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OPERATIONAL STRUCTURAL DAMAGE IDENTIFICATION USING DE-

NOISED MODAL FEATURE IN MACHINE LEARNING 

ABSTRACT 

Structural damage can severely affect the safety and functionality of the structure and 

lead to economic loss. Vibration-based structural damage detection has raised continuous 

interest over the decades, as a non-destructive way to provide warnings and predict certain 

faults at early stages. Compared with conventional modal parameters such as the natural 

frequency and mode shape, the upstream modal data, namely the frequency response 

function (FRF), can be a better alternative, because it is rich in modal information and 

can be easily obtained. However, the FRF is usually measured through experimental 

modal analysis (EMA) when the test object is in shut-down mode, which is not practical 

for real-time application in the working environment. This limitation can be overcome by 

a novel technique named impact-synchronous modal analysis (ISMA) performed under 

the operational condition. Machine learning is also a focus in this work, which was 

employed to process and classify FRF data in terms of damage. By integrating ISMA, 

both supervised and unsupervised machine learning algorithms were investigated to 

develop real-time damage identification schemes. Specifically, the back-propagation (BP) 

network was employed in the supervised learning method, and the FRF changes in a 

selected frequency interval at several measurement points were used as the input of the 

network. The unsupervised learning method was developed by combining principal 

component analysis (PCA), waveform chain code (WCC) analysis and hierarchical 

cluster analysis. WCC analysis was carried out on the PCA-reduced FRF to extract 

damage-sensitive PCA-WCC features. The unsupervised hierarchical cluster analysis was 

then conducted on these features. The proposed schemes were tested on a rectangular 

Perspex plate. The results show that the similarity between the FRF obtained by ISMA 
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and EMA exceeds 0.993, proving that the de-noising method of ISMA provides static 

comparable FRF data during the in-service condition. For the supervised learning method, 

the trained BP network can successfully identify the scenarios of high and moderate 

damage with an overall accuracy of 100% when all five measurement points are used. 

With the input features optimized by mode shape assessment, 100% accuracy can also be 

achieved with only two measurement points. For the unsupervised learning method, the 

hierarchical cluster analysis can correctly cluster the samples in terms of their damage 

states. In terms of damage severity and location identification, the proposed scheme is 

sensitive to detect damage severity with damage index as low as 0.05. In addition, the 

combination of PCA-reduced FRF and mode shapes shows a positive correlation between 

the magnitude of the resonant peak and the displacement of the impact point in identifying 

the damage location of the plate. In conclusion, the supervised learning method using 

FRF change is convenient and effective in identifying the damage state of the plate, and 

can be optimized through mode shape assessment. Meanwhile, the unsupervised learning 

method using PCA-WCC features is good at detecting unknown damage, and is sensitive 

to low-severity damage. With the help of PCA-reduced FRF, it is also feasible to estimate 

the severity and locate the damage of the test plate.  

Keywords: damage identification; frequency response function; impact-synchronous 

modal analysis; machine learning; vibration. 
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PENGESANAN KEROSAKAN STRUKTUR BEROPERASI BERDASARKAN 

CIRI-CIRI MODAL BEBAS DARIPADA BUNYI DALAM TEKNIK 

PEMBELAJARAN MESIN 

ABSTRAK 

Kerosakan struktur boleh menjejaskan keselamatan dan fungsinya serta turut 

mengakibatkan kerugian ekonomi. Pengesanan kerosakan struktur berasaskan getaran, 

sebagai cara tanpa penjejasan dalam memberi amaran dan ramalan kerosakan, semakin 

menarik minat secara berterusan daripada lebih banyak pengkaji selama beberapa dekad. 

Berbanding dengan meggunakan parameter modal konvensional seperti frekuensi dan 

bentuk mod, kaedah menggunakan data upstream seperti frekuensi response function 

(FRF), ialah alternatif yang lebih baik kerana FRF kaya dengan maklumat modal dan 

mudah diperolehi. Walau bagaimanapun, FRF biasanya diperolehi melalui kaedah 

analisis modal eksperimen (EMA) ketika objek yang diuji tidak beroperasi. Kaedah ini 

tidak praktikal untuk aplikasi sebenar yang berada di persekitaran kerja yang beroperasi. 

Oleh itu, FRF dapat diekstrak melalui kaedah analisis modal serasi impak (ISMA) dari 

objek uji yang berada dalam keadaan operasi. Kaedah pembelajaran mesin digunakan 

untuk memproses dan menganalisis data FRF yang dikumpul untuk pengesanan 

kerosakan. Bersama dengan ISMA, cara pembelajaran mesin supervised dan 

unsupervised learning dikaji untuk membina skema pengesanan kerosakan secara 

langsung. Rangkaian back-propagation (BP) digunakan sebagai cara supervised learning, 

manakala data yang dimasukkan ke dalam rangkaian ini untuk latihan data ialah 

perubahan data FRF dalam jarak frekuensi terpilih diukur dari beberapa titik perukuran. 

Gabungan analisis komponen prinsipal (PCA), analisis gelombang rantai kod (WCC) dan 

analisis kluster secara hierarki digunakan untuk skema pengesana kerosakan yang 

berdasarkan cara unsupervised learning. Analisis WCC dijalankan pada FRF yang 
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dikurangkan oleh PCA untuk mengekstrak ciri-ciri PCA-WCC yang sensitif terhadap 

kerosakan. Seterusnya, analisis kluster secara hierarki dijalankan pada ciri-ciri PCA-

WCC tersebut. Skema yang dicadangkan diuji pada plat Perspex bersegi-empat tepat. 

Kajian ini menunjukkan bahawa persamaan antara FRF yang diperoleh oleh ISMA dan 

EMA adalah lebih daripada 0.993. Ini membuktikan bahawa kaedah ISMA dapat 

memberikan data FRF yang setanding dengan EMA semasa objek berada dalam keadaan 

beroperasi. Untuk kaedah supervised learning, rangkaian BP yang terlatih berjaya 

mengesan kerosakan tahap tinggin dan sederhana, dengan ketepatan keseluruhan 100% 

apabila semua lima titik pengukuran digunakan. Selain itu, apabila skema ini 

dioptimumkan dengan penilaian bentuk mod, ketepatannya masih 100% dengan hanya 

menggunakan dua titik pengukuran. Untuk kaedah unsupervised learning, analisis kluster 

secara hierarki dapat mengumpulkan sampel mengikut keadaan kerosakan dengan tepat. 

Skema yang dicadangkan dapat mengesan keparahan kerosakan indeks serendah 0.05. 

Gabungan FRF yang dikurang oleh PCA dan bentuk mod telah menunjukkan korelasi 

positif antara puncak resonan dengan anjakan titik hentaman dalam mengenal pasti lokasi 

kerosakan plat. Kesimpulannya, kaedah supervised learning dengan menggunakan 

perubahan FRF mudah dan berkesan dalam mengesan keadaan kerosakan plat dan dapat 

dioptimumkan melalui penilaian bentuk mod. Sementara itu, kaedah unsupervised 

learning dengan menggunakan ciri PCA-WCC dapat mengesan kerosakan baru dan 

kerosakan tahap rendah. Keparahan dan lokasi kerosakan di plat uji dapat dikesan dengan 

menggunakan FRF yang dikurang oleh PCA.  

Keywords: pengesanan kerosakan; frekuensi response function; analisis modal serasi 

impak; pembelajaran mesin; getaran. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Mechanical machines accumulate damage during their service life. Structural damage 

can severely affect the safety and functionality of the structure and lead to significant 

economic loss. Structural health monitoring (SHM) and vibration-based damage 

detection have raised continuous interest over the years, seeking for non-destructive ways 

to provide warnings and predict certain faults at early stages. Structural damage leads to 

alterations in physical characteristics like stiffness and damping. Consequently, the 

changes in the modal parameters of the structure will be observed. Hence, modal 

parameters offer promising alternatives for damage detection.  

During the past decades, efforts have been made to develop damage detection schemes 

using various modal parameters. Yet, the suitability of using the downstream modal 

parameters is sometimes questioned. For example, the natural frequency may fail to 

indicate the specific location of damage and is not sensitive to the local damage. The 

processing procedure of mode shape-based methods is complicated, which may affect the 

credibility of the results and prone to more errors. It is hypothesized that the upstream 

modal data, namely the frequency response function (FRF), is more suitable for the use 

of damage detection. Frequency response refers to the quantitative measure of the output 

spectrum of a system or device in response to a stimulus. It describes the correspondence 

between the input and output of the system in the frequency domain. Compared with other 

dynamic features, FRF can be advantageous mainly in two aspects. First, FRF can be 

directly acquired in real time from the vibration transducer and then fast-Fourier 

transform (FFT). Second, FRF is rich in modal information and many modal parameters 

are originally retrieved from the raw FRFs. 
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Currently, there are two techniques used to extract modal parameters, including the 

experimental modal analysis (EMA) and the operational modal analysis (OMA). 

However, EMA requires the system to be in complete ‘shutdown’ mode, where there 

should be no unaccounted excitation force induced into the system. While in OMA, FRF 

is not available, for the lack of knowledge of the input forces, and the accuracy of 

parameters extracted is affected. A novel method named impact-synchronous modal 

analysis (ISMA) was thus proposed, where the actual input forces can be provided and 

subsequently a full FRF can be obtained even when the system is in operation. In ISMA, 

when the analysis is performed while the machine is in the running condition, both the 

responses caused by cyclic loads and random noise are filtered out in the time domain, 

leaving only responses triggered by the impact device (e.g. the impact hammer). This is 

achieved by impact-synchronous time averaging (ISTA) prior to performing FFT 

operation. In the time block averaging of ISTA, each time block is initiated by the impulse 

generated from the force trace of the impact. Taking a sufficient number of averages, the 

periodic responses caused by cyclic loads and ambient forces, which are non-synchronous 

in phase to the time block, will diminish, while the synchronous component, namely 

responses triggered by the impact, will be preserved. The modal parameter extraction 

follows EMA procedures. Therefore, ISMA is prospective in the development of a real-

time damage identification scheme for continuous structural health monitoring. 

Recently, machine learning techniques have received wide acceptance for locating and 

quantifying damage, which is often cooperated with various damage-sensitive features. 

Currently, supervised learning is the most favorable machine learning algorithms used in 

damage detection. The back-propagation (BP) network is one of the algorithms used in 

machine learning. The network is trained using a set of labeled training samples, and the 

trained network will have the ability to identify the location and the severity of the damage. 

However, it is difficult to obtain the complete training samples of all damage scenarios in 

Univ
ers

iti 
Mala

ya



3 

many practical applications, which limits the application of supervised learning methods. 

Meanwhile, the unsupervised learning methods help to find previously unknown patterns 

in the data set without pre-existing labels. Cluster analysis is a typical unsupervised 

learning method that is often used. However, these previous studies utilizing 

unsupervised learning usually focused more on detection instead of identifying the 

specific damage state. Also, the number of classes usually needs to be previously defined 

in these clustering algorithms, which has limited its practicality in real-life applications 

in which the damage scenarios are usually unknown in the first place. A new hierarchical 

clustering method based on complex network theory was thus proposed and developed 

by Newman and Girvan (2004), Newman (2004) and Zhang et al. (2013), which has the 

ability to discover the community structure in networks and divide them into densely 

connected clusters. The modularity 𝑄 is then defined to evaluate the quality of network 

division and is maximized in the process of hierarchical clustering. The clustering process 

is automatically terminated when the modularity reaches its maximum, and the clustering 

result will be obtained. Considering the good performance of the new hierarchical 

clustering algorithm, it may also have its potential in unsupervised vibration-based 

damage detection practices. 

1.2 Motivation 

The downstream modal data (i.e. post-processed parameters from FRFs) used in 

previous vibration-based damage detection methods are usually found to be deficient in 

damage sensitivity and noise robustness. Meanwhile, although the upstream data of FRF 

is rich in information and can be more advantageous in damage identification, it can be 

further improved in two aspects. First, FRF is mainly obtained through EMA so far, which 

can only be carried out when the tested object is in shut-down mode and is not practical 

for real-time application in the working environment. ISMA provides a prospective 

alternative to extract FRFs when the system is in operation and its application in damage 
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identification is yet to be explored. Second, there is a need to look for suitable signal 

processing methods to extract damage-sensitive features from FRF, as the raw FRF data 

are too complex to be directly applied while the improperly-selected features may be less 

sensitive and lead to bad performance. In this work, the signal processing methods named 

principal component analysis (PCA) and waveform chain code analysis (WCC) are 

employed. 

Machine learning is a powerful tool for pattern recognition in damage identification 

problems, and is therefore adopted in this work. However, damage identification based 

on supervised learning relies on the labeled training data and suffers from the 

incompleteness of training samples. Meanwhile, the current unsupervised methods in 

damage detection are either limited to detecting the existence of damage, or in need of 

the number of desired clusters in advance. This study is also designated to address these 

problems. 

1.3 Objectives of research 

This research aims to develop real-time damage identification schemes based on FRF 

change utilizing ISMA and machine learning methods, making it possible to identify the 

structural damage of in-service machines. The main objectives of the proposed work can 

be summarized as follows: 

1. To investigate the performance of the de-noising technique in ISMA in generating 

clean and stationary comparable FRFs under the operational condition for damage 

identification scheme. 

2. To develop an optimized operational damage identification scheme utilizing de-

noised FRF feature and supervised machine learning. 
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3. To develop an operational unsupervised damage identification scheme utilizing 

PCA-reduced FRFs and WCC analysis.  

1.4 Outline of thesis 

This thesis is organized as follows. Chapter 2 presents a review on techniques of 

vibration-based damage detection. In this chapter, the background theories involved in 

this study are also illustrated. The methods of this study are elaborated in Chapter 3, which 

includes the research flow, the experimental set-up and the design of experiment and 

procedures. The implementation of ISMA and the damage identification schemes based 

on machine learning are explained in detail. Then, the results are presented and discussed 

in Chapter 4. Finally, Chapter 5 summarizes the conclusions and provides a discussion 

for future work. 
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CHAPTER 2: LITERATURE REVIEW AND BACKGROUND THEORIES 

2.1 Literature review 

2.1.1 Introduction 

Mechanical machines face structural damage problems due to various loads and other 

external factors during their service life. Structural damage can severely affect the safety 

and functionality of the structure and lead to significant economic loss. Vibration-based 

damage detection techniques are very popular in structural health monitoring because 

they can detect damage in large and complex structures. This literature research work 

presents a review of the techniques of vibration-based damage detection. Section 2.1.2 

presents a comprehensive discussion on the damage detection methods based on various 

modal parameters. Section 2.1.3 reviews a novel modal analysis technique named impact-

synchronous modal analysis, which would be prospective in extracting dynamic features 

for damage identification during the in-service condition. Section 2.1.4 discusses 

different machine learning techniques used in damage detection. The summary of the 

review and research problems are included in section 2.1.5. 

2.1.2 Vibration-based damage detection techniques using modal parameters 

The fundamental principle of vibration-based damage detection is that structural 

damage leads to alterations in the physical properties like stiffness, mass and damping. 

Consequently, the changes in the modal parameters of the system will also be observed. 

As the modal parameters obtained by modal analysis offer promising alternatives for 

damage detection, they can be regarded as damage indicators and used to detect the 

initiation and development of fatigue damage. In this section, damage detection methods 

based on various modal parameters are discussed. 
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2.1.2.1  Natural frequency 

Damage usually leads to a decrease in the natural frequency, which is mainly attributed 

to the reduction of the structural stiffness. The correlation between damage and the natural 

frequency change can therefore be used in structural health monitoring and damage 

detection. As a global modal property of the structure, the natural frequency is easy to 

acquire and the measurement error is also much smaller than that of other modal 

parameters (e.g. the mode shape). Thus, structural damage detection based on natural 

frequency change is convenient to carry out. Cawley and Adams (1979) simulated a single 

damage condition of the structure and applied the natural frequency change to localize 

the damage. Hearn et al. (1991) found that the ratios of the changes in natural frequencies 

normalized with respect to the largest frequency change are independent of severity for 

small deterioration and can be directly used to indicate the location of structural damage. 

Morassi and Rovere (1997) used an optimality criterion to locate the notch of a steel frame 

by matching the first few natural frequencies, and pointed out the importance of some 

working hypotheses in damage identification. The natural frequency of the structure is 

advantageous in that it is independent of the choice of the position of the measurement 

point as a global property of a structure. Meanwhile, its shortcomings are summarized as 

follows. First, the natural frequency reflects the global characteristics of the structure, 

which is not sensitive to local damage (Hou & Xia, 2021). Second, the change in the 

natural frequency does not always specially indicate a specific location of the damage, 

for instance, the natural frequency cannot make a judgment on the location of damage 

when it occurs at two symmetrical positions (Salawu, 1997). Third, natural frequencies 

of lower modes are usually not sensitive enough to small cracks, and sometimes even 

remain unchanged when small damage occurs. On the other hand, although natural 

frequencies of higher modes reflect small damage information, they are difficult to 
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measure in real practice. These issues consequently affect the effectiveness and 

practicability of damage identification. 

2.1.2.2  Mode shape 

The mode shape is more sensitive to damage compared with the natural frequency. 

Damage identification based on mode shape change is advantageous in determining the 

location of damage, for the mode shape can reflect the changes in the displacement at the 

corresponding position of the structure. Sensitive damage indicators have been 

constructed using the vibration mode shape in previous studies, such as the modal 

assurance criterion (MAC) and the coordinate modal assurance criterion (COMAC). The 

MAC value describes the global similarity of two mode shapes while the COMAC is a 

pointwise measure of the difference between two mode shapes (Carden & Fanning, 2004). 

The MAC was used to reflect the mode shape change in Srinivasan and Kot’s work (1992). 

It was found that this mode shape based feature was more sensitive to damage than natural 

frequencies for a shell structure. In Baghiee et al.’s study (2009) on the damage of the 

reinforced concrete beam specimens, the efficiency of MAC and COMAC methods was 

investigated. The results showed that MAC can reflect the overall stiffness change of the 

structure but cannot determine the stiffness changes in each degree of freedom (DOF). 

Meanwhile, COMAC may detect the changes in beam stiffness at DOF, and is rather able 

to detect, locate or quantify damage and effectiveness of strengthening. Although the 

mode shape based methods are more effective for detecting local damage, there are still 

some deficiencies. The change in the mode shapes is sometimes masked by measurement 

errors, which may cause fault alarms in the structural damage identification. The modal 

data acquired can be insufficient due to a limited number of measurement points, while a 

large number of measurement points can be uneconomical or impractical. The change in 

the mode shape caused by structural damage is more obvious in the higher-order modes, 

which, however, is difficult to measure with high accuracy in real practice. 
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2.1.2.3 Mode shape derivatives 

The mode shape derivatives can be applied to damage detection as an alternative to the 

direct use of the mode shape. Pandey et al. (1991) introduced the mode shape curvature, 

which is the second derivative of the mode shape, to damage detection for the first time. 

The finite element models of cantilevered and simply supported beams were established 

and the changes in mode shape curvatures were studied by numerical simulation. Chance 

et al. (1994) found that numerically calculating curvature from mode shapes may cause 

unacceptable errors, and better results were achieved when the mode shape curvature was 

directly obtained through the measured strain. Baghiee et al.’s study (2009) showed that 

the curvature-based COMAC values appeared to be more precise in identifying crack 

zones in reinforced concrete beams than other methods. Yet, the accuracy relies on the 

technique used in calculating the curvatures and denoising of the experimental data. J. 

Maeck et al. (1999) proposed that the stiffness can be directly obtained from measured 

modal displacement derivatives, based on which the damage location and intensity can 

be predicted. In Z. Ismail et al.’s work (2006), a local stiffness indicator was constructed 

using the fourth derivative of the mode shape based on the equation of the Euler beam, 

and was used to locate the damage in reinforced concrete beams. 

2.1.2.4 Strain energy 

The modal strain energy (MSE) change is also used in damage detection. The MSE is 

formed by the product of the stiffness matrix and the second power of mode shape, which 

incorporates the system vibration behavior and physical properties (S. Q. Wang & Xu, 

2019). Therefore, the MSE can also be used to indicate structural damage. Kim and 

Stubbs (1995) used a damage indicator based on the ratio of MSE of elements before and 

after the damage to locate and size damage in an experimental plate girder. Shi and Law 

(1998) developed a scheme to locate damage based on comparing MSE in each structural 

element before and after the occurrence of damage. However, the performance was 
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greatly influenced by measurement noise and incompleteness of measured modes. A 

damage identification scheme with damage localization and quantification using MSE 

change was proposed afterwards (Shi et al., 2000). It was reported that the results of single 

damage quantification were satisfying, whereas those of multiple damage quantification 

were not good under the same noise level. Guo and Li (2014) proposed a modal strain 

energy equivalence index for damage detection, which is based on the energy equivalence 

theory that the change in MSE and the energy dissipation caused by damage should be 

equivalent. In Dewangan et al.’s work (2020), the strain energy method was applied to 

damage detection in a wind turbine gearbox. 

2.1.2.5  Frequency response function 

Frequency response refers to the quantitative measure of the output spectrum of a 

system or device in response to a stimulus. FRF describes the correspondence between 

the input and output of the system at different frequencies, and is generally expressed in 

the form of complex functions. Compared with other dynamic features, FRF, as upstream 

modal data, is acquired directly in real time from the vibration transducer and then fast-

Fourier transform (FFT). On the other hand, the modal extraction process of other modal 

parameters may affect the credibility of the results and prone to more errors because these 

modal parameters are originally retrieved from the raw FRFs. Therefore, the damage 

detection methods which directly use the FRF can be beneficial. However, the challenge 

is that, although it is of rich information, the full-size FRF is usually difficult to be directly 

processed because of its large size. Also, the intuitive features of the FRF plot (e.g. the 

magnitude and abscissa of its peaks) sometimes are not that sensitive to low severity 

damage, which are not suitable for damage identification either. Mathematical processing 

is therefore necessary to reduce the dimension of data and obtain more sensitive features. 

Samman et al. (1994a, 1994b) have looked into four techniques in processing the 

waveform of FRF, namely the waveform chain code (WCC) method, the adaptive 
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template matching (ATM) method, the signature assurance criterion (SAC) method and 

the equivalent level of degradation system (ELODS) method. Experimental results 

showed that the WCC method performed well in detecting cracks in the laboratory bridge, 

and proves its effectiveness in extracting sensitive features. In recent years, more damage 

identification methods have been developed using FRF, incorporated with various 

algorithms, for instance, Park and Park (2003) proposed a damage localization technique, 

where a damage index was calculated using the incomplete FRF in certain frequency 

ranges. Zhou et al. (2017) used hierarchical clustering analysis and similarity measure in 

their damage detection approach. Li et al. (2011) developed a damage identification 

method combining PCA-compressed residual FRF and artificial neural networks to 

identify defects. 

2.1.3 Impact-synchronous modal analysis 

Generally, in vibration-based damage identification methods, modal parameters of a 

structure need to be extracted from the raw vibration signals at the first stage, which is 

known as structural modal analysis. Usually, modal analysis is carried out through EMA, 

where the parameters are identified using the collected input and output signals when 

artificial excitation is exerted. EMA has proved to be an effective method of extracting 

structural dynamic characteristics. However, considering that ambient noise in the 

working environment may lead to measurement error of FRFs, EMA can only be carried 

out on static structures. When the tested structure is in operation, the ambient excitation 

and random noise cannot be neglected, which differs significantly from laboratory 

conditions. This reduces the practicality of EMA, especially for tested machines with high 

downtime costs. The OMA was proposed as an alternative to the classic EMA. Instead of 

using artificial excitation devices, OMA makes use of the freely available ambient 

excitation caused by natural excitation sources on or near the test structure (Parloo et al., 

2005). In this way, the test structure can remain in its operating condition during the test. 
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Compared with EMA, the knowledge of the input in OMA is replaced by the assumption 

that the input is a realization of a stochastic process. The disadvantages of OMA are also 

obvious. First, the excitation should satisfy some prior hypothesis, for example, 

submitting to the gaussian white noise model (Dackermann et al., 2014). Second, since 

the ambient forces that excite the structure are not measured, FRF, which is rich in 

information on the dynamics behavior of the system is no longer available due to lacking 

knowledge of input. 

A novel method named impact-synchronous modal analysis (ISMA) (A. G. A. Rahman 

et al., 2011) was thus proposed, where the input force and output response can be 

measured when the system is in operation. When ISMA is performed while the machine 

is in the running condition, both the responses caused by cyclic loads and random noise 

are filtered out in the time domain, leaving only responses triggered by the impact 

hammer. This is achieved by utilizing the impact-synchronous time averaging (ISTA) 

prior to performing the fast Fourier transform (FFT) operation (A. G. A. Rahman et al., 

2014; A. G. A. Rahman et al., 2011). In time block averaging of ISTA, each time block 

is initiated by the impulse generated from the force trace of the impact hammer. Taking 

a sufficient number of averages, the periodic responses caused by cyclic loads and 

ambient forces, which are non-synchronous in phase to time block, will diminish. 

Meanwhile, the synchronous component, namely the responses triggered by the impact 

hammer, will be preserved. The following modal parameter extraction procedure is the 

same as EMA.  

ISTA was first proposed by Rahman et al. (2011) aiming to quickly increase the signal-

to-noise ratio of the response obtained while the machine is in operation. Unlike the usual 

spectrum averaging which is done in the frequency domain after FFT, ISTA is essentially 

based on time-synchronous averaging where averaging takes place in the time domain 

Univ
ers

iti 
Mala

ya



13 

prior to the FFT operation. Yet, despite the similar averaging principle, ISTA is also 

different from the conventional time synchronous averaging techniques that are 

commonly used. In the conventional time synchronous averaging techniques, signal 

acquisition from a rotating machine is triggered at the same phase angle and the averaging 

process is expected to eliminate all the nonsynchronous and random components, only 

leaving behind the running speed component and its harmonics. However, ISTA is 

targeted at an opposite problem, for it aims to eliminate all the cyclic load components, 

the harmonics and random noise, which are nonsynchronous to the triggering impacts. 

Consequently, the waveform achieved from ISTA will only contain the response of the 

system to the impact force. 

Some follow-up work has also been conducted so far in order to study the factors 

governing the performance of ISMA and improve the effectiveness of this technique. To 

summarize, it is found that the performance of ISMA is mainly affected by the following 

four factors. These factors are (1) the number of averages; (2) the phase synchronization 

effect between the response due to impacts and that due to cyclic load; (3) the windowing 

function and (4) the level of impact force (Chao et al., 2016; Lim et al., 2019).  

It was pointed out that the exponential window is an effective way to minimize leakage 

and attenuate non-synchronous components and noises (Chao et al., 2016). On the other 

hand, with the information of the calculated cyclic force, a suitable impact force level that 

excites the structure could be previously decided before ISMA is performed. It was found 

that a better result of FRF estimation can be achieved when the exponential window with 

an appropriate decay rate in ISMA is used, together with a higher impact force. Yet, the 

impact force should be well below the non-linearity force limit (Chao et al., 2016). 

To enhance the performance of ISMA, the frequency of the impacts should not 

synchronize with the frequency of the cyclic load. One feasible way to avoid phase 
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synchronization is to randomly perform impacts with a frequency that differs from the 

cyclic load. The effectiveness of averages taken in determining the modal parameters of 

a motor-driven structure was demonstrated. It was shown that the responses caused by 

the cyclic load can be evidently removed by increasing the number of averages. This is 

because the random impacts make the phase angles of the cyclic components take random 

values in different time blocks. With the number of averages increasing, the cyclic 

components are more likely to be offset by averaging operations because of the 

randomness of phase angles. Consequently, phase synchronization is more likely to be 

attenuated. However, (A. G. A. Rahman et al., 2014) also pointed out that a large number 

of impacts may be needed in ISMA for the FRF estimation and modal parameter 

determination of the system, especially when the running speed is close to the natural 

frequency so that the cyclic load component is dominant because of resonance. This will 

cause ISMA to have limitations in practical applications. The main reason for the 

limitation is that the phase angle distribution is the lack of control with the manual impact 

hammer. To handle this problem, an auto impact device was introduced (Ong et al., 2018), 

which realized the control of impact timing. This device can apply impacts at controlled 

time intervals so that the impacts are avoided in synchronization with the responses from 

the cyclic load components. With a minimal number of impacts, all the responses 

contributed by unknown sources of the force contained in the acceleration response are 

filtered out when the phase of the periodic responses is not consistent with the impact 

signature for every impact applied. Thus, synchronization of phase between impacts and 

components is avoided through the use of the auto impact device to enhance the 

estimation of FRF (Lim et al., 2018; Ong et al., 2018). 

ISMA has been tested in the real industry application by Rahman et al. (2013), 

performed on a diesel fuel pump package at an offshore platform in Malaysia to 

investigate the high vibration problem of the package. The instrumentation and 
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procedures used in the real industry application were similar to those in the laboratory 

condition. The only difference was that the impact hammer was replaced with a larger 

size model in the test. The modal parameters, namely natural frequencies, mode shapes, 

and damping of the pump were successfully determined using ISMA, without shutting 

down the pump. It was found that the excitation frequency was close to the natural 

frequency, which caused the resonance of the structure. Their study proved the feasibility 

of ISMA in solving practical problems. 

As ISMA is a newly developed technology, its application in the field of engineering 

has yet to be explored. Nevertheless, considering its good performance in the previous 

experimental studies, it may have a good prospect. Specially, in damage identification 

problems, ISMA can be applied to extracting the dynamic features that are used as 

damage indicators. 

2.1.4 Machine learning in damage identification 

In the past decades, machine learning techniques have received wide acceptance for 

damage identification (Hossain et al., 2017), which is often incorporated with various 

damage indicators.. 

Supervised learning is the most commonly used in the training of artificial neural 

networks that solve pattern classification problems in damage identification. If the 

samples in 𝑁-dimensional Euclidean space need to be divided into 𝑀  categories, the 

classification problem can be mathematically described as: to divide the N-dimensional 

Euclidean space into 𝑀  decision regions so that the samples sharing some common 

features are classified into the same category. The manually defined discriminant function 

is conventionally used in classification problems, which, however, can be rather difficult 

to construct in complex situations. Meanwhile, artificial neural networks (ANNs), which 

are inspired by human biological neural networks and can learn to improve their 
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performance from experience, can be employed as an alternative. Taking the typical back-

propagation (BP) network as an example, in damage identification problems, the network 

is trained using a set of labeled training samples (i.e. the selected damage indicators 

labeled with the corresponding damage states), and the trained network will have the 

ability to identify the damage scenarios when the damage indicators of new samples are 

input to it. This idea is shared in many specific supervised learning methods, such as the 

multi-layer perceptron (MLP), convolutional neural network (CNN), radial basis function 

(RBF) network, etc.  

ANN has gained popularity in damage detection since the 1990s. Elkordy et al. (1994) 

used a BP network to identify the damage of a five-layer, three-dimensional frame 

structure by using the variation of mode shapes, which is one of the earliest applications. 

The MLP neural network was adopted by Rhim and Lee (1995) in their identification 

scheme. Hadzima-Nyarko et al. (2011) also used MLP neural network to investigate the 

relationship between the structural parameters and the damage ratio coefficient, for 

examining the damage level of a bridge. In the early studies, the location and severity of 

damage were simultaneously identified. In order to accurately identify the damage states, 

it is necessary to include a variety of damage severities for each possible damage location 

as training samples. The early schemes suffered from the high diagnostic complexity of 

large-scale structures, which reduced the training efficiency and accuracy of the neural 

network. Therefore, the hierarchical identification strategy was proposed; that is, to 

identify the occurrence, location and extent of damage using different networks in steps. 

Chen and Kim (1994) used two neural networks in their research; one for identifying the 

occurrence of damage, and another for determining the location of the damage. Ni et al. 

(2002) applied the hierarchical identification strategy to monitoring a suspension bridge, 

which examined the damage location first, and examined the damage severity at the 

identified location afterwards. 
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Although supervised learning can classify the damage states of a structure accurately 

and effectively, it also has disadvantages. It is noted that the labeled training data are 

necessary for supervised learning methods. However, it is difficult to obtain the complete 

training samples of all damage scenarios in many practical applications, which limits the 

application of supervised learning methods. Meanwhile, the unsupervised learning 

methods help to find previously unknown patterns in the data set without pre-existing 

labels. The outlier detection, or known as anomaly detection, is usually applied to 

unlabeled data to identify the items in the dataset that are different from the normal ones 

(Bull et al., 2019; Goldstein & Uchida, 2016; Zimek & Schubert, 2017). The outlier 

discordancy of a potential outlier, probably yielded by different mechanisms compared 

with the rest in the data set, is calculated and compared with a statistically determined 

threshold to decide whether it is an outlier or not (Rehman et al., 2011). Some studies 

have adopted outlier analysis for damage detection (Ulriksen et al., 2015; Worden et al., 

2000). Cluster analysis is another typical unsupervised learning method that is often used. 

Park et al. (2008) adopted the k-means clustering pattern recognition algorithm in their 

electromechanical impedance-based wireless SHM system. Zhou et al. (2017) used 

hierarchical clustering analysis and similarity measure in their damage detection approach. 

However, these previous studies utilizing unsupervised learning focused more on 

detecting the existence of damage instead of identifying the specific damage state. Also, 

the number of classes usually needs to be previously defined in the classic clustering 

algorithms, which has limited their practicality in real life applications. A new 

hierarchical clustering method based on complex network theory was thus proposed and 

developed by Newman and Girvan (2004), Newman (2004) and Zhang et al. (2013), 

which has the ability to discover the community structure in networks and divide them 

into densely connected clusters. The modularity 𝑄 is defined to evaluate the quality of 

network division and is maximized in the process of hierarchical clustering. The 
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clustering process is automatically terminated when the modularity reaches its maximum, 

and the clustering result will be obtained. Thus, it may have its potential in vibration-

based damage identification practices.  

Machine learning has also been used to extract damage-sensitive features. This process 

is called feature learning. Feature learning seeks for transformations of the raw data as 

the representations needed for required tasks (e.g. detection or classification) from raw 

data (Janssens et al., 2016). Principal component analysis (PCA) is such an example. PCA 

transforms a set of variables in the vector space into a set of linearly uncorrelated variables 

called principal components by orthogonal transformation and is often used for feature 

component extraction and dimensionality reduction of high-dimensional data(Ma et al., 

2019). Zang et al. (2001) employed PCA in their damage detection method to compress 

the full-size FRF data and construct the input to artificial neural networks. Li et al. (2011) 

used PCA to compress the residual FRF, which the difference in the FRF data from the 

intact and the damaged structure. Besides PCA, some other feature learning methods have 

started to be applied in damage identification in recent years. For example, Wang et al. 

(2018) applied dictionary learning in bearing fault detection, illustrating that more 

descriptive features can be learned from the raw data. CNNs were used by Janssens et al. 

(2016) and the results indicated that, compared with using manually engineered features, 

better results were achieved with their CNN model. Lin et al. (2017) also used deep CNNs 

for automatic feature extraction. It is noted that feature learning was proven to work well 

for noisy signals, as less important information in the raw signal is omitted. Cao et al. 

(2017) used auto-associative neural networks (AANNs) in their study, which functioned 

as a nonlinear principal component analysis tool to extract damage features. Results 

showed that their damage identification scheme was of robustness against noise.  
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2.1.5 Summary 

In this section, a comprehensive literature review of the existing vibration-based 

damage detection methods, impact-synchronous modal analysis and damage 

identification methods based on machine learning techniques is presented. 

During the last decades, efforts have been made to develop vibration-based damage 

identification schemes using various modal parameters. These methods have shown 

promising results and are still under fast advances. Yet, limitations have also been 

observed in the classic modal parameter-based methods. For example, the natural 

frequency cannot always specially indicate a specific location of the damage and is 

usually not sensitive to the low-severity damage. The processing procedure of mode 

shape-based methods is complicated, which may affect the credibility of the results and 

prone to more errors. Compared with other dynamic features, damage identification 

directly using FRFs can be advantageous mainly in two aspects. First, FRF is directly 

acquired in real time from sensor hardware with FFT. Second, FRF is rich in modal 

information and many modal parameters are originally retrieved from the raw FRFs. 

However, mathematical processing is needed for dimension reduction of raw FRF data 

and extracting more sensitive features, which is still an issue to be studied. 

Currently, EMA and OMA are two main techniques that are used to extract modal 

parameters. However, the lack of knowledge of the input forces in OMA does affect the 

accuracy of parameters extracted, and FRF is no longer available in this method. 

Meanwhile, EMA can only be carried out in the static condition, which limits the 

application scope of the current damage identification methods using FRF. A novel 

method named ISMA was thus developed, which makes it feasible to extract FRFs when 

the system is in operation. The ISMA technique has proved to be effective in obtaining 

FRFs and other modal parameters from running machines. Therefore, it is prospective in 
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the development of a real-time damage identification scheme for continuous structural 

health monitoring. 

The machine learning techniques applied to damage identification have also been 

reviewed in this chapter. A considerable amount of research has been carried out over the 

years, covering both fields of supervised learning and unsupervised learning. In 

supervised learning, the neural network is trained using a set of labeled training samples, 

and the trained network will have the ability to identify the location and the extent of the 

damage. The large size of raw FRF data leads to a large number of sensors hardware and 

input nodes in the neural network, which is less cost-effective and computationally 

efficient and sometimes may cause problems of training convergence. To handle this 

problem, the FRF changes in some selected frequency ranges are used as the input 

features to reduce the input size of the network. The optimization of measurement points 

in terms of sensors hardware used can be further achieved to make the supervised damage 

identification scheme more cost-effective.  

Meanwhile, the unsupervised learning methods help to find previously unknown 

patterns in the data set without pre-existing labels. Single FRF may not be effective 

sometimes while FRFs with multiple measurement points are too complex. It is noted that 

PCA is an effective tool for dimensional reduction and can help to compress the multiple 

FRFs while preserving important dynamic characteristics at the same time. Besides, the 

WCC characterizes a waveform by its scaled relative slope and curvature and performs 

well in detecting cracks in the laboratory bridge and proves its effectiveness in extracting 

sensitive features. Specially, a new hierarchical clustering method based on complex 

network theory can discover the community structure in networks and automatically 

determine the number of clusters, which gains an advantage over conventional clustering 

algorithms where the number of clusters needs to be predefined. WCC analysis can be 
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used to further extract a more damage-sensitive feature from the PCA-reduced FRF and 

then classified using the hierarchical cluster analysis to develop a sensitive and automated 

damage detection system. The work can be further enhanced through the post-screening 

of the alarmed damage state to develop a complete operational damage identification 

scheme. 

2.2 Background theories 

The theoretical background is illustrated in this section. 2.2.1 introduces the principle 

of ISMA and explains how the FRF is obtained with this method. 2.2.2-2.2.4 are the signal 

processing methods applied to extracting FRF damage features in this work. 2.2.5 and 

2.2.6 introduces the two machine learning algorithms used in this work, namely the 

supervised BP network and the unsupervised hierarchical clustering. 

2.2.1 FRF measurement using ISMA 

The dynamic equation of a system with 𝑛 DOF is given by 

𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝒙(𝑡) = 𝒇(𝑡) <2. 1? 

𝑴 , 𝑪 , 𝑲  are 𝑛 × 𝑛  matrixes and they represent the mass, damping and stiffness 

matrices respectively. The 𝑛-dimensional vector 𝒇(𝑡) is the external force. 𝒙(𝑡), �̇�(𝑡) 

and �̈�(𝑡) are the 𝑛-dimensional structural displacement, velocity and acceleration vectors 

respectively. 

Fourier transform is conducted to transform the dynamic equation from the time 

domain to the frequency domain as 

(−𝜔#𝑴+ 𝑗𝜔𝑪 + 𝑲)𝑿(𝜔) = 𝑭(𝜔) <2. 2? 

where 𝜔 refers to the frequency. The FRF matrix 𝑯(𝜔) is defined as 
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𝑯(𝜔) = (−𝜔#𝑴+ 𝑗𝜔𝑪 + 𝑲)3" <2. 3? 

so that 

𝑿(𝜔) = 𝑯(𝜔)𝑭(𝜔) <2. 4? 

The element of the 𝑥 -th row and 𝑦 -th column of the FRF matrix indicates the 

acceleration response of the 𝑥-th DOF when a unit excitation is exerted on the 𝑦th DOF. 

The existence of damping causes the elements of the FRF matrix to be complex numbers, 

which can be expressed in the form of magnitude and phase. In the real practice, this 

transformation of signals from the time domain to the frequency domain is usually 

implemented by FFT algorithm. 

In the operation of ISMA, ISTA is performed on the time-domain signals directly 

obtained from the sensors before FFT. The impacts are created by the automated impact 

device with a time interval 𝑇4. The sampling of the signal is triggered by the impact force 

input to the analyzer. The process of ISTA is mathematically described as 

𝑥'+5(𝑡) =
1
𝑁a 𝑥(𝑡 + 𝑘𝑇4)

63"

784

<2. 5? 

where 𝑥'+5(𝑡) is the averaged vibration signal in time domain, 𝑁 is the total number of 

impacts, 𝑥(𝑡) is the vibration signal in time domain, 𝑘 is the number of impacts and 𝑇4 is 

the time interval between the impacts. The signal 𝑥(𝑡) can be represented as 

𝑥(𝑡) = 𝑥%)(𝑡) + 𝑥9(𝑡) + 𝑥-(𝑡) <2. 6? 

where 𝑥%)(𝑡) is the impact response, 𝑥9(𝑡) is the cyclic load with its harmonics and 𝑥-(𝑡) 

is the random noise. Therefore, 
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𝑥'+5(𝑡) =
1
𝑁a 𝑥%)(𝑡 + 𝑘𝑇4)

63"

784

+
1
𝑁a 𝑥9(𝑡 + 𝑘𝑇4)

63"

784

+
1
𝑁a 𝑥-(𝑡 + 𝑘𝑇4)

63"

784

<2. 7? 

Since the trigger is synchronized with the repetition rate of the impact, the first item (i.e. 

the average of the impact response) will be preserved. Meanwhile, the second item (i.e. 

the running speed component), which is non-synchronized with the trigger, will be 

diminished by the averaging process, so will be the last item of random noise. Therefore, 

only the item of the impact response "
6
∑ 𝑥%)(𝑡 + 𝑘𝑇4)63"
784  will remain in ISTA, and the 

result is equivalent to the average of pure impact response signals. 

Then the FFT is performed on the impact response obtained through ISTA using the 

averaged input signal to acquire the FRF of the test system, which follows the procedure 

of conventional EMA methods. 

2.2.2 FRF change 

Structural damage leads to alterations in the FRF. A straightforward way to describe 

this change is to directly calculate the absolute difference in the magnitude of FRF in a 

certain frequency interval. The measure of the FRF change 𝛿  is thus introduced to 

quantify this difference in comparison with the FRF measured at the undamaged state, 

which is defined as 

𝛿% =agℎ%<𝜔2? − ℎ:i <𝜔2?g
&

28"

<2. 8? 

where {𝜔", 𝜔#, ⋯ , 𝜔&}  is the equidistantly discretized sequence of the considered 

frequency range and ℎ%<𝜔2? is the FRF magnitude of the 𝑖-th measurement point at the 

frequency 𝜔2 . ℎ:i <𝜔2?  is the FRF magnitude which is previous measured at the 

undamaged condition and functions as the reference. 
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2.2.3 PCA-reduced FRF 

In order to obtain the global dynamic properties of the test structure, the modal analysis 

is often conducted with multiple measurement points, which leads to large size of FRF 

data. Performing PCA on multiple FRFs aims to reduce the data size while preserving 

principal modal information. 

In this study, modal analysis is carried out with a fixed impact point and 𝑛 

measurement points at different locations. The FRF magnitude measured at the 𝑖 -th 

measurement point is denoted as 𝒉% = [ℎ%(𝜔"), ℎ%(𝜔#),⋯ , ℎ%(𝜔&)];, 𝑖 = 1,2,⋯ , 𝑛 . 

{𝜔", 𝜔#, ⋯ , 𝜔&} is the equidistantly discretized sequence of frequency and ℎ%<𝜔2? is the 

FRF magnitude of the 𝑖-th measurement point at the frequency 𝜔2. The output of PCA-

reduced FRF 𝒑 = [𝑝(𝜔"), 𝑝(𝜔#),⋯ , 𝑝(𝜔&)]; can be expressed as 

𝒑 =a𝛼%

-

%8"

𝒉% <2. 9? 

where 𝜶 = (𝛼", 𝛼#, ⋯ , 𝛼-);  is a unit vector satisfying 

‖𝜶‖ = r𝛼"# + 𝛼## +⋯+ 𝛼-# = 1 <2. 10? 

𝒑 is an 𝑚-dimensional vector and the 𝑗-th element is 

𝑝<𝜔2? =a𝛼%

-

%8"

ℎ%<𝜔2?, 𝑗 = 1,2,⋯ ,𝑚 <2. 11? 

In PCA process, 𝜶 is determined so as to maximize the variance of the 𝑚 elements of 𝒑, 

that is,  

𝜶 = arg	max	
𝜶

au𝑝<𝜔2? −
1
𝑚aa𝛼%

-

%8"

ℎ%<𝜔2?
&

28"

v

2𝑚

𝑗=1

<2. 12? 
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According to the theories of PCA (Jolliffe & Springer-Verlag, 2002), 𝜶 is the eigenvector 

corresponding to the maximum eigenvalue of the correlation matrix, which can be figured 

out through linear algebra methods. With the value of 𝜶 obtained, 𝒑 is finally expressed 

by 

𝒑 = (𝒉", 𝒉#, ⋯ , 𝒉-)	𝜶 <2. 13? 

In this study, the coefficient 𝜶 will be computed in the beginning through the above 

method using a set of reference FRFs measured at undamaged state. Then 𝒑 of each 

sample will be calculated by matrix multiplication of Eq. (2.13) as the PCA-reduced FRF. 

This procedure not only reduces the size of the original data but is also helpful for the 

following identification work. Here, a linear combination of all the FRF sequences with 

a larger variance is obtained. Linear combination means the resonant peaks will also be 

preserved. A larger variance of the PCA-reduced FRF usually means larger fluctuation of 

its curve and, in another word, the resonant peaks are more distinct. As these peaks carry 

some weightage of the dynamic characteristics of the system, the mode behavior in this 

PCA-reduced FRF could be then used in damage identification.  

2.2.4 WCC analysis 

The WCC reflects the changes in the scaled relative slope and curvature of some signal 

waveforms in comparison with a benchmark signal. Specially in this work, the WCC 

analysis would be performed on the PCA-reduced FRF 𝒑 = [𝑝(𝜔"), 𝑝(𝜔#),⋯ , 𝑝(𝜔&)];. 

To introduce the concept of WCC, the PCA-reduced FRF can be re-expressed as an 

equidistantly discretized signal 𝒖 = (𝑢", 𝑢#, ⋯ , 𝑢&); so that 

𝑢% = 𝑝(𝜔%), 𝑖 = 1,2,⋯ ,𝑚 <2. 14? 
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Similar to the definition of 𝒖, the benchmark signal, denoted as 𝒖y, refers to the PCA-

reduced FRF independently measured under the undamaged state. The slope 𝒔 =

(𝑠", 𝑠#, ⋯ , 𝑠&3"); of 𝒖 is defined by forward differencing as 

𝑠% = 𝑢%=" − 𝑢% , 𝑖 = 1,2,⋯ ,𝑚 − 1 <2. 15? 

Denote the maximum value of slope as 𝑠&'(. The elements of 𝒔 are then normalized into 

the scaled relative slope as 𝒔)! = (𝑠")!, 𝑠#)!, ⋯ , 𝑠&)!);, and 

𝑠%)! =
50 × 𝑠%
𝑠&'(

, 𝑖 = 1,2,⋯ ,𝑚 − 1 <2. 16? 

𝑠%)! is scaled to 50 so that the scaled relative slope range from -50 to 50. Then, the signal 

𝒖 is compared with the benchmark signal 𝒖y  using the slope differential values, 𝒔*+ , 

which are defined as follows 

𝑠%*+ = |𝑠%)! − �̃�%)!|, 𝑖 = 1,2,⋯ ,𝑚 − 1 <2. 17? 

𝑠%*+ takes value in the range from 0 to 100. 𝒔|)! is the scaled relative slope of 𝒖y and is 

derived with the same procedure of (2.15) and (2.16). The benchmark is regarded as the 

signal of the ‘standard state’ and functions as the reference for other signals. Once 𝒔*+ is 

figured out, the area under the curve of slope differential value 𝒔*+, denoted as 𝑎! can be 

calculated to quantify differences between the signal 𝒖  and the benchmark 𝒖y . 

Considering that 𝒔*+ is an equidistantly discretized sequence, 𝑎! can be computed as the 

sum of the series 

𝑎! = a 𝑠%*+
&3"

%8"

<2. 18? 

𝑎! defined by (2.15)-(2.18) is regarded as the damage-sensitive WCC feature. 
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2.2.5 BP network 

A typical three-layer BP network is employed in this work, which is shown in Figure 

2.1. The network is composed of the input layer, hidden layer and output layer. In the 

input layer, each neuron corresponds to an input variable. The hidden layer is for 

computational purposes. Each of the output neurons computes an output variable. The 

neurons are connected to the neurons in the next layer by weights. 

 

Figure 2.1: Structure of three-layer BP network 

The back-propagation is a supervised learning algorithm for learning the weights of 

the BP network. The network is trained using pairs of input/target samples. Each pair 

includes an input vector 𝒗% and the corresponding target vector 𝒗/. As shown in Figure 

2.1, 𝒘(") is the weight matrix connecting the input layer and the hidden layer, and 𝒇(")(∙) 

is the activation function of the hidden layer. 𝒘(#) is the weight matrix connecting the 

hidden layer and the output layer, and 𝒇(#)(∙) is the activation function of the output layer. 

The output of the network with respect to 𝒗% is denoted as 𝒗.. The BP learning algorithm 

consists of the forward propagation and the back-propagation procedures. In the forward 

propagation, the input signals pass from the input layer to the output layer via the hidden 
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layer. Considering the 𝑝-th pair of training sample <𝒗>% , 𝒗>/ ?, the output of the hidden layer 

is 

𝒂> = 𝒇(")<𝒘(")𝒗>% ? <2. 19? 

And the predicted output of the network can be written as 

𝒗>. = 𝒇(#)<𝒘(#)𝒂>? <2. 20? 

The loss of the model on this pair of the training sample is the cost of the difference 

between the output 𝒗. and the target 𝒗/, which is denoted as 𝐿(𝒗/ , 𝒗.). The least square 

error and cross entropy are commonly used as the loss function. The overall performance 

on the training set is defined as  

𝐽 =
1
𝑁a𝐿<𝒗>/ , 𝒗>.?

6

>8"

<2. 21? 

where 𝑁 is the total number of training sample pairs. The goal is to find the appropriate 

weights 𝒘(")  and 𝒘(#)  to minimize 𝐽 . To accomplish this goal, the back-propagation 

algorithm follows an iterative, gradient descent update rule (Brunton & Kutz, 2019; 

Goodfellow et al., 2016; Nielsen, 2015). In each iteration, 𝒘(") and 𝒘(#) are respectively 

updated with increasements of 

∆𝒘(") = −𝜖∇𝒘(")𝐽 = −
𝜖
𝑁a∇𝒘(")𝐽>

6

>8"

<2. 22? 

∆𝒘(#) = −𝜖∇𝒘($)𝐽 = −
𝜖
𝑁a∇𝒘($)𝐽>

6

>8"

<2. 23? 
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𝜖 is the learning rate which is determined by the specific learning methods and 𝐽> is the 

value of 𝐿<𝒗>/ , 𝒗>.?. On the other hand, according to (2.19) and (2.20), the output of the 

network 𝒗>.  is computed as 

𝒗>. = 𝒇(#) �𝒘#𝒇"<𝒘(")𝒗>% ?� <2. 24? 

∇𝒘(")𝐽> and ∇𝒘($)𝐽> can be computed based on the chain rule. Introduce the gradient of 

the input values of the output layer 𝒈>
(#) as 

𝒈>
(#) = ∇𝒂%𝐽> = 𝒇(#)

′
⨀∇𝒗%&𝐽> <2. 25? 

and the gradient of the input values of the hidden layer 𝒈>
(") as 

𝒈>
(") = 𝒇(")

′
⨀�𝒘(#);𝒈>

(#)� <2. 26? 

where ⨀  is the Hadamard product of two vectors. 𝒈>
(")  and 𝒈>

(#)  are known as error 

signals. It is noted that the error signals pass backward from the output layer to the hidden 

layer, and this is the so-called back-propagation. The gradient of the weights 𝒘(#) and 

𝒘(") are then computed by 

∇𝒘($)𝐽> = 𝒈>
(#)𝒂>; <2. 27? 

∇𝒘(")𝐽> = 𝒈(")𝒗>%
; <2. 28? 

With the gradient of the weights obtained, the values of the weights can be updated 

according to (2.22) and (2.23). The next iteration starts with the updated weights of the 

network. The procedure continues until the stopping conditions are met. 
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2.2.6 Hierarchical cluster analysis based on complex network theory 

The procedure of the hierarchical clustering based on complex network theory 

(Newman, 2004; Newman & Girvan, 2004; Zhang et al., 2013) is shown as follows. A 

vector set consisting of 𝑛  elements 𝑆 = {𝒏", 𝒏#, ⋯ , 𝒏-}  is considered. A complex 

network with 𝑛 nodes is built based on the set 𝑆, where the vector 𝒏% is regarded as the 

coordinate of a node. 𝑛 is the amount of the nodes in the network and, namely the total 

number of samples. 𝒏% (𝑖 = 1,2,⋯ , 𝑛) is the 𝑖-th node in the network. The weight of the 

edge between any two nodes in the network 𝒏%  and 𝒏2 , which shows the strength of 

connection, is defined as 

𝑤<𝒏% , 𝒏2? = �exp�−𝜎	𝑑<𝒏% , 𝒏2?�, 𝑖 ≠ 𝑗
0, 𝑖 = 𝑗

<2. 29? 

where 𝑑<𝒏% , 𝒏2? is the Euclidean distance between 𝒏" and 𝒏#. As 𝑑<𝒏% , 𝒏2? > 0 when 

𝑖 ≠ 𝑗, 𝑤<𝒏% , 𝒏2? takes value from 0 to 1, and the weight decreases when the distance 

between the nodes increases. Also, the weight of edge is strengthened for a smaller value 

of distance, which is determined by the positive strength parameter 𝜎. In this study, 𝜎 

takes the value of 50. When 𝑆 is divided into 𝑟 disjoint clusters, the partition is written as 

𝒞 = {𝐶", 𝐶#, ⋯ , 𝐶)}  such that ⋂ 𝐶%)
%8" = 𝑆 . The community structure of the complex 

network is described by (𝑆, 𝒞). The class similarity between any two disjoint clusters of 

nodes 𝐶( and 𝐶B (1 ≤ 𝑥 ≠ 𝑦 ≤ 𝑟) is defined as 

𝑒(B =
𝐿(B
𝐿

<2. 30? 

where 

𝐿 =
1
2 a 𝑤<𝒏% , 𝒏2?
𝒏',𝒏(∈F

<2. 31? 
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𝐿(B =
1
2 a 𝑤<𝒏% , 𝒏2?
𝒏'∈F),𝒏(∈F*

<2. 32? 

The class similarity matrix of the partition 𝒞 is defined as  

𝒆 = �

𝑒"" 𝑒"# ⋯ 𝑒")
𝑒#" 𝑒## ⋯ 𝑒#)
⋮ ⋮ ⋱ ⋮
𝑒)" 𝑒)# ⋯ 𝑒))

� <2. 33? 

It is noted that the class similarity matrix is symmetric. The modularity 𝑄 is then defined 

to evaluate the quality of network division as 

𝑄 =a�𝑒(( −ua𝑒(B

)

B8"

v

#

�
)

(8"

=a𝑒((
(

−aua𝑒(B
B

v

#

(

<2. 34? 

Any change in the structure of the community will lead to the change in the class 

similarity matrix and the value of 𝑄. High value of 𝑄 represents a good division and our 

goal is to optimize 𝑄 from possible divisions. The strategy follows the agglomerative 

hierarchical clustering algorithm, where each node starts in its own cluster, and pairs of 

clusters are merged upwards to form a binary, hierarchical cluster tree. Before talking 

about this algorithm, we first look into how the merging of clusters influences the value 

of 𝑄. Suppose 𝐶5 is merged by 𝐶G , 𝐶H ∈ 𝒞 so that 𝐶5 = 𝐶G ∪ 𝐶H. Then 

𝑒55 =
𝐿55
𝐿
=
1
𝐿
<𝐿GG + 𝐿HH + 2𝐿GH? = 𝑒GG + 𝑒HH + 2𝑒GH <2. 35? 

For 𝑥 ≠ 𝑒, 𝑓 

𝑒(5 =
𝐿(5
𝐿
=
1
𝐿
<𝐿(G + 𝐿(H? = 𝑒(G + 𝑒(H <2. 36? 

Similarly,  
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𝑒5( = 𝑒G( + 𝑒H( = 𝑒(G + 𝑒(H = 𝑒(5 <2. 37? 

Considering that the merger of the cluster 𝐶G and 𝐶H does not change the structure of the 

rest part of the network, the class similarity between any other clusters still remains 

unchanged. Thus, the increment of 𝑄  caused by the merging of 𝐶G  and 𝐶H  can be 

calculated by 

∆𝑄GH = 2𝑒GH − 2a𝑒(G
(

a𝑒(H
(

<2. 38? 

If the merger of the cluster 𝐶G and 𝐶H is effective, the modularity 𝑄 should increase after 

the merger, and that means ∆𝑄GH > 0. 

In the initial state 𝑆, consisting of 𝑛 nodes in total, is divided into 𝑞 clusters and each 

cluster only includes one node. Then we repeatedly merge the clusters together in pairs, 

and choose the join that results in the greatest increase in the modularity 𝑄 as the final 

decision of this step; that is, in another word, maximizing the value of ∆𝑄 among all the 

𝑛(𝑛 − 1	)/2 possible ways of merger. The greatest increase of 𝑄 in this step is denoted 

as ∆𝑄&'(. Now there are 𝑛 − 1 clusters left after the first merger. The merging step is 

then repeated until there is only one cluster left. ∆𝑄&'( of each step is recorded. The 

progress of the algorithm can be represented as a dendrogram, a tree that shows the order 

of the joins. Cuts through the dendrogram at different levels give divisions of the network 

into larger or smaller numbers of clusters and we can select the best cut by looking for 

the maximal value of 𝑄. In fact, with the procedure going on, ∆𝑄&'( is positive at first, 

and then turns negative after the modularity 𝑄  reaches its maximum. Therefore, the 

dendrogram can be cut right before ∆𝑄&'( turns negative and the best division of the 

network is obtained. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

In this chapter, the methodology of this work is elaborated. Section 3.2 introduces the 

research flow and the scope of this work. The experimental set-up is described in section 

3.3, which includes the experimental equipment specifications, models and settings, etc. 

In section 3.4, the design of the experiment and procedures are explained in detail.  

3.2 Research flow and scope 

 

Figure 3.1: Flow chart 

Following the main objectives as stated in Chapter 1, the study is mainly composed of 

three parts: (1) investigating the performance of ISMA in generating clean and stationary 
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comparable FRFs under the operational condition for damage identification; (2) 

development of an optimized operational damage identification scheme using FRF 

change and supervised machine learning; (3) development of an operational unsupervised 

damage identification scheme utilizing PCA-reduced FRFs and WCC analysis. The flow 

chart of this work is shown in Figure 3.1. 

The ISMA was performed at the first stage to obtain the FRF and other modal 

parameters under the operational condition. The performance of ISMA was compared 

with that of EMA. The ISMA data would be further used for damage identification if they 

were verified to be static comparable. 

In the supervised learning method, the input of the ANN was constructed by the FRF 

changes obtained from multiple measurement points, and the measurement points were 

then optimized by mode shape assessment. The FRF change is more informative than 

traditional modal properties such as the natural frequency because it makes use of modal 

information over a frequency range rather than at a certain frequency. However, it is noted 

that if the measurement point is located at the nodal point, the FRF curve will be relatively 

flat and the FRF change at that point cannot effectively reflect the damage. Therefore, it 

is more reliable to use multiple measurement points. If some measurement point fell on 

the nodal line, the damage could still be reflected by other measurement points. On the 

other hand, through mode shape assessment, it is possible to help us avoid placing the 

accelerometers at nodal points so as to optimize the number and locations of measurement 

points and make the supervised damage identification scheme more cost-effective in 

terms of hardware. The BP network was employed as the learning algorithm, which is 

one of the most effective and widely-used methods to solve classification problems. With 

the virtue of ISMA and FRF-based damage features, damage identification under the 

operation condition can be easily realized using this popular classification approach. 
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In the unsupervised learning method, features for hierarchical cluster analysis were 

extracted using PCA and WCC analysis. Performing PCA on FRF can not only reduce 

the size of the raw data, but also clearly preserve the resonant peaks of the original FRF 

curves, which contain rich modal information. WCC analysis, which is sensitive to the 

horizontal translation of peaks, helps to extract damage-sensitive features from the PCA-

reduced FRF. Clustering of these features in terms of different damage scenarios were 

achieved by hierarchical cluster analysis based on complex network theory, which could 

automatically determine the number of clusters so that it did not need to be predefined. 

Then, the post-screening on the PCA-reduced FRF of the alarmed damage state helps to 

develop a complete operational damage identification scheme. 

Additionally, the proposed damage identification methods based on supervised 

learning and unsupervised learning were compared and discussed.  

3.3 Experimental set-up 

A rectangular Perspex plate was investigated in this study to simulate the vibration 

behavior of an automobile, which is shown in Figure 3.2. The plate specimen has length, 

width and thickness of 480 mm, 200 mm and 9 mm, respectively, and weighs 1.1kg. The 

four corners of the plate were fixed to the aluminum supports, connected by two layers 

of steel sheets and screws. The FlexiForce A201 force sensors were placed between the 

two layers of steel sheets to measure the pressure attributed to the preload of the screws. 

The plate was symmetrically divided into nine points according to Figure 3.3. Five 

accelerometers (Wilcoxon Research model S100C) were placed at point #2, #4, #5, #6 

and #8. The suspension/spring components of car wheels were simulated by the aluminum 

supports, where structural damage is assumed to take place and the sensors cannot be 

placed because of the existence of wheels. The automobile chassis can be modeled as a 

rectangular plate for the following reasons. First, the shape of a typical automobile chassis 
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is similar to that of a rectangular plate. Second, the ground supports simulate similar 

boundary conditions as those of the suspension/spring components of automobile wheels. 

Third, they show similar dynamic behaviors, the first three mode shapes of them are 

heaving, rolling and pitching. An automated impact device (AID) was used to create 

impacts at the edges of the plate and the ground support to analyze its dynamic behavior 

under the vertical impact from the automobile wheels. The AID was driven by the 

excitation voltage with a short period to automatically create periodic impacts towards 

the test system. EMA and ISMA were performed respectively under stationary and in-

service conditions. The harmonic excitation was created by an electric motor and external 

power amplifier (LDS model PA25E) to simulate the in-service condition. National 

Instrument-Universal Serial Bus (NI-USB 9234) signal acquisition module was used to 

acquire dynamic signals from the accelerometers and LabVIEW 2013 was used for signal 

processing. The sampling rate was 2048 Hz and the block size was 4096 samples, which 

provided a frequency resolution of 0.5 Hz and data acquisition time of 2 seconds. ANNs 

were realized by MATLAB Neural Network Toolbox. 

 

Figure 3.2: Experimental set-up 
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Figure 3.3: Measurement points, damage location and impact location 

 

In this work, damage conditions were simulated by removing or loosening the 

corresponding screws that fix the plate to the ground support, and the force sensors helped 

quantitatively control the severity of damage. When the screws were loosened, the 

pressure between the steel plate and the Perplex plate also decreased. The reading of the 

force sensor, which was proportional to the pressure, also decreased. The force sensors 

were calibrated so that the sensor reading could reach the maximum 150 when the screws 

were firmly tightened. In the undamaged (UD) cases, all the four damage points were 

firmly screwed and the pressure of each point was 150. Three severity levels of damage 

were created, namely high damage (HD), moderate damage (MD) and low damage (LD) 

conditions. The LD conditions were created by slightly loosening the screws of the 

damage point so that the point was still screwed, yet with pressure of 40. It will be shown 

later that the damage can be clearly detected using the PCA-WCC features when the 

pressure is reduced to 40 or below. In the MD conditions, the screws were loosened to an 

extent that the pressure just reduced to 0. The HD conditions were created by removing 
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the screws of the damage point. As damage could occur at each corner of the plate, there 

were four potential damage points, namely points #1, #3, #7 and #9. Table 3.1 shows the 

list of all the scenarios along with their descriptions.  

Table 3.1: List of damage scenarios and descriptions 

Damage 
scenario Description 

UD All four 4 points of the screws were tightened with pressure of 150 

LD1 Screws at point #1 were slightly loosened with pressure of 40, as for points 
#3, #7 and #9 were tightened with pressure of 150 

LD3 Screws at point #3 were slightly loosened with pressure of 40, as for points 
#1, #7 and #9 were tightened with pressure of 150 

LD7 Screws at point #7 were slightly loosened with pressure of 40, as for points 
#1, #3 and #9 were tightened with pressure of 150 

LD9 Screws at point #9 were slightly loosened with pressure of 40, as for points 
#1, #3 and #7 were tightened with pressure of 150 

MD1 Screws at point #1 were loosened with 0 pressure, as for points #3, #7 and 
#9 were tightened with pressure of 150 

MD3 Screws at point #3 were loosened with 0 pressure, as for points #1, #7 and 
#9 were tightened with pressure of 150 

MD7 Screws at point #7 were loosened with 0 pressure, as for points #1, #3 and 
#9 were tightened with pressure of 150 

MD9 Screws at point #9 were loosened with 0 pressure, as for points #1, #3 and 
#7 were tightened with pressure of 150 

HD1 Screws at point #1 were removed, as for points #3, #7 and #9 were 
tightened with pressure of 150 

HD3 Screws at point #3 were removed, as for points #1, #7 and #9 were 
tightened with pressure of 150 

HD7 Screws at point #7 were removed, as for points #1, #3 and #9 were 
tightened with pressure of 150 

HD9 Screws at point #9 were removed, as for points #1, #3 and #7 were 
tightened with pressure of 150 

 

3.4 Design of experiment and procedures  

3.4.1 Modal analysis using ISMA de-noising method under operational condition 

ISMA was performed on a rectangular Perspex plate in this study. A harmonic 

excitation of 35 Hz was created by an electric motor and external power amplifier to 
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simulate the operational condition. ISMA was carried out using the AID with lab-scale 

linear solenoids and calibrated force transducer as input excitation. Accelerometers were 

used to measure the output response due to the impacts to obtain FRFs which are rich in 

information on the dynamic behavior of the plate. The number of averaging for ISTA was 

set as 10. In the experiment, the FRF data of the five measurement points (#2, #4, #5, #6 

and #8) were collected with excitation at point #9. The FRFs in the frequency range of 

0~100 Hz were saved with resolution of 0.5 Hz. 

To evaluate the performance of ISMA, the FRF data measured using ISMA under the 

operational condition were qualitatively and quantitatively compared with those 

measured using conventional EMA method in the static state. Frequency response 

assurance criterion (FRAC) was used to describe the similarity between the two FRFs, 

which is defined as (Shin, 2016) 

𝐹𝑅𝐴𝐶 =
|{𝐻'}I{𝐻J}|#

({𝐻'}I{𝐻'})({𝐻J}I{𝐻J}) (3.1) 

where {𝐻'}  and {𝐻J}  are the equidistantly discretized sequences of the FRFs to be 

compared. FRAC ranges from 0 to 1 and high similarity is indicated when the value 

approaches 1. 

Afterwards, the natural frequency and mode shape of the plate were respectively 

extracted from the EMA and ISMA FRF. Recall that there are no accelerometers deployed 

at the points #1, #3, #7 and #9, which means the FRF is not available at the corners of the 

plate. Nevertheless, the full mode shapes can still be obtained through interpolation using 

the displacement at the adjacent measurement points. Considering the first three common 

mode shapes of this type of structure are usually heaving, rolling and pitching, where 

there is no obvious bending effect, the points at the corners can be interpolated with the 

displacement of the three points adjacent to it. For example, with the assumption that the 
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points #1, #2, #4 and #5 are coplanar, the displacement of point #1 can be obtained by 

interpolation as 

𝛹" = 𝛹# +𝛹K −𝛹L (3.2a) 

where 𝛹( is the displacement at the point #𝑥. In this way, the displacement of points #3, 

#7 and #9 can also be obtained as 

𝛹$ = 𝛹# +𝛹M −𝛹L (3.2b) 

𝛹N = 𝛹K +𝛹O −𝛹L (3.2c) 

𝛹P = 𝛹M +𝛹O −𝛹L (3.2d) 

The mode shape of the plate, 𝜳 = (𝛹", 𝛹#, ⋯ ,𝛹P); , was thus available for the first three 

modes. The MAC was applied to describe the similarity between the mode shapes 

obtained by EMA and ISMA, which is defined as (Pastor et al., 2012) 

𝑀𝐴𝐶 =
g𝜳'I𝜳Jg

#

<𝜳'I𝜳'?<𝜳JI𝜳J?
(3.3) 

where 𝜳' and 𝜳J are the mode shapes to be compared. MAC ranges from 0 to 1 and high 

similarity between the compared mode shapes is indicated when the value approaches 1. 

3.4.2 Development of operational damage identification scheme using supervised 

learning 

A three-layer feed-forward back-propagation (BP) network was employed in the 

method proposed in this section. The input of the network was constructed using the FRF 

change at multiple measurement points. 
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The BP network was constructed with sigmoid hidden neurons and soft-max output 

neurons. The input vector of the network was constructed with the FRF changes of 

multiple measurement points, and each element 𝛿% corresponded to the FRF change of a 

the 𝑖-th measurement point as defined in (2.8). The one-hot vectors were used as the 

target vectors to indicate the corresponding damage scenario of each sample. The input 

size of the network corresponded to the number of the considered measurement points 

while the size of output layer corresponded to the total number of damage scenarios. The 

number of neurons in the hidden layer was set as 10. The performance of the network on 

any set of input-target samples was evaluated by cross-entropy, which is defined as 

𝐽 =
1
𝑁a−𝒗>/ ∙ log 𝒗>.

6

>8"

(3.4) 

where 𝑁 is the total number of input-target samples in the set, 𝒗>/  is the target of the 𝑝-th 

sample and 𝒗>.  is the output of the network with respect to the input of the 𝑝-th sample 

𝒗>%  (Goodfellow et al., 2016). 

The training samples were obtained by EMA. The 13 damage scenarios list in Table 

3.1 were considered. A total of 140 sets of FRF data were measured using EMA, of which 

20 sets were measured under the undamaged scenario and 10 sets were measured under 

each damaged scenario. Thus, there were 140 EMA input-target samples created with 13 

classes. In the training process, 80% of the EMA samples were divided into the training 

set and the rest were divided into the validation set. Scaled conjugate gradient back-

propagation was used as the training method of the network. The training was terminated 

when the performance gradient on the validation set reached 1.0E-06. The trained 

network was then tested using the ISMA testing samples. Similar to the acquisition of 

EMA samples, the 140 ISMA testing samples were obtained from FRF measured by 

ISMA and also included all the 13 damage scenarios. The testing results were evaluated 
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by the cross entropy and percentage accuracy. The cross entropy was calculated according 

to (3.4). The percentage accuracy of damage identification is defined as  

𝜂 =
number	of	testing	samples	with	correct	results

number	of	all	testing	samples × 100% (3.5) 

More detailed testing results were illustrated by confusion matrices. The confusion matrix 

summarizes the performance of a classification algorithm. It is a two-dimensional matrix. 

Each row of the matrix represents the objects the classifier assigns, while each column 

represents the objects in the actual class. It is easy to see whether the objects are 

mislabeled with the help of the confusion matrix. When the identified class is the same 

as the actual class, the classification is correct, otherwise the object is misclassified 

(Sammut & Webb, 2011). 

The settings of the BP network are summarized in Table 3.2. 

Table 3.2: Settings of three-layer BP network 

Input layer Number of neurons Corresponding to number of measurement 
points 

Hidden layer 
Neuron type Sigmoid hidden neurons 

Number of neurons 10 

Output layer 
Neuron type Soft-max output neurons 

Number of neurons Corresponding to number of damage 
scenarios to be classified 

Training 

Division of 
samples Training set 80%, validation set 20% 

Performance Cross-entropy 

Method Scaled conjugate gradient back-propagation 

Stopping condition Performance gradient on the validation set 
reached 1.0E-06  
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In this study, the frequency range for FRF change calculation was determined at the 

first stage with the reference of FRF figures. Then, all the five measurement points were 

used for training and testing the network, and the testing results were evaluated to verify 

the effectiveness of the proposed damage identification scheme. Afterwards, optimization 

of the measurement points was carried out with mode shape assessment. Finally, the 

scheme was tested and evaluated with the reduced number of measurement points. 

3.4.3 Development of operational damage identification scheme using 

unsupervised learning 

An unsupervised damage identification scheme is proposed in this section, combining 

PCA, WCC analysis and hierarchical cluster analysis based on complex network theory.  

The feature extraction procedure is described as follows. First, PCA was conducted on 

the raw FRF data to obtain the PCA-reduced FRF. The dimension of the multiple FRF 

was thus reduced. Afterwards, WCC analysis was performed on the PCA-reduced FRF 

to calculate its sequence of slope differential values. The complete frequency range was 

then divided into several frequency segments in terms of the vibration modes. Finally, the 

WCC features, namely the areas under the slope differential value curves, were 

respectively calculated in these frequency segments. To further look into the sensitivity 

of the WCC analysis, the PCA-WCC features were compared with the shift of the 

corresponding resonant peaks under six levels of damage severities. The damage severity 

was determined by the preload of the screws at the damage points. Recalling that the 

pressure was 150 when the screws were completely tightened, the screws at the damage 

point were loosened so that the pressure respectively reduced to 120, 100, 80, 60, 40 and 

20. In this way, six levels of low-severity damage were thus created. 

The hierarchical cluster analysis based on complex network theory was applied as the 

unsupervised learning method in this work, which can automatically divide data points 
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into densely connected clusters without previously setting the number of clusters. A total 

of 140 sets of FRF data were measured using ISMA under 13 damage scenarios as shown 

in Table 3.1, of which 20 sets were measured under the undamaged scenario and 10 sets 

were measured under each damaged scenario. The full frequency range was divided into 

several frequency segments in terms of the vibration modes. The damage-sensitive PCA-

WCC features were obtained from the ISMA FRF data in each frequency segment and 

normalized as 

𝑎!	-.)& =
𝑎!	

𝑎!	&'(	
(3.6) 

where 𝑎!	&'(	is the maximum of 𝑎! among all the samples. The normalized PCA-WCC 

features of all the selected segments were combined into a vector, which was regarded as 

the coordinate of a node in a complex network. Hierarchical clustering was then 

conducted to sort the nodes of samples into several categories, automatically finding the 

number of clusters by maximizing the modularity 𝑄 to execute the damage detection 

scheme.  

The clustering results of the new hierarchical clustering method were compared with 

those of the conventional k-means clustering. The adjusted Rand index (ARI) was used 

as the measure of agreement between the clustering results and the actual classes of 

samples. Given a set of samples 𝑆 with 𝑛 elements, suppose 𝒳 = {𝑋", 𝑋#, ⋯ , 𝑋)} is the 

partition of 𝑆  based on the actual classes of samples and 𝒴 = {𝑌", 𝑌#, ⋯ , 𝑌!}  is the 

clustering result such that ⋂ 𝑋%)
%8" = ⋂ 𝑌2!

28" = 𝑆  and 𝑋% ∩ 𝑋%′ = 𝑌2 ∩ 𝑌2′ = ∅   (1 ≤

𝑖 ≠ 𝑖Q ≤ 𝑟,1 ≤ 𝑗 ≠ 𝑗Q ≤ 𝑠). Let 𝑛%2 be the number of samples that both belong to the class 

𝑋% and the cluster 𝑌2, and let 𝑎% and 𝑏2 be the number of objects in the class 𝑋% and the 

cluster 𝑌2 respectively. The notations are shown in Table 3.3.  
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Table 3.3: Notation for comparing two partitions 

𝒴 

𝒳 
𝑌" 𝑌# ⋯ 𝑌) Sums 

𝑋" 𝑛"" 𝑛"# ⋯ 𝑛") 𝑎" 
𝑋# 𝑛#" 𝑛## ⋯ 𝑛#) 𝑎# 
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 
𝑋! 𝑛!" 𝑛!# ⋯ 𝑛!) 𝑎! 

Sums 𝑏" 𝑏# ⋯ 𝑏) 𝑛 
 

Then the ARI is calculated as (Hubert & Arabie, 1985) 

ARI =
∑ <-'(# ?%2 − �∑ <''# ?% ∑ <J(# ?2 � <-#?º

1
2 �∑ <

''
# ?% +∑ <J(# ?2 � − �∑ <''# ?% ∑ <J(# ?2 � <-#?º

(3.7) 

ARI ∈ [−1,1] and a larger value means that the clustering result is more consistent with 

the real classes. 

Any alarmed damage state was diagnosed for its damage severity and location through 

PCA-reduced FRFs and corresponding mode shapes. Then further observation and 

analysis were carried out on the PCA-reduced FRF of the plate-like structure. As the 

PCA-reduced FRF has similar resonant peaks to the common FRFs, the shift in the 

abscissa and the magnitude of the peaks were discussed. The relation between the change 

in the resonant peaks and the damage states was studied with the reference of mode shape 

assessment to develop a complete operational damage identification scheme. Univ
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Introduction 

This research was conducted according to the proposed procedures described in 

Chapter 3, and the results are presented accordingly in this chapter. Section 4.2 shows the 

results of the modal analysis using ISMA under the operational condition. The 

performance of ISMA is compared with that of EMA. Section 4.3 presents the results of 

the operational damage identification scheme using supervised learning. The scheme is 

evaluated with the reduced number of measurement points with optimization of the 

measurement points carried out through mode shape assessment. Section 4.4 presents the 

results of the operational damage identification scheme using unsupervised learning, 

which includes the results of the hierarchical clustering and further analysis on the PCA-

reduced FRF of the plate-like structure. Section 4.5 is the comparison between the 

supervised learning and unsupervised learning methods developed in this work. The 

results in each section are elaborated and discussed throughout this chapter. 

4.2 Modal analysis using ISMA de-noising method under operational condition 

4.2.1 Measurement of FRF using ISMA under operational condition 

Modal analysis was respectively conducted under stationary condition using EMA, 

and under in-service condition using the ISMA de-noising method. The FRFs measured 

using EMA and ISMA under the undamaged scenario are compared in Figure 4.1 as an 

example. Univ
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Figure 4.1, continued 

 

 

Figure 4.1: EMA and ISMA FRFs measured in UD scenario 

 

It is observed from Figure 4.1 that the frequency range 0~100 Hz covers the first three 

vibration modes and part of the fourth mode, which are respectively near 20 Hz, 44 Hz, 

53 Hz and 98 Hz. The FRF curves measured by EMA and ISMA almost overlap in the 

Figure 4.1, except for some minor differences attributed to residual noise and 

measurement error. The remnant of the cyclic load can only be observed in the FRF 
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measured at the point #5 at around 35 Hz, which, however, has become very 

inconspicuous due to the suppression of ISTA. Besides, the curves of FRF measured at 

other locations are very smooth at the frequency of cyclic load, indicating that the cyclic 

components have been well diminished by ISTA. Table 4.1 shows the FRAC between the 

FRFs measured by these two means under all scenarios. The value of FRAC is always 

higher than 0.993, which indicates very high similarity between the FRFs obtained, 

proving that the de-noising method of ISMA provides static comparable FRF data under 

in-service conditions. 

It is noted that the first three modes are completely included in the recorded frequency 

range according to Figure 4.1. Considering that it is more convenient to obtain modal 

features of lower modes with higher accuracy, and that the first three mode shapes of such 

type of plate-like structure are usually heaving, rolling and pitching, the following work 

mainly focuses on the first three vibration modes of the plate. 

Table 4.1: FRAC between the FRFs measured by EMA and ISMA 

Damage 
scenario 

Measurement point of FRF 
#2 #4 #5 #6 #8 

UD 0.9998 0.9997 0.9997 0.9999 0.9996 
LD1 0.9997 0.9997 0.9998 0.9998 0.9998 
LD3 0.9998 0.9998 0.9998 0.9999 0.9997 
LD7 0.9996 0.9997 0.9993 0.9997 0.9996 
LD9 0.9998 0.9997 0.9997 0.9997 0.9997 
MD1 0.9994 0.9991 0.9992 0.9994 0.9996 
MD3 0.9992 0.9990 0.9993 0.9993 0.9994 
MD7 0.9990 0.9987 0.9980 0.9995 0.9991 
MD9 0.9994 0.9990 0.9993 0.9989 0.9991 
HD1 0.9999 0.9999 1.0000 0.9999 0.9999 
HD3 0.9996 0.9935 0.9990 0.9993 0.9997 
HD7 0.9989 0.9990 0.9983 0.9986 0.9992 
HD9 0.9985 0.9973 0.9989 0.9986 0.9984 
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4.2.2 Acquisition of natural frequencies and mode shapes 

The natural frequencies of the first three modes are shown in Table 4.2. It can be seen 

that the natural frequencies decrease when damage occurs, and the higher severity of 

damage results in a more significant reduction in the natural frequencies. Table 4.2 also 

shows that the natural frequency obtained by ISMA is very close to that obtained by EMA, 

and their difference is always less than 0.2. 

Table 4.2: First three natural frequencies of plate obtained by EMA and ISMA 

Damage 
scenario 

1st natural frequency 2nd natural frequency 3rd natural frequency 
EMA ISMA EMA ISMA EMA ISMA 

UD 20.9 20.9 44.3 44.3 52.6 52.6 
LD1 20.7 20.7 43.2 43.3 51.9 51.8 
LD3 20.6 20.6 43.5 43.5 51.0 50.9 
LD7 20.7 20.7 43.6 43.7 51.3 51.3 
LD9 20.9 20.9 43.4 43.5 52.2 52.2 
MD1 20.6 20.5 42.1 42.0 51.6 51.6 
MD3 20.3 20.3 41.2 41.2 48.6 48.6 
MD7 20.5 20.5 41.9 41.9 49.8 49.7 
MD9 20.5 20.5 40.5 40.5 51.5 51.7 
HD1 17.0 17.0 34.3 34.3 50.8 50.9 
HD3 16.0 16.0 33.9 34.1 46.2 46.1 
HD7 16.4 16.4 34.1 34.1 47.3 47.3 
HD9 17.4 17.4 35.1 35.1 50.1 50.2 

 

   The first three mode shapes of the plate are shown in Figure 4.2. It can be seen from 

the figure that the mode shapes obtained by interpolation can still clearly reflect the effect 

of damage. The first mode is the heaving motion. When there is no damage, the plate 

moves in translation along the vertical direction and the four vertices of the plate are 

displaced equally. When damage takes place at any corner of the plate, the plate is tilted 

toward the damage point. The second mode is rolling. In the undamaged condition, the 

plate rolls around the longitudinal axis. The four vertices are displaced with almost the 

same amplitude, but points #1, #7 and points #3, #9 are of opposite phases. Damage can 

cause the deflection of the nodal line (the longitudinal axis). When damage occurs at point 

#1 or #9, the displacement at points #1 and #9 is larger than that at points #3 and #7. 
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When damage occurs at points #3 or #7, the displacement at points #1 and #9 is smaller 

than that at points #3 and #7. The third mode is pitching. In the undamaged condition, the 

four vertices are displaced with almost the same amplitude, but points #1, #3 and points 

#7, #9 are of opposite phases. Damage can also cause the deflection of the pitch line (the 

lateral axis). When damage occurs at point #1 or #9, the displacement at points #1 and #9 

is smaller than that at points #3 and #7. When damage occurs at points #3 or #7, the 

displacement at points #1 and #9 is larger than that at points #3 and #7. Although different 

vibration behaviors are seen under different damage scenarios, overall the first three 

modes still show the characteristics of heaving, rolling and pitching. 
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Figure 4.2, continued 
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Figure 4.2, continued 

 

Figure 4.2: First three mode shapes of plate with different damage locations 

 

Table 4.3 compares the MAC between the mode shapes obtained by EMA and ISMA 

data under all scenarios. The results show that the value of MAC between the mode 

shapes obtained by these two methods is higher than 0.997. This indicates that the de-

noising method of ISMA can also provide static-comparable mode shapes during the in-

service condition.  

In fact, the natural frequency and mode shape obtained in the modal analysis are 

retrieved from the FRF. Since ISMA offers static-comparable FRF as discussed in 4.2.1, 

Univ
ers

iti 
Mala

ya



54 

the natural frequency and mode shape can therefore be obtained accurately under the 

operational condition. 

Table 4.3: MAC between mode shapes obtained by EMA and ISMA 

Damage 
scenario 

Vibration mode 
1st mode 2nd mode 3rd mode 

UD 0.99995 0.99997 0.99996 
LD1 0.99996 0.99982 0.99954 
LD3 1.00000 1.00000 0.99989 
LD7 0.99998 0.99997 0.99983 
LD9 0.99998 0.99999 0.99991 
MD1 0.99998 0.99990 0.99974 
MD3 0.99996 0.99993 0.99938 
MD7 0.99999 0.99997 0.99998 
MD9 0.99999 0.99987 0.99971 
HD1 0.99994 0.99999 0.99976 
HD3 0.99996 0.99739 0.99997 
HD7 0.99997 0.99999 1.00000 
HD9 0.99999 0.99998 0.99884 

 

4.3 Development of operational damage identification scheme using supervised 

learning 

4.3.1 Construction of input feature: FRF change  

To construct the input feature, namely the FRF change 𝛿 over a frequency segment, 

the frequency range needs to be determined at first. Figure 4.3 is the FRF graphs of each 

measurement point under five HD scenarios, which shows the shift of FRFs attributed to 

different types of damage. The first three modes of vibration are covered in the frequency 

range of 0~60 Hz. It is noted that FRFs of each damage scenario are unique, and the 

resonant peaks tend to move left towards the lower frequency range when damage takes 

place. Along with the shift of the peaks, the value of FRF changes drastically near the 

natural frequencies. Meanwhile, the change is not so obvious in anti-resonant frequency 

segments where the FRF curves are relatively flat. It is also observed that some resonant 
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peaks are of rather small magnitudes because the corresponding measurement points are 

on the nodal line and nearly remain at rest in vibration. For example, point #5, which is 

located at the center of the plate, is on the nodal line of the second and third modes. 

 

Figure 4.3: Comparison of FRFs of HD scenarios 
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According to the previous discussion, significant change in FRF is observed near the 

natural frequencies when damage takes place, which means FRFs are more sensitive to 

structural damage in these frequency intervals. Therefore, it is sensible to construct input 

features using the FRF data near the natural frequencies. Three frequency intervals, 

namely 10~25 Hz, 30~40 Hz and 45~55 Hz were selected, which respectively correspond 

to the first three vibration modes. The input features were calculated from the FRFs in 

these frequency intervals. The frequency bands are narrow, which ensures that only the 

corresponding vibration modes are dominant in these intervals. This makes it feasible to 

optimize the placement of measurement points by looking into the modal shape of the 

dominant vibration mode in the selected frequency interval, which will be discussed later 

in this section. Figure 4.4, Figure 4.5 and Figure 4.6 show the input features of the three 

frequency intervals (FRF changes in 10~25 Hz, 30~40 Hz and 45~55 Hz) that were 

calculated using the FRF data of each damage scenario. The input feature vector is of five 

dimensions that respectively correspond to the FRF change of the five measurement 

points. 
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Figure 4.4, continued 

 

 

Figure 4.4: Input features of network: FRF change 𝜹 in 10~25 Hz  
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Figure 4.5, continued 

 

Figure 4.5: Input features of network: FRF change 𝜹 in 30~40 Hz  
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Figure 4.6, continued 

 

 

Figure 4.6: Input features of network: FRF change 𝜹 in 45~55 Hz 
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When the subplots of Figures 4.4, 4.5 and 4.6 are compared respectively, it can be seen 

that the more severe damage causes the more obvious changes in FRF. For LD damage, 

the value of δ at each measurement point is small, and the difference between different 

damage locations is not obvious. In MD damage, the values of δ start to increase, and the 

difference between different damage scenarios also becomes obvious. In HD damage, the 

value of δ is the largest and the variety of δ is most obvious. It can be noted that the 

sensitivity of FRF at different measurement points to damage also varies, and the 

sensitivity is also related to the selected frequency range. For example, in the second and 

third modes, the FRF measured at point #5 is less sensitive to damage than other 

measurement points. As we will see later, this phenomenon is related to the vibrational 

shape of the plate. 

Tables 4.4, 4.5 and 4.6 show the natural frequencies of the first three modes and the 

FRF change 𝛿 of the five measurement points. Compared with the natural frequency, 

using FRF change is more advantageous because the FRF is more informative. The 

natural frequency, as a global property of the structure, is limited in indicating damage 

location, because damage with different locations may lead to a similar shift in natural 

frequencies. For example, the first natural frequencies of MD7 and MD9 scenarios are 

both 20.5 Hz according to Table 4.4. The second natural frequencies of LD3 and LD7 are 

34.5 Hz and 34.6 Hz according to Table 4.5, which are also very close and can be difficult 

to distinguish. In these cases, the damage cannot be located with the natural frequency. 

Another drawback is that the change in the natural frequency is not very sensitive (Carden 

& Fanning, 2004; H. L. Chen et al., 1995). For example, even in MD severity cases, the 

reduction in the first natural frequency can still be as low as 1.4%. Meanwhile, structural 

damage can be reflected more clearly by changes in FRF. Moreover, sometimes different 

damage types result in the same natural frequency, but their FRF changes are distinct (e.g. 

the first mode of MD7 and MD9). This is because the FRF change method involves the 
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modal information in a frequency range, which is more informative than only using the 

single natural frequency. Therefore, the damage feature based on FRF change has 

advantages over natural frequency and is suitable to be used as the input feature for 

supervised learning. 

Table 4.4: Comparison between natural frequency and FRF change of first mode 

Damage 
scenario 

1st natural 
frequency 

Change in 
natural 

frequency 

FRF change δ in 10~25 Hz 

#2 #4 #5 #6 #8 

LD1 20.7 1.0% 0.12  0.35  0.42  0.59  0.31  
LD3 20.6 1.4% 0.24  0.37  0.36  0.42  0.21  
LD7 20.7 1.0% 0.14  0.26  0.24  0.27  0.16  
LD9 20.9 0.0% 0.47  0.86  1.11  1.56  0.92  
MD1 20.6 1.4% 0.21  0.60  0.72  1.05  0.54  
MD3 20.3 2.9% 0.60  0.89  0.82  0.95  0.46  
MD7 20.5 1.9% 0.35  0.69  0.60  0.70  0.44  
MD9 20.5 1.9% 0.93  1.70  2.03  2.82  1.90  
HD1 17.0 18.7% 2.04  4.08  4.42  3.97  2.11  
HD3 16.0 23.4% 3.81  4.44  4.67  5.92  2.73  
HD7 16.4 21.5% 2.79  5.03  4.73  4.67  3.06  
HD9 17.4 16.7% 3.80  6.10  8.17  12.07  8.65  

 

Table 4.5: Comparison between natural frequency and FRF change of second mode 

Damage 
scenario 

2nd natural 
frequency 

Change in 
natural 

frequency 

FRF change δ in 30~40 Hz 

#2 #4 #5 #6 #8 

LD1 43.2 2.5% 1.17  1.03  0.45  2.32  0.98  
LD3 43.5 1.8% 0.15  0.72  0.09  0.57  0.17  
LD7 43.6 1.6% 0.14  0.41  0.11  0.76  0.22  
LD9 43.4 2.0% 0.57  1.47  0.72  0.63  1.01  
MD1 42.1 5.0% 2.58  2.50  0.71  5.32  2.15  
MD3 41.2 7.0% 0.44  2.54  0.40  1.87  0.42  
MD7 41.9 5.4% 0.49  1.86  0.28  3.17  0.74  
MD9 40.5 8.6% 3.41  10.24  1.98  6.74  5.76  
HD1 34.3 22.6% 7.81  6.72  4.49  23.92  8.57  
HD3 33.9 23.5% 2.95  5.26  0.82  3.75  2.57  
HD7 34.1 23.0% 3.78  5.82  1.90  10.54  5.67  
HD9 35.1 20.8% 6.55  18.99  4.28  11.28  10.88  
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Table 4.6: Comparison between natural frequency and FRF change of third mode 

Damage 
scenario 

3rd natural 
frequency 

Change in 
natural 

frequency 

FRF change δ in 45~55 Hz 

#2 #4 #5 #6 #8 

LD1 51.9 1.3% 4.09  3.59  0.67  2.60  4.83  
LD3 51.0 3.0% 6.17  3.55  0.77  3.97  5.63  
LD7 51.3 2.5% 5.12  4.86  0.52  3.77  6.18  
LD9 52.2 0.8% 2.41  2.66  0.41  3.58  1.30  
MD1 51.6 1.9% 5.94  6.23  0.89  4.93  7.03  
MD3 48.6 7.6% 13.65  8.03  2.06  7.61  12.48  
MD7 49.8 5.3% 9.85  7.58  0.95  7.26  12.05  
MD9 51.5 2.1% 4.17  5.06  0.52  6.27  3.05  
HD1 50.8 3.4% 9.74  12.51  1.51  11.44  11.50  
HD3 46.2 12.2% 15.43  6.66  2.95  3.59  14.45  
HD7 47.3 10.1% 14.14  4.24  1.40  5.02  16.70  
HD9 50.1 4.8% 8.94  9.30  0.86  11.59  6.93  

 

4.3.2 Damage identification using BP network 

At this stage, the BP network was trained using the EMA samples, and tested using 

ISMA samples collected under the in-service condition. All the damage states were 

included in the training and testing set, including UD, LD, MD and HD scenarios (13 

scenarios in total). Table 4.7 shows the testing performance of the network when FRF 

changes of the five measurement points were used, with the frequency ranges of 10~25 

Hz, 30~40 Hz, and 45~55 Hz.  

Table 4.7: Performance of damage identification based on BP network using 
FRF change of five measurement points (UD, LD, MD and HD scenarios) 

Frequency 
range Sensors 

Testing performance 

Cross entropy Classification 
accuracy 

10~25 Hz 5 sensors at 
points #2, #4, 

#5, #6, #8 

5.51E-03 95.7% 
30~40 Hz 2.87E-02 95.0% 
45~55 Hz 4.73E-04 99.3% 
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As shown in Table 4.7, the classification accuracy of the testing results is higher than 

95%. The accuracy of testing performance reaches 99.3% when the FRF change in 45~55 

Hz is used as the input feature, which means the damage identification results are of high 

accuracy in this case. However, the table can only present the overall performance of 

damage identification, while Figure 4.7 uses the confusion matrix to specifically compare 

the results of the network judgment with the actual damage states of the testing samples. 

In Figure 4.7, the diagonal cells show the number and percentage of correct 

classifications by the trained network. Taking Figure 4.7 (a) as an example, 15 UD 

samples were correctly classified. This corresponds to 10.7% of all 140 testing samples. 

However, five UD samples were misclassified as LD7, which accounts for 3.6% of all 

140 testing samples. Similarly, nine LD7 samples were correctly classified while one LD7 

sample was misclassified as UD sample. In addition, the rest samples all distribute in the 

diagonal cells, indicating that the outputs are consistent with the targets and the damage 

states of these samples were correctly identified. Overall, 95.7% of the predictions were 

correct and 4.3% were wrong classifications when FRF change in frequency range 10~25 

Hz was used. Similar to the discussion of Figure 4.7 (a), Figure 4.7 (b) shows that three 

LD3 samples were misclassified as UD and four LD3 samples were misclassified as LD7 

when FRF change in frequency range 30~40 Hz was used. Meanwhile, Figure 4.7 (c) 

shows that one LD9 sample was misclassified as UD when FRF change in frequency 

range 45~55 Hz was used. Univ
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Figure 4.7, continued 
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Figure 4.7, continued 

 

Figure 4.7: Testing results of damage identification based on BP network using 
FRF change of five measurement points (UD, LD, MD and HD scenarios) 

 

From Figure 4.7, it is found that the identification of MD and HD cases, whose damage 

is of higher severity, is more accurate, and the accuracy reached 100%.  Meanwhile, as to 

the low-severity damage in LD scenarios, the confusion matrices show that the network 

cannot always correctly determine the location of damage, or mistakes them into the 

Univ
ers

iti 
Mala

ya



68 

undamaged category. When damage severity is low, the change in the FRF is minor.  

Consequently, the values of FRF change 𝛿 can be too small to be distinguished. Therefore, 

the performance of damage identification is not good for LD damage, but may still be 

effective for MD and HD cases. To verify this, damage identification was then carried 

out only using UD, HD and MD data (9 damage scenarios). The results are shown in 

Table 4.8. It is found that the damage states of all the testing samples are correctly 

identified with 100% accuracy. 

Table 4.8: Performance of damage identification based on BP network using 
FRF change of five measurement points (UD, HD and MD scenarios) 

Frequency 
range Sensors 

Testing performance 

Cross entropy Classification 
accuracy 

10~25 Hz 5 sensors at 
points #2, #4, 

#5, #6, #8 

1.23E-04 100% 
30~40 Hz 2.43E-06 100% 
45~55 Hz 2.46E-06 100% 

 

4.3.3 Optimization of measurement points using mode shape assessment 

The performance of damage identification is satisfying so far with FRF data measured 

at all five points of the plate (points #2, #4, #5, #6, #8). However, if the number of 

measurement points can be reduced, the damage identification scheme will be more cost-

effective in terms of the accelerometer hardware and computational complexity of 

network training. The locations of the measurement points should be kindly taken into 

consideration, which can influent the performance of the results. Specifically, the 

measurement points should be avoided on a nodal line.  The second vibration mode is 

first discussed as an example. Figure 4.8 (a) illustrates the second mode shape of the plate, 

which is dominant in the frequency of 30~40 Hz. The second mode of the plate is the 

rolling movement around the longitudinal axis. Point #4 and point #6, which are far away 

from the nodal line, are of a larger amplitude of vibration, while the other three 

measurement points on the nodal line are nearly at rest in vibration. Correspondingly, 
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more obvious resonant peaks are seen at the points #4 and #6 in the second mode, and the 

FRF change 𝛿 of these two points is more sensitive to damage. Meanwhile, the flat FRFs 

of the points #2, #5 and #8 always lead to low values of 𝛿 at these points, regardless of 

the damage status of the plate. Different damage scenarios would not be well 

distinguished if all the measurement points fall on the nodal. Therefore, the new input 

feature vector was built with the FRF changes at the points #4 and #6, of which the 

dimension was reduced to two. Similar to dimension reduction of the second vibration 

mode, the measurement points can also be optimized when the frequency range of 45~55 

Hz is used, which corresponds to the third vibration mode. Figure 4.8 (b) shows the third 

mode shape of the plate. Different from the second mode, points #2 and #8 are of the 

largest displacement in this case. Therefore, the FRF change at these two points was used 

as the input feature. Following the same procedure of 4.3.2, the network was trained using 

the EMA data and tested using ISMA data in 30~40 Hz. The HD and MD severities were 

considered, along with UD state. Table 4.9 shows that accuracy of 100% can still be 

achieved with the number of measurement points reduced to two. Therefore, the 

optimization of input features is a success. The frequency range of 10~25 Hz is dismissed 

because the displacements at each measurement point are similar to the heaving mode, 

and the optimization is not applicable in this case. 

Table 4.9: Performance of damage identification based on BP network using 
FRF change of two measurement points (UD, HD and MD scenarios) 

Frequency 
range Sensors 

Testing performance 

Cross entropy Classification 
accuracy 

30~40 Hz 2 sensors at 
points #4 & #6 2.72E-04 100% 

45~55 Hz 2 sensors at 
points #2 & #8 3.09E-05 100% 
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Figure 4.8: Second and third mode shapes of plate 

 

Comparing the testing performance in Table 4.8 and Table 4.9, it can be observed that 

the cross entropy increases from 2.43E-06 to 2.72E-04 for the second mode (30~40 Hz) 

and increases from 2.46E-06 to 3.09E-05 for the third mode (45~55 Hz) when the number 

of measurement points reduces from five to two, indicating a larger error of the outputs. 

Nevertheless, the classification accuracy remains 100%, which means the increased error 

caused by the reduction of measurement points does not affect the result of damage 

identification, and is acceptable. Meanwhile, after the optimization of measurement 

points, only two accelerometers are needed for damage identification of the test plate, 

which makes it more cost-effective in terms of the accelerometer hardware and 

computation. 
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The damage identification scheme based on supervised learning has also been verified 

on another Perspex plate (Appendix A.1), with five damage scenarios (UD, HD1, HD3, 

HD7 and HD9) considered. The FRFs are presented in Appendix A.2. Appendix A.3 

shows the FRF changes near the second and third vibration modes, which are the input 

feature of the BP network. The 100% accuracy shown in Appendix A.4 indicates that the 

proposed method is also applicable to other plates. 

4.4 Development of operational damage identification scheme using 

unsupervised learning 

4.4.1 Construction of WCC features from PCA-reduced FRF 

Following the proposed scheme, the PCA-reduced FRF of each sample was obtained 

from the FRFs measured at five measurement points. Figure 4.9 shows the FRFs at these 

measurement points in the undamaged condition together with the PCA-reduced FRF 

derived from them as an example. The resonant peaks of the first three vibration modes 

are observed in the curve of the PCA-reduced FRF. Figure 4.10 shows the PCA-reduced 

FRF of all thirteen damage scenarios. It is observed that damage can lead to changes in 

the shape of PCA-reduced FRF curves, which is similar to the behavior of FRFs.     
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Figure 4.9: FRFs and PCA-reduced FRF of UD scenario 
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Figure 4.10, continued 

 

 

Figure 4.10: PCA-reduced FRF of all scenarios 

 

WCC analysis was then performed on the PCA-reduced FRF. The slope differential 

value sequences of LD, MD and HD scenarios are plotted in Figure 4.11, in comparison 

with UD scenario. For the undamaged case, only small fluctuations are observed, which 

are probably caused by measurement error or noise, indicating that the PCA-reduced FRF 

of an undamaged scenario is almost identical with that of the benchmark. Meanwhile, the 

peaks of the damaged slope differential value curves are more distinct, especially near the 
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natural frequencies, which expressly reflects the shift of the PCA-reduced FRF attributed 

to structural damage. Three frequency segments, namely 10~25 Hz, 25~45 Hz and 45~60 

Hz, were intercepted from the original frequency range. Here 10~25 Hz corresponds to 

the first mode, 25~45 Hz corresponds to the second mode, and 45~60 Hz corresponds to 

the third mode. The areas under the curves of slope differential value sequences, as the 

WCC features, were calculated in each of the three frequency segments and respectively 

denoted as 𝑎!", 𝑎!# and 𝑎!$. 
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Figure 4.11, continued 

 

Figure 4.11: Slope differential value sequences 

 

To further look into the sensitivity of the WCC analysis, the PCA-WCC features were 

compared with the horizontal shift of the corresponding resonant peaks in the PCA-

reduced FRF under six levels of damage with low severity, which are shown in Tables 

4.10, 4.11 and 4.12. It is observed that the horizontal shift of the peaks is very small when 

damage severity is low. The shift is lower than 5% when there exists nonzero pressure at 

the damage point, and the shift in the first resonant peak cannot be observed when the 

pressure is higher than 20 under the current resolution rate. Meanwhile, the PCA-WCC 

feature 𝑎! shows higher sensitivity. Taking the first mode as an example, although there 

is no observable shift in the first resonant peak in most cases where the pressure at the 

damage point is nonzero, the different damage conditions can still result in various values 

of 𝑎!", which range widely from 14.2 to 98.7. The features of the second and third modes 

are even more sensitive than the first mode, which respectively range from 41.6 to 559.3, 

and from 20.8 to 333.5. In fact, for both the PCA-WCC feature 𝑎! and the shift of resonant 
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peak, the second and third modes tend to be more sensitive than the first mode. However, 

the feature 𝑎! is more sensitive than the shift of resonant peak.  

Table 4.10: Feature 𝒂𝒔𝟏 in comparison with shift in first resonant peak of PCA-
reduced FRF 

Damage point Pressure of 
damage point 𝒂𝒔𝟏 

1st resonant peak 
Abscissa of 

peak Shift of peak 

Point #1 

120 14.2  20.5 0% 
100 16.8  20.5 0% 
80 26.1  20.5 0% 
60 36.6  20.5 0% 
40 43.4  20.5 0% 
20 55.4  20.0 2% 

Point #3 

120 33.2  20.5 0% 
100 61.4  20.5 0% 
80 65.7  20.5 0% 
60 62.6  20.5 0% 
40 77.5  20.5 0% 
20 91.4  20.5 0% 

Point #7 

120 43.3  20.5 0% 
100 56.6  20.5 0% 
80 65.7  20.5 0% 
60 68.8  20.5 0% 
40 59.5  20.5 0% 
20 98.7  20.5 0% 

Point #9 

120 17.0  20.5 0% 
100 12.2  20.5 0% 
80 10.2  20.5 0% 
60 10.1  20.5 0% 
40 16.7  20.5 0% 
20 29.1  20.5 0% 
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Table 4.11: Feature 𝒂𝒔𝟐 in comparison with shift in second resonant peak of 
PCA-reduced FRF 

Damage point Pressure of 
damage point 𝒂𝒔𝟐 

2nd resonant peak 
Abscissas of 

peak Shift of peak 

Point #1 

120 77.6  44.0 0% 
100 124.6  44.0 0% 
80 241.1  43.5 1% 
60 320.4  43.0 2% 
40 387.8  43.0 2% 
20 559.3  42.0 5% 

Point #3 

120 66.9  44.0 0% 
100 108.8  44.0 0% 
80 145.9  44.0 0% 
60 163.0  43.5 1% 
40 225.6  43.5 1% 
20 325.0  43.0 2% 

Point #7 

120 85.9  44.0 0% 
100 113.2  44.0 0% 
80 147.8  44.0 0% 
60 209.4  43.5 1% 
40 275.8  43.5 1% 
20 451.8  42.5 3% 

Point #9 

120 41.6  44.0 0% 
100 97.3  44.0 0% 
80 147.2  43.5 1% 
60 209.2  43.5 1% 
40 329.7  43.0 2% 
20 541.1  42.0 5% 
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Table 4.12: Feature 𝒂𝒔𝟑 in comparison with shift in third resonant peak of PCA-
reduced FRF 

Damage point Pressure of 
damage point 𝒂𝒔𝟑 

3rd resonant peak 
Abscissas of 

peak Shift of peak 

Point #1 

120 46.4  52.0 0% 
100 81.8  51.5 1% 
80 143.9  51.0 2% 
60 202.2  50.5 3% 
40 237.9  50.5 3% 
20 267.2  50.0 4% 

Point #3 

120 52.9  52.0 0% 
100 81.4  52.0 0% 
80 121.9  51.5 1% 
60 150.6  51.5 1% 
40 218.1  51.0 2% 
20 333.5  50.0 4% 

Point #7 

120 55.2  52.0 0% 
100 80.8  52.0 0% 
80 100.2  52.0 0% 
60 148.2  52.0 0% 
40 232.0  51.5 1% 
20 386.4  51.0 2% 

Point #9 

120 20.8  52.0 0% 
100 47.6  52.0 0% 
80 100.2  51.5 1% 
60 133.0  51.5 1% 
40 190.3  51.0 2% 
20 251.5  50.5 3% 
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Figure 4.12 clearly illustrates that the location and severity of damage are both the 

factors that influence the PCA-WCC features. Overall, the value of the PCA-WCC feature 

increases with the pressure of the damage point decreasing, considering that higher values 

of 𝑎! refer to larger alterations in the PCA-reduced FRF and larger changes in structural 

properties. Due to the high sensitivity of the WCC, the measurement error and noise can 

also lead to the shift in the PCA-reduced FRF and be reflected in the PCA-WCC features. 

Therefore, even in the undamaged scenario, the value of PCA-WCC is nonzero, yet is 

usually smaller than damaged scenarios. So it is necessary to delineate a threshold so that 

damage alarm will only be issued when the PCA-WCC value exceeds it. The dashed line 

in Figure 4.12 shows the maximum of the 𝑎! among all the collected UD samples. It is 

found that the 𝑎! measured under the UD scenario may sometimes become larger than 

the 𝑎! measured when damage takes place. The dashed line, which indicates the upper 

bound of 𝑎! under UD, can therefore be set as a threshold. Damage can be detected only 

when the corresponding 𝑎! exceeds the threshold. This means damage can be detected 

using 𝑎!# when the pressure at the damage point is 120 or less (the pressure is reduced by 

20% or more). When the pressure is lower than 100 (the pressure is reduced by more than 

33.3%), the damage can also be detected by 𝑎!$.When the pressure is lower than 40 (the 

pressure is reduced by 73.3% or more), the damage can then be detected by 𝑎!". Recalling 

that the LD scenarios in this study correspond to pressure of 40 at the damage point, these 

PCA-WCC features are all sensitive enough to indicate the LD damage. This also means 

the MD and HD damage, which are of higher severity, can be detected as well. For cluster 

analysis, combining 𝑎!" , 𝑎!#  and 𝑎!$  as the input features could further improve the 

reliability. Moreover, the combination also helps distinguish the damage with different 

locations and severity. 
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Figure 4.12, continued 

 

Figure 4.12: PCA-WCC features of different damage states 

 

4.4.2 Hierarchical cluster analysis 

The PCA-WCC features of UD, LD, MD and HD samples were normalized and 

regarded as three-dimensional coordinates of the corresponding node in a complex 

network. Then, all the nodes of the samples were clustered using the hierarchical 

clustering method. 
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Figure 4.13: Modularity 𝑸 in respect to number of clusters 

 

Figure 4.13 shows the modularity 𝑄 in respect to the total number of clusters during 

the merging process and Figure 4.14 is the dendrogram of all the samples. As can be seen 

from Figure 4.13, the modularity reaches its highest value when the number of clusters is 

thirteen, when the merging process is terminated. All the samples are therefore divided 

into thirteen categories. The number of clusters is thus determined as thirteen, which is 

the same as the actual number of scenarios. In Figure 4.14, the vertical axis of the 

dendrogram shows the number of each sample, and the samples are linked in pairs from 

left to right to form the dendrogram. The vertical grey line cuts the tree in the middle, 

which corresponds to the maximum modularity value and indicates that the algorithm 

stops merging the remaining clusters and outputs the clustering result. The dendrogram 

not only reflects the clustering process clearly, but also shows the dissimilarity between 

the samples. It is noted that the samples within each cluster share the same damage 

scenario and the thirteen clusters correspond to the thirteen damage scenarios, 
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respectively. The clustering results are plotted under the coordinates of the normalized 

PCA-WCC features in Figure 4.15, in which the thirteen clusters can be visually observed. 

Thus, all the samples are categorized correctly, which proves the effectiveness of the 

proposed method in the categorization of damage scenarios of the plate structure. 

The hierarchical cluster analysis was also tested with the data collected from the new 

test plate in Appendix A. The PCA-reduced FRF and the WCC slope differential value 

sequences are respectively shown in Appendix A.5 and Appendix A.6. The PCA-WCC 

features were calculated in the frequency intervals of 10~20 Hz, 20~40 Hz and 40~60 Hz, 

as the input of the hierarchical clustering. Appendix A.7 shows that the modularity 𝑄 

reaches the maximum when the number of clusters is 5, which is the same as the actual 

number of scenarios. The dendrogram in Appendix A.8 shows that the samples were 

correctly clustered in terms of their damage scenarios. 
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Figure 4.14: Dendrogram 
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Figure 4.15: Results of hierarchical clustering 

 

The performance of the new hierarchical clustering is then compared with that of the 

conventional k-means clustering method using ARI, as shown in Table 4.13. ARI takes 

the value of 1 when the partition based on the actual damage scenarios is consistent with 

the clustering result. It is noted that no matter how many damage scenarios are included 

in the samples, the new hierarchical clustering method always gives the correct 

classification. For k-means clustering, the desired number of clusters, denoted as 𝑘, needs 

to be previously provided. If 𝑘 is set to match the actual number of damage scenarios 𝑛, 

the ARI of the k-means result can reach or be very close to 1, which is almost as good as 

the new hierarchical clustering. However, the number of actual damage scenarios is 

usually not available in reality. A more practical approach is to set 𝑘 = 2, (i.e. healthy 

and faulty). Then the samples are expected to be classified into two categories by k-means 

clustering method, the group of UD scenario and the group of other damaged scenarios. 
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The results in Table 4.13 show that this method is effective when there are fewer types of 

damage scenarios. However, when more than one level of severity is involved, the 

performance of k-means clustering is not good. Therefore, the new hierarchical clustering 

method is more advantageous than the conventional k-means clustering method. 

Table 4.13: ARI performance of new hierarchical clustering and k-means 
clustering 

No. of scenarios (𝒏) 
ARI performance 

k-means  
(	𝒌 = 𝟐) 

k-means  
(	𝒌 = 𝒏) 

Hierarchical 
clustering 

2 (UD, LD1) 1.00 1.00 1.00 
2 (UD, LD3) 1.00 1.00 1.00 
2 (UD, LD7) 1.00 1.00 1.00 
2 (UD, LD9) 1.00 1.00 1.00 
5 (UD, LD) 1.00 1.00 1.00 
5 (UD, MD) 1.00 1.00 1.00 
5 (UD, HD) 1.00 1.00 1.00 
9 (UD, LD, MD) 0.02 0.88 1.00 
9 (UD, LD, HD) 0.02 1.00 1.00 
9 (UD, MD, HD) 0.62 1.00 1.00 
13 (UD, LD, MD, HD) 0.08 0.92 1.00 

 

This unsupervised hierarchical clustering method can be a promising alternative for 

damage detection. For example, modal analysis can be periodically performed on the 

monitored structure, and the PCA-WCC features are calculated and saved, followed by 

cluster analysis carried out on the saved data. In the beginning, the historical data set only 

includes one cluster of the undamaged samples because the monitored structure is under 

good condition. When damage occurs, the new samples measured under the damaged 

state also come in for clustering, which are distinct from the undamaged samples. The 

data set will be divided into different clusters and damage can therefore be alarmed. It is 

believed that the proposed detection method is theoretically applicable for any damage 

types and structures, as long as the damage causes changes in the dynamic characteristics 

and consequently results in substantial changes in PCA-WCC features.    
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4.4.3 Damage identification using PCA-reduced FRF 

Since hierarchical cluster analysis has categorized the samples into clusters of different 

damage scenarios, the following work is to specifically identify the damage severity and 

location of each cluster. The PCA-reduced FRF, which is simple yet preserves important 

dynamic characteristics, helps to accomplish this goal.  

 

Figure 4.16: Second resonant peaks of PCA-reduced FRFs 

 

It has been discussed in the previous sections that damage leads to the shift of the 

resonant peaks in the PCA-reduced FRF. This phenomenon can be used to indicate the 

damage severity. The second resonant peak is a more favorable choice than the first one 

because of its higher sensitivity. Figure 4.16 shows the second resonant peaks of the PCA-

reduced FRFs in the frequency range of 30-45 Hz. As shown in the figure, in the HD 
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scenarios, the shift becomes more obvious, where these peaks move to the left by more 

than 10 Hz, and the decreases in their abscissas are approximately 23-24%. While in the 

MD scenarios, the second resonant peaks move smaller distances, from 2 Hz to 4 Hz, and 

the abscissas of the peaks decrease by 5-9%. In the LD scenarios, the shift in the second 

resonant peaks is no larger than 1 Hz, and the abscissas of the peaks decrease by 2% or 

less. In fact, the abscissa of the resonant peak is the approximation of the corresponding 

natural frequency. Damage with higher severity causes a greater decrease in the natural 

frequency, and thus leads to larger shift in the resonant peak. This is helpful in estimating 

and quantifying the damage severity. In this case, high severity damage states represent 

the worst damage scenario giving the damage index of 1 (i.e. normalization of the 

reduction in the abscissa of the resonant peak), and the damage indices of the samples of 

all the damage scenarios are calculated and shown in Table 4.14. This can help to quantify 

the low severity damage states with the damage index of as low as 0.05, indicating this 

scheme is sensitive in damage severity identification. 

Table 4.14: Reduction in second natural frequency and damage indices 

Damage 
scenario 

Shift of 2nd 
resonant peak 

Percentage 
shift Damage index 

UD 0 0% 0 
HD1 10 23% 0.95 
HD3 10 23% 0.95 
HD7 10.5 24% 1.00 
HD9 10 23% 0.95 
MD1 2 5% 0.19 
MD3 2.5 6% 0.24 
MD7 2 5% 0.19 
MD9 4 9% 0.38 
LD1 1 2% 0.10 
LD3 0.5 1% 0.05 
LD7 0.5 1% 0.05 
LD9 1 2% 0.10 
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The damage localization can be carried out using the magnitude of the resonant peaks 

in PCA-reduced FRFs with the knowledge of the mode shape. Figure 4.17 shows the 

PCA-reduced FRFs in the frequency range of 10-45 Hz, covering the resonant peaks of 

the first and second modes. The magnitude of the first and second resonant peaks of 

different damage scenarios and their changes with reference to the undamaged state are 

tabulated in Table 4.15. In the table, the change in the magnitude refers to the percentage 

increase (or decrease) in the magnitude of the resonant peak after the shift of the PCA-

reduced FRF compared with the undamaged condition. A positive correlation is found 

between the displacement at the impact point (i.e. point #9 in this work) in the mode shape 

plot and the magnitude of the corresponding resonant peak of the PCA-reduced FRF, (i.e. 

the higher displacement at the impact point corresponds to the larger magnitude of the 

resonant peak). We first illustrate this correlation using the HD scenarios, where the 

alterations are more expressive. Figure 4.18 is the first mode shapes of the plate with 

damage at different locations. The first mode of the plate is the heaving mode and the 

four vertices of the plate are displaced equally when there is no damage. When damage 

takes place at any corner of the plate, the plate is tilted toward the damage point as shown 

in the mode shapes in Figure 4.18. 
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Figure 4.17, continued 

 

 

Figure 4.17: First and second resonant peaks of PCA-reduced FRFs 

 

Table 4.15: Magnitude of first and second resonant peaks 

Damage 
scenario 

1st resonant peak 2nd resonant peak 

Magnitude Change in 
magnitude Magnitude Change in 

magnitude 
UD 0.9 0% 2.9 0% 
HD1 0.4 -56% 2.9 0% 
HD3 0.9 0% 0.7 -76% 
HD7 0.7 -22% 1.3 -55% 
HD9 2.3 156% 2.3 -21% 
MD1 0.7 -22% 2.8 -3% 
MD3 0.9 0% 2.0 -31% 
MD7 1.0 11% 2.2 -24% 
MD9 1.3 44% 2.9 0% 
LD1 0.9 0% 3.0 3% 
LD3 1.0 11% 2.7 -7% 
LD7 1.0 11% 2.7 -7% 
LD9 1.1 22% 2.9 0% 

Univ
ers

iti 
Mala

ya



91 

 

Figure 4.18: First mode shapes of plate under different damage states 

 

Figure 4.19 compares the first mode shapes of the plate with the PCA-reduced FRF, 

demonstrating the correlation between the displacement and the impact point (i.e. point 

#9), and the magnitude of the first resonant peak. When damage occurs at the point #9, 

the displacement of the first mode shape at the impact point #9 is significantly larger than 

that of the undamaged scenario. Correspondingly, the magnitude of the first resonant peak 

of HD9 is also greatly increased by 156%, compared with that of UD showing the similar 

trend with large mode shape displacement at the impact point #9 as described above. 

Meanwhile, when damage occurs at point #1, which is diagonally opposite to the impact 

point #9, the plate is tilted toward the point #1 leaving the displacement of the point #9 

becomes very small. Correspondingly, this is quantified through the magnitude of the first 

resonant peak of HD1 which largely decreases by 56%, compared with UD. As to HD3 

and HD7, no apparent changes in the displacement of point #9 is observed in the first 
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mode shapes compared with UD, and the magnitude of the first resonant peaks only 

changes by 0% and 22%, which are far smaller than the changes in HD1 and HD9. Figure 

4.20 shows the second mode shapes of the plate, together with the PCA-reduced FRF near 

the second resonant peaks. The second mode of the plate is the symmetric rolling 

movement around the longitudinal axis (as shown in Figure 3.3). Similarly, when damage 

takes place at any corner of the plate, the plate’s rolling movement becomes asymmetric 

and is tilted toward the damage point as shown in the second mode shapes. It leads to 

different changes in the displacement at impact point #9 of the second mode shape and 

makes it suitable to identify and differentiate different damage scenarios. The 

displacement at point #9 of HD3 is found to be a nodal point with the minimum response 

while a relatively larger displacement at point #9 is observed in HD7. Correspondingly, 

a larger decrease is found in the magnitude of the second resonant peak of PCA-reduced 

FRF in HD3 scenario (i.e. 76% reduction) as compared with UD. Meanwhile, for HD7, 

the second resonant peak shows relatively lower reduction (i.e. 55%). The same trend of 

the changes in PCA-reduced FRFs is also found in Figure 4.17 (b) for MD damage. 

However, as to the LD cases in Figure 4.17 (c), the change in the magnitude of the peaks 

is not obvious, making it difficult to locate the LD damage, which is the limitation of the 

PCA-reduced FRF. 
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Figure 4.19: First mode shapes of plate with PCA-reduced FRF near first 
resonant peaks 
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Figure 4.20: Second mode shapes of plate with PCA-reduced FRF near second 
resonant peaks 

 

To summarize, the HD and MD damage can be located through the first mode shape 

movement in which the plate tends to tilt toward the damage point. In addition, the 

changes in the displacement at the impact point #9 of the mode shape show a positive 

correlation with the magnitude of the resonant peak in the PCA-reduced FRF, making it 

suitable to quantitatively locate the damages with a higher confidence level. Damage at 

points #1 and #9 are identified according to the changes in the magnitude of the first 

resonant peak in the PCA-reduced FRF. When the magnitude of the first resonant peak is 

found greatly reduced (by more than 50% for HD and more than 20% for MD), the 

damage location is determined to be point #1. When the magnitude of the first peak is 

Univ
ers

iti 
Mala

ya



95 

greatly increased (by more than 100% for HD and more than 40% for MD), the damage 

location is identified to be point #9. When the magnitude change is small (within 25% for 

HD and within 15% for MD), the damage location is point #3 or point #7. Subsequently, 

the second resonant peak is suitable to distinguish damage at point #3 and point #7. When 

a larger decrease is observed in the magnitude of the second resonant peak (by more than 

75% for HD and more than 30% for MD), the damage is located at point #3. Meanwhile, 

a relatively smaller decrease (less than 60% for HD and less than 25% for MD) in the 

magnitude of the second resonant peak indicates damage at point #7. The remaining two 

damage cases are thus identified. The same trend in the magnitude of resonant peaks can 

also be found from the new test plate according to Appendix A.9, indicating that the 

damage localization is also applicable to other plates. 

4.5 Summary 

In the supervised learning based damage identification method proposed in this work, 

the input features of the network are constructed directly from the measured raw FRFs, 

which do not require tedious processing, and are more cost-effective in terms of the 

hardware and network computation after optimization of the measurement points.  

Besides, the BP network is trained to automatically establish the mapping between the 

input feature vector and damage state without further analyzing the mechanical properties 

of the structure, which is more convenient in practice. However, the disadvantage is that 

it does not work well in identifying damage with low severity. And the complete training 

samples are necessary for supervised learning, which is not realistic in some practical 

situations.  

The advantages of the unsupervised learning based damage identification method in 

this study lie in the following two aspects.  First, features constructed using PCA and 

WCC analysis are very sensitive to structural damage. Second, unlike traditional 
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clustering algorithms where the number of categories needs to be pre-defined, the number 

of clusters is automatically determined in the new hierarchical clustering algorithm. After 

the samples are classified into clusters of different damage scenarios, the identification of 

the damage severity and location of each cluster relies on the analysis of the PCA-reduced 

FRF and mode shapes. 

To summarize, when it is necessary to identify the specific damage location and 

severity of complex structures, and the complete training samples are available, the 

supervised learning method using BP network is more suitable. Meanwhile, the new 

hierarchical clustering method with PCA and WCC analysis is suitable when a set of 

samples of unknown damage type needs to be categorized and high sensitivity is desired 

for detection. 
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CHAPTER 5: CONCLUSIONS 

5.1 Conclusions 

In this work, ISMA de-noising technique was successfully applied to extracting FRFs 

under the in-service condition. Two damage identification schemes were developed using 

the FRF-based features, incorporated with supervised and unsupervised learning methods 

respectively. The conclusions are summarized as follows. 

The ISMA method is effective in the modal analysis under the operational condition.  

In the measurement of FRF, the value of FRAC between the FRF obtained by ISMA and 

EMA exceeds 0.993 in all damage scenarios, which shows very high similarity between 

the FRFs obtained by these two means, indicating that the de-noising method of ISMA 

provides static comparable FRF data during the in-service condition. In addition, the 

natural frequency and mode shape obtained by ISMA are also comparable to EMA results, 

which means ISMA is also applicable for modal parameter extraction under the in-service 

condition. 

In the proposed damage identification scheme using supervised learning, it has been 

proved that the trained BP network can successfully identify damage location and severity 

with the testing data collected by ISMA, which allows the damage identification to be 

carried out without shutting down the test machine. For HD and MD scenarios of the 

Perspex plate, an overall accuracy can reach 100% when all five measurement points are 

used. With the input features optimized by mode shape assessment, 100% accuracy can 

also be achieved with only two measurement points, which makes the scheme more cost-

effective in terms of the accelerometer hardware and computational complexity of 

network training. 

In the proposed damage identification scheme using unsupervised learning, the WCC 

analysis yields a more sensitive feature that reflects the shift in the PCA-reduced FRF 
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attributed to structural damage, which are promising alternatives for damage detection. 

The results of hierarchical cluster analysis show that the samples can be automatically 

divided into clusters, so that the samples with the same damage scenario are correctly 

grouped into the same cluster. In terms of damage severity and location identification, it 

is found that higher severity of damage causes a larger shift in the resonant peaks of the 

PCA-reduced FRF, and the proposed scheme is sensitive to detect damage severity with 

damage index as low as 0.05. In addition, for the first and second modes of the plate, the 

magnitude of the peak in the PCA-reduced FRF is positively correlated with the 

displacement of the impact point in the corresponding mode shape. These findings help 

estimate the severity and locate the damage of the test plate. 

The supervised learning based damage identification scheme is preferred when it is 

necessary to identify the specific damage location and severity of complex structures with 

the complete training samples available. Meanwhile, the unsupervised clustering method 

with WCC analysis is more suitable when a set of samples of unknown damage types 

need to be classified and high sensitivity is desired for damage detection. 

5.2 Future work 

It is noted that the supervised learning method using FRF change is less sensitive in 

identifying low severity damage. The WCC features, which have been proved more 

sensitive to damage, can be used instead of FRF change to improve the performance. 

Meanwhile, the proposed unsupervised learning alone is only good for detecting damage 

and clustering the measured data in terms of their damage scenarios, rather than indicating 

the particular damage state of each cluster. Therefore, in the future work, a hybrid method 

is going to be established, combining the unsupervised damage detection and then 

supervised damage identification, to explore the quantitative relationship between the 

WCC features and damage severity and give predictions to the clustering results.   
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Additionally, this study mainly focuses on the algorithms of the scheme.  The current 

work is only applicable to the plate-like structure which exhibits the same dynamic 

characteristics as an automobile. In the future work, the proposed method will be further 

explored on other types of structures (e.g. the beam-like structure and the piping) and on 

more complex systems (e.g. real rotating machine module where the ambient noise is 

significant). 
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