

the new way of working environment that achieves the needs of both, data in motion (fast)

and data at rest (big). Big data architecture is inefficient when it is not being integrated

with existing enterprise data; the same way an analysis cannot be completed until big data

correlates it (Katal, Wazid, & Goudar, 2013). Incorporating various big data technologies

with hybrid machine learning algorithms will address the architectural issues.

63

Univ
ers

iti
Mala

ya

2.8.7 Data visualizations

Processed and analysed data or report needs to be visualized by the user as well as

must provide insight from the report. Nevertheless, challenge lies in selecting appropriate

visualization techniques, for the anomalies detection from the various connected devices.

Multiple visualization techniques are used in the design of anomalous detection visualization

from simple graph to 2D, and 3D views. Heat maps, scatter plots, parallel coordinates,

and node-link graphs are easy to showcase the output when it comes to 2D and 3D. 6. The

3D interaction enables users to understand the data for decision making and visualization

(Shiravi, Shiravi, & Ghorbani, 2012), hence, better detection of anomalies. Embedding

the available open source visualization techniques in framework can address this problem,

furthermore, the framework enable the system to automatically select the appropriate

visualization technique.

2.8.8 Heterogeneity of data

Unstructured data represents almost every kind of data being produced, like social

media interactions, to recorded meetings, to the handling of PDF documents, fax transfers,

to emails, and more (L. Zhou et al., 2017). Structured data is always organized into

highly mechanized and manageable way. It shows good integration with the database,

but unstructured data is completely raw and unorganized. Working with unstructured

data is cumbersome and of course costly too. Converting all this unstructured data into

structured one is also not feasible. The employment of unsupervised hybrid machine

learning algorithms will address the heterogeneous data issue. The incorporation of hybrid

machine learning algorithms and real-time big data technologies will help to cluster the

incoming data into different categories, which eventually will helps easily identify data

types, whereby addressing heterogeneity issue.

64

Univ
ers

iti
Mala

ya

2.8.9 Accuracy

Even though the existing technologies are capable of detecting anomalies, still the

dependency of the outcome is unreliable due to the accuracy issues. In some cases, better

accuracy is produced at the cost of high computational processing time (Ahmad et al.,

2017) (Su, 2011b). This issue will be addressed by incorporating real time big data

technologies with hybrid machine learning algorithms, which emerge as an alternative

powerful meta-learning tool to accurately analyse the massive volume of data generated by

modern applications, with less memory and power consumptions.

2.8.10 Scalability

Likewise, other important challenges to focus is scalability. Growing numbers of

data which need to be processed in the real-time face major issues with regards to the

scalability of the application. However, to address this issue involve adopting the distributed

environment incorporating platforms such as Apache Storm, Spark, and Flink (Solaimani,

Khan, & Thuraisingham, 2014). Further, growing amount of service loads will be handled

by cloud platform which add the resource to the architecture as demand. Particularly,

integrating Spark MLlib library into the framework provide better scalability for much

higher problems (Meng et al., 2016).

In addition to the above summarized future research directions on research challenges

and recommendations in table 2.9, we have identified forthcoming research directions for

research communities to develop an adoptable and responsive model for real-time big data

processing, which can help to collect data with labelling and converting unstructured data

into semi-structure data which will be easier to label in run-time for processing. Likewise,

model should support for flexible select specific feature and extract parameters for analysis.

These selected parameters can be used for benchmarking various types of threat and

real-time processing. Similarly, the proposed model should be more competent and timely

65

Univ
ers

iti
Mala

ya

Table 2.9: Summary of research challenges and recommendation for future research
directions
Challenges Recommendations Future Research Directions Reference

Redundancy Employing filtering module into framework will help

to reduce the redundancy data.

Data Deduplication.

Dimension Reduction.

Network Theory.

(ur Rehman et al.,

2016)

Computational

cost

Including modern technologies like virtualization,

cloud, edge and fog computing might help to reduce

computation cost. Moreover, big data processing can

use multiple clusters assisted by parallel and

distributed cloud architecture.

Resources on-demand with costs

proportional to the actual usage.

Cloud-supported analytics.

(Assunção et al.,

2015)

Nature of

Input data

Developing hybrid unsupervised machine learning

algorithms

Hybrid unsupervised machine learning.

Deep learning.

(Weston, 2015)

Noise and

missing value

Incorporating auto noise cleaning module framework

will address noise and missing value problem.

Eefficient, robust, scalable, and

optimized pre-processing techniques for

both, historical and streaming big data.

(Assunção et al.,

2015)

Parameters

Selection

Eccentricity techniques to minimise parameter

selection.

Developing dynamic learning algorithm

provides better efficiency in parameters

selection.

(Mukherjee, Shu,

& Wang, 2018)

Inadequate

Architecture

Integrating various modern technologies like big data,

cloud, fog and edge computing technologies with

hybrid or enhanced machine learning algorithms will

address these issues.

AWS, open source cloud, Microsoft,

IBM.

In-memory architecture will be more

capable for real-time analytics.

Spark, H2O.

(Qiu et al., 2016)

(Landset et al.,

2015a)

Data

visualizations

Implanting the available open source visualization

techniques in framework and also spontaneous

selection for appropriate visualization technique.

GraphX, HadoopR, Python,

Lightning data visualization server.

(Qiu et al., 2016)

(Landset et al.,

2015a)

Heterogeneity

of data

Combining hybrid or enhanced machine learning

algorithms and real-time big data technologies will

help to cluster the incoming data into different

categories such as data types, size and others.

Data cleansing and data curation.

The incorporation of hybrid machine

learning algorithms and real-time big

data technologies.

(Anagnostopoulos,

Zeadally, &

Exposito, 2016)

Accuracy Embed the evaluation techniques and meta-learning

tool to hybrid machine learning algorithms for

accurate analyse.

The reduction of memory and power

consumptions when processing large

amount of data.

(Qiu et al., 2016)

(Landset et al.,

2015a)

66

Univ
ers

iti
Mala

ya

to train as well as retrain the model more efficiently. Many of the existing works lack

in retraining the model for processing, which will be remarkably beneficial in real-time.

Furthermore, retraining the model should contain modules for offline and online analysis.

Similarly, the future model should comprise fast, hybrid and incremental learning

algorithms for modern incoming real-time data, which can facilitate selection of right time

windowing for online analysis. Besides, multiple level visualization techniques improve

understanding of processed and analysed data. Furthermore, these techniques can support

security analytics, incorporating recent visualization technologies such as, 3D, 4D and

augmented and virtual reality for visualizing complex processed data. Lastly, constructing

new dataset comprising present structure and unstructured data from various recent

technologies like IoT, 3D printing, smart cities, and other connected devices. Developed

datasets should be validated with openly available existing datasets to handle multiple

distributed threat all around the world.

2.9 Conclusion

In this chapter, real-ime big data technologies and machine learning with the possibility

of anomalous detection have been discussed, followed by the examination of recent works

in real time big data processing and anomalous detection from a use cases perspective.

Examination of these use cases have helped identify the challenges associated with anomaly

detection in real-time. This chapter also discussed the inadequacies and challenges of the

current anomaly detecting approaches in the specified domain.

In section 2.1, Table 2.1 and 2.2 identified important features, pros and cons of various

real-time big data technologies, these study able to finds the Spark real-time big data

technologies which best suit for our further evaluation and enhancing existing framework

on anomaly detection.

In section 2.2, various recently used anomalies detection techniques with different

67

Univ
ers

iti
Mala

ya

Figure 2.3: Findings from the literature review

domains had been tabulated along with their shortcoming like percentage of accuracy,

consumption of longer time for training the model and incompetence in choosing the

parameters (see Table 2.3).

In section 2.2.1, four different clustering algorithms that best suits this research domain

such as K-means, Spectral Clustering, Isolation trees, and HDBSCAN had been discussed.

Further investigations of these algorithms has been presented in chapter 3, where further

experiment has been conducted with real-time dataset to prove their shortcoming in terms

of accuracy, memory consumption and execution time.

In section 2.3, various anomaly detection domains those have used the big data

technologies for their architectural design has been discussed (see Table 2.4); it has

been revealed that Spark Streaming has been integrated with their platform for real-time

processing among other existing big data technologies.

68

Univ
ers

iti
Mala

ya

In section 2.5, some of the very recent works on real-time big data processing for

anomaly detection have been critically evaluated (see Table 2.5). Furthermore, potential

techniques and their architectural drawbacks have also been discussed, along with their

evaluation methods on performance and accuracy. In addition, some of the commercial

platforms of real-time big data processing for anomaly detection have been presented. The

selected internal and external metrics for our evaluation have been presented in Table 2.7.

With regards to this research, two internal and external metrics have been selected

after thoroughly analysing the cluster. In the internal validation, the silhouette index has

been performed, which consists of the silhouette coefficient, and calinski and harabaz. In

case of the externally validation of the model, an adjusted rand score method has been

employed, which was also used to derive the accuracy for the performance parameters and

normalized mutual info score method to externally validate the model.

Besides, a taxonomy of our approach has also been developed while the state-of-the-art

approaches that pose research challenges in detecting anomaly using real-time big data

technologies have also been identified. It is concluded that real-time big data technologies

for anomaly detection is in its early stage of development and close attention must be paid

to the presented challenges, especially in detection accuracy, memory consumption, and

execution time to facilitate the adoption of big data technologies for anomaly detection,

which will be a core component of the future computing landscape.

In the next chapter, we have presented experimental setup of the real-time analytics of

clustering algorithms, dataset description, features selection, performance metrics, and the

exploration of the outcome to substantiate the disadvantages of the existing algorithms. We

have evaluated four different algorithms against three different openly available datasets

for anomaly detection.

69

Univ
ers

iti
Mala

ya

CHAPTER 3: PROBLEM ANALYSIS

This chapter aims to establish the problem that was highlighted in chapter 1 and conduct

a deep investigation to show the impact of the clustering algorithms in terms of accuracy,

memory consumption and execution time using the conventional method of real-time

anomaly detection. This research work used different algorithms that aim to select the best

techniques for handling the anomaly detection. In order to analyse the problem various

experiments are performed with three different openly available datasets.

The rest of the chapter is organized as follows. Section 3.1 discusses the application and

algorithms that are used to analyse the problem. Section 3.2 describes the performance-

measuring parameters. Section 3.3 discusses the experimental parameters used to conduct

the experiment. Section 3.4 presents results and its discussions. Discussions based on

the empirical data analysis are summarized in Section 3.5.We reiterate the findings of the

analysis conducted in Section 3.6.

3.1 Empirical study: Experimental setup

This section presents the empirical study conducted to establish the problem. We

discuss the experimental setup including a real-time processing environment and the

compute-intensive tasks that are developed to perform the analysis.

In this experiment, the accuracy, memory consumption and execution time of real-time

analytics for anomaly detection have been evaluated by using four different types of

algorithms such as K-means, Isolation Forest, Spectral Clustering, and HDBSCAN in a

cloud platform. These four algorithms are selected for its capabilities in partitioning data

points better than other machine learning algorithms. Additionally, selected algorithms

also properly group the data points in ensemble methods and eigenvectors of laplacian.

Data has been processed in real-time and the algorithms have been executed in four cycles,

70

Univ
ers

iti
Mala

ya

this helps in the investigation of the accuracy, memory consumption and execution time of

real-time analytics for anomaly detection using the traditional approach. The following

subsection will further provide details of the experiment setup

3.1.1 Cloud Environment

A cloud platform has been used to carry out the experiments; the specifications of the

cloud platform is provided in Table 3.1. We have performed our experiment in public cloud

provided by a third party service provider whereby we had full access to their platform

to install and monitor the entire cloud, check our execution time and load on the setup.

Further, the service provider granted a dedicated dashboard to monitor many of process

time and latency. Using a third party service provider is more cost effective as compared to

a corporate cloud service provider such Amazon, Microsoft and Google. This is because of

adopting the corporate cloud service provider for the experiment analysis were not possible

due to many factors such as high rising cost for their service, unknown architectural setup

and no administrator access to their platform to monitor their process time. In addition,

permission to install any software on their platform was not possible.

We have investigated the effect of four different clustering algorithms in the perspective

of accuracy, memory consumption and execution time by passing data to the algorithms in

real time (i.e. data is being received constantly and the volume of that data is not constant).

We used the adjusted rand score to calculate the accuracy of anomaly detection. Further,

memory profiler has been used to evaluate the memory consumption and execution time.

Table 3.1: Specification of the cloud platform

Cloud Components Specifications
Nodes 12
CPU 12 cores per node
Memory 32 GB memory per node
Operating System CentOS 7.0.3

71

Univ
ers

iti
Mala

ya

3.1.2 Algorithms

To conduct the experiment, four different frequently used clustering algorithms were

selected, especiallyK-Means, Isolation Forest, Spectral Clustering andHierarchical Density-

Based Spatial Clustering of Applications with Noise (HDBSCAN). These algorithms were

selected based on the literature review findings.

3.1.2.1 K-Means

A partitioning based clustering algorithm tries to find the best partitioning for data points

in which intraclass similarity is maximum and interclass similarity is minimum. Many of

the modern and well-known algorithms were developed in the extension of the k-means

algorithm. (Amini, Saboohi, Ying Wah, & Herawan, 2014) The k-means algorithm is one

of the most efficient clustering algorithms. K-means clustering is used to group the samples

into various clusters. Cluster group can be classified into nonattack and attack group.

Initializing the cluster centers points with the mean values obtained from known data

points of appropriate groups (Bhuyan, Bhattacharyya, & Kalita, 2014). Cluster centroids

are helpful in cluster or grouping various data points in certain categories. Furthermore,

the K-means algorithm uses local optimization to determine the optimal number of clusters.

The most widely used method is the Euclidean distance in which a small distance implies

a strong similarity whereas a large distance implies a low similarity. However, in the value

of k is lower than the number of natural groups, dissimilar instances are forced into the

same cluster, and class dominance, which arises when a cluster contains a large number of

instances from one class, and fewer numbers of instances from other classes (Bhuyan et al.,

2014). Lastly, the cost function is not convex (Karami & Guerrero-Zapata, 2015).

72

Univ
ers

iti
Mala

ya

3.1.2.2 Isolation Forest

Isolation forest algorithm uses an ensemble of trees, with the modification that the

dimension to cut is chosen uniformly at random. Given a new point p, that algorithm

follows that cuts and compute the average depth of the point across a collection of trees.

The point is labeled an anomaly if the score exceeds a threshold; which corresponds to

average depth being small compared to log|s| where s is suitably sized sample of the

data. Moreover, the merits of isolation forest are that different dimensions are treated

independently and the algorithm is invariant to scaling different dimensions differently.

However, isolation forest either produce too many false alarms or does not have a good

recall and also, in many tasks that depend on detecting anomalies, the relevance of different

dimensions is often unknown (Guha et al., 2016).

3.1.2.3 Spectral Clustering

Spectral clustering methods use the eigenvectors of the Laplacian to properly group the

data-points (Langone et al., 2015). To cluster the data into k-subsets, the spectral clustering

algorithm computes the largest k eigenvectors of the normalized Laplacian matrix from the

affinity matrix, which represent the similarity between data points. Then it performs the

popular k-means clustering algorithm on the resulting k-dimensional feature space. The

advantages of spectral clustering are, it only requires a pairwise distance of data points and

the algorithm does not require the distance to be metric (Y. Zhou, Yan, & Huang, 2007).A

common method used in the spectral clustering is the Gaussian kernel. Nevertheless,

when confronted with clusters of different scales, corresponding to a multiscale landscape

potential, standard spectral clustering which the first k eigenvectors to find k clusters will

fail. The further single scale may fail to correctly cluster multiscale data (Nadler & Galun,

2007).

73

Univ
ers

iti
Mala

ya

3.1.2.4 HDBSCAN

Hierarchical Density-based Spatial Clustering of Application with Noise (HDBSCAN)

perform the characteristics of DBSCAN with varying epsilon values thereby successfully

identifying clusters with varying densities and outliers as unusual data points not belonging

to any cluster (Duggimpudi, Abbady, Chen, &Raghavan, 2017). The HDBSCAN algorithm

adheres well for scalability which can handle large dataset for analysis (Ošep, Voigtlaender,

Luiten, Breuers, & Leibe, 2017). Conversely, the algorithm needs to either assign an

instance to a cluster or mark it as an outlier. There is no quantification of the outlierness of

an instance.

3.1.3 Datasets

A total of 3 datasets have been used in the experiment: (i) DARPA Intrusion Detection

Dataset (created in 1999 by MIT Lincoln Laboratory) which contains real network data

and labeled attacks. The size of the dataset is 1.5 GB; (ii) Mid-Atlantic Collegiate Cyber

Defence Competition (MACCDC) dataset, is a cyber-defense competition created for

students to test their cybersecurity skills (created in the year 2011). The dataset contains

the data captured from the network in the event and also the attacks conducted by a specific

team. The dataset is approximately 14.2 GB; and (iii) DEF CON 21 dataset, one of the

world’s largest hacking conference held annually. For this experiment, we used the DEF

CON (2013) dataset, which has many challenges such as, lock picking, scavenger hunts

and capture the flag. The datasets consists of the network packet capture of the event. We

used the captured flag dataset for the experiment. The total size of the dataset is 100.8 GB

3.1.4 Feature Extraction

The process of feature selection facilitates in selecting appropriate features that might

help to address the possible issues, where by the repeated, irrelevant and noisy features

74

Univ
ers

iti
Mala

ya

will be disregarded.

Datasets considered for analysis might also comprise irrelevant or redundant features

that might not help or hinder detections. Manually picking relevant attributes is also a

possible scenario, however, it is tedious and time consuming process, particularly with the

dataset that has strangely behaving data. Furthermore, having a lot of features might hinder

the clustering processes, hence it is worth mentioning that it is crucial to pick appropriate

features for detecting anomalies. In this regard, the feature selection approaches help to

disregard the unnecessary features without impacting the outcome. There are number of

feature selection methods, of which the information gain feature selection method is most

popular for feature selection in class imbalanced problem (Wasikowski & Chen, 2010). In

this method, each feature is given a score based on the statistical measure applied to the

features. The scores given to the features help to determine their relevancy, as they are

ranked based on the scores given to them. The information gain feature selection method

is univariate and independently considers all the features, or with regards to the dependent

variable.

Additionally, this method enables the data to explicate the significance of individual

features for the detection, based on information gain, whereby, the most difficult and

time consuming manual feature selection process is avoided. It is worth mentioning that

web-servers and web-based applications have become easy targets of intruders and cyber

criminals; hence it is critical to tighten the security of those targets.

Generally, web application users send queries while seeking information via HTTP

request. The request generates HTTP traffic consisting features to identify the anomaly

detection. While surfing websites, users might observe a standard pattern of behaviours

such as, clicking the links, submitting the forms or prompting interaction scripts on

the web pages, however, intruders do not follow the standard behaviours, rather they

75

Univ
ers

iti
Mala

ya

Table 3.2: Features extracted for anomaly detection

No Feature Description

1 id.resp_p

Responding endpoint’s TCP/UDP port (or ICMP code)
By default standard value should be 80, if its run on
the non-standard port like 443, 1947, 6667, etc are high chance for
an anomaly.

2 method

HTTP Request verb: GET, POST, HEAD, PUT, OPTIONS, DELETE.
Attacks using these methods are usually used in parallel to a GET
flood, in order to try and attack less common areas in the server code.
A POST request is usually larger than a GET request, and as a result,
a large POST request is less suspicious than a large GET request, and
more likely to get to the server un-noticed by the mitigation devices
protecting it. OPTIONS helps for various types http flood attacks.

3 request_body_len Actual uncompressed content size of the data transferred from
the client

4 resp_mine_types

MIME types are a way of determining what kind of file you’re
looking at.
PNG images -
image/png,
JSON files - application/json,
JavaScript - text/javascript.

launch hacking tools to discover the weakness of the server to be exploited for extracting

exclusive and private information (Juvonen et al., 2015) (Althubiti, Yuan, & Esterline,

2017) (Zolotukhin, Hämäläinen, Kokkonen, & Siltanen, 2014). The footprints of the users

remain in the web server as http logs, which paves way for extracting several valuable

information. The following are the various parameters present in the HTTP bro log: ts,

uid, id.orig_h, id.orig_p, id.resp_h, id.resp_p, trans_depth, method, host, uri, referrer,

user_agent, request_body_len, response_body_len, status_code, status_msg, info_code,

info_msg, filename, tags, username, password, proxied, orig_fuids, orig_mime_types,

resp_fuids, resp_mime_types. Based on information gain feature selection method, all the

27 features selected in this study were given scores. Out of which only 4 features were

selected based on the top 4 scores (see Table 3.2), which have been used for real-time

anomaly detection. These 4 features have been chosen based on the number of clusters k

depending on the feature subset.

76

Univ
ers

iti
Mala

ya

3.2 Performance Measuring Parameters

The following performance parameters have been used to analyse the accuracy, memory

consumption and execution time of the existing real-time approaches for anomaly detection.

Following are the three different performance parameters addressed in the objectives in

chapter 1.

3.2.1 Accuracy

The accuracy measure that indicates how well the cluster points have been classified

into the correct clusters; Adjusted Rand Index (ARI) value are used for calculating the

accuracy of the algorithms. ARI is the best performing method for comparing two

partitions. ARI computes a similarity measure between two clustering’s by considering

the pairs of samples and counting pairs that are assigned in the same or different

clusters in the predicted and true clustering. It obtains a value of unity when the

two partitions perfectly agree in the current situation, when two nodes are connected

to the exact same set of other nodes and values of zero when there is only chance

agreement between the partitions (Hoffman, Steinley, & Brusco, 2015). The raw RI

score is then “adjusted for chance” into the ARI score using the following scheme:

ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)

3.2.2 Memory consumption

Memory consumption, which indicates the amount of memory taken in MB to execute

a specific task. In our experiment, it is measured from when the data starts to read the

incoming data until the output is received. Moreover, in our experiment the program loops

over four cycles before the execution are stopped; Memory profiler is used to check and

calculated the memory usage of the interpreter at every line. The increment column allow

us to spot those places in the code where amounts of memory are allocated. Furthermore, It

77

Univ
ers

iti
Mala

ya

allow to retrieve the memory consumption of a function in real-time, allowing to visualize

the memory consumption of a given task over time.

3.2.3 Execution time

Execution time that specifies the time taken in seconds to complete the execution,

including the time spent executing run-time or system services. In this context, the

execution time is influenced by two factors, data size, and algorithm used. Similarly,

memory profilier is used in the calculation of execution time for task.

3.3 Results and Analysis

This subsection illustrates the results acquired in the perspective of accuracy, memory

consumption, and execution time using traditional methods for real-time anomaly detection.

3.3.1 Accuracy

To measure the accuracy for each algorithm, we used the adjusted rand score evaluation

method. Figure 3.1 shows a comparison of the accuracy of four algorithms and three data

sets.

From the 3.1 Figure, it is concluded that the Isolation Forest algorithm outmatches

all of the other algorithms in terms of accuracy. Besides, K-Means and Isolation Forest

yield better accuracy with smaller size datasets, whereas, Spectral clustering performs

better with MACCDC dataset compared to other datasets, on the other hand, the spectral

clustering performs better with a medium-sized dataset. Finally, the HDBSCAN algorithm

performs better in the DEF CON dataset as against the DARPA and MACCDC datasets.

3.3.2 Memory Usage

Memory consumption ismeasured using thememory profiler package that is available for

installation in Linux Cent OS. Figure 3.2 shows a comparison of the memory consumption

78

Univ
ers

iti
Mala

ya

Figure 3.1: Accuracy of existing algorithms

for each algorithm for 4 cycles of execution.

When data is being streamed in real-time it is necessary to take into consideration the

amount of memory consumption. As data is being received constantly and if the algorithm

consumes a high amount of memory there is a possibility of an application crash. The

highest memory is consumed by Isolation Forest for the DARPA dataset. The HDBSCAN

consumes the lowest memory in the MACCDC dataset.

3.3.3 Execution time

The execution time is measured using the memory profiler package, the same tool used

for measuring memory consumption. Figure 3.3 shows a comparison of the execution time

for each algorithm for 4 cycles of execution.

From Figure 3.3 it is evident that Isolation Forest takes the least time in the MACCDC

dataset. The highest time consumed is by HDBSCAN in the DARPA dataset. Whereas,

79

Univ
ers

iti
Mala

ya

Figure 3.2: Memory consumption of existing algorithms

the K-Means has the similar time consumption on DARPA and MACCDC datasets.

We have illustrated our results as graphs in Figures 3.1, 3.2 and 3.3. Figure 3.1 indicates

that the best accuracy is gained from the Isolation Forest algorithm. However, in terms

of memory consumption, Isolation Forest consumes higher memory and would not be a

great fit for real-time processing (see Figure 3.2). Furthermore, K-Means has a maximum

accuracy of 81 percentage (see Figure 3.1) which is not sufficient for anomaly detection and

has a high memory consumption of 480 MB (see Figure 3.2). Finally, Spectral Clustering

and HDBSCAN have an accuracy of < 80 percentage in all datasets and hence not suitable

for real-time anomaly detection (see Figure 3.1). Since, these algorithms lack accuracy,

memory consumption or execution time, we have proposed a novel composite algorithm

named SSWLOFCC (Streaming Sliding Window LOF Coreset Clustering).

80

Univ
ers

iti
Mala

ya

Figure 3.3: Execution time of existing algorithms

3.4 Discussions

The empirical results highlight the following:

• Uncontrollable streaming data reduce the accuracy of the anomaly detection in

existing clustering algorithm.

• Performing real-time processing for anomaly detection without considering the

incoming data streams can lead to an experiment system crash.

• The inefficient process execution took longer execution time which remarkably

degrades the performance of the existing system.

• The existing traditional approach has merits, however, the significantly higher

execution time and memory consumption for the processing are challenges that need

to be addressed.

This section clearly shows the serious drawbacks of ignoring memory consumption and

81

Univ
ers

iti
Mala

ya

execution time when detection the accuracy of a clustering algorithm for an anomaly

detection.

3.5 Conclusion

In this chapter, we conducted experiments to analyse the accuracy, performance of

the task for real-time big data. We evaluated the impact of performances based on two

parameters; memory consumption and execution time.

Based on the analysis results, it is concluded that real-time big data processing for

anomaly detection based on existing traditional approach can remarkable degrade the

percentage of detection accuracy for clustering. In some cases, higher accuracy results in

the longer execution time and higher memory consumption. Lastly, after receiving a few

cycles of better accuracy for detection, it’s failed to continuously produce better accuracy

for next cycle due to insufficient memory and longer execution time for processing the task.

In the next chapter, we propose real-time anomaly detection based on clustering

algorithm using big data technologies which comprise of composite clustering algorithm

and various big data technologies to ingest and process the incoming real-time data. The

adoption of our proposed solutions can produce higher accuracy, shorten execution time

and less memory consumption for processing the real-time big data for anomaly detection.

82

Univ
ers

iti
Mala

ya

CHAPTER 4: FRAMEWORK

This chapter aims to propose a real time anomaly detection framework and algorithms

based on big data technologies. These proposed solution is expected to improve accuracy

of anomaly detection in real-time, minimizing memory consumption and execution time

using big data technologies and composite clustering algorithms. This research has

demonstrated several components in the proposed framework and its functional capability.

The proposed framework is named as real-time anomaly detection based on big data

technologies (RTADBDT), which deals with the problems highlighted in the chapters 1

and 3.

Moreover, the proposed solution has been validated based on the parameters such as

accuracy, memory consumption and execution time. Besides, the pseudo-codes of the

proposed algorithms have also been presented in this chapter. Furthermore, the distinctive

features of the proposed framework have also been discussed, followed by the presentation

of a mathematical expression related to execution time.

The chapter is organized into six sections. Section 4.1 elaborates the proposed framework

for real-time anomaly detection based on big data technologies. Section 4.2 illustrates

the flowchart of real-time anomaly detection process. Section 4.3 presents the proposed

composite clustering algorithms. The performance metrics algorithms and mathematical

expression used for evaluations of the proposed framework have been presented in section

4.4, and the highlights the distinctive features of the proposed framework have been

presented in section 4.5, finally the summary of the chapter has been presented in section

4.6.

83

Univ
ers

iti
Mala

ya

4.1 Framework for Real-Time Anomaly Detection Based on Big Data Technolo-
gies

This section provides the details of the proposed framework for real-time anomaly

detection based on big data technologies. Figure 4.6 depicts the key components of the

framework: BroIDS, Flume, Kafka, Spark Streaming, MLlib, Matplot and HBase. In

addition, this section discussed each of these components and also discusses other big data

technologies used on real-time anomaly detection.

4.1.1 BroIDS

BroIDS is an open source network security monitoring tool that help to look into

previously captured packet from captured files in real-time. Further, it can be used for

ingesting, collecting, processing and analysing network data. This tool extensively inspects

all network traffic for suspicious activities. The network data is stored in many multiple

log files such as, HTTP log, DNS log, and SMTP log. One of largest strength of BroIDS

is its ability to turn network events into actionable or useful metadata that provides the

context which is the key to quickly detect potential threats (P.R, 2019) (Koning, Buraglio,

de Laat, & Grosso, 2018). Figure 4.1 explain the function of BroIDS in the proposed

framework as an individual component.

Logs

HTTP

 DNS

 CON

Dataset
(PCAP) BroIDS

Figure 4.1: Implementation of BroIDS in the proposed framework

In the proposed framework, the BroIDS has been used to read the datasets from pcap

files and retrieve the data in individual log files, which generates conventional real-time log

files. Besides, the data in many individual files such as DNS log, HTTP log, and SMTP log

have been extracted. This experiment has focused on http log used to identify applications

84

Univ
ers

iti
Mala

ya

or services that perform http requests. The http log has been selected based on the most

recent attacks in web-server and web-based applications. Further, it is crucial to strengthen

web service applications to protect from security threats. Http traffic contains various set

of attributes, not limited to application request, information related to the senders and

receivers (see chapter 3 for feature selection details on http log).

4.1.2 Flume

Flume is a distributed, reliable service that is capable of efficiently collecting, aggregating

and moving huge amounts of log data in real-time (Du, Liu, Liu, & Chen, 2014) (Shu,

Chen, & Sun, 2017). Flume is robust, fault tolerant and provides many failover and

recovery mechanisms.(https://flume.apache.org/).

The Flume facilitates the availability and reliability for the real-time data. Furthermore

it reads and tracks the incoming packet data blocks that are handled by SourceAgent. In

addition the SourceAgent employs a protocol to relocate the records to RecevingAgent.

The Flume is highly effective in handling high volume and velocity of data from a

number of applications. These data can be forwarded to other components for processing.

Furthermore, Flume agent is capable of creating various channels to process the incoming

data and concurrently store raw data for further analysis (Maarala, Rautiainen, Salmi,

Pirttikangas, & Riekki, 2015). The availability will be enhanced by the multiple channel

selection methods and at the same time the network overhead will be minimised (Shu et

al., 2017). Figure 4.2 further illustrates the process flow of flume from sourceagent to

receivingagent. It is possible to add many channel as required in order to ease the flow in

the Flume. The channel is also called as Flume collector agent.

85

Univ
ers

iti
Mala

ya

Figure 4.2: Flume Source Collection Architecture

In this work, the Flume has been used to read the log files that are being generated in

real time by BroIDS. Moreover, some of the components in the Flume agent have been

redesigned to introduce the load balancing using master node (Shu et al., 2017). This

modification enables each collector node to fully utilize the memory for process and also

this strategy plays vital role to monitor the usage of memory in real-time. Lastly, Flume is

used to write the data being read into a Kafka topic for further process.

4.1.3 Kafka

Apache Kafka is a distributed streaming platform, which publishes and subscribes to

streams of records. Kafka is similar to a message queue, where data received is stored

and retrieved whenever required. Further, it delivers better queuing real-time data streams

system with reliable, high-throughput and low-latency (Ranjan, 2014). The data stream

from Kafka topics can be received by distributed analytic platform for further processing

and implementing diverse analytics capabilities (Fang et al., 2016). Furthermore, most of

the real-time systems attain various benefits such as, developing a message passing system

to collect information for processing and storing the event in real-time. However, it is

crucial to meticulously validate the memory consumption capabilities of message passing

system prior to employing into any framework (Wiatr, Słota, & Kitowski, 2018).

Kafka comprises a repository of messages, categorized into different topics, each

category has been divided into numerous partitions, which comprises of well-arranged,

86

Univ
ers

iti
Mala

ya

absolute sequence of messages. Furthermore, the messages in a partition are labelled

with exclusive and sequential IDs. Multiple nodes are disseminated over Kafka clusters

in order to accomplish fault-tolerance. In user group, one user is entitled to obtain the

accurate message order from any partition of topic category (X. Liu, Iftikhar, & Xie, 2014).

The comparison of Kafka with other messaging systems has revealed that the former is

effective in handling clustering, multiple queuing, client coordination and fault tolerance

for real-time data collection (Ta, Liu, & Nkabinde, 2016). Figure 4.3 displays the topic

creation in Kafka which is used in the proposed framework for data pipeline.

Figure 4.3: Topic creation in Kafka

A study has modified the KafkaProducer API call cost for Garbage collector, which

optimizes the kafka topics to reduce the excessive memory consumption and low latency

(Wiatr et al., 2018). Kafka as a message queue for the data from Flume to be written to the

Kafka topic and for a Spark to read the Kafka topic data for further processing.

4.1.4 Spark Streaming

Spark Streaming is a high performance, scalable, in-memory and fault-tolerant real-time

data processing framework. It is capable of processing massive data volume ingested from

many different data sources like Kafka, Flume, Kinesis and etc (Son et al., 2016). The

Spark Streaming is effective in providing an illustrious abstraction known as discretized

stream or DStream, signifying an uninterrupted stream of data. DStreams are generated

either from input data streams from sources such as Kafka, Flume, and Kinesis, or by

applying high-level operations on other DStreams. Generally, a DStream is characterised

87

Univ
ers

iti
Mala

ya

as an array of Resilient Distributed Dataset (RDDs). Fundamentally, Scala, Java or Python

are the most common programming platforms of Spark streaming API. This study has

used Scala for implementing algorithms. The reason for selecting Scala relies on its

iterative computing task, and its capability of supporting a variety of data sources and

fault-tolerance (Apache, 2019) (Maarala et al., 2015). Moreover, it is capable of directly

processing the complex machine learning algorithms on data streams for analysing.

Figure 4.4: Work flow of Spark streaming processing

The above Figure 4.4 describes how Spark Streaming process the streamed data. Initially,

Kafka sends data streams into Spark Streaming. Spark streaming executes the data using

multiple batches, each batch has multiple jobs. A special feature in spark streaming

provides capabilities of windowing, which is combining and executing 2 batches at the

same time, this, in turn, improves the performance of spark streaming. Each window is

processed as an RDD in the spark engine. The Spark engine consists of 5 processes, which

are construct referrer graph, filter content-type, filter based on in-degree, filter based on

out-degree, and filter advertisement requests. After these processes have been completed,

the RDD can be stored into a Hadoop Distributed File System (HDFS).

In this work, Spark streaming processing is used for processing of network data to

detect anomaly in real-time. To begin, Spark streaming ingests stream data from Kafka

topic, which acquires data from the simulated http dataset. Moreover, inbuilt methods from

Spark have been applied to enhance the retrieval of data. Subsequently, Spark streaming

88

Univ
ers

iti
Mala

ya

processes the data stream into Dstream, which comprises a number of batches. Each batch

in the Dstream contains data collected from 30 seconds interval. Sliding interval in Spark

streaming enables to maintain a stable state for incoming data. Dstream generates the RDD

for every slide interval of window time. Lastly, Spark Engine facilitates to process the

proposed algorithms into RDDs.

4.1.5 Spark MLilb and Scala

Machine learning library (MLlib) is a standard module of Spark, which provides various

statistical, optimization and primitive operation features. Further, it supports various

high level API in Scala, Java, Python, and R Programming language. In ddition, MLlib

comprises of various supervised and unsupervised algoritahms, which can produce high

performances and scalable applications. The proposed Streaming Sliding Window LOF

Clustering Coreset (SSWLOFCC) algorithms are implemented in the Spark MLlib module.

MLlib integration with Spark provides numerous benefits to any distributed application,

some of the advantages are: the Spark iterative computation architectural enables large-

scale machine learning algorithms to achieve high level efficiency in results, and Spark.ml

API for pipeline offers developers with extensive range of new module to integrate with

their architecture (Meng et al., 2016).

In the proposed framework, garbage collection method has been restructured to leverage

algorithmic optimizations of MLlib and retrieve data from the Kafka topic and apply the

algorithms. Furthermore, Scala has been used as the primary programming language to

implement the proposed algorithms in to Spark streaming framework. In addition, Apache

Spark has been built using Scala programming languages. These enable the modification

and redesigning of the entire Spark Streaming architecture into the proposed application

using Scala programming. Besides, Scala provides better interoperability with java and

other high level programming languages. Lastly, Spark provides Scala a superior advantage

89

Univ
ers

iti
Mala

ya

as against other programming languages to handle data stream in real-time and enable

Scala to do robust data processing of Spark computational engine.

Figure 4.5: Interaction between Spark streaming and Spark MLlib

In the above Figure 4.5 describes the interaction of Spark Streaming and MLlib, there

are two types of data sent to Spark Streaming. The streaming data, which is received from

Kafka and Flume. The static data received from HBASE. When Spark Streaming receives

this data, if the data is a streaming data, the models are processed with live data in Spark

MLlib and store via Dataframes in HBase. If the data received is a static data, Spark MLlib

will use the existing mechanism and HBase will interactively query the data.

4.1.6 HBase

HBase is the open source distributed storage system formed after Google’s Bigtable. It

provides modern API in real-time to read and write access to big data storage. Further, it

has efficient mechanism of built-in data buffer, MemStore to assemble data in-memory

prior to saving in any database (X. Liu et al., 2014). In this work, HBase receives the

processed RDD streams, directly connected to the built-in data buffer to be stored in

database.

90

Univ
ers

iti
Mala

ya

4.1.7 Matplotlib and Python

Matplotlib is a Python 2D library used for plotting. It is capable of producing a variety

of plots, histograms, power spectra, bar charts, error charts, and scatterplots (John Hunter,

2019). Python is an open source programming language that is powerful, fast, and user

friendly, which omnipresent and is easy to learn(Software, 2019). Beside, pipe() and other

packages have been used in this study to integrate some of the JVM scala like jython with

python.

The matplotlib has been used in this study for plotting the results of the proposed

algorithm. Moreover, a diverse array of big data technologies has been employed to build

the novel proposed framework. Each component in the proposed framework has played a

substantial role in extracting the significant results.

A variety of components have been configured and modified during the experiment

in this research. The table 4 describes those components used along with their version

numbers in the proposed framework.

Table 4.1: Tools used in the proposed framework with their version number

Components Version Usage
BroIDS 2.4.1 Read the pcap files for real-time simulation.
Apache Flume 1.6.0 Get data from log files and pass to Kafka
Apache Kafka 2.1.0 Queue the log data for spark to read
Apache Spark 1.6.0 Read the data from Kafka and stream the data
Scala 1.6.0 Programming language used to code spark streaming
Spark MLlib 1.6.0 To apply machine learning algorithms
Apache HBase 2.0.2 To save the results for further analysis
Matplotlib 3.0.0 Visualize the processed data
Python 3.7.0 To help plot the results in matplotlib

Each component has been utilized to achieve the results. The components work with

the above discussed version numbers, however, there may be compatibility issues with

different versions of the tools, and they may not work as expected.

91

Univ
ers

iti
Mala

ya

Dataset

(PCAP)
Logs

Agent

Topic

HTTP

 DNS

 Con

Stream

Streaming Sliding Window LOF

Clustering Coreset(SSWLOFCC)

Cloud

Apache

Flume

BRO

IDS

Apache

Kafka

Spark

Streaming

Scala Spark

MLlib

Spark

Streaming

Matplotlib Python

Apache

HBase

Producer Consumer Topic
Message Message

Kafka Broker

RDD 1 RDD 2 RDD 3

RDD 3

DStream

Transformed

DStream

Windowed

Windowing Operation

Figure 4.6: Proposed framework for real-time anomaly detection based on big data
technologies

Figure 4.6 elucidates the proposed framework. In the initial step, the data is received in

pcap format and is read using BroIDS. The BroIDS divides the files into specific log files,

from there, the HTTP log files are sent to Flume for processing. The above mentioned

step transmits the real-time data to Apache Flume. It reads the incoming data into the http

log from BroIDS and sends the data to Kafka. Furthermore, Kafka has the advantage of

traditional log aggregators and messaging system. Next, the Kafka queues the data into

a kafka topic. Following this, the Spark reads data from the kafka topic and the sliding

window is applied to combine Spark Streaming jobs. After that, spark stream RDD is

further processed using the proposed algorithms for anomaly detection which is module of

Spark MLlib. The data is visualized using matplotlib package. Lastly, the data from Spark

92

Univ
ers

iti
Mala

ya

Streaming is piped into HBase and the output of the proposed algorithm is also stored into

HBase for further analysis.

4.2 Real-Time Anomaly Detection Process Using Flowchart

The proposed framework has been illustrated using flow diagram. Figure 4.7 shows

a flow of steps that are required to perform real-time anomaly detection using big data

technologies.

Apache Flume read HTTP log and write to

Kafka topic

Apache Spark receive data from Kafka and

store in Hbase

Apply proposed algorithm to streamed data

and store results in HBase

Read pcap files and extract logs using BroIDS

in real time

Visualization of results

Figure 4.7: Flow diagram of the proposed RTADBDT framework.

The process starts with BroIDS reading pcap files in real time, followed by Apache

Flume reading HTTP log files and writing them to a Kafka topic.Then, Apache Spark reads

data from Kafka and the streamed data is stored in HBase. Later, the proposed algorithm

93

Univ
ers

iti
Mala

ya

is applied to the streamed data and the results are stored in HBase. Finally, the results of

processed data are visualised for anomaly detection.

4.3 Proposed Algorithms

In this section, the elements used to develop the proposed Streaming Sliding Window

LOF Clustering Coreset (SSWLOFCC) algorithms have been discussed. The proposed

algorithms are implemented into Spark MLlib component using Scala programming.

Algorithm 1 Flume Pipeline
1: x← sources
2: y← sinks
3: z← channels
4: Configure the source
5: Configure sink 1 (Kafka)
6: Configure sink 2 (HBase)
7: Use channel 1 to buffer events in memory (Kafka)
8: Use channel 2 to buffer events in memory (HBase)
9: Bind source and sink to channel (Kafka & HBase)
10: props← setup properties for load balancing
11: hosts← list hosts
12: Pair each host with port
13: props.put(hosts)
14: Create client with load balancing properties

Algorithm 1 Flume Pipeline defines the sources, sinks and channels initially. After, the

sources are configured, the sinks are configured (Kafka & HBase), channels are buffered

events in the memory. Further, the sources and sinks are binded to the channel for kafka &

HBase. Next, we define the properties for load balancing and list the hosts. After, we pair

each host with the respective port number. Finally, we put the properties for the hosts and

create client with load balancing properties.

The proposed Streaming Sliding Window LOF Clustering Coreset (SSWLOFCC) is a

clustering-based network anomaly detection algorithmwith the use of big data technologies.

Algorithm 2 is the pseudocode for the proposed algorithm. Initially, the streamed data from

Kafka has been defined as streamData. While the streamData is not empty, a representing

94

Univ
ers

iti
Mala

ya

Algorithm 2 Streaming Sliding Window LOF Clustering Coreset (SSWLOFCC)
1: INPUT: Streaming Data from Kafka Topic
2: OUTPUT: Cluster visualization image
3: streamData=stream data from Kafka
4: while (streamData != empty) do
5: a← current streaming data . data streamed in specified time limit
6: b← next streaming data . next data to be streamed
7: windowSize← 30 . window length duration for sliding window
8: slidingInterval← 30 . how long each interval should last
9: windowedStream←

streamData.reduceBykeyAndWindow((a,b) =>(a+b),
windowSize, slidingInterval)

10: Extract features (‘id.resp_p’, ‘method’, ‘resp_mime_types’,
‘request_body_len’)

11: bro_matrix = streamData[features] to matrix and normalize
12: lof = LocalOutlierFactor (neighbors = 5)
13: lof.fit(bro_matrix)
14: lof_df = streamData[features][lof.fit_predict(bro_matrix) == -1] . refer to

algorithm 3
15: lof_matrix = to matrix (lof_df)
16: aggclustering = AgglomerativeClustering(n_clusters=4)

.fit_predict(lof_matrix) . refer to algorithm 4
17: pca = PCA(n_componenets=3).fit_transform(lof.matrix))
18: lof_df[‘x’] = pca[:, 0]
19: lof_df[‘y’] = pca[:, 1]]
20: lof_df[‘cluster’] = aggclustering
21: Construct the k center clustering coreset
22: |C| = O(klog 2(n))
23: Costp(C) ≤ 8·Costp(OPT)
24: 2·Costp (C) x 2·Costp (C) x
25: εCostp (C)/(8

√
d) x εCostp (C)/(8

√
d) x

26: Costp (C) = maxp εP { dist(p,C) }
27: |Coreset| = O[(

√
d/ε) d·k·log 2(n)]

28: Costp (A) = dist(p,A) ≤ dist(q, A) + (
√

d)(ε /8
√

d)Costp (C) ≤
Cost S(A) + εCostp (OPT) ≤ Cost S(A) + εCostp (A)

29: (1- ε)Costp (A) ≤ Cost S(A)
30: Costp (A) = dist(p,A) ≥ dist(q, A) - (

√
d)(ε /8

√
d)Costp (C) ≥

Cost S(A) - εCostp (OPT) ≥ Cost S(A) - εCostp (A)
31: (1+ ε)Costp (A) ≥ Cost S(A)
32: |Coreset| = O[(

√
d/ε) d·k·log 2(n)]

33: Scatter plot with matplotlib
34: Dt = current date
35: Id = Row id
36: Cf = HBase Configuration
37: Parse streamData and SSWLOFCC(produced result) into hbase object

95

Univ
ers

iti
Mala

ya

streaming data, b represents the next streaming data, windowSize represents the length

sliding window, slidingInterval indicates the duration of the interval, and windowStream

function is for applying the sliding window.

After performing the sliding window, the features such as, id.resp_p, ‘method’,

‘resp_mime_types’, ‘request_body-len’ have been extracted from the data. Further, a

variable has been defined to hold the features of the stream data and to normalize the

results. After that, the number of neighbours has been defined, and call the LOF fit and

fit_predict method on the data. The data is further processed by converting it to a matrix

and applying agglomerative clustering with defined clusters and use the fit_predict method

on the lof_matrix. Furthermore, the PCA has been applied for dimensionality reduction of

the data using the fit_transform method.

In addition, the k center clustering corset has been used for efficient outlier detection on

the model. Finally, a scatter plot has been created on the x and y points using matplotlib;

and the streamed data and the SSWLOFCC produced results are saved into HBase objects.

Algorithm 3 Local Outlier Factor
1: INPUT: k, dp
2: OUTPUT: lof values
3: kDistance (dp, pt)
4: reachabilityDist(pt)
5: lof = null
6: for each data point pt do
7: KNN = kDistance(dp, k)
8: lrd = reachabilityDist(KNN, k)
9: for each p in KNN do
10: lofhold[i]=sum(lrd[o ∈ N(p)])/lrd[i]/|N(p)|
11: lof = max(lof, lofhold)

return lof

Algorithm 3 takes 2 inputs, which are the k value and data points. Two methods have

been defined that calculate the k distance and the reachability distance. For each data point,

two variables are stored and named as KNN and lrd, which call the methods kDistance and

reachabilityDist respectively. Furthermore, for each point in KNN a temporary sum of

96

Univ
ers

iti
Mala

ya

the lrd is held and the max of the lof variable and the temporary lof variable are acquired.

Finally, the lof data is returned. This algorithm provide information about their neighbours

data points on outlier detection with distance function. At the same time this algorithm

detect the lower density of data points than its neighbours data points.

Algorithm 4 Agglomerative Clustering
1: INPUT: X (data points)
2: OUTPUT: cluster points
3: Dist_matrix(Dmeans(Ci, Cj) = ‖µi — µj‖2)
4: for each datapoint in X do
5: while only a single cluster remains do
6: Cluster = datapoint[i]
7: ClusterMerge= merge two closest clusters
8: Update Dist_matrix(Cluster+ClusterMerge)

In algorithm 4, which is the agglomerative clustering, X is defined as the input of data.

Initially, it is necessary to compute the distance matrix for X. After that, it is essential to let

each data point in X to be a cluster. Finally, the two clusters are merged and the distance

matrix is updated. This process repeats itself until only a single cluster remains.

Lastly, the proposed algorithms have been restructured and improved based on various

operation functionalities of sliding window, Linear Outlier Factor (LOF), Agglomerative

clustering and Coreset technologies.

4.4 Performance Evaluation Metrics of the Proposed Framework

This subsection explains the evaluation of the proposed RTADBDT framework. To

validate the RTADBDT, the accuracy, memory consumption and execution time are

addressed as per objectives listed in the chapter 1 and section 1.4.

4.4.1 Accuracy

Accuracy refers to the measurement of how well the cluster points have been categorized

into the appropriate clusters. For the evaluation of the proposed algorithms for clustering

and anomaly detection, the internal and external cluster evaluation techniques have been

97

Univ
ers

iti
Mala

ya

used (see Chapter 2). For internal cluster evaluation technique, Silhouette Index and

Calinski and Harabaz, have been used, and for external cluster evaluation technique adjusted

rand score and normalized mutual info score methods have been used. Additionally, to

evaluate the accuracy of anomaly detection of the proposed algorithms statistical techniques

such as, confusion matrix, Precision, Recall, Kappa, Mathew’s correlation coefficient and

F1-score methods have been used. All these methods have been described in Chapter 5

under evaluation methods section. These are most commonly used evaluation methods for

clustering and anomaly detection.

4.4.2 Memory Consumption

The amount of memory taken in MB to execute a specific task is called memory

consumption. This study has used a modified openly available package in Linux named

memory profiler, which enables the user to monitor the memory consumption. In order

to get an accurate reading, the proposed framework has been monitored from the first

phase that is when BroIDS starts to read the log files until the results of the proposed

framework have been gotten. The proposed framework has been looped over four cycles to

get accurate results.

Initially, Algorithm 5 runs by importing necessary packages such as tracemalloc and

matplotlib. After, the script, isPython, pid, toMB and Outputfile are defined. If the script

is a python script, then while the pid still exists, we define stat which holds the value of

tracemalloc take_snapshot that is used to get the memory usage of the script. Furthermore,

the memory needs to be converted into MB therefore, we divide the stat.size/toMB. After

that, we insert the mem into the Outputfile, print the total memory usage and plot using

matplotlib. Lastly, if the script is not a python script, then the algorithm will return a

statement that the script is not a python script.

Algorithm 6 is used to calculate the amount of memory consumed per second. We

98

Univ
ers

iti
Mala

ya

Algorithm 5 To calculate RAM usage
1: import tracemalloc
2: import matplotlib
3: script← script to be executed
4: isPython← check to see if script is a python script
5: pid← os.getpid()
6: toMB← (2**20)
7: Outputfile← memory.txt
8: if script = isPython then
9: while pid do
10: stat← next(filter(lambda item: str(item).startswith(script)
11: tracemalloc.take_snapshot().statistics(’script’)))
12: mem← stat.size / toMB
13: Insert mem into Outputfile
14: Print total memory usage
15: Plot using Matplotlib
16: else return ‘script is not a python script’

Algorithm 6 To calculate memory consumption per second
1: mem← Output of Algorithm 5 (total memory consumption)
2: total_time← Output of Algorithm 7
3: MemPerSec← mem/total_time
4: Display MemPerSec

define mem and total_time to hold the output we receive from Algorithm 4 and Algorithm

5 respectively. Further, we define the MemPerSec to hold the mem divided by total_time,

which will give the memory consumed per second by the script. Finally, we display the

MemPerSec.

4.4.3 Execution Time

Execution time can be defined as the time taken in seconds to complete an execution.

The modified memory profiler package has been used to get the reading of the execution

time. The time in seconds has been monitored from BroIDS starts to read the log files

until the results of the proposed framework have been acquired. The proposed framework

has been looped for four cycles to get more accurate results.

The accuracy, memory consumption and execution time have been employed as major

performance evaluation metrics, which have been as used by many big data processing and

99

Univ
ers

iti
Mala

ya

anomaly detection researchers. For real-time application, memory consumption plays a

vital role for processing. Each metric is crucial for evaluating the proposed framework and

it has significant impact to determine the efficiency of the proposed framework.

Algorithm 7 To calculate execution time
1: import time
2: SSWLOFCC() . calling function to be executed
3: time.clock()
4: Display time.clock()

Algorithm 7 is used to calculate the execution time to run the script. Time package from

the python library was imported here. Further, the method executed to call time.clock()

package to receive the time taken to run that specific method. Finally, the results of

time.clock() was displayed in seconds.

The study has calculated the execution time of entire framework using the derived

mathematical formulae given below. The Spark application is performed by continuous

numbers of Spark jobs. Then, aggregating all the jobs from the beginning to end will

calculate the entire execution time for the framework.

SparkE xecutiontime =
x=N∑
x=0

ET jobx (4.1)

The Spark job execution is known as a graph and each node in the graph is expressed

as a stage. On each occasion, the operation needs data exchange and then a new stage is

generated. Spark job execution time is calculated by totalling the estimated execution time

of all the stages. This concept is represented as:

ET jobx = ST jobx +

k=NSx∑
k=0

stageET k
x + CT jobx (4.2)

100

Univ
ers

iti
Mala

ya

Table 4.2: Symbols and explanations

Symbols Explanation
ETjobx Job Execution time ‘x’
STjobx Job ’x’ Start up time
NSx Number of Stages in Job ‘x’
stageETk

x Job ’x’ Stage ’y’ Execution time
CTjobx Job ’x’ Clean up time

4.5 Distinctive Features of the Proposed Algorithms

In this section, various distinctive features of the proposed algorithms have been

discussed (see Chapter 2 for details of several anomaly detection frameworks). Certain

number of framework deals with anomaly detection using big data technologies. Neverthe-

less, these frameworks are incompetent and encounter multiple issues and challenges for

real-time anomaly detection.

The proposed framework addressed solutions for the three major performance issues

which are the accuracy, memory consumption and execution time. In addition, the proposed

framework also support and provide the capabilities for additional features such as fault

tolerance, scalability, and uninterruption of incoming data.

4.5.1 Real-Time Processing

In the proposed framework, Spark Streaming module has been modified for data

processing and analytical results in real-time data received from http log file pipelined

via Kafka topic. As described in chapter 2, it receives and processes terabytes of events

for real-time analytics. The proposed framework has been evaluated with three different

openly available datasets. Mainly, Spark Streaming receives the process via DStream

abstraction. To begin the process, it is essential to establish streamingcontext which

comprises Sparkcontext and Sliding interval time. Sliding interval sets the update window

where, in coming data streaming are processed and streamingcontext object are working in

parallel. In the framework, the input data source is an http log message generated from

101

Univ
ers

iti
Mala

ya

BroIDS and received from Kafka messaging system. After the streaming computation

logic is finished, the streamingcontext begins to process the incoming data. The proposed

algorithms are applied for Dstream before it terminates the data streams. Lastly, these

flow process are performed in-memory until it forces to store in the external disk storage

and low latency provide assurances for real-time processing possible for the proposed

framework.

4.5.2 Uninterruption of incoming data

In building a real-time framework, one of the crucial concern is uninterrupted data flow

for processing. Any error or defect in pipeline flow will obstruct the process which will

lead to system failure. To handle this, in the proposed framework Apache Flume has been

employed to deal with huge moving incoming data for pipeline. Further, load balancing

mechanism has been developed to operate the real-time data, which can provide reliable

and available service that have abilities to collect and aggregate log data efficiently in

instantaneous. These utilized approaches help to uninterruptedly provide the balanced

real-time data to Spark MLlib module, hence the proposed algorithms are implemented for

anomaly detection in the framework.

4.5.3 Accuracy

In the proposed framework, various composite clustering algorithms have been developed

to be implemented into Spark MLlib components. These algorithms are capable to handle

real-time anomaly detection for http log file. To begin with, windowing size are derived

to consume the incoming data for processing. From these incoming data, the desired

feature have been extracted to detect the anomaly. Modifying, improving and integrating

these LOF, PCA, Agglomerative clustering and coreset algorithms functionalities yield

increased accuracy in detection.

102

Univ
ers

iti
Mala

ya

4.5.4 Memory Consumption

The proposed framework is effective in reducing the memory consumption for entire

processing. Most of the real-time application suffer from memory issues. The proposed

framework utilizes the Spark streaming in-memory functionalities, and algorithms were

developed inside RDD module of the framework, which enables to consume less amount

of memory. In addition, less computation quality of clustering algorithms further helps

to reduce the memory consumption for the proposed framework. In Chapter 5 and 6,

the memory consumption of three different dataset for proposed framework have been

analysed and compared.

4.5.5 Fault Tolerance

In the proposed framework, Spark streaming component processes real-time data streams

from Kafka topics and Flume, which again is convenient to establish fault-tolerance for any

real-time applications. Moreover, node or process failure in Spark streaming are capable of

detecting and recovering by itself, which is one of the biggest advantage of Spark streaming

module. Fault-tolerance are achieved by RDD in stream, and RDD is logically portioned

for each to operate at any point of time. In addition, master node keeps track of the all the

tasks executed for any operation, which is occupied with metadata checkpoint to save all

the necessary information of the streaming computation. These lead to recover from any

failure of the node that running streaming application.

4.5.6 Execution Time

The proposed framework facilitates to minimize an execution time by building code

inside the Spark MLlib module. This module runs the code in the real-time and also

designed for distributed computation, which allows task to be performed by available

executors in Spark engine. The executors are dynamically allocated according to required

103

Univ
ers

iti
Mala

ya

tasks processing. The tasks are proceed simultaneously in the Spark engine throughout the

operation. These lead to tremendously reduce execution time. In addition, data processing

is performed in the in-memory, without any intermediary files for processing the task,

whereby other ETL tools were used by the middle layer to process it. Lastly, Spark MLlib

core receives the process via ML pipelines, which are high level API, developed under the

spark.ml.packages. This helps the sequence of tasks to be performed in the framework,

such as processing, feature extraction, integration of algorithms in distributed environment,

visualization, and storage.

4.5.7 Scalability

In the proposed framework scalability is achieved as it interoperates with several

interconnected modules like Flume, Kafka, Spark RDD, MLlib, HBase and lastly cloud

platform for storage. Unique features in these modules provide robust and scalable

environment to process complex streaming business logic for anomaly detection. Besides,

Spark Streaming ingests data from numerous platforms like Kafka partitions, which decide

the numbers of Spark parallelism operation and proposed algorithms are implemented into

the RDD data frame of Spark Mllib. Lastly, Hbase stores the processed task in the storage

table. These leads to high scalable functions for the proposed framework.

4.6 Conclusion

This chapter has presented the proposed real-time anomaly detection framework and

algorithms based on big data technologies (RTADBDT) in the form of pseudo-code that

help to elucidate understanding of the solutions.

A framework had been developed based on Spark Streaming, where Spark API is

responsible for receiving and submitting jobs for processing among any node. The

framework comprised of five major components (see Figure 4.6): Flume, Kafka, Spark

104

Univ
ers

iti
Mala

ya

Streaming, Spark MLlib, and HBase which are flexible to receive the real-time data for

processing. The Flume component had been modified to operate the load balancing of

incoming data, which are continuously available for Kafka topics to send the flow data

to Spark Streaming. Spark reply on YARN or Mesos for resource scheduling, which

dynamically allocate and adjust the available resources to any jobs across applications. This

leads to reduction in the memory consumption, and furthermore the composite clustering

algorithms developed, support less memory computation for operation. Spark Streaming

abstraction concept of Discretized Stream helps to build a stream of data divided into small

batches. In Spark MLlib, the developed composite clustering algorithms are applied to

Dstream to detect the anomaly in real-time. The processed Dstream had been plotted using

matplot for visualization. Directly executing algorithm inside the Dstreams influences

shorter execution time. The improved and integrated operation in the proposed algorithms

enable higher accuracy detection of anomaly in http log.

The process flow of the implemented framework has been described, while the accuracy,

memory consumption and execution time has been identified for performance evaluation

metrics. Lastly, the distinctive features of the proposed framework has been discussed to

determine their competitiveness.

The next chapter presents the details of the implementation of RTADBDT framework

and algorithms. Likewise, various evaluationmethods to verify the implemented framework

and algorithms have been discussed. The data collected from the implemented framework

and algorithms have been presented, which has been later used for critical analysis to be

explained in Chapter 6.

105

Univ
ers

iti
Mala

ya

CHAPTER 5: EVALUATION

This chapter presents the evaluation of data collected from the proposed framework

real-time anomaly detection based on big data technologies. Further, this chapter discusses

the experimental setup and dataset used to test the performance of the proposed algorithm

and RTADBDT framework. This chapter also describes the evaluation methods used

for measuring the accuracy of the algorithms and mathematical model for performance

parameter. Lastly, the chapter furnishes the details of data collected for analysing the

performance of the proposed algorithms and framework.

This chapter is structured as nine sections: section 5.1 explains the experimental setup

and describes the procedure. Section 5.2 describes the dataset used in the performance

analysis. Section 5.3 reports the process of data collection methods from the proposed

framework. Section 5.4 details the performance evaluation methods: a) internal, b)

external, c) statistical, d) execution time and e) memory consumption. Section 5.5 reports

the data collected to analyse the impact accuracy of the proposed algorithms. Section 5.6,

presents the data collected for evaluating the execution time of the proposed framework.

Section 5.7, demonstrates the data collected for evaluating memory consumption of the

proposed framework. Section 5.8, presents data collected for evaluating the proposed

framework in terms of memory consumption per second. Finally the section 5.9 presents

the conclusion for the chapter.

5.1 Experimental Setup

This section offers the information of the experimental setup of this study. To conduct

the experiment this study has simulated all solutions on a cloud environment that consists

of 12 nodes, where each of the nodes consists of 32 GB of memory and 12 CPU cores.

The operating system in the nodes is Linux CentOS 7.0.3. Initially, the installation of the

106

Univ
ers

iti
Mala

ya

required components, such as, BroIDS, Apache Flume, Apache Kafka, Apache Spark,

Spark MLlib, HBase, Python and Matplotlib on the operating system is ensured. All

of the proposed algorithms are implemented on the Spark MLlib component in Spark

API. Figure 5.1 presents the flow diagram for proposed framework execution process. To

conduct the experiments three different real-time data were simulated using BroIDS. These

simulated real-time data have been processed using the proposed algorithms and framework.

The testing results data of framework and algorithms were compared against the results

obtained from problem analysis results on the particular performance parameter. In this

framework, the three different datasets that were used in problem analysis were executed in

the simulated environment and their results were compared for memory consumption and

execution time. Data has been processed in real-time and the algorithms have been executed

in thirty cycles. In addition, the memory profiler component is developed and installed in

python to produce the results. As discussed in earlier chapters, primary concerns of this

research are the accuracy of the algorithms, memory consumption and execution time for

processing. Lastly, to calculate the accuracy the following methods are used: a) Silhouette

Index, b) Calinski and Harabaz, c) Adjusted rand score, d) Normalized mutual info score

e) Confusion Matrix, f) Precision, g) Recall h) F1-Score.

Figure 5.1: Execution flow for proposed framework

107

Univ
ers

iti
Mala

ya

5.2 Dataset

In the use case, this research has used cybersecurity dataset to evaluate the performance

of the proposed algorithm and framework. These datasets contain normal and anomaly

network traffic data. Due to privacy and security concerns, an actual dataset is not available

for analysis. Yet, openly available dataset enabled the study to evaluate the performance on

these datasets. For this purpose, three different datasets have been selected, which are an old

and new public dataset used for our experiment. Namely, Darpa Intrusion Detection dataset

(DARPA), Mid-Atlantic Collegiate Cyber Defence Competition (MACCDC) dataset, and

DEFCON21 dataset. These three datasets consist of network data which have regular

and anomaly data. These three datasets have been selected based on the literature (see

chapter 2). Moreover, these datasets are most suitable for evaluating anomaly detection

using clustering. The DARPA dataset has been created by MIT Lincoln Laboratory which

consists of real-world network data and labelled attack data. The total size of the dataset is

1.5GB. It comprises of the entire payload of each packet in tcpdump format. Further, it

consists of 233,428 packets with various types of attack and regular network traffic.

The second dataset is Mid-Atlantic Collegiate Cyber Defence Competition (MACCDC)

dataset, created for students to test their cybersecurity skills in cyber-defence competition

(created in the year 2011). It consists of 264,973,151 packets which comprise of network

data for analysis. Lastly, the third dataset is DEFCON21 dataset, one of the world’s largest

hacking conference held annually. For this study DEFCON21 (2013) dataset is used. This

dataset contains network packet captured from the events like lock picking, scavenger

hunts and capture the flag. This study has used the captured flag dataset for the experiment.

The total size of the dataset is 100.8 GB.

108

Univ
ers

iti
Mala

ya

5.3 Data Collection for RTADBDT Framework

The assessment of the developed framework and algorithms have been validated by

comparing and contrasting the output acquired from the implemented experiment results.

As discussed in Chapter 1, experiment data were collected to analyse the following three

parameters: Accuracy, Memory consumption, and Execution time. At the same time, the

data collected can also be used for analysing other parameters as well. Several cycles of

real-time processed data are collected for evaluating these three parameters. Likewise,

some of the evaluation techniques are evaluated with thirty different cycles of processed

data with three different datasets. To analyse the accuracy for three different datasets this

study has used various evaluation techniques (see section 5.4). Memory consumption

of the proposed algorithms have been calculated by utilizing the prime memory profile

package algorithm and lastly, execution time has been calculated by the mathematical

model. Results were compared and analysed with two different existing algorithms to

show the efficiency of the proposed framework.Figure 5.2 highlight the process flow for

the proposed framework data collection and evaluation method to be used for analysis.

DARPA

MACCDC

DEFCON21

Datasets

Proposed Framework

RTADBDT

SSWLOFCC

Data Collected for

Evaluation Techniques

Model Evaluation Techniques

Data Pre-processing

Internal External

Statistical Performance
Accuracy

Memory Consumption
Execution Time

Kappa
Matthews Correlation

Coefficient
Precision, Recall, F1-Score

Silhouette Index

Calinski and Harabaz

Adjusted Rand Score

Normalized Mutual Info

Figure 5.2: Illustrate the data collection process flow for proposed framework

5.4 Performance Evaluation Methods

This section describes various evaluation metrics used for analysing the performance of

the proposed framework and algorithms.

109

Univ
ers

iti
Mala

ya

5.4.1 Accuracy

This subsection represents the internal and external techniques to evaluate the quality

of the clusters formed. The most common evaluation techniques to measure cluster quality

is the Silhouette Index and Normalized Mutual Information. Besides, this evaluation has

added a few more cluster techniques to examine the cluster quality. Techniques include

adjusted rand score and Calinski and Harabaz(see chapter 2 and chapter 4 for details).

These techniques are employed to evaluate the internal and external cluster quality up to

what extent it is improved as against the other existing methods. Meanwhile, the accuracy

of the anomaly detection is evaluated by statistical methods such as confusion matrix,

Precision, Recall, Kappa, and F1 score.

5.4.1.1 Silhouette index

Silhouette index is a widely used clustering evaluation technique that measures the

cluster quality score. It is a composite index which measures data points in intra and inter

clusters. Higher silhouette value denotes an enhanced aspect of a clustering outcome.

The Silhouette index of the ith data record in the cluster C j={x j1,x j2,..,x jn}, j=1,...,Nc

SI(i) =
b(i) − a(i)

max{a(i), b(i)}
(5.1)

where a(i) is the average distance between the ith data record and all the records included

in C j , and b(i) is the minimum average distance between the ith data record and all the

records that are located in other cluster Ck,k=1,...Nc, k not equal to j (J. Zhou et al., 2010).

5.4.1.2 Calinski and Harabaz

Calinski and Harabaz index is defined as the ratio between the within-cluster dispersion

and the between-cluster dispersion. The greatest index score denotes the model with dense

and well separated clusters. These scores are fast to compute. Calinski and Harabaz are

110

Univ
ers

iti
Mala

ya

defined as follow (Caliński & Harabasz, 1974). “For k clusters, the Calinski-Harabaz

score s is given as the ratio of the between-clusters dispersion mean and the within-cluster

dispersion:

S(k) =
Tr(Bk)

Tr(Wk)
×

N − k
k − 1

(5.2)

Where Bk is the between group dispersion matrix andWk is the within-cluster dispersion

matrix defined by:

Wk =

k∑
q=1

∑
xεCq

(x − cq)(x − cq)
T (5.3)

Bk =
∑

q

nq(cq − c)(cq − c)T (5.4)

With N be the number of points in the data, Cq be the set of points in cluster q, cq be the

center of cluster q, c be the center of E, nq be the number of points in cluster q.

5.4.1.3 Adjusted rand score

Adjusted Rand Index (ARI) is an enhancement of the Rand Index. It encourages the

index of choice for measuring arrangement between two partitions in clustering analysis

with different numbers of clusters. The ARI is also known as the adjusted rand score,

which is equal to the index minus the expected index divided by the max index minus

expected index (Bharill et al., 2016) (Amini, Wah, & Saboohi, 2014).

ARI =

∑
i,j(

ni, j
2) − [

∑
i(

ni ·
2)

∑
j(

n· j
2)]/(

n
2)

1
2[
∑

i(
ni ·
2) +

∑
j(

n· j
2)] − [

∑
i(

ni ·
2)

∑
j(

n· j
2)]/(

n
2)

(5.5)

Where ni j denotes the diagonal (i.e., when i=j), ni is the row sums and n j is the column

sums.

111

Univ
ers

iti
Mala

ya

5.4.1.4 Normalized mutual info score

The normalized mutual information (NMI) is a familiar theoretic information that

measures the similarity between two clustering formed (Bharill et al., 2016). Furthermore,

it is used to estimate the cluster output developed by an algorithm. NMI is defined as

follows:

N MI =

∑k
c=1

∑m
p=1 np

c log(n·np
c

nc ·np
)√

(
∑k

c=1 nclog(ncn))(
∑m

p=1 nplog(np

n))

(5.6)

Where, n is the sum number of data point, nc and np are the numbers of data points in

the cth cluster and the pth class and np
c is the number of common data points in class p and

cluster c.

5.4.1.5 Confusion matrix

A confusion matrix is a list that is used to explain the overall efficiency of an algorithm

on a set of test data, for which the true values are found. The values are extracted as true

positive (TP), false positive (FP), true negative (TN), and false negative (FN) from the

results of an algorithm.

Table 5.1: Confusion matrix explanation table

Actual positive Actual negative
Predicted positive True Positive (TP) False Positive (FP)
Predicted negative False Negative (FN) True Negative (TN)

Accuracy (AC) measures precision across all labels

AC =
(TP + T N)

TP + FP + T N + FN
(5.7)

112

Univ
ers

iti
Mala

ya

5.4.1.6 Precision

Precision is a measure to identify the correctness of the algorithms proposed in this

study. It represents the overall percentage of the real anomalies, and helps to identify the

number of true positives from the predicted positive values(Dahiya & Srivastava, 2018).

precision =
TP

TP + FP
(5.8)

5.4.1.7 Recall

Recall is a measure that indicates the correctly identified positive tuples, and indicates

the number of actual positive data that are predicted positive.

recall =
TP

TP + FN
(5.9)

5.4.1.8 F1-Score

F1 score is a measure which is the harmonic mean of precision and recall. It helps to

define the accuracy of a clustering algorithm (Marir, Wang, Feng, Li, & Jia, 2018).

F1 = 2 ·
precision · recall
precision + recall

(5.10)

5.4.1.9 Matthews correlation coefficient

Matthews correlation coefficient (MCC) is a technique used in machine learning to

measure the quality of binary classifications. MCC is a correlation coefficient between the

observed and predicted binary classifications. The values of the MCC range from -1 to +1,

where +1 indicates a perfect prediction, 0 indicates no better than random prediction, and

-1 indicates total disagreement between prediction and observation. Since, there is not a

113

Univ
ers

iti
Mala

ya

perfect way to describe the confusion matrix, MCC is considered to be one of the best

measures. MCC can be calculated from the confusion matrix using the below formula:

MCC =
TP × T N − FP × FN√

(TP + FP)(TP + FN)(T N + FP)(T N + FN)
(5.11)

In the above equation, TP is the number of true positives, TN is the number of true

negatives, FP is the number of false positives, and FN the number of false negatives. MCC

can also be calculated using the positive predicted value, true positive rate, true negative

rate, negative predicted value, false discovery rate, false negative rate, false positive rate,

and false omission rate using the below formula.

MCC =
√

PPV × TPR × T NR × NPV −
√

FDR × FNR × FPR × FOR (5.12)

The below formula is the original formula that Matthew had given: N=TN+TP+FN+FP

Accuracy,S =
TP + FN

N
(5.13)

Predictedpositive,P =
TP + FP

N
(5.14)

MCC =
TP | N − S × P√
PS(1 − S)(1 − P)

(5.15)

These above discussed five metrics: Precision, Recall, Kappa, Matthews coefficient and

F1-score were applied for spark machine learning application to evaluate the performance

of the proposed algorithms in this research (Hafsa & Jemili, 2019).

These techniques are used to show the quality of the proposed cluster algorithms and

they are compared with existing methods. Figure 5.3 shows the evaluation techniques and

114

Univ
ers

iti
Mala

ya

Proposed
algorithms

Streaming data Final
Clusters

Silhouette Index

Calinski and harabaz

Adjusted rand score

Normalized mutual info

Precision

Recall

F1-Score

Kappa

Matthew coefficient

Figure 5.3: Evaluation techniques and its steps for proposed algorithm

its steps used for proposed algorithm.

5.4.1.10 Consumption of memory

To estimate the memory consumption for entire operation, the memory profiler algo-

rithms were utilized to record information about memory usage. The memory consumption

can be described as the amount of memory (RAM) consumed for the execution of a specific

task. This process has been executed over 4 cycles to derive an approximate memory

consumption amount.

5.4.1.11 Execution time

The execution time is described as the time taken in seconds to complete the execution

of any given task. The modified memory profiler package has been again used to calculate

the execution time in seconds.

The spark architecture has diverse parameters to be set for optimizing the performance.

As an initial process, it is essential to recognize the suitable parameters which have an

influence on the execution time of process. The study has focused on the parameters which

have large changing data in real-time and incorporated the machine learning libraries. The

115

Univ
ers

iti
Mala

ya

analysis has calculated the execution time of entire framework using the derived formula

discussed in chapter 4. The Spark application is performed by continuous numbers of

spark jobs. Then, aggregating all the jobs from the beginning to end will calculate the

entire execution time for the framework. The Spark job execution is known as a graph

and each node in the graph is expressed as a stage. On each occasion, the operation needs

data exchange and then a new stage is generated. Spark job execution time is calculated by

totalling the estimated execution time of all the stages.

5.5 Data Collected for Analyzing the Anomaly Detection Accuracy

The accuracy of the developed framework and algorithms integrated in this research

have been validated by comparing the outcome of the experiments with various existing

datasets. Several evaluation techniques were used to evaluate the data from the framework

for analysis. In this section, collected data from the experiment were used to analyse and

compare the accuracy of the proposed framework as against the other existing algorithms

based on three different datasets i.e. DARPA, MACCDC and DEFCON21.

5.5.1 Silhouette Index

The silhouette Index data is collected using mean intra-cluster distance for three different

dataset on proposed algorithms; where 1 indicates the best value and -1 represents the

worst value; whereas any index tagged near 0 indicates overlapping clusters, and negative

values indicate that a case has been assigned to the inappropriate cluster. Table 5.2 presents

the data collected from DARPA, MACCDC and DEFCON21 dataset that have been used

in this study. The experiment has yielded the values closer to 1.0 in all three datasets.

The analytical results indicate that the proposed framework cluster are in best fit for the

processed data. Furthermore higher scores in data indicate that the clusters are compressed

and adequately detached.

116

Univ
ers

iti
Mala

ya

Table 5.2: Analysis of the internal cluster quality for three different dataset.

Data Traces Darpa Dataset MACCDC Dataset DEFCON 21 Dataset
1 0.813 0.733 0.817
2 0.909 0.884 0.906
3 0.966 0.929 0.929
4 0.994 0.954 0.951
5 1.000 0.967 0.971
6 nan 0.977 0.987
7 nan 0.981 0.992
8 nan 0.982 0.997
9 nan 0.984 0.998
10 nan 0.986 0.999
11 nan 0.990 0.999
12 nan 0.992 1.000
13 nan 0.994 1.000
14 nan 0.994 0.999
Mean 0.936 0.894 0.915
Std. Deviation 0.078 0.095 0.060
T-Value 26.959 21.018 34.132
P-Value <0.0001

Based on the data traces, this study has calculated the mean values of silhouette index

for all three datasets, and acquired: 0.936, 0.894, and 0.915 for the DARPA, MACCDC,

and DEFCON21 datasets respectively. Based on these mean values the standard deviation

for each dataset has been calculated, which yielded 0.078, 0.095, and 0.060 for the

DARPA, MACCDC, and DEFCON21 datasets respectively. It is noteworthy that the above

mentioned standard deviation values are relatively low, which indicates that data points are

clustered closely around the mean and hence the reliability is proved.

Furthermore, this analysis has calculated the T-Value and P-Value of the silhouette

scoring for each dataset. The T- values for silhouette scoring are: 26.959, 21.018, and

34.132, for the DARPA, MACCDC, and DEFCON21 datasets respectively. The P values

calculated for the DARPA, MACCDC, and DEFCON21 datasets were less than 0.0001

for each of the dataset. Hence the P-value attained has been proved to be statistically

significant for all the 3 datasets.

117

Univ
ers

iti
Mala

ya

5.5.2 Adjusted Rand Index method

To derive the accuracy of the solutions, the proposed model has been executed over a

cycle of 30 times and the following results were derived for evaluation of Adjusted Rand

Index method. This method is used to calculate the quality of the clusters for the proposed

and existing algorithms. The proposed solution has been compared with six different

existing algorithms. Subsequently, these algorithms were evaluated with three different

datasets.

Table 5.3: Comparison of accuracy between existing and proposed algorithms on
DARPA dataset.
Algorithms /Data Trace K Means Isolation Forest Spectral Clustering HDBSCAN Agglomerative Clustering Local Outlier Factor SSWLOFCC (Proposed Algorithm)
1 84.915 91.405 52.101 12.050 85.206 94.501 98.510
2 84.952 91.415 52.145 12.011 85.201 94.511 98.513
3 84.931 91.482 52.121 12.023 85.200 94.523 98.518
4 84.992 91.443 52.183 12.015 85.201 94.509 98.519
5 84.933 91.426 52.107 12.062 85.262 94.502 98.539
6 84.957 91.457 52.194 12.015 85.221 94.522 98.502
7 84.922 91.431 52.111 12.091 85.251 94.531 98.511
8 84.983 91.435 52.144 12.023 85.244 94.551 98.559
9 84.974 91.482 52.176 12.042 85.271 94.524 98.599
10 84.912 91.471 52.132 12.019 85.290 94.569 98.533
11 84.905 91.464 52.191 12.075 85.209 94.571 98.529
12 84.911 91.451 52.164 12.035 85.210 94.517 98.539
13 84.963 91.427 52.133 12.023 85.216 94.505 98.579
14 84.982 91.434 52.155 12.014 85.270 94.532 98.517
15 84.929 91.416 52.162 12.010 85.230 94.511 98.519
16 84.934 91.406 52.132 12.027 85.234 94.504 98.534
17 84.977 91.401 52.177 12.075 85.251 94.515 98.548
18 84.941 91.400 52.168 12.004 85.243 94.531 98.555
19 84.932 91.417 52.113 12.009 85.222 94.522 98.500
20 84.905 91.435 52.151 12.018 85.201 94.529 98.505
21 84.986 91.417 52.175 12.012 85.211 94.514 98.529
22 84.962 91.481 52.182 12.074 85.224 94.506 98.565
23 84.955 91.492 52.191 12.035 85.274 94.512 98.574
24 84.961 91.437 52.134 12.018 85.262 94.514 98.532
25 84.943 91.415 52.124 12.029 85.234 94.513 98.593
26 84.981 91.410 52.161 12.034 85.281 94.509 98.524
27 84.933 91.427 52.182 12.055 85.202 94.507 98.556
28 84.987 91.401 52.105 12.002 85.203 94.511 98.585
29 84.914 91.405 52.114 12.004 85.207 94.514 98.525
30 84.905 91.403 52.109 12.009 85.208 94.508 98.544
Mean 84.946 91.433 52.148 12.030 85.231 94.520 98.539
Std. Deviation 0.028 0.028 0.030 0.024 0.028 0.017 0.028
T-Value 16431.758 17997.835 9528.768 2695.097 16649.742 29596.569 19604.541
P-Value 0.0001

The table 5.3 presents the accuracy of the proposed SSWLOFCC algorithm compared

with six different existing algorithms namely k Means, Isolation forest, Spectral Clustering

HDBSCAN, Agglomerative clustering, Local Outlier Factor on DARPA dataset using

adjusted rand index evaluation method. The first column in the table represents the 30

cycles of data traces for analysis and the first row represents the algorithms. The average

percentage of these six algorithms yielded the accuracy of 84.95%, 91.43%, 52.15%,

12.03%, 85.23%, and 94.52%; whereas, the proposed SSWLOFCC algorithm has yielded

a much higher accuracy of 98.54% for DARPA dataset.

118

Univ
ers

iti
Mala

ya

Table 5.4: Comparison of accuracy between existing and proposed algorithms on
MACCDC Dataset.
Algorithms /Data Trace K Means Isolation Forest Spectral Clustering HDBSCAN Agglomerative Clustering Local Outlier Factor SSWLOFCC (Proposed Algorithm)
1 85.001 87.610 73.311 14.010 83.510 91.614 96.311
2 85.021 87.605 73.322 14.041 83.530 91.617 96.344
3 85.003 87.614 73.301 14.063 83.570 91.601 96.352
4 85.020 87.651 73.372 14.095 83.540 91.609 96.383
5 85.015 87.637 73.392 14.014 83.514 91.617 96.398
6 85.063 87.625 73.306 14.001 83.534 91.621 96.341
7 85.024 87.661 73.396 14.002 83.522 91.610 96.323
8 85.091 87.675 73.321 14.006 83.541 91.160 96.305
9 85.052 87.691 73.343 14.071 83.565 91.102 96.372
10 85.031 87.621 73.334 14.012 83.517 91.617 96.310
11 85.076 87.624 73.303 14.060 83.531 91.604 96.331
12 85.078 87.616 73.348 14.054 83.541 91.623 96.311
13 85.051 87.617 73.315 14.021 83.536 91.671 96.364
14 85.030 87.623 73.317 14.038 83.562 91.613 96.341
15 85.055 87.625 73.363 14.067 83.503 91.674 96.388
16 85.031 87.617 73.391 14.053 83.504 91.626 96.395
17 85.010 87.661 73.335 14.041 83.520 91.634 96.314
18 85.044 87.637 73.372 14.061 83.534 91.612 96.379
19 85.039 87.619 73.381 14.012 83.571 91.607 96.307
20 85.093 87.629 73.354 14.031 83.532 91.645 96.379
21 85.031 87.627 73.333 14.051 83.515 91.661 96.334
22 85.041 87.631 73.324 14.057 83.503 91.613 96.356
23 85.055 87.630 73.375 14.064 83.509 91.609 96.382
24 85.058 87.671 73.384 14.037 83.541 91.610 96.303
25 85.091 87.641 73.328 14.001 83.530 91.601 96.398
26 85.042 87.690 73.391 14.005 83.528 91.600 96.324
27 85.077 87.605 73.352 14.006 83.531 91.603 96.380
28 85.072 87.604 73.376 14.003 83.504 91.616 96.346
29 85.014 87.607 73.355 14.009 83.506 91.620 96.372
30 85.047 87.611 73.303 14.001 83.517 91.631 96.390
Mean 85.045 87.633 73.347 14.033 83.529 91.588 96.351
Std. Deviation 0.027 0.025 0.031 0.027 0.020 0.126 0.032
T-Value 17553.018 19387.148 13000.290 2829.524 23248.753 3983.201 16463.881
P-Value 0.0001

Likewise, the table 5.4 presents the accuracy of the proposed SSWLOFCC algorithm

as against six different existing algorithms namely: k Means, Isolation forest, Spectral

Clustering HDBSCAN, Agglomerative clustering, Local Outlier Factor on MACCDC

dataset, using adjusted rand index evaluation method. The first column in the table

represents the 30 cycles of data traces for analysis and the first row represents the

algorithms. The average accuracy percentage of these six algorithms are85.05%, 87.63%,

73.35%, 14.03%, 83.53%, and 91.59% whereas, the proposed SSWLOFCC algorithm has

yielded a much higher accuracy of 96.35% for MACCDC Dataset

Meanwhile, the table 5.5 presents the accuracy of the proposed SSWLOFCC algorithm

compared with six different existing algorithms namely: k Means, Isolation forest, Spectral

Clustering HDBSCAN, Agglomerative clustering, Local Outlier Factor on DEFCON21

dataset, using adjusted rand index evaluation method. The first column in the table

represents the 30 cycles of data traces for analysis, and the first row represents the

algorithms. The average percentage of accuracy of these six algorithms have been recorded

as 65.44%, 91.23%, 88.74%, 85.54%, 47.22%, and 87.42%; whereas, the proposed

119

Univ
ers

iti
Mala

ya

Table 5.5: Comparison of accuracy between existing and proposed algorithms on
DEFCON21 Dataset.
Algorithms /Data Trace K Means Isolation Forest Spectral Clustering HDBSCAN Agglomerative Clustering Local Outlier Factor SSWLOFCC (Proposed Algorithm)
1 65.400 91.260 88.721 85.520 47.215 87.401 94.632
2 65.410 91.251 88.753 85.511 47.220 87.408 94.671
3 65.432 91.237 88.709 85.510 47.201 87.414 94.664
4 65.491 91.255 88.764 85.530 47.203 87.481 94.691
5 65.473 91.291 88.729 85.534 47.209 87.413 94.624
6 65.469 91.220 88.793 85.581 47.224 87.471 94.614
7 65.432 91.205 88.702 85.515 47.232 87.423 94.645
8 65.445 91.209 88.717 85.511 47.210 87.424 94.632
9 65.491 91.216 88.723 85.584 47.212 87.416 94.671
10 65.433 91.238 88.767 85.532 47.216 87.471 94.692
11 65.421 91.239 88.711 85.567 47.219 87.444 94.681
12 65.411 91.248 88.784 85.575 47.233 87.421 94.665
13 65.401 91.221 88.739 85.581 47.234 87.416 94.639
14 65.403 91.215 88.741 85.592 47.214 87.405 94.697
15 65.415 91.202 88.753 85.514 47.217 87.421 94.662
16 65.417 91.207 88.772 85.536 47.201 87.416 94.631
17 65.435 91.232 88.702 85.587 47.206 87.432 94.644
18 65.482 91.267 88.715 85.551 47.209 87.441 94.659
19 65.491 91.291 88.783 85.536 47.260 87.404 94.604
20 65.461 91.203 88.729 85.533 47.212 87.406 94.687
21 65.440 91.207 88.714 85.537 47.204 87.432 94.634
22 65.425 91.251 88.777 85.581 47.204 87.415 94.699
23 65.414 91.222 88.782 85.561 47.213 87.424 94.662
24 65.412 91.216 88.765 85.564 47.204 87.422 94.651
25 65.401 91.232 88.792 85.544 47.209 87.436 94.692
26 65.409 91.274 88.704 85.514 47.261 87.401 94.684
27 65.429 91.291 88.715 85.553 47.213 87.405 94.655
28 65.436 91.205 88.762 85.571 47.217 87.406 94.643
29 65.484 91.209 88.788 85.501 47.218 87.451 94.632
30 65.403 91.207 88.707 85.505 47.213 87.412 94.610
Mean 65.436 91.234 88.744 85.544 47.217 87.424 94.656
Std. Deviation 0.030 0.028 0.031 0.028 0.015 0.021 0.027
T-Value 11763.158 17741.356 15502.570 16441.000 17538.833 22532.172 19004.932
P-Value 0.0001

SSWLOFCC algorithm has yielded a much higher accuracy of 94.66% for DEFCON21

dataset.

Based on the data traces, this study has calculated the mean values for the accuracy for

all three datasets and 7 algorithms. This study has acquired a mean value of 84.946 for K

Means, 91.433 for Isolation Forest, 52.148 for Spectral Clustering, 12.030 for HDBSCAN,

85.231 for Agglomerative Clustering, 94.520 for Local Outlier Factor, and 98.539 for the

proposed SSWLOFCC algorithm for the DARPA dataset. For the MACCDC, the mean

values are 85.045 for K Means, 87.633 for Isolation Forest, 73.347 for Spectral Clustering,

14.033 for HDBSCAN, 83.529 for Agglomerative Clustering, 91.588 for Local Outlier

Factor, and 96.351 for the proposed SSWLOFCC algorithm. For the DEFCON21 dataset,

the mean values are 65.436 for K Means, 91.234 for Isolation Forest, 88.744 for Spectral

Clustering, 85.544 for HDBSCAN, 47.217 for Agglomerative Clustering, 87.424 for Local

Outlier Factor, and 94.656 for the proposed SSWLOFCC algorithm.

Based on these mean values the standard deviation for each dataset and each algorithm

has been calculated, which yielded the value of 0.028 for K Means, 0.028 for Isolation

120

Univ
ers

iti
Mala

ya

Forest, 0.030 for Spectral Clustering, 0.024 for HDBSCAN, 0.028 for Agglomerative

Clustering, 0.017 for Local Outlier Factor, and 0.028 for the proposed SSWLOFCC

algorithm for the DARPA dataset. For the MACCDC the standard deviation values are

0.027 for K Means, 0.025 for Isolation Forest, 0.031 for Spectral Clustering, 0.027 for

HDBSCAN, 0.020 for Agglomerative Clustering, 0.126 for Local Outlier Factor, and

0.032 for the proposed SSWLOFCC algorithm. For the DEFCON21 dataset, the standard

deviation values have been recorded as: 0.030 for K Means, 0.028 for Isolation Forest,

0.031 for Spectral Clustering, 0.028 for HDBSCAN, 0.015 for Agglomerative Clustering,

0.021 for Local Outlier Factor, and 0.027 for the proposed SSWLOFCC algorithm. It

is noteworthy that the above mentioned the standard deviation values are relatively low,

which indicates that the data points are clustered closely around the mean and hence their

reliability is proved.

Furthermore, the T-Value and P-Value for the accuracy for each dataset has been

calculated. The T values for DARPA dataset are: (i) 16431.758 for K Means, (ii)

17997.835 for Isolation Forest, (iii) 9528.768 for Spectral Clustering, (iv) 2695.097 for

HDBSCAN, (v) 16649.742 for Agglomerative Clustering, (vi) 29596.569 for Local Outlier

Factor, and (vii)19604.541 for the proposed SSWLOFCC algorithm. Furthermore, for the

MACCDC the T values are: (i) 17553.018 for K Means, (ii) 19387.148 for Isolation Forest,

(iii) 13000.290 for Spectral Clustering, (iv) 2829.524 for HDBSCAN, (v) 23248.753 for

Agglomerative Clustering, (vi) 3983.201 for Local Outlier Factor, and (vii) 16463.881

for the proposed SSWLOFCC algorithm. Additionally, for the DEFCON21 dataset

the T-values are: (i) 11763.158 for K Means, (ii) 17741.356 for Isolation Forest, (iii)

15502.570 for Spectral Clustering, (iv) 16441.000 for HDBSCAN, (v) 17538.833 for

Agglomerative Clustering, (vi) 22532.172 for Local Outlier Factor, and (vii) 19004.932 for

the proposed SSWLOFCC algorithm. The P values calculated for the DARPA, MACCDC,

121

Univ
ers

iti
Mala

ya

and DEFCON21 datasets were 0.0001 apiece. Hence the P-value attained has been proved

to be statistically significant for all the 3 datasets.

5.5.3 Normalized Mutual Info (NMI)

The Normalized Mutual Info score data has been collected by normalizing the mutual

information score, where by the results are scaled between 0 to1; in which 0 represents

no mutual information and 1 indicates perfect correlation. The generalized mean of the

entropies in each clustering represent the normalizing value. The results of the application

of normalized score method to the three different datasets has been presented in table 5.6.

122

Univ
ers

iti
Mala

ya

Table 5.6: Proposed algorithm normalized mutual info score is compared for three
different datasets
Data Traces DARPA Dataset MACCDC Dataset DEFCON 21 Dataset)
1 0.983 0.982 0.963
2 0.981 0.982 0.963
3 0.984 0.982 0.965
4 0.981 0.982 0.961
5 0.981 0.983 0.960
6 0.980 0.984 0.962
7 0.982 0.981 0.963
8 0.983 0.984 0.964
9 0.980 0.984 0.962
10 0.982 0.982 0.965
11 0.983 0.983 0.962
12 0.981 0.984 0.964
13 0.981 0.981 0.962
14 0.984 0.984 0.964
15 0.984 0.984 0.964
16 0.980 0.981 0.962
17 0.982 0.984 0.961
18 0.982 0.981 0.962
19 0.981 0.980 0.961
20 0.982 0.981 0.960
21 0.981 0.982 0.961
22 0.981 0.984 0.963
23 0.984 0.982 0.964
24 0.983 0.983 0.963
25 0.982 0.981 0.962
26 0.984 0.984 0.960
27 0.982 0.984 0.963
28 0.981 0.983 0.963
29 0.981 0.981 0.960
30 0.983 0.981 0.961
Mean 0.982 0.983 0.962
Std. Deviation 0.001 0.001 0.001
T-Value 4505.054 3965.144 3785.204
P-Value 0.0001

Based on the data traces the mean of normalized mutual info for all the three datasets

have been calculated and acquires mean values of 0.982, 0.983, and 0.962 for the DARPA,

MACCDC, and DEFCON21 datasets respectively.

Based on these mean values the standard deviation for each dataset has been calculated,

which yielded 0.001, for the DARPA, MACCDC, and DEFCON21 datasets. It is worth

123

Univ
ers

iti
Mala

ya

mentioning that the above mentioned standard deviation values are relatively low, which

indicates that the data points are clustered closely around the mean and hence the reliability

is proved.

Furthermore, the T-Value and P-Value of the normalized mutual info for each dataset

have been calculated. The T-values for normalized mutual info is 4505.054, 3965.144, and

3785.204 for the DARPA, MACCDC, and DEFCON21 datasets respectively. The P-values

of DARPA dataset, MACCDC dataset, and DEFCON21 dataset is 0.0001 apiece. Hence

the P-value attained has been proved to be statistically significant for all the 3 datasets.

This analysis has been able to receive a normalized mutual info score of 0.98 for the

DARPA and MACCDC. As well as, 0.96 for DEFCON21 dataset. In all the three cases

the proposed SSWLOFCC algorithm has achieved higher scores, hence proving better

correlation among the clusters.

The above precisely discussed internal and external cluster evaluation metrics had

revealed that the proposed SSWLOFCC algorithm has yielded significantly higher values

in all the selected performance metrics as against the other existing methods.

5.5.3.1 Data collected for cluster validation

This section presents the processed data of proposed SSWLOFCC algorithm. These

data were collected from three different datasets with sample of 40 data traces (see tables

5.7, 5.8, and 5.9). Our results have been primarily evaluated using the values of TP, TN,

FP and FN, derived from the confusion matrix. The evaluation is done with regards to

accuracy, Precision, Recall, Kappa, and F1 score. From the TP, TN, FP and FN, values

we are able to classify the results into either correctly or incorrectly identified anomalies.

Additionally, the accuracy of our model provide confidence in evaluating the anomalies.

Further, the precision results indicate the relevant instances from the retrieved information

in which higher precision signify the better detection results. Similarly, the recall values

124

Univ
ers

iti
Mala

ya

indicate the relevant instances that have been successfully identified. Kappa in this context

is used to show the inter-rater agreement of the items. Generally, a higher Kappa value

indicates a more accurate output. Finally, the F1-score which uses two values i.e. precision

and recall has been used to test the accuracy. In this case, a higher F1-score indicates a

more accuracy in test results. Through our thorough analysis we found significant results

from these evaluation metrics which proven the appropriateness of our data.

125

Univ
ers

iti
Mala

ya

Table 5.7: Cluster data processed by SSWLOFCC algorithm for DARPA dataset.
Ts id.resp_p method resp_mime_types request_body_len x y cluster
1/8/2009 3:03 80 GET - 0 1.509429937 -0.427010812 1
1/8/2009 3:22 80 GET text/html 0 0.399891266 1.154606463 2
1/8/2009 3:22 80 GET text/html 0 0.273855152 1.168686934 2
1/8/2009 3:23 80 GET - 0 1.572861436 -0.464440242 1
1/8/2009 3:23 80 GET - 0 1.512732874 -0.440643502 1
1/8/2009 3:23 80 GET text/html 0 0.375632276 1.174564378 2
1/8/2009 3:24 80 GET - 0 1.638034956 -0.458033827 1
1/8/2009 3:24 8180 GET text/html 0 1.524139639 0.628923787 3
1/8/2009 3:25 80 GET - 0 1.541874121 -0.453769926 1
1/8/2009 3:25 8180 GET text/html 0 1.477691136 0.676562771 3
1/8/2009 3:25 80 GET text/html 0 0.313959177 1.086894554 2
1/8/2009 3:25 8180 GET text/html 0 1.549467338 0.649213108 3
1/8/2009 3:25 80 GET - 0 1.648513999 -0.440167963 1
1/8/2009 3:25 8180 GET text/html 0 1.501004756 0.638779453 3
1/8/2009 3:33 80 GET - 0 1.520441838 -0.419010587 1
1/8/2009 3:33 80 GET text/html 0 0.446515754 1.150169621 2
1/8/2009 3:34 80 GET text/html 0 0.325050233 1.110407112 2
1/8/2009 3:51 80 GET - 0 1.567311991 -0.453027794 1
1/8/2009 3:51 80 GET text/html 0 0.353996669 1.166865573 2
1/8/2009 3:51 80 GET - 0 1.578157256 -0.429975444 1
1/8/2009 3:51 80 GET text/html 0 0.385305313 1.118848823 2
1/8/2009 3:51 80 GET - 0 1.533976856 -0.478609953 1
1/8/2009 3:51 80 GET text/html 0 0.390181859 1.116525858 2
1/8/2009 4:02 80 GET - 0 1.646483187 -0.42224983 1
1/8/2009 4:02 80 GET text/html 0 0.299834915 1.13767814 2
1/8/2009 4:02 80 GET text/html 0 0.232482258 1.063576603 2
1/8/2009 4:21 80 GET text/plain 0 -0.351223023 -0.090599988 0
1/8/2009 4:21 80 GET text/html 0 0.366668915 1.063468191 2
1/8/2009 4:24 80 GET text/plain 0 -0.375815852 -0.060236839 0
1/8/2009 4:24 80 GET text/html 0 0.382471826 1.163087435 2
1/8/2009 4:24 80 GET text/html 0 0.475346013 1.111485465 2
1/8/2009 4:24 80 GET text/plain 0 -0.431821404 -0.116520304 0
1/8/2009 4:24 80 GET text/plain 0 -0.319061675 -0.018642022 0
1/8/2009 4:24 80 GET text/plain 0 -0.318632487 -0.064704314 0
1/8/2009 4:25 80 GET text/plain 0 -0.359746211 -0.151037488 0
1/8/2009 4:25 80 GET text/html 0 0.331972547 1.106529889 2
1/8/2009 4:25 80 GET text/html 0 0.314120454 1.129552671 2
1/8/2009 4:25 80 GET text/html 0 0.313096083 1.146146342 2
1/8/2009 4:25 80 GET text/html 0 0.385836604 1.145351102 2

126

Univ
ers

iti
Mala

ya

Table 5.8: Cluster data processed by SSWLOFCC algorithm for MACCDC dataset.
Ts id.resp_p method resp_mime_types request_body_len x y cluster
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/html 0 0.771351 -0.16473 3
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET - 0 0.10967 1.065494 0
18/2/2015 8:51 80 GET text/html 0 0.771351 -0.16473 3
18/2/2015 8:51 80 GET text/html 0 0.771351 -0.16473 3
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET - 0 0.10967 1.065494 0
18/2/2015 8:51 80 GET text/html 0 0.771351 -0.16473 3
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET - 16 0.10967 1.065494 0
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/html 0 0.771351 -0.16473 3
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/html 0 0.771351 -0.16473 3
18/2/2015 8:51 80 GET text/html 0 0.771351 -0.16473 3
18/2/2015 8:51 80 GET text/html 0 0.771351 -0.16473 3
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET - 0 0.10967 1.065494 0
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/html 0 0.771351 -0.16473 3
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/html 0 0.771351 -0.16473 3
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/plain 0 -0.63501 -0.11065 1
18/2/2015 8:51 80 GET text/html 0 0.771351 -0.16473 3
18/2/2015 8:51 80 GET text/html 0 0.771351 -0.16473 3
18/2/2015 8:51 80 GET text/html 0 0.771351 -0.16473 3

127

Univ
ers

iti
Mala

ya

Table 5.9: Cluster data processed by SSWLOFCCalgorithm forDEFCON21 dataset.
Ts id.resp_p method resp_mime_types request_body_len x y cluster
51:08.0 80 GET text/plain 0 -0.67384 -0.12702 3
51:08.1 80 GET text/plain 0 -0.67384 -0.12702 3
51:08.5 80 GET text/plain 0 -0.67384 -0.12702 3
51:08.6 80 GET text/plain 0 -0.67384 -0.12702 3
51:08.7 80 GET text/html 0 0.738839 -0.15515 0
51:08.9 80 GET text/plain 0 -0.67384 -0.12702 3
51:09.4 80 GET text/plain 0 -0.67384 -0.12702 3
51:08.2 80 GET - 0 0.05411 1.074689 2
51:09.6 80 GET text/html 0 0.738839 -0.15515 0
51:09.7 80 GET text/html 0 0.738839 -0.15515 0
51:09.8 80 GET text/plain 0 -0.67384 -0.12702 3
51:04.3 80 GET - 0 0.05411 1.074689 2
51:09.9 80 GET text/html 0 0.738839 -0.15515 0
51:10.3 80 GET text/plain 0 -0.67384 -0.12702 3
51:03.9 80 GET - 16 0.05411 1.074691 2
51:10.6 80 GET text/plain 0 -0.67384 -0.12702 3
51:10.7 80 GET text/plain 0 -0.67384 -0.12702 3
51:10.8 80 GET text/html 0 0.738839 -0.15515 0
51:11.0 80 GET text/plain 0 -0.67384 -0.12702 3
51:11.0 80 GET text/html 0 0.738839 -0.15515 0
51:11.3 80 GET text/html 0 0.738839 -0.15515 0
51:11.5 80 GET text/html 0 0.738839 -0.15515 0
51:11.8 80 GET text/plain 0 -0.67384 -0.12702 3
51:12.2 80 GET text/plain 0 -0.67384 -0.12702 3
51:12.4 80 GET text/plain 0 -0.67384 -0.12702 3
51:12.6 80 GET text/plain 0 -0.67384 -0.12702 3
51:07.0 80 GET - 0 0.05411 1.074689 2
51:12.8 80 GET text/plain 0 -0.67384 -0.12702 3
51:12.9 80 GET text/plain 0 -0.67384 -0.12702 3
51:13.2 80 GET text/html 0 0.738839 -0.15515 0
51:13.4 80 GET text/plain 0 -0.67384 -0.12702 3
51:13.6 80 GET text/plain 0 -0.67384 -0.12702 3
51:13.6 80 GET text/html 0 0.738839 -0.15515 0
51:14.2 80 GET text/plain 0 -0.67384 -0.12702 3
51:14.6 80 GET text/plain 0 -0.67384 -0.12702 3
51:14.6 80 GET text/plain 0 -0.67384 -0.12702 3
51:14.2 80 GET text/html 0 0.738839 -0.15515 0
51:14.8 80 GET text/html 0 0.738839 -0.15515 0
51:15.0 80 GET text/html 0 0.738839 -0.15515 0

The above tables 5.7, 5.8, and 5.9 comprises of a variety of network attacks and normal

network data extracted from the DARPA, MACCDC, and DEFCON21 datasets respectively.

These data has been extracted after the implementation of the proposed algorithm. The

columns id.resp_p, method, resp_mime_types and request_body_len present the features

extracted from the original dataset. The cluster column in the table holds the records of

clusters. The columns x and y define where the record will be plotted in the scatter plot

(the x and y axsis).

128

Univ
ers

iti
Mala

ya

Confusion matrix are generated by the proposed algorithm based on above data.

These confusion matrix data has been used for statistical analysis of anomaly detection.

Furthermore, these confusion matrix are generated from three different dataset and

compared with two different algorithms. Confusion matrix results are presented in the

heat map below and the data have been scaled to a maximum of 1.0 value to fit for the

heat map. Figure 5.4, Figure 5.5, Figure 5.6 represent the confusion matrix for proposed

SSWLOFCC algorithm.

Figure 5.4: Confusion matrix for SSWLOFCC algorithm on DARPA dataset

Figure 5.5: Confusion matrix for SSWLOFCC algorithm on MACCDC dataset

129

Univ
ers

iti
Mala

ya

Figure 5.6: Confusion matrix for SSWLOFCC algorithm on DEFCON21 dataset

Similarly, in figure 5.7, 5.8, and 5.9 illustrate the confusion matrix for existing local

factor outlier algorithm on three different datasets.

Figure 5.7: Confusion matrix for local factor outlier algorithm on DARPA datasets

Figure 5.8: Confusionmatrix for local factor outlier algorithmonMACCDCdatasets

130

Univ
ers

iti
Mala

ya

Figure 5.9: Confusion matrix for local factor outlier algorithm on DEFCON21
datasets

Lastly, in figure 5.10, 5.11, 5.12 illustrate the confusionmatrix for existingAgglomerative

Clustering algorithm on three different dataset.

Figure 5.10: Confusion matrix for Agglomerative Clustering algorithm on DARPA
dataset

Figure 5.11: Confusion matrix for Agglomerative Clustering algorithm on MAC-
CDC dataset

131

Univ
ers

iti
Mala

ya

Figure 5.12: Confusion matrix for Agglomerative Clustering algorithm on DEF-
CON21 datasets

These confusion matrix values for proposed and two existing algorithms has been

compared in the chapter 6 and the true positive, true negative, false positive and false

negative have been derived to calculate the accuracy, Precision, Recall, Kappa, and

F1-score.

5.6 Data Collected for Process Execution Time

This section presents the execution time data collected by running the proposed

algorithms and framework on three different datasets. Further, the proposed SSWLOFCC

algorithm has been compared with six different algorithms namely K-means, Isolation

Forest, Spectral clustering, HDBSCAN, Agglomerative Clustering, Local outlier factor. In

this context, the execution time is described as the time taken in seconds to complete the

execution of a task. The execution time has been measured in seconds using the developed

execution time algorithm. Figure 5.13 presents the flow diagram of data collection for

execution time of proposed framework.

132

Univ
ers

iti
Mala

ya

Figure 5.13: Flowchart of collecting execution time on proposed framework

The table 5.10 shows the data derived to compare the execution time of proposed and

existing methods with DARPA, MACCDC and DEFCON21 datasets.

133

Univ
ers

iti
Mala

ya

Table 5.10: Comparison of the execution time results obtained from proposed solu-
tions with six different algorithms for DARPA,MACCDC, and DEFCON21 datasets.
Datasets / Algorithms DARPA MACCDC DEFCON21 Mean Std. Deviation T-Value P-Value
K Means 28.000 28.000 30.000 28.667 1.155 43.000

0.0005

Isolation Forest 18.000 15.000 19.000 17.333 2.082 14.422
Spectral Clustering 45.000 39.000 38.000 40.667 3.786 18.605
HDBSCAN 160.000 65.000 95.000 106.667 48.563 3.804
Agglomerative Clustering 15.000 14.000 17.500 15.500 1.803 14.892
Local Outlier Factor 14.000 18.000 17.5.00 16.500 2.179 13.113
SSWLOFCC (Proposed Algorithm) 13.000 12.000 15.000 13.333 1.528 15.119

The proposed SSWLOFCC algorithm has consumed lesser execution time in the three

datasets as against the six existing algorithms.

From the data traces the mean for the framework execution time of all seven algorithms

in the three datasets has been calculated and acquired a mean value of : (i) 28.667 for K

Means, (ii) 17.333 for Isolation Forest, (iii) 40.667 for Spectral Clustering, (iv) 106.667 for

HDBSCAN, (v) 15.500 for Agglomerative Clustering, (v1) 16.500 for Local Outlier Factor,

and (vii) 13.333 for the proposed SSWLOFCC algorithm for the DARPA, MACCDC, and

DEFCON21 datasets.

Based on these mean values the standard deviation for each dataset and each algorithm

have been calculated, which yielded value of: (i) 1.155 for K Means, (ii) 2.082 for

Isolation Forest, (iii) 3.786 for Spectral Clustering, (iv) 48.563 for HDBSCAN, (v) 1.803

for Agglomerative Clustering, (vi) 2.179 for Local Outlier Factor, and (vii) 1.528 for the

proposed SSWLOFCC algorithm for the DARPA, MACCDC, and DEFCON21 datasets.

It is worth mentioning that the above mentioned standard deviation values are relatively

low, which indicates that the data points are clustered closely around the mean and hence

the reliability is proved.

Furthermore, the T-Value and P-Value for the framework execution time for each

algorithm for all three datasets have been calculated; wherein the following T values have

been recorded: 43.000 for K Means, 14.422 for Isolation Forest, 18.605 for Spectral

Clustering, 3.804 for HDBSCAN, 14.892 for Agglomerative Clustering, 13.113 for

134

Univ
ers

iti
Mala

ya

Local Outlier Factor, and 15.119 for the proposed SSWLOFCC (proposed algorithm).

Additionally, the P values calculated for the DARPA dataset, MACCDC dataset, and

DEFCON21 dataset was 0.0005 apiece. Hence the P-value attained has been proved to be

statistically significant for all the 3 datasets.

5.7 Data Collected for Spark Streaming Execution Time

This section presents the data calculated by the formula developed in this study (see

chapter 5) for spark streaming execution time. The spark streaming execution has been

performed by combining jobs into batches. Each batch contains many jobs, and contain

scheduling delay, processing time and total delay. This analysis has collected execution

time for the three different datasets with 10 data traces. The table below shows the spark

execution time for proposed SSWLOFCC algorithm in the three datasets.

Table 5.11: Comparison of framework execution time of proposed SSWLOFCC
algorithm for DARPA, MACCDC, and DEFCON21 datasets.

Data Trace DARPA (Seconds) MACCDC (Seconds) DEFCON21 (Seconds)
1 5.000 6.000 6.000
2 3.000 2.000 3.000
3 3.000 4.000 1.000
4 1.000 5.000 2.000
5 6.000 4.000 2.000
6 4.000 5.000 4.000
7 2.000 2.000 5.000
8 2.000 1.000 5.000
9 1.000 1.000 2.000
10 3.000 3.000 1.000
Mean 3.000 3.300 3.100
Std. Deviation 1.633 1.767 1.792
T-Value 5.809 5.906 5.471
P-Value 0.0003

Based on the data traces the spark execution time mean of all three datasets has

been calculated, and acquired a mean value of 3.000, 3.300, and 3.100 for the DARPA,

MACCDC, and DEFCON21 datasets respectively.

135

Univ
ers

iti
Mala

ya

Based on the mean values the standard deviation for each dataset has been calculated,

which yielded a value of 1.633, 1.767, 1.792 for the DARPA, MACCDC, and DEFCON21

datasets respectively. The above mentioned standard deviation values have proven to be

relatively low, which indicates that the data points are clustered closely around the mean

and hence the reliability is proved.

Furthermore, the T-Value and P-Value of the spark execution time for each dataset have

been calculated. The T- values for spark execution time is 5.809, 5.906, and 5.471 for the

DARPA, MACCDC, and DEFCON21 datasets respectively. The P values calculated for

the DARPA dataset, MACCDC dataset, and DEFCON21 dataset was less than 0.0003

apiece, which indicates that it is statistically significant for all the 3 datasets.

5.8 Data Collected for Framework of Memory Consumption

This section presents the overall RAM memory consumption by the data collected

by running the proposed algorithms and framework on three different datasets. Further,

proposed SSWLOFCC algorithm has been compared with six different algorithms namely

K-means, Isolation Forest, Spectral clustering, HDBSCAN, Agglomerative Clustering,

Local outlier factor. In this context, the memory consumption is described as the amount

of memory (RAM) consumed for the execution of specific task. The memory consumption

has been measured using the developed RAM usage algorithm. This process has been

executed over 4 cycles to derive an approximate amount of memory consumption. The

table 5.12 shows the data derived to compare memory consumption of the proposed and

existing methods with DARPA, MACCDC and DEFCON21 datasets.

From the data traces, the mean value of memory consumption for the framework for all

seven algorithms in the three datasets have been, which yielded the mean values of 407.333

for K Means, 410.667 for Isolation Forest, 430.000 for Spectral Clustering, 270.000 for

HDBSCAN, 235.000 for Agglomerative Clustering, 210.000 for Local Outlier Factor,

136

Univ
ers

iti
Mala

ya

Table 5.12: Comparison of memory consumption results from proposed solutions
with six different algorithms for DARPA, MACCDC, and DEFCON21 datasets.
Datasets / Algorithms DARPA (MB) MACCDC (MB) DEFCON21 (MB) Mean Std. Deviation T-Value P-Value
KMeans 480.000 350.000 392.000 407.333 66.343 10.635

0.0005

IsolationForest 600.000 260.000 372.000 410.667 173.267 4.105
Spectral Clustering 435.000 420.000 435.000 430.000 8.660 86.000
HDBSCAN 280.000 250.000 280.000 270.000 17.321 27.000
Agglomerative Clustering 240.000 225.000 240.000 235.000 8.660 47.000
LOF 200.000 200.000 230.000 210.000 17.321 21.000
SSWLOFCC 190.000 183.000 210.000 194.333 14.012 24.022

and 194.333 for the proposed SSWLOFCC algorithm for the DARPA, MACCDC, and

DEFCON21 datasets.

From the mean values the standard deviation for each dataset and each algorithm has

been calculated, which yielded 66.343 for K Means, 173.267 for Isolation Forest, 8.660 for

Spectral Clustering, 17.321 for HDBSCAN, 8.660 for Agglomerative Clustering, 17.321

for Local Outlier Factor, and 14.012 for the proposed SSWLOFCC algorithm for the

DARPA, MACCDC, and DEFCON21 datasets. As the standard deviation values are

relatively low it indicates that the data points are clustered closely around the mean, and

hence their reliability has been proved.

Furthermore, the T-Value and P-Value for the memory consumption of the framework for

each algorithm for all three datasets have been calculated. The T values have been recorded

as: 10.635 for K Means, 4.105 for Isolation Forest, 86.000 for Spectral Clustering, 27.000

for HDBSCAN, 47.000 for Agglomerative Clustering, 21.000 for Local Outlier Factor, and

24.022 for the proposed SSWLOFCC algorithm. Additionally, the P values calculated for

the DARPA dataset, MACCDC dataset, and DEFCON21 has been recorded as: 0.0005

apiece. Considering the P value, the data is considered to be statistically significant for all

the 3 datasets.

The proposed SSWLOFCC algorithm has consumed lesser memory in the three datasets

as against the six existing algorithms.

137

Univ
ers

iti
Mala

ya

5.9 Conclusion

In this chapter, the performance of the proposed framework has been evaluated by

implementing it in the real setup. The proposed SSWLOFCC algorithm has been

implemented into the spark MLlib package by using spark API and other pipeline

components. Furthermore, The chapter had described the characteristics of eight evaluation

methods namely Silhouette Index, Normalized Mutual Information, adjusted rand score,

Calinski and Harabaz, confusion matrix, precision, recall, and F1 score.

The chapter had presented the data collected to analyse the proposed framework on

silhouette index for three different datasets (see table 5.2). For all the three datasets higher

and closer to 1.0 values denote the best fit for the processed data. Likewise, tables 5.3, 5.4,

and 5.5, had presented the data collected to analyse the accuracy using the adjusted rand

index for three different datasets with proposed and six existing algorithms. Besides, the

table 5.6 had presented the data collected to analyse the Normalized mutual info for three

different datasets. Furthermore, tables 5.7, 5.8, and 5.9 had presented data collected to

analyse the cluster validation of the proposed SSWLOFCC algorithm on three different

datasets. Additionally the figures 5.3 to 5.11 had illustrated the confusion matrix for three

different datasets on three different algorithms which has been used for evaluating other

validation parameters presented in chapter 6.

The table 5.10 had illustrated the data collected to compare the execution time obtained

for proposed and six different algorithms on three different datasets. Similarly the table

5.11 had presented the spark streaming execution time on three different datasets for the

proposed framework. These were derived by the mathematical expression developed in

chapter 4. The table 5.12 had presented the analytical results of memory consumption for

the entire process execution.

In this research, three different datasets namely, DARPA, MACCDC, and DEFCON21

138

Univ
ers

iti
Mala

ya

had been used to evaluate the quality of the proposed algorithm. The benchmarking

had been done by comparing and evaluating the proposed SSWLOFCC algorithm with

six different existing algorithms namely K Means, Isolation Forest, Spectral Clustering,

HDBSCAN, Agglomerative Clustering, and Local Outlier Factor. Data had been collected

by sampling the evaluation parameters up to 30 traces for the proposed solution. The overall

evaluation had revealed that the proposed SSWLOFCC algorithm had consumed lesser

memory, completed tasks with lower execution time and had yielded 96% of accuracy

for anomaly detection for three different datasets. The results obtained have proved that

the proposed solutions had outperformed the existing anomaly detection mechanisms.

Fundamentally, the evaluation test had ensured that the proposed solutions have yielded

a higher percentage of anomaly detection with much lesser memory consumption and

execution time as against the other existing anomaly detection mechanisms. The next

chapter presents the findings of data analysis.

139

Univ
ers

iti
Mala

ya

CHAPTER 6: RESULTS AND DISCUSSION

This chapter presents the performance evaluation of the RTADBDT framework and

elucidates the performance of the proposed algorithms that have been tested with three

different datasets, and the outcome of comparative analysis with existing algorithms has

also been presented. This chapter also explains the data analysis collected for this research

(see Chapter 5). Additionally, the internal and external evaluation of the framework as

against the experiment results has also been presented. The proposed framework has also

been critically evaluated by means of various statistical techniques. Ultimately, the chapter

also substantiates the efficacy of the proposed solution in terms of execution time and

memory consumption by comparing it with existing algorithms.

The chapter has been organised as follows: (i) details of performance evaluation of

RTADBDT framework has been presented in section 6.1; (ii) the proposed solution has

been compared and contrasted with existing algorithms on three different datasets and the

details has been presented in section 6.2, and the outcomes of the comparative analysis to

validate the accuracy of the proposed solution as against existing algorithms using different

statistics techniques has also been presented in this section;(iii) details of analysis in terms

of execution time of the proposed solution as against existing algorithms on three different

datasets have been presented in section 6.3; similarly the efficacy of the proposed solution

in terms of memory consumption as opposed to existing algorithms have been presented

in section 6.4; finally the chapter has been summarised in section 6.5.

6.1 RTADBDT Evaluation Parameters

RTADBDT is capable of delivering real-time anomaly detection based on big data

technologies and composite clustering algorithms, it is an appropriate and ingenious

framework suitable for uninterrupted real-time processing and also fault tolerant capable

140

Univ
ers

iti
Mala

ya

to produce higher accuracy, and consumes lesser computational time and memory when

compared to other existing approaches. The performance of RTADBDT framework has

been measured based on the following parameters:

1. Accuracy

2. Execution time

3. Memory consumption

6.2 RTADBDT Performance Analysis on Accuracy

This section discusses the performance analysis carried out to verify and validate

the accuracy of the proposed RTADBDT framework. An experiment was conducted to

evaluate the accuracy of RTADBDT framework on simulated real-time environment on

cloud. RTADBDT framework has been tested with three different datasets on proposed and

various existing algorithms. Silhouette Index, normalized mutual information, Calinski

and Harabaz, and adjusted rand scores were collected for the proposed framework to

measure the internal and external quality of the clusters. Similarly, Precision, Recall,

F1-score values were collected for true and predicted label of processed data to measure

the accuracy of the anomaly detection. The following sub sections presents the comparison

graphs to authenticate the results and validation of the proposed framework.

6.2.1 Silhouette Index

Figure 6.1, 6.2 and 6.3 illustrates the silhouette score of the clustering results for three

different datasets. The silhouette values are reported in the graphs given below (see figures

6.1 to 6.3). The experiment with SSWLOFCC has yielded the values closer to 0.9 in all

three datasets which produces compact and well-separated four clusters for analysis.

141

Univ
ers

iti
Mala

ya

Figure 6.1: Silhouette Scoring of SSWLOFCC for DARPA dataset

Figure 6.2: Silhouette Scoring of SSWLOFCC for MACCDC dataset

142

Univ
ers

iti
Mala

ya

Figure 6.3: Silhouette scoring of SSWLOFCC for DEFCON21 dataset

6.2.2 Calinski and Harabaz

Figures 6.4, 6.5, and 6.6 illustrate the Calinski and Harabaz of the clustering results

for three different datasets. The experiment with SSWLOFCC has yielded the values

closer to 0.9 in all three datasets, which produces compact and well-separated four clusters

for analysis. Internal cluster quality values derived from the Calinski and Harabaz, and

silhouette scoring are closer to 0.9, which strongly proves that the coordination’s were

strongly distributed among the clusters. Based on the Calinski and Harabaz, and silhouette

scoring analysis for three different datasets, it is evident that four clusters would be optimal

for the experiment.

143

Univ
ers

iti
Mala

ya

Figure 6.4: Calinski and Harabaz of SSWLOFCC for DARPA dataset

Figure 6.5: Calinski and Harabaz of SSWLOFCC for MACCDC datasets

144

Univ
ers

iti
Mala

ya

Figure 6.6: Calinski and Harabaz of SSWLOFCC for DEFCON21 datasets

6.2.3 Adjusted Rand Score

Figure 6.7 presents the comparison of external cluster quality on accuracy computed

through adjusted rand index methods for five different algorithms on Darpa datasets. The

y-axis shows the accuracy, whereas x-axis represents the six algorithms for thirty different

data traces. The results prove that the SSWLOFCC has achieved better accuracy of 98.54

% on a DARPA datasets. SSWLOFCC has achieved higher percentages compared to other

algorithms due to the composite nature of algorithm that process the clusters. The results

are computed at data trace of 1 to 30 of all the processed data.

145

Univ
ers

iti
Mala

ya

Figure 6.7: Comparison of accuracy between existing and proposed SSWLOFCC
algorithms on DARPA dataset

Similarly, Figure 6.8 presents the comparison of external cluster quality on accuracy

computed through adjusted rand index methods for five different algorithms on MACCDC

datasets. The y-axis shows the accuracy, and the x-axis represents the six algorithms

for thirty different data traces. The results prove that the SSWLOFCC has achieved

better accuracy of 96.35 % on a MACCDC datasets. SSWLOFCC has achieved higher

percentages compared to other algorithms due to composite nature of algorithm that

process the clusters. The results are computed at data trace of 1 to 30 of all the processed

data.

146

Univ
ers

iti
Mala

ya

Figure 6.8: Comparison of accuracy between existing and proposed SSWLOFCC
algorithms on MACCDC dataset

Likewise, figure 6.9 presents the comparison of external cluster quality on accuracy

computed through adjusted rand index methods for five different algorithms on DEFCON21

datasets. The y-axis shows the accuracy and the x-axis represents the six algorithms

for thirty different data traces. The results prove that the SSWLOFCC has achieved

better accuracy of 94.66 % on a DEFCON21 datasets. SSWLOFCC has achieved higher

percentages compared to other algorithms due to composite nature of algorithm that

process the clusters. The results are computed at data trace of 1 to 30 of all the processed

data.

147

Univ
ers

iti
Mala

ya

Figure 6.9: Comparison of accuracy between for existing and proposed SSWLOFCC
algorithms on DEFCON21 dataset

6.2.4 Normalized Mutual Info (NMI)

This section illustrates the normalized mutual info scores generated for the proposed

algorithms on three different datasets. Figure 6.10 presents that all the three datasets values

are closer to 1, which indicates that the proposed algorithm has an absolute correlation

with the external cluster quality. The y-axis shows the normalized mutual info score and

the x-axis represents the thirty different data traces for three different datasets.

148

Univ
ers

iti
Mala

ya

Figure 6.10: Comparison of normalized mutual info score with three different
datasets on proposed SSWLOFCC algorithm

Precisely the above discussed internal and external cluster evaluation metrics has

revealed that the proposed SSWLOFCC algorithm has yielded significantly higher values

in all the selected performance metrics as against the other existing methods.

6.2.5 Precision

This section presents the precision value generated for the proposed algorithms on

three different datasets. Precision also known as positive predicted value is the number of

relevant instances among the retrieved instances. In simpler terms, out of all the classes

how many has been predicted correctly. The precision is measured with a score from 0 to

1. The precision has been classified as follows:

1. 0 - 0.25 Very Weakly Predicted

2. 0.26 - 0.50 Weakly Predicted

3. 0.51 - 0.75 Well Predicted

4. 0.76 – 1.00 Very Well Predicted

149

Univ
ers

iti
Mala

ya

Figure 6.11: Precision score for DARPA dataset

Figure 6.11 and Table 6.1 shows the precision score results which is very well predicted

for DARPA dataset.

Table 6.1: Precision score for DARPA dataset
SSWLOFCC Classification Agglomerative Clustering Classification LOF Classification

id.resp_p 0.969709 Very Well Predicted 0.884615 Very Well Predicted 0.940171 Very Well Predicted
method 0.880156 Very Well Predicted 0.97981 Very Well Predicted 0.874001 Very Well Predicted
mime_types 0.993739 Very Well Predicted 0.960657 Very Well Predicted 0.920826 Very Well Predicted
body_len 0.966785 Very Well Predicted 0.946828 Very Well Predicted 0.934132 Very Well Predicted

Figure 6.12: Precision score for MACCDC dataset

Figure 6.12 and Table 6.2 shows the precision score results which is very well predicted

150

Univ
ers

iti
Mala

ya

for MACCDC dataset.

Table 6.2: Precision score for MACCDC dataset
SSWLOFCC Classification Agglomerative Clustering Classification LOF Classification

id.resp_p 0.874516 Very Well Predicted 0.848733 Very Well Predicted 0.951017 Very Well Predicted
method 1.00 Very Well Predicted 0.94145 Very Well Predicted 0.857843 Very Well Predicted
mime_types 0.965323 Very Well Predicted 0.898564 Very Well Predicted 0.932048 Very Well Predicted
body_len 1.00 Very Well Predicted 0.908762 Very Well Predicted 0.937556 Very Well Predicted

Figure 6.13: Precision score for DEFCON21 dataset

Figure 6.13 and Table 6.3 shows the precision score results which is very well predicted

for DEFCON21 dataset.

Table 6.3: Precision score for DEFCON21 dataset
SSWLOFCC Classification Agglomerative Clustering Classification LOF Classification

id.resp_p 0.96495 Very Well Predicted 0.864695 Very Well Predicted 0.940792 Very Well Predicted
method 0.999086 Very Well Predicted 0.962829 Very Well Predicted 0.945469 Very Well Predicted
mime_types 0.983366 Very Well Predicted 0.756477 Very Well Predicted 0.925064 Very Well Predicted
body_len 0.906656 Very Well Predicted 0.962684 Very Well Predicted 0.869613 Very Well Predicted

Details on the precision scores received for the three datasets have been presented in

Tables 6.1, 6.2, and 6.3. This study has achieved a precision score classification of “Very

Well Predicted” for all the classes/labels in all the datasets.

As seen in figures 6.11 to 6.13, some of the parameters may have seen a decrease in

precision score for each dataset. However, this is heavily dependent on the incoming data

stream, since our proposed model is based on real-time. At the time of running our model,

151

Univ
ers

iti
Mala

ya

the data that was processed may have had a possible variation in the true positive and the

false positive values. On the other hand, comparing all the four parameters on the three

datasets makes it clearly evident that the SSWLOFCC has outperformed all of its rivals.

6.2.6 Recall

This section presents the Recall value generated for the proposed algorithms on three

different datasets. Recall which is also known as sensitivity is the number of relevant

instances retrieved over the total amount of relevant instances. Simply, from the positive

classes how many have been predicted correctly. Recall is measured with a score from 0 to

1. Recall has been classified as follows:

1. 0 - 0.25 Very Weakly Predicted

2. 0.26 - 0.50 Weakly Predicted

3. 0.51 - 0.75 Well Predicted

4. 0.76 – 1.00 Very Well Predicted

Figure 6.14: Recall score for DARPA dataset

152

Univ
ers

iti
Mala

ya

Figure 6.14 and Table 6.4 shows the recall score results which is very well predicted for

DARPA dataset.

In Figure 6.14, SSWLOFCC has outperformed the other two algorithms for id.resp_p,

method and body_len parameter in the DARPA dataset. However, there is a slight reduction

in the recall score for SSWLOFCC as compared to the Agglomerative Clustering algorithm

within mime_types parameter. This indicate that Agglomerative Clustering algorithm

performed better than SSWLOFCC, due to the variation in the true positive and false

negative, which is heavily affected by the incoming stream data. However, it occurs only

temporary since the algorithm stop performing in our framework.

Table 6.4: Recall score for DARPA dataset
SSWLOFCC Classification Agglomerative Clustering Classification LOF Classification

id.resp_p 0.945709 Very Well Predicted 0.925709 Very Well Predicted 0.922156 Very Well Predicted
method 0.988024 Very Well Predicted 0.958025 Very Well Predicted 0.960878 Very Well Predicted
mime_types 0.887026 Very Well Predicted 0.897026 Very Well Predicted 0.847525 Very Well Predicted
body_len 0.976048 Very Well Predicted 0.946048 Very Well Predicted 0.934132 Very Well Predicted

Figure 6.15: Recall score for MACCDC dataset

Figure 6.15 and Table 6.5 shows the recall score results which is very well predicted for

MACCDC dataset.

Figure 6.16 and Table 6.6 shows the recall score results which is very well predicted for

DEFCON21 dataset.

153

Univ
ers

iti
Mala

ya

Table 6.5: Recall score for MACCDC dataset
SSWLOFCC Classification Agglomerative Clustering Classification LOF Classification

id.resp_p 1.00 Very Well Predicted 0.918584 Very Well Predicted 0.911426 Very Well Predicted
method 0.960142 Very Well Predicted 0.89646 Very Well Predicted 0.930027 Very Well Predicted
mime_types 0.912312 Very Well Predicted 0.885841 Very Well Predicted 0.899026 Very Well Predicted
body_len 0.951284 Very Well Predicted 0.890265 Very Well Predicted 0.930912 Very Well Predicted

Figure 6.16: Recall score for DEFCON21 dataset

Table 6.6: Recall score for DEFCON21 dataset
SSWLOFCC Classification Agglomerative Clustering Classification LOF Classification

id.resp_p 0.998657 Very Well Predicted 0.933733 Very Well Predicted 0.91976 Very Well Predicted
method 0.978952 Very Well Predicted 0.744511 Very Well Predicted 0.941317 Very Well Predicted
mime_types 0.900134 Very Well Predicted 0.874251 Very Well Predicted 0.872255 Very Well Predicted
body_len 0.969996 Very Well Predicted 0.954349 Very Well Predicted 0.942515 Very Well Predicted

The tables 6.4, 6.5 and 6.6 presented above have detailed the recall scores received

for the three datasets. This study has achieved a recall score classification of “Very Well

Predicted” for all the classes/labels in all the datasets. The recall scores indicate that the

proposed algorithm SSWLOFCC has performed very well compared to the other existing

algorithms in predicating the data correctly.

6.2.7 F1 Score

This section presents the F1 score value generated for the proposed algorithms on three

different datasets.

F1 score is the measure of the test’s accuracy. Precision and recall are used to compute

the F1 score. The F1 score is said to be the harmonic average of precision and recall. The

154

Univ
ers

iti
Mala

ya

F1 score ranges from 0 to 1.

The F1 score has been classified as follows:

1. 0 - 0.25 Very Low

2. 0.26 - 0.50 Low

3. 0.51 - 0.75 Good

4. 0.76 – 1.00 Very Good

In Figure 6.17method parameter has seen a reduction in the F1 score for the SSWLOFCC.

Nonetheless, the SSWLOFCC F1 score higher for other parameters. The F1 score measures

the tests accuracy and is dependent on the precision and recall values. As discussed in the

precision and recall section, the true positive, false positive and false negative based on the

incoming data streams have caused the increase in F1 score for Agglomerative Clustering

within method parameter.

Figure 6.17: F1 score for DARPA dataset

Figure 6.17 and Table 6.7 shows the F1 score results which is classified as very good

for DARPA dataset.

155

Univ
ers

iti
Mala

ya

Table 6.7: F1 score for DARPA dataset
SSWLOFCC Classification Agglomerative Clustering Classification LOF Classification

id.resp_p 0.957559 Very Good 0.904696 Very Good 0.931076 Very Good
method 0.930976 Very Good 0.968795 Very Good 0.915383 Very Good
mime_types 0.937355 Very Good 0.927752 Very Good 0.882656 Very Good
body_len 0.971395 Very Good 0.946438 Very Good 0.934132 Very Good

Figure 6.18: F1 score for MACCDC dataset

Table 6.8: F1 score for MACCDC dataset
SSWLOFCC Classification Agglomerative Clustering Classification LOF Classification

id.resp_p 0.933058 Very Good 0.882278 Very Good 0.930801 Very Good
method 0.979666 Very Good 0.918404 Very Good 0.892478 Very Good
mime_types 0.938069 Very Good 0.892157 Very Good 0.915239 Very Good
body_len 0.975034 Very Good 0.899419 Very Good 0.934222 Very Good

Figure 6.18 and Table 6.8 shows the F1 score results which is classified as very good for

MACCDC dataset. Figure 6.19 and Table 6.9 shows the F1 score results which is classified

as very good for DEFCON21 dataset. In Figure 6.19 body_len parameter has seen a

reduction in the F1 score for the SSWLOFCC. Nonetheless, the SSWLOFCC F1 score

higher for other parameters. The F1 score measures the tests accuracy and is dependent on

the precision and recall values. As discussed in the precision and recall section, the true

positive, false positive and false negative based on the incoming data streams have caused

the increase in F1 score for Agglomerative Clustering within body_len parameter.

156

Univ
ers

iti
Mala

ya

Figure 6.19: F1 score for DEFCON21 dataset

Table 6.9: F1 Score for DEFCON21 Dataset
SSWLOFCC Classification Agglomerative Clustering Classification LOF Classification

id.resp_p 0.981514 Very Good 0.897889 Very Good 0.930157 Very Good
method 0.988917 Very Good 0.839712 Very Good 0.943389 Very Good
mime_types 0.939911 Very Good 0.811111 Very Good 0.897884 Very Good
body_len 0.937257 Very Good 0.958498 Very Good 0.904598 Very Good

The above tables 6.7, 6.8 and 6.9 detail on the F1 scores received for the three datasets.

This study has achieved a F1 score classification of “Very Good” for all classes/labels

in all the datasets. The F1 scores indicate that the proposed algorithm SSWLOFCC has

performed better compared to the other existing algorithms.

6.2.8 Matthews’s Correlation Coefficient

This section presents the Matthews’s correlation coefficient generated for the proposed

algorithms on three different datasets. Matthews’s correlation coefficient (MCC) is used to

measure the quality of binary classifications. The MCC is a correlation coefficient of the

observed and predicted binary classifications. A value of -1 to +1 is returned. The MCC

can be classified into 3 categories as follows.

1. +1 Perfect Prediction

2. 0 No Better than Random Prediction

157

Univ
ers

iti
Mala

ya

3. -1 Total Disagreement between Prediction and Observation

Figure 6.20: Matthews correlation coefficient for DARPA dataset

Figure 6.20 and Table 6.10 shows the Matthews correlation coefficient score results

which is classified as close to perfect prediction for DARPA dataset. In Figure 6.20 method

parameter has seen a reduction in the MCC value for the SSWLOFCC. This is because it

is impacted by the true positive, false positive and false negative values gained from the

confusion matrix. The confusion matrix is impacted by the incoming data streams as they

come in real time. However, it is evident that SSWLOFCC has taken the lead against other

algorithms.

Table 6.10: Matthews correlation coefficient for DARPA dataset
SSWLOFCC Classification Agglomerative Clustering Classification LOF Classification

id.resp_p 0.943206133 Close to Perfect Prediction 0.884875999 Close to Perfect Prediction 0.906928924 Close to Perfect Prediction
method 0.908507189 Close to Perfect Prediction 0.978192445 Close to Perfect Prediction 0.885627382 Close to Perfect Prediction
mime_types 0.920047044 Close to Perfect Prediction 0.898660664 Close to Perfect Prediction 0.845277016 Close to Perfect Prediction
body_len 0.961327957 Close to Perfect Prediction 0.968157141 Close to Perfect Prediction 0.910634157 Close to Perfect Prediction

Figure 6.21 and Table 6.11 shows the Matthews correlation coefficient score results

which is classified as close to perfect prediction for MACCDC dataset.

Figure 6.22 and Table 6.12 shows the Matthews correlation coefficient score results

which is classified as close to perfect prediction for DEFCON21 dataset. In Figure 6.22

158

Univ
ers

iti
Mala

ya

Figure 6.21: Matthews correlation coefficient for MACCDC dataset

Table 6.11: Matthews correlation coefficient for MACCDC dataset
SSWLOFCC Classification Agglomerative Clustering Classification LOF Classification

id.resp_p 0.912264138 Close to Perfect Prediction 0.839757002 Close to Perfect Prediction 0.907224179 Close to Perfect Prediction
method 0.973119214 Close to Perfect Prediction 0.890206794 Close to Perfect Prediction 0.854595198 Close to Perfect Prediction
mime_types 0.918467159 Close to Perfect Prediction 0.854124969 Close to Perfect Prediction 0.886355702 Close to Perfect Prediction
body_len 0.967171117 Close to Perfect Prediction 0.86395696 Close to Perfect Prediction 0.910874609 Close to Perfect Prediction

Figure 6.22: Matthews correlation coefficient for DEFCON21 dataset

body_len parameter has seen a reduction in the MCC value for the SSWLOFCC. This

is also due to the true positive, false positive and false negative values gained from the

confusion matrix. The confusion matrix is impacted by the incoming data streams as they

come in real time. However, it is evident that SSWLOFCC has taken the lead against other

159

Univ
ers

iti
Mala

ya

algorithms.

Table 6.12: Matthews correlation coefficient for DEFCON21 dataset
SSWLOFCC Classification Agglomerative Clustering Classification LOF Classification

id.resp_p 0.975221989 Close to Perfect Prediction 0.859755051 Close to Perfect Prediction 0.90582175 Close to Perfect Prediction
method 0.985199249 Close to Perfect Prediction 0.80317405 Close to Perfect Prediction 0.923154068 Close to Perfect Prediction
mime_types 0.922376755 Close to Perfect Prediction 0.743864644 Close to Perfect Prediction 0.864413061 Close to Perfect Prediction
body_len 0.916177088 Close to Perfect Prediction 0.942359308 Close to Perfect Prediction 0.870903105 Close to Perfect Prediction

The above tables 6.10, 6.11, and 6.12 detail the MCC scores received for the three

datasets. This study has achieved a MCC score classification close to “Perfect Prediction”

for all classes/labels in all the datasets. Comparatively, the proposed algorithm SSWLOFCC

has values closer to perfect prediction than the other existing algorithms.

6.2.9 Kappa

This section illustrates the Kappa values generated for proposed algorithms on three

different datasets. Kappa is a statistical method that measures inter-rater agreement for

qualitative items. It is a robust measure compared to percent agreement calculation. Kappa

can be classified into 5 categories as follows.

1. < 0.20 Poor

2. 0.21 - 0.40 Fair

3. 0.41 - 0.60 Moderate

4. 0.61 - 0.80 Good

5. 0.81 - 1.00 Very Good

Table 6.13: Kappa value for DARPA, MACCDC, and DEFCON21 datasets
SSWLOFCC Classification Agglomerative Clustering Classification LOF Classification

Darpa 0.932 Very Good 0.608 Good 0.888 Very Good
Maccdc 0.941 Very Good 0.864 Very Good 0.89 Very Good
Defcon21 0.949 Very Good 0.836 Very Good 0.892 Very Good

The Figure 6.23 and table 6.13 have presented the Kappa values received for the three

datasets. This study has achieved a Kappa score classification of “Very Good” for most of

160

Univ
ers

iti
Mala

ya

Figure 6.23: Kappa for all three datasets

classes/labels in all the datasets. Comparatively, the proposed algorithm SSWLOFCC has

performed better than the other existing algorithms.

6.3 RTADBDT Performance Analysis on Execution Time

This section presents the performance analysis carried out to validate the execution time

of the proposed RTADBDT framework with five existing algorithms on three different

datasets. The mathematical expression developed has been used to calculate the Spark

Streaming execution time, and memory profiler algorithm has been used to calculate entire

execution time of algorithms in the framework.

Three different datasets have been employed to perform a comparative analysis for the

proposed and existing agglomerative clustering and LOF algorithms without modification.

Figure 6.24 illustrates the impact of execution time in the real time anomaly detection in

big data technologies.

Based on the figure 6.24 it is evident that the algorithm proposed in this study has

achieved an execution time of 13 seconds compared to the agglomerative, which took 15

seconds, while the LOF took 14 seconds in the DARPA dataset for 4 cycles.,

161

Univ
ers

iti
Mala

ya

Figure 6.24: Execution time for proposed SSWLOFCC compared with two existing
algorithm in three different datasets

In contrast, the comparison of execution time within the MACCDC dataset for 4 cycles

indicate that the proposed algorithm has an execution time of 12 seconds as compared to

the agglomerative, which took 14 seconds and the LOF with 18 seconds in the MACCDC

dataset for 4 cycles.

Furthermore, within the DEFCON21 dataset for 4 cycles, the result indicate that

the proposed algorithm has achieved an execution time of 15 seconds as against the

agglomerative and the LOF algorithms, where both have resulted in 17.5 seconds of

execution time apiece.

Figure 6.25: Spark Streaming execution time for proposed SSWLOFCC algorithm
on three different datasets

162

Univ
ers

iti
Mala

ya

The figure 6.25 shows the execution time taken by Spark for each dataset. The datasets

seem to have different execution time each data trace, this is because each job that is

executed on Spark has a scheduling delay and processing time. The total execution time

for each data trace is the scheduling delay added with the processing time. A scheduling

delay is the time taken by the scheduler to submit the jobs of the batch. On the other hand,

the processing time is the time taken to compute a given batch for all its jobs. Since each

batch have different scheduling delay and processing time, each data trace has a different

execution time as shown in the above figure.

The above discussions clearly indicate that due to the modification made in the

pooling_func, contamination and n_jobs, the algorithms proposed in this study execute

within shorter time period as against the agglomerative and LOF algorithms. In addition,

the Spark Streaming provides multiple executor to process the jobs, which leads to the

reduction of the execution time in the proposed algorithm.

6.4 RTADBDT Performance Analysis on Memory Consumption

This section presents the performance analysis carried out to validate the memory

consumption of the proposed RTADBDT framework with five existing algorithms on three

different datasets. Memory profiler algorithm has been used for calculation of memory

consumption of algorithms in the framework for four cycle and the memory consumption

per second for the algorithms has been derived.

Three different datasets have been used to comparatively analyse the proposed and

existing agglomerative clustering and LOF algorithms without modification. Fig 6.26

shows the impact of memory consumption towards the real time anomaly detection in big

data technologies.

Based on the figure 6.26 it is evident that the algorithm proposed in this study has

consumed lesser memory consumption (190 MB) as compared to the agglomerative and

163

Univ
ers

iti
Mala

ya

Figure 6.26: Memory consumption for proposed SSWLOFCC compared with two
existing algorithm in three different dataset

the LOF algorithms with 240 MB and 200 MB respectively in the DARPA dataset for 4

cycles. In addition, the analysis has also proved that the proposed algorithm has consumed

lesser memory (183 MB) as against the agglomerative and the LOF algorithms with 225

MB and 200 MB respectively in the MACCDC dataset for 4 cycles.

On the other hand, it is also evident that the proposed algorithm has utilized lesser

memory (210 MB) as compared to the agglomerative and the LOF algorithms which took

240 MB and 230 MB in the DEFCON21 dataset for 4 cycles, respectively.

The above results substantiate that the proposed algorithm has consumed less memory

as against other existing algorithms tested in this study. The achievement can be attributed

to the embedding of the proposed algorithm into Spark Streaming, which has enabled

in-memory shared cache to make it easy to connect to the real time input data into the

part of application. Furthermore, Scala application has provided IgniteRDD (resilient

distributed dataset) which allows to share in-memory data.

6.5 Conclusion

In this chapter, we evaluated the performance of RTADBDT by delivering the outcomes

of our experiments on a real setup, in graphic representation. We measure the accuracy,

164

Univ
ers

iti
Mala

ya

memory consumption and execution time of RTADBDT on three different datasets. Four

well-known evaluation metrics including Silhouette Index, normalized mutual information,

Calinski and Harabaz, and adjusted rand scores, Precision, Recall, F1-score, and Kappa

had been adopted to prove the efficacy of the proposed algorithm. Furthermore, the

evaluation of three different datasets using the quality metrics has revealed that the

proposed SSWLOFCC had attained optimal results against other existing algorithms.

The proposed solution was measured for three different datasets which produced average

internal and external quality percentage of 94.33% on silhouette index, 95.83% on Calinski

and Harabaz, 96.52% on adjusted rand index and 97.5% on normalized mutual info.

Moreover, accuracy measurement produced by statistical techniques such as precision,

recall, Fl predicated well for the selected parameters. Likewise, Mathew’s correlation

coefficient and Kappa also close to the prediction on the selected parameters. Most of the

evaluation parameters were critically analyzed and compared with five different existing

algorithms to prove the efficiency with the proposed solution.

We have measured overall and Spark Streaming job execution time in seconds. While

the former execution time is 13.3 seconds for the entire cycle, the latter processed within

3.13 seconds which is far less than existing algorithms. On the other hand, within the

memory consumption measurement average for three different datasets of 194.3 MB and

14.61MB per second which also lower than the other algorithms on the framework.

Likewise, by varying three different datasets to process in proposed SSWLOFCC

measured the quality of the clusters. In addition, the statistical analysis determined the

selected range of parameter provide the best prominent results.

The complexity analysis RTADBDT shows that the time and memory consumption for

the computation is less than the existing approach. It is worth to note that, despite the

lower computation of RTADBDT, the accuracy obtained is much higher than that obtained

165

Univ
ers

iti
Mala

ya

by another existing approach.

The results of the comparative analysis between the proposed and other existing real-time

anomaly detection algorithms substantiate that the RTADBDT is a proficient and capable

processing framework for real-time anomaly detection with lesser memory consumption

and execution time.

166

Univ
ers

iti
Mala

ya

CHAPTER 7: CONCLUSION

This chapter presents the conclusive remarks and summary of the research performed

in this thesis. It analyses the aims and objectives of the research, by re-examining them

it assures that the research has accomplished its aims and objectives. Furthermore, the

significance and limitations of their research have also been emphasized, followed by the

presentation of the list of journals published in the course of this research process. Lastly,

suggestions for future research directions have also been presented.

The chapter comprises the following sections: section 7.1 re-examines the objectives

of this research work, section 7.2 highlights the contribution of the research, section 7.3

presents the list of journals published in the course of this research process, section 7.4

exhibits the significance and limitations of the proposed solution / research, and ultimately

the section 7.5 recommends the direction of the future works in this domain.

7.1 Reappraisal of the Research Objectives

This research had aimed at improving the performance of anomaly detection by

integrating real-time big data technologies based on composite clustering algorithms. In

this section, the aims and objectives of the research have been reinvestigated to determine

their accomplishment in this thesis. The four objectives derived in research (See chapter 1)

have been re-examined and interpreted to establish how this research has fulfilled those

objectives.

The first objective was aimed at reviewing the state-of-the-art on anomaly detection and

real-time big data technologies with respect to detection performance issue. This had been

accomplished by critically analyzing the numerous problems constraining the adoption

of real-time anomaly detection using big data technologies and reviewing corresponding

results by creating a taxonomy (See Chapter 2 - Section 2.6 - Figure 2.2). Furthermore,

167

Univ
ers

iti
Mala

ya

to study the state-of-the-art research carried out in the RTADBDT, several online digital

libraries incorporating Elsevier, IEEE, ACM and Springer had been utilized. Consequently,

various review and research papers in the broad spectrum of RTADBDT was analysed.

Qualitative and quantitative analyses was conducted on chosen state-of-the-art anomaly

detection and real-time big data technologies to identify the open issues and research

challenges. Lastly, diverse open research issues in these domains were detected.

The second objective was aimed at investigating the impact of various existing solutions

for anomaly detection on real-time data to establish the research problem. To achieve this

objective original data traces of anomaly detection method in a traditional approach was

collected. Further, three different datasets were evaluated to analyse the performance of

the existing approaches. The experiment was implemented in the lab environment and the

consequence on performance was studied. The performance of the anomaly detection was

evaluated by measuring the following parameters(see chapter 3):

1. Accuracy

2. Memory Consumption

3. Execution Time

The empirical analysis had revealed that the existing approaches yielded lesser accuracy

in detection and consumed higher computation complexity for processing the real-time

anomaly detection. This hadmotivated this research to propose real-time anomaly detection

based on big data technologies to address issues related to accuracy and performance

problems.

The third objective was aimed at proposing and implementing a real-time anomaly

detection based on big data technologies framework, for improving accuracy, minimizing

the memory consumption and shorten the execution time. The proposed solution has been

168

Univ
ers

iti
Mala

ya

named as Streaming Sliding Window LOF Clustering Coreset (SSWLOFCC) algorithms

which has contributed to a deal in addressing the issue of lower accuracy. Furthermore,

Spark streaming and Spark MLlib technologies helps to handle the issues of higher memory

consumption and longer execution time. The framework comprises five major components:

Flume, Kafka, Spark Streaming, Spark MLlib, and HBase which are flexible to receive

the real-time data for processing. Thereby, the proposed solution processes the real-time

data in-memory to detect the accurate anomaly and reduce memory consumption. Lastly,

Dstreams shortens the execution time.

The fourth objectivewas aimed at evaluating the performance of the proposedRTADBDT

framework and SSWLOFCC algorithms with various other existing techniques. The

proposed and existing techniques were compared in terms of three parameters such as,

accuracy, memory consumption, and execution time. Moreover, to validate the results,

numerous internal, external, and statistical techniques were adopted. Eight evaluation

techniques namely, Silhouette Index, Normalized Mutual Information, adjusted rand score,

Calinski and Harabaz, confusion matrix, Precision, Recall, and F1 score were employed.

The proposed SSWLOFCC algorithm has been implemented in a real cloud environment.

Furthermore, three different datasets namely, DARPA, MACCDC, and DEFCON21 had

been used to evaluate the quality of the proposed solutions. Finally, the performance of the

proposed solution was carried out by comparing and evaluating SSWLOFCC algorithm

with six different existing algorithms namely KMeans, Isolation Forest, Spectral Clustering,

HDBSCAN, Agglomerative Clustering, and Local Outlier Factor.

The comparative analysis had revealed that the performance of RTADBDT was much

better than the existing algorithms in terms of accuracy, memory consumption, and

execution time. Average results produced for three different datasets on the internal and

external quality are as follows: (i) 94.33% on silhouette index, (ii) 95.83% on Calinski and

169

Univ
ers

iti
Mala

ya

Harabaz, (iii) 96.52% on adjusted rand index, and (iv) 97.5% on normalized mutual info.

Moreover, accuracy measurement produced by statistical techniques such as Precision,

Recall, Fl had well predicated for the selected parameters. Likewise, Mathew’s correlation

coefficient and Kappa also were close to the prediction on the selected parameters. In

addition to this the execution time is 13.3 seconds for the entire cycle, the latter processed

within 3.13 seconds which is far less than existing algorithms. On the other hand, within

the memory consumption measurement average for three different datasets of 194.3 MB

and 14.61MB per second which also lower than the other algorithms on the framework.

7.2 Research Contributions

The contributions of this research work to the body of knowledge are detailed below:

7.2.1 Thematic Taxonomy

This research offers a thematic taxonomy, which categorizes various prospects of

anomaly detection and real-time big data technologies. The categories are named

as techniques, application, anomalies, modes, data, big data processing, and record.

Furthermore, it emphasizes their similarities, strengths, and weaknesses in current solutions.

Lastly, the critical research analysis reveals the major open research challenges in this

domain of anomaly detection and real-time big data technologies (see figure 2.2).

7.2.2 Framework for Real-Time Anomaly Detection Based on Big Data Technolo-
gies

In this research experiment, a framework has been designed and implemented for

real-time anomaly detection based on big data technologies (see figure 4.6). Among the

many choices, the proposed novel framework is the best framework, which uses several big

data technologies for anomaly detection. The framework comprises five major components:

Flume, Kafka, Spark Streaming, Spark MLlib, and HBase which are flexible to receive the

170

Univ
ers

iti
Mala

ya

real-time data for processing on anomaly detection. Furthermore, developed framework

uses Spark API which are responsible for receiving and submitting jobs for processing

among the nodes.

7.2.3 Proposed Algorithms

In this research, five different algorithms were developed and implemented in the

proposed framework (see section 4.3 and 4.4). These algorithms help to resolve the

issues of higher memory consumption, increased execution time and lower accuracy. The

algorithms implemented in the proposed framework are as follows:

1. Algorithm 1: Flume Pipeline

2. Algorithm 2: Streaming Sliding Window LOF Clustering Coreset (SSWLOFCC)

3. Algorithm 3: To calculate RAM usage

4. Algorithm 4: To calculate memory consumption per second

5. Algorithm 5: To calculate execution time

7.2.4 Mathematical Model for Validation

This research had formulated a mathematical model to calculate the execution time of

the Spark jobs. The expression obtains the individual Spark job execution time to calculate

the entire cycle of the processing execution time of the algorithms(see section 4.4). The

developed expression was validated with proposed and existing algorithms. Moreover, the

experimental data were compared with three different datasets to prove the efficiency of

the proposed solution.

7.2.5 Performance Evaluation of Proposed Solution

This research had performed an evaluation by critically analysing the accuracy of the

proposed algorithms with five different existing algorithms on three different datasets.

171

Univ
ers

iti
Mala

ya

The evaluation results had revealed that in terms of accuracy the proposed solution has

outperformed all the five existing algorithms. Similarly, the memory consumption and

execution time of the proposed solution were proved to be lower than the existing algorithms

(see chapter 5 and 6 for detailed analysis and report).

7.2.6 Statistical and Evaluation Techniques

The research has contributed to the body of knowledge by designating and discussing

various statistical methods, internal and external evaluation to determine the quality of

results achieved for the proposed solutions (see section 5.4). In this regard Silhouette Index,

Normalized Mutual adjusted rand score and Calinski and Harabaz had been employed

to analyse the internal and external quality of the clusters. The statistical methods such

as, confusion matrix, Precision, Recall, Kappa, Mathew’s correlation coefficient, and F1

score had been utilized to evaluate the accuracy of the anomaly detection. The results of

statistical evaluation methods had exhibited better significant results as against the existing

solution.

7.3 Publications

In course of this research, the following papers have been produced:

• Published

Habeeb, Riyaz Ahamed Ariyaluran, Fariza Nasaruddin, Abdullah Gani, Ibrahim

Abaker Targio Hashem, Ejaz Ahmed, and Muhammad Imran. "Real-time big data

processing for anomaly detection: A Survey." International Journal of Information

Management (2018). (Impact Factor 4.5).

Habeeb, Riyaz AhamedAriyaluran, Fariza Nasaruddin, Abdullah Gani, Mohamed

Ahzam Amanullah, Ibrahim Abaker Targio Hashem, Ejaz Ahmed, and Muhammad

Imran. “Clustering based real-time anomaly detection - A breakthrough in big

172

Univ
ers

iti
Mala

ya

data technologies” Transactions on Emerging Telecommunications Technologies.

(Impact Factor 1.7).

• Proceedings

Fan Xiu Ming, Habeeb, Riyaz Ahamed Ariyaluran, Fariza Nasaruddin, Abdullah

Gani, Real-time carbon dioxide monitoring based on IoT and Cloud technologies,

ICSCA2019, International Conference proceedings series by ACM indexed by Ei

compendex and scopus.

7.4 Significance and Limitations of the Proposed Solution

A number of researchers have proposed anomaly detection solutions in the past and

off late more research interest have been invested in this domain owing to its significance.

However, only few researchers have employed big data technologies for anomaly detection

limited to batch processing and mainly focused on data storage, and those researchers

did not focus on real-time anomaly detection. Real-time anomaly detection using big

data technologies approaches are complicated due to various reasons, noteworthy mention

is interoperability and other factors which affect the processing of the incoming data,

and embedding algorithms into a real-time platform is also a complex process. In this

research, a thorough critical analysis was conducted to modify the integrated big data

technologies into the proposed framework. Most importantly, Spark MLlib which enable

our proposed framework to run the algorithms into in-memory processing helps to process

data in real-time. Furthermore, Apache Flume allow our proposed framework to pipeline

the incoming data into Spark Streaming without interruption. Furthermore, Dstream and

RDD in Spark Streaming ingest data to be processed in Spark MLlib. The proposed

framework turns out to be competent, scalable and yields better accuracy in anomaly

detection. The study had evaluated the proposed framework with three different parameters

namely, accuracy, memory consumption, and execution time to prove the efficacy the

173

Univ
ers

iti
Mala

ya

proposed framework in addressing the problems identified early in this research.

However, there are some limitations that have been highlighted as follows:

Non availability of latest dataset is the foremost limitation, as discussed earlier this

research had been conducted with the validated datasets that are openly available, nev-

ertheless, it is worth mentioning that this research would have been more sophisticated

if it has employed most recent attack datasets like, Singapore hospital attack, and IoT

attack launched in a major organization website in U.S, however, these datasets are not

available for this research purpose due to their privacy and data protection policies. The

next limitation is consumption of memory by the big data technologies while running

in real-time. The datasets used in this research might have enabled it to validate other

parameters such as, job execution delay, and usage of storage, etc. due to time constraints

this research has not included those parameters as validation criteria.

7.5 Future Work

In this section the possible future guidelines that arise from this research work has been

presented. Even though this research has not examined all the problems associated with

RTADBDT various research efforts were performed to address the identified problems.

This research has only stressed on the incorporation of real-time big data technologies and

composite clustering algorithms for anomaly detection. To investigate the open research

challenges, several future research directions have been recommended, wherein carrying

advance research that can extend the analysis in these following areas:

1. This research has used the following three parameters to measure the proposed

solution for experimental and concept validation:

a) Accuracy

b) Memory Consumption

174

Univ
ers

iti
Mala

ya

c) Execution Time

However, the data collected by proposed solution is also capable of validating other

parameters such as, job execution delay, and usage of storage. Future researchers

can enhance their proposals by including these parameters for validation.

2. The solution proposed in this study was validated only with openly available

datasets, however it was limited in using most recent attack datasets, hence future

researchers are recommended herewith to attempt using most recent attack datasets

to increase the validity of this proposed solution.

3. RTADBDT framework was implemented and validated in the cluster cloud environ-

ment. Due to limited resources, it was not feasible for this study to test the abilities

of RTADBDT on multiple clusters and with parallel Kafka topics. Hence, future

work shall be executed on multiple clusters.

4. To extend further, the proposed framework shall be implemented in real-time

anomaly detection of Internet of things data sources or other network infrastructure

like, gateway, network monitoring, and smart city applications.

175

Univ
ers

iti
Mala

ya

REFERENCES

Abdullah, J., & Chanderan, N. (2017). Hierarchical density-based clustering of malware
behaviour. Journal of Telecommunication, Electronic and Computer Engineering
JTEC, 9(2-10), 159-164.

Aburomman, A. A., & Reaz, M. B. I. (2017). A novel weighted support vector machines
multiclass classifier based on differential evolution for intrusion detection systems
[Journal Article]. Information Sciences.

Aghabozorgi, S., Shirkhorshidi, A. S., & Wah, T. Y. (2015). Time-series clustering–a
decade review. Information Systems, 53, 16–38.

Ahmad, S., Lavin, A., Purdy, S., & Agha, Z. (2017). Unsupervised real-time anomaly
detection for streaming data. Neurocomputing, 262, 134-147.

Ahmed, E., Yaqoob, I., Hashem, I. A. T., Khan, I., Ahmed, A. I. A., Imran, M., & Vasilakos,
A. V. (2017). The role of big data analytics in internet of things [Journal Article].
Computer Networks, 129, 459-471.

Ahmed, M., Mahmood, A. N., & Hu, J. (2016). A survey of network anomaly detection
techniques [Journal Article]. Journal of Network and Computer Applications, 60,
19-31.

Akoglu, L., Tong, H., & Koutra, D. (2015). Graph based anomaly detection and description:
a survey [Journal Article]. Data mining and knowledge discovery, 29(3), 626-688.

Ali, O., Shrestha, A., Soar, J., &Wamba, S. F. (2018). Cloud computing-enabled healthcare
opportunities, issues, and applications: A systematic review [Journal Article].
International Journal of Information Management, 43, 146-158.

Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & Taha, K. (2015).
Efficient machine learning for big data: A review. Big Data Research, 2(3), 87–93.

Althubiti, S., Yuan, X., & Esterline, A. (2017). Analyzing http requests for web intrusion
detection.

Al-Yaseen, W. L., Othman, Z. A., & Nazri, M. Z. A. (2017). Multi-level hybrid support

176

Univ
ers

iti
Mala

ya

vector machine and extreme learning machine based on modified k-means for
intrusion detection system. Expert Systems with Applications, 67, 296-303.

Amini, A., Saboohi, H., Ying Wah, T., & Herawan, T. (2014). A fast density-based
clustering algorithm for real-time internet of things stream. The Scientific World
Journal, 2014.

Amini, A., Wah, T. Y., & Saboohi, H. (2014). On density-based data streams clustering
algorithms: A survey. Journal of Computer Science and Technology, 29(1),
116–141.

Apache. (2019). Spark streaming [Web Page]. Retrieved from https://spark.apache
.org/streaming/

Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A., & Buyya, R. (2015). Big
data computing and clouds: Trends and future directions [Journal Article]. Journal
of Parallel and Distributed Computing, 79, 3-15.

Bang, J.-h., Cho, Y.-J., & Kang, K. (2017). Anomaly detection of network-initiated
lte signaling traffic in wireless sensor and actuator networks based on a hidden
semi-markov model [Journal Article]. Computers & Security, 65, 108-120.

Bao, L., Li, Q., Lu, P., Lu, J., Ruan, T., & Zhang, K. (2018). Execution anomaly detection in
large-scale systems through console log analysis. Journal of Systems and Software,
143, 172-186.

Bhadani, A. K., & Jothimani, D. (2016). Big data: Challenges, opportunities, and realities.
In Effective big data management and opportunities for implementation (pp. 1–24).
IGI Global.

Bharill, N., Tiwari, A., & Malviya, A. (2016). Fuzzy based scalable clustering algorithms
for handling big data using apache spark. IEEE Transactions on Big Data, 2(4),
339–352.

Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2014). Network anomaly detection:
methods, systems and tools. Ieee communications surveys & tutorials, 16(1),
303–336.

Birjali, M., Beni-Hssane, A., & Erritali, M. (2017). Analyzing social media through big

177

Univ
ers

iti
Mala

ya

https://spark.apache.org/streaming/
https://spark.apache.org/streaming/

data using infosphere biginsights and apache flume. Procedia computer science,
113, 280–285.

Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning methods
for cyber security intrusion detection [Journal Article]. IEEE Communications
Surveys & Tutorials, 18(2), 1153-1176.

Caliński, T., &Harabasz, J. (1974). A dendritemethod for cluster analysis. Communications
in Statistics-theory and Methods, 3(1), 1–27.

Camacho, J., Macia-Fernandez, G., Diaz-Verdejo, J., & Garcia-Teodoro, P. (2014).
Tackling the big data 4 vs for anomaly detection [Conference Proceedings]. In
Computer communications workshops (infocom wkshps), 2014 ieee conference on
(p. 500-505). IEEE.

Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient
initialization methods for the k means clustering algorithm. Expert systems with
applications, 40(1), 200-210.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey [Journal
Article]. ACM computing surveys (CSUR), 41(3), 15.

Chen, W.-Y., Song, Y., Bai, H., Lin, C.-J., & Chang, E. Y. (2011). Parallel spectral
clustering in distributed systems. IEEE transactions on pattern analysis and
machine intelligence, 33(3), 568-586.

Cloud Strategy Partners, L. (2015). Cloud based solutions for big data (Tech. Rep.).
IEEE Educational Activities and IEEE Cloud Computing. Retrieved from http://
ieeexplore.ieee.org/courses/details/EDP405?tag=1

Cozar, J., Puerta, J. M., & Gamez, J. A. (2017). An application of dynamic bayesian
networks to condition monitoring and fault prediction in a sensored system: a case
study [Journal Article]. INTERNATIONAL JOURNAL OF COMPUTATIONAL
INTELLIGENCE SYSTEMS, 10(1), 176-195.

Cui, B., & He, S. (2016). Anomaly detection model based on hadoop platform and weka
interface. In Innovative mobile and internet services in ubiquitous computing imis
2016 10th international conference on (p. 84-89).

178

Univ
ers

iti
Mala

ya

http://ieeexplore.ieee.org/courses/details/EDP405?tag=1
http://ieeexplore.ieee.org/courses/details/EDP405?tag=1

Dahiya, P., & Srivastava, D. K. (2018). Network intrusion detection in big dataset using
spark. Procedia computer science, 132, 253–262.

Ding, Z., & Fei, M. (2013). An anomaly detection approach based on isolation forest
algorithm for streaming data using sliding window. IFAC Proceedings Volumes,
46(20), 12-17.

Du, Y., Liu, J., Liu, F., & Chen, L. (2014). A real-time anomalies detection system based
on streaming technology. In 2014 sixth international conference on intelligent
human-machine systems and cybernetics (Vol. 2, pp. 275–279).

Duggimpudi, M. B., Abbady, S., Chen, J., & Raghavan, V. V. (2017). Spatio-temporal
outlier detection algorithms based on computing behavioral outlierness factor. Data
& Knowledge Engineering.

Erfani, S. M., Rajasegarar, S., Karunasekera, S., & Leckie, C. (2016). High-dimensional
and large-scale anomaly detection using a linear one-class svm with deep learning
[Journal Article]. Pattern Recognition, 58, 121-134.

Fan, J., Han, F., & Liu, H. (2014). Challenges of big data analysis. National science
review, 1(2), 293–314.

Fang, C., Liu, J., & Lei, Z. (2016). Fine-grained http web traffic analysis based on
large-scale mobile datasets. IEEE Access, 4, 4364–4373.

Farnaaz, N., & Jabbar, M. (2016). Random forest modeling for network intrusion detection
system [Journal Article]. Procedia Computer Science, 89, 213-217.

Feng, W., Zhang, Q., Hu, G., & Huang, J. X. (2014). Mining network data for intrusion
detection through combining svms with ant colony networks [Journal Article].
Future Generation Computer Systems, 37, 127-140.

Fernandes, G., Carvalho, L. F., Rodrigues, J. J., & Proença, M. L. (2016). Network
anomaly detection using ip flows with principal component analysis and ant colony
optimization [Journal Article]. Journal of Network and Computer Applications,
64, 1-11.

Fernandes, G., Rodrigues, J. J., & Proença, M. L. (2015). Autonomous profile-based
anomaly detection system using principal component analysis and flow analysis

179

Univ
ers

iti
Mala

ya

[Journal Article]. Applied Soft Computing, 34, 513-525.

Fernández, A., Carmona, C. J., del Jesus, M. J., & Herrera, F. (2016). A view on fuzzy
systems for big data: progress and opportunities [Journal Article]. International
Journal of Computational Intelligence Systems, 9(sup1), 69-80.

Ficco, M., Pietrantuono, R., & Russo, S. (2018). Aging-related performance anomalies in
the apache storm stream processing system. Future Generation Computer Systems,
86, 975–994.

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and
analytics. International Journal of Information Management, 35(2), 137–144.

García, L., Tomás, J., Parra, L., & Lloret, J. (2018). An m-health application for
cerebral stroke detection and monitoring using cloud services [Journal Article].
International Journal of Information Management.

Gartner. (2018). Gartner forecasts worldwide information security spending to
exceed 124 billion dollar in 2019 (Web Page No. 15 August 2018). Re-
trieved from https://www.gartner.com/en/newsroom/press-releases/
2018-08-15-gartner-forecasts-worldwide-information-security
-spending-to-exceed-124-billion-in-2019

Genuer, R., Poggi, J.-M., Tuleau-Malot, C., & Villa-Vialaneix, N. (2017). Random forests
for big data [Journal Article]. Big Data Research, 9, 28-46.

Ger, M. (2017). Autonomous vehicles silicon valley 2017 – the future of transportation will
drive huge growth in data (Tech. Rep.). Hortonworks. Retrieved from https://
hortonworks.com/blog/autonomous-vehicle-silicon-valley-2017
-findings-future-transportation-will-drive-huge-growth-data/

Gonçalves, D., Bota, J., & Correia, M. (2015). Big data analytics for detecting host
misbehavior in large logs [Conference Proceedings]. In Trustcom/bigdatase/ispa,
2015 ieee (Vol. 1, p. 238-245). IEEE.

Grill, M., Pevný, T., & Rehak, M. (2017). Reducing false positives of network anomaly
detection by local adaptive multivariate smoothing [Journal Article]. Journal of
Computer and System Sciences, 83(1), 43-57.

180

Univ
ers

iti
Mala

ya

https://www.gartner.com/en/newsroom/press-releases/2018-08-15-gartner-forecasts-worldwide-information-security-spending-to-exceed-124-billion-in-2019
https://www.gartner.com/en/newsroom/press-releases/2018-08-15-gartner-forecasts-worldwide-information-security-spending-to-exceed-124-billion-in-2019
https://www.gartner.com/en/newsroom/press-releases/2018-08-15-gartner-forecasts-worldwide-information-security-spending-to-exceed-124-billion-in-2019
https://hortonworks.com/blog/autonomous-vehicle-silicon-valley-2017-findings-future-transportation-will-drive-huge-growth-data/
https://hortonworks.com/blog/autonomous-vehicle-silicon-valley-2017-findings-future-transportation-will-drive-huge-growth-data/
https://hortonworks.com/blog/autonomous-vehicle-silicon-valley-2017-findings-future-transportation-will-drive-huge-growth-data/

Guha, S., Mishra, N., Roy, G., & Schrijvers, O. (2016). Robust random cut forest based
anomaly detection on streams. In International conference on machine learning
(pp. 2712–2721).

Habeeb, R. A. A., Nasaruddin, F., Gani, A., Hashem, I. A. T., Ahmed, E., & Imran,
M. (2018). Real-time big data processing for anomaly detection: A survey.
International Journal of Information Management.

Hafsa, M., & Jemili, F. (2019). Comparative study between big data analysis techniques in
intrusion detection. Big Data and Cognitive Computing, 3(1), 1.

Hamamoto, A. H., Carvalho, L. F., Sampaio, L. D. H., Abrão, T., & Proença, M. L.
(2017). Network anomaly detection system using genetic algorithm and fuzzy logic
[Journal Article]. Expert Systems with Applications.

Hamamoto, A. H., Carvalho, L. F., Sampaio, L. D. H., Abrão, T., & Proença Jr, M. L.
(2018). Network anomaly detection system using genetic algorithm and fuzzy logic
[Journal Article]. Expert Systems with Applications, 92, 390-402.

Hasani, Z. (2017). Robust anomaly detection algorithms for real-time big data: comparison
of algorithms. In Embedded computing (meco), 2017 6th mediterranean conference
on (p. 1-6).

Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., . . . Chiroma,
H. (2016). The role of big data in smart city [Journal Article]. International
Journal of Information Management, 36(5), 748-758.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015).
The rise of “big data” on cloud computing: Review and open research issues.
Information systems, 47, 98–115.

Hayes, M. A., & Capretz, M. A. (2015). Contextual anomaly detection framework for big
sensor data [Journal Article]. Journal of Big Data, 2(1), 2.

helpnetsecurity. (2017). Machine learning in cybersecurity will boost big
data, intelligence, and analytics spending (Web Page No. 21 March 2017).
Retrieved from https://www.helpnetsecurity.com/2017/01/31/machine
-learning-cybersecurity/

181

Univ
ers

iti
Mala

ya

https://www.helpnetsecurity.com/2017/01/31/machine-learning-cybersecurity/
https://www.helpnetsecurity.com/2017/01/31/machine-learning-cybersecurity/

Hoffman, M., Steinley, D., & Brusco, M. J. (2015). A note on using the adjusted rand
index for link prediction in networks. Social Networks, 42, 72–79.

Jayanthi, M. D., Sumathi, G., & Sriperumbudur, S. (2016). A framework for real-time
streaming analytics using machine learning approach. In Proceedings of national
conference on communication and informatics-2016.

John Hunter, D. D. (2019). matplotlib installation [Web Page]. Retrieved from https://
matplotlib.org/l

Jones, N. (2016). Gartner identifies the top 10 internet of things technologies for 2017
and 2018 [Web Page]. Retrieved from http://www.gartner.com/newsroom/id/
3221818

Juvonen, A., Sipola, T., & Hämäläinen, T. (2015). Online anomaly detection using
dimensionality reduction techniques for http log analysis. Computer Networks, 91,
46–56.

Kakavand, M., Mustapha, N., Mustapha, A., Abdullah, M. T., & Riahi, H. (2015). A survey
of anomaly detection using data mining methods for hypertext transfer protocol
web services [Journal Article]. Journal of Computer Science, 11(1), 89.97.

Karami, A., & Guerrero-Zapata, M. (2015). A fuzzy anomaly detection system based on
hybrid pso-kmeans algorithm in content-centric networks. Neurocomputing, 149,
1253–1269.

Karim, A., Siddiqa, A., Safdar, Z., Razzaq, M., Gillani, S. A., Tahir, H., . . . Imran, M.
(2017). Big data management in participatory sensing: Issues, trends and future
directions [Journal Article]. Future Generation Computer Systems.

Katal, A., Wazid, M., & Goudar, R. (2013). Big data: issues, challenges, tools and good
practices. In Contemporary computing (ic3), 2013 sixth international conference
on (pp. 404–409).

Kerner, S. M. (2016). Cisco vni: 2.3 zettabytes of ip traffic in 2020 [Web Page]. Re-
trieved from http://www.enterprisenetworkingplanet.com/netsp/cisco
-vni-2.3-zettabytes-of-ip-traffic-in-2020.html

Kleppmann, M. A., & Kreps, J. (2015). Kafka, samza and the unix philosophy of

182

Univ
ers

iti
Mala

ya

https://matplotlib.org/l
https://matplotlib.org/l
http://www.gartner.com/newsroom/id/3221818
http://www.gartner.com/newsroom/id/3221818
http://www.enterprisenetworkingplanet.com/netsp/cisco-vni-2.3-zettabytes-of-ip-traffic-in-2020.html
http://www.enterprisenetworkingplanet.com/netsp/cisco-vni-2.3-zettabytes-of-ip-traffic-in-2020.html

distributed data.

Kokate, U., Deshpande, A., Mahalle, P., & Patil, P. (2018). Data stream clustering
techniques, applications, and models: Comparative analysis and discussion. Big
Data and Cognitive Computing, 2(4), 32.

Koning, R., Buraglio, N., de Laat, C., & Grosso, P. (2018). Coreflow: Enriching bro
security events using network traffic monitoring data. Future Generation Computer
Systems, 79, 235–242.

Kremer, H., Kranen, P., Jansen, T., Seidl, T., Bifet, A., Holmes, G., & Pfahringer, B.
(2011). An effective evaluation measure for clustering on evolving data streams.
In Proceedings of the 17th acm sigkdd international conference on knowledge
discovery and data mining (pp. 868–876).

Lai, Y., Liu, Z., Song, Z., Wang, Y., & Gao, Y. (2016). Anomaly detection in industrial
autonomous decentralized system based on time series [Journal Article]. Simulation
Modelling Practice and Theory, 65, 57-71.

Landset, S., Khoshgoftaar, T. M., Richter, A. N., & Hasanin, T. (2015). A survey of open
source tools for machine learning with big data in the hadoop ecosystem [Journal
Article]. Journal of Big Data, 2(1), 24.

Langone, R., Alzate, C., De Ketelaere, B., Vlasselaer, J., Meert, W., & Suykens, J. A.
(2015). Ls-svm based spectral clustering and regression for predicting maintenance
of industrial machines. Engineering Applications of Artificial Intelligence, 37,
268–278.

Lavin, A., & Ahmad, S. (2015). Evaluating real-time anomaly detection algorithms–the
numenta anomaly benchmark [Conference Proceedings]. In Machine learning and
applications (icmla), 2015 ieee 14th international conference on (p. 38-44). IEEE.

Lin, D. (2013). Big data analytics for network security monitoring (Tech. Rep.). Pivotal. Re-
trieved from https://content.pivotal.io/blog/big-data-analytics-for
-network-security-monitoring

Lin, W.-C., Ke, S.-W., & Tsai, C.-F. (2015). Cann: An intrusion detection system based
on combining cluster centers and nearest neighbors. Knowledge-based systems, 78,
13–21.

183

Univ
ers

iti
Mala

ya

https://content.pivotal.io/blog/big-data-analytics-for-network-security-monitoring
https://content.pivotal.io/blog/big-data-analytics-for-network-security-monitoring

Liu, S. (2015). How do big data analytics enhance network security? (Tech. Rep.).
HUAWEI. Retrieved from http://www.forbes.com/sites/huawei/2015/02/
24/how-do-big-data-analytics-enhance-network-security/

Liu, X., Iftikhar, N., & Xie, X. (2014). Survey of real-time processing systems for big
data. In Proceedings of the 18th international database engineering & applications
symposium (pp. 356–361).

Liu, X., & Nielsen, P. S. (2016). Regression-based online anomaly detection for smart
grid data [Journal Article]. arXiv preprint arXiv:1606.05781.

Lobato, A., Lopez, M. A., &Duarte, O. (2016). An accurate threat detection system through
real-time stream processing. Grupo de Teleinformtica e Automao, Universidade
Federal do Rio de Janeiro, Tech. Rep. GTA-16-08.

Maarala, A. I., Rautiainen, M., Salmi, M., Pirttikangas, S., & Riekki, J. (2015). Low latency
analytics for streaming traffic data with apache spark. In 2015 ieee international
conference on big data (big data) (pp. 2855–2858).

Maglaras, L. A., & Jiang, J. (2014). Intrusion detection in scada systems using ma-
chine learning techniques [Conference Proceedings]. In Science and information
conference (sai), 2014 (p. 626-631). IEEE.

Marir, N., Wang, H., Feng, G., Li, B., & Jia, M. (2018). Distributed abnormal behavior
detection approach based on deep belief network and ensemble svm using spark.
IEEE Access, 6, 59657–59671.

Mascaro, S., Nicholso, A. E., & Korb, K. B. (2014). Anomaly detection in vessel tracks
using bayesian networks [Journal Article]. International Journal of Approximate
Reasoning, 55(1), 84-98.

McNeil, P., Shetty, S., Guntu, D., &Barve, G. (2016). Scredent scalable real-time anomalies
detection and notification of targetedmalware inmobile devices. ProcediaComputer
Science, 83, 1219-1225.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., . . . others (2016).
Mllib: Machine learning in apache spark. The Journal of Machine Learning
Research, 17(1), 1235–1241.

184

Univ
ers

iti
Mala

ya

http://www.forbes.com/sites/huawei/2015/02/24/how-do-big-data-analytics-enhance-network-security/
http://www.forbes.com/sites/huawei/2015/02/24/how-do-big-data-analytics-enhance-network-security/

Mirsky, Y., Shabtai, A., Shapira, B., Elovici, Y., & Rokach, L. (2017). Anomaly detection
for smartphone data streams [Journal Article]. Pervasive and Mobile Computing,
35, 83-107.

Mnz, G., Li, S., & Carle, G. (2007). Traffic anomaly detection using k-means clustering.
In Giitg workshop mmbnet (p. 13-14).

Muller, S., Lancrenon, J., Harpes, C., Le Traon, Y., Gombault, S., & Bonnin, J.-M. (2018).
A training-resistant anomaly detection system. Computers & Security, 76, 1–11.

Muniyandi, A. P., Rajeswari, R., & Rajaram, R. (2012). Network anomaly detection by
cascading k-means clustering and c4. 5 decision tree algorithm [Journal Article].
Procedia Engineering, 30, 174-182.

Nadler, B., & Galun, M. (2007). Fundamental limitations of spectral clustering. In
Advances in neural information processing systems (pp. 1017–1024).

Neumeyer, L., Robbins, B., Nair, A., & Kesari, A. (2010). S4: Distributed stream
computing platform. In Data mining workshops (icdmw), 2010 ieee international
conference on (pp. 170–177).

Nian, K., Zhang, H., Tayal, A., Coleman, T., & Li, Y. (2016). Auto insurance fraud
detection using unsupervised spectral ranking for anomaly. The Journal of Finance
and Data Science, 2(1), 58-75.

Noghabi, S. A., Paramasivam, K., Pan, Y., Ramesh, N., Bringhurst, J., Gupta, I., &
Campbell, R. H. (2017). Samza: stateful scalable stream processing at linkedin.
Proceedings of the VLDB Endowment, 10(12), 1634–1645.

Ohio, U. (2017). U.s. federal cybersecurity market forecast 2017-2022 (Web Page No.
21 March 2017). Retrieved from https://www.marketresearchmedia.com/
?p=206.

Ošep, A., Voigtlaender, P., Luiten, J., Breuers, S., & Leibe, B. (2017). Large-scale
object discovery and detector adaptation from unlabeled video. arXiv preprint
arXiv:1712.08832.

P.R, Z. (2019). Zeek broids [Web Page]. Retrieved from https://www.bro.org/sphinx/
intro/index.html

185

Univ
ers

iti
Mala

ya

https://www.marketresearchmedia.com/?p=206.
https://www.marketresearchmedia.com/?p=206.
https://www.bro.org/sphinx/intro/index.html
https://www.bro.org/sphinx/intro/index.html

Promod, K., & Jacob, B. (2016). Mining a ubiquitous time and attendance schema using
random forests for intrusion detection [Journal Article]. Procedia Technology, 24,
1226-1231.

Prosak, A., Gangopadhyay, A., & Garg, H. (2019). A new machine learning approach for
anomaly detection using metadata for model training (Tech. Rep.). EasyChair.

Puggini, L., & McLoone, S. (2018). An enhanced variable selection and isolation forest
based methodology for anomaly detection with oes data. Engineering Applications
of Artificial Intelligence, 67, 126-135.

Qadah, E., Mock, M., Alevizos, E., & Fuchs, G. (2018). A distributed online learning
approach for pattern prediction over movement event streams with apache flink. In
Edbt/icdt workshops.

Raguseo, E. (2018). Big data technologies: An empirical investigation on their adoption,
benefits and risks for companies. International Journal of InformationManagement,
38(1), 187–195.

Ramamoorthi, A., Subbulakshmi, T., & Shalinie, S. M. (2011). Real time detection and
classification of ddos attacks using enhanced svm with string kernels [Conference
Proceedings]. InRecent trends in information technology (icrtit), 2011 international
conference on (p. 91-96). IEEE.

Ranjan, R. (2014). Streaming big data processing in datacenter clouds. IEEE Cloud
Computing, 1(1), 78–83.

Rathore, M. M., Ahmad, A., & Paul, A. (2016). Real time intrusion detection system for
ultra-high-speed big data environments. The Journal of Supercomputing, 72(9),
3489–3510.

Rettig, L., Khayati, M., CudrMauroux, P., & Pirkowski, M. (2015). Online anomaly
detection over big data streams. In 2015 ieee international conference on big data
(p. 1113-1122).

Rivetti, N., Busnel, Y., & Gal, A. (2017). Flinkman: Anomaly detection in manufacturing
equipment with apache flink: Grand challenge. In Proceedings of the 11th acm
international conference on distributed and event-based systems (pp. 274–279).

186

Univ
ers

iti
Mala

ya

Sahasrabuddhe, A., Naikade, S., Ramaswamy, A., Sadliwala, B., & Futane, P. (2017).
Survey on intrusion detection system using data mining techniques. International
Research Journal of Engineering and Technology.

Sarker, R. A., Elsayed, S. M., & Ray, T. (2014). Differential evolution with dynamic param-
eters selection for optimization problems. IEEE Trans. Evolutionary Computation,
18(5), 689–707.

She, C., Wen, W., Lin, Z., & Zheng, K. (2017). Application-layer ddos detection based
on a one-class support vector machine [Journal Article]. International Journal of
Network Security & Its Applications (IJNSA).

Shiravi, H., Shiravi, A., & Ghorbani, A. A. (2012). A survey of visualization systems
for network security [Journal Article]. IEEE Transactions on visualization and
computer graphics, 18(8), 1313-1329.

Shu, B., Chen, H., & Sun, M. (2017). Dynamic load balancing and channel strategy
for apache flume collecting real-time data stream. In 2017 ieee international
symposium on parallel and distributed processing with applications and 2017 ieee
international conference on ubiquitous computing and communications (ispa/iucc)
(pp. 542–549).

Singh, K., Guntuku, S. C., Thakur, A., & Hota, C. (2014). Big data analytics framework
for peer to peer botnet detection using random forests. Information Sciences, 278,
488-497.

Software, P. (2019). Python installation [Web Page]. Retrieved from https://www
.python.org/about/

Solaimani, M., Iftekhar, M., Khan, L., Thuraisingham, B., & Ingram, J. B. (2014). Spark-
based anomaly detection over multi-source vmware performance data in real-time.
In Computational intelligence in cyber security (cics), 2014 ieee symposium on
(pp. 1–8).

Solaimani, M., Khan, L., & Thuraisingham, B. (2014). Real-time anomaly detection over
vmware performance data using storm. In 2014 ieee international conference on
information reuse and integration (p. 458-465).

Son, J. G., Kang, J.-W., An, J.-H., Ahn, H.-J., Chun, H.-J., & Kim, J.-G. (2016). Parallel job
processing technique for real-time big-data processing framework. In Proceedings

187

Univ
ers

iti
Mala

ya

https://www.python.org/about/
https://www.python.org/about/

of the international conference on research in adaptive and convergent systems (pp.
226–229).

Srikanth, B., & Reddy, V. K. (2016). Efficiency of stream processing engines for processing
bigdata streams. Indian Journal of Science and Technology, 9(14).

Stojanovic, L., Dinic, M., Stojanovic, N., & Stojadinovic, A. (2016). Big-data-driven
anomaly detection in industry 4.0: An approach and a case study. In Big data (big
data), 2016 ieee international conference on (p. 1647-1652).

Stripling, E., Baesens, B., Chizi, B., & vanden Broucke, S. (2018). Isolation-based condi-
tional anomaly detection on mixed-attribute data to uncover workers compensation
fraud. Decision Support Systems.

Su, M.-Y. (2011a). Real-time anomaly detection systems for denial-of-service attacks
by weighted k-nearest-neighbor classifiers [Journal Article]. Expert Systems with
Applications, 38(4), 3492-3498.

Su, M.-Y. (2011b). Using clustering to improve the knn-based classifiers for online anomaly
network traffic identification. Journal of Network and Computer Applications,
34(2), 722–730.

Suthaharan, S. (2014). Big data classification: Problems and challenges in network
intrusion prediction with machine learning [Journal Article]. ACM SIGMETRICS
Performance Evaluation Review, 41(4), 70-73.

Symantec. (2016). Anomaly detection for automotive- proactive security an-
alytics built for embedded systems (Web Page No. 20/04/2017). Re-
trieved from https://www.symantec.com/content/dam/symantec/docs/data
-sheets/anomaly-detection-for-automotive-en.pdf

Ta, V.-D., Liu, C.-M., & Nkabinde, G. W. (2016). Big data stream computing in healthcare
real-time analytics. In 2016 ieee international conference on cloud computing and
big data analysis (icccbda) (pp. 37–42).

Tang, R., & Fong, S. (2018). Clustering big iot data by metaheuristic optimized mini-batch
and parallel partition-based dgc in hadoop. Future Generation Computer Systems.

Wang, C., Zhao, Z., Gong, L., Zhu, L., Liu, Z., & Cheng, X. (2018). A distributed anomaly

188

Univ
ers

iti
Mala

ya

https://www.symantec.com/content/dam/symantec/docs/data-sheets/anomaly-detection-for-automotive-en.pdf
https://www.symantec.com/content/dam/symantec/docs/data-sheets/anomaly-detection-for-automotive-en.pdf

detection system for in-vehicle network using htm. IEEE ACCESS, 6, 9091–9098.

Wasikowski, M., & Chen, X.-w. (2010). Combating the small sample class imbalance
problem using feature selection. IEEE Transactions on knowledge and data
engineering, 22(10), 1388–1400.

Wauters, M., & Vanhoucke, M. (2017). A nearest neighbour extension to project duration
forecasting with artificial intelligence [Journal Article]. European Journal of
Operational Research, 259(3), 1097-1111.

Wiatr, R., Słota, R., & Kitowski, J. (2018). Optimising kafka for stream processing in
latency sensitive systems. Procedia Computer Science, 136, 99–108.

Woolf, N. (2016). Ddos attack that disrupted internet was largest of its kind in his-
tory, experts say [Web Page]. Retrieved from https://www.theguardian.com/
technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

Xhafa, F., Naranjo, V., & Caballé, S. (2015). Processing and analytics of big data streams
with yahoo! s4. In Advanced information networking and applications (aina),
2015 ieee 29th international conference on (pp. 263–270).

Xie, S., & Chen, Z. (2017). Anomaly detection and redundancy elimination of big sensor
data in internet of things [Journal Article]. arXiv preprint arXiv:1703.03225.

Xu, D., & Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of
Data Science, 2(2), 165–193.

Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed, E., Anuar, N. B., & Vasilakos,
A. V. (2016). Big data: From beginning to future [Journal Article]. International
Journal of Information Management, 36(6), 1231-1247.

Yasumoto, K., Yamaguchi, H., & Shigeno, H. (2016). Survey of real-time processing tech-
nologies of iot data streams [Journal Article]. Journal of Information Processing,
24(2), 195-202.

Yin, C., Zhang, S., & Kim, K.-j. (2017). Mobile anomaly detection based on improved
self-organizing maps [Journal Article]. Mobile Information Systems, 2017.

189

Univ
ers

iti
Mala

ya

https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

Yin, S., Zhu, X., & Jing, C. (2014). Fault detection based on a robust one class support
vector machine [Journal Article]. Neurocomputing, 145, 263-268.

Yuan, D., Jin, J., Grundy, J., & Yang, Y. (2015). A framework for convergence of cloud
services and internet of things. In Computer supported cooperative work in design
(cscwd), 2015 ieee 19th international conference on (pp. 349–354).

Zhao, S., Chandrashekar, M., Lee, Y., & Medhi, D. (2015). Real-time network anomaly
detection system using machine learning. In Design of reliable communication
networks (drcn), 2015 11th international conference on the (pp. 267–270).

Zhao, Y., Ni, Q., & Zhou, R. (2017). What factors influence the mobile health service
adoption? a meta-analysis and the moderating role of age [Journal Article].
International Journal of Information Management.

Zhou, J., Lazarevic, A., Hsu, K.-W., Srivastava, J., Fu, Y., & Wu, Y. (2010). Unsupervised
learning based distributed detection of global anomalies. International Journal of
Information Technology & Decision Making, 9(06), 935–957.

Zhou, L., Pan, S., Wang, J., & Vasilakos, A. V. (2017). Machine learning on big data:
Opportunities and challenges [Journal Article]. Neurocomputing, 237, 350-361.

Zhou, Y., Yan, S., & Huang, T. S. (2007). Detecting anomaly in videos from trajectory
similarity analysis. InMultimedia and expo, 2007 ieee international conference on
(pp. 1087–1090).

Zolotukhin, M., Hämäläinen, T., Kokkonen, T., & Siltanen, J. (2014). Analysis of http
requests for anomaly detection of web attacks. In 2014 ieee 12th international
conference on dependable, autonomic and secure computing (pp. 406–411).

190

Univ
ers

iti
Mala

ya

	Abstract
	Abstrak
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Domain Background
	Anomaly detection
	Real-time Big data processing
	Machine Learning

	Research motivation
	Statement of the problem
	Statement of Objectives
	Proposed methodology
	Outline of Thesis

	Real-time Anomaly Detection based on Big Data Technologies
	Real-time Big Data Processing Technologies
	Spark
	Storm
	Flink
	Kinesis
	Samza
	Apache S4
	Hadoop

	Current anomalies detection techniques
	Clustering Algorithms

	Anomaly detection with big data technologies
	Machine learning algorithms with big data
	State-of-the-Art machine learning algorithm with real-time big data processing technologies for anomalies detection
	Taxonomy of Real-time big data processing technologies for anomaly detection.
	Techniques
	Nearest Neighbours (NN)
	Bayesian Networks (BN)
	Support Vector Machine (SVM)
	Decision tree
	Random Forest (RF)
	Fuzzy Logic algorithm
	Principal Component Analysis
	Ant Colony Optimization
	Hierarchical Temporal Memory (HTM)

	Applications
	Modern network traffic scenario:
	Mobile Cloud:
	Autonomous vehicles scenario:
	Healthcare scenario:
	Insider Trading Detection:
	Safety Critical Detection:

	Anomalies
	Point anomalies
	Contextual anomalies
	Collective anomalies

	Anomaly Detection Modes
	Supervised anomaly detection
	Semi-supervised anomaly detection
	Unsupervised anomaly detection

	Data
	Structured data
	Semi structured data
	Unstructured data

	Big Data processing
	Spark
	Storm
	Kafka
	Flume
	Amazon Kinesis
	Hadoop

	Record categories
	Host-based
	Network-based

	Evaluation metrics for clustering algorithm and system performance
	Research challenges
	Redundancy
	Computational cost
	Nature of Input data
	Noise and missing value
	Parameters Selection
	Inadequate Architecture
	Data visualizations
	Heterogeneity of data
	Accuracy
	Scalability

	Conclusion

	Problem Analysis
	Empirical study: Experimental setup
	Cloud Environment
	Algorithms
	K-Means
	Isolation Forest
	Spectral Clustering
	HDBSCAN

	Datasets
	Feature Extraction

	Performance Measuring Parameters
	Accuracy
	Memory consumption
	Execution time

	Results and Analysis
	Accuracy
	Memory Usage
	Execution time

	Discussions
	Conclusion

	Framework
	Framework for Real-Time Anomaly Detection Based on Big Data Technologies
	BroIDS
	Flume
	Kafka
	Spark Streaming
	Spark MLilb and Scala
	HBase
	Matplotlib and Python

	Real-Time Anomaly Detection Process Using Flowchart
	Proposed Algorithms
	Performance Evaluation Metrics of the Proposed Framework
	Accuracy
	Memory Consumption
	Execution Time

	Distinctive Features of the Proposed Algorithms
	Real-Time Processing
	Uninterruption of incoming data
	Accuracy
	Memory Consumption
	Fault Tolerance
	Execution Time
	Scalability

	Conclusion

	Evaluation
	Experimental Setup
	Dataset
	Data Collection for RTADBDT Framework
	Performance Evaluation Methods
	Accuracy
	Silhouette index
	Calinski and Harabaz
	Adjusted rand score
	Normalized mutual info score
	Confusion matrix
	Precision
	Recall
	F1-Score
	Matthews correlation coefficient
	Consumption of memory
	Execution time

	Data Collected for Analyzing the Anomaly Detection Accuracy
	Silhouette Index
	Adjusted Rand Index method
	Normalized Mutual Info (NMI)
	Data collected for cluster validation

	Data Collected for Process Execution Time
	Data Collected for Spark Streaming Execution Time
	Data Collected for Framework of Memory Consumption
	Conclusion

	Results and Discussion
	RTADBDT Evaluation Parameters
	RTADBDT Performance Analysis on Accuracy
	Silhouette Index
	Calinski and Harabaz
	Adjusted Rand Score
	Normalized Mutual Info (NMI)
	Precision
	Recall
	F1 Score
	Matthews’s Correlation Coefficient
	Kappa

	RTADBDT Performance Analysis on Execution Time
	RTADBDT Performance Analysis on Memory Consumption
	Conclusion

	Conclusion
	Reappraisal of the Research Objectives
	Research Contributions
	Thematic Taxonomy
	Framework for Real-Time Anomaly Detection Based on Big Data Technologies
	Proposed Algorithms
	Mathematical Model for Validation
	Performance Evaluation of Proposed Solution
	Statistical and Evaluation Techniques

	Publications
	Significance and Limitations of the Proposed Solution
	Future Work

	References

