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OPTIMAL NETWORK RECONFIGURATION INCORPORATING
DISTRIBUTED GENERATION AND VARIABLE LOAD PROFILE USING
ARTIFICIAL NEURAL NETWORK
ABSTRACT

Optimal network reconfiguration is a common method used in distribution systems to
ensure minimum power losses are always attained. This is very important task for
achieving cost effective operation. Due to varying load demands, conventional network
reconfiguration techniques have to be repeated whenever system loading changes to find
a new configuration that has minimum power losses. This task is time consuming and
ineffective approach for a real time application. Therefore, this research proposes an
Artificial Neural Network (ANN) technique for optimal distribution network
reconfiguration to overcome long processing time, mainly in load variation case. The
proposed method involves; (1) Implement optimal network reconfiguration with variable
load profile and DG generation using meta-heuristic techniques for ANN modelling (2)
Designing an ANN model for optimal network reconfiguration (3) Train the proposed
ANN model on the generated data using different split ratios for optimal network
reconfiguration. The applied meta-heuristic techniques in this work are Evolutionary
programming (EP) and Particle swarm optimization (PSO). To evaluate the performance
of the proposed ANN method, simulation conducted on MATLAB were conducted on
IEEE 16-bus, IEEE 33-bus and IEEE 69-bus system. The proposed network
reconfiguration based on ANN significantly reduces the computational time to find the
optimal solution while avoiding additional calculations. The results show that the
proposed ANN technique is more than 90% faster than the conventional methods for

varying load profile.
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Keywords: Distribution network reconfiguration, distributed generations, artificial

neural networks, variable load, voltage profile.
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KONFIGURASI OPTIMUM SISTEM PENGAGIHAN MENGAMBILKIRA
PENJANA TERAGIH DAN BEBAN PROFIL BERASASKAN RANGKAIAN
KECERDIKAN BUATAN
ABSTRAK

Konfigurasi ulang rangkaian yang optimum adalah kaedah umum yang digunakan
dalam sistem pengedaran untuk memastikan kehilangan kuasa minimum selalu dicapai.
Ini adalah tugas yang sangat penting untuk mencapai operasi yang menjimatkan. Oleh
kerana tuntutan beban yang berbeza-beza, teknik konfigurasi ulang jaringan konvensional
harus diulang setiap kali pemuatan sistem berubah untuk mencari konfigurasi baru yang
memiliki kehilangan daya minimum. Tugas ini memakan masa dan pendekatan yang
tidak berkesan untuk aplikasi masa nyata. Oleh itu, penyelidikan ini mencadangkan
teknik Artificial Neural Network (ANN) untuk konfigurasi semula rangkaian pengedaran
yang optimum untuk mengatasi masa pemprosesan yang panjang, terutamanya dalam kes
variasi beban. Kaedah yang dicadangkan melibatkan; (1) Laksanakan konfigurasi ulang
rangkaian yang optimum dengan profil beban berubah dan generasi DG menggunakan
teknik meta-heuristik untuk pemodelan ANN (2) Merancang model ANN untuk
konfigurasi ulang rangkaian yang optimum (3) Latih model ANN yang dicadangkan pada
data yang dihasilkan dengan menggunakan nisbah perpecahan yang berbeza untuk
konfigurasi semula rangkaian yang optimum. Teknik meta-heuristik yang diterapkan
dalam karya ini adalah pengaturcaraan Evolusi (EP) dan pengoptimuman kumpulan zarah
(PSO). Untuk menilai prestasi kaedah ANN yang dicadangkan, simulasi yang dilakukan
pada MATLAB dilakukan pada sistem IEEE 16-bus, IEEE 33-bus dan IEEE 69-bus.
Pengaturan semula rangkaian yang dicadangkan berdasarkan ANN secara signifikan
mengurangkan masa pengiraan untuk mencari penyelesaian yang optimum sambil

mengelakkan pengiraan tambahan. Hasil kajian menunjukkan bahawa teknik ANN yang



dicadangkan lebih daripada 90% lebih cepat daripada kaedah konvensional untuk

pelbagai profil beban.

Kata kunci: Konfigurasi rangkaian pengedaran, generasi yang diedarkan, rangkaian

saraf tiruan, beban ubah, profil voltan.
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CHAPTER 1: INTRODUCTION

1.1 Overview

In electrical power delivery system, a distribution system is the final stage where
electrical power is distributed to various types of consumers (residential, commercial, and
industrial). One of the most important goals for electric utilities is to deliver a
continuously high-quality power supply within cost effective operation. Unfortunately, in
a distribution system, due to the impedances of the cables, there is always power loss
through the heating effect (I’R). Thus, large scale distribution systems suffer from high
power losses. It was reported that distribution network system accounted for 70% of the
total losses in power delivery system, while the remaining 30% is related to transmission
and sub-transmission lines (Sulaima et al., 2014). In (Chandramohan, Atturulu, Devi, &
Venkatesh, 2010) the estimated operational losses due to power loss in United State was

amounted to 5,851,85 USD annually.

A well-accepted technique for minimizing the power losses in distribution systems is
through distribution network reconfiguration (DNR). DNR is a process of altering the
network topology by changing the status of sectionalizing switches (normally closed) and
tie switches (normally open), while maintaining the radial structure of the network
without isolating any load. The network structure is reconfigured by closing and opening
the switches. This technique will reduce the power losses and improve the overall voltage

profile, provided that the optimal reconfiguration could be determined.

Another technique to reduce the power losses in distribution system is by supplying
the loads from a close distance, which is done by integrating a local power supply into
the distribution network. An example of local power supply is renewable energy sources,
such as solar, wind, biomass and mini-hydro. It is reported that renewable energy sources

will have the fastest growth in the electricity sector, providing almost 30% of power



demand in 2023, up from 24% in 2017 (International Energy Agency, 2018, October).
This type of power supply is referred to as Distributed Generations (DG). These small
supply units are installed in distribution network at critical points, mainly near load
centers. Distribution generation development and application have got more and more
attention, due to their impact on distribution network. The integration of DG units with
optimal size and location will maximize its potential to reduce the overall power losses.
Moreover, integrating DG will lead to improvement in voltage profile, reliability, and

energy efficiency.

1.2 Problem statement

The need for electrical power is continually increases with the rapid economic growth
around the world. As a result, significant portion of the electrical power is lost in the
distribution process. Power losses will also reduce the voltage profile and the lifetime of
equipment, especially in the heavily loaded areas. Hence, it is crucial to apply effective
power loss reduction techniques such as network reconfiguration. Various methods have
been proposed in the past aiming towards power loss reduction in electrical distribution

system.

From literature, it can be observed that existing methods on network reconfiguration
are limited by certain factors. Firstly, previous research considered static load or uniform
load, where all the loads in the system are assumed change at the same percentage.
However, in practical scenario the loads in distribution system are not uniform and made
up of different load types. Moreover, each type of load changes independently during the
day, which makes the loading of distribution system dynamic. Due to these limitations,
different load types (residential, commercial, and industrial) with variable loading

conditions need to be considered.



Secondly, since the loads in distribution system in practical always vary, the optimal
configuration has to be recalculated through iterative optimization process, which is time
consuming. To reduce the computational time, ANN (Artificial Neural Networks) was
applied for network reconfiguration problem to find the optimal solution as reported in
(Kashem, Jasmon, Mohamed, & Moghavvemi, 1998; Kim, Ko, & Jung, 1993) (Fathabadi,
2016; Salazar, Gallego, & Romero, 2006). However, these methods require a large
number of trained neural networks to find solutions for large systems. This happen since
the number of proposed ANNSs is dependent on the number of switches in the system. In
addition, pre-calculation step such as clustering before ANN training process is required.
Therefore, a new model of ANN for network reconfiguration based on less number of

neurons and shorter training time is required.

Thirdly, previous ANN for network reconfiguration did not incorporate DG units in
the reconfiguration process. DG units are nowadays essential in distribution systems to
minimize power losses, improve voltage profile, provides reliable and uninterrupted
power supply. Furthermore, with the application of DG based on renewable energy,
sustainable power generation with minimum environmental impact can be achieved.
Hence, it is crucial to consider different types of DGs in network reconfiguration in order

to imitate more practical conditions.

1.3 Research Objectives
The main aim of this research is to develop optimal Distribution Network
Reconfiguration (DNR) using Artificial Neural Network (ANN). The objectives are as

following:

1) To implement optimal network reconfiguration with variable load profile and DG

generation using EP and PSO.



2) To design an ANN model for network reconfiguration using data generated from EP
and PSO Network reconfiguration.
3) To analyze the proposed ANN model with the generated data using different split
ratios for optimal network reconfiguration
14 Scope of Research
This work proposes optimal network reconfiguration for constant and variable load
profiles to reduce the active power loss and improve the overall voltage profile for
distribution systems. This work also proposes an ANN approach to find the optimal
configurations in distribution systems for dynamic load profile. It also considers
incorporating different DG types in the system. The constraints of this study are radial

structure of distribution system, bus voltage constraints and DG capacity.

The proposed method in this research implements meta-heuristic optimization
methods and artificial intelligence technique, which is Artificial Neural Network (ANN).
The meta-heuristic optimizations are Evolutionary programming (EP) and Particle
Swarm Optimization (PSO). The proposed method is implemented on 16-bus, 33-bus,
and 69-bus test systems. MATLAB software is used in this study on a PC with 3.06 GHz

CPU and 3-GB RAM.



1.5 Thesis Outline
The report consists of five chapters. An overview, problem statement, research

objectives, scope of research and methodology are presented in first chapter.

Chapter 2 reviews on previous work on network reconfiguration based on heuristic,
meta-heuristic, and artificial intelligence approaches for power loss reduction.
Approaches incorporating DGs in network reconfiguration problem and service

restoration are also presented.

Chapter 3 contains problem formulation, constraints, implementation of meta-heuristic

techniques and proposed ANN method.

Chapter 4 consists of simulation results and performance of the proposed method.

Discussion is focused on active power loss reduction and voltage profile improvement.

Finally, conclusion of this research is presented in chapter 5, with suggested future

works.



CHAPTER 2: LITERATURE REVIEW
2.1 Introduction
This chapter reviews on existing methods for power loss reduction in distribution
system. The presented methods include optimal network reconfiguration, optimal
network reconfiguration with DG and Artificial Neural Network (ANN) applications in
network reconfiguration. The term ‘DG’ used in this literature is referred to as
‘Distributed generations’. Both terms will be used interchangeably in this chapter. At the

end of this chapter, research gap on optimal network reconfiguration will be highlighted.

2.2 Conventional Network reconfiguration

Network reconfiguration is a process of changing the switches' state of a network. This
switch could be normally open, a situation called tie switches, or normally closed, a
situation called sectionalizing switches. The topological structure of a network can be
changed by closing the open switches, and vice versa. The optimal network
reconfiguration process will decrease power loss and improve the system voltage profile.
The network reconfiguration process will transfer the load to comparatively less heavily
loaded feeders from heavily loaded feeders, which culminate in reduced power losses.
The concept of distribution network reconfiguration (DNR) was firstly proposed by
(Merlin, 1975), the proposed method used a branch-and-bond approach to solve DNR

problem.

(Nara, Shiose, Kitagawa, & Ishihara, 1992) proposed a network reconfiguration
method to minimize distribution power losses using Genetic Algorithm (GA). They
confirmed that the method reconfigured the network with minimal power losses.
(Kashem, Ganapathy, & Jasmon, 2000) enhanced voltage stability by reconfiguring a
network using a new algorithm. First, a tie and two neighboring switches were generated.

The combination switch that generates the maximum voltage stability for the system was



determined. The search was then extended to the neighbor of the best branch to check for
any combination that results in better voltage stability. The proposed method could
enhance voltage stability at no additional cost pertaining to tap-changing transformers,
switching equipment, and installed capacitors in the distribution system. A 9-bus test
system was used to confirm the proposed method's viability in reducing network power

loss.

(Das, 2005) used the fuzzy multi objective and heuristic rules approach to reconfigure
their network. Their main objectives were to minimize power losses, balance feeder loads,
and improve the overall voltage by accounting for specific constraints. These objectives
were modeled using fuzzy sets to determine its imprecise nature and its anticipated value
for each objective. The Heuristic rules were used to decrease the number of tie switch
operation. The simulation results confirmed that the method is able to reduce the search
space and minimize computational time, and proved the feasibility of the presented
methodology. (Nguyen, Nguyen, Truong, Nguyen, & Phung, 2017) used a runner-root
algorithm (RRA) to solve the electric distribution network reconfiguration (DNR)
problem. The objectives were to minimize total losses, load balancing, deviate node
voltage, and determining switching operations numbers using max-min method to affect
a final compromised solution. RRA could escape from the local optimal, since it creates
a re-initialization strategy and jumps at large steps. 33-node and 70-node distribution
networks were used to prove the effectiveness of RRA in the case of both single-and
multi-objectives. The results were compared with other that of published works, and it
was confirmed that a runner-root algorithm is effective for solving single-and multi-

objective network reconfiguration problems.



2.3 Network Reconfiguration with Presence of Distributed Generation
Network reconfiguration and DG installation have been proven to be effective towards
reducing power losses in distribution systems. In order to further reduce power losses in
a distribution system, both methods were combined. Distributed generation (DG) is the
electric power generation within distribution networks or on the end-user side of the
network (Kakran & Chanana, 2018). There are many different technologies for DG either
based on non-renewable and renewable resources. The combustion engine, combined
cycle, combustion turbine, micro turbine and fuel cell forms are non-renewable, while
photovoltaic, wind turbine, hydro, geothermal and biomass are renewable resources

(Abdmouleh, Gastli, Ben-Brahim, Haouari, & Al-Emadi, 2017).

Many works have been conducted for optimal reconfiguration method and optimal
DGs output. In (Li, Wang, Zhang, & Guo, 2019), Ant Colony Algorithm proposed for
network reconfiguration with time-varying DG. The main objective of this work was to
minimize power loss and improve voltage profile in distribution networks. The proposed
method was evaluated on IEEE 33-bus test system of 11.4kV. the results show proved
that lower power loss is obtained and better voltage profile from NR with DG, rather than
without DG. Meanwhile, (Rao, Ravindra, Satish, & Narasimham, 2012) presented a
method for simultaneous DG sizing and NR problem. This work focused on total power
loss reduction and voltage profile improvement. Harmony Search Algorithm (HSA) was
utilized to conduct sensitivity analysis to solve the problem. The simulation results were
compared with Genetic Algorithm (GA) and Refined Genetic Algorithm (RGA).
Different scenarios were studied on IEEE 33-bus and IEEE 69-bus test systems for NR

and DG sizing.

(Liu, Sheng, Liu, & Meng, 2017) carried out a simultaneous distribution network

reconfiguration and DG allocation. Prior to network reconfiguration, the uncertainties of



load fluctuation were accounted for. The objectives of the proposed method are
minimizing Expected Energy (Not Supplied), switching operations cost, and line loss
cost. Since the problem is multi-objective, weighting factors were applied. This work
consists of two periods: first, using Binary Particle Swarm Optimization (BPSO) for
creating feasible topologies in distribution network. Second, utilizing HSA for allocating
DGs in the network. To deal with the device parameters and uncertainties of load, an
interval analysis was applied. They also used the IEEE 33-bus and 69-bus systems and
analyzed multiple comparisons and scenarios. The results confirmed that the proposed

network reconfiguration algorithm is feasible.

24 Methodologies of network reconfiguration and DG sizing techniques
Different optimization technique was used to solve network reconfiguration with DG.

Figure 2.1 summarize these techniques.
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2.4.1 Heuristic technique

A heuristic technique is an optimization process that is used to find an approximate for
the optimal solution to a problem, the optimal solution could be the maximum/minimum
values. For it to be effective, the correct function for the problem need to be formulated.
In (Kashem, Jasmon, & Ganapathy, 2000), the reconfiguration of the feeder is done using
interchange switch strategy. Where minimal-tree search technique is used to find options
for losses reduction. This technique determines the suitable switching option that will
result in minimal power loss. From the results, it can be observed that proposed method
attained near optimal solution of the distribution network with minimal computational
burden. In (McDermott, Drezga, & Broadwater, 1999), unique strategy is proposed where
all network switches are opened, then load flow was applied to set minimum limit for
losses. The network is reformed by closing switches one-by-one until minimum losses is
achieved. The results show that proposed method is more accurate, however, it is more
computationally involved. (Gomes et al., 2005) proposed an opposite strategy where all
network switches are closed, which forms a meshed distribution network. The switches
opening criteria to eliminate the loops was based on the increase minimum power loss.
The losses were calculated by load flow program. This method was able to manage the

large number of configurations to be test without combinatorial explosion.

2.4.2 Meta-heuristic technique

The meta-heuristic method is does not require predefined rules and is considered an
iterative generation process (called particles) that search for optimal solutions using
learning strategies and intelligently combining different concepts. This strategy has the
capability to look for the exact/near exact optimal solutions. However, it takes longer
computational time compared to other approaches. There are various techniques under

this category, which will be discussed in the following sections.
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2.4.2.1 Simulated Annealing

Simulated Annealing (SA) is a probabilistic search method that find approximation for
large combinatorial optimization problems. It incorporates a probability function which
makes it escape the local minima when accepting/rejecting new solutions. At each
iteration of the simulated annealing algorithm, a new point is randomly generated, then
incrementally changing a single element in the solution to find a better one. The algorithm
consists of initialization, cooling schedule, perturbation, and acceptance probability to

perform the search (Koziel, Rojas, & Moskwa, 2018).

In (Zhanga, Zhanga, Xina, Zhangb, & Fana, 2012), simulated annealing optimization
is used for network reconfiguration process. The work analyzed the reconfiguration with
a small capacity of gas type DG (oilfield). The objective of the proposed work was to

minimize the power loss using the following equation:

Nb

. P? + Q}
mln(Ploss) - Zl T T (2.1)
i=

l

where Py,¢s is the power loss, Nb is total the number of branches, 7; is resistance of
branch i , P; is the active power of branch i, Q; is the reactive power of branch i, V; is
the voltage of the head node of branch i.

The output generation of the associated gas DG can be stored for use later, which
makes it relatively stable compared to that of solar/wind DG. The combination of
simulated annealing and Immune Algorithm was able to speed the search for optimal
solution process and avoid the unfeasible solution during the evolutionary process. The
combination of the two algorithms resulted in enhancement of population characteristics.
The algorithm was tested on IEEE 33 bus, with four DGs were installed on buses 4, 8§,
25, and 30. The results show that proposed method presented better solution quality in

the reconfiguration process.
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2.4.2.2 Genetic algorithm

Genetic Algorithm (GA) is a popular optimization technique based on a model of
biological evolution and adaptation in nature. GA successive generation of population
during the search process leads the process towards finding optimal solution. GA. One of
the features of GA is easy to model, it is usually implemented in optimization problems
and machine learning (Mirjalili, 2019). In GA, the initial population is generated
randomly, then it is evolved toward better solution through mutation or crossover
processes. The algorithm terminated either when population converges, or maximum
number of generations has been reached. However, GA can only obtain the optimal

answer if the population has a adequately large quantity of data (Ganesan & Venkatesh,

2006).

An improved GA is proposed in (Chandramohan et al., 2010), the technique called
Non dominated Sorting - Genetic Algorithm (NSGA) that was implemented for network
reconfiguration. The main objective of this work was to minimize the operating cost of
distribution system. Maximizing the system’s reliability and power quality improvement
are also suggest in this work. The operating cost equation suggested to minimize the

active and reactive power loss is as following:

Operating Cost = K1 X PL X K2 X QSS (2.2)

where K1 is the real power coefficient in S/kW, PL is the real power losses for system
transmission, K2 is the reactive power coefficient in S/kVAR, and QSS is the drawn
reactive power from the transmission system connected to distribution system. In (Souifi,
Kahouli, & Abdallah, 2019), a multi-objective distribution network reconfiguration is
implemented using GA. Two objectives were considered, minimizing the investment cost

and reducing the active power loss. The method is test on IEEE 10-bus system for both
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objectives individually. The results show the efficiency of proposed method and

capability of obtaining the solutions in short time.

A new methodology of codification for the conventional GA was presented in (Aspari
& Sreenivasulu, 2013) to reconfigure a radial distribution system of 33 buses in the
presence of DGs. The main objective was to minimize the power loss and improve the
system’s voltage profile, while maintain system constraints. Such as, radiality, voltage
limits, feeder capacity, and continuous supply of load. The main contribution of this
method is using new types of crossover and mutation operators. Which results in optimal
solution with reasonable computational time. This technique makes the application of
large distribution system possible, while reducing the search space, since the management
ability of the algorithm to deal with multi-constraints with minimal computational burden.
Furthermore, GA with variable number of population is proposed in (M. Abdelaziz, 2017)

to reduce the number of computational burden.

In (Pefialoza, Yumbla, Lopez, & Padilha-Feltrin, 2019), GA was used with MINLP for
distribution network reconfiguration and distributed generation. The main objective is
minimizing the power loss. The results show that proposed method has better
convergence with good quality solution compared to others. Furthermore, in (Jakus,
Cadenovié, Vasilj, & Sarajcev, 2020), optimal distribution network reconfiguration is
done using hybrid heuristic-genetic algorithm. A combination of heuristic approach and
AG i1s proposed in this work. The proposed method allows its application to a real size
distribution networks with high degree of complexity. Two objective function are
considered: minimizing total power loss and minimizing of loading index. The proposed
method is applied to various standard distribution network test cases. The simulation

results show the accuracy and computational effectiveness of the proposed method.
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2.4.2.3 Evolutionary programming

Evolutionary Programming (EP) is a stochastic optimization method introduced by
Lawrence J. Fogel in 1960 (Fogel, 1998). This technique focuses on the connection
between old population and new population. Therefore, mutation process is applied
directly on the population. The process of this optimization starts with random initial
population (parents). Then, new population (offspring) is generated by applying the
objective function on each parent using the mutation process. Then, the combination of
parents and offspring is sorted based on their fitness value and the next generation is

selected from the best population with better fitness value (Hsiao, 2004).

In (Chakravorty, 2012) a new approach of EP technique is presented to minimize the
power loss during reconfiguration process in the system. An improvement on the
performance of EP was proposed using a heuristic formulation (fuzzy controlled EP
technique). This technique regulates the mutation rate during the optimization process, as
a result, the reconfiguration switching problem complexity is reduced to minimize the
switching operations. In (Aman, Jasmon, Naidu, Bakar, & Mokhlis, 2013) a discrete
evolutionary programming is used to solve NR problem. The gaussian mutation is
replaced with simple discrete process, where the offspring is generated by replacing one
side of tie switch with one sectionalizing switch. As a result, ‘n’ number of solutions will
be generated for each particle in the population. Thus, the solution is obtained in short

span of time.

(Shanmugapriyan, Karuppiah, Muthubalaji, & Tamilselvi, 2018) proposed a method
to reduce the power loss by integrating DG’s in distribution system. This work considered
different types of DG’s such as, active power DG’s, reactive power DG’s and both active
and reactive power DG’s. The proposed method is consisting of two-stages, first, heuristic

method was used to select the optimal location for DG’s. The second stage used
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Differential Evolutionary algorithm to determine the optimal DG sizing. The result show

that proposed method attained better solution compared to PSO.

2.4.2.4 Particle swarm optimization

Particle Swarm Optimization (PSO) is meta-heuristic method used by many
researchers for optimization purposes. It was originally proposed by Dr. Eberhart and Dr.
Kennedy in 1995 (Eberhart & Kennedy, 1995). PSO was inspired by the food searching
behavior of birds or fish. In the initial stage of PSO, particles are generated having random
positions and velocities. In the following stage, the fitness value of each particle is
evaluated based on the objective function. Then, these particles update their position and
velocity based on their searching experience and other relative particles. The process
repeated until the particles converge of maximum number of interactions is reached

(Bansal, 2019). Researchers who utilized PSO in their works include the following.

In (Dahal & Salehfar, 2016), proposed an optimal placements and sizing of DG (PV,
Fuel cells) units utilizing PSO on multi-phased unbalanced distribution network. The test
system used was IEEE 123 node system, as well as a combination of all types of DGs we
used for real experiment. From the comparison with the Repeated Load Flow method
(RLF) results, it is observed that proposed approach is more efficient and quicker.
Moreover, optimal allocation of DGs will reduce the total losses and improve the voltage
profile. In (Firdaus, Penangsang, & Soeprijanto, 2018), BPSO algorithm was utilized
along with load voltage stability index. The main objective was to minimize the power
loss and improve the voltage stability index. The method is implemented on IEEE 33-bus
system evaluate the effectiveness of proposed method. The results show that better load

balance and voltage profile is obtained compared to PSO and Tabu Search.

Sequential integration of NR and DG with variable load profile is proposed by (Saleh,

Elshahed, & Elsayed, 2018). Binary particle Swarm Optimization is used to obtain

16



optimal solution. Where size and location of DG is determined by PSO. The results show
that the integration of NR and DGs represent significant reduction in power loss and
voltage deviation compared to separately integrating NR or DGs to distribution network.
In (Pegado, Naupari, Molina, & Castillo, 2019), Improved selective binary particle swarm
optimization (IS-BPSO) is used to solve reconfiguration of distribution networks
problem. The main objective was to reduce the power loss in distribution system. The
method is implemented on 33-bus and 94-nodes systems. The results show that proposed

method is efficient and guarantees the achievement of global optimization.

2.4.2.5 Harmony search algorithm

Harmony Search Algorithm (HSA) is a music-based Meta-heuristic population search
algorithm. It was inspired by the observation that music is the manifestation of the perfect
state of harmony. In recent years, HSA has received significant attention. The merits of
HAS have led to its application to power system design and multi-objective optimization
problems. The operating concept of HAS consists of three elements: memory
consideration, pitch adjustment and random selection. The harmony memory value is
extracted during memory operation. Then, a modified value is chosen from harmony
memory values using pitch adjustment. Finally, a random selection from the whole value
range is during random selection stage. These operations forms stochastic derivative for
searching process which is different from traditional basic derivative operations (Lee &

Geem, 2004; Mahdavi, Fesanghary, & Damangir, 2007).

In (A. Y. Abdelaziz, Osama, FElkhodary, & El-Saadany, 2012), Network
reconfiguration process was compared to with and without DG for two test systems 32
bus and 69 bus. HSA along with ACO optimization algorithms were utilized in the
proposed work. The results show that both algorithms obtained optimal solutions for

distribution network reconfiguration with minimal power loss. However, the computation
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time for HSA was less than ACO. In (Rao et al., 2012), HSA was utilized with sensitivity
analysis to find optimal DG location and sizing simultaneously with network
reconfiguration process. The proposed method was applied on IEEE 33-bus and IEEE 69-
bus test systems with different scenarios for different load levels (light, normal, heavy).
The results show that the number of DGs is inversely proportional with power loss
reduction value. The performance of HSA was compared to GA, and the analysis shows
that HSA was better than GA. Similar work was done in (Krishna, Kumar, Venkatesh, &
Gokulakrishnan, 2018), one test system was used 33 bus system and HSA optimization
algorithm were used. It can be observed form the results that HSA was better than other

methods.

(Roosta, Eskandari, & Khooban, 2019) proposed an integrated approach for power loss
minimization for unbalanced distribution network in the presence of DGs. HAS was used
to reduce the total power loss, enhance the voltage profile, and increase voltage stability
index. The results show that rearrangement of redistribution network gives better

performance with optimal installation of DG units.

2.4.2.6 Firework algorithm

The Firework Algorithm (FWA) is a meta-heuristic technique based on the stochastic
search technique. FWA can solve optimization problems search for possible areas for use
as a solution space. The algorithm is inspired by the phenomenon of exploding fireworks
and sparks generated within a parameter the fireworks. Due to the ability of FWA to
mimic the explosive nature of fireworks with the incorporation of its features during the
search process, FWA is considered as novel algorithm. This algorithm is able to allocate
possible resources evenly between firework sparks when searching for solutions (Nguyen

& Truong, 2015).
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In (Imran, Kowsalya, & Kothari, 2014), a novel integration technique for network
reconfiguration and DG placements in distribution system is proposed in this work. The
objective is to minimize the power loss and enhance the voltage profile. The NR and DG
placement is done simultaneously using FWA. The radiality is maintained during the
process through power flow method that generates proper parent node-child node. The
allocation of DG install location is done using Voltage Stability Index (VSI). The
proposed work considered different scenarios during network reconfiguration process
and DG placement to evaluate the performance of the proposed method. The result show
simultaneous NR and DG placement gives the most effective scenario for power loss
minimization and voltage profile improvement. The results were compared with other
techniques such as I-ISA and GA, and it can be observed from the results the FWA

performance is better than other methods.

(Badran, Mokhlis, Mekhilef, & Dahalan, 2018) proposed simultaneous integration of
NR and DG sizing. The main objective if the work is to minimize the power loss while
improving the voltage profile of the bus and maximizing DG capacity. FA was utilized
for simultaneous integration and the results showed that proposed method obtains better
quality solution compared to other methods. In (Naguib, Omran, & Talaat, 2017) the
power loss is reduced by integrating NR and DG in distribution network. FA was used
for simultaneous optimization of NR and DG. In this work, fixed and variable type of
DG are considered. Based on hourly probability, DG size and location are determined. It

can be observed form results that proposed method improved the quality of solution.

243 Artificial intelligent technique
Artificial Intelligent (Al) refers to the simulation of human intelligence in machines.
The goals for artificial intelligence include learning, reasoning, and perception. Artificial

intelligence techniques can be utilized in network reconfiguration problem in distribution
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systems such as: fuzzy techniques and Artificial Neural Network techniques (Qiu, Lv, &

Chen, 2011).

2.4.3.1 Fuzzy technique

The fuzzy technique was introduced as a tool for dealing with soft and uncertain
modeling. It is widely used in power systems. The fuzzy variable is modeled using a
membership function that determines the degree of membership to a set that varies from

zero to one (Qiu et al., 2011).

(Niknam, Fard, & Seifi, 2012; Sedighizadeh, Esmaili, & Esmaeili, 2014) proposed a
multi-objective function for NR and DG sizing using fuzzy logic technique. maximization
of VSI and power loss reduction, total cost reduction, and emissions reduction are the
objectives discussed in this work. Each objective has different scale and data size; thus,
fuzzy technique is utilized to unify the scales and control the data size. Where, fuzzy
works as a decision maker to attain the optimal answer for the multi-objective NR and

DG sizing problem.

2.4.3.2 Artificial neural network

ANN technique is a computational model inspired by the human brain. It consists of a
large number of connected nodes, each one performing a simple mathematical operation.
Based on node operation and a set of parameters that are specific to that node, the output
of each node is determined. Combining these nodes together and setting their parameters
carefully helps the algorithm learn and solve complex functions (Kim et al., 1993;

Salazar, Gallego, & Romero, 2006).

(Kim et al., 1993) reconfigured the feeder strategies using ANN. The proposed method
was used to reduce power losses according to the variation of load patterns. To minimize

the size of the training set, ANN was designed for two groups. The first estimates the best
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load level based on the load data of each zone, while the second determine the suitable
topology of the system based on the input load level. The proposed method proved the
ability of the high-speed control strategy decision and the robustness from the error,
which could provide the best solution from imprecise data. The proposed methods also

provide the best solution for constant and the sudden load variations.

A similar approach was proposed by (Kashem et al., 1998) to minimize the power loss
according to load variations. ANN was designed for a training set, this set is generated by
varying P-Q load, then an optimal topology of the system based on the input load pattern
using NR. The proposed method presented high accuracy for predicting the optimal
system topology to minimize the power loss. However, a large number of training
networks would be required for large distribution systems, which is time consuming.
(Salazar et al., 2006) proposed an algorithm based on ANN theory to determine the best
training set for a single neural network with generalization ability clustering techniques.
The results show that proposed method was capable to determine the optimal
configuration in short span of time. The method proved the feasibility of using the NN to
solve the reconfiguration problem and its viability for large-scale systems in a real-time
environment. In (Fathabadi, 2016) an ANN based approach proposed to solve DNR
problem, where a clustering technique was applied on the load data using Dynamic Fuzzy
C-Means (DFCM), to reduce the number of inputs of the ANN size. The simulation
results show that proposed technique obtain optimal configuration in short time and less

number of neurons.

2.5 Overall summary of previous works on network reconfiguration
The benefits and limitations of all the techniques are summarized in Table 2.1 Each

algorithm has its own features in solving the distribution optimization problem with DGs.
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2.6 Summary

From the reviewed, it can be observed that majority of researchers used similar
objective function (minimize power losses) to solve the network reconfiguration problem
for distribution system. The power loss incurred in distribution system can be minimized
via the optimal network reconfiguration and Distributed Generation installation. Different
methods have been applied to solve network reconfiguration and only ANN based method
considered the dynamic load profile. Nevertheless, the network reconfiguration ANN
methods require per-calculation techniques or large number of neural networks. While
actual load in distribution power system is dynamically changeable with respect to time.
The load varies seasonally, daily, and hourly by time and type of the day (weekend or
weekday). The distribution system will not operate at minimum power loss with the
proposed method without considering load profiles and the network configuration. DGs
have been installed in distribution systems around the world in order to sufficiently fulfil
the electricity demand and improve power system’s performance. However, few works
focused on utilizing artificial neural network into distribution network reconfiguration

problem.

Most previous works on network reconfiguration assumed that the DG generation
power is constant. Few works included the different DG types and load profile in the
network reconfiguration in order to produce more practical result. Furthermore, there are
no works on optimal network reconfiguration using ANN that took into account the

different DG integration and different DG types.
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CHAPTER 3: RESEARCH METHODOLOGY
3.1 Introduction
This chapter presents the proposed optimal network reconfiguration for active power
loss reduction in distribution system. Evolutionary programming (EP) and Particle swarm
optimization (PSO) are meta-heuristic approaches used in this study. Both approaches are
used to generate training data for proposed Artificial Neural Network (ANN) model for

network reconfiguration.

3.2 Problem Formulation

The main objective for reconfiguration of distribution systems is to find a topology
which results in minimum active power loss by transferring the heavily load feeders to
less heavily loaded feeders. The integration of distributed generation (DG) units in the
system results in further reduction in power loss. In this work the main objective is to
reduce the power loss by achieving the optimal configuration. Therefore, the main

objective of this study is

F= min(PlI(?)ss) (3-1)

Where Pf .. represents the net power loss which is taken as the ratio of system’s total
active power loss after the reconfiguration process and before the reconfiguration. This is

represented by the following equation:

Prec

1
Ploss = 5o (3.2)
loss

Where P2 is the power loss after reconfiguration and P2 is the power loss before

reconfiguration.
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The power loss equation is given by:

m
PT,loss = min { z R; <

i=1

P? + Q7
) 53

l

Where,

Pr 10ss = 1s the total active power loss in the network.
m = is the number of closed branches.

P; = is the active power.

Q; = is the reactive power.

V; = is the voltage at the receiving terminal of branch i
R; = 1s the resistance of branch i.

The objective function is subject to the following constraints. These constraints should

be satisfied during the process of determining optimal network reconfiguration:
1. DG capacity

0 < Ppg; < Pp&i” (3.4)

Where,
Where Pp; is the DG output at branch i; PJ¢* is the upper bound of DG output.

ii. Power Balance
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N br
Z PDG,i + Pgyp = z Pioga + PT,loss (3.5)
i=1 k=1

Where,

N = is the total number of DGs.

Ps,,p = 1s the power supplied by the substation.
Pj,qa = 1s the active power of the load.

This equation implies that the power of the load and the total power loss is equal to the

total power generated by DG units and substation.

iii. DG power injection

N br
Z PDG,i < z Pload + PT,loss (3.6)
i=1 k=1

This equation implies that the total power injected by the DGs is less than the sum of

total load power and total power loss.
iv. Bus voltage

Vmin < Vi < Vmax (3'7)

Where V; i and V; 4, represent the upper and lower bound of permitted voltage.

The allowed limit within 10% (0.9 p.uto 1.1 p.u).

v. Radial Structure of the network
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The radial structure of distribution network must be maintained during reconfiguration

process and all loads must be served. MATLAB graphisspantree function is used.

TF = graphisspantree(C) (3.9)

1 radial }

TF = {0 not_radial

(3.9)

Where,

graphisspantree = returns True (1) if C is a spanning tree and False (0) otherwise,

A spanning tree must touch all the nodes and must be acyclic.
C = the distribution system.

33 Network Reconfiguration with variable load profile and DG for Power Loss
Minimization

The main objective in this section is the minimization of active power loss in the case
of variable load model in the presence of DGs. To model the proposed Artificial Neural
Network (ANN) for network reconfiguration, a set of data of optimal configuration for
different loading conditions are required. This task can be achieved by using any
optimization techniques. In this work, Evolutionary Programming (EP) and Particle
Swarm Optimization (PSO) are chosen due to their simplicity, reasonable convergence

time and proven to work well for network reconfiguration application

3.3.1 Overview of Artificial Neural Network (ANN)
Neural networks (NN) are set of algorithms. They are inspired by the biological neural
network system in human brain. They consist of input layer, number of hidden layers and

output layer. NN is based on a collection of densely connected nodes called neurons,
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usually in a feed forward way (Yao, 1999). The input layer propagates the received
information to output layers through the hidden layers, where each node (neuron) has an
associated weight w;;. A group of data consists of input and output can be represent by

equation (3.10).
Training Set = {(I;,01), (I3,0,), ..., (15, 0,)} (3.10)

Where (Ip, 0p) represents the input and the desired output for a single training pattern.

The training process is a matter of adjusting the weights w;; between neurons until a

good mapping function f is achieved. The relation between input layer and hidden layer

is shown in equation (3.11).

h D
NetHn = Zinwij (311)
j i

Where,

Nety, = is the total output of the hidden layer H,,.

h = is the number of neurons in the hidden layer H,,.

p = is the number of input patterns to input layer x.

w;;j = is the weight associated with each connection between inputs and hidden layers.

Then, equation (3.12) is the output of hidden layer H,, represented by the activation

function as follows:

Outy, = f(Nety) (3.12)

Where f is the activation function of the hidden layer.
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Generally, the Sigmoid (logsig) activation function is selected for the non-linear
mapping because it has smooth gradient and its output values is bonded between 0 and 1
making clear distinctions on prediction. Equation (3.13) shows the relation between input

and output of hidden layer H,,.

1
1+ e (etu+by) (3.13)

OutHn =

Where by is the bias of the hidden layer.

The input to the next layer is the output of hidden layer H,,. If there is more than one
hidden layer, the process is repeated as in Equations (3.11-3.13). The training process
continue until the mean square error (MSE) is minimized, which is the squared sum of

the difference between the desired output and NN output for all patterns (Kim et al.,

1993).
14
— 1 2
E(W) - E Z(Ot - ONN) (314)
i=1
Where,

O, = is the desired output.

Ony = 1s NN output for single training pattern.

n = 1is the total number of outputs.

During the learning process, the training algorithm updates the weights according to
direction function r(t) (Salazar et al., 2006). In this paper Levenberg-Marquardt which

is a second-order optimization algorithm is applied. It is considered as the fastest

31



backpropagation algorithm for medium size NN. The algorithm can be represented by the

following equations.

Aw, = er(t)

(3.15)
r(t) = U] +ul™"e (3.16)
Wt+1 == Wt + AWt (317)

Where,

J = is the Jacobian matrix containing the first derivatives of NN errors with respect to

weights and biases.

e = is a vector containing network errors.

€ = is the learning rate (0.1).

33.2 Evolutionary Programming (EP)
The EP steps for network reconfiguration for variable load profile distribution system

with DGs are as follows:

Step 1: Set the input data for EP such as bus data, line data, population size, DG output,

maximum iteration, and minimum error.

Step 2: Generate random initial populations, which are the tie switches in distribution
system to be opened represented by S. This population should fulfill the constraints (i)-

V).
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511; 512' Sln

S. = 521' 522' SZn
jn : : : H (3.18)

Sml: SmZ’ Smn

Where,

j=1,2,3, ..., m which represents the population index.
m = represents population size.

n = represents the number of switches in the network.

Step 3: Start the calculation of fitness function by using the objective function (3.3).
Newton—Raphson is used to calculate the objective function for each population and get

the active power loss values through the entire network.

Step 4: The initial population in step 2 undergoes mutation process to produce

offspring, in which the first switch S;; in each population from j = 1 to m, is mutated

using Gaussian mutation operator as in equation (3.11) to produce offspring. Then the

process is repeated for switch S;, and so on until switch Sj,,.

f.
Sm+]';n = Sm,n + N(O: ﬁ(sn max — Sn min) <_] )

f max

(3.19)

Where,
Sn+jn = is mutated population (offspring).
Smn = 1s the old population (Parents).

N = is random Gaussian number.
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[ = is the search step.
Sn max = 18 the maximum random number for tie switch.
Sy min = 18 the minimum random number for tie switch.

fj = is the fitness value for random switch population j.

fmax = 1s the maximum fitness value in switch group.

Step 5: The parents and offspring are combined in new population and sorted in an
ascending order based on the fitness value (power loss). Then, the first half of the new

population is selected to become the new population for the next generations.

Step 6: Finally, the process is repeated from step 4 — 6 until the difference between the
maximum fitness value and minimum fitness value is less than minimum error (ME) using

equation (3.20) or maximum iteration reached.

fmax - fmin < ME (320)

Step 7: After finishing, the program stops. The best solution which represents the new
configuration of the network, the power losses for this configuration and the voltage at

each bus is presented out.

The complete flow chart of the proposed Network Reconfiguration based EP is shown

in Figure 3.1.
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Input parameters (bus and line data, A 4
DG output,p, Max Iter, ME) Select the first m number of
Iter =1 population from combined
¢ population
.| Generate initial solutions (switches)
P S: Yes
j
No
No
Yes

Iter = Iter +1

Calculate the fitness function using
equation (3.3) for Sju

v

Mutate the old population Sjn to get
new population Sm+j.n

v

Calculate fitness function for new
population S,

v

Combine initial and new population
then rank their fitness value
[Sjn Sm+j.n]

Iter > Max(Iter)
No

Figure 3.1: Network Reconfiguration based EP flow Chart
3.3.3 Particle Swarm Optimization (PSO)

The PSO steps for network reconfiguration for variable load profile distribution system

with DGs are as follows:

Stepl: Set the input data for PSO such as bus data, line data, population size, DG
output, maximum iteration and PSO parameters, such as weight of inertia, cognitive and

social coefficient.
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Step 2: Generate random particles with random positions S; and velocities v;. Each
group of particles represent a combination of tie switches that fulfill the system

constraints.

Step 3: Evaluate each particle by the objective function in equation (3.3) to determine

its fitness value.

Step 4: Update each particles’ position and velocity based on its own experience in the
search space Pj.¢: and the experience of other particles Gpps:. The updating process of

positions and velocities is done using (Kennedy, 2006):

SiHt=S{+ vt

(3.21)

vt =w(Ovf + ey X (Ppest = SE) + ca1a X (Gpest = S7) (3.22)
- — WmaxZWmin o ;

w(t) = Winax itermax X tter (3.23)

Where,

St and S} = current position of the particle i at iteration ¢ and t + 1, respectively.
v} and vf*! = current velocity of the particle i at iteration ¢t and t + 1, respectively.
c; and ¢, = cognitive and social coefficient.

r; and r, = random values generated every velocity update (0 ~ 1)

Winax and wy,;;, = maximum and minimum inertia coefficient.
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iter and iten,,, = current iteration number and maximum iteration number,

respectively.

Step 5: Finally, the process is repeated until the optimal or sub-optimal answer is

found.

Step 6: After finishing, the program stops. The best solution which represents the new
configuration of the network, the power losses for this configuration and the voltage at

each bus is presented out.

The complete flow chart of the proposed Network Reconfiguration based PSO is

shown in Figure 3.2.
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Input parameters (bus and line data,
DG output,w, Max Iter, ME, c1, c2)
Iter=1

A

Generate initial positions S; and
velocities v;

Fulfill constraints ?

Calculate the fitness function using
equation (3.3) for S;

Determine P, and G values [«

best

Y

Calculate new velocity v;™ and new
position of particles S{™!

y

Calculate the fitness fucntion for

updated particles

v

Combine initial and updated
population then rank their fitness
value

v

Select the first m number of
population from combined
population

Yes

No

Iter = Iter +1

[ter > Max(Iter)
No

Figure 3.2: Network Reconfiguration based PSO flow Chart
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34 Proposed Optimal Network Reconfiguration based Artificial Neural
Network

34.1 Load Groups

The technique proposed in (Kashem et al., 1998) on the loading modelling is
implemented in this work. First, the system is divided into three load groups m
(residential, commercial, and industrial). Where each load group has similar
characteristics in which the changes of loads in each load group presents similar behavior.
Second, the load groups can operate on estimated levels p according to their peak demand
load curves as shown in Figure 3.3 (Kashem et al., 1998). The number of estimated load
group levels is determined based on the range of the actual loads as shown in Table 3.1.
The actual and estimated load levels are represented as percentage of peak demand. As a
result, the total number of load patterns will be p™. These patterns represent the training

set that will be used as inputs to ANN.

RESIDENTIAL
= P (Active Power) Q (Reactive Power)

AQ 100

<

o 80

s

“ 60 \/‘/—/\/\
L<5 40

(=W}

= 20

<

o

o 2 4 6 8 10 12 14 16 18 20 22 24
TIME (H)

(a)
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COMMERCIAL

= P (Active Power) Q (Reactive Power)

A 100
<
< /\/\
s
60 e
<
o 40 /
(=9}
w20
@)
Oc O
0 2 4 6 8 10 12 14 18 20 22 24
TIME (H)
(b)
INDUSTRIAL
= P (Active Power) Q (Reactive Power)

Q 100
<
S 80
—
3 \J‘\_\_
S 40
A~
= 20
S
° 0
0O 2 4 6 8 10 12 14 18 20 22 24
TIME (H)
(c)
Figure 3.3: Daily load curves in peak load percentage
(a) Residential, (b) Commercial, (¢) Industrial
Table 3.1: Estimated operating load levels
Actual load levels Estimated load levels
Load level
(% of peak demand) (% of peak demand)
1 45 <54 50
2 55<64 60
3 65 <74 70
4 75 <84 80
5 85<94 90
6 95 <100 100
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34.2 ANN Design

The proposed ANN technique for distribution system reconfiguration is shown in
Figure 3.4. The input consists of load patterns (operating percentages of the three load
groups) and the output is the switch number. The number of ANNs will be equal to the
number of tie switches in the system, where each ANN will give one switch to be opened.
The output of all ANNs will give optimal configuration for a specified load pattern. The
relation between the input and output of DNR problem is non-linear. Therefore, a
normalization layer is added before the input layer of ANN. The purpose of this
normalization layer is to normalize the switch numbers to increase the learning
performance of ANN models. The normalization process is done for each group of
switches associated with a particular ANN model. Thus, this process is repeated
according to the number of tie switches in the system. This step changes the values of

optimal switches data to be set in the range between 0 and 1.

Load Patterns
Normalization Normalized
g Optimal
DG Output ANNI1 »  value of » De-normalize — )
g switch 1
switch 1
Optimal
switches » Normalization
group 1
- Normalized y
OPtlmal . ANN2 »  value of » De-normalize — Op't gl
switches » Normalization . switch 2
switch 2
group 2
[ J [ J
[ ] [ ]
[ ] [ ]
Optimal Normalized g
g > ) . Optimal
switches » Normalization ANNIi »  value of » De-normalize — witch i
group i switch i :

Figure 3.4: Proposed ANN design for distribution system reconfiguration
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3.4.2.1 ANN Training Steps

Each individual ANN model is trained only for one switch, while the input for all
ANNs models does not change. The process of training is iterative, since choosing the
appropriate number of neurons in the hidden layer is done by trial and error. The training
will start with one neuron and then the number is increased until a good convergence is
achieved. The weights are initialized as random values. During the training process, the
weights are adjusted iteratively to minimize the mean-squared-error. The steps for

training ANN are as follows:

Step 1: generate the training data for ANN by using EP optimization in such a way the

data is represented as follows.

Gy G - Gy
/LPl DGy 0813 0S1; - 05117\
Data=| LP, DG, 0Sy; 0Sy - 0S| (3.10)
LB, DG, O0Sy1 O0Sp; - O0Sp,

Where,

OSpmp = 1s the optimal tie switch in a switch group G, for a load pattern LB,,.
m = is the number of load patterns.

p = is the number of switch groups.

DG, = is the DG output for m load pattern

LP,, = is the operating percentage for residential, commercial, and industrial loads.

Step 2: The training for the ANN is conducted twice with different percentages for the
generated data. First training is implemented using 70% of the data, second training is
implemented using 60% of data. The data for training the ANN is randomly selected from
generated data, which consists of load patterns as inputs and optimal switches as desired

output for ANN model.
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Step 3: Normalize all switches in the first optimal switch group G, starting from 0S4
to 0S,,1 using equation (3.25), then repeat for the rest of the optimal switch groups, for
p = 2,3,...,p (giving a matrix of m X p elements of normalized optimal switches).

0S _ 0S;1 — min(0S,,1)
morm) ™ max(0S,,,) — min(0Sy;) (3.11)

Step 4: Train the first ANN on the first group of optimal switches G, starting with one
neuron and random initial weights.

Step 5: The training process continue for specific number of iterations, while the
weights are updated each iteration.

Step 6: Store the final value of weights after convergence.

Step7: Test the network accuracy on the remaining data (30% of training data) using
the weight values in step 6. RMS and absolute error (AE) are used to determine the level
of learning the ANN of the data. If the RMS value is below 0.1, then the network has

reached satisfactory level of training (Kashem et al., 1998).

Step 8: If the desired accuracy is achieved, continue to step 9. Otherwise, the number

of neurons is increased by 1, then repeat steps 5-7.

Step 9: Train the other ANN models using the same procedure from step 4-7 based on

the number of optimal group switches G,.

3.4.2.2 Testing Accuracy of Trained ANN

The accuracy of the developed ANN model is tested using, the remaining 30% of
generated data from the first training and 40% of the generated data from the second
training. This remaining data is new to the developed ANN, which means that network
has not been trained on these load patterns. The ANN is evaluated based on the number

of correct predictions for unseen data and the number of correct responses for seen data.
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This is done by using the combined ANN model to find the output of all load patterns and

compare with the actual values.

35 Summary

This chapter presented the methodologies of network reconfiguration using meta-
heuristic such as EP and PSO, and artificial intelligence such as ANN techniques for
power loss reduction in distribution system with variable load profile and DGs. The
comparison and performance of the proposed methods will be discussed in the next

chapter.
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CHAPTER 4: PERFORMANCE OF THE PROPOSED METHOD
4.1 Introduction
This chapter discusses simulation results and performance of the proposed method in
solving network reconfiguration problem. The effectiveness of the proposed method is
demonstrated on standard IEEE 16, IEEE 33, and IEEE 69 bus test system. The results
are compared with existing meta-heuristic and ANN techniques from literature. The main
consideration in comparison of the proposed method and other method is power loss

reduction and voltage profile improvement.

4.2 Test system 1: IEEE 16-bus

An IEEE 16-bus distribution system was used to evaluate the proposed method. The
network consists of 17 switches as 14 switches are sectionalizing switches and 3 tie
switches. The default configuration of the network is 16, 17 and 18 as opened switches,
while other switches are closed, as shown in Figure 4.1. The system voltage is 12.66 kV,
while the total real and reactive power loads are 28.7 MW and 16.3 MVAR, respectively.
The power loss of the default operating condition is 511.43 kW and the lowest bus voltage

is 0.9693 p.u.

4.2.1 Network Reconfiguration Using Meta-heuristics techniques for IEEE 16
Bus System

This section presents the implementation of meta-heuristic techniques in distribution

network reconfiguration problem. It focusses on power loss reduction and voltage profile

improvement.
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Figure 4.1: IEEE 16-bus distribution network

4.2.1.1 Impact on Power Loss

The results obtained using EP and PSO are summarized in Table 4.1 and compared
with the default case (before reconfiguration). Newton-Raphson load flow (NRLF)
algorithm is used to calculate the power loss in this work. The optimal objective function,
F, according to equation (3.1) is 0.9141, which is obtained by both EP and PSO. The
power loss before configuration is 511.704 kW obtained by (NRLF) and after
configuration the power loss decreased to 466.339 kW which is 8.87% reduction. The
optimal switches to be opened are 9, 10 and 18. The processing time taken by EP is 6.378

s, while PSO had faster processing time of 5.127 s.

4.2.1.2 Impact on Voltage Profile

Figure 4.2 shows the voltage profile for default and optimal configurations using EP
and PSO for different percentage loading profile of Residential (R), Commercial (C) and
Industry (I). It can be noticed that the buses voltage magnitude has improved significantly

compared to the default case in all algorithms. For example, before reconfiguration the
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lowest voltage magnitude was at bus 12 with 0.9693 p.u. However, after reconfiguration

the voltage increased to 0.972 p.u. EP and PSO reported the same voltage profile.
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Figure 4.2: Voltage profile for IEEE 16-bus network using different algorithms

422 Network reconfiguration Using Meta-heuristics for IEEE 16 Bus System
with variable load profile and DG

The 16-bus distribution system with variable load profile and DGs is shown in Figure
4.3. The system is divided into three load groups (residential, commercial, industrial),
each load group has 6 operating levels from 50% to 100% of peak demand, which results
in 216 different load patterns. One DG is installed in the system where the location of the
installed DG units is at bus 8. The DG is made up of Photo-voltaic (PV) system. The DG
output profile for active power is shown in Figure 4.4 (Ing, Jamian, Mokhlis, & Illias,
2016). Optimal network reconfiguration based on EP and PSO were implemented on the
test system. Table 4.2 shows the optimal network reconfiguration for 20 different load
patterns. As shown in the table the power loss after reconfiguration is lower than default
case. For example, at load percentage of 100% R, 50% C and 70% I, the default
configuration gives 134.08 kW. While the optimal configuration for this load pattern is
9, 10,and 18 with power loss of 166.2 kW which is equal to 8.28% power reduction. The
maximum power loss reduction occurred at load percentage 50% R, 90% C and 80% I.

the power loss reduction percentage is 11.94%.
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Table 4.2: Optimal Configuration for different load profile using EP & PSO for
IEEE 16-bus network

Operating Before After Loss
A . . configuration ;
Percentage % | Default | Optimal | configuration (kW) Reduction
(1)
R | C |1 (kW) EP | PSO &
50 | 80 | 70 9,10, 18 282.77 260.17 7.99
50 | 90 | 80 9,10, 18 355.63 313.15 11.94
50 | 90 | 90 9,10, 18 365.89 335.88 8.20
50 [ 100 | 70 9,10, 18 416.85 386.83 7.20
60 | 80 | 90 9,10, 18 310.47 283.55 8.67
70 | 70 | 50 9,10, 18 229.39 211.10 7.97
70 | 90 | 70 9,10, 18 365.89 336.56 8.02
80 | 60 | 50 9,10, 18 189.93 174.08 8.35
80 | 90 | 70 ®© 9,10, 18 377.11 346.33 8.16
90 | 70 | 50 = 9,10, 18 250.53 230.26 8.09
90 | 70 | 100 ;n 9,10, 18 293.36 266.99 8.99
90 | 100 | 60 — 9,10, 18 452.88 418.57 7.57
100 | 50 | 70 9,10, 18 181.21 166.20 8.28
100 | 60 | 80 9,10, 18 233.87 213.49 8.71
100 | 70 | 70 9,10, 18 2717.39 253.29 8.69
100 | 70 | 80 9,10, 18 285.96 260.63 8.86
100 | 80 | 50 9,10, 18 320.27 294.63 8.00
100 | 80 | 60 9,10, 18 327.86 300.84 8.24
100 | 90 | 80 9,10, 18 411.81 376.30 8.62
100 | 100 | 90 9,10, 18 496.60 453.67 8.64

4.2.3 Network Reconfiguration Using proposed ANN technique for IEEE 16 Bus
System with variable load profile

The proposed ANN technique is implemented on the proposed 16-bus distribution
system shown in Figure 4.5, where the load is divided into three load groups (residential,
commercial, industrial). Each load group has 6 operating levels from 50% to 100% of
peak demand, which results in 216 load patterns. From the solution of network
reconfigurationfor of 16-bus system, most of the configurations are the same, and can be
grouped into two distinct configurations as tabulated in Table 4.3. It can be observed from
this table that one switch is changing. Therefore, one ANNs are used for the training

which are ANN3. The final structure of the training network is determined based on the
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most accurate results of ANNs outputs. While the structure of both ANN's is similar

regarding input and output neurons, the number of neurons in the hidden layer is different.
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Figure 4.5: IEEE 16-bus distribution network with different load groups

Table 4.3: Optimal unique configuration of all load patterns for IEEE 16-bus

network
Optimal configuration Tie switches to be opened Number of occurrences
number
1 S9, S10, S18 211
2 S9, S10, S6 5

4.2.3.1 Performance of Network Reconfiguration based on ANN

The performance of first ANN (70-30%) model is shown in Table 4.4, The number of
neurons in hidden layer is 2 for ANN3. Additionally, the table shows the accuracy
(absolute error) and MSE of the ANN model. ANN3 accuracy is 100% which corresponds
to 216 optimal solutions. Similarly, the performance of the second ANN (60-40%) model

is shown in Table 4.5. The model ANN3 achieved 100% accuracy.
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4.2.3.2 Impact of proposed ANN technique on power loss

Figure 4.6 shows the power loss before and after configuration for all 216 load patterns
using the proposed ANN technique. A spider web graph is used due to the large number
of load patterns. the outer circle numbers represent the load patterns, while the vertical
axe represents the corresponding power loss. The average power loss reduction for all
cases is 8.36%. as shown in the figure the power loss after reconfiguration using ANN is
lower than before reconfiguration (default). For example, the power loss in 100% loading
is 511.704 kW, with switches 16, 17, and 18 open. However, proposed ANN technique

response is that switches 9, 10 ,and 18 are open, with power loss of 466.339 kW.
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Figure 4.6: Power loss comparison for IEEE 16-bus network before and after
reconfiguration using proposed ANN technique
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4.2.3.3 Impact of proposed ANN technique on voltage profile

Figure 4.7 shows the voltage profile for default and optimal configurations for all load
patterns the using proposed ANN technique. A spider web graph is used due to the large
number of load patterns. the outer circle numbers represent the load patterns, while the
vertical axe represents the corresponding minimum bus voltage. It can be noticed that the
minimum buses voltage magnitude has improved after reconfiguration compared to the
before reconfiguration (default), while the overall voltage profile increased in all load

patterns by an average of 0.17%.
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Figure 4.7: Voltage profile for IEEE 16-bus network before and after
reconfiguration using proposed ANN technique
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4.2.4 Network Reconfiguration Using proposed ANN technique for IEEE 16 Bus
System with variable load profile and DG

The 16-bus system with variable load profile and DG shown in Figure 4.3 is used to
test the proposed optimal network reconfiguration based on ANN. The total number of
different load patterns is 216. From the solution of optimal network reconfiguration for
this load pattern, there were 2 distinct configurations as tabulated in Table 4.6. The
number for each configuration found is also presented in the same table. Based on this
results, one ANN is used for the training, which is ANN3. The final structure of the
training network is determined based on the most accurate results of ANN models
outputs. While the structure of each individual ANN's does not change regarding input
and output neurons, since the number of load groups are three (R, C and I) and the output
of each ANN model is an optimal switch. The number of neurons in the hidden layer is

determined during the training of ANN models.

Table 4.6: Optimal unique configuration of all load patterns for IEEE 16-bus

network with DG
Optimal configuration Tie switches to be opened Number of occurrences
number
1 S9, S10, S18 211
2 S9, S10, S6 5

4.2.4.1 Performance of Network Reconfiguration based ANN

The performance of the proposed ANN model based on the absolute error which is
represented by the accuracy. ANN3 accuracy is 100%, which corresponds to 216 optimal
solutions out of 216 load patterns. The overall accuracy of the final solution is 100%.

Similarly, the second ANN (60-40%) model (ANN3) achieved 100% accuracy.
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4.2.4.2 Impact of proposed ANN technique on power loss

Figure 4.8 shows the power loss before and after configuration for all 216 load patterns

using the proposed ANN technique. A spider web graph is used due to the large number

of load patterns. the outer circle numbers represent the load patterns, while the vertical

axe represents the corresponding power loss. As shown in the figure, the power loss after

reconfiguration is less than before reconfiguration (default). Additionally, the average

power loss reduction for all cases is 8.32%.
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Figure 4.8: Power loss comparison for IEEE 16-bus network before and after

reconfiguration using proposed ANN technique

4.2.4.3 Impact of proposed ANN technique on voltage profile

Figure 4.9 shows the voltage profile for default and optimal configurations for all load

patterns using the proposed ANN technique. A spider web graph is used due to the large

number of load patterns. the outer circle numbers represent the load patterns, while the
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vertical axe represents the corresponding minimum bus voltage. It can be noticed that the

minimum buses voltage magnitude has improved compared to the default case, while the

overall voltage profile increased in all load patterns by an average of 0.15%.
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Figure 4.9: Voltage profile for IEEE 16-bus network before and after

reconfiguration using proposed ANN technique

4.2.5 Comparative analysis on the performance of proposed ANN technique in

Network Reconfiguration for IEEE 16-bus system

To evaluate the performance of the proposed ANN technique, a consistency test was

conducted using EP, PSO and proposed ANN technique. The objective of the test is to

measure the robustness of the technique to find the optimal answer. First, the proposed

ANN technique and other techniques were executed for 20 times to find the optimal
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configuration for all load patterns (216 case). The result is shown in Figure 4.10, the
figure shows the best and worst number of optimal configurations found in the 20 runs
by the different techniques for all the cases. Additionally, the figure shows the average
number of optimal configurations found for all runs. The proposed ANN technique
managed to obtain the optimal configurations for all load patterns in the best run.
Meanwhile, the best run for EP over 20 runs achieved 202 optimal configurations out of
216, while PSO achieved 209 optimal configurations. The average number of optimal
configurations obtained for all 216 cases for 20 runs is 214 by proposed ANN technique
which is 99%, 195 by EP which is 93.5% and 203 by PSO which is 96.8%. Figure 4.11
shows power loss comparison between proposed ANN technique, EP and PSO for the
best run. The average power loss reduction for all techniques of 8.36%, 8.15% and 8.22%

respectively.

Second, the comparison value for processing time is shown in Table 4.7. All algorithms
provide exactly the same optimal configuration and power loss value for default case.
However, the computation time to find the optimal configuration to minimize the power
loss 1s 6.378s for EP and 5.127s for PSO. On the other hand, the execution time (excluding
training time) for the proposed ANN technique is 0.050s, which is very fast compared to
both meta-heuristic methods.

Table 4.7: Statistical analysis for processing time for network reconfiguration
for IEEE 16-bus network

Tie switches Power Loss Vmin Processing
opened Loss (kW) | Reduction % | (p.u) Time (s)
EP 9,10, 18 466.339 8.87 0.972 6.378
PSO 9,10, 18 466.339 8.87 0.972 5.127
Proposed 9,10, 18 466.339 8.87 0.972 0.050
ANN
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Furthermore, to verify the proposed ANN technique, a comparison with other
published works is also conducted, as shown in Table 4.8. The optimal configurations
obtained from references that used Fast Non-dominated Sorting Genetic Algorithm
(FNSGA) (Eldurssi & O'Connell, 2014), Mixed Integer Hybrid Differential Evolution
(MIHDE) (Su & Lee, 2003) and Switching Indices (SI) (Shivakumar, Kumar, &
Marulasiddappa, 2014) were re-evaluated at 100% loading to determine the power loss
using the same load flow program. The results are presented in Table 4.8. The optimal

configuration is 9,10, and 18 which results in 8.87% power loss reduction.

Table 4.8: Comparison of simulation results for IEEE 16-bus network

Tie Power Loss
Vmin
Method switches Loss Reduction (00)
p.u
opened (kW) %

Initial configuration 16,17, 18 511.43 - 0.9693

FNSGA (Eldurssi & 9,10, 18 466.34 8.87 0.972
O'Connell, 2014)

MIHDE (Su & Lee, 2003) 9,10, 18 466.34 8.87 0.972

SI (Shivakumar et al., 2014) 9,10, 18 466.34 8.87 0.972

EP 9,10, 18 466.34 8.87 0.972

PSO 9,10, 18 466.34 8.87 0.972

Proposed ANN 9,10, 18 466.34 8.87 0.972
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4.3 Test system 2: IEEE 33-bus

An IEEE 33-bus distribution system was used to evaluate the proposed method. The
network consists of 37 switches as 32 switches are sectionalizing switches and 5 tie
switches. The default configuration of the network is 33, 34, 35, 36 and 37 as opened
switches, while other switches are closed, as shown in Figure 4.12. The system voltage is
12.66 kV, while the total real and reactive power loads are 3.7 MW and 2.3 MVAR,
respectively. The power loss of the default operating condition is 208.459 kW and the

lowest bus voltage is 0.9108 p.u.

4.3.1 Network Reconfiguration Using Meta-heuristics techniques for IEEE 33
Bus System

This section presents the implementation of meta-heuristic techniques in distribution

network reconfiguration problem. It focusses on power loss reduction and voltage profile

improvement.
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Figure 4.12: IEEE 33-bus distribution network
4.3.1.1 Impact on Power Loss
The results obtained using EP and PSO are summarized in Table 4.9 and compared
with the default case (before reconfiguration). Newton-Raphson load flow (NRLF)
algorithm is used to calculate the power loss in this work. The optimal objective function,

F, according to equation (3.1) is 0.6664, which is obtained by both EP and PSO. The
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power loss before configuration is 208.459 kW obtained by (NRLF) and after
configuration the power loss decreased to 138.927 kW which is 33.35% reduction. The
optimal switches to be opened are 7, 9, 14, 32, 37. The processing time taken by EP is

14.106 s, while PSO had faster processing time of 12.062 s.

4.3.1.2 Impact on Voltage Profile

Figure 4.13 shows the voltage profile for default and optimal configurations using EP
and PSO for different percentage loading profile of Residential (R), Commercial (C) and
Industry (I). It can be noticed that the buses voltage magnitude has improved significantly
compared to the default case in all algorithms. For example, before reconfiguration the
lowest voltage magnitude was at bus 18 with 0.910 p.u. However, after reconfiguration

the voltage increased to 0.947 p.u. EP and PSO reported the same voltage profile.
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Figure 4.13: Voltage profile for IEEE 33-bus network using different algorithms
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43.2 Network reconfiguration Using Meta-heuristics for IEEE 33 Bus System
with variable load profile and DG

The 33-bus distribution system with variable load profile and DGs is shown in Figure
4.14. The system is divided into three load groups (residential, commercial, industrial),
each load group has 6 operating levels from 50% to 100% of peak demand, which results
in 216 different load patterns. Three DGs were installed in the system where the location
of the installed DGs units are at buses 18, 29 and 32 based on (Imran et al., 2014). These
DGs are made up of Photo-voltaic (PV) system. The DGs output profile for active power
is shown in Figure 4.15 (Ing et al., 2016). Optimal network reconfiguration based on EP
and PSO were implemented on the test system. Table 4.10 shows the optimal network
reconfiguration for 20 different load patterns. As shown in the table the power loss after
reconfiguration is lower than default case. For example, at load percentage of 100% R,
50% C and 70% I, the default configuration gives 134.08 kW. While the optimal
configuration for this load pattern is 7, 9, 14, 36 and 37 with power loss of 75.05 kW
which is equal to 44.03% power reduction. . The maximum power loss reduction occurred
at load percentage 100% R, 50% C and 70% 1. the power loss reduction percentage is

44.03%.
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Table 4.10: Optimal Configuration for different load profile using EP & PSO

for IEEE 33-bus network

Operatin After
| go . Before - configuration Loss.
Percentage % | Default | Optimal | configuration (kW) Reduction
0
R | C |1 (kW) EP | PSO &
50 | 80 | 70 7;?’31;" 78.60 57.98 26.23
50 | 90 | 80 7;?’31;" 94.97 70.69 25.56
50 | 90 | 90 7;?’31;" 108.54 80.11 26.19
50 | 100 | 70 7;?’31;" 87.17 66.64 23.55
60 | 80 | 90 7519’31;" 116.42 83.04 28.68
70 | 70 | 50 7529’31;" 75.19 50.14 33.32
70 | 90 | 70 7529’31;" 106.32 74.84 29.61
80 | 60 | 50 7569’31;" 83.70 52.64 37.11
80 | 90 | 70 | 7§29’31;" 120.09 81.88 31.82
on 5
% | 70 | 50 | 7§69’31;" 100.92 63.05 37.53
w )
on
> [7.9. 14,
0 | 70 100 | F |5 174.00 108.34 37.74
on
90 | 100 | 60 | 7529’31;" 126.73 85.26 32.72
100 | 50 | 70 7569’31;" 134.08 75.05 44.03
100 | 60 | 80 7529’31;" 153.16 89.61 41.49
100 | 70 | 70 7569’31;" 142,31 86.97 38.89
100 | 70 | 80 7§29’31;" 157.57 96.01 39.07
100 | 80 | 50 7569’31;" 120.18 74.73 37.82
100 | 80 | 60 7569’31;" 132.88 83.33 37.29
100 | 90 | 80 7329’31;" 167.38 108.49 35.19
100 | 100 | 90 7329’31;" 189.89 125.83 33.74
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4.3.3 Network Reconfiguration Using proposed ANN technique for IEEE 33 Bus
System with variable load profile

The proposed ANN technique is implemented on the proposed 33-bus distribution
system shown in Figure 4.16, where the load is divided into three load groups (residential,
commercial, industrial). Each load group has 6 operating levels from 50% to 100% of
peak demand, which results in 216 load patterns. From the solution of network
reconfigurationfor of 33-bus system, most of the configurations are the same, and can be
grouped into six distinct configurations as tabulated in Table 4.11. It can be observed
from this table the first three tie switches don't change in all 6 configurations. Therefore,
two ANNSs are used for the training which are ANN4 and ANNS. The final structure of
the training network is determined based on the most accurate results of ANNs outputs.
While the structure of both ANN's is similar regarding input and output neurons, the

number of neurons in the hidden layer is different.
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Figure 4.16: IEEE 33-bus distribution network with different load groups
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Table 4.11: Optimal unique configuration of all load patterns for IEEE 33-bus

network
gli)r::ll)l:e T configuration Tie switches to be opened Number of occurrences
1 S7,S9, S14, S32, S37 75
2 S7,S9, S14, S32, S28 68
3 S7,S9, S14, S31, S28 9
4 S7,S9, S14, S31, S37 31
5 S7, S9, S14, S36, S28 18
6 S7,S9, S14, S36, S37 15

4.3.3.1 Performance of Network Reconfiguration based on ANN

The performance of each both ANN training models is shown in Table 4.12 and 4.13,
the tables show the structure, accuracy, Mean Square Error (MSE), training and testing
results for each ANN model. while the structure of both ANN’s is similar regarding input
and output neurons, which corresponds to the number of load groups and the tie switch,
respectively. The number of neurons in hidden layer is 3 for ANN4 and 2 for ANNS in
both trainings, which is reasonable, because the variation in switch for group switch 4 is
three, while for group switch 5 is two. Additionally, the tables show the accuracy
(absolute error) and MSE of each ANN model as well as the overall accuracy of the model
in DNR process. ANN4 accuracy is 99.07% for ANN (70-30%) which corresponds to
214 optimal solutions for switch group 4 out of 216 load patterns, while 98.61% for ANN
(60-40%). ANNS give 100% optimal solution for switch group 5 for the two trainings
models. The training time required by ANN (70-30%) is 4.1 minutes and 4.5 for ANN

(60-40%). The average accuracy of combined training for both ANN models is 98.84%.
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4.3.3.2 Impact of proposed ANN technique on power loss

Figure 4.17 shows the power loss before and after configuration for all 216 load

patterns using the proposed ANN technique. A spider web graph is used due to the large

number of load patterns. the outer circle numbers represent the load patterns, while the

vertical axe represents the corresponding power loss. The average power loss reduction

for all cases is 33.44%. as shown in the figure the power loss after reconfiguration using

ANN is lower than before reconfiguration (default). For example, the power loss in 100%

loading is 208.459 kW, with switches 33,34,35,36 and 37 open. However, proposed ANN

technique response is that switches 7,9,14,32 and 37 are opened, with power loss of

138.928 kW.
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Figure 4.17: Power loss comparison for IEEE 33-bus network before and after

reconfiguration using proposed ANN technique
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4.3.3.3 Impact of proposed ANN technique on voltage profile

Figure 4.18 shows the voltage profile for default and optimal configurations for all
load patterns the using proposed ANN technique. A spider web graph is used due to the
large number of load patterns. the outer circle numbers represent the load patterns, while
the vertical axe represents the corresponding minimum bus voltage. It can be noticed that
the minimum buses voltage magnitude has improved compared to the default case, while

the overall voltage profile increased in all load patterns by an average of 2.37%.
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Figure 4.18: Voltage profile for IEEE 33-bus network before and after
reconfiguration using proposed ANN technique
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4.3.4 Network Reconfiguration Using proposed ANN technique for IEEE 33 Bus
System with variable load profile and DG

The 33-bus system with variable load profile and DG shown in Figure 4.14 is used to
test the proposed optimal network reconfiguration based on ANN. The total number of
different load patterns is 216. From the solution of optimal network reconfiguration for
this load pattern, there were 35 distinct configurations as tabulated in Table 4.14. The
number for each configuration found is also presented in the same table. Based on this
results, five ANNs are used for the training, which are ANNI1 to ANNS. The final
structure of the training network is determined based on the most accurate results of ANN
models outputs. While the structure of each individual ANN's does not change regarding
input and output neurons, since the number of load groups are three (R, C and I) and the
output of each ANN model is an optimal switch. The number of neurons in the hidden

layer is determined during the training of ANN models.
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Table 4.14: Optimal unique configuration of all load patterns for IEEE 33-bus

network with DG

Optimal configuration

Tie switches to be opened

Number of occurrences

number
1 5 8 7 10 12 7
2 7 8 13 10 25 28
3 7 8 14 10 25 1
4 7 8 14 10 27 59
5 7 9 13 26 36 2
6 7 9 13 27 36 11
7 7 9 13 28 36 5
8 7 10 14 26 36 15
9 7 10 14 27 36 9
10 7 10 13 28 36 2
11 7 10 13 27 32 19
12 7 10 13 28 32 6
13 7 10 13 27 36 10
14 7 10 | 28 32 35 4
15 7 10 12 27 32 13
16 7 10 12 28 32 3
17 6 9 28 32 35 7
18 7 9 27 32 35 11
19 7 11 27 32 35 8
20 6 11 21 28 32 4
21 6 9 27 32 35 8
22 7 9 28 32 35 4
23 6 9 21 27 32 1
24 6 9 21 28 32 1
25 7 11 26 32 35 1
26 7 10 12 26 32 2
27 7 10 13 26 32 4
28 7 10 13 25 32 1
29 7 10 13 25 36 3
30 7 10 13 26 36 7
31 7 10 14 25 36 2
32 7 8 14 10 28 8
33 7 8 14 10 26 1
34 7 8 13 10 27 4
35 7 8 13 10 26 1
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4.3.4.1 Performance of Network Reconfiguration based ANN

Tables 4.15 presents the performance of the proposed ANN (70-30%) model. ANNI
and 2 accuracy is 100%, while ANN3, 4 and 5 accuracy are 99.07% which corresponds
to 214 optimal solutions out of 216 load patterns. The overall accuracy of the final
solution (combination of all ANN models) is 97.22%. Table 4.16 presents the
performance of the proposed ANN (70-30%) model. ANN1 and 2 accuracy is 100%,
while ANN3 and 5 accuracy are 98.61% which corresponds to 213 optimal solutions out
of 216 load patterns. The overall accuracy of the combination of all ANN models is
96.29%. The average accuracy for ANN (70-30%) model and ANN (60-40%) model is

96.76%.

4.3.4.2 Impact of proposed ANN technique on power loss

Figure 4.19 shows the power loss before and after configuration for all 216 load
patterns using the proposed ANN technique. A spider web graph is used due to the large
number of load patterns. the outer circle numbers represent the load patterns, while the
vertical axe represents the corresponding power loss. The average power loss reduction

for all cases is 40.27%.
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Figure 4.19: Power loss comparison for IEEE 33-bus network before and after
reconfiguration using proposed ANN technique

4.3.4.3 Impact of proposed ANN technique on voltage profile

Figure 4.20 shows the voltage profile for default and optimal configurations for all

load patterns using the proposed ANN technique. A spider web graph is used due to the

large number of load patterns. the outer circle numbers represent the load patterns, while

the vertical axe represents the corresponding minimum bus voltage. It can be noticed that

the minimum buses voltage magnitude has improved compared to the default case, while

the overall voltage profile increased in all load patterns by an average of 1.69%.
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Figure 4.20: Voltage profile for IEEE 33-bus network with DG before and after
reconfiguration using proposed ANN technique

4.3.5 Comparative analysis on the performance of proposed ANN technique in
Network Reconfiguration for IEEE 33-bus system

To evaluate the performance of the proposed ANN technique, a consistency test was
conducted using EP, PSO and proposed ANN technique. The objective of the test is to
measure the robustness of the technique to find the optimal answer. First, the proposed
ANN technique and other techniques were executed for 20 times to find the optimal
configuration for all load patterns (216 case). The result is shown in Figure 4.21, the
figure shows the best and worst number of optimal configurations found in the 20 runs
by the different techniques for all the cases. Additionally, the figure shows the average
number of optimal configurations found for all runs. The proposed ANN technique

managed to obtain the optimal configurations for 214 load patterns out of 216 in the best

80



run. The sub-optimal configurations found by the proposed ANN technique for the two
load patterns are presented in Table 4.17. Although the solution of ANN different from
the optimization solution, only one switch is different from the optimization solution and
the power loss differences between two techniques are also small by 0.7%. Meanwhile,
the best run for EP over 20 runs achieved 180 optimal configurations out of 216, while
PSO achieved 190 optimal configurations. The average number of optimal configurations
obtained for all 216 cases for 20 runs is 212 by proposed ANN technique which is 98%,
165 by EP which is 76% and 178 by PSO which is 82%. Figure 4.22 shows power loss
comparison between proposed ANN technique, EP and PSO for the best run. The average

power loss reduction for all techniques of 33.44%, 32.65% and 33% respectively.

Second, the comparison value for processing time is shown in Table 4.18. All
algorithms provide exactly the same optimal configuration and power loss value for
default case. However, the computation time to find the optimal configuration to
minimize the power loss is 30.47s for EP and 18.65s for PSO. On the other hand, the time
for the proposed ANN technique is 0.052s execution time (not including training), which
is very fast compared to both meta-heuristic methods.

Table 4.17: Comparison between optimal configuration and ANN alternative
configuration response for IEEE 33-bus network

Load Pattern | Optimal switches | Power Loss | ANN Response | Power Loss
42 7,9, 14, 32,28 75.737 7,9, 14,31, 28 76.289

195 7,9, 14, 36, 28 86.971 7,9, 14, 32,28 87.083
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Table 4.18: Statistical analysis for processing time for network reconfiguration
for IEEE 33-bus network

Tie switches Power Loss Vmin Processing
opened Loss (kW) | Reduction % | (p.u) Time (s)
EP 7,9, 14, 32, 138.928 33.35 0.9423 30.47
37
PSO 7,9, 14, 32, 138.928 33.35 0.9423 18.65
37
Proposed | 7,9, 14,32, 138.928 33.35 0.9423 0.052
ANN 37
220
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_é 180
£ 160
ED 140
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% 100 = P50
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= 80 = ANN
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Average

Worst

Figure 4.21: consistency performance comparison between EP, PSO and
proposed ANN for all load patterns in IEEE 33-bus network
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Figure 4.22: Power loss comparison between EP, PSO and proposed ANN for all
load patterns in IEEE 33-bus network

Furthermore, to verify the proposed ANN technique, a comparison with other
published works is also conducted, as shown in Table 4.19. The optimal configurations
obtained from references that used Harmony Search Algorithm (HAS) (Rao et al., 2012),
Discrete Evolutionary (DEP) (Muhammad et al., 2018), Cuckoo Search Algorithm(CSA)
(Nguyen & Truong, 2015) and Fireworks Algorithm (FWA) (Imran et al., 2014) were re-
evaluated at 100% loading to determine the power loss using the same load flow program.
The results are presented in Table 4.16. The proposed ANN technique obtained the
optimal solutions as in other references except Ref (Imran et al., 2014), which higher than
others. The optimal configuration is 7, 9, 14, 32, 37, which results in 33.35% power loss

reduction.
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Table 4.19: Comparison of simulation results for IEEE 33-bus network

Tie switches Power Loss Loss Vmin
Method
opened (kW) Reduction % (p.u)
Initial configuration 33, 34, 35, 36, 208.459 - 0.9108
37
HSA (Rao et al., 7,9, 14, 32,37 138.928 33.35 0.9423
2012)
DEP (Muhammad et | 7,9, 14, 32, 37 138.928 33.35 0.9423
al., 2018)
CSA (Nguyen & 7,9,14, 32,37 138.928 33.35 0.9423
Truong, 2015)
RRA (Nguyen etal., | 7,9, 14,32, 37 138.928 33.35 0.9423
2017)
FWA (Imran et al., 7,9, 14, 28, 32 139.98 32.85 0.9413
2014)
RGA (Zhu, 2002) 7,9,14,32,33 139.532 33.07 0.9378
EP 7,9,14,32,37 138.928 33.35 0.9423
PSO 7,9,14,32,37 138.928 33.35 0.9423
Proposed ANN 7,9,14, 32,37 138.928 33.35 0.9423
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4.4 Test system 3: IEEE 69-bus

An IEEE 69-bus distribution system consists of 73 switches where, 68 switches are
sectionalizing switches and 5 tie switches. The default configuration of the network is 17,
22,25, 58 and 37 as opened switches, while other switches are closed, as shown in Figure
4.23. The system voltage is 12.66 kV, while the total real and reactive power loads are
3.8 MW and 2.7 MV AR, respectively. The power loss of the default operating condition

1s 224.975 kW and the lowest bus voltage is 0.9092 p.u.

S4 IS38IS39I S4OI S41|S42|S43|S44|

28 29 30 31 32 33 34 35

----- Bus S5 IS45|S46I s47] sas s49|sso| ss1ss2ss3|ss4

I -
|

Substation

I3 K
|

|
S37

S55]S561S57 S62I S63IS64| 65 IS66ISG7IS()8IS()4$7(1$71I |
T 1T T T TT1T71T b 4
i v :
47 48 49 50! 53 54 55 56 57158 59 60 61 62 63 64 65
L_Ss8 _ _ _________ i

Figure 4.23: IEEE 69-bus distribution network
4.4.1 Network Reconfiguration Using Meta-heuristics techniques for IEEE 69
Bus System
This section presents the implementation of meta-heuristic techniques in distribution
network reconfiguration problem. It focuses on power loss reduction and voltage profile

improvement.

4.4.1.1 Impact on Power Loss
The results obtained using EP and PSO are summarized in Table 4.20 and compared

with the default case (before reconfiguration). Newton-Raphson load flow (NRLF)
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algorithm is used to calculate the power loss in this work. The optimal objective function,
F, according to equation (3.1) is 0.436, which is obtained by both EP and PSO. The power
loss before configuration is 224.975 kW obtained by (NRLF) and after configuration the
power loss decreased to 98.161 kW which is 55.37% reduction. The optimal switches to
be opened are 17, 22, 23, 63, 68. The processing time taken by EP is 49.012 s, while PSO

had faster processing time of 11.901 s.

4.4.1.2 Impact on Voltage Profile

Figure 4.24 shows the voltage profile for default and optimal configurations using EP
and PSO for different percentage loading profile of Residential (R), Commercial (C) and
Industry (I). It can be noticed that the buses voltage magnitude has improved compared
to the default case in all algorithms. For example, before reconfiguration the lowest
voltage magnitude was at bus 65 with 0.9092 p.u. However, after reconfiguration the

voltage increased to 0.953 p.u. EP and PSO reported the same voltage profile.

1 [ e ——]
0.99 \‘

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67
Bus Number

= Default =—=FEP PSO

Figure 4.24: Voltage profile for IEEE 69-bus network using different algorithms
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44.2 Network reconfiguration Using Meta-heuristics for IEEE 69 Bus System
with variable load profile and DG

The 69-bus distribution system with variable load profile and DG is shown in Figure
4.25. The system is divided into three load groups (residential, commercial, industrial),
each load group has 6 operating levels from 50% to 100% of peak demand, which results
in 216 different load patterns. Three DGs were installed in the system where the location
of the installed DGs units are at buses 61, 62 and 65. These DGs are made up of Photo-
voltaic (PV) system. The DGs output profile is shown in Figure 4.15. Optimal network
reconfiguration based on EP and PSO were implemented on the test system. Table 4.21
shows the optimal network reconfiguration for 20 different load patterns. As shown in the
table the power loss after reconfiguration is lower than default case. For example, at load
percentage of 100% R, 50% C and 70% I, the default configuration gives 123.25 kW.
While the optimal configuration for this load pattern is 17, 22, 23, 65 and 68 with power

loss of 56.21 kW which is equal to 44.03% power reduction.
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Figure 4.25: IEEE 69-bus distribution network with different load groups and
DGs
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Table 4.21: Optimal Configuration for different load profile using EP & PSO

for IEEE 69-bus network

Operating Bef After Loss
Percentage % | Default | Optimal erore. configuration | Reduction
configuration o
R | C I EP | PSO ¢
50 | 80 | 70 17, 22, 94.51 41.80 26.23
23, 62. 68 : : :
17,22,
50 | 90 | 80 7 s 121.95 53.09 25.56
50 | 90 | 90 17, 22, 153.66 65.78 26.19
23, 63. 68 : : :
50 | 100 | 70 17,22, 94.58 42.06 2355
23,62, 68 : : :
17,22,
60 | 80 | 90 SN 159.20 68.54 28.68
17, 22,
70 | 70 | 50 7 s 6 60.23 28.28 33.32
17,22,
70 | 90 | 70 s 68 104.58 4722 29.61
17, 22,
80 | 60 | 50 7 s 6 65.22 30.75 37.11
80 [ 90 | 70 | & | ,a2%h | 11034 50.21 31.82
90 | 70 | 50| 2 [ 1722 70.75 33.71 37.53
| 23,65, 68 : : :
90 | 70 | 100| o 17, 22, 216.85 93.51 37.74
N 23,63, 68 . . :
=~ 17, 22,
90 | 100 | 60 | = |,z 91.78 43.15 32.72
17,22,
100 | 50 | 70 265 68 123.25 56.21 44.03
17, 22,
100 | 60 | 80 7 6 152.65 68.49 41.49
17,22,
100 | 70 | 70 7 6 123.29 56.54 38.89
17, 22,
100 | 70 | 80 BUE 152.67 68.66 39.07
17,22,
100 | 80 | 50 2 ot s 76.78 36.92 37.82
17, 22,
100 | 80 | 60 SO 98.90 46.09 37.29
17,22,
100 | 90 | 80 7 68 152.74 69.03 35.19
17,22,
100 | 100 | 90 7 e 186.54 82.90 33.74
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4.4.3 Network Reconfiguration Using proposed ANN technique for IEEE 69 Bus
System with variable load profile

The proposed ANN technique is implemented on the proposed 69-bus distribution
system shown in Figure 4.26, where the load is divided into three load groups (residential,
commercial, industrial). Each load group has 6 operating levels from 50% to 100% of
peak demand, which results in 216 load patterns. From the solution of network
reconfigurationfor of 69-bus system, most of the configurations are the same, and can be
grouped into four distinct configurations as tabulated in Table 4.22. It can be observed
from this table that Switch group 4 is the only changing group with switch numbers 62,
63, 64 and 65, thus only 1 ANN is need for training in this case. The structure of the
training network is determined based on the most accurate results of ANN models. While
the structure of the ANN model is similar to pervious system in the input and output

layers, the number of neurons in the hidden layer is different.
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Figure 4.26: IEEE 69-bus distribution network with different load groups
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Table 4.22: Optimal unique configuration of all load patterns for IEEE 69-bus

network
Optimal . . .
. Tie switches to be Number of occurrences for this
configuration . .
opened optimal configuration

number

1 S17, S22, S23, S62, S68 53

2 S17, S22, S23, S63, S68 48

3 S17, S22, S23, S64, S68 53

4 S17, S22, S23, S65, S68 62

4.4.3.1 Performance of Network Reconfiguration based on ANN

The performance of both ANN training models is shown in Tables 4.23 and 4.24, the
tables show the structure, accuracy, MSE, training and testing results for each ANN.
while, the structure of ANN’s is similar regarding input and output neurons, which
corresponds to the number of load groups and the tie switch, respectively. The number of
neurons in hidden layer is 4 for both models ANN4. Additionally, the tables show the
accuracy (absolute error) of each ANN model. The models (ANN4) achieved 100%
accuracy which corresponds to 216 optimal solutions for switch group 4 out of 216 load

patterns. The overall accuracy of combined ANN models is 100%.
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4.4.3.2 Impact of proposed ANN technique on power loss

Figure 4.27 shows the power loss before and after configuration for all 216 load
patterns using the proposed ANN technique. A spider web graph is used due to the large
number of load patterns. the outer circle numbers represent the load patterns, while the
vertical axe represents the corresponding power loss. The average power loss reduction
for all cases is 55.20%. as shown in the figure the power loss after reconfiguration using
ANN is lower than before reconfiguration (default). For example, the power loss in 100%
loading is 224.975 kW, with switches 17, 22, 25, 58 and 37open. However, proposed

ANN technique response is that switches 17, 22, 23, 63 and 68 are opened, with power

loss 0f 98.161 kW.
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Figure 4.27: Power loss comparison for IEEE 69-bus network before and after
reconfiguration using proposed ANN technique
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4.4.3.3 Impact of proposed ANN technique on voltage profile

Figure 4.28 shows the voltage profile for default and optimal configurations for all
load patterns the using proposed ANN technique. . A spider web graph is used due to the
large number of load patterns. the outer circle numbers represent the load patterns, while
the vertical axe represents the corresponding minimum bus voltage. It can be noticed that
the minimum buses voltage magnitude has improved compared to the default case, while

the overall voltage profile increased in all load patterns by an average of 3.4%.
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Figure 4.28: Voltage profile for IEEE 69-bus network before and after
reconfiguration using proposed ANN technique

4.4.4 Network Reconfiguration Using proposed ANN technique for IEEE 33 Bus
System with variable load profile and DG

The 69-bus system with variable load profile and DG shown in Figure 4.25 is used to

test the proposed ANN optimal network reconfiguration based. The total number of

different load patterns is 216. From the solution of optimal network reconfiguration for
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this load patterns, there were 29 distinct configurations as tabulated in Table 4.25. The
number for each configuration found is also presented in the same table. Based on this
results, five ANNSs are used for the training which are ANN1 to ANNS. The final structure
of the training network is determined based on the most accurate results of ANN models

outputs.

Table 4.25: Optimal unique configuration of all load patterns for IEEE 69-bus

network with DG
Optimal configuration Tie switches to be Number of
number opened occurrences

1 17 | 22 | 23 | 63 | 68 11
2 17 | 22 | 23 | 64 | 68 18
3 17 | 22 | 23 | 65 | 68 19
4 17 | 22 | 23 | 62 | 68 15
5 17 {22 |23 |64 | 70 18
6 17 {22 |23 65|70 27
7 17 {22 |23 |63 |70 21
8 17 {22 |23 |62 |70 17
9 17 119 | 23 | 65 | 70 20
10 17 | 19 | 23 | 62 | 70 13
11 17 {19 | 23 | 64 | 70 17
12 17 119 |23 |63 |70 22
13 15119 |23 |65 |70 4
14 17 119 |21 |65 |70 3
15 17 {19 | 21 | 64 | 70 3
16 16 | 17 | 21 | 63 | 70 10
17 16 | 17 | 21 | 62 | 70 12
18 16 | 17 | 21 | 64 | 70 14
19 16 | 17 | 21 | 65 | 70 10
20 15119 |23 |63 |70 3
21 15116 |21 |65 |70 2
22 15116 |21 |62 |70 1
23 15116 |21 |63 |70 2
24 15116 |21 |64 | 70 3
25 15116 |23 |65 |70 1
26 15116 |23 |62 |70 1
27 15119 |23 |64 | 70 4
28 17 {19 | 21 | 62 | 70 3
29 151192362 |70 1
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4.4.4.1 Performance of Network Reconfiguration based ANN

Table 4.26 presents the performance of the ANN (70-30%). ANNI1, 4 and 5 have
accuracy of 100%, while ANN3 is 99.53% and ANN2 accuracy is 99.07% which
corresponds to 214 optimal solutions out of 216 load patterns. The overall accuracy of
this model (combination of all ANN models) is 98.15%. Table 4.27 show the performance
of ANN (60-40%). similarly, ANN 1 and 5 achieved 100% accuracy as other model.
However, ANN 3 and 4 have 99.07% accuracy which corresponds to 214 optimal
solutions out of 216 load patterns. The overall accuracy of this model (combination of all
ANN models) is 97.69%. The average accuracy of the two ANN (70-30%) and ANN (60-

40%) models is 97.29%.

4.4.4.2 Impact of proposed ANN technique on power loss

Figure 4.29 shows the power loss before and after configuration for all 216 load
patterns using the proposed ANN technique. As shown in the figure the power loss after
reconfiguration is less than before reconfiguration. Additionally, the average power loss

reduction for all cases 1s 37.4%.

4.4.4.3 Impact of proposed ANN technique on voltage profile

Figure 4.30 shows the voltage profile for default and optimal configurations for all
load patterns using the proposed ANN technique. The figure shows the minimum bus
voltage at each load pattern. It can be noticed that the minimum buses voltage magnitude
has improved compared to the default case, while the overall voltage profile increased in

all load patterns by an average of 1.35%.
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Figure 4.29: Power loss comparison for IEEE 33-bus network before and after
reconfiguration using proposed ANN technique
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Figure 4.30: Voltage profile for IEEE 33-bus network with DG before and after
reconfiguration using proposed ANN technique

98



NNV
v'6 Z €9 $9 I 0S1 Is1 - %S1°86 - paurquios)
6°0 - 59 59 - 1S1 IST | 9196’1 %001 1-6-¢ SNNV
¢ - 59 $9 - Is1 IS | €009'1 %001 I-p-¢€ PNNV
¥'C I v9 $9 - ISl ISl [1-°9°L %¢€5°66 [-¥-¢€ ENNV
8’1 | v9 $9 I 0sI 1S1 v0-9¢'y %L0°66 [-¥-¢ INNV
€1 - 59 $9 - IS1 IST | 90-98°C %001 1-¢-¢ INNV
A—:Ev SATIRUINY 1931100 Sased SATIRUIAY 109110)) S9Sed
. ASIN | A%eanddy | aampPnns | dqunN NNV
oy,

SINSIY 3unSIL,

S)NSAY sururea,

DA WIM YI0M)2U Snq-¢¢ FAAT 10J dueuLIopdd [dpowr (%0€-0L) NNV :97°F dIqe L

99



NNV
66 S €9 $9 - 0S1 Is1 - %69°L6 - paurquios)
I - 59 $9 - 1S1 IST | 60-3L€ %001 1-6-¢ SNNV
6'C C €9 $9 4 Is1 Is1 c0-9LC %L0"66 [-¥-¢ NNV
8'C C €9 $9 - ISl ISl 8099°1 %L0°66 [-¥-¢ ENNV
I'C | v9 $9 - IS1 IS1 2026°L %¢E€S5°66 [-¥-¢ INNV
'l - $9 $9 - IS1 IST | €0-9¢s %001 1-¢-¢ INNV
A—:Ev SATIRUINY 1931100 Sased SATIRUINY 109110)) S9Sed
. ASIN | A%eanddy | aampPnns | dquinN NNV
oy,

SINSY SunSdL,

S)NSAY sururea,

DA YWIM YI0M)2U Snq-¢¢ FAAT 10J dueuLIopdd [dpowr (% 05-09) NNV LTF dIqeL

100



4.4.5 Comparative analysis on performance of proposed ANN technique in
Network Reconfiguration for IEEE 69-bus system

To evaluate the performance of the proposed ANN technique, a consistency test was
conducted using EP, PSO and proposed ANN technique. The objective of the test is to
measure the robustness of the technique to find the optimal answer. First, the proposed
ANN technique and other techniques were executed for 20 times to find the optimal
configuration for all load patterns (216 case). The result is shown in Figure 4.31, the
figure shows the best and worst number of optimal configurations found in the 20 runs
by the different techniques for all the cases. Additionally, the figure shows the average
number of optimal configurations found for all runs. The proposed ANN technique
managed to obtain the optimal configurations for all load patterns in the best run.
Meanwhile, the best run for EP over 20 runs achieved 176 optimal configurations out of
216, while PSO achieved 186 optimal configurations. The average number of optimal
configurations obtained for all 216 cases for 20 runs is 212 by proposed ANN technique
which is 98%, 164 by EP which is 76% and 179 by PSO which is 83%. Figure 4.32 shows
power loss comparison between proposed ANN technique, EP and PSO for the best run.
The average power loss reduction for all techniques of 55.20%, 31.85% and 32.6%

respectively.

Second, the comparison value for processing time is shown in Table 4.28. All
algorithms provide exactly the same optimal configuration and power loss value for
default case. However, the computation time to find the optimal configuration to
minimize the power loss is 26.47s for EP and 21.34s for PSO. On the other hand, the time
for the proposed ANN technique is 0.054s, which more computationally effective

compared to both meta-heuristic methods.
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Figure 4.32: Power loss comparison between EP, PSO and proposed ANN for all
load patterns in IEEE 69-bus network
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Table 4.28: Statistical analysis for processing time for network reconfiguration
for IEEE 69-bus network

Tie Power i .
i Loss Vmin Processing
switches Loss Reduction % (p.u) Time (s)
opened (kW) o p.
EP 17,22,
23,62, 68 98.16117 56.37 0.9528 26.475
PSO 17,22,
23, 62, 68 98.16117 56.37 0.9528 21.338
Proposed 17,22,
ANN 23, 62, 68 98.16117 56.37 0.9528 0.054

Furthermore, to verify the proposed ANN technique, a comparison with other
published works is conducted in Table 4.29. The optimal configurations obtained from
Fast Non-dominated Sorting Genetic Algorithm (FNSGA), Cuckoo Search Algorithm
(CSA), Discrete Artificial Bee Colony (DABC), and Fireworks Algorithm (FWA) at base
case of 100% loading is presented. The power loss for all techniques is almost similar
with value around 98.161 kW. The proposed method presents similar results as other

optimization techniques.
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Table 4.29: Comparison of simulation results for IEEE 69-bus network

Tie switches Power Loss Vmin
Method
opened Loss (kW) | Reduction % (p.u)
17,22, 25,
Initial configuration 224975 - 0.90929
58,37
FNSGA (Eldurssi & 15,19, 23,
99.35 55.85 0.9428
O'Connell, 2014) 63, 69
CSA (Nguyen & Truong, 16, 19, 23,
98.59 55.73 0.9495
2015) 63,70
16, 19, 23,
FWA (Imran et al., 2014) 98.59 55.73 0.9495
63,70
DABC (Aman, Jasmon, 15, 16, 23,
100.28 55.42 0.9428
Bakar, & Mokhlis, 2014) 63,70
EP 15,22,23, 1 98161 s637 0.9528
63, 68 )
17,22, 23,
PSO 63. 68 98.161 56.37 0.9528
17,22, 23,
Proposed ANN Nes 98.161 56.37 0.9528
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CHAPTER 5: CONCLUSION
5.1 Conclusion
In this work, an ANN technique has been successfully proposed for optimal network
reconfiguration considering variable load and DG profiles. The proposed network
reconfiguration based on ANN was verified using an IEEE 16, IEEE 33 and 69 bus test

systems. The results were compared to other published results from literature.

The proposed ANN technique performs equally well as other techniques, with regards
to the power loss reduction and voltage profile improvement. The results reported high
power loss reduction of 8.87%, 27.4% and 56.37% for 16, 33 and 69 test systems,
respectively. While the minimum value of buses voltage was 0.972 p.u, 0.9423 p.u and
0.9528 p.u for 16, 33 and 69 test systems, respectively. On the other hand, the proposed
ANN technique outperforms other techniques in consistency of giving optimal solutions.
The results reported that the consistency of proposed method is 100% for 16 bus system,
while other methods reported 93.5% and 96.8% for EP and PSO, respectively.
Additionally, the consistency for 33 bus system was 99.06% for the proposed ANN
technique, while other methods reported a maximum consistency of 87.9% in PSO.
Moreover, the execution time for proposed ANN method is very efficient, with 0.050s,
0.052 and 0.054 for 16, 33 and 69 test systems to find the optimal solution for default

case compared to other methods.

The reported results verified that proposed method ANN technique achieved high
accuracy to obtain optimal configurations. The accuracy for ANN model for 16, 33 and
69 test systems are 100%, 99.07% and 100% respectively. The number of neurons used
for each ANN model is small as compared to previous works. However, it is sufficient to

achieve a good learning and accurate predicting ANN model. The number of neurons
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used for 33 test system is 3 and 4 neurons for ANN4 and ANNS, respectively. In 69 test

system, one ANN model was used in the training with 4 neurons.

5.2 Future Work
The proposed network reconfiguration based on Artificial Neural Network can be

further improved. Possible future works include:

1) Further studies need to be carried regarding the protection equipment in the
distribution systems. Since the electrical flow of the network is modified during
network reconfiguration.

2) Further analysis can be explored on larger distribution system, such as 118-bus,
137-bus and 205-bus for NR based ANN. Furthermore, work can be done on
incorporating battery storage devices and electric vehicles.

3) Further studies need to be carried on minimizing the total investment on the
distribution systems, such as minimizing the energy cost, minimizing new

branches construction cost and protection devices cost.
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