
COMPARATIVE ANALYSIS OF SYNONYMOUS CODON 

USAGE BIAS IN HUMAN MONOCYTES, B AND T 

LYMPHOCYTES BASED ON TRANSCRIPTOME DATA  

 

 

 

 

MUHAMMAD ADIB BIN RUZMAN 

 

 

 

 

 

FACULTY OF SCIENCE 

UNIVERSITY OF MALAYA 

KUALA LUMPUR 

 

  

 2018

Univ
ers

iti 
Mala

ya



COMPARATIVE ANALYSIS OF SYNONYMOUS CODON 
USAGE BIAS IN HUMAN MONOCYTES, B AND T 

LYMPHOCYTES BASED ON TRANSCRIPTOME DATA 

 

  

MUHAMMAD ADIB BIN RUZMAN 

 

 

DISSERTATION SUBMITTED IN FULFILMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE 

 

 

INSTITUTE OF BIOLOGICAL SCIENCES  
FACULTY OF SCIENCE 

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

 
 

2018Univ
ers

iti 
Mala

ya



ii 

UNIVERSITY OF MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate: MUHAMMAD ADIB BIN RUZMAN 

Matric No: SGR160003 

Name of Degree: MASTER OF BIOINFORMATICS 
Title of Thesis:  

COMPARATIVE ANALYSIS OF SYNONYMOUS CODON USAGE BIAS IN 
HUMAN MONOCYTES, B AND T LYMPHOCYTES BASED ON 
TRANSCRIPTOME DATA 

Field of Study: Bioinformatics 

    I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

 Candidate’s Signature        Date: 

 Subscribed and solemnly declared before, 

 Witness’s Signature        Date: 
 Name: 
 Designation: 

Witness’s Signature        Date: 
 Name: 
 Designation:

Univ
ers

iti 
Mala

ya



iii 

COMPARATIVE ANALYSIS OF SYNONYMOUS CODON USAGE BIAS IN 
HUMAN MONOCYTES, B AND T LYMPHOCYTES BASED ON 

TRANSCRIPTOME DATA 

ABSTRACT 

Human immune system comprises of many important biological components. Reduction 

in protein production such as hormones due to changes in codon distribution can lead to 

immune system disorder. In this study, the balance between mutational bias and 

translational selection in shaping codon usage bias in protein-coding genes in monocytes, 

B and T lymphocytes were examined. The protein-coding genes for monocytes, B and T 

lymphocytes as well as human reference protein-coding genes were obtained from RNA-

Seq data from NCBI databases. This study was conducted by computing several codon 

usage indices and applying multivariate statistical methods. Nucleotide composition 

analysis showed that the protein-coding genes have GC-rich content and predicted to 

prefer GC-ended codons to code for the respective amino acids. Relative Synonymous 

Codon Usage (RSCU) analysis confirms the earlier prediction that GC-rich protein-

coding genes will always prefer to use GC-ended codons except for monocytes protein-

coding genes which prefer AT-ended codons. The overall codon usage bias was low in 

all of the cells including human reference protein-coding genes. Multivariate analysis 

used in this study suggested that codon usage bias is influenced by both mutational bias 

and translational selection. Moreover, translational selection was identified to be the 

dominant factor in all the immune cells studied except for monocytes in which it was 

heavily influenced by mutational bias. This research also provides new insights into 

human cells biology and contributes new information on advantages of RNA-Seq data in 

genomic study. 

Keywords: Codon usage, codon bias, monocytes 

Univ
ers

iti 
Mala

ya



 

iv 
 

ANALISIS PERBANDINGAN PENGGUNAAN KODON SINONIM DALAM 
MONOSIT, B DAN T LIMFOSIT MANUSIA BERDASARKAN DATA 

TRANSKRIPTOM 

ABSTRAK 

Sistem imun manusia terdiri daripada berbagai komponen biologi penting. Penyusutan 

penghasilan protin seperti hormon akibat perubahan pada pengagihan kodon akan 

menyebabkan gangguan sistem imun. Dalam kajian ini, imbangan antara tekanan mutasi 

dan translasi pilihan dalam membentuk penggunaan kodon bagi gen pengekodan protin 

manusia bagi monosit, B dan T limfosit telah dkenalpasti. Gen pengekodan protin bagi 

sel monosit, B, T limfosit dan gen rujukan manusia diperoleh dari pangkalan data NCBI. 

Kajian ini dijalankan dengan memasukkan beberapa indeks penggunaan kodon dan 

mengaplikasi kaedah analisis multivarian. Analisis komposisi nukleotida menunjukkan 

semua gen mempunyai kandungan GC yang tinggi maka ia dijangka akan menggunakan 

kodon yang diakhiri dengan GC bagi mengekod asid amino masing-masing. Analisis 

‘Relative Synonymous Codon Usage’ (RSCU) mengesahkan jangkaan awal iaitu gen 

yang kaya dengan GC selalunya akan memilih untuk menggunakan kodon berakhir 

dengan GC kecuali gen monosit yang lebih memilih kodon diakhiri dengan AT. 

Keseluruhan penggunaan kodon adalah rendah bagi semua sel imun dan gen rujukan 

manusia. Analisis multivarian yang dijalankan mencadangkan corak penggunaan kodon 

adalah dipengaruhi oleh tekanan mutasi dan translasi pilihan. Tambahan pula, translasi 

pilihan dikenal pasti sebagai faktor utama dalam sel imun terpilih kecuali monosit di mana 

lebih dipengaruhi oleh tekanan mutasi. Kajian ini juga telah memberi sudut pandang baru 

ke dalam biologi sel manusia dan menyumbang kepada maklumat terbaru mengenai 

kelebihan menggunakan data RNA-Seq dalam kajian genomik. 

Kata kunci: Penggunaan kodon, Kecenderungan kodon, monosit 
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CHAPTER 1: INTRODUCTION  

 
 Background 

A codon is a set of three nucleotides that code for amino acid which is the 

monomeric unit of proteins (Crick et al., 1961). Protein translation is governed by the 

genetic code or a set of rules by which DNA or mRNA materials are translated into 

proteins by living cells. It is inherently redundant with 64 codons but the combinations of 

three nucleotide bases only able to code for 20 different amino acids. This codon 

characteristic is known as synonymous codons in which they encode the same amino acid 

and varies to each other at the third codon position (Bennetzen & Hall, 1982). Knowledge 

regarding the nature of codon usage bias can provide significant information on 

involvement of molecular evolution of genes, prediction of genomic behavior and 

designing cloning vectors for human (Liu et al., 2012). The information is also essential 

for better understanding of host-pathogen interactions in term of its association to co-

evolution or adaptation of pathogens to specific hosts (Pandit & Sinha, 2011).  

Codons is translated during protein synthesis as a result of the initial base pairing 

of cognate tRNA anticodons at the ribosomal A site by a specific tRNA complementary 

to the amino acid. There are 31 to 46 different tRNA anticodons found across species in 

which some tRNAs recognised more than one codon. This can be easily carry out through 

wobble base pairing due to less constraint at the first tRNA anticodon position by non-

standard base pairing, thus enable the recognition of multiple third codon positions 

(Crick, 1966). Modification at the first anticodon position is important in order to enhance 

the efficiency of wobble base pairing (Holley et al., 1965; Varani & McClain, 2000).  

Variation in DNA sequence composition was previously thought to be silent and 

would not disrupt the polypeptide chain and phenotype characteristics. However, 

synonymous codons have been shown to use codons in varying frequencies in different 

organisms (Grantham et al., 1981; Sharp et al., 1988). This phenomenon of preferring a 
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specific codon is known as codon usage bias and have been characterised as non-random 

and unique to each species. Codon usage bias is best explained as the result of mutational 

bias, translational selection and random genetic drift (Bulmer, 1991; Sharp & Li, 1986). 

Mutational bias occurs due to unequal mutational rates among the nucleotide bases by the 

influence of several processes and known to be the widespread feature of bacterial 

genomes (Lobry, 1996; Rocha et al., 2006). Influence of mutational bias in the absence 

of translational selection can be seen through variation in base composition (Sueoka, 

1962). In various organisms, the impact of mutational bias is noticeable in GC content 

(Muto & Osawa, 1987) and the greatest variation was found in the nucleotide content at 

the third codon position (Sharp et al., 2005). The changes at the third codon position are 

often synonymous and accountable to less functional constraint. Thus, it is suggested that 

heterogeneity in base composition is the greatest source of variation in codon usage bias.  

Translational selection operated by preferring codons with the most abundant 

corresponding tRNAs (Ikemura, 1981; Ikemura, 1985) in order to achieve effective and 

accurate protein translation (Andersson & Kurland, 1990; Ehrenberg & Kurland, 1984). 

Variations in GC content has been proven previously as the dominant factor in shaping 

codon usage bias but some observation suggested that base composition variation is also 

subjected to huge translation selection influence. The benefit of selecting optimal codons 

by translational selection on codon usage bias remains inconclusive. Some proposed that 

codon usage biases are necessary to promote the efficiency of protein synthesis for rapid 

growth (Andersson & Kurland, 1990; Ehrenberg & Kurland, 1984). Besides that, accurate 

translation can produce better yield of correctly translated protein products (Bulmer, 

1991) as well as reduction in proofreading time (Ehrenberg & Kurland, 1984; Lovmar & 

Ehrenberg, 2006).  

Further comparisons of codon usage bias across species have provided more 

information regarding the role of translation selection on synonymous sites. In highly 
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expressed genes, the rates of synonymous substitution are low and expected to be the 

action of translational selection (Sharp & Li, 1987). However, codon usage bias alone 

cannot explain for the significance of the observed reduction in divergence (Berg & 

Martelius 1995; Eyrewalker & Bulmer, 1995). A study investigating the role of 

translational selection shows a consistent perspective on highly expressed genes, 

suggesting selection favours codons with the most abundant tRNA in order to achieve 

accurate and efficient translation species (Ikemura, 1985). The preferred synonymous 

codons are known as optimal codons and have been identified as the most overrepresented 

codons in the highly expressed genes (Henry & Sharp, 2007). Identifying optimal codons 

was the approach used by Sharp and colleagues to investigate the evidence for natural 

selection on codon bias across polymorphic sites (Sharp et al., 2010). In their study, 

distribution of optimal codons in Escherichia coli and Clostridium perfringens tends to 

skewed or biased towards high frequency variants in highly expressed genes. This 

observation shows that it is difficult to conclude that the codon usage bias occurs due to 

mutational bias alone (Sharp et al., 2010). Therefore, many comprehensive studies have 

provided evidence that the codon usage of highly expressed genes was also subjected to 

translational selection. 

Most of the early study analysing the codon usage bias was targeted on genetic 

model organism such as Escherichia coli and Saccharomyces cerevisiae (Bennetzen & 

Hall, 1982; Grantham et al., 1981) and information regarding tRNA abundances on each 

species have been characterised (Ikemura, 1981; Ikemura, 1982). From there, codon 

usage bias study was widely explored in other prokaryotes including Salmonella enterica 

(Sharp & Li, 1987), Mycoplasma capricolum (Muto et al., 1985) and Bacillus subtilis 

(Shields & Sharp, 1987), as well as in eukaryotes including Saccharomyces (Sharp et al., 

1988), Dictyostelium discoideum (Sharp & Devine, 1989), Tetrahymena (Martindale, 

1989) and Chlamydomonas (Campbell & Gowri, 1990).  
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Our current knowledge of codon usage in higher, complex organism such as 

mammals benefited from the availability of sequence data in large numbers of species.  

Codon usage has also been analysed in human but further comprehensive analyses are 

required in order to have a better understanding of codon usage processes and the 

impacting factors. The impact of codon usage bias in the human genome is less clear 

(Kotlar & Lavner, 2006). Isochoric structures (Bernardi, 1985) were believed to be the 

most influential factor shaping codon usage pattern and exhibited strong relationship with 

gene expression level (Vinogradov, 2003). Thus, studies on human require the balance 

between background nucleotide composition and expression level in order to reveal the 

association between gene expression level and codon preference in the human genome. 

Urrutia et al. (2001, 2003) reported a weak association between gene expression level and 

codon bias. Furthermore, in genes with high expression, Comeron (2004) showed that for 

the majority of amino acids with degeneracy of more than one, the codons showed 

increase in frequency for the most abundant tRNA in highly expressed genes compared 

to lowly expressed genes. Tissue specificity related to codon usage was also studied, for 

example Plotkin et al. (2004) proved that codon usage in genes found at specific tissue 

varied with other tissue specific genes, suggesting that tRNA could act differently in 

different type of tissues. This finding was later confirmed by Se’mon et al. (2005) in 

which recognized the variation in codon usage among tissues. 

Thus, in this study, the patterns of synonymous codon usage bias on selected 

human immune cells comprise of monocytes, B and T lymphocytes will be investigated 

as well as comparing them to human protein-coding genes. Since the datasets were 

generated from RNA-Seq experiments, this study may also show the importance and 

benefit of using RNA-Seq data to understand more about codon usage bias on human.   
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 Hypothesis 

Codon usage bias has been identified to occur in every organism or species and have 

shown to also affect human’s biological behavior in protein production. Due to tissue or 

cell specificity, each human tissue has different codon distribution that may contribute to 

various degree of codon usage bias. Hence, it is hypothesized that the extent of the codon 

usage bias in monocytes will be significantly different compared to the other human cells 

such as B and T lymphocytes.  

 Research Questions 

There are two research questions based on the literature review conducted: 

1) Is the codon usage pattern in protein-coding genes expressed in human monocytes 

differing to protein-coding genes expressed in B and T lymphocytes?  

2) What are the factors that may contribute to codon usage bias in protein coding genes 

in human monocytes, B and T lymphocytes? 

 Objectives 

To answer the research questions, two objectives were set up: 

1) To analyse and compare the codon usage pattern of protein-coding genes in 

monocytes, B and T lymphocytes. 

2) To investigate the involvement of mutational bias and translational selection of 

protein-coding genes in monocytes, B and T lymphocytes. 
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CHAPTER 2: LITERATURE REVIEW 
 

 Codon Degeneracy 

The central dogma of molecular biology involved several main processes of 

protein expression from mRNA transcription to protein translation. During protein 

translation, information encoded in genetic materials of DNA are governed and regulated 

by genetic code. The main component of translation is the tRNA that enables a direct and 

precise communication between a triplet of nucleotides or known as codon and the 

corresponding amino acid. Ribosomes are the engines of translation that links the tRNA 

and mRNA (Figure 2.1). The role of genetic code is to determine which amino acid to be 

synthesised based on transcribed codons. One complicated aspect of the genetic code is 

the degeneracy of codon in which only 20 standard amino acids can be translated yet there 

are 64 different codons (61 codons encoding for amino acids and 3 stop codons). In the 

standard genetic code, there are three amino acids encoded by six codons, one amino acid 

encoded by three codons, five amino acids encoded by four codons, nine amino acids 

encoded by two codons and two amino acids encoded by a single codon. This has allowed 

more than one codon to code for a same amino acid and these different codons that code 

the same amino acid are called synonymous codons (Crick et al., 1961).  

The fundamental molecules of translation are the set of transfer ribonucleotide 

acids, tRNAs where each accommodate a unique link between a triplet of nucleotides and 

the corresponding amino acid in the ribosome during translation process. tRNA subset 

recognised each of the codon with the exception of a few codons that have been 

reassigned in some lineages (Osawa & Jukes 1989; Osawa et al., 1990). Moreover, the 

genetic code is remarkably conserved, although it is still in a state of evolution (Osawa et 

al., 1992).  

Table 2.1 shows the standard genetic code for protein synthesis in organisms 

(Osawa et al., 1992). The DNA codon table consist of 3 amino acids (Arg, Leu and Ser) 
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encoded by 6 codons, 5 amino acids (Thr, Pro, Ala, Gly and Val) by 4 codons, 1 amino 

acid (Ile) by 3 codons, 9 amino acids (Lys, Asn, Gln, His, Glu, Asp, Tyr, Cys and Phe) 

by 2 codons and 2 amino acids (Met and Trp) encoded by 1 codon. For amino acid 

encoded by more than 1 codon, the first two nucleotide positions are considered critical 

whereby any mutation or change in base composition at these positions will cause change 

in amino acid translated. The third codon position is however more flexible or tolerance 

towards any mutation and commonly known as wobble position (Osawa et al., 1992). If 

two out of four possible nucleotides at the third codon position can specify an amino acid, 

this codon is known as a 2-fold degenerate codon. These 2-fold degenerate codons are 

Lys, Asn, Gln, His, Glu, Asp, Tyr, Cys and Phe in which the equivalent third codon 

position should always be either two purines (A and G) or two pyrimidines (C and T). 

The 3 codons that specify Ile are 3-fold degenerate codon. The 5 amino acids (Thr, Pro, 

Ala, Gly and Val) encoded by 4 codons are known as 4-fold degenerate codons with any 

nucleotide at its third position of the codon will specify the same amino acid. Lastly, the 

6 codons are known as 6-fold degenerate codons (Arg, Leu and Ser) (Osawa et al., 1992). 
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Figure 2.1: Translation in the Ribosome and tRNA Structure. Graphics of the ribosome 
(green) during translation of a mRNA (blue) with a wobbling codon-anticodon base pair 
encoding a leucine amino acid. A site, aminoacyl-tRNA site; E site, exit site; P site, 
peptidyl-tRNA site. Adapted from Quax et al. (2015). 
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Table 2.1: The standard DNA codon table. The table consist of 18 synonymous codons, 
2 non-synonymous codons and 3 stop codons. Adapted from Osawa et al. (1992). 

1st base 2nd base 3rd base 
T C A G 

T TTT 

TTC 

Phe TCT 

TCC 

TCA 

TCG 

Ser TAT 

TAC 

Tyr TGT 

TGC 

Cys T 

C 
TTA 

TTG 

CTT 

CTC 

CTA 

CTG 

 TAA 

TAG 

Stop TGA Stop A 

TGG Trp G 

C Leu CCT 

CCC 

CCA 

CCG 

Pro CAT 

CAC 

His CGT 

CGC 

CGA 

CGG 

Arg T 

C 

CAA 

CAG 

Gln A 

G 
A ATT 

ATC 

ATA 

Ile ACT 

ACC 

ACA 

ACG 

Thr AAT 

AAC 

Asn AGT 

AGC 

Ser T 

C 

AAA 

AAG 

Lys AGA 

AGG 

Arg A 

ATG Met G 

G GTT 

GTC 

GTA 

GTG 

Val GCT 

GCC 

GCA 

GCG 

Ala GAT 

GAC 

Asp GGT 

GGC 

GGA 

GGG 

Gly T 

C 

GAA 

GAG 

Glu A 

G 
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 Codon Usage Bias 

Due to codon degeneracy, it was believed that all synonymous codons for any 

amino acid would distribute in approximately equal frequencies in the genome. However, 

further studies done by Grantham and colleagues (Grantham et al., 1980) suggested that 

the earlier prediction was incorrect whereby the codon distribution and usage were non-

random and species specific (Chen et al., 2004). This occurrence is known as codon usage 

bias in which each codon is not used equally and some codons were used more frequently 

than the others (Behura & Severson, 2013). They found that codon choice of genes of the 

similar genomes have a specific system for selecting between codons (Grantham et al., 

1980). Grantham et al. utilize mRNAs from a variety of species comprise of prokaryotes 

and eukaryotes and it was observed that degeneracy was detected at the third codon 

position (Grantham et al., 1980). Correspondence analysis from the same study on the 

mRNA displayed a clustering pattern arranged based on type of genome, suggesting that 

variation in the mRNA was genome specific (Grantham et al., 1980). The purpose of 

conducting genome-wide codon usage bias experiments is to investigate the specific 

codon preference pattern of each organism as well as their impact and consequences. This 

is also important to determine the factors that can construct their behavior and action in 

accordance to genome biology. In applied science aspects, analysis of codon usage bias 

can improve the knowledge of heterologous gene expression. This technique is a dynamic 

methodology in biotechnological area that produce recombinant products such as insulin, 

antibiotics, and vaccines.  
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 Factors of Codon Usage Preference 

Studies had been conducted in a wide variety of organisms in both prokaryotes 

and eukaryotes to identify the synonymous codon usage pattern (Gu et al., 2004; Lavner 

et al., 2005; Ahn et al., 2009; Liu et al., 2012), and the factors influencing the codon usage 

variation have been recognised since. Genomic factors such as GC content, gene 

expression level, gene length, recombination rate and genetic code modulation are related 

to codon usage bias in different organisms (Urrutia et al., 2003; Roymondal et al., 2009; 

Palidwor et al., 2010). From the factors identified, translational selection and mutational 

bias were determined to be the major factors in shaping codon usage pattern (Duret et al., 

1999; Xu et al., 2011; Nair et al., 2013). 

2.3.1 Mutational Bias 

Codon usage bias happens because of non-randomness in the mutational patterns. 

Mutation occurs in some codons and thus would have lowered the equilibrium 

frequencies. The extent of mutational bias was previously believed to be varied between 

species in which may be the reason behind the differences in codon usage pattern across 

organisms (Behura & Severson, 2013). Mutational bias took place due to unequal 

mutational rates of the nucleotide bases as a result of numerous variation mechanisms 

(Lobry, 1996; Rocha et al., 2006). Mutational bias have been investigated in several 

studies and have been found to be the most important factor in shaping codon bias 

variation between different organisms (Marais et al., 2001; Palidwor et al., 2010). In the 

absence of translational selection, mutational bias can be displayed as the variation of 

base compositions (Sueoka, 1962) specifically the variation in GC content (Muto & 

Osawa, 1987) and the greatest variation in base composition between organisms can be 

found at the third codon position of GC content (Sharp et al., 2005). Vertebrates such as 

mammals are constrained strongly by nucleotide composition as the result of mutational 

bias (Bernardi, 1995). In agreement with other organisms, it was found that the major 
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compositional properties responsible for shaping codon usage bias in vertebrates was GC 

content at the third codon position (Urrutia et al., 2001; Rao et al., 2011).  

Several multivariate analyses among organisms have identified the correlation 

between mutational bias towards codon usage bias (Kanaya et al., 2001; Knight et al., 

2001; Chen et al., 2004; Lobry & Necsulea, 2006; Lynn et al., 2002) and have shown GC 

content to be the most significant parameters in shaping codon usage pattern. GC content 

is believed to be heavily related to genome-wide processes rather than by selective forces 

acting specifically on coding regions. Analysis on GC content can be a good measurement 

for detecting the degree of codon usage bias even in low number of genes, for example 

as few as 10 genes (Zavala et al., 2005). It is also found that 90% of GC content variations 

are observed between genomes rather than within genomes and thus make intergenic GC 

content suitable for codon usage bias prediction (Chen et al., 2004). 

2.3.2 Translational Selection 

Translational selection is believed to optimize the interaction of codons and 

tRNA abundances towards correspond anticodons (Figure 2.2) (Ikemura, 1985). The 

codon usage optimization was thought to be due to three main factors which are speed of 

translation elongation, accuracy of translation and cost of proofreading. All of these three 

factors can be minimized by the action of translational selection on the genome. By 

selection, gene with high levels of expression have a strong bias towards a specific set of 

codons while gene with low levels of expression showed equal or nearly equal usage of 

synonymous codon (Gouy & Gautier, 1982). It has been suggested that the optimal 

codons are mostly complementary to the most abundant tRNA species in the cell and 

perfect Crick-Watson base pairing can be established to enhance translational accuracy 

(Gouy & Gautier, 1982; Ikemura, 1981). The use of optimal codon has lowered the 

translational misincorporation rates by strongly restricted codon usage bias at the codons 
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site in which mistakes during translation could result in the synthesis of a costly 

dysfunctional peptide (Akashi, 1994).  

 

 

 

Figure 2.2: Frequency bias will result in effective protein production when the frequency 
of used codons matches the cellular tRNA population. Adapted from Quax et al. (2015). 
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Translational selection on slow growing organisms such as vertebrates is 

inconclusive and requires more comprehensive study to uncover the extent of 

translational selection on these organisms (Duret, 2002). Recent evidence indicated that 

only a weak translational selection acted upon the vertebrates in which the codon usage 

patterns were influenced strongly by compositional constraint (Qiu et al., 2011; Musto et 

al., 2001; Romero et al., 2003; Yang et al., 2008). In human, it is shown that there is a 

correlation between gene expression levels towards translational selection (Urrutia et al., 

2003; Yang et al., 2008). However, there is a lack of study on the correlation of codon 

bias to tRNA gene copy number in vertebrates especially human whereby the availability 

of tRNA count can clearly show the role of translational selection on codon usage pattern.  

Variation in GC content has been identified previously as the dominant factor in 

shaping codon usage bias but some observation suggested that base composition is also 

subjected to translational selection. Other isolated factors such as thermostability can be 

also related to translational selection. GC nucleotides are preferred in several organisms 

living in hot climate due to thermostability in the GC base pairing with evidence of 

positive correlations between GC content towards optimal growth temperature (Argos et 

al., 1979; Musto et al., 2004). By utilising multivariate analyses, association between GC 

content and growth temperature were further justified (Lobry & Chessel, 2003; Lobry & 

Necsulea, 2006; Lynn et al., 2002). This observation occurs due to the adaptation of 

nucleotide composition towards increasing temperature but this interpretation is not 

entirely accurate in which the correlation was suggested to be the influence of atypical 

codon usage of amino acids arginine in the genome (Lobry & Necsulea, 2006). However, 

another similar study on 764 different species was unable to identify any correlation 

between GC content to optimal growth temperature (Galtier & Lobry, 1997).  

In Escherichia coli, highly expressed genes showed high codon occurrence for 

the 4-fold degenerate amino acids glycine and proline (Sharp & Li, 1987). Coincidently, 
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both amino acids showed distinct variation at the third codon position, thus this condition 

could not be the product of a simple mutational bias. Moreover, another study on 600 

gene sequences from several species showed that codon usage pattern was varied depend 

on the gene expression levels (Gouy & Gautier, 1982). Since that discovery, many more 

intragenomic correlations of codon usage bias to gene expression level have been 

observed for a variety of prokaryotic species including Escherichia coli (Ikemura, 1985), 

Streptococcus pneumoniae (Martin-Galiano et al., 2004) and Lactobacillus lactis 

(Dressaire et al., 2009). The patterns observed in highly expressed genes are specific and 

unique to each species and sometimes may even oppose to the direction of existing 

mutation pressure. For example in AT-rich Clostridium perfringens, T-ended codons at 

the 2-fold degenerate sites are the highest across genes, however C-ended codons are the 

one that dominate in the highly expressed genes (Musto et al., 2003). Thus, these complex 

patterns have revealed the involvement of other factors rather than mutational bias alone 

in shaping codon usage bias. 

Moreover, overrepresented codons in highly expressed genes are complementary 

to the tRNA species and intracellular abundances in Escherichia coli (Ikemura, 1981) and 

Bacillus subtilis (Kanaya et al., 1999). In Escherichia coli, of the four tRNAs detected 

for leucine, tRNA containing CAG anticodon have the highest abundances and perfectly 

complements to the CUG codon in which are the most frequently used among highly 

expressed genes (Ikemura, 1985). However in some cases, the relationship between the 

most abundant tRNAs and complementary codons can vary between species. For example 

in Bacillus subtilis, tRNA with the UAA anticodon was found to be the most abundant 

for the amino acid leucine but UAA was not the codon preferred by the highly expressed 

genes (Kanaya et al., 1999).  
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 Codon Usage in Human 

In the human genome, the roles of isochoric structure on codon usage bias is 

inconclusive and have shown to have influence on codon composition as well as 

expression levels (Bernardi, 1995; Vinogradov, 2003). Weak correlation between gene 

expression levels and codon usage bias was discovered but there was no correlation 

towards isoacceptor tRNA abundance (Urrutia et al., 2003; Urrutia et al., 2001). 

Moreover, previous study has found indication that the codon preference in mammals was 

related to mRNA secondary structure stability (Chamary et al., 2005). In highly expressed 

genes, codons with the most abundant isoacceptor tRNA gene copy numbers showed an 

increase in frequency compared to the lowly expressed genes (Comeron, 2004). 

Furthermore, codon usage bias was examined in tissue specific genes and and variation 

have been observed between genes from different tissues. This observation may be due 

to the influence of differential tRNA abundances (Plotkin et al., 2004). The variation of 

the codon usage was confirmed by Se’mon et al. (2005) by using internal correspondence 

analysis and have shown that the variation of synonymous codon usage previously 

discovered between tissues are non-representative and only represents 2.3% of the total 

variation, and that most of this is explained by variability of GC-content that affects both 

coding and intergenic regions (Se’mon et al., 2005).  

Several evidences of splicing enhancers involvement in translation selection 

have also been found which eventually lead to codon usage bias (Willie et al., 2004; 

Chamary et al., 2005; Fairbrother et al., 2004; Parmley et al., 2005). These studies showed 

that codon preferred are frequently found in exonic splicing enhancers (Fairbrother et al., 

2004) and further support the enhancer model (Willie et al., 2004; Chamary et al., 2005). 

Furthermore, a study showed that codon usage bias is at the highest levels in both highly 

and lowly expressed genes and the frequency of optimal codons (FOP) increase with gene 

expression levels (Lavner et al.,2005). From these findings, they suggested two 
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alternatives on how translational selection may influence codon usage bias. Firstly, 

translational selection may regulate the expression of lowly expressed genes by choosing 

codons with less abundant tRNAs and secondly, translational selection may as well 

improve translation accuracy by using optimal codons in genes with high concentration 

of amino acids. 

 Human Immune System and the Immune Related Genes 

The immune system is a complex system essential for protection against 

infections from pathogenic and non-pathogenic microbes. Human immune system 

consists of three lines of defense. The first line of defense act as a barrier to keep out 

foreign substances through skin and mucus membranes. The second line of defense 

consists of general or alternative ways to defend against pathogens that have broken 

through the first line of defense via inflammatory response or fever (Janeway, 2001; 

Mogensen et al., 2009). Both first and second line of defense are also known as innate 

immunity. The innate immune response reacts quickly to any foreign agent via 

recognition mediated by host molecules through (PPRs) Pattern Recognition Receptors. 

PRRs are expressed on the surface of the cells and in intracellular compartments or 

secreted into the blood stream and tissue fluids (Abbas et al., 2012; Tizard, 2013) and 

recognized PAMPs (Pathogen-associated Molecular Patterns) in the host. A group of 

PRRs called TLRs (Toll-like Receptors) have an important role in recognize wide range 

of PAMPs, leading to activation of the immune responses (Kuby et al., 2007). TLRs binds 

to PAMPs and send signals to the intracellular environment via adapter proteins such as 

TRIF (Toll like Receptor-domain-containing adapter-inducing interferon-β) (Yamamoto, 

2003) which activate both NFκB (Nuclear Factor Kappa B Subunit) signaling and MAP 

kinase pathway as well as pro-inflammatory cytokines secretion (Janeway & Medzhitov, 

2002; Piras & Selvarajoo, 2014; Tizard, 2013) (Figure 2.1). For detection of intracellular 

PAMPs during virus infection, cytosolic PPRs such as NLRs (NOD-like Receptors; 
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Nucleotide-Binding Oligomerization Domain-like Receptors) and RLRs (RIG-I-like 

Receptors; Retinoic Acid-Inducible Gene-I-like Receptors) would be activated (Kawai & 

Akira, 2009). The activation of cytosolic PPRs induces the production of IFNs 

(Interferons) and proinflammatory cytokines (Gack, 2014; Weber et al., 2013) (Figure 

2.1). 

 

 

Figure 2.3: Three classes of pattern recognition receptors: (TLRs, RLRs, and NLRs) with 
their roles in inducing host antiviral responses. Adapted from Quax et al. (2015). 
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The third line of defense or adaptive immunity activated through specific cells or 

molecules as listed in Table 2.2 in order to eliminate the disease-causing pathogens. This 

cell such as B lymphocytes acts by producing antibodies in the extracellular fluid, while 

T lymphocytes recognize and kill cells that have become infected. The immune system is 

closely associated to the lymphatic system, with B and T lymphocytes being found 

primarily within the lymph nodes (Chaplin, 2010; Danilova, 2012).  

Monocytes are the precursor cells of differentiated macrophages. Monocytes 

make up only 1-6% of the white blood cells. Once out of the blood stream, monocytes 

enlarged and differentiated into macrophages. Some macrophages protect the tissues by 

moving along via amoeboid motion while others remain settled in one place. 

Macrophages are the primary scavenger cells in removing larger particles such as dead 

erythrocytes and neutrophils. Phagocytic macrophages play an important role in the 

development of adaptive immunity in which they engulf molecular or cellular antigens 

while the fragments of processed antigen are inserted into its own membrane as part of 

surface protein complexes (Ginhoux et al., 2014). Lymphocytes are the main cells that 

regulate and control the adaptive immune response of the body even though only 5% of 

lymphocytes are found in circulation or 20-30% of the white blood cells. Most 

lymphocytes are found in lymphoid tissues, where they are more likely to encounter 

foreign invaders. By one estimate, the adult body contains a trillion lymphocytes at one 

time (Alberts et al., 2002). 

Physiological studies on immune cells have been conducted extensively and at 

the molecular level, reduction in protein production such as hormones can promote the 

development of immune system disorder such as Systemic Lupus Erythematosus (Fimmel 

et al., 2005). Furthermore, codon usage bias has displayed their influence on Toll-like 

receptor genes of monocytes in which change in codon preference can alter the normal 

expression level (Zhong et al., 2005; Newman et al., 2016). Unfortunately, until now there 
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is no report on codon usage patterns in human immune cells. With the knowledge of 

codon preference of the cells, further studies can be conducted on altering codon 

distribution and protein production for normal human immunological function. 

Identification of codon preference in any particular cell can later be used for techniques 

such as codon-optimization of mRNAs in pharmaceuticals and nucleic acid therapies 

(Mauro et al., 2014). 

 

Table 2.2: Components of human immune system. Adapted from Benito-Martin et al. 
(2015). 

Immunity Cells Molecules  

Innate Monocytes 
Macrophages 
Dendritic cells  
Natural killer (NK) cells 
Neutrophils 
Mast cells 
Basophils 
Eosinophils  

Cytokines 
Chemokines 
Complement 

Adaptive T cells: 
Helper T (CD4+) 
Killer T (CD8+) 
Memory T 
Suppressor T  
B cells 

Cytokines 
Antibodies 
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 Codon Optimization 

The amino acids can be encoded by more than one codon due to the degenerate 

nature of the genetic code as discussed before. Therefore, change in codon preference 

may alter drastically the amount of protein expressed (Welch, 2009; Kudla, 2009). 

Codon-optimized mRNA sequences can be performed via various methods based on 

codon usage profile. The idea of altering codon distribution has accelerated the use of 

codon-optimized mRNAs for protein production in pharmaceuticals therapies. However, 

substantial evidence shows that changing synonymous codon preferences in natural 

mRNAs could have unanticipated results. This changes ranges from change in protein 

stability and conformation or change in protein function and post-translational 

modifications (Ward, 2011; Shabalina, 2013). The worst-case scenario is that 

synonymous mutations may lead to the development of various diseases (Shabalina, 

2013; Hunt, 2009; Chen, 2010). Besides that, several risks have been identified as a result 

of codon-optimization includes production of anti-drug antibodies which can cause 

allergic reactions and also may lowered the drug efficacy (Katsnelson, 2011; Sauna, 2011; 

Kimchi, 2013; USFDA, 2003). 

 Use of RNA-Seq Technology for Codon Usage Bias Study 

Advancement in next generation sequencing technology have shifted sequencing 

techniques from microarrays to whole-transcriptome shotgun sequencing or RNA 

sequencing (RNA-Seq) for RNA quantification (Nagalakshmi et al., 2008; Mortazavi et 

al., 2008; Marioni et al., 2008). In contrast to other RNA quantification methods, RNA-

Seq does not rely on a preselected set of transcripts to assay and have proven to yield high 

quality results. This sequencing method is also highly replicable with very low noise and 

is sensitive to transcripts present at low concentration. Even though with the 

understanding of variation of codon usage bias among different species, the study only 

focuses on lower, less complex organisms such as Escherichia coli and Saccharomyces 
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cerevisiae. RNA-Seq has made it possible to gather a large amount of sequence data 

which can provide a new direction of codon usage study by using non-model organisms 

(Plotkin et al., 2011; Novoa et al., 2012; Shabalina, 2012; Hershberg et al., 2008). 

Through RNA sequencing, faster and robust identification of mRNA and tRNA 

abundance, proteomics and ribosome density profiling could finally be realised (Quax et 

al., 2015). Therefore, the opportunity to discover and better understand the human codon 

usage bias can be accomplished using RNA-Seq data. Codon usage bias study in human 

is important in order to learn the adaptation and evolutionary process occur in human 

genome.  

 Codon Usage Indices 

Ever since the establishment of correlation between codon usage and tRNA 

abundance (Ikemura, 1981), comprehensive studies on codon–anticodon adaptation have 

been conducted (Bulmer, 1987; Bulmer, 1991; Xia, 1998; Xia, 2008; Higgs & Ran, 2008; 

Jia & Higgs, 2008; Palidwor, 2010). This has led to the development of several analytical 

tests using alternative theoretical predictions (Xia, 1996; Xia, 2005; Carullo & Xia, 2008; 

van Weringh, 2011), as well as the establishment of widely used codon usage indices 

(Sharp & Li, 1987; Wright, 1990; Xia, 2007). The most accepted index is Codon 

Adaptation Index, CAI (Sharp & Li, 1987; Xia, 2007) which has shown to give a better 

insight of codon usage bias. By using CAI, new findings such as positive correlation 

between codon usage bias towards splicing strength of yeast in intronic region and 

translation elongation efficiency have been identified (Ma & Xia 2011). 

Among the codon usage indices proposed, they are often identified as codon 

specific or gene specific. A representative of the codon specific type of codon usage index 

is the Relative Synonymous Codon Usage (Sharp, 1986), and representatives of the gene 

specific type are the Codon Adaptation Index, CAI (Sharp & Li, 1987; Xia, 2007), 

Effective Number of Codons, ENC (Wright, 1990), the Frequency of Optimal Codons, 
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FOP (Ikemura, 1981) and the Codon Bias Index, CBI (Bennetzen & Hall, 1982). CAI 

have been suggested as the most effective and reliable measurement in predicting gene 

expression levels based on several comprehensive studies (Comeron & Aguade, 1998; 

Duret & Mouchiroud, 1999; Coghlan & Wolfe, 2000), but ENC has an advantage over 

CAI and other codon usage indices in which ENC only require codon frequencies data of 

the genes studied. Meanwhile, utilizing other index require external information which is 

often unavailable. For example, CAI requires a reference set of highly expressed genes 

for particular species, FOP and CBI needs information on relative tRNA abundance and 

gene expression levels. Extra information on tRNA have not significantly helpful in 

identifying codon usage bias in genes according to several studies in which have 

suggested that there is a low or no influence of tRNA abundance on the level of gene 

expressed (Rocha, 2004). Hence, ENC has been frequently used in biological research 

particularly in codon usage study. However, several problems arise when using ENC 

especially due to computer specifications whereby it can slow down performance and 

limiting its usage.  

 Online Bioinformatics Tools for Analysis 

Codon usage analysis requires tools that have the ability to examined codon 

usage factors such as expression level. Highly expressed genes have been identified to 

have strong codon usage bias for example in Escherichia coli, Saccharomyces cerevisiae 

and Bacillus subtilis (Sharp & Cowe, 1991; Sharp & Li, 1987; Shields & Sharp, 1987). 

However, the opposite observations suggesting lowly expressed genes tend to have low 

codon usage bias are still unclear and inconclusive. (Fitch & Strausbaugh, 1993; Kliman 

& Hey, 1993; Kliman & Hey, 1994). 

In many cases, the limiting factor preventing a comprehensive analysis of codon 

usage is often lack of sequence information. A fundamental part of any analysis 

conducted is to ensure that the sample size is large enough to represent the target 
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population. The sample size also needs to fulfill the magnitude of the selective coefficient 

and the effective population size. The tedious part of selecting the sample size is that the 

factors involve is often unpredictable and unknown and must be empirically done.  

Online tools to measure codon usage bias are often in early stage of development 

and usually have various utilities and limitations (Peden, 2000). Therefore, selecting 

established software is important in order to yield a good result. Online tools such as 

CodonW and EMBOSS cusp have been used in many codon usage bias study and several 

algorithms and formulas have been created to describe the codon bias indices. There is 

only a few software available to assist the analysis of codon usage bias. Some simple 

program can tabulate codon usage for particular species directly from the available public 

nucleic acid databases such as GenBank (Nakamura, 1996). Moreover, some programs 

could also measure specific codon usage indices such ENC (Wright, 1990), CBI 

(Bennetzen & Hall, 1982) and several other general codon usage indices (Goldman et al., 

1995; Krishnaswamy & Shanmugasundaram, 1995; Rodriguezbelmonte et al., 1996). 

Each program has their own unique way to calculate codon usage using multiple input 

formats and allows user to choose any of the index required. 

2.9.1 EMBOSS cusp 

An example of basic program available online is EMBOSS cusp. This program 

was designed ultimately to create codon usage table based on input nucleotide sequences. 

The function “cusp” creates and tabulate a codon usage table based on one or more 

nucleotide coding sequences and writes the table to the designated file. Information 

generated on the codon usage table includes sequence of each codon and respective amino 

acids. From there, the proportion of usage among synonymous codons can be quantified 

as well as the calculation of expected number of codons per 1000 bases of the input 

sequences. 
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2.9.2 CodonW 

Another example of free online tool software for measuring codon usage indices 

is the CodonW which have been used widely in codon usage studies. The purpose of using 

this software is to simplify the analysis of codon usage by incorporate codon usage indices 

with multivariate statistical analysis in a single program. This software designed to be 

simple to use and portable in terms of both operating systems and machine architecture 

(Peden, 2000). Since the advancement of sequencing technology and the rapid increase 

of available sequence databases, CodonW was also created to accommodate unlimited 

number of input sequences or sequence length that can be included in the statistical 

analysis. Universal genetic codes as well as other alternative genetic codes are also 

integrated in this program allowing much more studies on variety of species can be 

established. CodonW generates most of the output in a tabulate form using a specific 

command line. One particular disadvantage of this program is that there is no built-in 

graphics to view results in the form of plots and graphics (Peden, 2000). Therefore, other 

programs designed to work specifically with numerical data such as Excel, R Studio and 

Minitab are required.  
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CHAPTER 3: MATERIALS AND METHODOLOGY 

 

 

Figure 3.1: Schematic representation of workflow from gathering datasets to analyses 
involved in the study. 
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 RNA-Seq datasets 

Protein-coding genes sequences analysed in this study are extracted from 

transcriptomic datasets of monocytes, B and T lymphocytes cells. All of the transcriptome 

data have been sequenced using next generation sequencing technologies and the datasets 

are obtained from public sequence database (www.ncbi.nlm.nih.gov/). Monocytes, B 

lymphocytes and T lymphocytes profiling data are downloaded from Gene Expression 

Omnibus (www.ncbi.nlm.nih.gov/geo/) under accession number GSE80095, GSE29158 

and GSE85527 respectively. Human protein-coding sequences data from GENCODE 

Release 22 (www.gencodegenes.org) are also examined and used as a reference. The 

source of the data used, respective accession number are listed in Table 3.1. From the 

RNA-Seq data obtained, genome alignment, transcript assembly and gene expression 

profiling are performed to identify the protein-coding genes present in monocytes, B and 

T lymphocytes as well as human protein-coding genes. The genes selected in this research 

are only selected from high-throughput RNA-Seq data. Only protein-coding genes are 

selected from the list of genes identified with the exclusion of mitochondrial genes, 

pseudogenes and novel genes.  

Table 3.1: Source of RNA-Seq data 

Data Source Accession Number/ 
Version 

Monocytes www.ncbi.nlm.nih.gov/geo/ GSE80095 

B lymphocytes www.ncbi.nlm.nih.gov/geo/ GSE29158 

T lymphocytes www.ncbi.nlm.nih.gov/geo/ GSE85527 

Human Protein-
Coding Genes 

https://www.gencodegenes.org  GENCODE Release 22 
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 Transcriptome profiling of the datasets 

3.2.1 Genome alignment and transcript assembly 

The quality of all sequences reads from monocytes, B and T lymphocytes and 

human reference are reviewed using FastQC 

(https://www.bioinformatics.babraham.ac.uk/) (Andrews, 2010). The adaptors and low-

quality bases are trimmed from the sequences using Trimmomatic 

(http://www.usadellab.org/cms/) (Bolger et al., 2014). For each data, the standard score 

at base across reads is set at Q > 20. Trimmed raw reads are then aligned to the human 

reference genome sequence (GRCh38.79) using HISAT version 0.1.4 

(https://ccb.jhu.edu/software/hisat/) (Kim et al., 2015) with GENCODE version 22 is 

used as a guided reference annotation. The aligned reads for each data are assembled into 

transcripts by StringTie version 1.3.3 (https://ccb.jhu.edu/software/stringtie) (Pertea et 

al., 2015) using a GENCODE reference annotation GTF file version 22 and separate GTF 

files are generated for each of the samples. The transcripts abundance is estimated as 

Fragments Per Kilobase of exon per Million fragments mapped (FPKM) (Trapnell et al., 

2010). 

3.2.2 Gene expression profiling 

For detecting gene expression pattern in monocytes, B and T lymphocytes and 

human genome, transcript assemblies (GTF files) are merged together to form a single 

set of non-redundant transcripts using Cuffmerge (a part of cufflinks, version 2.2.1) 

(http://cole-trapnell-lab.github.io/cufflinks/) (Trapnell et al., 2010).  Cuffquant (a part of 

cufflinks, version 2.2.1) (Trapnell et al., 2010) is used to quantify the expression levels 

of transcripts and to create individual binary files (CXB format). The Cuffnorm (a part of 

cufflinks, version 2.2.1) (Trapnell et al., 2010) is used to normalize FPKM between the 

samples. The FPKM > 0.1 threshold is set to determine expressed transcripts. The merged 

assembly is then compared with a GENCODE reference annotation GTF file version 22, 
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which contains protein-coding genes, non-coding genes, pseudogenes and alternative 

transcribed variants. From the comparative analysis results, intergenic transcripts are 

considered as putatively novel transcripts. These transcripts are filtered against the non-

redundant database from NCBI using Basic Local Alignment Search Tool for Nucleotide 

(BLASTN version 2.4.0) (https://www.ncbi.nlm.nih.gov/BLAST/) with threshold of e-

value < 1e-10.  

 Nucleotide composition properties analysis 

The following nucleotide composition properties are calculated for the protein-

coding genes: i) Overall nucleotide compositions (A%, T%, G% and C%), ii) Nucleotide 

composition at the third codon position (A3%, T3%, C3%, and G3%), iii) Frequencies of 

nucleotide combination (GC%, AT%, AT3% and GC3%) for each set of genes (Singer, 

2000). These calculations are determined using an in-house Perl scripts. GC% content is 

the percentage of G+C frequency in a coding gene while GC3% contents are the 

percentage frequency of G+C at the third positions of codons. A3%, T3%, G3% and C3% 

contents are the percentage frequencies of A, T, G and C at the synonymous third position 

of codons, respectively (Singer, 2000). 

 Measurement Indices of Codon Usage Bias 

Codon usage indices are a group of index that is used to measure the degree of 

codon usage bias in organism (Peden, 2000). RSCU value for all datasets are determined 

using EMBOSS cusp software version 6.6.0.0. Meanwhile, CAI and ENC values are 

determined and analysed using CodonW version 1.4.4 software 

(http://codonw.sourceforge.net/). The CodonW is designed to work with genetic code and 

it is useful in determining the codon usage pattern, the number of codon present in the 

coding sequences and calculating the amount of individual nucleotide (Peden, 2000). 
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3.4.1 Relative Synonymous Codon Usage (RSCU) analysis 

The RSCU values for all of the coding sequences are calculated to determine the 

characteristics of synonymous codon usage without the influence of amino acid 

composition and genome size by the different gene samples following a previously 

established method (Sharp, 1986). RSCU values are the ratio between the observed usage 

frequency of one codon in a gene sample and the expected usage frequency in the 

synonymous codon family, given that all codons for the particular amino acid are used 

equally. The synonymous codons with RSCU values > 1.0 have positive codon usage bias 

and are defined as abundant codons, whereas those with RSCU values < 1.0 have negative 

codon usage bias and are defined as less abundant codons. When the RSCU value equal 

to 1.0, it means there is no codon usage bias for that amino acid and the codons are chosen 

equally or randomly (Sharp et al., 1986). Moreover, the synonymous codons with RSCU 

values > 1.6 and < 0.6 are treated as over-represented and under-represented codons, 

respectively (Wong et al., 2010). RSCU value is calculated as follows: 

𝑅𝑆𝐶𝑈 =  
𝑔𝑎𝑏

∑ 𝑔𝑎𝑏
𝑛𝑎
𝑏

 𝑛𝑎 

 

where, gab is the observed number of the ath codon for the bth amino acid which has na 

kinds of synonymous codons. 
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3.4.2 Codon Adaptation Index (CAI) analysis 

Codon Adaptation Index (CAI) analysis is a quantitative method that predicts the 

expression level of a gene and estimate the degree of codon biasness based on coding 

sequences (Sharp, 1987). CAI analysis is the most widely used codon usage index due to 

its reliability in measuring expression level of genes. CAI values range from 0 represent 

low expression level to 1 represent high expression level. A higher CAI value suggests 

and reflects a stronger codon usage bias in a gene and suggested to be preferred over the 

genes with lower CAI value. The most frequent codons have the highest relative 

adaptiveness and sequences with higher CAI values are suggested to be preferred over 

those with lower CAI (Sharp, 1987). The synonymous codon usage patterns of Homo 

sapiens are used as references. Non-synonymous codons and termination codons are 

excluded from the calculation. The reference datasets for Homo sapiens was obtained 

from the Codon Usage Database (Nakamura, 2000). The CAI is estimated using the 

equation given by Sharp and Li (1986) as follows: 

 

𝐶𝐴𝐼 = exp
1

𝐿
∑ ln 𝜔𝑐(𝑘)

𝐿

𝑘=1

 

 

where, L is the number of codons in the gene and ωc(k) is the ω (relative adaptiveness) 

value for the kth codon in the gene. 
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3.4.3 Effective Number of Codon (ENC) analysis 

Effective Number of Codon (ENC) analysis is used to quantify the absolute 

codon usage bias by evaluating the degree of codon usage bias exhibited by the coding 

sequences, regardless of gene length and the number of amino acids (Wright, 1990). ENC 

values range from 20, indicating extreme codon usage bias using only one of the possible 

synonymous codons for the corresponding amino acid, to 61, indicating no bias using all 

possible synonymous codons equally for the corresponding amino acid. The larger the 

extents of codon usage bias in a gene, the smaller the ENC value. It is also generally 

accepted that genes have a significant codon usage bias when the ENC value is less than 

or equal to 35 (Wright, 1990; Comeron, 1998). The ENC values are computed using the 

formula given by Wright (1990) as follows: 

 

𝐸𝑁𝐶 =
9

𝐹2
 +  

1

𝐹3
 +  

5

𝐹4
 +

3

𝐹6
 

 

where, Fk (k = 2, 3, 4 or 6) is the average of the Fk values for k-fold degenerate amino 

acids. The F value denotes the probability that two randomly chosen codons for an amino 

acid with two codons are identical.  
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 ENC Plot Analysis 

An ENC-GC3 plot (ENC-plot) is generally used to determine the dominant 

factors between mutational bias and translational selection that may influence the codon 

usage bias (Wright, 1990). The ENC values are plotted against the GC content at the third 

codon position and a standard curve is drawn to represent the maximum influence of GC3 

on codon usage bias. It is suggested that if the codon usage variation is only constrained 

by mutational bias, the ENC values will lie on or around the standard curve. However, if 

ENC values lie far lower than the standard curve, other factors such as translational 

selection play a major role in shaping the codon usage bias. In general, if genes 

distribution pattern approaches the expected standard curve, then the codon usage bias of 

genes is mainly influenced by mutational bias related to compositional constraints. In 

contrast if genes distribution pattern went further away from the expected standard curve, 

then the codon usage bias of genes is also influenced by mutational bias but other factors 

such as translational selection involved as well. The expected standard curve is plotted 

using calculation formulated by Wright (1990):  

 

𝐸𝑁𝐶𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 2 + 𝑠 +  
29

𝑠2 + (1 −  𝑠2)
 

where s represent the GC3 value for each protein-coding genes. 
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 Parity Rule 2 (PR2) Bias Analysis 

The Parity Rule 2 (PR2) bias analysis plot is used to determine the influence of 

mutational bias and translational selection on codon usage bias. PR2 bias is a plot of AT-

bias [A3/(A3 + T3)] as the ordinate and GC-bias [G3/(G3+C3)] as the abscissa at the third 

codon position of the entire genes. The centre of the plot, where both coordinates are 0.5, 

is the place where A = T and G = C (PR2), with total equilibrium between influence of 

mutational bias and translational selection. A vector from the centre represents the extent 

and direction of biases from PR2. PR2 bias plots are highly informative when PR2 biases 

at the third position of codons in the amino acids of individual genes are plotted (Sueoka, 

1995; Sueoka, 1999). 

 CAI-ENC Plot Analysis 

CAI-ENC plot is used to investigate the balance between mutational bias and 

translational selection in shaping codon usage bias (Nasrullah et al., 2015; Vicario et al., 

2007). This plot is drawn with ENC value as ordinate and CAI value as abscissa, and each 

point represents an individual gene. The strength of relationship or the degree of codon 

usage bias between both CAI and ENC is measured by r value of the plot. If the 

correlation, r value of the two indices approaches –1, this indicates that the translational 

selection is preferred over mutational bias, meanwhile if the r value approaches 0 (no 

correlation), mutational bias may be more influential than translational selection.  

 Neutrality Plot Analysis 

Neutrality plot is used to investigate and compare the balance of between 

mutational bias and translational selection influences in shaping codon usage bias 

(Sueoka, 1988). Neutrality plot is drawn with average GC content at the first and second 

codon position (GC12) as ordinate and GC content at the third codon position (GC3) as 

abscissa, and each point represents an individual gene. Regression analysis on GC3 is 
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regarded as mutational bias-translational selection equilibrium coefficient and the 

evolutionary extent of mutational bias and translational selection is represented as the 

slope of the regression line. A regression slope closer to 0 or tend to sloped to the 

horizontal axis, indicating translational selection as the dominant factor, while a slope 

closer to 1 or the points lie along the diagonal distribution, indicating mutational bias as 

the dominant factor (Sueoka, 1988). 

 Principal Component Analysis (PCA) 

Principal Component Analysis is a multivariate statistical method to transform a 

set of observations of correlated variables into a set of linearly uncorrelated variables 

spanning a space of lower dimensionality (Jolliffe, 2002). In the present study, PCA is 

used to analyse the major trends in codon usage patterns among coding sequences. PCA 

involves a mathematical procedure that transforms correlated variables which are RSCU 

values into a smaller number of uncorrelated variables called principal components. The 

transformation is defined so that the first principal component accounts for the largest 

possible variance of the data, and each succeeding component in turn has the highest 

variance possible under the constraint that it is orthogonal to the preceding components.  

 Software used to draw figures 

PCA was performed using the XLSTAT 2015 software 

(https://www.xlstat.com/). Neutrality analysis plot, ENC-GC3 plot, CAI-ENC plot and 

PR2 bias plot were generated using R Studio software version 0.99.902 

(https://www.rstudio.com/products/rstudio/).
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CHAPTER 4: RESULTS 
 

 Transcriptome profiling 

The transcripts were aligned and then merged together to form a single non-

redundant set of transcripts. The abundance of assembled transcripts was estimated using 

Fragments Per Kilobase of exon per Million fragments mapped (FPKM) value. By setting 

the FPKM > 0.1 threshold and only selecting protein-coding genes, a total of 11,644 

monocytes protein-coding transcripts were identified. Meanwhile, for B and T 

lymphocytes and human reference, a total of 13,574, 11,480 and 19,814 protein-coding 

transcripts were identified respectively. The distribution of identified genes and 

transcripts were listed in Table 4.1.  

 Nucleotide composition analysis 

Compositional constraints of the genome have been reported to influence the 

codon usage preference (Jenkins et al., 2003). Therefore, it is important to analyse the 

overall nucleotide composition of protein-coding genes expressed in monocytes and 

compare it to the nucleotide composition of protein-coding genes expressed in B and T 

lymphocytes and human protein-coding genes (Table 4.2). Nucleotide composition at the 

third codon position was also calculated due to of its great influence on codon usage 

preference (Table 4.3). The GC content in protein-coding genes expressed in monocytes 

(50.2 ± 0.05) was lower compared to the one expressed in B lymphocytes (53.1 ± 0.05), 

T lymphocytes (51.8 ± 0.05) and human protein-coding genes (53.0 ± 0.05). Interestingly, 

for B and T lymphocytes and human protein-coding genes, the GC at the third position of 

codon (GC3) content were much higher compared to the GC content. Not many changes 

were identified in the GC content at the third position of the codon in protein-coding 

genes expressed in monocytes. These observations indicated that protein-coding genes 
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expressed in monocytes are enriched with A and T nucleotide especially at the third 

position of the codon.  

 

 

Table 4.1: Number of protein-coding genes identified in each dataset. 

Data Number of Protein-
Coding Genes 

Monocytes 11,644 

T Lymphocytes 13,574 

B Lymphocytes 11,480 

Human Protein-Coding Genes 19,814 
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Table 4.2: Overall composition of nucleotides. The percentage displayed represents the average value of each nucleotide in each set of protein-
coding genes. 

Data 

 

A% T% G% C% AT% GC% 

Monocytes 

 

24.9 ± 0.05 24.9 ± 0.05 25.0 ± 0.04 25.2 ± 0.05 49.8 ± 0.05 50.2 ± 0.05 

B lymphocytes 25.4 ± 0.06 21.5 ± 0.04 27.0 ± 0.04 

 

26.1 ± 0.06 46.9 ± 0.05 53.1 ± 0.05 

T lymphocytes 

 

26.2 ± 0.09 22.0 ± 0.04 26.5 ± 0.04 25.3 ± 0.05 48.2 ± 0.07 51.8 ± 0.05 

Human Protein-   
Coding Genes 

 

25.2 ± 0.06 21.8 ± 0.05 26.7 ± 0.04 26.4 ± 0.06 47.0 ± 0.06 53.0 ± 0.05 
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Table 4.3: Composition of nucleotide at the third codon position. The percentage displayed represents the average value of each nucleotide at the 
third codon position. 

Data 

 

A3% T3% G3% C3% AT3% GC3% 

Monocytes 

 

23.4 ± 0.05 26.3 ± 0.06 25.0 ± 0.05 25.3 ± 0.06 49.7 ± 0.05 50.3 ± 0.05 

B lymphocytes 

 

18.7 ± 0.09 21.5 ± 0.09 29.8 ± 0.08 30.0 ± 0.10 40.2 ± 0.09 59.8 ± 0.09 

T lymphocytes 20.0 ± 0.09 22.7 ± 0.09 28.8 ± 0.08 28.5 ± 0.10 42.7 ± 0.09 57.3 ± 0.09 

Human Protein-
Coding Genes 

18.6 ± 0.09 21.4 ± 0.08 29.3 ± 0.08 30.7 ± 0.11 40.0 ± 0.09 60.0 ± 0.09 
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 Codon usage pattern and preferences 

In order to investigate the extent of codon usage bias in protein-coding genes 

expressed, the RSCU values of each codon were calculated. The results of RSCU analysis 

is presented in Table 4.4 and summarized in Table 4.5. Among the frequently used codons 

for each amino acids, monocytes displays fourteen AT-ended codons (AGA, TCT, GGA, 

CCT, ACA, ATT, TGT, GAT, GAA, TTT, CAT, AAA, AAT and TAT) with (A-ended: 

5; T-ended: 9) and the remaining four (CTG, GCC, GTG, CAG) were GC-ended codons. 

It is interesting to note that B, T lymphocytes and human protein-coding genes preferred 

to used significantly different codons in which B lymphocytes preferred only GC-ended 

codons (CTG, CGG, AGC, GCC, GGC, CCC, ACC, GTG, ATC, TGC, GAC, GAG, 

TTC, CAC, AAG, AAC, CAG and TAC) with (C-ended: 12; G-ended: 6). T lymphocytes 

only prefer to use two AT-ended codons (AGA, TGT and AAT) while human protein-

coding genes only prefer one AT-ended codon (AGA). There was a significant difference 

between monocytes protein-coding genes to the rest of protein-coding genes studied in 

term of the preference towards AT ended codons (p < 0.05). It is proven from RSCU 

analysis that monocytes protein-coding genes showed higher codon usage bias towards 

AT compared to GC-ended codons.  

More observation can be done based on RSCU whereby the values can be divided 

into three categories: (A) codons with RSCU values less than 0.6 represent under-

represented codon, (B) codons with RSCU values between 0.6 and 1.6 represent codon 

with a little or no bias, or (C) codons with RSCU values more than 1.6 represent over-

represented codon (Wong, 2010). Analysis of RSCU value based on over or under- 

represented codons showed that preferred and non-preferred codons ranges between 0.29 

and 2.37 with majority fell between the 0.6 to 1.6 categories. It is remarkable to note that 

majority of over-represented codons are G-ended codons while majority of under-

represented codons are A or G-ended codons (Table 4.4). We have not found any similar 
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over-represented codon across all set of protein-coding genes but we found many 

similarity in under-represented codons which are CTA, CGT, TCG, GCG, CCG and 

ACG. Regardless of the RSCU value obtained, similar codon preference across all set of 

protein-coding genes can be seen in four amino acids which are Leucine, Alanine, Valine 

and Glutamine. For 6 folded degeneracy amino acid (Arg, Leu and Ser), the preferred 

codon for Leu in all datasets is CTG. Moreover, CTG codon is over represented (RSCU 

> 1.6) in B and T lymphocytes and human protein-coding genes, while high RSCU value 

was identified (RSCU = 1.47) for monocytes. The preferred codon for Ser in monocytes 

was TCT, meanwhile for human protein-coding genes and both B and T lymphocytes 

were TCC and AGC respectively. For Arg, CGG was selected for B lymphocytes while 

others including monocytes preferred AGA. In 4-fold degeneracy amino acids (Ala, Gly, 

Pro, Thr and Val), except for Ala and Val, all 4 degeneracy amino acids showed different 

preference pattern in monocytes compared to the other two immune cells and human 

protein-coding genes studied. Different preference pattern was also identified for 3-fold 

degeneracy amino acid (Ile) in monocytes compared to the other cell types. Monocytes 

preference towards codon encoded for 2-fold degeneracy amino acids (Asn, Asp, Cys, 

Glu, Gln, His, Lys, Phe, and Tyr) was identified to be differ compared to the other cells 

except for the Gln that was encoded by CAG in all cells. In general, we identified that 

except for 4 amino acids (Ala, Gln, Leu and Val) the rest of the degeneracy amino acids 

in monocytes are having preference towards codons with either A or T at the third 

position.Univ
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Table 4.4: Synonymous codon usage of protein-coding genes. The codon usage displayed as RSCUa value. 

Amino Acid Codon Monocytes B lymphocytes T lymphocytes Human Protein-
Coding Genes 

Leu, L 

 

CTA 0.59 0.44 0.46 0.43 
CTC 1.01 1.11 1.06 1.14 
CTG 1.47* 2.37* 2.22* 2.35* 
CTT 1.07 0.82 0.88 0.81 
TTA 0.86 0.48 0.55 0.48 
TTG 1.01 0.79 0.84 0.78 

Arg, R 

 

AGA 2.02* 1.25 1.38* 1.29* 
AGG 1.79 1.18 1.22 1.26 
CGA 0.44 0.70 0.70 0.65 
CGC 0.62 1.09 1.00 1.10 
CGG 0.72 1.28* 1.20 1.22 
CGT 0.41 0.50 0.50 0.48 

Ser, S 

 

AGC 1.19 1.42* 1.36* 1.43 
AGT 1.00 0.95 0.99 0.91 
TCA 1.16 0.93 0.98 0.93 
TCC 1.12 1.25 1.18 1.29* 
TCG 0.29 0.32 0.30 0.33 
TCT 1.24* 1.14 1.18 1.12 

Ala, A 

 

GCA 1.12 0.93 0.98 0.92 
GCC 1.25* 1.57* 1.51* 1.60* 
GCG 0.47 0.42 0.40 0.43 
GCT 1.17 1.07 1.11 1.05 
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Table 4.4, continued 

Gly, G GGC 1.04 1.34* 1.28* 1.35* 
 GGA 1.18* 1.01 1.07 1.00 

GGG 1.05 1.00 0.96 0.99 
GGT 0.72 0.66 0.69 0.65 

Pro, P CCA 1.20 1.12 1.16 1.10 
CCC 1.12 1.27* 1.21* 1.28* 
CCG 0.46 0.45 0.43 0.46 
CCT 1.22* 1.16 1.20 1.15 

Thr, T ACA 1.36* 1.16 1.21 1.15 
ACC 1.10 1.36* 1.29* 1.40* 
ACG 0.37 0.45 0.42 0.44 
ACT 1.16 1.02 1.08 1.01 

Val, V GTA 0.74 0.50 0.54 0.48 
GTC 0.83 0.91 0.88 0.94 
GTG 1.38* 1.84* 1.76* 1.83* 
GTT 1.05 0.75 0.82 0.74 

Ile, I ATA 0.9 0.52 0.56 0.53 
ATC 0.84 1.36* 1.27* 1.37* 
ATT 1.26* 1.13 1.17 1.10 

Cys, C TGC 0.95 1.05* 0.99 1.07* 
TGT 1.05* 0.95 1.01* 0.93 

Asp, D GAC 0.96 1.04* 1.00* 1.06* 
GAT 1.04* 0.96 1.00* 0.94 

 

Univ
ers

iti 
Mala

ya



 

 

4
4

 

Table 4.4, continued 

Glu, E GAA 1.01* 0.86 0.92 0.86 
GAG 0.99 1.14* 1.08* 1.14* 

Phe, F TTC 0.76 1.05* 1.00* 1.06* 
TTT 1.24* 0.95 1.00* 0.94 

His, H CAC 0.98 1.13* 1.08* 1.15* 
CAT 1.02* 0.87 0.92 0.85 

Lys, K AAA 1.15* 0.88 0.93 0.89 
AAG 0.85 1.12* 1.07* 1.11* 

Asn, N AAC 0.86 1.03* 0.98 1.04* 
AAT 1.14* 0.97 1.02* 0.96 

Gln, Q CAA 0.80 0.52 0.56 0.54 
CAG 1.2* 1.48* 1.44* 1.46* 

Tyr, Y TAC 0.84 1.09* 1.04* 1.10* 
TAT 1.16* 0.91 0.96 0.90 

a RSCU, Relative Synonymous Codon Usage 
* codon preferred or highest RSCU value 
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Table 4.5: The summary of codon preference of each amino acid. Preferred codons are known as codons which are used more among the 
synonymous codons. 

Folding Degeneracy Amino Acid Monocytes B lymphocytes T lymphocytes Human Protein-
Coding Genes 

6 Leu, L CTG CTG CTG CTG 
Arg, R AGA CGG AGA AGA 
Ser, S TCT AGC AGC TCC 

4 Ala, A GCC GCC GCC GCC 
Gly, G GGA GGC GGC GGC 
Pro, P CCT CCC CCC CCC 
Thr, T ACA ACC ACC ACC 
Val, V GTG GTG GTG GTG 

3 Ile, I ATT ATC ATC ATC 
2 Cys, C TGT TGC TGT TGC 

Asp, D GAT GAC - GAC 
Glu, E GAA GAG GAG GAG 
Phe, F TTT TTC - TTC 
His, H CAT CAC CAC CAC 
Lys, K AAA AAG AAG AAG 
Asn, N AAT AAC AAT AAC 
Gln, Q CAG CAG CAG CAG 
Tyr, Y TAT TAC TAC TAC 

- represent no codon preference 
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 Strength of codon usage bias  

To quantify the extent of variation and degree of codon usage bias among 

protein-coding gene expressed in monocytes, B and T lymphocytes as well as human 

protein-coding genes, the Effective Number of Codon (ENC) were calculated. The mean 

ENC values among the protein-coding genes studied ranged from 48.33 to 52.92. With 

the ENC value of 52.92 ± 3.35, protein-coding genes expressed in monocytes were 

identified to be less bias compare to the protein-coding genes expressed in B and T 

lymphocytes (Table 4.6). ENC values also showed that the degree of codon usage bias in 

B and T lymphocytes are quite similar to the one from human protein-coding genes. 

Considering protein-coding genes with ENC value of less than 35 as highly bias gene, 

only 0.08% of monocytes protein-coding genes were identified as highly bias in our 

analysis (Table 4.7). While analyzing the ENC value in monocytes in Figure 4.1, we 

detected statistically significant different between ENC value in monocytes compared to 

B and T lymphocytes as well as human protein-coding genes (p <0.05). Besides ENC 

analysis, we also determine the codon usage preferences of monocytes with B and T 

lymphocytes as well as human protein-coding genes using Codon Adaptation Index 

(CAI).  CAI analysis revealed that not much different for the mean of the CAI value for 

all datasets analyzed. However, there is a slight difference in the distribution of the CAI 

value in monocytes compare to the other cells as shown in the Figure 4.1.  
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Table 4.6: Statistical data of ENCa and CAIb values for each set of protein-coding genes. 
The mean is the average value of the data, median is the middle number of data and 
standard deviation (STD) is the measure of spreading of numbers. The minimum and 
maximum values were also recoded for each protein-coding gene in the table. 

Data Index Mean Median STD Min Max 

Monocytes 

 

ENC 52.92  53.32 3.35 26.93 61.00 

CAI 0.22  0.216 0.02 0.091 0.44 

B lymphocytes 

 

ENC 48.47  49.63 6.59 24.56 61.00 

CAI 0.23  0.228 0.04 0.058 0.50 

T lymphocytes 

 

ENC 49.21  50.47 6.39 25.45 61.00 

CAI 0.23  0.224 0.04 0.058 0.76 

Human Protein-
Coding Genes 

ENC 48.33  49.66 6.79 20.00 61.00 

CAI 0.23  0.227 0.04 0.033 0.78 

a ENC: Effective Number of Codons 
b CAI: Codon Adaptation Index 
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Table 4.7: Number of protein-coding genes according to ENC values. ENC is the 
effective number of codons used to quantify the codon usage bias. 

Data ENC < 35a ENC > 35b < 35 (%) 

Monocytes 9 11635 0.08 

B Lymphocytes 427 13147 3.15 

T Lymphocytes 281 11199 2.45 

Human Protein-
Coding Genes 

785 19029 3.96 

a Number of protein-coding genes with ENC value less than 35 
b Number of protein-coding genes with ENC value more than 35 
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Figure 4.1: Box plot of Effective Number of Codon (ENC) and Codon Adaptation 
Index (CAI). Distribution of data displayed based on the five-number summary: 
minimum, first quartile, median, third quartile, and maximum value for each dataset. 
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 The relationship between ENC and CAI 

CAI analysis was performed to predict the level of gene expression (Naya, 2001; 

Gupta, 2004) in which higher CAI value represent elevated levels of gene expression. 

ENC analysis was used to quantify the general codon usage bias by evaluating the degree 

of codon usage bias exhibited by the coding sequences, regardless of gene length and the 

number of amino acids. The relationship between codon usage bias and gene expression 

levels was analysed using Pearson’s correlation analysis using both ENC and CAI. 

Pearson’s correlation analysis often used to measure the linear correlation between two 

variables by providing the value between +1 to -1 where +1 represent positive correlation 

and -1 represent negative correlation. Thus, if the result appears 0, that means there is no 

correlation between both variables. Table 4.8 shows the Pearson’s correlation analysis 

result between ENC and CAI. It can be seen that all of the protein-coding genes showed 

negative and weak correlation (p < 0.05). Negative correlation indicated that higher gene 

expression levels have higher degree of codon usage bias. 
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Table 4.8: Pearson’s correlation analysis. Pearson’s correlation analysis for each set of 
protein-coding genes. The variables are Effective Number of Codons (ENC) and Codon 
Adaptation Index (CAI). 

Data Na Pearson’s Correlationb 

ENCc/CAId 

Monocytes 11644 -0.385 

B lymphocytes 13574 -0.470 

T lymphocytes 11480 -0.420 

Human Protein-
Coding Genes 

19814 -0.460 

       a represented the number of valid 
b correlation is significant at the 0.05 level 
c Effective Number of Codon 
d Codon Adaptation Index 
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 Role of mutational bias and translational selection in shaping codon usage 

bias  

The heterogeneity of codon usage pattern in monocytes was analysed by plotting 

the ENC values of each protein-coding genes expressed in monocytes against the third 

position of each codons in the corresponding genes (GC3). This analysis was performed 

to determine the role of nucleotide compositional constraint or mutational bias on shaping 

the synonymous codon usage pattern. A standard curve of expected ENC value against 

GC3 was calculated based on the Wrights’ methods (Wright, 1990). If the codon usage 

in a gene is affected only by mutational bias, the corresponding point for the gene would 

lie on or close to the expected curve. However, if other factors such as translational 

selection were involved in the codon usage pattern of a gene, the corresponding point 

would depart away below the expected curve (Wright, 1990). In ENC-GC3 plot (Figure 

4.2) for all the set of protein-coding genes studied, the point representing each gene 

clustered together below the expected ENC curve with only a few of the point fell on the 

expected curve. This result indicated the presence of mutational bias in shaping codon 

usage bias in monocytes, B and T lymphocytes. This observation also suggested that 

mutational bias was not the sole factor determining the codon usage bias in them but other 

factors such as translational selection involved as well.  

To further confirm the influence of both mutational bias and translational 

selection in the datasets, PR2-bias plot was performed. PR2 bias plot is an analysis to 

determine the relations between purines (A/G) and pyrimidines (C/T) in genes. It is 

suggested that if only mutation bias influence codon usage bias, nucleotide G and C, A 

and T should be used equally among the genes (G=C, A=T) (Zhang et al., 2007), in which 

the average position of genes would be positioned exactly at the centre of PR2 plot, where 

both coordinates are 0.5. The result showed that the nucleotides are not used 

proportionally and also that C and T were seen to appear more frequent than A and G in 
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all the gene sets. The result also showed that the centre of data distribution were shifted 

to the left, indicating that mutational bias was not the only factor affecting codon usage 

bias (Figure 4.3). This differences between nucleotide content suggested that not only 

mutational bias influenced the codon usage bias but also other factors such as translation 

selection could also involve.  
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Figure 4.2: GC3 vs. ENC plot. Scatter plot of GC3 (X axis) vs. ENC (Y axis) for 
monocytes, B and T lymphocytes and human protein-coding genes. ENC represent 
the effective number of each genes and GC3 represent G+C content at the third codon 
position of each genes. The expected curve represents the maximum influence of GC3 
or mutational bias on codon usage bias. 
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Figure 4.3: PR2-bias plot. Protein-coding genes are plotted based on their GC bias 
[G3/(G3+C3)] and AT bias [A3/(A3+T3)] in the third codon position. Center point 
was made by two intersecting lines in the middle of the plot represent the state of no 
codon usage bias. 
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 Mutational bias versus translational selection in shaping codon usage bias  

CAI-ENC plot was constructed to analyse the influence of mutational bias and 

translational selection on the codon usage bias. A linear correlation analysis between the 

two variables was measured. Both CAI and ENC are considered because both signify the 

extent of codon usage bias exhibited and relationship between them have been shown in 

Figure 4.4 in form of r value. If the correlation, between both parameters is close to -1, 

this suggests that the translational selection is preferred over mutational bias. Otherwise, 

if the r value approaches 0, mutational bias may be more influential than translational 

selection. As shown in Figure 4.4, the correlation between CAI and ENC in monocytes is 

closer to zero compared to B and T lymphocytes.  Interestingly the correlations between 

CAI and ENC in B and T lymphocytes are found to be almost similar to the one in human 

protein-coding genes. This result indicated that protein-coding genes expressed in 

monocytes were heavily influenced by mutational bias in shaping the codon usage bias 

compared to translational selection. However, as shown in the CAI-ENC plot, for B and 

T lymphocytes, the correlation analysis revealed the dominant role of translational 

selection in determining the codon usage bias of the expressed genes.  

Further analysis was performed using neutrality plot analysis to identify the role 

of key determinant factors which are translational selection and mutational bias in 

structuring codon usage pattern. The neutrality plot is a regression analysis of average 

GC content at the first and second positions (GC12) on GC content at the third codon 

position (GC3). A significant positive correlation was observed between GC3 and GC12 

of in all the plots shown in the result (Figure 4.5). The positive regression slope in 

neutrality plots indicated that intragenic GC mutational bias affects the GC content at all 

codon positions in a uniform pattern. Monocytes protein-coding genes shows regression 

line with a slope value of 0.595, indicating relative neutrality of 59.5 % with relative 

constraint of 40.5 %, indicating the minor influence of translational selection on the codon 
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usage patterns. In contrast with monocytes, B and T lymphocytes as well as human 

protein-coding genes exhibited regression slope value closer to 0, indicating the dominant 

role of translational selection in shaping codon usage bias. Both analyses indicated the 

major factor that affecting codon usage bias in monocytes was mutational bias, while for 

B and T lymphocytes the major factor affecting codon usage bias was translational 

selection. 
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Figure 4.4: CAI vs. ENC plot. Scatter plot of CAI (X axis) vs. ENC (Y axis) for 
monocytes, B and T lymphocytes and human protein-coding genes. ENC represent 
effective number of each genes and CAI represent index to measure level of gene 
expression. Individual genes are plotted based on the CAI value versus the ENC value. 
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Figure 4.5: Neutrality Plot (GC3 vs. GC12). Scatter plot of GC3 (X axis) vs. GC12 
(Y axis) for monocytes, B and T lymphocytes and human protein-coding genes. 
Individual protein-coding genes are plotted based on the mean GC content in the first 
and second codon position versus the GC content of the third codon position. 
Regression lines and coefficient of determination, R2 are shown in the plot. 
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 Principal Component Analysis (PCA) 

PCA was done to identify the similarities and differences of codon usage patterns 

in different human cells. From the analysis in Figure 4.6, the major trend was identified, 

in which the first principal axis (F1) accounted for 92.01 % of the total variation 

indicating substantial similarity in amino acid usage between genes, and the second 

principal axis (F2) accounted for 7.55 % of the total variation in synonymous codon 

usage. Based   on the point located on the plot, monocytes have significantly different 

codon usage pattern compare to B and T lymphocytes as well as human protein-coding 

genes. Pearson’s correlation analysis was also performed to identify the strength of the 

first and second principal axis towards codon usage indices which are ENC and CAI. 

Based on Figure 4.7, both indices have high correlation towards the first and second 

principal axis with ENC have the highest correlation towards the first principal axis, 

followed by CAI (r value = -0.99, 0. 065, respectively). For second principal axis, ENC 

again show the highest correlation along with GC3 (r value = 0.99, -0.99, respectively) 

while CAI again exhibit the lowest correlation with r value of -0.88. 
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Figure 4.6: Principal Component Analysis (PCA). The points represent the average 
trend in codon usage of each datasets. This analysis depicts the variation among the 
RSCU values of codons of the protein-coding genes studied. 
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Figure 4.7: Pearson’s correlation analysis. Correlation analysis between first and 
second principal axis towards ENC, CAI and GC content at the third codon position. 
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CHAPTER 5: DISCUSSION 

This study has highlighted the codon usage patterns of protein-coding genes in a 

comparative manner between selected human immune cells. As synonymous codon usage 

pattern between organisms are non-random and species specific, we are curious to know 

if it is also applied to different type of cells in a same organism. Selection-mutation drift 

model suggested that codon usage bias is mainly influenced by a balance between 

translation selection and mutational bias. This theory can also be applied to human 

genome as several findings suggest translational selection was responsible for most part 

of the codon preference activity with the influence of mutational bias as well (Kotlar, 

2006; Plotkin, 2004). Tissue specificity in human has been shown to have significant 

difference in codon usage across different tissues (Plotkin, 2004). This variation may be 

due to different tRNA abundant for each tissues that lead to different tRNA activity 

(Se’mon, 2005). Therefore, it is important to know the balance between mutational bias 

and translational selection in shaping codon usage bias in the respective immune cells as 

both factors might contribute greatly in shaping codon usage bias.  

Nucleotide composition could be one of the important factors in codon usage bias 

in human protein-coding genes. Here we found that average GC content and GC content 

at the third codon position are higher than AT content in all immune cells studied 

including human protein-coding genes. In a study conducted by Bernardi (1995), 

mammalian genomes including human exhibited large-scale variation in GC content in 

both coding and noncoding regions. This variation may suggest the possibility of 

nucleotide composition in influencing codon preference. 

The codon usage pattern was found to be significantly similar between human, 

B and T lymphocytes protein-coding genes. However, monocytes protein-coding genes 

showed significantly different codon usage pattern based on the RSCU value recorded.  
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Monocytes protein-coding genes showed a tendency to translate codon ended with AT 

nucleotides even though the average coding sequences are rich in GC content. The codon 

usage preference is in contrast to the findings in several studies that showed GC-rich 

genome usually have the tendency to encode amino acids with GC-ended codons while 

AT-rich genome tend to prefer AT-ended codons (Singer, 2000; Li, 2015). However, this 

occurrence is not surprising due to similar findings in previous studies conducted on other 

species (Anderson, 1993; Rodriguez-trellez, 2000). The best explanation that could 

describe this phenomenon is that the codon usage pattern seen in monocytes protein-

coding genes may be due to intra-genomic variation as proposed by Sharp et al. (2005). 

It was suggested that even though monocytes protein-coding genes are GC-rich, more 

than half of the protein-coding genes identified may located in a single large cluster 

composed of unusual base composition. This cluster is AT-rich in composition differ with 

the average nucleotide composition of the monocytes protein-coding genes and tends to 

prefer AT-ended codons. Besides that, another possible reason for the monocytes protein-

coding genes displaying such codon usage pattern is due to evolutionary process in part 

of the genes which may change the codon preference. Anderson et al. (1993) have also 

observed similar codon usage pattern in their studies on multiple Drosophila species 

whereby one of the species, Drosophila willistoni exhibited had GC-rich genome but 

preferred to encode AT-ended codons compared to other Drosophila species that were 

examined. The shifted codon preference may be due to the impact of the deletion on part 

of intron in the Adh genes of the willistoni group (Anderson, 1993; Rodriguez-trellez, 

2000). However, the possibility of deletion or insertion occurring in the monocytes 

protein-coding genes remain unclear, thus further examinations are required. Therefore, 

based on both the nucleotide composition and RSCU analyses, it is suggested that the 

codon preference might be influenced mostly by compositional constraints, which is also 

related to the presence of mutational bias. 
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Moreover, the mean ENC values ranged from 47.17 ± 6.56 to 52.92 ± 3.35, 

indicating that the codon usage bias is considered low in all set of protein-coding genes 

studied. It is also observed that the ENC values were highly correlated with levels of GC 

in the third codon position. Based on the ENC value recorded, all of the protein-coding 

genes displayed value of more than 35, suggesting low codon usage bias. The high mean 

ENC value recorded indicated that all set of protein-coding genes include human protein-

coding genes display relatively stable and conserved genomic composition. Our analysis 

suggested that codon usage bias in monocytes is slightly lower and might be affected by 

nucleotide compositions. A previous study on 15 different vertebrates had recorded quite 

similar result of which the ENC values were also relatively high with value more than 35 

ranging from 42.41 in Petromyzon marinus to 57.00 in Anolis carolinensis genes (Qiu, 

2011). In human protein-coding genes, the mean ENC value showed quite similar result 

to the study conducted by Wright (1990) whereby ENC value reported were close to 45 

with the distribution of values for individual genes ranges from 30 to 61.  

Meanwhile, the CAI values ranged from 0.22 ± 0.02 to 0.24 ± 0.04, indicating 

that all set of protein-coding genes studied has low mean expression levels. Genes with a 

higher CAI value are associated with high codon bias but this parameter alone does not 

distinguish the bias from GC related mutational bias to translational selection. In other 

words, CAI could not specifically identify the extent of each contribution factors in 

shaping codon usage bias (Carbone, 2005). In human, it is believed that CAI is a less 

effective index in which CAI is suitable for organisms with higher rate of replication as 

seen in prokaryotes and lower eukaryotes (He, 2016). This is because the proteins 

involved in transcription and translation of bacteria and virus are often highly expressed 

and leads to higher codon bias (Carbone, 2005; Willenbrock, 2006). Besides that, CAI is 

also expected to not perform well in GC-rich organism with low mutational bias (Grocock 
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& Sharp, 2002) but can be very well used as rough estimation of expression levels of 

genes studied. 

Mutational bias and translational selection are considered the two major factors 

that shape codon usage pattern (Tatarinova, 2010). To identify the influence of both 

factors in shaping codon usage bias, ENC-GC3 plots were generated and significant 

positive correlations were observed between ENC and GC3 in all datasets studied 

including human protein-coding genes. If codon choice is constrained only by mutational 

bias, the points on the plot will lie on the expected curve (Wright, 1990). The clustering 

pattern in Figure 4.2 which majority of the points situated below the expected curve of 

the plots suggested that mutational bias is not the only factor contributed to the codon 

usage bias but at the same time other factors such as translational selection may also 

involve. This pattern is in agreement with previous study on other vertebrate such as sea 

lamprey in which there is only weak translational selection acting upon the codon usage 

pattern (Qiu, 2011).  

To further confirm the influence of both translational selection and mutational 

bias in codon usage, PR2-bias plots were generated. In this analysis, if synonymous codon 

usage bias is caused by mutational bias alone, GC or AT should be used proportionally 

among the degenerate codon groups in a gene (Zhang, 2013). The association between 

purines (A, G) and pyrimidines (C, T) was analysed by Parity Rule 2 (PR2) bias plot 

(Figure 4.3) and revealed that the GC and AT are not use equally whereby C and T were 

observed more frequently than A and G nucleotides in all datasets. The unequal usage of 

GC and AT in this analysis further reflects the fact that translational selection has played 

an important role in driving degenerate codon positions in the analysis. From these 

findings, we can conclude that both mutational bias and translational selection have 

contributed to the codon bias in all datasets.  Similar results have been reported by Sueoka 

(1988, 1992) in which high frequency of C and T nucleotides observed in the coding 
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sequences. This was explained to be the result of mutational effect than the selective effect 

at the DNA base composition level (Sueoka, 2002).  

In this study, the presence of translational selection and mutational bias in codon 

usage bias of monocytes, B and T lymphocytes were identified and therefore further 

analysis is needed to identify the major influencer between those factors. From CAI-ENC 

plot analysis and neutrality plot analysis (Figures 4.4 & 4.5), translational selection is 

believed to play a minor part in monocytes protein-coding genes in contrast to other set 

of protein-coding genes in which translational selection was found to be the major 

contributors in shaping the codon usage pattern. These observations clearly showed that 

codon usage in monocytes are heavily dependent on compositional constraint as they have 

the lowest GC content among the protein-coding genes studied, suggesting strong 

mutational bias influence (Urrutia, 2003).  Translational selection in human may be due 

to the need to minimize the mistakes in incorporation of the amino acids and maximize 

the speed of elongation. It is also essential to increase the cellular concentration of free 

ribosomes for protein translation (Hershberg, 2008).  

Considering the multivariate nature of codon usage, PCA analysis was performed 

on RSCU values to determine the trends of codon usage variations in coding sequences 

(Figure 4.6). The result showed that first principal axis, F1 accounted for the major 

portion of codon usage variation followed by second principal axis, F2. The difference in 

clustering pattern between monocytes protein-coding genes to other protein-coding genes 

can be seen clearly due to different in codon preference as shown in Table 4.4. Moreover, 

Pearson’s correlation was performed to evaluate the relationship between the first two 

axes towards ENC, CAI and GC3 (Figure 4.7). ENC showed the highest correlation value 

(r = -0.93, p < 0.001) towards first principal axis followed by GC3 (r = 0.85, p < 0.001). 

This correlation study showed strong relationship towards low ENC value as displayed 

in Table 4.8, suggesting that the codon bias in protein-coding genes studied were low. 

Univ
ers

iti 
Mala

ya



 

68 

 

CHAPTER 6: CONCLUSION 

In this thesis, a comprehensive study on codon usage bias in monocytes, B and 

T lymphocytes were discussed, including human protein-coding genes as the reference. 

With the availability of whole transcriptome datasets provided by RNA-Seq technology, 

comparative study on the global codon usage pattern in human monocytes, B and T 

lymphocytes as well as human protein-coding genes have been realised. This is the first 

study that codon usage bias is systematically investigated in human immune cells and it 

is also the first time RNA-Seq technology was used in analysing codon usage bias in 

human.  

The results showed that monocytes, B and T lymphocytes exhibited distinctive 

codon usage pattern. Codon usage bias in all of protein-coding genes studied was low 

according to the codon usage indices performed. Observation on individual cells showed 

that monocytes have distinct codon usage pattern compared to other cells whereby 

monocytes prefer to use AT-ended codons while other cells prefer to use GC-ended 

codons. Each cell have their own unique codon preference to code for each amino acid 

and only 4 amino acids out of 18 showed similar codon preference across different set of 

protein-coding genes.  

Involvement of both mutational bias and translational selection were detected for 

all set of protein-coding genes and the degree of involvement differed between cells. In 

monocytes, the mutational bias was identified to be the dominant factor in shaping its 

codon usage bias while in contrast with B and T lymphocytes, translation selection was 

determined to be the major factor influencing the codon preference. Using Principal 

Component Analysis (PCA), monocytes showed a very distinct codon usage pattern 

compared to B and T lymphocytes.  
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In summary, the findings have provided sufficient evidence in order to fulfill all 

the objectives of the study. It has been shown that monocytes have significantly different 

codon usage preference compared to B and T lymphocytes. Besides that, the major factor 

that contribute in shaping codon usage bias in monocytes also differ to B and T 

lymphocytes. This observation has suggested the nature of codon usage bias in human 

which are each tissue or cell have their own unique codon usage pattern. This information 

enables us to identify the evolutionary events that occur between the cells involved and 

importance of the evolution. With increasing evidences of the role of codon usage bias 

influence in cell physiology, this report provides new insight in understanding the impact 

of codon usage bias in human immune system.    
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