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DRUG REPOSITIONING BASED ON CENTRALITY MEASURES OF DRUG

SIDE EFFECTS NETWORK

ABSTRACT

Drug repositioning, the process of discovering new therapeutic uses of existing drugs, is

an alternative to the risky, costly, and time-consuming traditional drug discovery process.

Based on the hypothesis that drugs with similar side effects may share similar therapeutic

indications, a network of drugs is constructed based on their side-effect similarities. Then,

for a target disease of concern, the potential drug candidates that may be repurposed

for treating it can be identified from among the network neighbors of the existing drugs

approved for the disease. By applying three classic centrality measures – degree, closeness,

and betweenness – to rank the drugs in the network, we observe that the drug candidates

identified from among the neighbors of the top central drugs approved for our target

diseases are more consistent with clinical interests as indicated by the record of clinical

trials related to the diseases, when compared to the candidates identified from the neighbors

of their random and peripheral counterparts. The present work indicates that network

positions of drugs have a role in repurposing their neighbors and hence should be taken

into account in finding new uses of drugs.

Keywords: Network analysis, centrality, drug repositioning.
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REPOSISI UBAT BERDASARKAN UKURAN SENTRALITI UNTUK

RANGKAIAN UBAT

ABSTRAK

Reposisi ubat, proses mencari kegunaan baru bagi ubat-ubat yang sedia ada, merupakan

alternatif bagi proses pembuatan ubat baru yang berisiko, mahal dan memakan masa.

Berdasarkan hipotesis bahawa ubat dengan kesan sampingan yang serupa dapat menun-

jukkan kesan terapeutik yang serupa, rangkaian ubat dibina berdasarkan kesamaan kesan

sampingan. Kemudian, calon pengganti ubat yang berpotensi untuk merawat penyakit

yang tertentu boleh dikenal pasti daripada jiran ubat yang telah disahkan untuk penyakit

tersebut. Dengan menggunakan tiga ukuran sentrali yang klasik – degree, closeness, dan

betweenness – untuk menilai ubat-ubat di rangkaian tersebut, kami memerhatikan bahawa

calon ubat yang dikenal pasti daripada jiran ubat yang sentral yang telah disahkan untuk

penyakit sasaran kami adalah lebih konsisten dengan minat penyelidikan klinikal yang

ditunjukkan melalui catatan ujian klinikal yang berkaitan dengan penyakit tersebut, apabila

dibandingkan dengan calon yang dikenal pasti daripada jiran ubat yang periferal dan rawak.

Kesimpulannya, kami menunjukkan bahawa kedudukan dalam rangkaian ubat mempunyai

peranan dalam mengenali calon reposisi ubat dan justeru faktor ini harus dipertimbangkan

ketika mencari penggunaan baru untuk ubat.

Kata kunci: Analisis rangkaian, sentraliti, reposisi ubat.
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CHAPTER 1: INTRODUCTION

1.1 Background

Network science is a growing research field that focuses on studying the structure of

relationships between discrete objects or entities. A network is basically represented as

a graph consisting of vertices (or nodes), which denote objects or entities, connected by

edges (or links) through certain types of relations or interactions between the objects or

entities. Mathematically, a graph is denoted as � = (+, �) where + is the set of vertices

and � is the set of edges.

A network can be directed or undirected depending on the types of relations represented

by the edges. In an undirected network, the edges are symmetrical, representing symmetric

relations between pairs of vertices such as friendship between individuals and collaboration

between researchers. By contrast, in a directed network, the edges have directions (usually

represented by lines with arrows) and are not inherently symmetric, such as in a citation

network where an edge is formed from paper A to paper B if A cites B in its bibliography,

and in a network of webpages where an edge represents a hyperlink from one webpage to

another.

In some networks, the edges can be associated with numerical values indicating their

strengths, providing a more insightful network analysis. For example, the edges in a

friendship network may be weighted according to the frequencies of interactions between

pairs of individuals, and the edges in a research collaboration network may carry weights

representing the numbers of collaborations between pairs of researchers. Such networks

are known as weighted networks.

One of the most interesting aspects of network analysis is the identification of vertices

that are more “central" or “important" than others in a network. Many centrality measures
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have been proposed to evaluate the structural importance of vertices in a network, with

each of them looking into different topological aspects of the network as criteria for

assessing the vertices (Bloch & Jackson, 2016; Boldi & Vigna, 2014; Lü et al., 2016). The

three classic centrality measures in network science literature are degree, closeness and

betweenness centralities (Borgatti & Everett, 2006; Freeman, 1978). Degree indicates the

importance of a vertex based on the number of edges connected to it. Closeness centrality

captures another notion of importance by considering the proximity of a vertex to all other

vertices in a network. Betweenness centrality offers a different perspective that looks into

the frequency in which a vertex lies on the shortest paths between any two other vertices.

All these centrality measures, despite being defined differently, assert that a central vertex

plays a significant role in a network and should provide some valuable insight for network

analysis.

Indeed, the study of networks provides a powerful tool for understanding and modelling

the behaviors of a wide variety of complex real world systems, leading to many useful

applications in various disciplines including sociology, economics, biology, computer

science, epidemiology and transportation systems (Easley & Kleinberg, 2010; Lewis, 2009;

Newman, 2010; Wasserman & Faust, 1994).

1.2 Problem statement

The pioneering process of discovering and developing a completely new drug involves

a substantial amount of costs and time, and is full of uncertainties. It takes about 10 to

15 years, at an approximate expense of 500 to 2000 million US dollars, for a drug to get

through from the initial phase of preclinical testing to the final stage of successful launch

in market (DiMasi et al., 2003; Pammolli et al., 2011). With concern on this productivity

issue in pharmaceutical sector, there has been a growing interest among researchers to
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explore an alternative drug development strategy known as drug repositioning or drug

repurposing. Drug repositioning is the process of discovering new therapeutic uses of

existing or approved drugs. Since existing drugs have well-established safety profiles, this

can accelerate the process of drug development and reduce the associated risks. In recent

years, drug repositioning has given a fresh impetus to a number of drugs. For example,

minoxidil which is originally intended for treating hypertension is later repurposed to treat

hair loss, and avastin which is initially used as a treatment for metastatic colon cancer

and non small-cell lung cancer is later repositioned for treating metastatic breast cancer

(Dudley et al., 2011).

Along with the advancement in technology, many drug- and disease-related data have

become widely accessible, leading to the introduction of various computational approaches

for drug repositioning over the last decade. In view of the versatility of network analysis

across a wide variety of disciplines, a broad range of network-based drug repositioning

approaches have been proposed (Shahreza et al., 2017; Xue et al., 2018). Depending on

the type of data used as inputs, various types of networks can be constructed. For instance,

vertices may represent biological elements such as proteins, genes, drugs, or diseases,

while edges may represent relations or interactions between the vertices. The inference of

drug repositioning opportunities then relies heavily on a key principle known as “guilt by

association" (GBA) (Gillis & Pavlidis, 2012). In the context of drug repurposing, GBA

principle can be translated into assumptions such as drugs with similar chemical structures

are likely to share similar therapeutic roles, drugs with similar gene expression profiles

tend to target similar proteins, target proteins with similar genomic sequence have a higher

chance to interact with similar drugs, diseases with similar molecular pathology may be

treated by similar drugs, and etc (Shahreza et al., 2017).

Thus, assessing similarity between drugs is one way to predict potential drug reposi-
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tioning candidates. In principle, if two drugs share some similar features, the indication

associated to only one of them may be considered as a new therapeutic function of the

other drug (Dudley et al., 2011). By constructing a network of drugs to capture the

relations between them, network-based theories and methodologies can then be applied

to systematically screen drug pairs that could point towards potential drug repositioning

candidates.

From the network perspective, a vertex can be associated with certain topological

properties (which can be assessed using various centrality measures) based on its network

position and connection pattern with other vertices in the network. Can these structural

attributes be applied to a network of drugs to provide meaningful clues to the discovery of

promising drug repositioning candidates? Are drugs in a more central network position

associated with a more significant role in the drug repositioning task? These are the

questions we aim to explore in this work.

1.3 Research objectives

1. To demonstrate the connection between drugs and the centralities of drugs through

their positions in a network of shared side effects.

2. To manifest the possibility of using centrality measures to outline a network-based

drug repositioning approach.

1.4 Outline and structure of thesis

This thesis is organized as follows. Chapter 1 describes the background of our research

topic, problem statement and research objectives. Literature review is given in Chapter 2.

We then present the data sets used in this study and describe our proposed methodology

in Chapter 3. The results are discussed in Chapter 4. We then conclude by stating some

limitations of this study as well as some possible future work in Chapter 5.

4
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CHAPTER 2: LITERATURE REVIEW

One of the typical strategies to predict potential drug repositioning candidates is to infer

them based on drug-drug similarity following the GBA principle which assumes that drugs

with similar properties may share similar therapeutic indications. Similarities between

drugs can be captured from several different aspects, such as their chemical structures and

properties, interactions with target proteins, molecular activities (e.g., gene expression

profiles), side effects and so on (Dudley et al., 2011; Shahreza et al., 2017).

In particular, side effects and therapeutic indications are both phenotypic outcomes

resulting from a drug’s underlying mechanism of action, where the desired effects are

regarded as the drug’s indications and the unexpected consequences constitute the drug’s

side effects. Hence, assessing drug similarities from the perspective of side effects, when

compared independently to other drug-related properties, seems to offer more relevant

insights into identifying drugs that may be linked to similar therapeutic functions. In

fact, a few studies have compared different inputs for drug similarities on their abilities

in predicting drugs with similar indications and their results suggest that side effects and

therapeutic effects of drugs are strong predictors for one another (Wang et al., 2014; Zhang

et al., 2013).

Following studies which show that side-effect informationmay be utilized for discovering

novel indications of drugs (Campillos et al., 2008), Side Effect Resource (SIDER) – a

public online database of drugs’ side effects – was built by Kuhn et al. (2010). With

140,064 associations between 1430 drugs and about 5880 side effects in the latest version of

the database, SIDER has been a main source of phenotypic information of drugs (Kuhn et

al., 2016). For example, Yang and Agarwal (2011) used the side-effect information of drugs

from SIDER in demonstrating their proposed methodology of Drug Repositioning based on
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the Side-Effectome (DRoSEf). The method is founded on the core principle that if a drug

shares side effects with many other drugs relating to a similar therapeutic indication, then

this drug should be considered for being repurposed for the same therapeutic indication.

Besides, Ye et al. (2014) also proposed a network-based drug repositioning approach which

leverages the side-effect data of drugs. They constructed a drug network where a pair of

drugs is connected by an edge if and only if their side-effect similarity score (measured

by Jaccard index) surpasses a preset threshold. A drug’s novel indications can then be

inferred from its neighbors in the network.

Recently, Ali et al. (2017) also proposed a drug repositioning method based on analysis

of drug networks, in which several centrality measures were incorporated for selecting

drugs with better network positions known as prominent drugs. Those prominent drugs

possess certain topological features which make their roles more significant than others in

the networks. Hence, they were used as a benchmark for optimizing a threshold for drug

similarities, for which new repositioning opportunities can be envisaged from drugs whose

pairwise side-effect similarity scores meet the defined threshold.

The applications of centrality measures can be found in many domains (Das et al.,

2018). Using some network topological properties as criteria, centrality measures are

defined to rank vertices based on their relative structural prominence in a network, allowing

identification of the top central vertices in the network which may have a significant

contribution to some network applications. For example, in the biological domain,

centrality measures have been found useful for identifying essential proteins which play

indispensable roles in biological processes of organisms and are crucial for survival (Jalili

et al., 2016; Jeong et al., 2001; Koschützki & Schreiber, 2008), leading to further extension

to predict genes that may be related to a disease (Ozgur et al., 2008).

To date, over two hundreds of centrality measures have been proposed in literature
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(Jalili et al., 2015; Oldham et al., 2019). The choice of which centrality measure to use is

often subjected to the context of the network being analyzed. However, this study is not

intended to compare or review different centrality measures in terms of their relevance to

drug networks or for the application of drug repositioning 1. Instead, our main focus here is

to investigate whether the centrality rankings of drugs in a network reflect the significance

of their roles in drug repositioning. In other words, is there any notable distinction between

the central, peripheral and random drugs in a network in terms of their contribution to

drug repositioning?

Note that in the previous study done by Ali et al. (2017) which suggests that prominent

drugs can be used as a predictor of drug repositioning candidates, no findings were reported

on the effect of using peripheral drugs to infer drug repositioning candidates. Also, it is

not clear whether there is any difference in the prediction performances when prominent

drugs are used and when they are not. Hence, we wish to illuminate the significance of

using central drugs in the drug repositioning process by making a comparison to their

peripheral and random counterparts.

1 Readers who are interested in a comprehensive overview and discussion of centrality measures applied to
drug repositioning may refer to Badkas et al. (2020).
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CHAPTER 3: METHODOLOGY

We now introduce the methodology used for investigating our hypothesis, which states

that if a drug known for treating a particular disease has a more central network position

than others known for providing the same therapeutic effect, then the drug’s network

neighbors stand a higher chance to be indicated for the disease than the rest of the drugs in

the network.

3.1 Data sets

The data used in this study were obtained from SIDER which is a free online database

that provides information on drugs’ side effects and therapeutic indications. The data of

drugs’ side effects were used for computing side-effect similarity scores between drugs,

which were then used for linking drugs in the form of network. On the other hand, the data

of drugs’ therapeutic uses were used in the prediction step where we tried to predict new

drugs that can be possibly linked to an indication by referring to the network neighbors of

drugs already known to be associated with the indication.

The side-effect data in SIDER contains frequency information which reflects how likely

a side effect will be induced in a patient treated with a drug. As a remark, we only included

in our analysis the drug-side effect relations whose frequencies of occurrence are greater

than or equal to 1%, or belong to the “common" and “very common" categories, assuming

that side effects that occur rarely are underrepresented in a drug’s profile.

Further details on these data sets are provided in Appendix A.1.

3.2 Network construction

We began by constructing a network of drugs based on similarities in their side-effect

profiles. The most straightforward way to compare side-effect similarities among drug

8
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pairs is through their numbers of shared side effects, which can be re-scaled to the range of

0 to 1 using the metric below:

#B4 (38, 3 9 ) =
|B4(38) ∩ B4(3 9 ) |

max:≠; |B4(3: ) ∩ B4(3;) |
, (3.1)

where B4(38) and B4(3 9 ) represent the sets of side effects of drugs 38 and 3 9 respectively.

Note that the denominator in #B4 is a constant equivalent to the maximum number of side

effects shared between the drug pairs. Thus, the greater the number of side effects shared

between a pair of drugs, the higher the value of #B4 for the drug pair. Particularly, in the

scenario where #B4 (38, 3 9 ) = 1, the pair of drugs 38 and 3 9 outperforms all other drug

pairs in the dataset in terms of their numbers of shared side effects.

Another way to capture side-effect similarity between two drugs is by using the Jaccard

index:

�B4 (38, 3 9 ) =
|B4(38) ∩ B4(3 9 ) |
|B4(38) ∪ B4(3 9 ) |

=
|B4(38) ∩ B4(3 9 ) |

|B4(38) | + |B4(3 9 ) | − |B4(38) ∩ B4(3 9 ) |
. (3.2)

Note that the metric �B4 measures the portion of overlap between the sets of side effects of

two drugs. For example, �B4 (38, 3 9 ) = 1 indicates that the side-effect profiles of the two

drugs 38 and 3 9 are completely identical, even though the number of side effects shared

between them may be less than those of other drug pairs.

The two metrics relate to each other. Nevertheless, rather than yielding a common

similarity ranking, they complement each other to provide a more fine-tuned similarity

score. For instance, consider the three pairs of drugs in Table 3.1 whose information on

side effects were obtained from SIDER database. The first and second drug pairs have the

9
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Table 3.1: Comparison of the similarity metrics #B4, �B4, and (�"B4 for three pairs
of drugs.

Drug pair,
(38, 3 9 )

Elvitegravir,
Etravirine

Acebutolol,
Bromocriptine

Ropinirole,
Sertraline

|B4(38) ∩ B4(3 9 ) | 7 7 48

|B4(38) ∪ B4(3 9 ) | 9 35 240

#B4 (38, 3 9 )
7
48

7
48

1

�B4 (38, 3 9 )
7
9

7
35

=
1
5

48
240

=
1
5

(�"B4 (38, 3 9 ) 0.11343 0.02916 0.2

same number of shared side effects, so the metric #B4 does not distinguish the similarity

of the first drug pair from that of the second drug pair, but the Jaccard index indicates that

the first drug pair is more similar than the second one. On the other hand, #B4 implies that

the third pair of drugs is much more similar than the second pair, while the Jaccard index

fails to do so.

In view of these observations, we consider a combination of the two metrics as the drug

side-effect similarity score, i.e.,

(�"B4 (38, 3 9 ) = #B4 (38, 3 9 ) × �B4 (38, 3 9 ) (3.3)

Once the pairwise side-effect similarity scores for all drugs in the dataset were computed,

we then formed a network �B4 with 864 drugs depicted as vertices, and 303417 edges

carrying weights equivalent to (�"B4 between the connected drugs. In particular, the

edges only exist between drugs whose (�"B4 is non-zero. Note that �B4 is a weighted

network with edges attached to weights that correspond to their strengths of relations.
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3.3 Centrality measures

In this section, we introduce the precise definitions of the three fundamental centrality

measures that we applied to the analysis of our weighted drug network �B4.

3.3.1 Degree centrality

Typically, the degree centrality of a vertex is defined as the number of edges linked

to it. In other words, it is usually a local measure which simply captures the size of the

immediate neighborhood of a vertex.

In the case of a weighted network, the weights of edges carry valuable information,

and hence centrality measures can reveal more appropriate insights into the importance of

vertices if the weights of edges are taken into account in the calculations.

Thus, a straightforward way to extend the definition of degree centrality to a weighted

network is by summing up the weights of edges linked to a vertex. An even more

comprehensive definition of degree centrality which encompasses both the number of

edges and the total weights of edges connected to a vertex was proposed by Opsahl et al.

(2010). Their proposed definition for the degree centrality of a vertex E is given precisely

as follows:

�U�46 (E) = =(E)
1−U × B(E)U, (3.4)

where =(E) represents the number of edges connected to vertex E, B(E) represents the sum

of weights of edges connected to vertex E, and U is an adjustable parameter which can

be set according to the network setting to determine the relative weights of =(E) and B(E)

in defining the centrality. For instance, if U = 0, then �U
�46
(E) = =(E) simply ranks the

vertices according to the number of edges linked to each of them, which is essentially just

the unweighted version of degree definition. On the contrary, if U = 1, then�U
�46
(E) = B(E)

measures a vertex’s centrality by only taking into consideration of the total weights of
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edges linked to the vertex.

For example, consider the weighted network� in Figure 3.1 which consists of 5 vertices

and 7 weighted edges. By setting U to three different values, i.e. U = 0, U = 0.5, and

U = 1, in Eq. 3.4, we observe that each of them results in different rankings of vertices.

The centrality values for each vertex, when U is set to different values, are presented in

Table 3.2. For instance, consider the vertex � in the network which receives the highest

ranks in all three different settings for degree centrality. When U = 0, �U
�46
(�) = =(�) = 4

because vertex � is connected to 4 vertices in the network; when U = 1, we have

�U
�46
(�) = B(�) = 4 + 5 + 1 + 3 = 13 which is the sum of weights of edges connected to

vertex �; when U = 0.5, we obtain �U
�46
(�) = =(�)0.5 × B(�)0.5 = 40.5 × 130.5 = 7.2111.

Besides, note that when U = 0.5, the centrality separates the five vertices to different ranks

in the order of �, �, �, � and � from the most central to least central. In contrast, when

U = 0 and U = 1, the centrality is not able to distinguish some vertices in terms of their

centrality ranking. For example, vertices � and � have equal centrality value when U = 0

since each of them is connected to 3 edges in the network. Likewise, vertices � and � are

ranked together as the most central when U = 1, since the total weights of edges connected

to each of them are equivalent.

Table 3.2: Degree centralities of vertices in the network � shown in Figure 3.1
according to different values of U.

Vertex �U
�46

, U = 0 �U
�46

, U = 0.5 �U
�46

, U = 1
� 3 6.2450 13
� 4 7.2111 13
� 3 5.4772 10
� 2 3.1623 5
� 2 3.7417 7

The definition of degree centrality stated in Eq. 3.4 can be translated in a context

relevant to our drug network �B4, whereby =(E) represents the number of drugs sharing
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Figure 3.1: An example of a weighted network �, where edge weight corresponds to
the strength of relation such that greater edge weight indicates stronger link between
the vertices.

some side effects with drug E, and B(E) indicates the extent to which drug E is similar to

other drugs in the network. In our opinion, =(E) and B(E) are both important aspects that

are worth the same amount of attention when deciding a drug’s local prominence in the

network. Hence, the degree centrality defined in Eq. 3.4 is applied to our drug network

�B4, with U set at the value of 0.5 1.

3.3.2 Closeness centrality

Closeness centrality essentially rates a vertex by its proximity to each of the other

vertices in a network. The distance between a pair of vertices in a network is calculated

based on the paths connecting them. A path between two distinct vertices D and E is a

sequence of adjacent vertices (i.e. vertices that are connected by an edge) that starts with D

1 We do not claim that the choice of U = 0.5 for �346 is the most suitable one or is statistically significant
for capturing the local prominence of each vertex in our drug network. The particular value of U = 0.5 is
chosen to only demonstrate the case when both factors =(E) and B(E) are considered equally for measuring
the local prominence of a vertex E in the weighted network.
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and ends with E, in which no vertex in the sequence is repeated.

The length of a path in a weighted network is usually measured by the sum of weights

of edges along the path. In a network � where all edges carry non-negative weights,

the shortest paths can be found by Dĳkstra’s algorithm (Dĳkstra, 1959). Such paths are

appropriate for connecting vertices in a network where edge weight represents a form

of cost such that greater edge weight indicates a weaker or costlier connection, since

vertices are more likely to be connected through paths with minimum total costs (weights).

However, in some other networks (for instance, our drug network), edge weight may

represent the strength of relation such that greater edge weight indicates a stronger link,

and thus a path with maximum total strengths (weights) may be preferable for connecting

a pair of vertices. In that case, we can alter each edge weight in the original network � to

its reciprocal and then obtain a network �′ in which the shortest paths identified using

Dĳkstra’s algorithm are the ones with maximum strength in the original network �. That

is, in a network � where greater edge weight indicates closer relationship, the length of a

path can be calculated as the sum of inverted weights of its constituent edges. Formally,

suppose [D, ℎ1, ℎ2, . . . , ℎ: , E] is a sequence of vertices on a path ?, and let F8, 9 represent

the edge weight between any two adjacent vertices 8 and 9 . Then the length of the path ?

is calculated as follows:

;? =
1

FD,ℎ1

+ 1
Fℎ1,ℎ2

+ · · · + 1
Fℎ: ,E

. (3.5)

Note that there may be more than one path linking the two vertices D and E (see Table 3.3).

In particular, the shortest one among them is known as a geodesic path between D and E,
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and its length gives the (geodesic) distance between the two vertices, i.e.

3 (D, E) = min
?∈%(D,E)

;?, (3.6)

where %(D, E) is the set of all paths between D and E. See Table 3.4 for the geodesic

distance computed for each pair of vertices in the network � in Figure 3.1.

Finally, the closeness centrality of a vertex E in � is computed as the inverse of the sum

of its geodesic distances to all other vertices in a network as follows:

��;> (E) =


∑
D∈+ (�)−E

3 (D, E)

−1

, (3.7)

where+ (�) is the set of vertices in�, and 3 (D, E) is the geodesic distance between vertices

D and E. As an example, Table 3.5 shows the closeness centrality of each vertex in the

network � shown in Figure 3.1.

Table 3.3: The length of each path between vertices � and � in the network� shown
in Figure 3.1. The length of each path is calculated as the sum of inverted weights of
the edges along the path. Note that [�, �, �] is the geodesic path between vertices �
and � , so its length gives the geodesic distance between � and � .

Path Path length
[�, �] 0.5
[�, �, �] 0.45
[�,�, �, �] 1.3429
[�,�, �, �, �] 1.1762

3.3.3 Betweenness centrality

The definition of betweenness centrality also involves the concept of geodesic path. As

in the case of closeness centrality, we identified a geodesic path between a pair of distinct

vertices in our drug network as a path that connects the vertices via edges with the least

sum of inverted weights. Suppose 68 9 is the number of geodesic paths connecting two
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Table 3.4: Geodesic path and distance for each pair of vertices in the network �
shown in Figure 3.1.

Vertex pair Geodesic path Geodesic distance
(�, �) [�, �] 0.25
(�,�) [�,�] 0.1429
(�, �) [�, �, �] 0.583
(�, �) [�, �, �] 0.45
(�,�) [�, �, �] 0.3929
(�, �) [�, �] 0.3
(�, �) [�, �] 0.2
(�, �) [�, �] 0.5
(�, �) [�, �, �, �] 0.5929
(�, �) [�, �, �] 0.53

Table 3.5: Closeness centrality of each vertex in the network � shown in Figure 3.1.

Vertex Closeness centrality, ��;>
� 0.7012
� 0.8502
� 0.6140
� 0.5128
� 0.5630

different vertices 8 and 9 , and 68 9 (E) is the number of such paths that pass through a vertex

E, where E ∉ {8, 9}. Then the betweenness centrality of E in network � is defined as:

��CF (E) =
∑

8, 9∈+ (�)−E,8≠ 9

68 9 (E)
68 9

, (3.8)

where + (�) is the set of vertices in the network � that E belongs to.

Take the weighted network shown in Figure 3.1 as an example. From Table 3.4, we

can see that vertex � appears as the intermediary vertex in the geodesic path [�, �, �]

between the pair of vertices � and �, and also in the geodesic path [�, �, �, �] between

the vertices � and � . Since there is only 1 geodesic path for each pair of vertices, hence

we have ��CF (�) = 1/1 + 1/1 = 2. See Table 3.6 for a complete list of betweenness

centralities of vertices in the same network.
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Table 3.6: Betweenness centrality of each vertex in the network � shown in Figure
3.1.

Vertex Betweenness centrality, ��CF
� 2
� 4
� 0
� 0
� 0

3.3.4 Convex combinations of centrality measures

In general, each centrality measure focuses on a particular structural attribute of vertices

and provides unique insights into the significance, influence and roles of each vertex in

a network. However, this also implies that each centrality measure has its own limiting

perspective when evaluating the vertices. For instance, when using Kendall’s tau-b

correlation measure to compare the ranking of vertices in �B4 yielded by betweenness

centrality to that given by closeness and degree centralities, the values obtained are 0.4106

and 0.4239 respectively, out of the perfect positive correlation value of 1. (See Table 3.7.)

This can be resolved by considering combinations of several centrality measures. For

example, it was shown that combinations of at least two centrality measures achieved

a more reliable prediction as compared to the use of single centrality measures when

predicting essential genes from genetic networks (del Rio et al., 2009).

In this study, we present a simpler case of using convex combinations of two centrality

measures in analyzing our drug network, and then compare the results with the ones

obtained by their constituent centrality measures. As demonstrated in a recent study by

Keng et al. (2020), a convex combination of two arbitrary centrality measures �0 and �1

can be formulated for any vertex E in a network as follows:

�C (E) = (1 − C)�0(E) + C�1(E), (3.9)
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where C is some constant in the range from 0 to 1 which decides how much each of the

individual centralities �0 and �1 contributes to the combination.

An appropriate C-value is then determined based onKendall’s tau-b correlation coefficient

(g1) to form an optimum convex combination that resembles both of its constituent

centralities in terms of their ways of ranking the vertices. The correlation coefficient g1

quantifies the similarity between two rankings in the range from -1 to 1, where a value of

-1 indicates that the two rankings are completely different, a value of 1 indicates that the

two rankings are perfectly identical, and a value of 0 indicates that there is no association

between the two rankings (Kendall, 1938).

Let g1 (�B, �C) be the Kendall’s correlation between the two centrality rankings induced

by �B and �C for any B, C ∈ [0, 1]. One way to form an optimum convex combination �C

which resembles the two original centralities �0 and �1 as much as possible is to find a

C ∈ [0, 1] such that both g1 (�0, �C) and g1 (�1, �C) are as close as can be to their maximum

possible value, i.e. 1. This can be obtained by finding the C-value which minimizes the

following function:

5 (C) = [1 − g1 (�0, �C)]2 + [1 − g1 (�1, �C)]2. (3.10)

Note that such a C-value is guaranteed to exist, since there are only finitely many possible

values of g1 (�B, �C) for any B, C ∈ [0, 1] (Keng et al., 2020).

A point C is regular if �C separates all the vertices in a network by centrality rankings,

except for the vertices that are already ranked equally by both the constituent centralities

�0 and �1. A convex combination �C induced by a regular point C has several desired

characteristics. Firstly, it follows from the definition of a regular point that �C is able to

distinguish as many vertices as possible by their centrality ranks based on the ones induced
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by the constituent centralities �0 and �1. Besides, small changes in the C-value do not

affect the centrality ranking yielded by �C . Lastly, regular points abound in the interval

[0, 1] in the sense that they can be found with probability 1.

We then incorporate the algorithm outlined by Keng et al. (2020) to find regular points

that give rise to optimum pairwise combinations of the centralities ��46, ��;> and ��CF

for our drug network. As a result, we obtain the following pairwise combinations

• 0.5236��;> + 0.4764��46

• 0.8855��CF + 0.1145��;>

• 0.9��CF + 0.1��46

for our network.

As is pointed in Keng et al. (2020), an efficient algorithm to find optimum convex

combinations of more than two centrality measures for large networks is yet to be

constructed. This is due to the dimensions of the simplices involved. Hence, we are

contented with combinations of two centrality measures for the moment.

3.3.5 Centrality analysis

We now provide a more detailed analysis of centralities for our drug network�B4. Firstly,

we note that closeness and degree are strongly correlated with g1 (��;>, ��46) = 0.9079.

Remarkably, their optimum convex combination has even stronger correlation with each of

the constituent centralities, with g1 ≈ 0.95.

In contrast, betweenness does not correlate as much with each of closeness and degree,

with g1 (��CF, ��;>) = 0.4106 and g1 (��CF, ��46) = 0.4239 respectively. However, the

optimum combination of betweenness and closeness correlates with each of its atomic

centralities with g1 ≈ 0.7 – a significant increase from the correlation between the two

atomic centralities themselves.
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Similarly, the optimum convex combination which consists of 90% of betweenness and

10% of degree also has a correlation of g1 ≈ 0.7 with each of its constituent centralities –

again indicating an improvement from the correlation between the constituent centralities.

The pairwise Kendall’s correlations for the three centralities and their optimum convex

combinations in pairs are shown in Table 3.7.

Table 3.7: Kendall’s g1 correlations between the centralities applied in the analysis
of �B4.

Degree Closeness Betweenness Closeness
& De-
gree

Betweenness
& Close-
ness

Betweenness
& Degree

Degree 1 0.9079 0.4239 0.9540 0.6815 0.7122
Closeness 0.9079 1 0.4106 0.9539 0.7056 0.6724
Betweenness 0.4239 0.4106 1 0.4194 0.7179 0.7243
Closeness
& Degree

0.9540 0.9539 0.4194 1 0.6996 0.6931

Betweenness
& Close-
ness

0.6815 0.7056 0.7179 0.6996 1 0.9238

Betweenness
& Degree

0.7122 0.6724 0.7243 0.6931 0.9238 1

3.4 Prediction of drug repositioning candidates

In this section, we present a computational procedure to uncover potential drug

repositioning candidates for a disease based on the centralities of drugs associated to the

disease. Following the principle that drugs sharing similar side effects may share similar

therapeutic indications, we assume that the drugs that are directly connected to a drug 3

in the network �B4 (i.e. direct neighbors of 3 in �B4) are more likely to share the same

indications with 3 than those that are not.

To get a hint on how centralities of drugs can indicate the drugs’ abilities to repurpose

their neighbors for treating the same disease, take a look at three subgraphs of �B4 shown

in Figure 3.2, which depict parts of the neighborhoods of three different drugs known for
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treating the disease leukemia. The three drugs have the highest, median and lowest degree

centralities respectively among all drugs associated with leukemia. From the figures, we

see that the one with higher degree centrality has higher (�"B4 with each of its ten most

similar neighbors in the network that are not known for treating the disease. Since similar

drugs are likely to share a similar therapeutic effect, we hypothesize that the neighbors of

the more central drug are more likely to be repurposed successfully for treating the same

disease than that of the less central one.

Let �B be the set of existing drugs known for treating a disease B. Our aim is to find

a drug (other than those in �B) that could be repositioned as an alternative drug for the

disease. We first identify the top :% of the most central drugs in �B using a centrality

measure, where : is any value that satisfies 1 ≤ :%|�B | ≤ |�B |.

Let )B (2) be the set of top :% of the most central drugs in �B chosen with respect to a

centrality measure 2. The collection of neighbors of each drug in )B (2), excluding those

that are already included in �B, are then considered as candidate drugs in which their

relations to disease B will be further evaluated. These candidate drugs can be generally

found as follows:

%∗B (2) =
⋃

3∈)B (2)
=1(3) − �B, (3.11)

where =1(3) is the set of direct neighbors of drug 3 in the network �B4. Then each of the

candidate drugs is assigned a score that represents the likelihood that the drug is a valid

repositioning candidate for disease B. In particular, the score for a candidate drug 3∗ in

relation to treating disease B is computed as its average similarity score with the drugs in

)B (2):

(2>A4(3∗, B) =

∑
3∈)B (2)

(�"B4 (3∗, 3)

|)B (2) |
. (3.12)

The higher the score, the more likely the drug can be used for treating disease B, since it
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has overall higher similarity score with the central drugs associated with the disease.

Let %B (2) represent the list of top-20 drug candidates in %∗B (2) whose scores are the

highest. These drugs were then predicted as the final list of the most potential alternative

drugs for treating disease B. To measure the clinical relevance of our prediction, we

compared the predicted drugs with the existing clinical trials registered in ClinicalTrials.gov

database. For a conservative evaluation, we assume our prediction of a drug-disease

relation is “positive” if and only if it has been investigated in at least three clinical trials

in the database 2. Finally, we quantified the positive predictive value of our prediction in

%B (2) as follows:

%%+B (2) =
|+B (2) |
|%B (2) |

=
|+B (2) |

20
, (3.13)

where +B (2) is the set of drugs in %B (2) in which their relations with disease B have been

studied in at least three clinical trials.

For comparison purpose, we carried out a similar procedure of prediction using the

bottom :% of the least central drugs and a randomly chosen :% of drugs from �B

respectively. The predictions achieved by :% of central, peripheral and randomly chosen

drugs were then compared while varying the values of : , and the results are presented in

the next chapter. The outline of our procedure is summarized in Figure 3.3.

2 As a remark, we only include the clinical trials from 1st January 2000 to 1st January 2020.
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(a) Neighborhood of the
drug Imatinib, which has
the highest degree cen-
trality among all the
drugs approved for treating
leukemia.

(b) Neighborhood of the
drug Vincristine, in which
its degree centrality is in
the median among all the
drugs approved for treating
leukemia.

(c) Neighborhood of the
drug 6-Mercaptopurine,
which has the lowest
degree centrality among
all the drugs approved for
treating leukemia.

Figure 3.2: Subgraphs of �B4. The red node represents a drug known for treating
leukemia, whereas the blue nodes represent the drugs that have the highest (�"B4

with the red node, after excluding those approved for treating leukemia. The weights
of the edges, which represent (�"B4 between the drugs, can be visualized based on
the thickness of the edges in the graphs, such that a thicker edge has greater edge
weight.
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Choose a target disease s

Identify Ds, i.e. the set of existing drugs known for 
treating disease s

Choose a centrality measure c to rank the drugs in Ds

Select bottom k% 
of the least central 

drugs from Ds

Select top k% of 
the most central 
drugs from Ds

Randomly 
select k% of 

drugs from Ds

Form Ts(c) with the selected drugs

Obtain Ps*(c), i.e. the collection of neighbors of each 
drug in Ts(c) in the drug network, excluding those 

which are already in Ds

For each drug in Ps*(c), compute its average 
similarity score with the drugs in Ts(c)

The top-20 drugs with the highest scores are 
nominated as members of Ps(c), i.e. the list of 

potential alternative drugs for treating disease s

Determine Vs(c), i.e. the set of drugs in Ps(c) whose 
relations with disease s are investigated in at least 3 

clinical trials

Compute the positive predictive value, PPVs(c) as 
|Vs(c)|/|Ps(c)|

Figure 3.3: An outline of our procedure for predicting potential drug repositioning
candidates for a target disease and assessing the resulting prediction performance.
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CHAPTER 4: RESULTS AND DISCUSSION

A numerical experiment was conducted based on the presented methodology, and the

results are discussed in this chapter.

4.1 Selection of target diseases

In this study, we selected the top 10 diseases or conditions with the highest numbers of

clinical studies in the ClinicalTrials.gov database as our target diseases for prediction of

their potential alternative drugs:

(1) cardiovascular diseases (CVDs),

(2) gastrointestinal diseases,

(3) mental disorders,

(4) dermatologic disorders,

(5) wounds and injuries,

(6) virus diseases,

(7) breast carcinoma,

(8) lymphoma,

(9) acquired immunodeficiency syndrome,

(10) leukemia.

4.2 Prediction results

Let : be the percentage of drugs selected from �B for each target disease B listed above.

The drugs were selected from �B in three ways, which consist of 1) the top :% of the most

central drugs in �B, 2) the bottom :% of the least central drugs in �B, and 3) a randomly

chosen :% of drugs from �B. By referring to the neighborhoods of these selected drugs,

we predicted the top-20 most potential alternative drugs for each target disease B. The
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prediction results obtained by different ways of selecting :% of drugs in each �B were

then compared based on their average positive predictive values for the 10 target diseases.
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(a) Degree centrality.
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(b) Closeness centrality.
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(c) Betweenness centrality.
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(d) Optimum convex combination of closeness and
degree centralities.
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(e) Optimum convex combination of betweenness and
closeness centralities.
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(f) Optimum convex combination of betweenness and
degree centralities.

Figure 4.1: Comparison of average positive predictive values between the top :%
of central drugs, the bottom :% of peripheral drugs chosen from each �B using
different centrality measures, and the :% of drugs randomly chosen from each �B,
while varying the values of : .

Figure 4.1 shows the average positive predictive values obtained using different

centrality measures when the values of : are varied. As a remark, the letter ‘c’ stated

beside the centrality indicates that the top :% of the most central drugs are selected from

each �B, while the letter ‘p’ indicates that the bottom :% of the peripheral or least central

drugs are selected instead. As for the case of ‘random’, :% of drugs are chosen randomly
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Figure 4.2: Comparison between optimum convex combinations of centralities
and their constituent centralities in terms of the average positive predictive val-
ues achieved by the top :% of central drugs from each �B while varying the values
of : .

from each �B for ten times, and the average positive predictive values are then taken over

the ten trials. Apart from that, note that the :-value is chosen in a way so that at least 1

drug is chosen from each �B for prediction, for otherwise there would be no reference

point for which the candidate drugs can be predicted.
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As seen from the plots in Figure 4.1, when : is varied from 20% to 100%, the average

positive predictive values of our prediction when using :% of central drugs associated

with the target diseases are consistently above 52% for all centrality measures including

their optimum convex combinations. In contrast, the prediction using peripheral drugs

achieve the lowest average positive predictive value of merely 35.5% when :% = 25% of

least central drugs are chosen from each �B with respect to closeness centrality. Besides,

the average positive predictive values given by peripheral drugs fluctuate wildly as :

varies, while that yielded by the central drugs perform relatively stable across all :-values.

Furthermore, we observe that the central drugs identified by each centrality measure

perform significantly better than the randomly chosen drugs for any value of : . Although

the predictions given by peripheral drugs are not steady nor reliable, they yield “surprises”

at some :-values. For instance, when :% = 24% of drugs with lowest betweenness are

chosen from each �B, it results in a surprisingly impressive prediction with average positive

predictive value equal to 60.5% – which is in fact the highest average positive predictive

value obtained among all the cases in our experiment.

Note that as the value of : increases, there is an increasing overlap between the set of

top :% of central drugs associated with a target disease and the sets of their peripheral and

random counterparts. Thus, it is no surprise that the average positive predictive values

achieved with :% of peripheral drugs and :% of randomly chosen drugs associated with

the target diseases get closer to that achieved with :% of top central drugs when the value

of : increases.

On the other hand, Figure 4.2 shows the comparison between the optimum convex

combinations and their constituent centralities. Overall, the central drugs identified by the

optimum convex combinations rarely perform worse than that identified by their constituent

centralities in capturing valid drug repositioning candidates for the target diseases. This
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implies that the optimum convex combinations can be considered as a measure for a safe

evaluation.

Recall that the positive predictive value is calculated based on the presence of clinical

trials that investigate a drug candidate in relation to a disease. More precisely, we consider

the prediction of a drug-disease relation is positive if and only if there exist at least three

clinical trials (in ClinicalTrials.gov database) that investigate the association between the

drug and the disease. Hence, it is important to note that an absence or lack of clinical

trials associated with a drug-disease pair does not necessarily imply that the drug is invalid

for treating the disease, but that the relation has not (yet) gained enough attention for

clinical study. Likewise, the presence of clinical trials associated with a drug-disease pair

does not necessarily imply that the drug has a positive effect on treating the disease, but

simply that there has been considerable interest in studying the drug-disease relation in the

clinical stage. Hence, the positive predictive values reported in this study simply reflect

the alignment of our prediction with the existing clinical interests, and may not imply the

actual validity of the predicted drug-disease relations.

4.3 Case studies

We further study the drug candidates predicted for two of the target diseases – leukemia

and cardiovascular diseases. Table 4.1 shows the lists of potential drug candidates that

appeared in our predictions when 50% of central drugs associated with each disease were

chosen with respect to each centrality measure.

Leukemia

Here, we discuss some of the potential drugs for leukemia which are listed in Table 4.1.

Leukemia is a cancer that begins in blood-forming tissue, such as bone marrow, and causes

large numbers of abnormal blood cells to be produced and enter the bloodstream. There
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Table 4.1: Lists of potential drug candidates for leukemia and cardiovascular dis-
eases, when the top 50% of central drugs approved for each disease were identified
using each centrality measure and used for prediction. Note that the relation be-
tween each target disease and each of its potential drug candidates is not known
in the original data set we retrieved from SIDER. The number of clinical studies
(as recorded in ClinicalTrials.gov) related to each predicted drug-disease relation is
presented as follows.

(a) List of predicted drug candidates for
leukemia.

Drug candidates Number of
clinical studies

Ribavirin
CID100005064

5

5-Azacytidine
CID100001805

300

Capecitabine
CID100060953

1

Rivastigmine
CID100005077

0

Oxaliplatin
CID100004609

9

CGP 19835 A
CID105479141

0

Lenalidomide
CID100216326

149

Thalidomide
CID100005426

22

Temozolomide
CID100005394

8

Nilotinib
CID100644241

105

Bexarotene
CID100082146

5

5-Aza-2’-
Deoxycytidine
CID100016886

220

Docetaxel
CID100003143

2

Everolimus
CID106442177

84

Boceprevir
CID110324367

0

Anagrelide
CID100002182

2

(b) List of predicted drug candidates for cardio-
vascular diseases.

Drug candidates Number of
clinical studies

Citalopram
CID100002771

23

Bupropion
CID100000444

8

Imatinib
CID100005291

11

Alprazolam
CID100002118

0

Fenofibrate
CID100003339

31

Exemestane
CID100060198

0

Duloxetine
CID100060834

1

UDCA CID100005645 3
K779 CID171306834 0
Paroxetine
CID100004691

5

Risedronate
CID100005245

0

Vacv CID100005647 0
Quetiapine
CID100005002

1

Rivastigmine
CID100005077

4

Meloxicam
CID100004051

2

Fluoxetine
CID100003386

19

Thalidomide
CID100005426

158

are several types of leukemia, which are divided based mainly on whether the leukemia is

acute (fast growing) or chronic (slower growing), and whether it starts in myeloid cells or

30

Univ
ers

iti 
Mala

ya



lymphoid cells (American Cancer Society, n.d.).

The drug ribavirin was first discovered in 1972 as a broad-spectrum anti-viral drug

(Sidwell et al., 1972). It is conventionally used in standard treatment of Hepatitis C

infection (Wohnsland et al., 2007). However, recent studies have shown that ribavirin

led to clinical improvement in treating patients with acute myeloid leukemia (AML)

(Assouline et al., 2009, 2014; Borden & Culjkovic-Kraljacic, 2010; Shi et al., 2015).

Although 5-azacytidine and 5-aza-2’-deoxycytidine were approved by the U.S. Food and

Drug Administration (FDA) for the treatment of myelodysplastic syndromes (MDS), the

two drugs have been consistently used in patients with AML and chronic myelogenous

leukemia (CML) (Momparler et al., 1984; Mund et al., 2005; Rohon et al., 2012; Savona

et al., 2015). The drug oxaliplatin, which is an approved medication for treating advanced

colorectal cancer and stage III colon cancer (National Cancer Institute (NCI), n.d.-b),

also has been investigated in combination with other drugs for patients with relapsed or

refractory AML (Tsimberidou et al., 2014, 2008). Besides, lenalidomide, an approved

drug for treating multiple myeloma, MDS and mantle cell lymphoma (MCL), also has been

clinically active in treatment of various lymphoproliferative disorders, including chronic

lymphocytic leukemia (CLL) (Awan et al., 2010; González-Rodríguez et al., 2013; Itchaki

& Brown, 2017). Moreover, the therapeutic effects of the drug thalidomide also have

been evaluated in patients with CLL (Awan et al., 2010; Kay et al., 2009). In addition,

several clinical studies showed that temozolomide demonstrates significant anti-leukemic

activity in patients with relapsed and refractory acute leukemia (Gojo et al., 2016; Seiter

et al., 2009, 2002). Besides, the usage of nilotinib for treating CML has been officially

approved (National Cancer Institute (NCI), n.d.-a). Apart from that, the drug bexarotene

has been tested in several clinical trials (NCT00316030, NCT00425477, NCT01001143) as

a potential therapy for AML patients (Tsai et al., 2008). There are also several studies that
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evaluate everolimus as a possible treatment for leukemia (NCT00093639, NCT01154439,

NCT03740334).

Cardiovascular diseases (CVDs)

CVDs include diseases of the heart, vascular diseases of the brain, and diseases of the

blood vessels (“Global Atlas on Cardiovascular Disease Prevention and Control”, 2011).

For example, heart attack and stroke are two common CVDs. Now, we discuss some of the

predicted drug candidates listed in Table 4.1 in terms of their potential to provide clinical

benefits to CVDs.

Citalopram has been suggested to be one of the first-choice antidepressant agents for

patients with coronary artery disease who suffer from depressive symptoms (Lesp’erance

et al., 2007; Yekehtaz et al., 2013). Besides, bupropion also may be considered as a

safe antidepressant for patients with heart disease (Roose et al., 1991, 1987; Wenger &

Stern, 1983). Imatinib which is originally indicated for treating leukemia, also has been

actively studied for the treatment of pulmonary arterial hypertension (Farha et al., 2014;

Frost et al., 2015; Ghofrani et al., 2010, 2005). Even though there is no clinical study

in ClinicalTrials.gov which investigates the therapeutic effect of alprazolam for CVD, a

recent study has shown that alprazolam is associated with a reduced risk of major adverse

cardiovascular events and all-cause mortality among hypertensive individuals, as well

as a reduced risk of hemorrhagic stroke in adults younger than 65 years old (Yeh et al.,

2019). Besides, fenofibrate has been investigated as primary prevention of cardiovascular

disease events (Jakob et al., 2016), and is related to reducing CVD risk in patients with

metabolic syndrome (Kim et al., 2019) as well as in patients with type 2 diabetes (Elam et

al., 2017). On the other hand, study shows that ursodeoxycholic acid (UDCA), which is

widely prescribed in the treatment of cholestatic liver disease, can be potentially used as
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standalone treatment for cardiac dysfunction (Vasavan et al., 2018). Another study also

suggests that UDCA may help to improve peripheral blood flow in patients with chronic

heart failure (von Haehling et al., 2012). Furthermore, the lipid-lowering effects of UDCA

may also lower the risk of atherosclerotic CVD (Simental-Mendía et al., 2019). Apart

from that, paroxetine, a drug usually used for treating depression and anxiety disorders,

has the potential to provide therapeutic benefits on cardiac function in patients with acute

myocardial infarction with depression (Tian et al., 2016). Besides, paroxetine is also

recommended to be repositioned for diabetes-related CVD (Wheatcroft, 2013). Another

drug, meloxicam, which is commonly used for treating Alzheimer’s disease in its early stage,

is also linked to a reduced risk of heart attacks and deaths from CVD (Nordström et al.,

2013). Moreover, a study suggests that fluoxetine can be used in improving post-myocardial

infarction depression (Strik et al., 2000). On top of that, the use of fluoxetine may reduce

the cardiovascular-related morbidity and mortality rates of patients with depression who

experience acute myocardial infarction (Taylor, 2005). Also, several studies propose a new

role for thalidomide in treatment of heart failure in addition to traditional cardiovascular

medications (Davey & Ashrafian, 2000; Gullestad et al., 2002, 2005).
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CHAPTER 5: CONCLUSION

5.1 Summary

In this study, we constructed a weighted network of drugs based on their side-effect

similarities. Then, based on the assumption that drugs with similar side-effects may

share similar therapeutic roles, we indicated how potential drug candidates that may be

repurposed for treating a target disease can be inferred from among the neighbors of the

existing drugs approved for the disease. Since different drugs may have different sets of

neighbors in the network, the question is then: among the existing drugs approved for a

disease, whose neighbors are the most promising drug repositioning candidates for the

disease? Will the centrality rankings of drugs provide some clues?

To investigate it, we selected diseases with the highest numbers of clinical trials in

the ClinicalTrials.gov database as our target diseases. For each target disease, we used a

centrality measure to identify the set of top :% of central drugs approved for the disease,

and the set of bottom :% of least central drugs approved for the disease, for some parameter

: . As a comparison, we also randomly chose a set of :% of drugs approved for the disease

without using any centrality measure. The three sets of drugs were then used separately

as a reference set for our prediction, in which we selected top-20 most potential drug

repositioning candidates for the disease from among the neighbors of the drugs in the

reference set. The prediction performances were then evaluated based on the percentage of

the predicted candidates that have been investigated in relation to the disease in at least

three clinical trials registered in ClinicalTrials.gov.

As a result, we observe that the predictions given by the top central drugs approved

for our target diseases are more consistent with clinical interests, as compared to their

peripheral and random counterparts. This suggests that similarity to the top central drugs
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associated with a particular disease may be prioritized for a more accurate and effective

screening of drug repositioning candidates for the disease. Our findings may serve as

a basis that encourages more robust application of centrality measures in future drug

repositioning efforts.

5.2 Limitation of this study

We acknowledge that the three centrality measures used in this study may not be the

most suitable ones for analyzing the roles of drugs in the context of drug repositioning. We

only used them as examples to showcase our investigation on how centrality measures may

be of help in drug repositioning, in recognition of them as the classic centrality measures

in the network science literature.

Besides, we only evaluated our predictions in this study based on how much they agree

with the investigation performed on the clinical stage. It should be noted that a current lack

of clinical trials for a drug-disease pair may not imply the drug’s inability or irrelevance

in treating a disease, as future clinical studies may provide further evidence in support

of the drug-disease relation. On the other hand, not every clinical trial associated with

a drug-disease pair implies that the drug has a positive effect on the disease, as some

clinical trials may report failure of a drug-disease treatment relation. Although the positive

predictive values reported in this study may not directly reflect the actual viability of

the predicted drug repositioning candidates in treating a disease, they can be used as an

indicator of the clinical relevance of our prediction, suggesting a possibility for more

advanced research on the clinical potential of our predicted candidates.

Apart from that, evaluating similarities between drugs solely from the perspective of

side effects may limit the validity of our inference in this study. Since we only focused on

analyzing the drugs’ centralities and their application to drug repositioning, we admit that
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we may have overlooked other pharmacological factors that may impact the drugs’ abilities

to treat a disease. Hence, the analysis presented may be rather simplistic for a practical

application of drug repositioning. Nevertheless, the unique insights portrayed in this work

regarding the centralities of drugs are likely to motivate more in-depth studies on the use

of centrality measures in guiding drug repositioning efforts in the future.

5.3 Suggestions for future work

Besides drugs’ side effects, other aspects of drugs such as their chemical properties

and protein targets may be integrated for evaluation of drug-drug similarities. This may

improve the applicability of the drug repositioning model presented in the present study.

Meanwhile, disease similarity also may be considered, since studies show that similar

diseases tend to be treated by common therapeutic drugs (Cheng et al., 2016; Hu et al.,

2017). This way, drug candidates for a new disease in which treatment is yet to be found

may be deduced from the central drugs associated with its similar diseases.

On the other hand, our work may be expanded in the future by analyzing the use and

relevance of other centrality measures in discovering drug repositioning opportunities.

This will illuminate and provide more justification on the significance of central drugs.

Meanwhile, our centrality-guided drug repositioning approach may be assessed more

critically by examining the possible biases in the prediction towards or against certain

groups of drugs.

While most drug repositioning strategies focus on finding alternative uses of approved

drugs, they may serve as a paradigm for exploring new therapeutic potential for natural

products or bioactive compounds (Alcaro & Ortuso, 2020; DeCorte, 2016; Maruca et al.,

2020; Rastelli et al., 2020). Furthermore, from a broader perspective, drug repositioning

may be regarded as a recommendation process. In our case, we recommend some drugs as
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alternative treatment options for some diseases. Thus, the framework presented in this study

may be applied more widely to the class of recommendation problems in network science.

In return, we may also gain some valuable insights into the drug repositioning problem

by considering the approaches and techniques proposed for developing recommendation

systems.
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