Chapter 1

Introduction

As a branch of discrete mathematics, graph theory has now become a very
popular topic in Mathematics. Graphs serve as mathematical models to
analize successfully many concrete real-world problems. Certain problems in
physics, chemistry, engineering, communications and computer technology
can be formulated as problems in graph theory. Also, many branches of
mathematics, such as matrix theory, group theory, topology, and probability,
have interactions with graph theory.
The objectives of this thesis are to
(i) investigate those smallest regular graphs with given girths and having

small crossing numbers;



(ii) classify 5-regular graphs according to their crossing numbers and with
given number of vertices.

This thesis is divided into 4 chapters. Chapter 1 contains the basic def-
initions concerning graphs and some theorems which will be used in the
subsequent chapters of the thesis.

In Chapter 2, we give a survey on the problem of finding smallest regular
graphs with given girths, in which all known small cages are given. Different
variations of the cage problem are also discussed and some related questions
are posed.

A variation of the cage problem is discussed in Chapter 3, where we deter-
mine those smallest regular graphs with given girths and crossing numbers.
In particular, we investigate those smallest regular graphs with given girths
and crossing number ¢, for ¢ € {0,1,2}.

Finally, a classification of 5-regular graphs according to their crossing
numbers and with given number of vertices is discussed in Chapter 4. In
particular, it is shown that there exist no 5-regular graphs on 12 vertices
with crossing number one. This, together with a result in Chapter 3, implies
that the minimum number of vertices in a 5-regular graph with girth three

and crossing number one is 14.



1.1 Preliminaries

In this chapter, we present some definitions and theorems which will be fre-
quently referred to throughout this thesis. The basic notations, terminology
used are commonly found in most graph theory text books. For those terms
and definitions not included here, the reader may refer to [27], [51], [15] and

[56).

1.2 Graphs

A simple graph G consists of a finite non-empty set V(G) of elements called
vertices and a finite (possibly empty) set E(G) of distinct unordered pairs
of distinct vertices of V(G) called edges. We call V(G) the vertex set and
E(G) the edge set of G. The number of vertices of G is the order of G,
and the number of edges of G is the size of G. (These are sometimes written
as |V(G)| and |E(G)| respectively.)

The edge e = (u,v) is said to join the vertices u and v. If e = (u,v) is
an edge of a graph G, then u and v are adjacent vertices, while v and e
are incident, as are v and e. Furthermore, if e, and e, are distinct edges of
@G incident with a common vertex, then e, and e, are adjacent edges. It is
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convenient to henceforth denote an edge by uv or vu rather than by (u,v).

If one allows more than one edge (but yet a finite number) between the
same pair ‘of vertices in a graph, the resulting structure is a multigraph.
Such edges are called multiple edges. A loop is an edge that joins a vertex
to itself. Unless otherwise mentioned, the graphs we consider are simple
graphs with no loops and multiple edges.

The degree of a vertex v in a graph G is the number of edges of G
incident with v, which is denoted by degg(v) or simply deg(v) if G is clear
from the context. A vertex is called even or odd according to whether its
degree is even or odd. A vertex of degree 0 in G is called an isolated vertex
and a vertex of degree 1 is an end vertex of G. If u is adjacent to v, then u
is a neighbor of v. The neighborhood of v, denoted by Ng(v) or simply
N(v), is the set of all vertices of G adjacent to v.

An independent set of vertices in G is a set of vertices of G, no two
of which are adjacent.

A sequence (dy,dy,...,dy) of non-negative integers where d; < dy <
o+ < dy is called a degree sequence of a graph G if the vertices of G can
be labelled as vy, v,, ..., v, so that deg(v;) = d; for all i.

If all of the vertices of G have the same degree r, then G is regular of
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degree 7 or r-regular. A 3-regular graph is a cubic graph.
The following result, due to Leonhard Euler in 1736, is called the hand-

shaking lemma.

Theorem 1.1 (Handshaking Lemma) Let G be a graph of order n and

size m where V(G) = {v1, va,...,v,}. Then Y deg(v;) = 2m. o

Two graphs G, and G, are isomorphic (written G, 2 G,) if there exists
a one-to-one mapping ¢, called an isomorphism from V(G,) onto V(Gy),
such that ¢ preserves adjacency of vertices; that is uv € E(G,) if and only if

H(u)$(v) € E(Gy).

1.3 Paths and Cycles

A sequence of edges of the form vyv;, v;vs, . . . , Vk—1Ux (sometimes abbreviated
to vovy -+ vk) is a walk between vy and v;. The number k (the number of
occurrences of edges) is called the length of the walk. If these edges are
all distinct, then the walk is a trail, and if the vertices Vo, V1, ...,V are
also distinct, then the walk is a path. A walk or trail VgVy - - - vk is closed if

Vo = vk, and for k > 0, a closed walk in which the vertices Vo, V1, . .., Vg are



all distinct is a cycle. A cycle is even if its length is even; otherwise it is
odd. A cycle of length n is an n-cycle; a 3-cycle is also called a triangle. A
graph of order n that is a path or a cycle is denoted by P, or C,,, respectively.

The length of a shortest cycle in a graph G is the girth of G and is
denoted by g(G) or simply by g if G is clear from the context. If u and v are
vertices in G, then the length d(u, v) of any shortest path from u to v is the

distance between u and v.

1.4 New Graphs from Old

A graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C E(G).
If H is a subgraph of G, then we write # C G. If V(H) = V(G), then H
is called a spanning subgraph of G. If V; is any set of vertices in G, then
the subgraph induced by V; is the subgraph of G obtained by taking the
vertices in V; and joining those pairs of vertices in V; which are joined in G.

If e € B(G), then G - e is the graph obtained from G by removing the
edge e; more generally, G — {e,...,ex} is the graph obtained from G by
removing the edges ey, .. ., ex. Similarly, if v € V(G), then G —v is the graph

obtained from G by removing the vertex v together with all its incident edges.



The deletion of a set of vertices from G is defined analogously.

The null graph (or empty graph) of order n is the graph with n vertices
and no edges.

An elementary subdivision of a nonempty graph G is a graph obtained
from G by removing some edge e = uv and adding a new vertex w and two
edges uw and vw. A subdivision of G is a graph obtained from G by
a succession of elementary subdivisions (including the possibility of none).
Two graphs are homeomorphic if they have isomorphic subdivisions.

An elementary contraction of a graph G is obtained by identifying two
adjacent vertices u and v, that is, by the removal of u and v and the addition
of a new vertex w adjacent to those vertices to which u or v was adjacent.
A graph G is contractible to a graph H if H can be obtained from G by a
succession of elementary contractions.

If Gy and G are disjoint graphs, then their union G = G, U G, is the
graph with the vertex set V(G,) U V(G,) and edge set E(G,) U E(G,). If
a graph G consists of k(> 2) disjoint copies of a graph H, then we write
G=kH.

The cartesian product G = G; x G, is the graph with the vertex set
V(G1) x V(G2), and two vertices (u1,uz) and (vy,v;) of G are adjacent if
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and only if either u; = vy and uyv; € E(Gy) or uy = v, and wyv; € E(Gy).
The complement G of a graph G is the graph with the vertex set V(G)
such that two vertices are adjacent in G whenever they are not adjacent in

G.

1.5 Connectivity

A graph G is connected if there is a path joining each pair of vertices of G;
a graph that is not connected is called disconnected. A maximal connected
subgraph of G is called a component of G.

If G is a connected graph, and if the graph G — e is disconnected for
some edge e, then e is called a bridge of G. More generally, a cutset in G
is a set of edges whose removal disconnects G. If G is connected, its edge
connectivity A(G) is the size of the smallest cutset in G. A graph G is said

to be k-edge connected if \(G) > k.



1.6 Examples of Graphs

A graph is called complete if every pair of vertices are adjacent, and the
complete graph on n vertices is denoted by K,.

A bipartite graph G is a graph whose vertex set V(G) can be partitioned
into two subsets V} and V; such that every edge of G joins a vertex of V; and
a vertex of V. A complete bipartite graph is a bipartite graph in which
each vertex in V; is adjacent to every vertex in Va. If [Vi| = s and |V,| = ¢,
then the complete bipartite graph is denoted by K.

The Platonic graphs are the graphs corresponding to the vertices and
edges of the five regular solids—the tetrahedron, cube, octahedron, dodeca-

hedron and icosahedron (see Figure 1.1).

1.7 Planar Graphs

A graph is planar if it can be drawn in the plane such that no edges intersect
except at a vertex to which they are both incident. A graph G drawn in the
plane in this way is called a plane graph. The regions defined by a plane

graph of G are called the faces of G. The following result, known as Euler’s



tetrahedron cube octahedron

dodecahedron icosahedron

Figure 1.1: Platonic graphs

formula for plane graphs or Euler’s polyhedron formula, establishes
a connection among the number of vertices, edges, and faces of any plane

graph.

Theorem 1.2 (Euler’s Formula for Plane Graphs) Let G be a plane graph

with n(> 38) vertices, m edges and f faces. Then

n—m+f>2

where equality holds if and only if G is a connected graph. o
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A planar graph G is a maximal planar graph or triangulation if each

face of G is bounded by a triangle.

Theorem-1.3 If G is a mazimal planar graph of order n > 3 and size m,

then
m=3n—6.
o
Colloraly 1.1 If G is a planar graph of order n > 3 and size m, then
m < 3n — 6.
o

There are two graphs, namely K5 and Ky, that play an important role

in the study of planar graphs.

Theorem 1.4 The graphs K5 and K3 are non-planar. u]

A necessary and sufficient condition for a graph to be planar has been

given by Kuratowski [66].

Theorem 1.5 (Kuratowski’s Theorem) A graph G is planar if and only

if it contains no subgraph homeomorphic to K5 or K. (=]
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1.8 The Crossing Number of a Graph

The crossing number cr(G) of a graph G is the minimum number of pair-
wise intersections of its edges when G is drawn in the plane. When G is

drawn in the plane, we assume that
(a) adjacent edges never cross;
(b) two non-adjacent edges cross at most once;
() no edge crosses itself;
(d) no more than two edges cross at a point of the plane.

Finding the crossing number of a graph is one of the many interesting
unsolved problems in graph theory. Although the crossing number has been
obtained for some graphs in families like X, and K, a general solution for
graphs in those families is still unknown. It has been shown by Garey and
Johnson [44] that the problem of computing crossing number is NP-complete.

Let G be a graph. The removal number of G, denoted rem(G), is
defined to be the minimum number of edges in G whose removal results in

a planar graph. Obviously ¢r(G) > rem(G). In the event that rem(G) = 1,



then G contains an edge e such that G — e is planar. Such an edge is called
a p-critical edge of G.

A few _observations will be useful. Clearly a graph G is planar if and
only if cr(G) = 0. Further, if H C G, then er(H) < cr(G), while if H is a
subdivision of G, then cr(G) = cr(H).

We list some results that will be used in the subsequent chapters.

Theorem 1.6 [47] For 1 <n < 10,

oo - a2 57 25

o

Theorem 1.7 [62, 113] If s and t are integers (s < t) and either s < 6 or

s=Tandt <10, then

o

In [52], Harary, Kainen and Schwenk showed that cr(Cy x C3) = 3. They
also conjectured that cr(Cy x Cp) = n(m — 2) for 3 < m < n. The crossing
number of C, x Cy, is known for every m > n, for each n satisfying 3 < n < 6.
The cases n = 3,4,5 and 6 were solved in [86], (7], [63] and [93] respectively.
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Theorem 1.8 /86] For allt >3, cr(Cs x Cy) =t. u]

Theorem 1.9 /7] For all t > 4, er(Cy x Cy) = 2t. [}
Theorem 1.10 [63) For allt > 5, cr(Cs x Cy) = 3t. a]
Theorem 1.11 /93] For all t > 6, ¢r(Cy x Cy) = 4t. o

Finally, we state an upper bound for cr(C,) and its exact values for

3 <n <10. (See [48].)

Theorem 1.12 For the complement C,, of an n-cycle,

a(n=3)%n-5)? forn odd,

er(Cr) <
an(n—4)(n—6) forn even.
o
Theorem 1.13
0 for3<n<6,
1 forn=7,
er(Cr)={ 2 forn=38,

9 forn=9,

15 forn = 10.
o



