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OPTIMAL NETWORK RECONFIGURATION INCORPORATING 

DISTRIBUTED GENERATION AND VARIABLE LOAD PROFILE USING 

ARTIFICIAL NEURAL NETWORK 

ABSTRACT 

Optimal network reconfiguration is a common method used in distribution systems to 

ensure minimum power losses are always attained. This is very important task for 

achieving cost effective operation. Due to varying load demands, conventional network 

reconfiguration techniques have to be repeated whenever system loading changes to find 

a new configuration that has minimum power losses. This task is time consuming and 

ineffective approach for a real time application. Therefore, this research proposes an 

Artificial Neural Network (ANN) technique for optimal distribution network 

reconfiguration to overcome long processing time, mainly in load variation case. The 

proposed method involves; (1) Implement optimal network reconfiguration with variable 

load profile and DG generation using meta-heuristic techniques for ANN modelling (2) 

Designing an ANN model for optimal network reconfiguration (3) Train the proposed 

ANN model on the generated data using different split ratios for optimal network 

reconfiguration. The applied meta-heuristic techniques in this work are Evolutionary 

programming (EP) and Particle swarm optimization (PSO). To evaluate the performance 

of the proposed ANN method, simulation conducted on MATLAB were conducted on 

IEEE 16-bus, IEEE 33-bus and IEEE 69-bus system. The proposed network 

reconfiguration based on ANN significantly reduces the computational time to find the 

optimal solution while avoiding additional calculations. The results show that the 

proposed ANN technique is more than 90% faster than the conventional methods for 

varying load profile. 
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KONFIGURASI OPTIMUM SISTEM PENGAGIHAN MENGAMBILKIRA 

PENJANA TERAGIH DAN BEBAN PROFIL BERASASKAN RANGKAIAN 

KECERDIKAN BUATAN 

ABSTRAK 

Konfigurasi ulang rangkaian yang optimum adalah kaedah umum yang digunakan 

dalam sistem pengedaran untuk memastikan kehilangan kuasa minimum selalu dicapai. 

Ini adalah tugas yang sangat penting untuk mencapai operasi yang menjimatkan. Oleh 

kerana tuntutan beban yang berbeza-beza, teknik konfigurasi ulang jaringan konvensional 

harus diulang setiap kali pemuatan sistem berubah untuk mencari konfigurasi baru yang 

memiliki kehilangan daya minimum. Tugas ini memakan masa dan pendekatan yang 

tidak berkesan untuk aplikasi masa nyata. Oleh itu, penyelidikan ini mencadangkan 

teknik Artificial Neural Network (ANN) untuk konfigurasi semula rangkaian pengedaran 

yang optimum untuk mengatasi masa pemprosesan yang panjang, terutamanya dalam kes 

variasi beban. Kaedah yang dicadangkan melibatkan; (1) Laksanakan konfigurasi ulang 

rangkaian yang optimum dengan profil beban berubah dan generasi DG menggunakan 

teknik meta-heuristik untuk pemodelan ANN (2) Merancang model ANN untuk 

konfigurasi ulang rangkaian yang optimum (3) Latih model ANN yang dicadangkan pada 

data yang dihasilkan dengan menggunakan nisbah perpecahan yang berbeza untuk 

konfigurasi semula rangkaian yang optimum. Teknik meta-heuristik yang diterapkan 

dalam karya ini adalah pengaturcaraan Evolusi (EP) dan pengoptimuman kumpulan zarah 

(PSO). Untuk menilai prestasi kaedah ANN yang dicadangkan, simulasi yang dilakukan 

pada MATLAB dilakukan pada sistem IEEE 16-bus, IEEE 33-bus dan IEEE 69-bus. 

Pengaturan semula rangkaian yang dicadangkan berdasarkan ANN secara signifikan 

mengurangkan masa pengiraan untuk mencari penyelesaian yang optimum sambil 

mengelakkan pengiraan tambahan. Hasil kajian menunjukkan bahawa teknik ANN yang 
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dicadangkan lebih daripada 90% lebih cepat daripada kaedah konvensional untuk 

pelbagai profil beban. 

Kata kunci: Konfigurasi rangkaian pengedaran, generasi yang diedarkan, rangkaian 

saraf tiruan, beban ubah, profil voltan. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

In electrical power delivery system, a distribution system is the final stage where 

electrical power is distributed to various types of consumers (residential, commercial, and 

industrial). One of the most important goals for electric utilities is to deliver a 

continuously high-quality power supply within cost effective operation. Unfortunately, in 

a distribution system, due to the impedances of the cables, there is always power loss 

through the heating effect (I2R). Thus, large scale distribution systems suffer from high 

power losses. It was reported that distribution network system accounted for 70% of the 

total losses in power delivery system, while the remaining 30% is related to transmission 

and sub-transmission lines (Sulaima et al., 2014). In (Chandramohan, Atturulu, Devi, & 

Venkatesh, 2010) the estimated operational losses due to power loss in United State was 

amounted to 5,851,85 USD annually. 

A well-accepted technique for minimizing the power losses in distribution systems is 

through distribution network reconfiguration (DNR). DNR is a process of altering the 

network topology by changing the status of sectionalizing switches (normally closed) and 

tie switches (normally open), while maintaining the radial structure of the network 

without isolating any load. The network structure is reconfigured by closing and opening 

the switches. This technique will reduce the power losses and improve the overall voltage 

profile, provided that the optimal reconfiguration could be determined. 

Another technique to reduce the power losses in distribution system is by supplying 

the loads from a close distance, which is done by integrating a local power supply into 

the distribution network. An example of local power supply is renewable energy sources, 

such as solar, wind, biomass and mini-hydro. It is reported that renewable energy sources 

will have the fastest growth in the electricity sector, providing almost 30% of power 
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   2 

demand in 2023, up from 24% in 2017 (International Energy Agency, 2018, October). 

This type of power supply is referred to as Distributed Generations (DG). These small 

supply units are installed in distribution network at critical points, mainly near load 

centers. Distribution generation development and application have got more and more 

attention, due to their impact on distribution network. The integration of DG units with 

optimal size and location will maximize its potential to reduce the overall power losses. 

Moreover, integrating DG will lead to improvement in voltage profile, reliability, and 

energy efficiency. 

1.2 Problem statement 

The need for electrical power is continually increases with the rapid economic growth 

around the world. As a result, significant portion of the electrical power is lost in the 

distribution process. Power losses will also reduce the voltage profile and the lifetime of 

equipment, especially in the heavily loaded areas. Hence, it is crucial to apply effective 

power loss reduction techniques such as network reconfiguration. Various methods have 

been proposed in the past aiming towards power loss reduction in electrical distribution 

system.  

From literature, it can be observed that existing methods on network reconfiguration 

are limited by certain factors. Firstly, previous research considered static load or uniform 

load, where all the loads in the system are assumed change at the same percentage. 

However, in practical scenario the loads in distribution system are not uniform and made 

up of different load types. Moreover, each type of load changes independently during the 

day, which makes the loading of distribution system dynamic. Due to these limitations, 

different load types (residential, commercial, and industrial) with variable loading 

conditions need to be considered. 
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Secondly, since the loads in distribution system in practical always vary, the optimal 

configuration has to be recalculated through iterative optimization process, which is time 

consuming. To reduce the computational time, ANN (Artificial Neural Networks) was 

applied for network reconfiguration problem to find the optimal solution as reported in 

(Kashem, Jasmon, Mohamed, & Moghavvemi, 1998; Kim, Ko, & Jung, 1993) (Fathabadi, 

2016; Salazar, Gallego, & Romero, 2006). However, these methods require a large 

number of trained neural networks to find solutions for large systems. This happen since 

the number of proposed ANNs is dependent on the number of switches in the system. In 

addition, pre-calculation step such as clustering before ANN training process is required. 

Therefore, a new model of ANN for network reconfiguration based on less number of 

neurons and shorter training time is required.  

Thirdly, previous ANN for network reconfiguration did not incorporate DG units in 

the reconfiguration process. DG units are nowadays essential in distribution systems to 

minimize power losses, improve voltage profile, provides reliable and uninterrupted 

power supply. Furthermore, with the application of DG based on renewable energy, 

sustainable power generation with minimum environmental impact can be achieved. 

Hence, it is crucial to consider different types of DGs in network reconfiguration in order 

to imitate more practical conditions. 

1.3 Research Objectives 

The main aim of this research is to develop optimal Distribution Network 

Reconfiguration (DNR) using Artificial Neural Network (ANN). The objectives are as 

following: 

1) To implement optimal network reconfiguration with variable load profile and DG 

generation using EP and PSO. 
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2) To design an ANN model for network reconfiguration using data generated from EP 

and PSO Network reconfiguration. 

3) To analyze the proposed ANN model with the generated data using different split 

ratios for optimal network reconfiguration 

1.4 Scope of Research 

This work proposes optimal network reconfiguration for constant and variable load 

profiles to reduce the active power loss and improve the overall voltage profile for 

distribution systems. This work also proposes an ANN approach to find the optimal 

configurations in distribution systems for dynamic load profile. It also considers 

incorporating different DG types in the system. The constraints of this study are radial 

structure of distribution system, bus voltage constraints and DG capacity. 

The proposed method in this research implements meta-heuristic optimization 

methods and artificial intelligence technique, which is Artificial Neural Network (ANN). 

The meta-heuristic optimizations are Evolutionary programming (EP) and Particle 

Swarm Optimization (PSO). The proposed method is implemented on 16-bus, 33-bus, 

and 69-bus test systems. MATLAB software is used in this study on a PC with 3.06 GHz 

CPU and 3-GB RAM.  
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1.5 Thesis Outline 

The report consists of five chapters. An overview, problem statement, research 

objectives, scope of research and methodology are presented in first chapter. 

Chapter 2 reviews on previous work on network reconfiguration based on heuristic, 

meta-heuristic, and artificial intelligence approaches for power loss reduction. 

Approaches incorporating DGs in network reconfiguration problem and service 

restoration are also presented.  

Chapter 3 contains problem formulation, constraints, implementation of meta-heuristic 

techniques and proposed ANN method. 

Chapter 4 consists of simulation results and performance of the proposed method. 

Discussion is focused on active power loss reduction and voltage profile improvement. 

Finally, conclusion of this research is presented in chapter 5, with suggested future 

works. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews on existing methods for power loss reduction in distribution 

system. The presented methods include optimal network reconfiguration, optimal 

network reconfiguration with DG and Artificial Neural Network (ANN) applications in 

network reconfiguration. The term ‘DG’ used in this literature is referred to as 

‘Distributed generations’. Both terms will be used interchangeably in this chapter. At the 

end of this chapter, research gap on optimal network reconfiguration will be highlighted. 

2.2 Conventional Network reconfiguration 

Network reconfiguration is a process of changing the switches' state of a network. This 

switch could be normally open, a situation called tie switches, or normally closed, a 

situation called sectionalizing switches. The topological structure of a network can be 

changed by closing the open switches, and vice versa. The optimal network 

reconfiguration process will decrease power loss and improve the system voltage profile. 

The network reconfiguration process will transfer the load to comparatively less heavily 

loaded feeders from heavily loaded feeders, which culminate in reduced power losses. 

The concept of distribution network reconfiguration (DNR) was firstly proposed by 

(Merlin, 1975),  the proposed method used a branch-and-bond approach to solve DNR 

problem.  

(Nara, Shiose, Kitagawa, & Ishihara, 1992) proposed a network reconfiguration 

method to minimize distribution power losses using Genetic Algorithm (GA). They 

confirmed that the method reconfigured the network with minimal power losses. 

(Kashem, Ganapathy, & Jasmon, 2000) enhanced voltage stability by reconfiguring a 

network using a new algorithm. First, a tie and two neighboring switches were generated. 

The combination switch that generates the maximum voltage stability for the system was 
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determined. The search was then extended to the neighbor of the best branch to check for 

any combination that results in better voltage stability. The proposed method could 

enhance voltage stability at no additional cost pertaining to tap-changing transformers, 

switching equipment, and installed capacitors in the distribution system. A 9-bus test 

system was used to confirm the proposed method's viability in reducing network power 

loss.  

(Das, 2005) used the fuzzy multi objective and heuristic rules approach to reconfigure 

their network. Their main objectives were to minimize power losses, balance feeder loads, 

and improve the overall voltage by accounting for specific constraints. These objectives 

were modeled using fuzzy sets to determine its imprecise nature and its anticipated value 

for each objective. The Heuristic rules were used to decrease the number of tie switch 

operation. The simulation results confirmed that the method is able to reduce the search 

space and minimize computational time, and proved the feasibility of the presented 

methodology. (Nguyen, Nguyen, Truong, Nguyen, & Phung, 2017) used a runner-root 

algorithm (RRA) to solve the electric distribution network reconfiguration (DNR) 

problem. The objectives were to minimize total losses, load balancing, deviate node 

voltage, and determining switching operations numbers using max-min method to affect 

a final compromised solution. RRA could escape from the local optimal, since it creates 

a re-initialization strategy and jumps at large steps. 33-node and 70-node distribution 

networks were used to prove the effectiveness of RRA in the case of both single-and 

multi-objectives. The results were compared with other that of published works, and it 

was confirmed that a runner-root algorithm is effective for solving single-and multi-

objective network reconfiguration problems. 
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2.3 Network Reconfiguration with Presence of Distributed Generation  

Network reconfiguration and DG installation have been proven to be effective towards 

reducing power losses in distribution systems. In order to further reduce power losses in 

a distribution system, both methods were combined. Distributed generation (DG) is the 

electric power generation within distribution networks or on the end-user side of the 

network (Kakran & Chanana, 2018). There are many different technologies for DG either 

based on non-renewable and renewable resources. The combustion engine, combined 

cycle, combustion turbine, micro turbine and fuel cell forms are non-renewable, while 

photovoltaic, wind turbine, hydro, geothermal and biomass are renewable resources 

(Abdmouleh, Gastli, Ben-Brahim, Haouari, & Al-Emadi, 2017).  

Many works have been conducted for optimal reconfiguration method and optimal 

DGs output. In (Li, Wang, Zhang, & Guo, 2019), Ant Colony Algorithm proposed for 

network reconfiguration with time-varying DG. The main objective of this work was to 

minimize power loss and improve voltage profile in distribution networks. The proposed 

method was evaluated on IEEE 33-bus test system of 11.4kV. the results show proved 

that lower power loss is obtained and better voltage profile from NR with DG, rather than 

without DG. Meanwhile, (Rao, Ravindra, Satish, & Narasimham, 2012) presented a 

method for simultaneous DG sizing and NR problem. This work focused on total power 

loss reduction and voltage profile improvement. Harmony Search Algorithm (HSA) was 

utilized to conduct sensitivity analysis to solve the problem. The simulation results were 

compared with Genetic Algorithm (GA) and Refined Genetic Algorithm (RGA). 

Different scenarios were studied on IEEE 33-bus and IEEE 69-bus test systems for NR 

and DG sizing.  

(Liu, Sheng, Liu, & Meng, 2017) carried out a simultaneous distribution network 

reconfiguration and DG allocation. Prior to network reconfiguration, the uncertainties of 
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load fluctuation were accounted for. The objectives of the proposed method are 

minimizing Expected Energy (Not Supplied), switching operations cost, and line loss 

cost. Since the problem is multi-objective, weighting factors were applied. This work 

consists of two periods: first, using Binary Particle Swarm Optimization (BPSO) for 

creating feasible topologies in distribution network. Second, utilizing HSA for allocating 

DGs in the network. To deal with the device parameters and uncertainties of load, an 

interval analysis was applied. They also used the IEEE 33-bus and 69-bus systems and 

analyzed multiple comparisons and scenarios. The results confirmed that the proposed 

network reconfiguration algorithm is feasible. 

2.4 Methodologies of network reconfiguration and DG sizing techniques 

Different optimization technique was used to solve network reconfiguration with DG. 

Figure 2.1 summarize these techniques. 
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Optimization Techniques

Artificial Neural 
Network

Fuzzy Technique

Artificial Intelligence Meta-Heuristic Heuristic

Simulated Annealing

Genetic Algorithm

Evolutionary 
Programming

Particle Swarm 
Optimization

Harmony Search 
Algorithm

Firework Algorithm

Trail and Error

 

Figure 2.1: Optimization Methodologies of distribution network reconfiguration 
embedded with DG 
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2.4.1 Heuristic technique 

A heuristic technique is an optimization process that is used to find an approximate for 

the optimal solution to a problem, the optimal solution could be the maximum/minimum 

values. For it to be effective, the correct function for the problem need to be formulated. 

In (Kashem, Jasmon, & Ganapathy, 2000), the reconfiguration of the feeder is done using 

interchange switch strategy. Where minimal-tree search technique is used to find options 

for losses reduction. This technique determines the suitable switching option that will 

result in minimal power loss. From the results, it can be observed that proposed method 

attained near optimal solution of the distribution network with minimal computational 

burden. In (McDermott, Drezga, & Broadwater, 1999), unique strategy is proposed where 

all network switches are opened, then load flow was applied to set minimum limit for 

losses. The network is reformed by closing switches one-by-one until minimum losses is 

achieved. The results show that proposed method is more accurate, however, it is more 

computationally involved. (Gomes et al., 2005) proposed an opposite strategy where all 

network switches are closed, which forms a meshed distribution network. The switches 

opening criteria to eliminate the loops was based on the increase minimum power loss. 

The losses were calculated by load flow program. This method was able to manage the 

large number of configurations to be test without combinatorial explosion.  

2.4.2 Meta-heuristic technique 

The meta-heuristic method is does not require predefined rules and is considered an 

iterative generation process (called particles) that search for optimal solutions using 

learning strategies and intelligently combining different concepts. This strategy has the 

capability to look for the exact/near exact optimal solutions. However, it takes longer 

computational time compared to other approaches. There are various techniques under 

this category, which will be discussed in the following sections. 
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2.4.2.1 Simulated Annealing 

Simulated Annealing (SA) is a probabilistic search method that find approximation for 

large combinatorial optimization problems. It incorporates a probability function which 

makes it escape the local minima when accepting/rejecting new solutions. At each 

iteration of the simulated annealing algorithm, a new point is randomly generated, then 

incrementally changing a single element in the solution to find a better one. The algorithm 

consists of initialization, cooling schedule, perturbation, and acceptance probability to 

perform the search (Koziel, Rojas, & Moskwa, 2018). 

In (Zhanga, Zhanga, Xina, Zhangb, & Fana, 2012), simulated annealing optimization 

is used for network reconfiguration process. The work analyzed the reconfiguration with 

a  small capacity of gas type DG (oilfield). The objective of the proposed work was to 

minimize the power loss using the following equation: 

𝑚𝑖𝑛(𝑃𝑙𝑜𝑠𝑠) =  ∑𝑟𝑖
𝑃𝑖
2 + 𝑄𝑖

2

𝑉𝑖
2

𝑁𝑏

𝑖=1

 (2.1) 

 
where 𝑃𝑙𝑜𝑠𝑠  is the power loss, 𝑁𝑏 is total the number of branches, 𝑟𝑖 is resistance of 

branch 𝑖 , 𝑃𝑖  is the active power of branch 𝑖, 𝑄𝑖  is the reactive power of branch 𝑖, 𝑉𝑖 is 

the voltage of the head node of branch 𝑖.  

The output generation of the associated gas DG can be stored for use later, which 

makes it relatively stable compared to that of solar/wind DG. The combination of 

simulated annealing and Immune Algorithm was able to speed the search for optimal 

solution process and avoid the unfeasible solution during the evolutionary process. The 

combination of the two algorithms resulted in enhancement of  population characteristics. 

The algorithm was tested on IEEE 33 bus, with four DGs were installed on buses 4, 8, 

25, and 30. The results show that proposed method presented better solution quality in 

the reconfiguration process. 
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2.4.2.2 Genetic algorithm 

Genetic Algorithm (GA) is a popular optimization technique based on a model of 

biological evolution and adaptation in nature. GA successive generation of population 

during the search process leads the process towards finding optimal solution. GA. One of 

the features of GA is easy to model, it is usually implemented in optimization problems 

and machine learning (Mirjalili, 2019). In GA, the initial population is generated 

randomly, then it is evolved toward better solution through mutation or crossover 

processes. The algorithm terminated either when population converges, or maximum 

number of generations has been reached. However, GA can only obtain the optimal 

answer if the population has a adequately large quantity of data (Ganesan & Venkatesh, 

2006). 

 

An improved GA is proposed in (Chandramohan et al., 2010), the technique called 

Non dominated Sorting - Genetic Algorithm (NSGA) that was implemented for network 

reconfiguration. The main objective of this work was to minimize the operating cost of 

distribution system. Maximizing the system’s reliability and power quality improvement 

are also suggest in this work. The operating cost equation suggested to minimize the 

active and reactive power loss is as following: 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 =  𝐾1 × 𝑃𝐿 × 𝐾2 × 𝑄𝑆𝑆 (2.2) 

 

where 𝐾1 is the real power coefficient in 𝑆/𝑘𝑊, 𝑃𝐿 is the real power losses for system 

transmission, 𝐾2 is the reactive power coefficient in 𝑆/𝑘𝑉𝐴𝑅, and 𝑄𝑆𝑆 is the drawn 

reactive power from the transmission system connected to distribution system. In (Souifi, 

Kahouli, & Abdallah, 2019), a multi-objective distribution network reconfiguration is 

implemented using GA. Two objectives were considered, minimizing the investment cost 

and reducing the active power loss. The method is test on IEEE 10-bus system for both 
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objectives individually. The results show the efficiency of proposed method and 

capability of obtaining the solutions in short time. 

A new methodology of codification for the conventional GA was presented in (Aspari 

& Sreenivasulu, 2013) to reconfigure a radial distribution system of 33 buses in the 

presence of DGs. The main objective was to minimize the power loss and improve the 

system’s voltage profile, while maintain system constraints. Such as, radiality, voltage 

limits, feeder capacity, and continuous supply of load. The main contribution of this 

method is using new types of crossover and mutation operators. Which results in optimal 

solution with reasonable computational time. This technique makes the application of 

large distribution system possible, while reducing the search space, since the management 

ability of the algorithm to deal with multi-constraints with minimal computational burden. 

Furthermore, GA with variable number of population is proposed in (M. Abdelaziz, 2017) 

to reduce the number of computational burden.  

In (Peñaloza, Yumbla, López, & Padilha-Feltrin, 2019), GA was used with MINLP for 

distribution network reconfiguration and distributed generation. The main objective is 

minimizing the power loss. The results show that proposed method has better 

convergence with good quality solution compared to others. Furthermore, in (Jakus, 

Čađenović, Vasilj, & Sarajčev, 2020), optimal distribution network reconfiguration is 

done using hybrid heuristic-genetic algorithm. A combination of heuristic approach and 

AG is proposed in this work. The proposed method allows its application to a real size 

distribution networks with high degree of complexity. Two objective function are 

considered: minimizing total power loss and minimizing of loading index. The proposed 

method is applied to various standard distribution network test cases. The simulation 

results show the accuracy and computational effectiveness of the proposed method. 
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2.4.2.3 Evolutionary programming 

Evolutionary Programming (EP) is a stochastic optimization method introduced by 

Lawrence J. Fogel in 1960 (Fogel, 1998). This technique focuses on the connection 

between old population and new population. Therefore, mutation process is applied 

directly on the population. The process of this optimization starts with random initial 

population (parents). Then, new population (offspring) is generated by applying the 

objective function on each parent using the mutation process. Then, the combination of 

parents and offspring is sorted based on their fitness value and the next generation is 

selected from the best population with better fitness value (Hsiao, 2004). 

In (Chakravorty, 2012) a new approach of EP technique is presented to minimize the  

power loss during reconfiguration process in the system. An improvement on the 

performance of EP was proposed using a heuristic formulation (fuzzy controlled EP 

technique). This technique regulates the mutation rate during the optimization process, as 

a result, the reconfiguration switching problem complexity is reduced to minimize the 

switching operations. In (Aman, Jasmon, Naidu, Bakar, & Mokhlis, 2013) a discrete 

evolutionary programming is used to solve NR problem. The gaussian mutation is 

replaced with simple discrete process, where the offspring is generated by replacing one 

side of tie switch with one sectionalizing switch. As a result, ‘n’ number of solutions will 

be generated for each particle in the population. Thus, the solution is obtained in short 

span of time.  

(Shanmugapriyan, Karuppiah, Muthubalaji, & Tamilselvi, 2018) proposed a method 

to reduce the power loss by integrating DG’s in distribution system. This work considered 

different types of DG’s such as, active power DG’s, reactive power DG’s and both active 

and reactive power DG’s. The proposed method is consisting of two-stages, first, heuristic 

method was used to select the optimal location for DG’s. The second stage used 
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Differential Evolutionary algorithm to determine the optimal DG sizing. The result show 

that proposed method attained better solution compared to PSO. 

2.4.2.4 Particle swarm optimization 

Particle Swarm Optimization (PSO) is meta-heuristic method used by many 

researchers for optimization purposes. It was originally proposed by Dr. Eberhart and Dr. 

Kennedy in 1995 (Eberhart & Kennedy, 1995). PSO was inspired by the food searching 

behavior of birds or fish. In the initial stage of PSO, particles are generated having random 

positions and velocities. In the following stage, the fitness value of each particle is 

evaluated based on the objective function. Then, these particles update their position and 

velocity based on their searching experience and other relative particles. The process 

repeated until the particles converge of maximum number of interactions is reached 

(Bansal, 2019). Researchers who utilized PSO in their works include the following. 

In (Dahal & Salehfar, 2016), proposed an optimal placements and sizing of DG (PV, 

Fuel cells) units utilizing PSO on multi-phased unbalanced distribution network. The test 

system used was IEEE 123 node system, as well as a combination of all types of DGs we 

used for real experiment. From the comparison with the Repeated Load Flow method 

(RLF) results, it is observed that proposed approach is more efficient and quicker. 

Moreover, optimal allocation of DGs will reduce the total losses and improve the voltage 

profile. In (Firdaus, Penangsang, & Soeprijanto, 2018), BPSO algorithm was utilized 

along with load voltage stability index. The main objective was to minimize the power 

loss and improve the voltage stability index. The method is implemented on IEEE 33-bus  

system evaluate the effectiveness of proposed method. The results show that better load 

balance and voltage profile is obtained compared to PSO and Tabu Search. 

Sequential integration of NR and DG with variable load profile is proposed by (Saleh, 

Elshahed, & Elsayed, 2018). Binary particle Swarm Optimization is used to obtain 
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optimal solution. Where size and location of DG is determined by PSO. The results show 

that the integration of NR and DGs represent significant reduction in power loss and 

voltage deviation compared to separately integrating NR or DGs to distribution network. 

In (Pegado, Ñaupari, Molina, & Castillo, 2019), Improved selective binary particle swarm 

optimization (IS-BPSO) is used to solve reconfiguration of distribution networks 

problem. The main objective was to reduce the power loss in distribution system. The 

method is implemented on 33-bus and 94-nodes systems. The results show that proposed 

method is efficient and guarantees the achievement of global optimization. 

2.4.2.5 Harmony search algorithm 

Harmony Search Algorithm (HSA) is a music-based Meta-heuristic population search 

algorithm. It was inspired by the observation that music is the manifestation of the perfect 

state of harmony. In recent years, HSA has received significant attention. The merits of 

HAS have led to its application to power system design and multi-objective optimization 

problems. The operating concept of HAS consists of three elements: memory 

consideration, pitch adjustment and random selection. The harmony memory value is 

extracted during memory operation. Then, a modified value is chosen from harmony 

memory values using pitch adjustment. Finally, a random selection from the whole value 

range is during random selection stage. These operations forms stochastic derivative for 

searching process which is different from traditional basic derivative operations (Lee & 

Geem, 2004; Mahdavi, Fesanghary, & Damangir, 2007). 

In (A. Y. Abdelaziz, Osama, Elkhodary, & El-Saadany, 2012), Network 

reconfiguration process was compared to with and without DG for two test systems 32 

bus and 69 bus. HSA along with ACO optimization algorithms were utilized in the 

proposed work. The results show that both algorithms obtained optimal solutions for 

distribution network reconfiguration with minimal power loss. However, the computation 
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time for HSA was less than ACO. In (Rao et al., 2012), HSA was utilized with sensitivity 

analysis to find optimal DG location and sizing simultaneously with network 

reconfiguration process. The proposed method was applied on IEEE 33-bus and IEEE 69-

bus test systems with different scenarios for different load levels (light, normal, heavy). 

The results show that the number of DGs is inversely proportional with power loss 

reduction value. The performance of HSA was compared to GA, and the analysis shows 

that HSA was better than GA. Similar work was done in (Krishna, Kumar, Venkatesh, & 

Gokulakrishnan, 2018), one test system was used 33 bus system and HSA optimization 

algorithm were used. It can be observed form the results that HSA was better than other 

methods. 

(Roosta, Eskandari, & Khooban, 2019) proposed an integrated approach for power loss 

minimization for unbalanced distribution network in the presence of DGs. HAS was used 

to reduce the total power loss, enhance the voltage profile, and increase voltage stability 

index. The results show that rearrangement of redistribution network gives better 

performance with optimal installation of DG units. 

2.4.2.6 Firework algorithm 

The Firework Algorithm (FWA) is a meta-heuristic technique based on the stochastic 

search technique. FWA can solve optimization problems search for possible areas for use 

as a solution space. The algorithm is inspired by the phenomenon of exploding fireworks 

and sparks generated within a parameter the fireworks. Due to the ability of FWA to 

mimic the explosive nature of fireworks with the incorporation of its features during the 

search process, FWA is considered as novel algorithm. This algorithm is able to allocate 

possible resources evenly between firework sparks when searching for solutions (Nguyen 

& Truong, 2015). 
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In (Imran, Kowsalya, & Kothari, 2014), a novel integration technique for network 

reconfiguration and DG placements in distribution system is proposed in this work. The 

objective is to minimize the power loss and enhance the voltage profile. The NR and DG 

placement is done simultaneously using FWA. The radiality is maintained during the 

process through power flow method that generates proper parent node-child node. The 

allocation of DG install location is done using Voltage Stability Index (VSI). The 

proposed work considered different scenarios during network reconfiguration process 

and DG placement to evaluate the performance of the proposed method. The result show 

simultaneous NR and DG placement gives the most effective scenario for power loss 

minimization and voltage profile improvement. The results were compared with other 

techniques such as I-ISA and GA, and it can be observed from the results the FWA 

performance is better than other methods. 

(Badran, Mokhlis, Mekhilef, & Dahalan, 2018) proposed simultaneous integration of 

NR and DG sizing. The main objective if the work is to minimize the power loss while 

improving the voltage profile of the bus and maximizing DG capacity. FA was utilized 

for simultaneous integration and the results showed that proposed method obtains better 

quality solution compared to other methods. In (Naguib, Omran, & Talaat, 2017) the 

power loss is reduced by integrating NR and DG in distribution network. FA was used 

for simultaneous optimization of NR and DG. In this work, fixed and variable type of 

DG are considered. Based on hourly probability, DG size and location are determined. It 

can be observed form results that proposed method improved the quality of solution.  

2.4.3 Artificial intelligent technique 

Artificial Intelligent (Al) refers to the simulation of human intelligence in machines. 

The goals for artificial intelligence include learning, reasoning, and perception. Artificial 

intelligence techniques can be utilized in network reconfiguration problem in distribution 

Univ
ers

iti 
Mala

ya



   20 

systems such as: fuzzy techniques and Artificial Neural Network techniques (Qiu, Lv, & 

Chen, 2011). 

2.4.3.1 Fuzzy technique 

The fuzzy technique was introduced as a tool for dealing with soft and uncertain 

modeling. It is widely used in power systems. The fuzzy variable is modeled using a 

membership function that determines the degree of membership to a set that varies from 

zero to one (Qiu et al., 2011). 

(Niknam, Fard, & Seifi, 2012; Sedighizadeh, Esmaili, & Esmaeili, 2014) proposed a 

multi-objective function for NR and DG sizing using fuzzy logic technique. maximization 

of VSI and power loss reduction, total cost reduction, and emissions reduction are the 

objectives discussed in this work. Each objective has different scale and data size; thus, 

fuzzy technique is utilized to unify the scales and control the data size. Where, fuzzy 

works as a decision maker to attain the optimal answer for the multi-objective NR and 

DG sizing problem. 

2.4.3.2 Artificial neural network 

ANN technique is a computational model inspired by the human brain. It consists of a 

large number of connected nodes, each one performing a simple mathematical operation. 

Based on node operation and a set of parameters that are specific to that node, the output 

of each node is determined. Combining these nodes together and setting their parameters 

carefully helps the algorithm learn and solve complex functions (Kim et al., 1993; 

Salazar, Gallego, & Romero, 2006). 

(Kim et al., 1993) reconfigured the feeder strategies using ANN. The proposed method 

was used to reduce power losses according to the variation of load patterns. To minimize 

the size of the training set, ANN was designed for two groups. The first estimates the best 
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load level based on the load data of each zone, while the second determine the suitable 

topology of the system based on the input load level. The proposed method proved the 

ability of the high-speed control strategy decision and the robustness from the error, 

which could provide the best solution from imprecise data. The proposed methods also 

provide the best solution for constant and the sudden load variations.  

A similar approach was proposed by (Kashem et al., 1998)  to minimize the power loss 

according to load variations. ANN was designed for a training set, this set is generated by 

varying P-Q load, then an optimal topology of the system based on the input load pattern 

using NR. The proposed method presented high accuracy for predicting the optimal 

system topology to minimize the power loss. However, a large number of training 

networks would be required for large distribution systems, which is time consuming. 

(Salazar et al., 2006) proposed an algorithm based on ANN theory to determine the best 

training set for a single neural network with generalization ability clustering techniques. 

The results show that proposed method was capable to determine the optimal 

configuration in short span of time. The method proved the feasibility of using the NN to 

solve the reconfiguration problem and its viability for large-scale systems in a real-time 

environment. In (Fathabadi, 2016)  an ANN based approach proposed to solve DNR 

problem, where a clustering technique was applied on the load data using Dynamic Fuzzy 

C-Means (DFCM), to reduce the number of inputs of the ANN size. The simulation 

results show that proposed technique obtain optimal configuration in short time and less 

number of neurons. 

2.5 Overall summary of previous works on network reconfiguration 

The benefits and limitations of all the techniques are summarized in Table 2.1 Each 

algorithm has its own features in solving the distribution optimization problem with DGs. 
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2.6 Summary 

From the reviewed, it can be observed that majority of researchers used similar 

objective function (minimize power losses) to solve the network reconfiguration problem 

for distribution system. The power loss incurred in distribution system can be minimized 

via the optimal network reconfiguration and Distributed Generation installation. Different 

methods have been applied to solve network reconfiguration and only ANN based method 

considered the dynamic load profile. Nevertheless, the network reconfiguration ANN 

methods require per-calculation techniques or large number of neural networks. While 

actual load in distribution power system is dynamically changeable with respect to time. 

The load varies seasonally, daily, and hourly by time and type of the day (weekend or 

weekday). The distribution system will not operate at minimum power loss with the 

proposed method without considering load profiles and the network configuration. DGs 

have been installed in distribution systems around the world in order to sufficiently fulfil 

the electricity demand and improve power system’s performance. However, few works 

focused on utilizing artificial neural network into distribution network reconfiguration 

problem. 

Most previous works on network reconfiguration assumed that the DG generation 

power is constant. Few works included the different DG types and load profile in the 

network reconfiguration in order to produce more practical result. Furthermore, there are 

no works on optimal network reconfiguration using ANN that took into account the 

different DG integration and different DG types. 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter presents the proposed optimal network reconfiguration for active power 

loss reduction in distribution system. Evolutionary programming (EP) and Particle swarm 

optimization (PSO) are meta-heuristic approaches used in this study. Both approaches are 

used to generate training data for proposed Artificial Neural Network (ANN) model for 

network reconfiguration.  

3.2 Problem Formulation 

The main objective for reconfiguration of distribution systems is to find a topology 

which results in minimum active power loss by transferring the heavily load feeders to 

less heavily loaded feeders. The integration of distributed generation (DG) units in the 

system results in further reduction in power loss. In this work the main objective is to 

reduce the power loss by achieving the optimal configuration. Therefore, the main 

objective of this study is  

F = min (𝑃𝑙𝑜𝑠𝑠
𝑅 ) (3.1) 

 

Where 𝑃𝑙𝑜𝑠𝑠𝑅  represents the net power loss which is taken as the ratio of system’s total 

active power loss after the reconfiguration process and before the reconfiguration. This is 

represented by the following equation: 

𝑃𝑙𝑜𝑠𝑠
𝑅 = 

𝑃𝑙𝑜𝑠𝑠
𝑟𝑒𝑐

𝑃𝑙𝑜𝑠𝑠
0  (3.2) 

 

Where 𝑃𝑙𝑜𝑠𝑠𝑟𝑒𝑐  is the power loss after reconfiguration and 𝑃𝑙𝑜𝑠𝑠0  is the power loss before 

reconfiguration. 
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The power loss equation is given by: 

 𝑃𝑇,𝑙𝑜𝑠𝑠 = 𝑚𝑖𝑛 { ∑𝑅𝑖 (
𝑃𝑖
2 + 𝑄𝑖

2

𝑉𝑖
2 )

𝑚

𝑖=1

} (3.3) 

 

Where, 

𝑃𝑇,𝑙𝑜𝑠𝑠 = is the total active power loss in the network. 

𝑚 = is the number of closed branches. 

𝑃𝑖 = is the active power. 

𝑄𝑖 = is the reactive power.   

𝑉𝑖 = is the voltage at the receiving terminal of branch 𝑖  

𝑅𝑖 = is the resistance of branch 𝑖. 

The objective function is subject to the following constraints. These constraints should 

be satisfied during the process of determining optimal network reconfiguration: 

i. DG capacity 

0 ≤ 𝑃𝐷𝐺𝑖  ≤  𝑃𝐷𝐺𝑖
𝑚𝑎𝑥 (3.4) 

 

Where, 

Where 𝑃𝐷𝐺𝑖 is the DG output at branch 𝑖; 𝑃𝐷𝐺𝑖𝑚𝑎𝑥 is the upper bound of DG output. 

ii. Power Balance 
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∑𝑃𝐷𝐺,𝑖 + 𝑃𝑆𝑢𝑏 =∑𝑃𝑙𝑜𝑎𝑑

𝑏𝑟

𝑘=1

 + 

𝑁

𝑖=1

𝑃𝑇,𝑙𝑜𝑠𝑠 (3.5) 

 

Where,  

𝑁 = is the total number of DGs. 

𝑃𝑆𝑢𝑏 = is the power supplied by the substation. 

𝑃𝑙𝑜𝑎𝑑 = is the active power of the load. 

This equation implies that the power of the load and the total power loss is equal to the 

total power generated by DG units and substation. 

iii. DG power injection 

∑𝑃𝐷𝐺,𝑖 < ∑𝑃𝑙𝑜𝑎𝑑

𝑏𝑟

𝑘=1

+ 

𝑁

𝑖=1

𝑃𝑇,𝑙𝑜𝑠𝑠 (3.6) 

 

This equation implies that the total power injected by the DGs is less than the sum of 

total load power and total power loss. 

iv. Bus voltage 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥 (3.7) 

 

Where 𝑉𝑖,𝑚𝑖𝑛 and 𝑉𝑖,𝑚𝑎𝑥 represent the upper and lower bound of permitted voltage. 

The allowed limit within 10% (0.9 p.u to 1.1 p.u).  

v. Radial Structure of the network 
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The radial structure of distribution network must be maintained during reconfiguration 

process and all loads must be served. MATLAB 𝑔𝑟𝑎𝑝ℎ𝑖𝑠𝑠𝑝𝑎𝑛𝑡𝑟𝑒𝑒 function is used.  

𝑇𝐹 = 𝑔𝑟𝑎𝑝ℎ𝑖𝑠𝑠𝑝𝑎𝑛𝑡𝑟𝑒𝑒(𝐶) (3.8) 

 

𝑇𝐹 = {
1 𝑟𝑎𝑑𝑖𝑎𝑙
0 𝑛𝑜𝑡_𝑟𝑎𝑑𝑖𝑎𝑙

} (3.9) 

 

Where, 

𝑔𝑟𝑎𝑝ℎ𝑖𝑠𝑠𝑝𝑎𝑛𝑡𝑟𝑒𝑒 = returns True (1) if 𝐶 is a spanning tree and False (0) otherwise, 

A spanning tree must touch all the nodes and must be acyclic. 

𝐶 = the distribution system. 

3.3 Network Reconfiguration with variable load profile and DG for Power Loss 

Minimization 

The main objective in this section is the minimization of active power loss in the case 

of variable load model in the presence of DGs. To model the proposed Artificial Neural 

Network (ANN) for network reconfiguration, a set of data of optimal configuration for 

different loading conditions are required. This task can be achieved by using any 

optimization techniques. In this work, Evolutionary Programming (EP) and Particle 

Swarm Optimization (PSO) are chosen due to their simplicity, reasonable convergence 

time and proven to work well for network reconfiguration application 

3.3.1 Overview of Artificial Neural Network (ANN) 

Neural networks (NN) are set of algorithms. They are inspired by the biological neural 

network system in human brain. They consist of input layer, number of hidden layers and 

output layer. NN is based on a collection of densely connected nodes called neurons, 
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usually in a feed forward way (Yao, 1999). The input layer propagates the received 

information to output layers through the hidden layers, where each node (neuron) has an 

associated weight 𝑤𝑖𝑗. A group of data consists of input and output can be represent by 

equation (3.10). 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑒𝑡 =  {(𝐼1, 𝑂1), (𝐼2, 𝑂2),… . , (𝐼𝑝, 𝑂𝑝)} (3.10) 

 
Where (𝐼𝑝, 𝑂𝑝) represents the input and the desired output for a single training pattern.  

The training process is a matter of adjusting the weights 𝑤𝑖𝑗 between neurons until a 

good mapping function 𝑓 is achieved. The relation between input layer and hidden layer 

is shown in equation (3.11).  

𝑁𝑒𝑡𝐻𝑛 = ∑∑𝑥𝑖𝑤𝑖𝑗

𝑝

𝑖

ℎ

𝑗

 (3.11) 

 
Where, 

𝑁𝑒𝑡𝐻𝑛  = is the total output of the hidden layer 𝐻𝑛.  

ℎ = is the number of neurons in the hidden layer 𝐻𝑛. 

𝑝 = is the number of input patterns to input layer 𝑥. 

𝑤𝑖𝑗 = is the weight associated with each connection between inputs and hidden layers. 

Then, equation (3.12) is the output of hidden layer 𝐻𝑛 represented by the activation 

function as follows: 

𝑂𝑢𝑡𝐻𝑛 = 𝑓(𝑁𝑒𝑡𝐻) (3.12) 

 
Where 𝑓 is the activation function of the hidden layer. 
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Generally, the Sigmoid (logsig) activation function is selected for the non-linear 

mapping because it has smooth gradient and its output values is bonded between 0 and 1 

making clear distinctions on prediction. Equation (3.13) shows the relation between input 

and output of hidden layer 𝐻𝑛.   

𝑂𝑢𝑡𝐻𝑛 =
1

1 + 𝑒−(𝑁𝑒𝑡𝐻+𝑏𝐻)
 (3.13) 

 
Where 𝑏𝐻 is the bias of the hidden layer. 

The input to the next layer is the output of hidden layer 𝐻𝑛. If there is more than one 

hidden layer, the process is repeated as in Equations (3.11-3.13). The training process 

continue until the mean square error (MSE) is minimized, which is the squared sum of 

the difference between the desired output and NN output for all patterns (Kim et al., 

1993).  

𝐸(𝑤) =  
1

𝑛
 ∑(𝑂𝑡 − 𝑂𝑁𝑁)

2

𝑝

𝑖=1

 (3.14) 

 
Where, 

𝑂𝑡 = is the desired output. 

𝑂𝑁𝑁 = is NN output for single training pattern. 

𝑛 = is the total number of outputs. 

During the learning process, the training algorithm updates the weights according to 

direction function 𝑟(𝑡) (Salazar et al., 2006). In this paper Levenberg-Marquardt which 

is a second-order optimization algorithm is applied. It is considered as the fastest 
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backpropagation algorithm for medium size NN. The algorithm can be represented by the 

following equations. 

∆𝑤𝑡 =  𝜖 𝑟(𝑡) (3.15) 

  

𝑟(𝑡) =  [𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒 (3.16) 

  

𝑤𝑡+1 = 𝑤𝑡 + ∆𝑤𝑡 (3.17) 

 
Where, 

𝐽 = is the Jacobian matrix containing the first derivatives of NN errors with respect to 

weights and biases. 

𝑒 = is a vector containing network errors. 

𝜖 = is the learning rate (0.1).  

3.3.2 Evolutionary Programming (EP) 

The EP steps for network reconfiguration for variable load profile distribution system 

with DGs are as follows: 

Step 1: Set the input data for EP such as bus data, line data, population size, DG output, 

maximum iteration, and minimum error. 

Step 2: Generate random initial populations, which are the tie switches in distribution 

system to be opened represented by 𝑆. This population should fulfill the constraints (i)-

(v). 
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𝑆𝑗𝑛 = [

𝑆11 ,    𝑆12,  ⋯    𝑆1𝑛
𝑆21 ,    𝑆22,  ⋯    𝑆2𝑛
⋮        ⋮     ⋮       ⋮

𝑆𝑚1 ,    𝑆𝑚2,  ⋯    𝑆𝑚𝑛

] (3.18) 

 

Where, 

𝑗 = 1,2,3, … ,𝑚 which represents the population index. 

𝑚 = represents population size. 

𝑛 = represents the number of switches in the network. 

Step 3: Start the calculation of fitness function by using the objective function (3.3). 

Newton–Raphson is used to calculate the objective function for each population and get 

the active power loss values through the entire network. 

Step 4: The initial population in step 2 undergoes mutation process to produce 

offspring, in which the first switch 𝑆𝑗1 in each population from 𝑗 = 1 to m, is mutated 

using Gaussian mutation operator as in equation (3.11) to produce offspring. Then the 

process is repeated for switch 𝑆𝑗2 and so on until switch 𝑆𝑗𝑛. 

𝑆𝑚+𝑗,𝑛 = 𝑆𝑚,𝑛 + 𝑁(0, 𝛽(𝑆𝑛 𝑚𝑎𝑥 − 𝑆𝑛 𝑚𝑖𝑛) (
𝑓𝑗

𝑓𝑚𝑎𝑥
)) (3.19) 

 

Where, 

𝑆𝑚+𝑗,𝑛 = is mutated population (offspring). 

𝑆𝑚,𝑛 = is the old population (Parents). 

𝑁 = is random Gaussian number. 
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𝛽 = is the search step. 

𝑆𝑛 𝑚𝑎𝑥 = is the maximum random number for tie switch. 

𝑆𝑛 𝑚𝑖𝑛 = is the minimum random number for tie switch. 

𝑓𝑗 = is the fitness value for random switch population 𝑗. 

𝑓𝑚𝑎𝑥 = is the maximum fitness value in switch group. 

Step 5: The parents and offspring are combined in new population and sorted in an 

ascending order based on the fitness value (power loss). Then, the first half of the new 

population is selected to become the new population for the next generations.  

Step 6: Finally, the process is repeated from step 4 – 6 until the difference between the 

maximum fitness value and minimum fitness value is less than minimum error (ME) using 

equation (3.20) or maximum iteration reached. 

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 ≤  ME (3.20) 

 

Step 7: After finishing, the program stops. The best solution which represents the new 

configuration of the network, the power losses for this configuration and the voltage at 

each bus is presented out.  

The complete flow chart of the proposed Network Reconfiguration based EP is shown 

in Figure 3.1. 
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Combine initial and new population 
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Calculate the fitness function using 
equation (3.3) for Sjn

 

Figure 3.1: Network Reconfiguration based EP flow Chart 

3.3.3 Particle Swarm Optimization (PSO) 

The PSO steps for network reconfiguration for variable load profile distribution system 

with DGs are as follows: 

Step1: Set the input data for PSO such as bus data, line data, population size, DG 

output, maximum iteration and PSO parameters, such as weight of inertia, cognitive and 

social coefficient. 
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Step 2: Generate random particles with random positions 𝑆𝑖 and velocities 𝑣𝑖. Each 

group of particles represent a combination of tie switches that fulfill the system 

constraints. 

Step 3: Evaluate each particle by the objective function in equation (3.3) to determine 

its fitness value. 

Step 4: Update each particles’ position and velocity based on its own experience in the 

search space 𝑃𝑏𝑒𝑠𝑡 and the experience of other particles 𝐺𝑏𝑒𝑠𝑡. The updating process of 

positions and velocities is done using (Kennedy, 2006): 

𝑆𝑖
𝑡+1 = 𝑆𝑖𝑡 + 𝑣𝑖𝑡+1 (3.21) 

 

𝑣𝑖
𝑡+1 = 𝑤(𝑡)𝑣𝑖𝑡 + 𝑐1𝑟1 × (𝑃𝑏𝑒𝑠𝑡 − 𝑆𝑖𝑡) + 𝑐2𝑟2 × (𝐺𝑏𝑒𝑠𝑡 − 𝑆𝑖𝑡) (3.22) 

 

𝑤(𝑡) = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑒𝑟 

(3.23) 

 

Where, 

𝑆𝑖
𝑡 and 𝑆𝑖𝑡+1 = current position of the particle 𝑖 at iteration 𝑡 and 𝑡 + 1, respectively. 

𝑣𝑖
𝑡 and 𝑣𝑖𝑡+1 = current velocity of the particle 𝑖 at iteration 𝑡 and 𝑡 + 1, respectively. 

𝑐1 and 𝑐2 = cognitive and social coefficient. 

𝑟1 and 𝑟2 = random values generated every velocity update (0 ~ 1) 

𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 = maximum and minimum inertia coefficient. 
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𝑖𝑡𝑒𝑟 and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = current iteration number and maximum iteration number, 

respectively. 

Step 5: Finally, the process is repeated until the optimal or sub-optimal answer is 

found. 

Step 6: After finishing, the program stops. The best solution which represents the new 

configuration of the network, the power losses for this configuration and the voltage at 

each bus is presented out. 

The complete flow chart of the proposed Network Reconfiguration based PSO is 

shown in Figure 3.2. 
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Figure 3.2: Network Reconfiguration based PSO flow Chart 
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3.4 Proposed Optimal Network Reconfiguration based Artificial Neural 

Network  

3.4.1 Load Groups 

The technique proposed in (Kashem et al., 1998) on the loading modelling is 

implemented in this work. First, the system is divided into three load groups 𝑚 

(residential, commercial, and industrial). Where each load group has similar 

characteristics in which the changes of loads in each load group presents similar behavior. 

Second, the load groups can operate on estimated levels 𝑝 according to their peak demand 

load curves as shown in Figure 3.3 (Kashem et al., 1998). The number of estimated load 

group levels is determined based on the range of the actual loads as shown in Table 3.1. 

The actual and estimated load levels are represented as percentage of peak demand. As a 

result, the total number of load patterns will be 𝑝𝑚. These patterns represent the training 

set that will be used as inputs to ANN. 
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(b) 

 
(c) 

Figure 3.3: Daily load curves in peak load percentage 

(a) Residential, (b) Commercial, (c) Industrial 
 

Table 3.1: Estimated operating load levels 

Load level 
Actual load levels 

(% of peak demand) 
Estimated load levels 
(% of peak demand) 

1 45 ≤ 54 50 

2 55 ≤ 64 60 

3 65 ≤ 74 70 

4 75 ≤ 84 80 

5 85 ≤ 94 90 

6 95 ≤ 100 100 
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3.4.2 ANN Design 

The proposed ANN technique for distribution system reconfiguration is shown in 

Figure 3.4. The input consists of load patterns (operating percentages of the three load 

groups) and the output is the switch number. The number of ANNs will be equal to the 

number of tie switches in the system, where each ANN will give one switch to be opened. 

The output of all ANNs will give optimal configuration for a specified load pattern. The 

relation between the input and output of DNR problem is non-linear. Therefore, a 

normalization layer is added before the input layer of ANN. The purpose of this 

normalization layer is to normalize the switch numbers to increase the learning 

performance of ANN models. The normalization process is done for each group of 

switches associated with a particular ANN model. Thus, this process is repeated 

according to the number of tie switches in the system. This step changes the values of 

optimal switches data to be set in the range between 0 and 1. 

Optimal 
switches 
group 1

Optimal 
switches 
group 2

Optimal 
switches 
group i

Normalization

Normalization

Normalization

ANN1

ANN2

ANNi

Normalized 
value of 
switch 1

Normalized 
value of 
switch 2

Normalized 
value of 
switch i

De-normalize

De-normalize

De-normalize

Optimal 
switch 1

Optimal 
switch 2

Optimal 
switch i

Normalization
Load Patterns

DG Output

 

Figure 3.4: Proposed ANN design for distribution system reconfiguration 
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3.4.2.1 ANN Training Steps 

Each individual ANN model is trained only for one switch, while the input for all 

ANNs models does not change. The process of training is iterative, since choosing the 

appropriate number of neurons in the hidden layer is done by trial and error. The training 

will start with one neuron and then the number is increased until a good convergence is 

achieved. The weights are initialized as random values. During the training process, the 

weights are adjusted iteratively to minimize the mean-squared-error. The steps for 

training ANN are as follows: 

Step 1: generate the training data for ANN by using EP optimization in such a way the 

data is represented as follows. 

𝐷𝑎𝑡𝑎 =

(

  
 

𝐺1 𝐺2 ⋯ 𝐺𝑝
𝐿𝑃1 𝐷𝐺1 𝑂𝑆11 𝑂𝑆12 ⋯ 𝑂𝑆1𝑝
𝐿𝑃2 𝐷𝐺2 𝑂𝑆21 𝑂𝑆22 ⋯ 𝑂𝑆2𝑝
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝐿𝑃𝑚 𝐷𝐺𝑚 𝑂𝑆𝑚1 𝑂𝑆𝑚2 ⋯ 𝑂𝑆𝑚𝑝)

  
 

 (3.10) 

Where,  

𝑂𝑆𝑚𝑝 = is the optimal tie switch in a switch group 𝐺𝑝 for a load pattern 𝐿𝑃𝑚.  

𝑚 = is the number of load patterns. 

𝑝 = is the number of switch groups.  

𝐷𝐺𝑚 = is the DG output for 𝑚 load pattern 

𝐿𝑃𝑚 = is the operating percentage for residential, commercial, and industrial loads. 

Step 2: The training for the ANN is conducted twice with different percentages for the 

generated data. First training is implemented using 70% of the data, second training is 

implemented using 60% of data. The data for training the ANN is randomly selected from 

generated data, which consists of load patterns as inputs and optimal switches as desired 

output for ANN model. 
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Step 3: Normalize all switches in the first optimal switch group 𝐺1, starting from OS11 

to 𝑂𝑆𝑚1 using equation (3.25), then repeat for the rest of the optimal switch groups, for 

𝑝 = 2,3, … , 𝑝 (giving a matrix of 𝑚 × 𝑝 elements of normalized optimal switches). 

𝑂𝑆(𝑛𝑜𝑟𝑚) = 
𝑂𝑆𝑚1 −min (𝑂𝑆𝑚1)

max(𝑂𝑆𝑚1) −  min (𝑂𝑆𝑚1)
 (3.11) 

 
Step 4: Train the first ANN on the first group of optimal switches 𝐺1, starting with one 

neuron and random initial weights. 

Step 5: The training process continue for specific number of iterations, while the 

weights are updated each iteration. 

Step 6: Store the final value of weights after convergence. 

Step7: Test the network accuracy on the remaining data (30% of training data) using 

the weight values in step 6. RMS and absolute error (AE) are used to determine the level 

of learning the ANN of the data. If the RMS value is below 0.1, then the network has 

reached satisfactory level of training (Kashem et al., 1998).  

Step 8: If the desired accuracy is achieved, continue to step 9. Otherwise, the number 

of neurons is increased by 1, then repeat steps 5-7. 

Step 9: Train the other ANN models using the same procedure from step 4-7 based on 

the number of optimal group switches 𝐺𝑝. 

3.4.2.2 Testing Accuracy of Trained ANN 

The accuracy of the developed ANN model is tested using, the remaining 30% of 

generated data from the first training and 40% of the generated data from the second 

training. This remaining data is new to the developed ANN, which means that network 

has not been trained on these load patterns. The ANN is evaluated based on the number 

of correct predictions for unseen data and the number of correct responses for seen data. 
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This is done by using the combined ANN model to find the output of all load patterns and 

compare with the actual values. 

3.5 Summary 

This chapter presented the methodologies of network reconfiguration using meta-

heuristic such as EP and PSO, and artificial intelligence such as ANN techniques for 

power loss reduction in distribution system with variable load profile and DGs. The 

comparison and performance of the proposed methods will be discussed in the next 

chapter.  
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CHAPTER 4: PERFORMANCE OF THE PROPOSED METHOD 

4.1 Introduction 

This chapter discusses simulation results and performance of the proposed method in 

solving network reconfiguration problem. The effectiveness of the proposed method is 

demonstrated on standard IEEE 16, IEEE 33, and IEEE 69 bus test system. The results 

are compared with existing meta-heuristic and ANN techniques from literature. The main 

consideration in comparison of the proposed method and other method is power loss 

reduction and voltage profile improvement.  

4.2 Test system 1: IEEE 16-bus 

An IEEE 16-bus distribution system was used to evaluate the proposed method. The 

network consists of 17 switches as 14 switches are sectionalizing switches and 3 tie 

switches. The default configuration of the network is 16, 17 and 18 as opened switches, 

while other switches are closed, as shown in Figure 4.1. The system voltage is 12.66 kV, 

while the total real and reactive power loads are 28.7 MW and 16.3 MVAR, respectively. 

The power loss of the default operating condition is 511.43 kW and the lowest bus voltage 

is 0.9693 p.u. 

4.2.1 Network Reconfiguration Using Meta-heuristics techniques for IEEE 16 

Bus System 

This section presents the implementation of meta-heuristic techniques in distribution 

network reconfiguration problem. It focusses on power loss reduction and voltage profile 

improvement. 
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Figure 4.1: IEEE 16-bus distribution network 

4.2.1.1 Impact on Power Loss 

The results obtained using EP and PSO are summarized in Table 4.1 and compared 

with the default case (before reconfiguration). Newton-Raphson load flow (NRLF) 

algorithm is used to calculate the power loss in this work. The optimal objective function, 

𝐹, according to equation (3.1) is 0.9141, which is obtained by both EP and PSO. The 

power loss before configuration is 511.704 kW obtained by (NRLF) and after 

configuration the power loss decreased to 466.339 kW which is 8.87% reduction. The 

optimal switches to be opened are 9, 10 and 18. The processing time taken by EP is 6.378 

s, while PSO had faster processing time of 5.127 s. 

4.2.1.2 Impact on Voltage Profile 

Figure 4.2 shows the voltage profile for default and optimal configurations using EP 

and PSO for different percentage loading profile of Residential (R), Commercial (C) and 

Industry (I). It can be noticed that the buses voltage magnitude has improved significantly 

compared to the default case in all algorithms. For example, before reconfiguration the 
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lowest voltage magnitude was at bus 12 with 0.9693 p.u. However, after reconfiguration 

the voltage increased to 0.972 p.u. EP and PSO reported the same voltage profile. 
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Figure 4.2: Voltage profile for IEEE 16-bus network using different algorithms 

4.2.2 Network reconfiguration Using Meta-heuristics for IEEE 16 Bus System 

with variable load profile and DG 

The 16-bus distribution system with variable load profile and DGs is shown in Figure 

4.3. The system is divided into three load groups (residential, commercial, industrial), 

each load group has 6 operating levels from 50% to 100% of peak demand, which results 

in 216 different load patterns. One DG is installed in the system where the location of the 

installed DG units is at bus 8. The DG is made up of Photo-voltaic (PV) system.  The DG 

output profile for active power is shown in Figure 4.4 (Ing, Jamian, Mokhlis, & Illias, 

2016). Optimal network reconfiguration based on EP and PSO were implemented on the 

test system. Table 4.2 shows the optimal network reconfiguration for 20 different load 

patterns. As shown in the table the power loss after reconfiguration is lower than default 

case. For example, at load percentage of 100% R, 50% C and 70% I, the default 

configuration gives 134.08 kW. While the optimal configuration for this load pattern is 

9, 10,and 18 with power loss of 166.2 kW which is equal to 8.28% power reduction. The 

maximum power loss reduction occurred at load percentage 50% R, 90% C and 80% I. 

the power loss reduction percentage is 11.94%. 
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Figure 4.3: IEEE 16-bus distribution network with different load groups and 
DGs 

 

Figure 4.4: DG output profile for a day 
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Table 4.2: Optimal Configuration for different load profile using EP & PSO for 
IEEE 16-bus network 

Operating 
Percentage % Default Optimal 

Before 
configuration 

(kW) 

After 
configuration 

(kW) 
Loss 

Reduction 
% R C I EP PSO 

50 80 70 

16
, 1

7,
 1

8 

9, 10, 18 282.77 260.17 7.99 
50 90 80 9, 10, 18 355.63 313.15 11.94 
50 90 90 9, 10, 18 365.89 335.88 8.20 
50 100 70 9, 10, 18 416.85 386.83 7.20 
60 80 90 9, 10, 18 310.47 283.55 8.67 
70 70 50 9, 10, 18 229.39 211.10 7.97 
70 90 70 9, 10, 18 365.89 336.56 8.02 
80 60 50 9, 10, 18 189.93 174.08 8.35 
80 90 70 9, 10, 18 377.11 346.33 8.16 
90 70 50 9, 10, 18 250.53 230.26 8.09 
90 70 100 9, 10, 18 293.36 266.99 8.99 
90 100 60 9, 10, 18 452.88 418.57 7.57 
100 50 70 9, 10, 18 181.21 166.20 8.28 
100 60 80 9, 10, 18 233.87 213.49 8.71 
100 70 70 9, 10, 18 277.39 253.29 8.69 
100 70 80 9, 10, 18 285.96 260.63 8.86 
100 80 50 9, 10, 18 320.27 294.63 8.00 
100 80 60 9, 10, 18 327.86 300.84 8.24 
100 90 80 9, 10, 18 411.81 376.30 8.62 
100 100 90 9, 10, 18 496.60 453.67 8.64 

 

4.2.3 Network Reconfiguration Using proposed ANN technique for IEEE 16 Bus 

System with variable load profile 

The proposed ANN technique is implemented on the proposed 16-bus distribution 

system shown in Figure 4.5, where the load is divided into three load groups (residential, 

commercial, industrial). Each load group has 6 operating levels from 50% to 100% of 

peak demand, which results in 216 load patterns. From the solution of network 

reconfigurationfor of 16-bus system, most of the configurations are the same, and can be 

grouped into two distinct configurations as tabulated in Table 4.3. It can be observed from 

this table that one switch is changing. Therefore, one ANNs are used for the training 

which are ANN3. The final structure of the training network is determined based on the 
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most accurate results of ANNs outputs. While the structure of both ANN's is similar 

regarding input and output neurons, the number of neurons in the hidden layer is different. 
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Figure 4.5: IEEE 16-bus distribution network with different load groups 

Table 4.3: Optimal unique configuration of all load patterns for IEEE 16-bus 
network 

Optimal configuration 
number Tie switches to be opened Number of occurrences 

1 S9, S10, S18 211 

2 S9, S10, S6 5 

 

4.2.3.1 Performance of Network Reconfiguration based on ANN  

The performance of first ANN (70-30%) model is shown in Table 4.4, The number of 

neurons in hidden layer is 2 for ANN3. Additionally, the table shows the accuracy 

(absolute error) and MSE of the ANN model. ANN3 accuracy is 100% which corresponds 

to 216 optimal solutions. Similarly, the performance of the second ANN (60-40%) model 

is shown in Table 4.5. The model ANN3 achieved 100% accuracy.  
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4.2.3.2 Impact of proposed ANN technique on power loss 

Figure 4.6 shows the power loss before and after configuration for all 216 load patterns 

using the proposed ANN technique. A spider web graph is used due to the large number 

of load patterns. the outer circle numbers represent the load patterns, while the vertical 

axe represents the corresponding power loss. The average power loss reduction for all 

cases is 8.36%. as shown in the figure the power loss after reconfiguration using ANN is 

lower than before reconfiguration (default). For example, the power loss in 100% loading 

is 511.704 kW, with switches 16, 17, and 18 open. However, proposed ANN technique 

response is that switches 9, 10 ,and 18 are open, with power loss of 466.339 kW. 

 

Figure 4.6: Power loss comparison for IEEE 16-bus network before and after 
reconfiguration using proposed ANN technique 
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4.2.3.3 Impact of proposed ANN technique on voltage profile 

Figure 4.7 shows the voltage profile for default and optimal configurations for all load 

patterns the using proposed ANN technique. A spider web graph is used due to the large 

number of load patterns. the outer circle numbers represent the load patterns, while the 

vertical axe represents the corresponding minimum bus voltage. It can be noticed that the 

minimum buses voltage magnitude has improved after reconfiguration compared to the 

before reconfiguration (default), while the overall voltage profile increased in all load 

patterns by an average of 0.17%. 

 

Figure 4.7: Voltage profile for IEEE 16-bus network before and after 
reconfiguration using proposed ANN technique 
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4.2.4 Network Reconfiguration Using proposed ANN technique for IEEE 16 Bus 

System with variable load profile and DG 

The 16-bus system with variable load profile and DG shown in Figure 4.3 is used to 

test the proposed optimal network reconfiguration based on ANN. The total number of 

different load patterns is 216. From the solution of optimal network reconfiguration for 

this load pattern, there were 2 distinct configurations as tabulated in Table 4.6. The 

number for each configuration found is also presented in the same table. Based on this 

results, one ANN is used for the training, which is ANN3. The final structure of the 

training network is determined based on the most accurate results of ANN models 

outputs. While the structure of each individual ANN's does not change regarding input 

and output neurons, since the number of load groups are three (R, C and I) and the output 

of each ANN model is an optimal switch. The number of neurons in the hidden layer is 

determined during the training of ANN models. 

Table 4.6: Optimal unique configuration of all load patterns for IEEE 16-bus 
network with DG 

Optimal configuration 
number Tie switches to be opened Number of occurrences 

1 S9, S10, S18 211 

2 S9, S10, S6 5 

 

4.2.4.1 Performance of Network Reconfiguration based ANN  

The performance of the proposed ANN model based on the absolute error which is 

represented by the accuracy. ANN3 accuracy is 100%, which corresponds to 216 optimal 

solutions out of 216 load patterns. The overall accuracy of the final solution is 100%. 

Similarly, the second ANN (60-40%) model (ANN3) achieved 100% accuracy.  
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4.2.4.2 Impact of proposed ANN technique on power loss 

Figure 4.8 shows the power loss before and after configuration for all 216 load patterns 

using the proposed ANN technique. A spider web graph is used due to the large number 

of load patterns. the outer circle numbers represent the load patterns, while the vertical 

axe represents the corresponding power loss. As shown in the figure, the power loss after 

reconfiguration is less than before reconfiguration (default). Additionally, the average 

power loss reduction for all cases is 8.32%. 

 

Figure 4.8: Power loss comparison for IEEE 16-bus network before and after 
reconfiguration using proposed ANN technique 

4.2.4.3 Impact of proposed ANN technique on voltage profile 

Figure 4.9 shows the voltage profile for default and optimal configurations for all load 

patterns using the proposed ANN technique. A spider web graph is used due to the large 
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vertical axe represents the corresponding minimum bus voltage. It can be noticed that the 

minimum buses voltage magnitude has improved compared to the default case, while the 

overall voltage profile increased in all load patterns by an average of 0.15%. 

 

 

Figure 4.9: Voltage profile for IEEE 16-bus network before and after 
reconfiguration using proposed ANN technique 
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configuration for all load patterns (216 case). The result is shown in Figure 4.10, the 

figure shows the best and worst number of optimal configurations found in the 20 runs 

by the different techniques for all the cases. Additionally, the figure shows the average 

number of optimal configurations found for all runs. The proposed ANN technique 

managed to obtain the optimal configurations for all load patterns in the best run. 

Meanwhile, the best run for EP over 20 runs achieved 202 optimal configurations out of 

216, while PSO achieved 209 optimal configurations. The average number of optimal 

configurations obtained for all 216 cases for 20 runs is 214 by proposed ANN technique 

which is 99%, 195 by EP which is 93.5% and 203 by PSO which is 96.8%. Figure 4.11 

shows power loss comparison between proposed ANN technique, EP and PSO for the 

best run. The average power loss reduction for all techniques of 8.36%, 8.15% and 8.22% 

respectively. 

Second, the comparison value for processing time is shown in Table 4.7. All algorithms 

provide exactly the same optimal configuration and power loss value for default case. 

However, the computation time to find the optimal configuration to minimize the power 

loss is 6.378s for EP and 5.127s for PSO. On the other hand, the execution time (excluding 

training time) for the proposed ANN technique is 0.050s, which is very fast compared to 

both meta-heuristic methods. 

Table 4.7: Statistical analysis for processing time for network reconfiguration 
for IEEE 16-bus network 

 Tie switches 
opened 

Power 
Loss (kW) 

Loss 
Reduction % 

Vmin 
(p.u) 

Processing 
Time (s) 

EP 9, 10, 18 466.339 8.87 0.972 6.378 

PSO 9, 10, 18 466.339 8.87 0.972 5.127 

Proposed 
ANN 

9, 10, 18 466.339 8.87 0.972 0.050 
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Figure 4.10: consistency performance comparison between EP, PSO and 
proposed ANN for all load patterns in IEEE 16-bus network 

 

Figure 4.11: Power loss comparison between EP, PSO and proposed ANN for all 
load patterns in IEEE 16-bus network 
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Furthermore, to verify the proposed ANN technique, a comparison with other 

published works is also conducted, as shown in Table 4.8. The optimal configurations 

obtained from references that used Fast Non-dominated Sorting Genetic Algorithm 

(FNSGA) (Eldurssi & O'Connell, 2014), Mixed Integer Hybrid Differential Evolution 

(MIHDE) (Su & Lee, 2003) and Switching Indices (SI) (Shivakumar, Kumar, & 

Marulasiddappa, 2014) were re-evaluated at 100% loading to determine the power loss 

using the same load flow program. The results are presented in Table 4.8. The optimal 

configuration is 9,10, and 18 which results in 8.87% power loss reduction. 

Table 4.8: Comparison of simulation results for IEEE 16-bus network 

Method 

Tie 

switches 

opened 

Power 

Loss 

(kW) 

Loss 

Reduction 

% 

Vmin 

(p.u) 

Initial configuration 16, 17, 18 511.43 - 0.9693 

FNSGA (Eldurssi & 

O'Connell, 2014) 

9, 10, 18 466.34 8.87 0.972 

MIHDE (Su & Lee, 2003) 9, 10, 18 466.34 8.87 0.972 

SI (Shivakumar et al., 2014) 9, 10, 18 466.34 8.87 0.972 

EP 9, 10, 18 466.34 8.87 0.972 

PSO 9, 10, 18 466.34 8.87 0.972 

Proposed ANN  9, 10, 18 466.34 8.87 0.972 

 

  

Univ
ers

iti 
Mala

ya



   62 

4.3 Test system 2: IEEE 33-bus 

An IEEE 33-bus distribution system was used to evaluate the proposed method. The 

network consists of 37 switches as 32 switches are sectionalizing switches and 5 tie 

switches. The default configuration of the network is 33, 34, 35, 36 and 37 as opened 

switches, while other switches are closed, as shown in Figure 4.12. The system voltage is 

12.66 kV, while the total real and reactive power loads are 3.7 MW and 2.3 MVAR, 

respectively. The power loss of the default operating condition is 208.459 kW and the 

lowest bus voltage is 0.9108 p.u. 

4.3.1 Network Reconfiguration Using Meta-heuristics techniques for IEEE 33 

Bus System 

This section presents the implementation of meta-heuristic techniques in distribution 

network reconfiguration problem. It focusses on power loss reduction and voltage profile 

improvement. 

Substation

2 3 4 5 13121110 171615146 7 8 9 18

19 20 21 22

2726 28 3029 31 32 33

2423 25
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Figure 4.12: IEEE 33-bus distribution network 

4.3.1.1 Impact on Power Loss 

The results obtained using EP and PSO are summarized in Table 4.9 and compared 

with the default case (before reconfiguration). Newton-Raphson load flow (NRLF) 

algorithm is used to calculate the power loss in this work. The optimal objective function, 

𝐹, according to equation (3.1) is 0.6664, which is obtained by both EP and PSO. The 
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power loss before configuration is 208.459 kW obtained by (NRLF) and after 

configuration the power loss decreased to 138.927 kW which is 33.35% reduction. The 

optimal switches to be opened are 7, 9, 14, 32, 37. The processing time taken by EP is 

14.106 s, while PSO had faster processing time of 12.062 s. 

4.3.1.2 Impact on Voltage Profile 

Figure 4.13 shows the voltage profile for default and optimal configurations using EP 

and PSO for different percentage loading profile of Residential (R), Commercial (C) and 

Industry (I). It can be noticed that the buses voltage magnitude has improved significantly 

compared to the default case in all algorithms. For example, before reconfiguration the 

lowest voltage magnitude was at bus 18 with 0.910 p.u. However, after reconfiguration 

the voltage increased to 0.947 p.u. EP and PSO reported the same voltage profile. 

 

Figure 4.13: Voltage profile for IEEE 33-bus network using different algorithms 

  

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Vo
lta

ge
 M

ag
ni

tu
de

 (p
u)

Bus Number

default EP PSO
Univ

ers
iti 

Mala
ya



   64 

T
ab

le
 4

.9
: N

et
w

or
k 

re
co

nf
ig

ur
at

io
n 

re
su

lts
 fo

r 
IE

E
E

 3
3-

bu
s n

et
w

or
k 

Pr
oc

es
si

ng
 

tim
e 

(s
) 

0.
51

3 

14
.1

06
 

12
.0

62
 

L
os

s r
ed

uc
tio

n 
(%

) 

- 

33
.3

5 

33
.3

5 

Po
w

er
 lo

ss
 (k

W
) 

20
8.

45
92

 

13
8.

92
75

 

13
8.

92
75

 

O
bj

ec
tiv

e 
fu

nc
tio

n 
 

m
in
𝐹
=
𝑃
𝑙𝑜
𝑠𝑠

𝑅
 

1 

0.
66

64
 

0.
66

64
 

B
us

 v
ol

ta
ge

 

M
in

   
   

   
  M

ax
 

0.
91

07
(1

8)
 –

 1
(1

) 

0.
94

23
(3

2)
 –

 1
(1

) 

0.
94

23
(3

2)
 –

 1
(1

) 

O
pe

n 
sw

itc
he

s 

33
,3

4,
35

,3
6,

37
 

7,
9,

14
,3

2,
37

 

7,
9,

14
,3

2,
37

 

C
as

e 

In
iti

al
 

E
P 

PS
O

 

Univ
ers

iti 
Mala

ya



   65 

4.3.2 Network reconfiguration Using Meta-heuristics for IEEE 33 Bus System 

with variable load profile and DG 

The 33-bus distribution system with variable load profile and DGs is shown in Figure 

4.14. The system is divided into three load groups (residential, commercial, industrial), 

each load group has 6 operating levels from 50% to 100% of peak demand, which results 

in 216 different load patterns. Three DGs were installed in the system where the location 

of the installed DGs units are at buses 18, 29 and 32 based on (Imran et al., 2014). These 

DGs are made up of Photo-voltaic (PV) system. The DGs output profile for active power 

is shown in Figure 4.15 (Ing et al., 2016). Optimal network reconfiguration based on EP 

and PSO were implemented on the test system. Table 4.10 shows the optimal network 

reconfiguration for 20 different load patterns. As shown in the table the power loss after 

reconfiguration is lower than default case. For example, at load percentage of 100% R, 

50% C and 70% I, the default configuration gives 134.08 kW. While the optimal 

configuration for this load pattern is 7, 9, 14, 36 and 37 with power loss of 75.05 kW 

which is equal to 44.03% power reduction. . The maximum power loss reduction occurred 

at load percentage 100% R, 50% C and 70% I. the power loss reduction percentage is 

44.03%. 
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Figure 4.14: IEEE 33-bus distribution network with different load groups and 
DGs 

 

 

Figure 4.15: DG output profile for a day 
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Table 4.10: Optimal Configuration for different load profile using EP & PSO 
for IEEE 33-bus network 

Operating 
Percentage % Default Optimal 

Before 
configuration 

(kW) 

After 
configuration 

(kW) 
Loss 

Reduction 
% R C I EP PSO 

50 80 70 

33
, 3

4,
 3

5,
 3

6,
 3

7 

7, 9, 14, 
31, 37 78.60 57.98 26.23 

50 90 80 7, 9, 14, 
31, 37 94.97 70.69 25.56 

50 90 90 7, 9, 14, 
31, 37 108.54 80.11 26.19 

50 100 70 7, 9, 14, 
31, 37 87.17 66.64 23.55 

60 80 90 7, 9, 14, 
31, 37 116.42 83.04 28.68 

70 70 50 7, 9, 14, 
32, 37 75.19 50.14 33.32 

70 90 70 7, 9, 14, 
32, 37 106.32 74.84 29.61 

80 60 50 7, 9, 14, 
36, 37 83.70 52.64 37.11 

80 90 70 7, 9, 14, 
32, 37 120.09 81.88 31.82 

90 70 50 7, 9, 14, 
36, 37 100.92 63.05 37.53 

90 70 100 7, 9, 14, 
32, 37 174.00 108.34 37.74 

90 100 60 7, 9, 14, 
32, 37 126.73 85.26 32.72 

100 50 70 7, 9, 14, 
36, 37 134.08 75.05 44.03 

100 60 80 7, 9, 14, 
32, 37 153.16 89.61 41.49 

100 70 70 7, 9, 14, 
36, 37 142.31 86.97 38.89 

100 70 80 7, 9, 14, 
32, 37 157.57 96.01 39.07 

100 80 50 7, 9, 14, 
36, 37 120.18 74.73 37.82 

100 80 60 7, 9, 14, 
36, 37 132.88 83.33 37.29 

100 90 80 7, 9, 14, 
32, 37 167.38 108.49 35.19 

100 100 90 7, 9, 14, 
32, 37 189.89 125.83 33.74 
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4.3.3 Network Reconfiguration Using proposed ANN technique for IEEE 33 Bus 

System with variable load profile 

The proposed ANN technique is implemented on the proposed 33-bus distribution 

system shown in Figure 4.16, where the load is divided into three load groups (residential, 

commercial, industrial). Each load group has 6 operating levels from 50% to 100% of 

peak demand, which results in 216 load patterns. From the solution of network 

reconfigurationfor of 33-bus system, most of the configurations are the same, and can be 

grouped into six distinct configurations as tabulated in Table 4.11. It can be observed 

from this table the first three tie switches don't change in all 6 configurations. Therefore, 

two ANNs are used for the training which are ANN4 and ANN5. The final structure of 

the training network is determined based on the most accurate results of ANNs outputs. 

While the structure of both ANN's is similar regarding input and output neurons, the 

number of neurons in the hidden layer is different. 
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Figure 4.16: IEEE 33-bus distribution network with different load groups 
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Table 4.11: Optimal unique configuration of all load patterns for IEEE 33-bus 
network 

Optimal configuration 
number Tie switches to be opened Number of occurrences 

1 S7, S9, S14, S32, S37 75 

2 S7, S9, S14, S32, S28 68 

3 S7, S9, S14, S31, S28 9 

4 S7, S9, S14, S31, S37 31 

5 S7, S9, S14, S36, S28 18 

6 S7, S9, S14, S36, S37 15 

 

4.3.3.1 Performance of Network Reconfiguration based on ANN  

The performance of each both ANN training models is shown in Table 4.12 and 4.13, 

the tables show the structure, accuracy, Mean Square Error (MSE), training and testing 

results for each ANN model. while the structure of both ANN’s is similar regarding input 

and output neurons, which corresponds to the number of load groups and the tie switch, 

respectively. The number of neurons in hidden layer is 3 for ANN4 and 2 for ANN5 in 

both trainings, which is reasonable, because the variation in switch for group switch 4 is 

three, while for group switch 5 is two. Additionally, the tables show the accuracy 

(absolute error) and MSE of each ANN model as well as the overall accuracy of the model 

in DNR process. ANN4 accuracy is 99.07% for ANN (70-30%) which corresponds to 

214 optimal solutions for switch group 4 out of 216 load patterns, while 98.61% for ANN 

(60-40%). ANN5 give 100% optimal solution for switch group 5 for the two trainings 

models. The training time required by ANN (70-30%) is 4.1 minutes and 4.5 for ANN 

(60-40%). The average accuracy of combined training for both ANN models is 98.84%. 
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4.3.3.2 Impact of proposed ANN technique on power loss 

Figure 4.17 shows the power loss before and after configuration for all 216 load 

patterns using the proposed ANN technique. A spider web graph is used due to the large 

number of load patterns. the outer circle numbers represent the load patterns, while the 

vertical axe represents the corresponding power loss. The average power loss reduction 

for all cases is 33.44%. as shown in the figure the power loss after reconfiguration using 

ANN is lower than before reconfiguration (default). For example, the power loss in 100% 

loading is 208.459 kW, with switches 33,34,35,36 and 37 open. However, proposed ANN 

technique response is that switches 7,9,14,32 and 37 are opened, with power loss of 

138.928 kW. 

 

Figure 4.17: Power loss comparison for IEEE 33-bus network before and after 
reconfiguration using proposed ANN technique  
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4.3.3.3 Impact of proposed ANN technique on voltage profile 

Figure 4.18 shows the voltage profile for default and optimal configurations for all 

load patterns the using proposed ANN technique. A spider web graph is used due to the 

large number of load patterns. the outer circle numbers represent the load patterns, while 

the vertical axe represents the corresponding minimum bus voltage. It can be noticed that 

the minimum buses voltage magnitude has improved compared to the default case, while 

the overall voltage profile increased in all load patterns by an average of 2.37%. 

 

Figure 4.18: Voltage profile for IEEE 33-bus network before and after 
reconfiguration using proposed ANN technique 
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4.3.4 Network Reconfiguration Using proposed ANN technique for IEEE 33 Bus 

System with variable load profile and DG 

The 33-bus system with variable load profile and DG shown in Figure 4.14 is used to 

test the proposed optimal network reconfiguration based on ANN. The total number of 

different load patterns is 216. From the solution of optimal network reconfiguration for 

this load pattern, there were 35 distinct configurations  as tabulated in Table 4.14. The 

number for each configuration found is also presented in the same table. Based on this 

results, five ANNs are used for the training, which are ANN1 to ANN5. The final 

structure of the training network is determined based on the most accurate results of ANN 

models outputs. While the structure of each individual ANN's does not change regarding 

input and output neurons, since the number of load groups are three (R, C and I) and the 

output of each ANN model is an optimal switch. The number of neurons in the hidden 

layer is determined during the training of ANN models. 
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Table 4.14: Optimal unique configuration of all load patterns for IEEE 33-bus 
network with DG 

Optimal configuration 
number Tie switches to be opened Number of occurrences  

1 5 8 7 10 12 7 
2 7 8 13 10 25 28 
3 7 8 14 10 25 1 
4 7 8 14 10 27 59 
5 7 9 13 26 36 2 
6 7 9 13 27 36 11 
7 7 9 13 28 36 5 
8 7 10 14 26 36 15 
9 7 10 14 27 36 9 
10 7 10 13 28 36 2 
11 7 10 13 27 32 19 
12 7 10 13 28 32 6 
13 7 10 13 27 36 10 
14 7 10 28 32 35 4 
15 7 10 12 27 32 13 
16 7 10 12 28 32 3 
17 6 9 28 32 35 7 
18 7 9 27 32 35 11 
19 7 11 27 32 35 8 
20 6 11 21 28 32 4 
21 6 9 27 32 35 8 
22 7 9 28 32 35 4 
23 6 9 21 27 32 1 
24 6 9 21 28 32 1 
25 7 11 26 32 35 1 
26 7 10 12 26 32 2 
27 7 10 13 26 32 4 
28 7 10 13 25 32 1 
29 7 10 13 25 36 3 
30 7 10 13 26 36 7 
31 7 10 14 25 36 2 
32 7 8 14 10 28 8 
33 7 8 14 10 26 1 
34 7 8 13 10 27 4 
35 7 8 13 10 26 1 
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4.3.4.1 Performance of Network Reconfiguration based ANN  

Tables 4.15 presents the performance of the proposed ANN (70-30%) model. ANN1 

and 2 accuracy is 100%, while ANN3, 4 and 5 accuracy are 99.07% which corresponds 

to 214 optimal solutions out of 216 load patterns. The overall accuracy of the final 

solution (combination of all ANN models) is 97.22%. Table 4.16 presents the 

performance of the proposed ANN (70-30%) model. ANN1 and 2 accuracy is 100%, 

while ANN3 and 5 accuracy are 98.61% which corresponds to 213 optimal solutions out 

of 216 load patterns. The overall accuracy of the combination of all ANN models is 

96.29%. The average accuracy for ANN (70-30%) model and ANN (60-40%) model is 

96.76%. 

4.3.4.2 Impact of proposed ANN technique on power loss 

Figure 4.19 shows the power loss before and after configuration for all 216 load 

patterns using the proposed ANN technique. A spider web graph is used due to the large 

number of load patterns. the outer circle numbers represent the load patterns, while the 

vertical axe represents the corresponding power loss. The average power loss reduction 

for all cases is 40.27%. 
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Figure 4.19: Power loss comparison for IEEE 33-bus network before and after 
reconfiguration using proposed ANN technique 

4.3.4.3 Impact of proposed ANN technique on voltage profile 

Figure 4.20 shows the voltage profile for default and optimal configurations for all 

load patterns using the proposed ANN technique. A spider web graph is used due to the 

large number of load patterns. the outer circle numbers represent the load patterns, while 

the vertical axe represents the corresponding minimum bus voltage. It can be noticed that 

the minimum buses voltage magnitude has improved compared to the default case, while 

the overall voltage profile increased in all load patterns by an average of 1.69%. 
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Figure 4.20: Voltage profile for IEEE 33-bus network with DG before and after 
reconfiguration using proposed ANN technique 

4.3.5 Comparative analysis on the performance of proposed ANN technique in 

Network Reconfiguration for IEEE 33-bus system 

To evaluate the performance of the proposed ANN technique, a consistency test was 
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measure the robustness of the technique to find the optimal answer. First, the proposed 

ANN technique and other techniques were executed for 20 times to find the optimal 

configuration for all load patterns (216 case). The result is shown in Figure 4.21, the 

figure shows the best and worst number of optimal configurations found in the 20 runs 

by the different techniques for all the cases. Additionally, the figure shows the average 

number of optimal configurations found for all runs. The proposed ANN technique 
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run. The sub-optimal configurations found by the proposed ANN technique for the two 

load patterns are presented in Table 4.17. Although the solution of ANN different from 

the optimization solution, only one switch is different from the optimization solution and 

the power loss differences between two techniques are also small by 0.7%. Meanwhile, 

the best run for EP over 20 runs achieved 180 optimal configurations out of 216, while 

PSO achieved 190 optimal configurations. The average number of optimal configurations 

obtained for all 216 cases for 20 runs is 212 by proposed ANN technique which is 98%, 

165 by EP which is 76% and 178 by PSO which is 82%. Figure 4.22 shows power loss 

comparison between proposed ANN technique, EP and PSO for the best run. The average 

power loss reduction for all techniques of 33.44%, 32.65% and 33% respectively. 

Second, the comparison value for processing time is shown in Table 4.18. All 

algorithms provide exactly the same optimal configuration and power loss value for 

default case. However, the computation time to find the optimal configuration to 

minimize the power loss is 30.47s for EP and 18.65s for PSO. On the other hand, the time 

for the proposed ANN technique is 0.052s execution time (not including training), which 

is very fast compared to both meta-heuristic methods. 

Table 4.17: Comparison between optimal configuration and ANN alternative 
configuration response for IEEE 33-bus network 

Load Pattern Optimal switches Power Loss ANN Response Power Loss 
42 7, 9, 14, 32, 28 75.737 7, 9, 14, 31, 28 76.289 

195 7, 9, 14, 36, 28 86.971 7, 9, 14, 32, 28 87.083 

 

  

Univ
ers

iti 
Mala

ya



   82 

Table 4.18: Statistical analysis for processing time for network reconfiguration 
for IEEE 33-bus network 

 Tie switches 
opened 

Power 
Loss (kW) 

Loss 
Reduction % 

Vmin 
(p.u) 

Processing 
Time (s) 

EP 7, 9, 14, 32, 
37 

138.928 33.35 0.9423 30.47 

PSO 7, 9, 14, 32, 
37 

138.928 33.35 0.9423 18.65 

Proposed 
ANN 

7, 9, 14, 32, 
37 

138.928 33.35 0.9423 0.052 

 

 

Figure 4.21: consistency performance comparison between EP, PSO and 
proposed ANN for all load patterns in IEEE 33-bus network 
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Figure 4.22: Power loss comparison between EP, PSO and proposed ANN for all 
load patterns in IEEE 33-bus network 
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Table 4.19: Comparison of simulation results for IEEE 33-bus network 

Method 
Tie switches 

opened 

Power Loss 

(kW) 

Loss 

Reduction % 

Vmin 

(p.u) 

Initial configuration 33, 34, 35, 36, 

37 

208.459 - 0.9108 

HSA (Rao et al., 

2012) 

7, 9, 14, 32, 37 138.928 33.35 0.9423 

DEP (Muhammad et 

al., 2018) 

7, 9, 14, 32, 37 138.928 33.35 0.9423 

CSA (Nguyen & 

Truong, 2015) 

7, 9, 14, 32, 37 138.928 33.35 0.9423 

RRA (Nguyen et al., 

2017) 

7, 9, 14, 32, 37 138.928 33.35 0. 9423 

FWA (Imran et al., 

2014) 

7, 9, 14, 28, 32 139.98 32.85 0.9413 

RGA (Zhu, 2002) 7,9,14,32,33 139.532 33.07 0.9378 

EP 7, 9, 14, 32, 37 138.928 33.35 0.9423 

PSO 7, 9, 14, 32, 37 138.928 33.35 0.9423 

Proposed ANN  7, 9, 14, 32, 37 138.928 33.35 0.9423 
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4.4 Test system 3: IEEE 69-bus 

An IEEE 69-bus distribution system consists of 73 switches where, 68 switches are 

sectionalizing switches and 5 tie switches. The default configuration of the network is 17, 

22, 25, 58 and 37 as opened switches, while other switches are closed, as shown in Figure 

4.23. The system voltage is 12.66 kV, while the total real and reactive power loads are 

3.8 MW and 2.7 MVAR, respectively. The power loss of the default operating condition 

is 224.975 kW and the lowest bus voltage is 0.9092 p.u. 

Substation S9

Bus

Line

Tie Line

S1 S2 S3 S6 S8 S10 S11 S13 S15 S16 S19 S21 S23 S24 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36
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Figure 4.23: IEEE 69-bus distribution network 

4.4.1 Network Reconfiguration Using Meta-heuristics techniques for IEEE 69 

Bus System 

This section presents the implementation of meta-heuristic techniques in distribution 

network reconfiguration problem. It focuses on power loss reduction and voltage profile 

improvement. 

4.4.1.1 Impact on Power Loss 

The results obtained using EP and PSO are summarized in Table 4.20 and compared 

with the default case (before reconfiguration). Newton-Raphson load flow (NRLF) 
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algorithm is used to calculate the power loss in this work. The optimal objective function, 

𝐹, according to equation (3.1) is 0.436, which is obtained by both EP and PSO. The power 

loss before configuration is 224.975 kW obtained by (NRLF) and after configuration the 

power loss decreased to 98.161 kW which is 55.37% reduction. The optimal switches to 

be opened are 17, 22, 23, 63, 68. The processing time taken by EP is 49.012 s, while PSO 

had faster processing time of 11.901 s. 

4.4.1.2 Impact on Voltage Profile 

Figure 4.24 shows the voltage profile for default and optimal configurations using EP 

and PSO for different percentage loading profile of Residential (R), Commercial (C) and 

Industry (I). It can be noticed that the buses voltage magnitude has improved compared 

to the default case in all algorithms. For example, before reconfiguration the lowest 

voltage magnitude was at bus 65 with 0.9092 p.u. However, after reconfiguration the 

voltage increased to 0.953 p.u. EP and PSO reported the same voltage profile. 

 

Figure 4.24: Voltage profile for IEEE 69-bus network using different algorithms 
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4.4.2 Network reconfiguration Using Meta-heuristics for IEEE 69 Bus System 

with variable load profile and DG 

The 69-bus distribution system with variable load profile and DG is shown in Figure 

4.25. The system is divided into three load groups (residential, commercial, industrial), 

each load group has 6 operating levels from 50% to 100% of peak demand, which results 

in 216 different load patterns. Three DGs were installed in the system where the location 

of the installed DGs units are at buses 61, 62 and 65. These DGs are made up of Photo-

voltaic (PV) system. The DGs output profile is shown in Figure 4.15. Optimal network 

reconfiguration based on EP and PSO were implemented on the test system. Table 4.21 

shows the optimal network reconfiguration for 20 different load patterns. As shown in the 

table the power loss after reconfiguration is lower than default case. For example, at load 

percentage of 100% R, 50% C and 70% I, the default configuration gives 123.25 kW. 

While the optimal configuration for this load pattern is 17, 22, 23, 65 and 68 with power 

loss of 56.21 kW which is equal to 44.03% power reduction. 

Substation S9

Bus

Line

Tie Line

S1 S2 S3 S6 S8 S10 S11 S13 S15 S16 S19 S21 S23 S24 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36

1 2 3 4 65 7 8 9 10 11 1312 14 15 16 17 18 2019 21 22 23 24 2625 27

47 48 49 50

S7

S55 S56 S57

51 52
S12

S59

S5 S45 S46 S47 S48 S49 S50 S51 S53S52 S54

36 37 38 39 40 41 42 43 44 45 46

28 29 30 31 32 33 34 35

S4 S38 S39 S40 S41 S42 S43 S44

S14

S60 S61 S62 S63 S64 65 S66 S68S67 S69

53 54 55 56 57 58 59 60 61 62 63

S70 S71

64 65

68 69

S20 S73

66 67

S18
S72

S17

S22

S25

S58

S37

Residential

Commercial

Industrial

 

Figure 4.25: IEEE 69-bus distribution network with different load groups and 
DGs 

  

Univ
ers

iti 
Mala

ya



   89 

Table 4.21: Optimal Configuration for different load profile using EP & PSO 
for IEEE 69-bus network 

Operating 
Percentage % Default Optimal Before 

configuration 

After 
configuration 

Loss 
Reduction 

% R C I EP PSO 

50 80 70 

17
, 2

2,
 2

5,
 5

8,
 3

7 

17, 22, 
23, 62, 68 94.51 41.80 26.23 

50 90 80 17, 22, 
23, 62, 68 121.95 53.09 25.56 

50 90 90 17, 22, 
23, 63, 68 153.66 65.78 26.19 

50 100 70 17, 22, 
23, 62, 68 94.58 42.06 23.55 

60 80 90 17, 22, 
23, 64, 68 159.20 68.54 28.68 

70 70 50 17, 22, 
23, 65, 68 60.23 28.28 33.32 

70 90 70 17, 22, 
23, 65, 68 104.58 47.22 29.61 

80 60 50 17, 22, 
23, 65, 68 65.22 30.75 37.11 

80 90 70 17, 22, 
23, 62, 68 110.34 50.21 31.82 

90 70 50 17, 22, 
23, 65, 68 70.75 33.71 37.53 

90 70 100 17, 22, 
23, 63, 68 216.85 93.51 37.74 

90 100 60 17, 22, 
23, 63, 68 91.78 43.15 32.72 

100 50 70 17, 22, 
23, 65, 68 123.25 56.21 44.03 

100 60 80 17, 22, 
23, 63, 68 152.65 68.49 41.49 

100 70 70 17, 22, 
23, 62, 68 123.29 56.54 38.89 

100 70 80 17, 22, 
23, 62, 68 152.67 68.66 39.07 

100 80 50 17, 22, 
23, 64, 68 76.78 36.92 37.82 

100 80 60 17, 22, 
23, 62, 68 98.90 46.09 37.29 

100 90 80 17, 22, 
23, 63, 68 152.74 69.03 35.19 

100 100 90 17, 22, 
23, 62, 68 186.54 82.90 33.74 
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4.4.3 Network Reconfiguration Using proposed ANN technique for IEEE 69 Bus 

System with variable load profile 

The proposed ANN technique is implemented on the proposed 69-bus distribution 

system shown in Figure 4.26, where the load is divided into three load groups (residential, 

commercial, industrial). Each load group has 6 operating levels from 50% to 100% of 

peak demand, which results in 216 load patterns. From the solution of network 

reconfigurationfor of 69-bus system, most of the configurations are the same, and can be 

grouped into four distinct configurations as tabulated in Table 4.22. It can be observed 

from this table that Switch group 4 is the only changing group with switch numbers 62, 

63, 64 and 65, thus only 1 ANN is need for training in this case. The structure of the 

training network is determined based on the most accurate results of ANN models.While 

the structure of the ANN model is similar to pervious system in the input and output 

layers, the number of neurons in the hidden layer is different. 

Substation S9

Bus

Line

Tie Line

S1 S2 S3 S6 S8 S10 S11 S13 S15 S16 S19 S21 S23 S24 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36

1 2 3 4 65 7 8 9 10 11 1312 14 15 16 17 18 2019 21 22 23 24 2625 27

47 48 49 50

S7

S55 S56 S57

51 52
S12

S59

S5 S45 S46 S47 S48 S49 S50 S51 S53S52 S54

36 37 38 39 40 41 42 43 44 45 46

28 29 30 31 32 33 34 35

S4 S38 S39 S40 S41 S42 S43 S44

S14

S60 S61 S62 S63 S64 65 S66 S68S67 S69

53 54 55 56 57 58 59 60 61 62 63

S70 S71

64 65

68 69

S20 S73

66 67

S18
S72

S17

S22

S25

S58

S37

Residential

Commercial

Industrial

 

Figure 4.26: IEEE 69-bus distribution network with different load groups 
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Table 4.22: Optimal unique configuration of all load patterns for IEEE 69-bus 
network 

Optimal 
configuration 

number 

Tie switches to be 
opened 

Number of occurrences for this 
optimal configuration 

1 S17, S22, S23, S62, S68 53 
2 S17, S22, S23, S63, S68 48 
3 S17, S22, S23, S64, S68 53 
4 S17, S22, S23, S65, S68 62 

 

4.4.3.1 Performance of Network Reconfiguration based on ANN  

The performance of both ANN training models is shown in Tables 4.23 and 4.24, the 

tables show the structure, accuracy, MSE, training and testing results for each ANN. 

while, the structure of ANN’s is similar regarding input and output neurons, which 

corresponds to the number of load groups and the tie switch, respectively. The number of 

neurons in hidden layer is 4 for both models ANN4. Additionally, the tables show the 

accuracy (absolute error) of each ANN model. The models (ANN4) achieved 100% 

accuracy which corresponds to 216 optimal solutions for switch group 4 out of 216 load 

patterns. The overall accuracy of combined ANN models is 100%. 
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4.4.3.2 Impact of proposed ANN technique on power loss 

Figure 4.27 shows the power loss before and after configuration for all 216 load 

patterns using the proposed ANN technique. A spider web graph is used due to the large 

number of load patterns. the outer circle numbers represent the load patterns, while the 

vertical axe represents the corresponding power loss. The average power loss reduction 

for all cases is 55.20%. as shown in the figure the power loss after reconfiguration using 

ANN is lower than before reconfiguration (default). For example, the power loss in 100% 

loading is 224.975 kW, with switches 17, 22, 25, 58 and 37open. However, proposed 

ANN technique response is that switches 17, 22, 23, 63 and 68 are opened, with power 

loss of 98.161 kW. 

 

Figure 4.27: Power loss comparison for IEEE 69-bus network before and after 
reconfiguration using proposed ANN technique  

0

50

100

150

200

250

1
4 7 10 13

16
19

22
25

28
31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79
82

85
88

91
94

97100103106
109

112115118121
124

127
130

133
136

139

142

145

148

151

154

157

160

163

166

169

172

175

178

181

184

187
190

193
196

199
202

205208211214

Default

ANN

Univ
ers

iti 
Mala

ya



   95 

4.4.3.3 Impact of proposed ANN technique on voltage profile 

Figure 4.28 shows the voltage profile for default and optimal configurations for all 

load patterns the using proposed ANN technique. . A spider web graph is used due to the 

large number of load patterns. the outer circle numbers represent the load patterns, while 

the vertical axe represents the corresponding minimum bus voltage.  It can be noticed that 

the minimum buses voltage magnitude has improved compared to the default case, while 

the overall voltage profile increased in all load patterns by an average of 3.4%. 

 

Figure 4.28: Voltage profile for IEEE 69-bus network before and after 
reconfiguration using proposed ANN technique 

4.4.4 Network Reconfiguration Using proposed ANN technique for IEEE 33 Bus 

System with variable load profile and DG 

The 69-bus system with variable load profile and DG shown in Figure 4.25 is used to 

test the proposed ANN optimal network reconfiguration based. The total number of 
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this load patterns, there were 29 distinct configurations as tabulated in Table 4.25. The 

number for each configuration found is also presented in the same table. Based on this 

results, five ANNs are used for the training which are ANN1 to ANN5. The final structure 

of the training network is determined based on the most accurate results of ANN models 

outputs. 

Table 4.25: Optimal unique configuration of all load patterns for IEEE 69-bus 
network with DG 

Optimal configuration 
number 

Tie switches to be 
opened 

Number of 
occurrences 

1 17 22 23 63 68 11 
2 17 22 23 64 68 18 
3 17 22 23 65 68 19 
4 17 22 23 62 68 15 
5 17 22 23 64 70 18 
6 17 22 23 65 70 27 
7 17 22 23 63 70 21 
8 17 22 23 62 70 17 
9 17 19 23 65 70 20 
10 17 19 23 62 70 13 
11 17 19 23 64 70 17 
12 17 19 23 63 70 22 
13 15 19 23 65 70 4 
14 17 19 21 65 70 3 
15 17 19 21 64 70 3 
16 16 17 21 63 70 10 
17 16 17 21 62 70 12 
18 16 17 21 64 70 14 
19 16 17 21 65 70 10 
20 15 19 23 63 70 3 
21 15 16 21 65 70 2 
22 15 16 21 62 70 1 
23 15 16 21 63 70 2 
24 15 16 21 64 70 3 
25 15 16 23 65 70 1 
26 15 16 23 62 70 1 
27 15 19 23 64 70 4 
28 17 19 21 62 70 3 
29 15 19 23 62 70 1 
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4.4.4.1 Performance of Network Reconfiguration based ANN  

Table 4.26 presents the performance of the ANN (70-30%). ANN1, 4 and 5 have 

accuracy of 100%, while ANN3 is 99.53% and ANN2 accuracy is 99.07% which 

corresponds to 214 optimal solutions out of 216 load patterns. The overall accuracy of 

this model (combination of all ANN models) is 98.15%. Table 4.27 show the performance 

of ANN (60-40%). similarly, ANN 1 and 5 achieved 100% accuracy as other model. 

However, ANN 3 and 4 have 99.07% accuracy which corresponds to 214 optimal 

solutions out of 216 load patterns. The overall accuracy of this model (combination of all 

ANN models) is 97.69%. The average accuracy of the two ANN (70-30%) and ANN (60-

40%) models is 97.29%. 

4.4.4.2 Impact of proposed ANN technique on power loss 

Figure 4.29 shows the power loss before and after configuration for all 216 load 

patterns using the proposed ANN technique. As shown in the figure the power loss after 

reconfiguration is less than before reconfiguration. Additionally, the average power loss 

reduction for all cases is 37.4%. 

4.4.4.3 Impact of proposed ANN technique on voltage profile 

Figure 4.30 shows the voltage profile for default and optimal configurations for all 

load patterns using the proposed ANN technique. The figure shows the minimum bus 

voltage at each load pattern. It can be noticed that the minimum buses voltage magnitude 

has improved compared to the default case, while the overall voltage profile increased in 

all load patterns by an average of 1.35%. 
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Figure 4.29: Power loss comparison for IEEE 33-bus network before and after 
reconfiguration using proposed ANN technique 

 

Figure 4.30: Voltage profile for IEEE 33-bus network with DG before and after 
reconfiguration using proposed ANN technique 
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4.4.5 Comparative analysis on performance of proposed ANN technique in 

Network Reconfiguration for IEEE 69-bus system 

To evaluate the performance of the proposed ANN technique, a consistency test was 

conducted using EP, PSO and proposed ANN technique. The objective of the test is to 

measure the robustness of the technique to find the optimal answer. First, the proposed 

ANN technique and other techniques were executed for 20 times to find the optimal 

configuration for all load patterns (216 case). The result is shown in Figure 4.31, the 

figure shows the best and worst number of optimal configurations found in the 20 runs 

by the different techniques for all the cases. Additionally, the figure shows the average 

number of optimal configurations found for all runs. The proposed ANN technique 

managed to obtain the optimal configurations for all load patterns in the best run. 

Meanwhile, the best run for EP over 20 runs achieved 176 optimal configurations out of 

216, while PSO achieved 186 optimal configurations. The average number of optimal 

configurations obtained for all 216 cases for 20 runs is 212 by proposed ANN technique 

which is 98%, 164 by EP which is 76% and 179 by PSO which is 83%. Figure 4.32 shows 

power loss comparison between proposed ANN technique, EP and PSO for the best run. 

The average power loss reduction for all techniques of 55.20%, 31.85% and 32.6% 

respectively. 

Second, the comparison value for processing time is shown in Table 4.28. All 

algorithms provide exactly the same optimal configuration and power loss value for 

default case. However, the computation time to find the optimal configuration to 

minimize the power loss is 26.47s for EP and 21.34s for PSO. On the other hand, the time 

for the proposed ANN technique is 0.054s, which more computationally effective 

compared to both meta-heuristic methods. 
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Figure 4.31: consistency performance comparison between EP, PSO and 
proposed ANN for all load patterns in IEEE 69-bus network 

 
Figure 4.32: Power loss comparison between EP, PSO and proposed ANN for all 

load patterns in IEEE 69-bus network 
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Table 4.28: Statistical analysis for processing time for network reconfiguration 
for IEEE 69-bus network 

 
Tie 

switches 
opened 

Power 
Loss 
(kW) 

Loss 
Reduction % 

Vmin 
(p.u) 

Processing 
Time (s) 

EP 17, 22, 
23, 62, 68 98.16117 56.37 0.9528 26.475 

PSO 17, 22, 
23, 62, 68 98.16117 56.37 0.9528 21.338 

Proposed 
ANN 

17, 22, 
23, 62, 68 98.16117 56.37 0.9528 0.054 

 

Furthermore, to verify the proposed ANN technique, a comparison with other 

published works is conducted in Table 4.29. The optimal configurations obtained from 

Fast Non-dominated Sorting Genetic Algorithm (FNSGA), Cuckoo Search Algorithm 

(CSA), Discrete Artificial Bee Colony (DABC), and Fireworks Algorithm (FWA) at base 

case of 100% loading is presented. The power loss for all techniques is almost similar 

with value around 98.161 kW. The proposed method presents similar results as other 

optimization techniques. 
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Table 4.29: Comparison of simulation results for IEEE 69-bus network 

Method 
Tie switches 

opened 

Power 

Loss (kW) 

Loss 

Reduction % 

Vmin 

(p.u) 

Initial configuration 
17, 22, 25, 

58, 37 
224.975 - 0.90929 

FNSGA (Eldurssi & 

O'Connell, 2014) 

15, 19, 23, 

63, 69 
99.35 55.85 0.9428 

CSA (Nguyen & Truong, 

2015) 

16, 19, 23, 

63, 70 
98.59 55.73 0.9495 

FWA (Imran et al., 2014) 
16, 19, 23, 

63, 70 
98.59 55.73 0.9495 

DABC (Aman, Jasmon, 

Bakar, & Mokhlis, 2014) 

15, 16, 23, 

63, 70 
100.28 55.42 0.9428 

EP 
15, 22, 23, 

63, 68 
98.161 56.37 0.9528 

PSO 17, 22, 23, 
63, 68 98.161 56.37 0.9528 

Proposed ANN  
17, 22, 23, 

63, 68 
98.161 56.37 0.9528 
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CHAPTER 5: CONCLUSION 

5.1 Conclusion 

In this work, an ANN technique has been successfully proposed for optimal network 

reconfiguration considering variable load and DG profiles. The proposed network 

reconfiguration based on ANN was verified using an IEEE 16, IEEE 33 and 69 bus test 

systems. The results were compared to other published results from literature.  

The proposed ANN technique performs equally well as other techniques, with regards 

to the power loss reduction and voltage profile improvement. The results reported high 

power loss reduction of 8.87%, 27.4% and 56.37% for 16, 33 and 69 test systems, 

respectively. While the minimum value of buses voltage was 0.972 p.u, 0.9423 p.u and 

0.9528 p.u for 16, 33 and 69 test systems, respectively. On the other hand, the proposed 

ANN technique outperforms other techniques in consistency of giving optimal solutions. 

The results reported that the consistency of proposed method is 100% for 16 bus system, 

while other methods reported 93.5% and 96.8% for EP and PSO, respectively. 

Additionally, the consistency for 33 bus system was 99.06% for the proposed ANN 

technique, while other methods reported a maximum consistency of 87.9% in PSO. 

Moreover, the execution time for proposed ANN method is very efficient, with 0.050s, 

0.052 and 0.054 for 16, 33 and 69 test systems to find the optimal solution for default 

case compared to other methods. 

The reported results verified that proposed method ANN technique achieved high 

accuracy to obtain optimal configurations. The accuracy for ANN model for 16, 33 and 

69 test systems are 100%, 99.07% and 100% respectively. The number of neurons used 

for each ANN model is small as compared to previous works. However, it is sufficient to 

achieve a good learning and accurate predicting ANN model. The number of neurons 
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used for 33 test system is 3 and 4 neurons for ANN4 and ANN5, respectively. In 69 test 

system, one ANN model was used in the training with 4 neurons. 

5.2 Future Work 

The proposed network reconfiguration based on Artificial Neural Network can be 

further improved. Possible future works include: 

1) Further studies need to be carried regarding the protection equipment in the 

distribution systems. Since the electrical flow of the network is modified during 

network reconfiguration. 

2) Further analysis can be explored on larger distribution system, such as 118-bus, 

137-bus and 205-bus for NR based ANN. Furthermore, work can be done on 

incorporating battery storage devices and electric vehicles. 

3) Further studies need to be carried on minimizing the total investment on the 

distribution systems, such as minimizing the energy cost, minimizing new 

branches construction cost and protection devices cost.   
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