
A MICROSERVICE-BASED ARCHITECTURE FOR AN
ONLINE PRODUCT REVIEW ANALYSIS SYSTEM

MEHDI MOHAMMADI

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

 2021
Univ

ers
iti

Mala
ya

A MICROSERVICE-BASED ARCHITECTURE FOR AN
ONLINE PRODUCT REVIEW ANALYSIS SYSTEM

MEHDI MOHAMMADI

DISSERTATION SUBMITTED IN PARTIAL

FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SOFTWARE ENGINEERING

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2021

Univ
ers

iti
Mala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Mehdi Mohammadi

Matric No: WGC150028

Name of Degree: Master of Software Engineering

Title of Dissertation (“this Work”): A Microservice-Based Architecture for an
Online Product Review Analysis System

Field of Study: Software Architecture

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date: 2021-01-24

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

6-2-2021

Univ
ers

iti
Mala

ya

iii

A MICROSERVICE-BASED ARCHITECTURE FOR AN ONLINE

PRODUCT REVIEW ANALYSIS SYSTEM

ABSTRACT

Since the emergence of Web 2.0 in late 1999, online product reviews have played a

significant role in the e-commerce channels, social media, online forums, and online

communities. The majority of studies in the area of product review analysis (PRA)

systems have focused on evaluating and improving the techniques for review analysis to

increase efficiency, accuracy, effectiveness, usefulness, ranking, spam detection, and

feature extraction. The architecture of PRA systems is not the primary concern of research

in this field. In this study, some of the implicit and explicit architectures of scientifically

reported PRA systems were extracted to examine how the architectures have been

evolving. One of the recently employed architectures in this area is the microservice

architecture, aimed at achieving high flexibility and maintainability by developing

loosely-coupled microservices. Current PRA systems do not fully utilise microservice

architecture to achieve low-coupling in design. This research focuses on evaluating

existing PRA architectures and proposing improvements on a microservice-based PRA

architecture (Viscovery) in terms of reducing coupling. To evaluate the proposed

architecture, two different methods, one of them is a quality model (MM4S model) and

the other one involving descriptive techniques, were adopted. A prototype PRA system

was developed based on the proposed architecture. The prototype system can retrieve

reviews from multiple e-commerce websites and analyse the review text. The evaluation

shows that the prototype system achieves lower coupling, as compared to a benchmarked

microservice-based PRA system.

Keywords: Product review analysis systems, sentiment analysis, architecture,

microservice

Univ
ers

iti
Mala

ya

iv

SENI BINA BERASASKAN PERKHIDMATAN MIKRO UNTUK SUATU

SISTEM ANALISIS ULASAN PRODUK DALAM TALIAN

ABSTRAK

Sejak kemunculan Web 2.0 pada akhir tahun 1999, ulasan produk dalam talian telah

memainkan peranan yang sangat penting dalam saluran e-dagang, media sosial, forum

dalam talian dan komuniti dalam talian. Kebanyakan penyelidikan dalam bidang sistem

analisis ulasan produk (PRA) telah menumpukan perhatian untuk menilai dan

memperbaiki teknik analisis termasuk meningkatkan kecekapan, ketepatan,

keberkesanan, kebergunaan, menentukan kedudukan, pengesanan spam dan

pengekstrakan ciri. Walau bagaimanapun, seni bina untuk sistem-sistem ini bukan

pertimbangan utama dalam bidang penyelidikan tersebut. Kajian ini mengekstrak seni

bina sistem PRA yang tersirat dan tersurat yang dilaporkan secara saintifik untuk

mengkaji bagaimana seni bina berkenaan telah berkembang. Salah satu seni bina terkini

yang digunakan adalah seni bina perkhidmatan mikro, yang bertujuan untuk mencapai

fleksibiliti dan penyelenggaraan yang tinggi dengan membangunkan perkhidmatan mikro

yang digandingkan secara longgar. Sistem-sistem PRA semasa tidak menggunakan

sepenuhnya seni bina perkhidmatan mikro untuk menghasilkan sistem bergandingan

rendah. Kajian ini memfokus pada penilaian seni bina PRA sedia ada dan mencadangkan

penambahbaikan bagi satu seni bina berasaskan perkhidmatan mikro (Viscovery) dari

segi penurunan gandingan. Untuk menilai seni bina yang dicadangkan, dua kaedah

berbeza, yang salah satunya bersifat kuantitatif (model MM4S) dan yang satu lagi

melibatkan teknik deskriptif dan visualisasi telah digunakan. Satu sistem prototaip PRA

dibangunkan berdasarkan seni bina yang dicadangkan. Sistem prototaip ini dapat

memperoleh dan menganalisis ulasan dari pelbagai laman web e-dagang. Penilaian

menunjukkan pencapaian gandingan yang lebih rendah dalam sistem prototaip yang

Univ
ers

iti
Mala

ya

v

dibangunkan berbanding dengan sebuah sistem berasaskan perkhidmatan mikro yang

ditandaraskan.

Kata kunci: Sistem analisis ulasan produk, analisis sentiment, seni bina, perkhidmatan

mikro

Univ
ers

iti
Mala

ya

vi

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor, Associate Professor Dr. Chiew Thiam

Kian, who supported me throughout this dissertation on the journey. All of the hints,

guidance, and direction that I got from him were most useful. I appreciate my wife

Maryam and my daughter Avina for supporting me even though I spent most of our family

time on this study. I appreciate my parents’ courage and support, especially my father

who told me, “Never stop learning”.

Univ
ers

iti
Mala

ya

vii

 TABLE OF CONTENTS

ABSTRACT. .. iii

ABSTRAK…. .. iv

Acknowledgements ... vi

Table of Contents .. vii

List of Figures ... xi

List of Tables .. xiii

List of Symbols and Abbreviations ... xiv

CHAPTER 1: INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem Statement ... 4

1.3 Research Questions .. 6

1.4 Research Objectives ... 7

1.5 Research Scope .. 7

CHAPTER 2: LITERATURE REVIEW .. 8

2.1 Introduction .. 8

2.2 Product Review Analysis for E-Commerce Platforms .. 8

2.3 Exlporing the Existing Architectures of PRA Systems ... 12

2.4 Review of the Existing Architecture .. 25

2.5 PRA and Microservice Architecture .. 27

2.5.1 Microservice Architecture .. 27

2.5.2 Using Microservice Architecture for Developing PRA Systems 31

Univ
ers

iti
Mala

ya

viii

2.5.3 Software Quality Metrics ... 32

2.5.4 Maintainability Model for Microservices ... 34

2.5.5 Coupling in Microservices ... 39

2.5.6 Metrics for Measuring Coupling .. 40

2.5.7 Coupling in Microservice-Based Architecture ... 42

2.5.8 Design Patterns for Microservice-Based Systems 42

2.6 Summary .. 43

CHAPTER 3: RESEARCH METHODOLOGY .. 44

3.1 Introduction .. 44

3.2 Review Existing Architectures in the Literature ... 45

3.2.1 Selection of Documents and highlight the main architecture 46

3.2.2 Selection of Search Queries .. 46

3.3 Formulation of the Problem Statement .. 46

3.4 Find A Systematic Approach for Proposing a New Architecture 47

3.5 Proposal for a New Architecture and MicroPRA development 48

3.5.1 Identifying The Core Modules Based on the Existing Works 49

3.5.2 Identifying application core features and behaviour (use case diagram) . 51

3.5.3 Identity Operations and State Variables ... 53

3.5.4 Creation of an Operation-State Relationship Table 54

3.5.5 Identifying Microservices ... 55

3.5.6 Implementation of a Prototype for MicroPRA System 57

3.6 Important Architectural Decisions ... 58

3.6.1 Stream Processing Platform as a Message Broker 58

3.6.2 No-SQL Database ... 58

3.6.3 Using Supplementary Components for the Microservice Architecture ... 59

3.7 Evaluation of the Proposed Architecture ... 59

Univ
ers

iti
Mala

ya

ix

3.7.1 Fine-grained Microservices .. 59

3.7.2 Assumptions Made for Viscovery for Comparison with MicorPRA 60

3.7.3 Descriptive and Quantitative Metrics ... 60

3.8 Summary .. 61

CHAPTER 4: THE PRPOSED ARCHITECTURE (MICROPRA) 62

4.1 New Architecture Desicions .. 62

4.2 Comparsion between MicroPRA and Viscovery ... 63

4.3 Decompose a PRA System into MicroServices ... 65

4.3.1 Product Catalog Microservice .. 65

4.3.2 Review Collector Microservice .. 65

4.3.3 Review Statistics Microservice .. 65

4.3.4 Review Analysis Microservice ... 66

4.4 Supplementary Components .. 66

4.5 The Outcomes of the New Architecture ... 67

4.5.1 Scalability ... 69

4.6 Summary .. 70

CHAPTER 5: IMPLEMENTATION OF THE NEW ARCHITECTURE 71

5.1 Introduction .. 71

5.2 Technologies Used ... 71

5.2.1 Apache Kafka ... 71

5.2.2 Jhipster Supplementary Microservice Components 73

5.2.3 Jhipster Registry ... 73

5.2.4 Jhipster API Gateway ... 74

5.2.5 Couchbase ... 74

5.2.6 Sandford NLP Library .. 74

Univ
ers

iti
Mala

ya

x

5.3 How Does the Prototype PRA System Work? .. 75

5.4 Front-end Dashboard and Analytic Visualization ... 77

5.5 Summary .. 80

CHAPTER 6: EVALUATION OF THE PROPOSED ARCHITECTURE 81

6.1 Introduction .. 81

6.2 Evaluation Result using Qualitative Methods ... 81

6.3 Evaluating MicroPRA Using Quantitative Methods (MM4S) 87

6.4 Summary .. 88

CHAPTER 7: CONCLUSION ... 90

7.1 Introduction .. 90

7.2 Contributions and Achievement of the Objectives .. 90

7.3 Limitations and Future Work ... 92

References .. 93

Univ
ers

iti
Mala

ya

xi

LIST OF FIGURES

Figure 2.1 Research papers relating to ‘Sentiment Analysis’ (Chen & Sun, 2017) 10

Figure 2.2: Feature-based opinion mining (Eirinaki et al., 2011) 14

Figure 2.3: Concept Map is for Angry Bird, Fruit Ninja, Tiny Wings and Cut the Rope
(Robson et al., 2013) ... 15

Figure 2.4: Grammatical error ration in different channels (Petz et al., 2014) 16

Figure 2.5: Modular architecture for a PRA system (Bucur, 2015) 17

Figure 2.6: Paolo Pro physical view (Tsirakis, 2017) ... 19

Figure 2.7: Architecture of IUSR Analyzer (Flory et al., 2017) 20

Figure 2.8: Viscovery - a microservice-based platform (Espinoza et al., 2018b) 22

Figure 2.9 Main components for knowledge discovery through data mining (Guo et al.,
2011, as cited in Petz, 2019) ... 23

Figure 2.10 Block digram for an opinion score mining system(Bahatia, Chaudhary, &
Day, 2020) ... 24

Figure 2.11 A maintainability assessment model for service-oriented systems QMOOD
(Senivongse & Puapolthep, 2015) ... 35

Figure 2.12 Maintainability Model for Services (Mitchell & Mancoridis, 2006) 36

Figure 2.13 Service Properties for QOOMD .. 38

Figure 2.14: Extendibility of Bunch Tool as a framework ... 41

Figure 3.1: Research Methodology ... 45

Figure 3.2 Concrete steps for MicroPRA development .. 48

Figure 3.3: New module decomposition aligned with (Petz et al., 2014) 50

Figure 3.4 Use case diagram for a PRA system .. 52

Figure 3.5: Graphical Display for Operation-State Relationship 56

Figure 3.6: Microservices Identified using CoCoME Model .. 57

Figure 4.1 Conceptual View for the Proposed MicroPRA Architecture 62

Univ
ers

iti
Mala

ya

xii

Figure 5.1 Kafka Cluster (kafka.apache.org, 2019) ... 72

Figure 5.2: Jhipster Registry and API Gateway in the architecture
diagram(https://www.jhipster.tech/, 2019) ... 73

Figure 5.3 Overall architecture of StanfordNLP (Manning et al., 2014) 75

Figure 5.4: Event Channels in MicroPRA Message Broker ... 77

Figure 5.5: Sentiment comparison in Lazada and Amazon for iPhoneX in MicroPRA . 79

Figure 5.6: Word cloud from reviewing text gathered from Lazada and Amazon 79

Figure 6.1 Viscovery representation with DAG ... 83

Figure 6.2 Dependency Graph in the Prototyped MicroPRA ... 83

Figure 6.3: Dependencies between the Services in Broker-Less Architecture 86

Univ
ers

iti
Mala

ya

xiii

LIST OF TABLES

Table 2.1 Architecture of existing PRA systems .. 25

Table 2.2: MacCall’s quality model categories based on the requirements 32

Table 2.3: Maintainability Sub-Characteristics Based on McCall and ISO25010 33

Table 2.4: Measurable Quality Attributes Based on MM4S ... 39

Table 3.1: The primary use case descriptions ... 52

Table 3.2: Operation-state relationship for CoCoME Model .. 55

Table 4.1 Architectral Comparsion between MicroPRA and Vsicovery 64

Table 4.2: Service Property Metrics for MicroPRA ... 69

Table 5.1: Technology stack used in the PRA prototype implementation 71

Table 5.2: Event Publisher and Subscriber Services in the MicroPRA System 76

Table 6.1 Comparing MicroPRA and Viscovery based on qualitative metrics 86

Table 6.2 Descriptive Comparison of Viscovery and MicroPRA Based on MM4S 87

Table 6.3 Quantitative analysis for MicroPRA and Viscovery based on MM4S 88

Univ
ers

iti
Mala

ya

xiv

LIST OF SYMBOLS AND ABBREVIATIONS

CCM : Conceptual coupling between methods

CoCoME : Common component modelling example

DDD Domain-driven development

EWOM : Electronic word of mouth

PRA : Product review analysis

POS : Part of speech

QA : Quality assurance

SDLC : Software development life cycle

SOA : Service-oriented architecture

UGC : User-generated content

Univ
ers

iti
Mala

ya

1

CHAPTER 1: INTRODUCTION

1.1 Background

Product reviews are a type of user-generated content (UGC) obtained through online

e-commerce channels and community forums. UGCs may describe a consumer’s

purchase experience, the product quality description, rating, quality, service, and delivery.

The reviews are significant for assessing customer satisfaction and making any judgments

about products, especially for new customers. Product reviews’ areas of application

include anticipating a customer’s purchase intentions, readership, sales revenue and

decision-making processes, marketing strategies, as well as improving product or service

quality and merchant sales.

As a business grows, the volume of product reviews also increases, making it harder

for customers to read all the reviews due to information overloading. On the other hand,

obtaining these reviews in a timely manner and analysing them is significant for all the

stakeholders involved, including the business owners, vendors, and suppliers, as well as

the customers who are considering buying the products as well. The primary problem

with reviews is that the text of reviews tend to be unstructured and noisy.

As a general rule, the opinion as a kind of problem needs to be structured in order to

be understood (Cambria, Das, Bandyopadhyay, & Feraco, 2017). To assess the quality of

the text, a set of operations must be performed on the product review text. For instance,

review selection by rate or usefulness, review summaries, reviewer credibility detection,

and entity resolution operation or text processing types that can be applied to the original

review text. In most cases, these kinds of operations increase the usefulness of the

reviews, and there are a variety of such operations like these in this wide area.

Univ
ers

iti
Mala

ya

2

The scope of product review analysis is vast, encompassing sentiment analysis,

opinion mining and review analysis systems, methodologies, and algorithms. Sentiment

analysis is a strong topic that emerged under text analysis. A sentiment is an attitude,

thought, or judgment that is prompted by feeling (such as joy, sadness or anger). The goal

of sentiment analysis is to automate the extraction of meaningful and structured data from

user-generated text (Kaufmann, 2017). A widely known form of sentiment analysis

involves polarising the reviews into negative, positive, and neutral values. These

attributes are called polarities (Cambria et al., 2017). A variety of studies have been

performed on this subject, which involved grabbing reviews, detecting negative reviews,

and verifying review usefulness, and analysing the review sentiment. For example, almost

all the references used in this dissertation denotes some of the abovementioned topics as

major concentrations in the studies.

Since the year 2000, many sentiment analysis frameworks have been introduced

(Cambria et al., 2017), and this is still a highly active area of research (Chen & Sun,

2017).

As observed by this researcher, most of the topics studied in this domain so far have

been about the efficiency and usefulness of the algorithms that are used for review

analysis with the proposal for more robust techniques and solutions. The studies seem to

have been considerably negligent about the software engineering concerns for such

systems.

 Concentrating on the techniques or algorithms of PRA1 systems alone is not

sufficient to address the overall quality of PRA systems. It is also essential to improve the

1 The abbreviation PRA used in this dissertation denotes all software systems related to product review
analysis.

Univ
ers

iti
Mala

ya

3

practicality of these systems. Software quality metrics such as reusability and

maintainability are essential to PRA systems just as they are with other systems. Although

ample works have introduced the new architecture of PRA systems either explicitly

(Flory, Kweku-Muata, Osei-Bryson, & Thomas, 2017; Tsirakis, Poulopoulos, Tsantilas,

LTD, & Varlamis, 2015) or implicitly (Eirinaki, Pisal, & Singh, 2011; Petz et al., 2014),

not much attention has been given to the quality attributes of the proposed architecture

for PRA systems.

Having upfront architectural thinking is significant in this domain as well, as the

system detailed design and implementation will follow the architectural concepts.

Applying some new architectural styles would make the quality assurance (QA) easier.

QA is essential to discuss the trade-off points in the system design. Similar to other

software-intensive systems, applying quality-centric development to PRA systems can

lead to a better separation between the layers or components and a more modularised and

encapsulated system.

Quality attributes (QA) are significant in different ways. First of all, they are widely

accepted by both the industry and academia. Secondly, quality achievement targets are

very reliable measurands for software architecture success and effectiveness.

Studying software architecture in the existing systems would provides enough

evidence for finding the gaps in the literature. In this regard, this research was aimed at

understanding the latest architecture of PRA systems, identifying their limitations, and

proposing some improvements. To evaluate the improvement, software quality attributes

had to be evaluated.

Due to the variety of QAs available for software assessment, covering all of them

would be a big hassle for a higher quality PRA system. Therefore, it made sense to

concentrate on a few of them for this study to achieve some measurable improvements as

compared to the latest works. This study values maintainability since there are different

Univ
ers

iti
Mala

ya

4

channels for collecting reviews, as well as a variety of evolving techniques to analyse the

gathered data. Therefore, contributing to the production of more maintainable PRA

systems can be considered as an improvement. In particular, this study addresses

maintainability from the point of view of coupling.

1.2 Problem Statement

 A vast majority of researches and industry players in the online PRA domain have

concentrated on ameliorating the current techniques for product review analysis,

sentiment analysis, and opinion mining, such as increasing the accuracy of classifiers over

the past decade. Considering the importance of these systems, the quality concerns of the

systems are still relevant in the domain of PRA and need to be addressed.

Even though architecture was not the primary concern for a majority of the

researchers, by chronologically reflecting on the proposed architectures for review

analysis systems, the evolution of the architecture was made observable. The researchers

have used the monolithic application (Flory et al., 2017), modular-based implementation

(Petz et al., 2014), and indexing platform (Eirinaki et al., 2011) to increase document

retrieval, clustering for high availability (Tsirakis et al., 2015), supervised machine

learning, API-based implementation for reusability (Tsirakis et al., 2015), and, later,

microservice-based implementation (Espinoza, Mendoza, & Ortega, 2018a).

Microservice architecture is about decoupling the system into reusable services

aligned with business domain decomposition. The primary outcome of improving

software architecture is to achieve or improve certain quality attributes, including the

reusability, extendibility, maintainability, and scalability of the system. These attributes

have been recognised as some of the advantages of microservice architecture by both

academia and industry. Hence, microservice-based architecture forms one of the key

architectural patterns for most of the QAs that this study targeted to improve. Some

Univ
ers

iti
Mala

ya

5

existing works that have utilized microservices for PRA systems were evaluated the

extent to which they have improved upon, taking microservice architecture into the

account.

Exploring the limited researches on PRA systems, which have utilised microservice

architecture to achieve quality attributes such as reusability and decoupling of system

components, revealed that the PRA domain still welcomes studies focus on architecture,

especially those on microservices.

A recent study that utilised microservices for a PRA system (Espinoza et al., 2018a)

resulted in a product named Viscovery. The approach for the study was to expose the

required review text processing methods and techniques as microservices. Viscovery’s

system provides application programming interfaces (APIs) for the exposed

microservices, which is called Novaviz API gateway. Therefore, the most crucial decision

for this architecture was to expose the libraries and algorithms as microservices.

Viscovery’s system design is a kind of improved architecture of the PRA system, leading

to greater abstraction and decoupling between the components and utilities, as exposing

the utilities as services always increases the reusability and level of modularisation. As a

result, Viscovery is distinct from the previous PRA systems (that mentioned in the

literature review), for focusing on extendibility and having reusable services. However,

the following questions remain: Has Viscovery a fully utilised microservice architecture?

To what extent does it comply with the patterns for microservice design and architecture?

The proposed architecture for Viscovery, is a hybrid architecture. This means that it

uses both component and microservice-based architecture. The components invoke the

required microservices by using the exposed API gateway. Some of the issues in this

approach are as follows:

Univ
ers

iti
Mala

ya

6

1- The components are coupled with microservices through the API gateway. The

components invoke the microservices. The core elements, players, and initiators in

the system are the components and not the microservices.

2- Some of the recommended peripheral elements in microservice-based

architecture are missing from this system’s architecture, such as registry and proxy.

The registry is useful for monitoring microservices and keeps track of their

availability. Proxy is a recommended component for high availability and load

balancing.

As a result, there is still a gap in this research in terms of satisfying with microservice

architecture patterns since some improvements can be made using more design principles

recommended for microservice-based systems. Consequently, the claim made in this

dissertation is that the abovementioned work does not fully utilize a microservice-based

architecture, which the PRA domain can benefit from.

This research focused on solving the abovementioned issues to decrease the coupling

of the microservices within the architecture and increase the benefits by using some

recommended peripheral components in the microservice architecture and a systematic

approach for microservice design, this research also looked at establishing clearer

boundaries in the domain.

1.3 Research Questions

This research focuses on the most recent microservice-based PRA systems and aims at

addressing the following questions:

1- What are the weaknesses and strengths of the existing PRA systems in terms of

coupling ?

2- How can the current work be improved by applying microservice-based

architecture, especially to reduce coupling?

Univ
ers

iti
Mala

ya

7

3- What are the requirements for achieving low coupling in microservice-based

PRA systems?

4- What technologies could be used to implement a PRA system based on the

proposed microservice-based architecture?

5- What are the metrics for measuring the coupling of microservice-based PRA

systems?

6- How can the coupling of microservice-based PRA systems based on the selected

metrics be measured?

1.4 Research Objectives

The objectives of this research are as follows:

1- To propose a new microservice based architecture for PRA systems to reduce

coupling.

2- To implement a prototype PRA system based on the proposed microservice-

based architecture as a proof of concept.

3- To evaluate the coupling of the implemented prototype PRA system as the

primary quality improvement measures against the existing systems.

1.5 Research Scope

This research aims at applying a microservice-based architecture in a prototype PRA

system to improve an existing existing which is based on microservices (Viscovery), and

to measure the coupling of the system. This research, however, did not attempt to find a

novel strategy for improving the efficiency of existing PRA methods, techniques, and

algorithms, or refining the reviews and visualisation,.

Univ
ers

iti
Mala

ya

8

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This chapter presents background information on the review analysis and related

works on PRA systems in the literature. The following section is dedicated to a brief

introduction to opinion mining and sentiment analysis as well as their significance. After

this, the significance of the architecture in PRA systems is explained; of all the software

architecture style, microservice architecture is considered for the explanation.

Subsequently, the existing PRA software architectures are discussed, and their advantages

and disadvantages are considered. Finally, the existing gap in the literature will be

discussed further.

2.2 Product Review Analysis for E-Commerce Platforms

In the competitive e-commerce world, customer feedback about the product or service

is crucial. The value and significance of Electronic Word of Mouth (E-WOM) or User

Generated Content (UGC) are incomparable, as opposed to traditional surveys or

customer’s opinion collection, as E-WOM is much more critical. The introduction of E-

WOMs, and the platforms for mining the same negates the need for surveys, opinion

polls, asking friends and family members, and groups. As a piece of evidence, it is

interesting that Twitter comments have been cited as some of the most influential factors

of branding images (Robson, Farshid, Bredican, & Humphrey, 2013). In comparison with

traditional opinions, E-WOMs will last longer and never vanish (Robson et al., 2013).

E-WOM is, in essence, opinionated, unstructured, subjective, massive, and difficult to

interpret, so collecting, refining, and analysing the content is crucial. Unlike objective

statements that can be proven wrong or right, opinions, and especially E-WOM in social

media, are subjective. For instance, “This notebook’s got battery” is objective, while

“This notebook’s battery is the best in the world” is subjective. E-WOMs generates

massive amounts of data that get buried in the unstructured text. This sort of unstructured

Univ
ers

iti
Mala

ya

9

data is not limited to the product reviews on e-commerce web sites and can be about

political issues, branding, marketing campaigns, and more.

E-commerce studies indicate that there is a direct relationship between an online

review and online purchase. The collection of enriched representational opinions is not

only useful for producers to understand the market trends and evaluate customer

satisfaction levels but also to trust and verify previous customer viewpoints about the

products and services. It is also vital for the merchants or service providers to determine

the product features that customers like more, as well as their general feeling and emotion

toward the company’s brand or a specific product. Therefore, opinion mining is a highly

important concern in this domain.

Opinion mining involves a set of tasks for enriching opinions, including the detection

of opinion holders, what is the topic, what is the context, and what is the content. They

are good decision support drivers for understanding people’s preferences to serve them

better. Opinion mining also helps advertise the product or service to the right people that

is called targeted advertising (Kaufmann, 2017). Social sciences and market research take

advantage of humans as sensors and aggregated opinions. (Kaufmann, 2017)

 There are three different categories of sentiment analysis techniques: knowledge-base,

statistical, and hybrid (Kaufmann, 2017). The first category primarily relies on

knowledge of analysing and classifying. Statistical techniques use support vector

machines and the machine-learning approach, but these techniques are typically weaker

than those that are analytical (Kaufmann, 2017). The hybrid approach, as the name

denotes, utilises a combination of both methods.

On the one hand, due to variety, velocity, volume and veracity of reviews or opinions

on different Web 2.0 channels, such as social media, websites, and blogs, it is hard to

catch the reviews on time. On the other hand, if merchants or service providers do not

Univ
ers

iti
Mala

ya

10

take product reviews into consideration, they will miss the market trend of worldwide

business competitions and marketing challenges.

 Within the industry, it can be observed that some companies such as IBM, Oracle,

SAS, SentiNet, and Luminoso have developed some commercial off-the-shelf tools to

detect and analyse a customer’s emotions and mood. In the academic sphere, a large

number of researches concerning this subject indicate that opinion mining has a vital role

in evaluating business success, political achievements, and social trends.

Further, reviewing the studies in this area shows that even after two decades, many

research works are still in progress. Figure 2.1 shows the Google Scholar results for

sentiment analysis. (Chen & Sun, 2017)

Figure 2.1 Research papers relating to ‘Sentiment Analysis’ (Chen & Sun, 2017)

 The majority of the research in this area is related to marketing, management, and

computer science techniques. Considering some of the works since 2004, the research

subjects in this domain are about identifying the usefulness of reviews, feature extraction,

sarcasm(detecting spam and fake opinions), entity recognition (detecting opinion holder),

and context identification.

Univ
ers

iti
Mala

ya

11

 However, it is necessary to use different approaches for opinion mining, as one

approach may compensate for the cons of another methods (Galin, 2018). Using a variety

of approaches for sentiment mining and analysis emphasises the importance of

maintainability and flexibility of such systems. The growing volume of reviews and

various media also indicates the need for scalability. Therefore, there is a need to consider

quality as an indispensable factor for the success of PRA systems.

 Quality assurance (QA) is in relation to architecture. The aim of QA is meeting

the written requirements for the customer or stakeholder’s satisfaction (Galin, 2018). The

QA perspective can be seen explicitly or implicitly in most of the existing works, even

though it was not the primary target for most of the PRA researches.

At the very beginning, when research in this field began, architecture was not the

primary concern. Instead, solving review analysis problems and issues was the primary

focus. However, later researches have studied the subjects of the platform, architecture,

and components required in PRA systems.

One aspect that makes PRA systems useful and flexible is the systems’ architecture.

Considering the existing literature from a design or architectural perspective was one of

the targets for this study. The main goal was to use the existing platform as a benchmark

for the application of QA and to make improvements.

In the next section, some of the outcomes for the architecture exploration activity in

the existing PRA systems will be highlighted to identify the research gap and propose an

improved architecture by applying the latest architectural pattern for E-WOM collection

and analysis in order to realise a system with better quality. Achieving a high-quality

system also meant complying with some quality factors; this will be introduced in a later

Section 2.5.3.

Univ
ers

iti
Mala

ya

12

2.3 Exlporing the Existing Architectures of PRA Systems

There are three essential dimensions for a successful application: architecture,

organisation, and process. Architecture plays a vital role in every software system.

Subramanian (2020) provided a simple and interesting definition for architecture: “A

shared knowledge about essential components of the system”. As the size of the

applications increases, the design and forethought about the applications’ architecture,

which includes software components and communications among the components,

becomes much more critical in the software development lifecycle. Architecture matters

as it affects the quality attributes2 of software systems.

Due to the variety and volume of the resources for UGCs and E-WOM as well as the

diversity of the opinion mining methods, algorithms, and integration requirements with

external systems (such as CRM systems), a PRA system could become a large and

complex application or a system of systems. Like other systems, PRA systems implicitly

or explicitly come with an architecture. If the design, architecture and quality attributes

are dismissed or underestimated when developing a PRA system, it will not lead to a

high-quality PRA system that brings satisfaction to the stakeholders.

Based on the existing literature, the evolution of PRA systems would be worthwhile

to study. Further, the architectures are not explicitly described or missing in the existing

works. Therefore, picking up one of the latest, most adequate architectures and working

on it further can pave the way for an improved software architecture version that serves

the domain of RPA.

2 In some software architecture references, the software quality attributes are also called ilittes and
include, among others, scalability, maintainability and usability.

Univ
ers

iti
Mala

ya

13

This study explored implicit or explicit architectures in the existing works based on

the following criteria:

1- Extracting the documented or undocumented architecture of the PRA systems.

2- Looking for main building blocks or main modules.

3- Looking for the architectural style or patterns used in the systems.

4- Exploring the improvement in terms of modularity of different PRA systems over

time.

5- Looking for creating decoupled components or reusable services.

Exploring the research background showed that, the candidate components for opinion

mining systems were introduced back in 2004 (Hu & Liu, 2004). The authors suggested

some of the main components, such as POS tagging, the frequent feature generation, and

opinion extraction, and also concentrated on bag-of-features, context-identification, and

sarcasm.

Later, the other researchers concentrated on proposing algorithms for extracting

sentiments. They employed the algorithms in a search engine for feature selection and

classification. (Eirinaki et al., 2011). Feature extraction was the primary goal in these

works. Features extracted is vital, as what the customers like or dislike can be predicted

based on a subset of features from a large pool of features. The authors discussed the

architecture very little and mainly focused on the High Adjective Count algorithms for

feature extraction . (Eirinaki et al., 2011)

Since, one of the main architectural concerns is to identify the main components or

building blocks of the system, finding the components required for opinion mining is a

Univ
ers

iti
Mala

ya

14

necessary requirement, as stated before with regard to the research focused on feature

extraction. The opinion mining components identified from the PRA system proposed by

Eirinaki, Pisal, and Singh (2011) are shown in Figure 2.2. Data pre-processing, as the

name implies, processes the original review’s text. For example, if the review is of a

specific product, the pre-processor separates that as a new file. An opinion mining engine

is embedded as a Part-of-speech (POS) tagger to discriminate different words’

grammatical roles within the review text, i.e. noun, verb, adjective, adverb, and so on.

The opinion ranking component assigns a score to the opinion based on the direction of

the opinions (Tsirakis et al.) for each feature. Finally, the indexing component indexes

the opinions based on the features for faster retrieval through the user interface.

Figure 2.2: Feature-based opinion mining (Eirinaki et al., 2011)

Univ
ers

iti
Mala

ya

15

 Robson etc all. (2011) proposed a Leximancer software package to identify

concepts, rather than keywords, in the text. One of the components of Leximancer is a

kind of a natural language processor engine. The authors used the links between the

extracted concepts to identify contradicting reviews. The output of Leximencer is a

concept map. The following Figure shows a sample concept map. However, they didn’t

explain how Leximancer can be used. The other components required to make up a PRA

system were not mentioned either. Thus, their study was concerned with text processing,

and they used Leximancer only as a tool for the same. They also did not provide a clear

structure of the proposed system for mining meaningful words (concepts) from the

unstructured text.

Figure 2.3: Concept Map is for Angry Bird, Fruit Ninja, Tiny Wings and Cut the
Rope (Robson et al., 2013)

Univ
ers

iti
Mala

ya

16

Petz et al. (2014) evaluated the discrepancies between different social media channels.

They also identified different algorithms for text processing on social media based on

NLP and investigated the effectiveness of the algorithms. Based on the ancestor works,

they introduced two categories for opinion analysis: (i) lexicon or dictionary-based

mining and (Petz et al.) (ii) machine learning approach. Machine learning itself can be

categorised as supervised, unsupervised, as well as those with other approaches. One of

the exciting results from this work was the system’s consideration of grammatically

incorrect texts in the processing. Figure 2.4 shows the grammatically incorrect sentences

found on different channels. However, from an architectural standpoint, it is not clear

how the different algorithms were implemented and evaluated.

Figure 2.4: Grammatical error ration in different channels (Petz et al., 2014)

Cristin Bucur (2015) also recommended a modular architecture for sentiment analysis

systems, consisting of four modules: Acquisition, Storage, Statistics, and Analysis. The

platform collects data and stores, classifies and centralises the results. For this purpose,

the acquisition module collects reviews from different sources, requiring the storage

Univ
ers

iti
Mala

ya

17

module to support multiple high-speed read queries. This specification is normally

supported by NoSQL databases. The analysis module performs sentiment analysis and

classification functions. The statistics module is responsible for the visualisation and

accuracy measurements by utilising some of the proposed algorithms.

Even though the described system architecture was much clearer than the ones in

previous works, the study’s focus was on classification and scoring algorithms. However,

a high dependency and interaction levels between the proposed modules can be observed.

Thus, the system modules were not loosely-coupled. Figure 2.5 represents this mentioned

dependency.

Figure 2.5: Modular architecture for a PRA system (Bucur, 2015)

Another work with architectural components was carried out by Tsirakis, et al.

(2015), who proposed a platform called PaloPro with the following features: real-time

opinion mining, source prioritisation, probabilistic language support, feature-based

Indexing, and crawling. This is one of the significant works in which architectural

components and infrastructure-related details have been emphasised. The architecture

depicted in Figure 2.5 shows the physical view for the system; Unfortunately, the

Univ
ers

iti
Mala

ya

18

conceptual view was unavailable to extract more information. The proposed architecture

was module-based, and the modules such as crawling, feed aggregation, clustering, and

multi-document summarisation had been incorporated (Tsirakis et al., 2015).

In 2017, the PaloPro team described more about the system’s component-based

architecture further, which is a kind of (Tsirakis et al., 2015 & Varlamis, 2017b). The

major components were as follows:

Similar to previous works in the field, PaloPro also includes a feature for monitoring

people, companies, and other entities on social media. The underlying linguistic module

has 87% accuracy for polarity detection and named-entity resolution. Polarity refers to

the ratio between the number of positive words and the number of negative words. The

crawler collects reviews from different sources, including Facebook, Twitter, video

comments, and normal websites and blogs. The content aggregator filters the data upon

collection. Based on the frequency of visits, the crawler components then prioritises the

resources. Spam detection filters can also be implemented in multiple layers to refine the

reviews.

PaloPro also includes a component for visualisation using dashboards called

Workspace, which allows the user to measure an entity’s (brand, company, product, or

person) reputation based on the selected keywords and attributes. The process follow (the

functionality) for PaoloPro is similar to any other PRA system, starting with raw data and

leading to business knowledge through the functions of data acquisition and recording,

information extraction and cleaning, data integration, modelling and analysis, and

interpretation and visualisation.

Tsirakis et al. (2017) used both SQL and No-SQL databases for indexing and fast data

retrieval, both related to the collection and analysis components of PaloPro. They

Univ
ers

iti
Mala

ya

19

provided an API for visualisation and managed to launch the platform in another country

within a few months. As a crucial decision for the system architecture, they used stream

data processing pipelines. By 2017, PaloPro could already support other languages and

cross-country social media. It was a significant achievement in terms of flexibility and

portability. Nevertheless, there are still questions yet to be answered: How easy is it to

change the features related to the social media channels? How easy is it to change and

deploy the components? To what extent is the system modularised? Did the developers

assess the architecture based on QAs or, in another word, illity measurands?

Figure 2.6: Paolo Pro physical view (Tsirakis, 2017)

A general-purpose service-oriented architecture for the IUSR Analyzer was proposed

by Flory etc al. (2017). They incorporated three main building blocks in the architecture:

Pre-Filtering, User Interface (client), and Back End (server). With modules in each block.

The	Pre-Filtering block	consists	of	two	modules:	Review Post Sensor and	Review Spam

Detector.	 The	user interface	and	 the	back-end building blocks are	composed	of	six	

Univ
ers

iti
Mala

ya

20

interrelated	modules,	each	module	contains	one	or	two	components.	The	authors’	

work	primarily	concerned	spam	detection	and	review	quality	to	ensure	that	the	text	

makes	sense	to	the	customer.	Figure 2.7	shows	the	architecture	of	the	IUSR	Analyser.	

Figure 2.7: Architecture of IUSR Analyzer (Flory et al., 2017)

The most recent related work reviewed was Viscovery (Espinoza, Mendoza, & Ortega,

2018b), a platform for trend tracking. The target for this work was to track trends using

dynamic topic modelling, which allows the evolution of the topics to be followed over

time. As a document would contain topics, and each topic would contain some words,

The Vador Lexicon output can be used to calculate the polarity score based on the word,

topic, and document level.

 The authors’ main contribution is that they structured different algorithms as

microservices. The core components of the proposed architecture are Data Injector, Data

Pre-processor, Data Processor, and Indexer. They decoupled the visualisation

components (Kibana and DFR Browser) from the back-end by implementing the API

Univ
ers

iti
Mala

ya

21

gateway. The data Injector is a crawler, while the data pre-processor filters and clears

sentences. The data processor, which is the main component, performs sentiment and

score calculation, and the indexer stores the final data in an elastic search repository. All

these components communicate with each other through the Novaviz gateway.

Even though, from the architectural perspective, this system shows a significant

improvement in terms of coupling, further investigations into this work revealed that the

components can be made much more cohesive. The microservices synchronously

communicate (request/response) through the API gateway. However, synchronous

communication has some drawbacks. If one service does not reply, the caller service will

be blocked for it, which could lead to the outage of the entire system. Therefore,	one	of	

the	improvements	that	can	be	made	for	low-coupling	is	implementing	asynchronous	

communications	 rather	 than	 having	 to	 call	 another	 service	 and	 wait	 for	 the	

response.	Figure 2.8	shows	Viscovery’s	architecture.

The	main	issue	here	is	related	to	the	question,	can	Viscovery	be	considered	as	a	

microservice-based	 application?	 By	 matching	 the	 microservice	 architecture	

patterns	with	Viscovery’s	implementation,	the	following	notes	were	observed.	

Of	most	important	one	was	that	Viscovery	just	exposed	utilities	and	algorithms	

as	microservices.	The	system	process	is	still	carried	on	by	the	components.	The	API	

gateway	 does	 not	 necessarily	 route	 requests	 or	 balance	 the	 requests	 between	

different	 services,	 and	 it	 provides	 a	 single	 point	 of	 access	 for	 the	 exposed	

microservices.	

In	 terms	 of	 availability	 and	 scalability,	 some	 peripheral	 recommended	

components	for	microservice	architecture	can	be	employed	in	Viscovery’s	structure.	

For	instance,	adding	a	service	registry	for	service	discovery	and	registration	would	

Univ
ers

iti
Mala

ya

22

improve	 the	 architecture.	 	 Likewise,	 load	 balancers	 would	 increase	 system	

availability.	These	elements	were	never	discussed	in	the	author’s	work.	

As	 a	 result,	 it	 turns	 out	 that	 this	 study	 did	 not	 fully	 utilise	 the	 microservice	

architectural	style.	

Figure 2.8: Viscovery - a microservice-based platform (Espinoza et al., 2018b)

As previously mentioned, the study reported that most of the algorithms were exposed

as microservices. Therefore, with proper decomposition, the microservices could be

refactored in an efficient way to align them with the domain capacity. For example, there

is no clear microservice breakdown in the system, and based on Figure 2.8, the system is

a component-based one. The structure is composed of four components; injector, pre-

processor, indexer, and processor. The authors divided the entire domain into four main

Univ
ers

iti
Mala

ya

23

categories and implemented some functions related to sentiment analysis and review

processing as microservices.

It is worthwhile to note that the primary aim for the Viscovery was not architecture

but the visualisation of on opinion topics using the DFR browser. Thus, a more thorough

study of the architecture and the platform of PRA systems is relevant and required. Even

though the authors mentioned the presence of the microservices, the extent to which they

utilised the microservice architectural patterns remains unclear.

Petz (2019) highlighted the general process for opinion mining, focusing on its

methods and techniques.

Figure 2.9 Main components for knowledge discovery through data mining
(Guo et al., 2011, as cited in Petz, 2019)

Figure 2.9 illustrates a proposal of components for knowledge discovery through data

mining (Guo et al., 2011, as cited in Petz, 2019). The identified components include

document fetching, preprocessing, processing, which are common for opinion mining

Univ
ers

iti
Mala

ya

24

systems. Even though the purpose of the above study was retrieving patterns and

knowledge out of the processed review or opinion text, the identified main building

blocks serve as a reference for this study.

It is noted that the main building blocks for the general opinion mining system is

similar in a more recent architectures (Bahatia, Chaudhary, & Day, 2020), as shown in

Figure 2.10. Figure 2.10 illustrates retrieval, filtering (identification) and processing

(classification) and summarisation as main components. This work also did not focus on

architectural improvements for opinion mining or product review analysis systems, it’s

gross-level architectural components confirms the earlier proposal by Guo et al. (cited in

Petz, 2019).

Figure 2.10 Block digram for an opinion score mining system(Bahatia,
Chaudhary, & Day, 2020)

Univ
ers

iti
Mala

ya

25

2.4 Review of the Existing Architecture

Despite the significant evolutionary progress in the PRA system architectures reported

explicitly or implicitly in the existing works, there is still room to improve for the

architecture of the PRA systems. This would bring many advantages to PRA systems by

increasing its quality and adding new scientific research outcomes to the system.

Table 2.1 summarises the architectures of the existing PRA systems in chronological

order. This table shows the main architectural style for of the systems and the extent to

which the modules or components depend on each other (coupling).

Table 2.1 Architecture of existing PRA systems

Year Study Main
acrhitecture

Highlighted problem
in terms of coupling

2011 Feature-based opinion mining
(Eirinaki et al., 2011)

Modular Highly dependent
modules

2013 Five-star review (Robson et al.,
2013)

No clear
structure

Highly dependent on
Leximancer, no clear
and well-documented
architecture

2014 Algorithms to carry out text

preprocessing (Petz et al., 2014)

No clear
structure

No clear and well-
documented
architecture

2015 Modular architecture for a PRA

system (Bucur, 2015)

Modular Highly dependent
modules

2017 Paolo Pro (Tsirakis, 2017) Component
based

Highly dependent
compoent

2017 IUSR Analyzer (Flory et al.,
2017)

Component
based

Dependent
components

Univ
ers

iti
Mala

ya

26

2019 Viscovery : A Platform for
Trend Tracking in Opinion
Forums (Espinoza et al., 2018b)

MicroService Not fully utilising
microservice
architecture

2019 Opinion mining in Web 2.0

(petz,2019)

No clear
structure

No clear and well-
documented
architecture

2020 Opinion score mining system

(Bahatia, Chaudhary, & Day,

2020)

No clear
structure, focus
more on the
process and the
pipeline

No clear and well-
documented
architecture

The following items represent the major requirements of PRA systems observed in the

existing PRA systems:

1- Ability to adapt to the new channels as the sources for extracting the product

reviews are growing.

2- Ability to apply and change the review processing algorithms and techniques for

incorporating and upgrading new techniques such as machine learning and big data

processing.

3- Ability to adapt and run the platform for different languages and different

countries.

4- Ability to maintain the system as PRA systems grow fast in relation to the volume

of the reviews and increasing number of products.

5- Availability of the main system components to grab and analyse the reviews.

By carefully considering the above-mentioned requirements, an important question to

ask is whether the existing PRA system architectures fulfil the requirements?

Requirements 1 and 2 denotes for agility to adapt to the existing and emerging

Univ
ers

iti
Mala

ya

27

requirements. This requires loosely-coupled system components and well-defined

breakdown in the system components to change and deploy it fast as the PRA domain is

changing.

Requirements 3 and 4 relate to system scalability as the review volume, and languages

and countries to be supported are increasing. The methods and techniques for extracting,

analysing, keeping, and indexing are also growing in the evolutionary cycle. For this

reason, PRA systems need to adopt the latest technologies such as microservice

architecture as the systems are becoming large and complex. In addition, Requirements 5

relates to system availability.

Based on the analysis, this study proposes microservice-based architecture as an ideal

solution for fulfilling Requirements 1-4. The following sections describe Microservice

architecture aims to address the above-mentioned requirements.

Microservice architecture is a suitable architecture for modularising PRA systems and

decomposing them into interrelated components. Loosely coupled, independent,

deployable, and autonomous microservices can expedite the development time and the

platform adaption for the business cases.

2.5 PRA and Microservice Architecture

This section answers the two main questions below:

a) Why microservice architecture improves PRA system design?

b) How to measure the improvement?

2.5.1 Microservice Architecture

Microservice architecture is an architectural style based on service-oriented

architecture (SOA). There are some differences between microservice architecture and

Univ
ers

iti
Mala

ya

28

SOA. First, microservices are much smaller than the typically large and orchestrated

services in SOA. Secondly, SOA normally uses smart pipelines such as Enterprise Service

Buses (ESBs) for communications between services, but microservices communicate

using dumb message brokers (Rihcardson, 2019). Despite this, SOA in microservice

ecosystem is moving to the endpoints (services itself) and brokers or pipes are just moving

the messages. (Lewis & Fowler, 2014) Generally, microservices can be considered as a

subset of SOA that brings further value to the whole idea. Both SOA and microservice

architecture aim to improve and facilitate modifiability, deployment, operations, and

increased flexibility through modules such as autonomous and independently deployable

services (Francesco, 2017).

The older architectural style is monolithic. Microservices are usually in contrast to the

traditional monoliths, which turns out to be a big hassle since it is hard to keep the

monoliths modular and maintainable. Refactoring them is also a big hassle because of

tangled dependencies. The problem with large, old monolithic style applications is called

the monolithic hell. Generally, every successful application has a habit of growing. As

the system evolves or grows, modularity gets eroded (Tyszberowicz, Heinrich, Liu, &

Liu, 2018). The sizeable monolithic system will eventually be the same as a big ball of

mud (Rihcardson, 2019). This means that the software lacks architectural thinking.

Further, when dealing with large or complex monolithic applications, the illusion of being

agile in development eventually goes away.

Big companies, such as Amazon started migrating away from monolith since 2002.

They later obtained impressive results, able to deploy changes every 11.6 seconds in their

production in 2011 in a way that users could not feel any outage in the system.

(Rihcardson, 2019).

Univ
ers

iti
Mala

ya

29

A recent study shows significant interest in the use of microservice architecture

(Granchelli et al., 2017) to cope with the issues of monolithic systems while providing a

solution of lighter weight than SOA. A microservice-based system is composed of

autonomous and independent microservices aligned with a sector, function or capacity in

a business. Componentisation takes place in the microservices but in a way that

components are services and not libraries. Components are replaceable and independently

upgradable, and like services, they are also independently deployable. When a component

is inside of a monolithic application, it would be harder to upgrade; but when it is in a

microservice, the situation is different. The difference is that it is possible to

independently deploy the microservices, while libraries are not autonomous and

independent (Lewis & Fowler, 2014). Thus, each microservice could run in its own

process.

A crucial point of note about microservice architecture is that each service has a

business model, database, and specific behavior or business capability. This is called a

Bounded Context (Tyszberowicz et al., 2018). The Bounded Context is one of the most

substantial concepts of a microservice, as it plays an active role in achieving loosely

coupled and highly cohesive services. It means that each microservice has it is own

business model, including its own data, logic, and behavior. Therefore, a microservice,

as a module, has an impermeable border that other micro-services usually cannot bypass.

In microservices-based systems, services communicate with each other through the API

and they do not use a unique or huge database for the integration.
Univ

ers
iti

Mala
ya

30

Another benefit of microservices is that different teams can work on separated

microservices, such that small teams can own small micro-services3. There is strong

conciseness through the idea that, rather than having a big development team, the

organisation can split the development into a team of teams (Rihcardson, 2019). It is hard

to try and adopt different technologies or languages with the monolithic architecture, but

it is easily achievable with the microservice style. Microservice architecture brings some

specific requirements to the underlying infrastructure, especially with the use of

lightweight containerisation platforms such as Docker, to facilitate deployment,

scalability, and resilience.

Microservices are loosely coupled, and the communications between them take place

via API or using event-based architecture. The event-driven approach can solve some of

the complexity issues in the micro-service architecture. It will be discussed in Section 2.6

that the. Coupling in software design will be discussed in more detail in Section 2.5.5

Even though the benefits of microservice architecture are numerous and undeniable,

achieving microservice architecture is a challenge in itself. One of the drawbacks of

microservice architecture is its increasing complexity. For instance, developers need to

be mindful of a partial system failure; When a microservices tries to communicate with

another, the called microservice may not be able to respond within a reasonable period.

Designing, testing, deploying and operating this kind of system is not easy either.

Nevertheless, there are some solutions for all these problems unlike the complex issues

of the monolithic applications. Besides, the use of microservice architecture increases

3 They call it two pizzas as the team is small enough to be fed by two pizzas.

Univ
ers

iti
Mala

ya

31

time-to-market, developer productivity, and scalability (Killalea, 2016). As a result, the

benefits of microservice architecture worth and outweigh all the drawbacks of the

complexity of the big applications.

2.5.2 Using Microservice Architecture for Developing PRA Systems

As shown in Table 2.1 architecture of PRA systems changes from monolithic to

modular over time. The PRA domain need to get benefit of being service based on moving

toward microservice acrhirtecture. The use of microservice architecture in the product

review analysis domain is appropriate, which includes cloud-native architecture, and PRA

systems mostly need to run on the cloud platforms as they are dealing with online

resources. Therefore, based on the massive volume of reviews and the variety of resources

and unstructured text, hosting the PRA systems on the cloud is the recommended choice,

and will help with flexibility, scalability, and resilience.

 As previously presented in Section2.3, microservice architecture has recently been

applied in PRA systems. (Espinoza et al., 2018b). Even for existing systems based on

monolithic architecture, it is also favourable to decompose the systems into service-based

systems to better cope with the general requirement of PRA systems. Certain migration

patterns are also recommended for migration from monolithic into micro-service

architecture (Balalaie, Heydarnoori, Jamshidi, Tamburri, & Lynn, 2018) such as

decomposing monolith based on data ownership, service registry, load balancer, and

configuration server. Some of these patterns have been employed In the proposed

architecture for the PRA system in this study.

Nevertheless, the existing PRA systems presented earlier in this dissertation (in

Section 2.3) shows that microservice architecture has been newly adapted to such systems

and has not been fully utilised.For instance, Viscovery (Espinoza et al.) should take

advantage of additional components such as the service registry and API gateway to

Univ
ers

iti
Mala

ya

32

maximise the microservice architecture’s capabilities. Communications between the

microservices would be of lighter weight and services would be decoupled further with

the addition of these components.

2.5.3 Software Quality Metrics

According to IEEE Software (IEEE Std.730-2014)quality depends on the extent to

which a software fulfils the user’s requirements (Galin, 2018). Softwares of poor quality

are hard to debug and maintain and easily become outdated and obsolete with time.

Retrofitting high qualities to existing software systems is always tricky and requires much

effort.

Software quality models date back to the 1970s, such as the Boehm and McCall

models. There are some taxonomies and somehow the same factors for the quality. Both

of these models classify quality attributes into a hierarchical model that includes

categories and sub-categories (Galin, 2018). MacCall introduced 11 main quality

attributes and grouped them into categories based on product operation, product version,

and product transition as shown in Table 2.2.

Table 2.2: MacCall’s quality model categories based on the requirements

Requirement Quality attribute

Product
operation Correctness, Reliability, Efficiency, Integrity, Usability

Product
revision Maintainability, Flexibility, Testability, Efficiency

Product
transition Portability, Reusability, Interoperability

One of the quality model standards is ISO25010 (Galin, 2018). The quality

characteristics given in ISO/IEC 25010 are functional suitability, performance efficiency,

compatibility, usability, reliability, security, maintainability, and portability. QAs

selection depends on the context of the system, including the domain, requirements, and

Univ
ers

iti
Mala

ya

33

architecture. Microservice architecture has it is own role in achieving quality attributes.

Maintainability is a primary attribute in a microservice-based system, as it has a direct

relationship with coupling. As a general fact, loosely coupled services are easy to

maintain.

 Maintainability refers to the level of ease with which users and maintainers to detect

the reasons for software failure and to correctly verify that the software is functionally

working . Likewise, how much easier it would be for the developers to detect faults and

improve upon or adapt the system is also related to maintainability. For example, a typical

maintenance requirement is to determine the size of a module or program. If the module

boundaries for a system are not clearly specified, the system would be hard to maintain

it. The maintainability sub-characteristic based on McCall’s quality model and the

ISO/IEC 25010 are listed in Table 2.3.

Table 2.3: Maintainability Sub-Characteristics Based on McCall and ISO25010

McCall’s ISO/IEC 25010

Simplicity, modularity, self-

descriptiveness coding, documentation

guidelines, compliance (consistency)

Modularity, reusability, analyzability,

modifiability, testability

 On the other hand, maintainability can also be related to the ability to deploy and

easily deliver software features. Maintainable software will facilitate DevOps, a

prominent topic in the industry, which refers to a set of practices for quick, frequent, and

reliable delivery of the product. (Rihcardson, 2019). Considering sub-characteristics of

maintainability such as testability and modularity, the software’s ability to deploy and

self-describe within the microservice architecture may contribute to some improvements

in this vital operation for the software development life cycle. In essence, one of the

success factors in micro service development is infrastructure automation, including

Univ
ers

iti
Mala

ya

34

continuous delivery, testing, and monitoring facilities. Covering this topic is outside the

scope for this study, but it is worth noting that splitting a system into small deployable

components would make it easier to manage the entire system’s availability, but of course

it requires automation infrastructure.

Another quality or sub-characteristic related to this work is reusability, which is the

ability to develop reusable modules or incorporate already developed modules into a new

system. Reusability is an essential characteristic of microservices is reusability. As

microservices have already been tested and the failure cases have also have been detected

by former developers, and microservices are well-defined enough to integrate them into

existing applications using API.

2.5.4 Maintainability Model for Microservices

As mentioned in the previous section, the International Organization for

Standardization proposed the quality model ISO/IEC 25010, but practical guides are

missing. In addition to the quality model, Some other researchers tried to elaborate further

on practical approaches to realise a quality model. They used quality metrics for the

object-oriented design of SOA, but the proposed methods were too complex (Bogner,

Wagner, & Zimmermann, 2017).

One of the models is QMOOD (Senivongse & Puapolthep, 2015). As Figure 2.11

illustrates, the quality attributes are getting more concrete from the top to the bottom of

the model. The second layer covers the design phase, and the third and fourth levels cover

the implementation artefacts. QMOOD covers more than maintainability; for example, it

includes effectiveness which is beyond the scope of this study.

As Figure 2.11 shows, the maintainability criteria get more concrete going from top to

bottom. Level 1 is dedicated to maintainability; the medium level is related to medium-

Univ
ers

iti
Mala

ya

Univ
ers

iti
Mala

ya

36

Figure 2.12 Maintainability Model for Services (Mitchell & Mancoridis, 2006)

MicroPRA relies on MM4S as it is simple and introduces quality attributes as concrete

service properties. Comparing the hierarchical layers in MM4S introduced in Figure 2.12,

with those of QMOOD (Figure 2.11) makes this fact clearer.

As mentioned above, the MM4S only covers maintainability. The second layer

involves the service properties of coupling, cohesion, granularity, and code maturation.

There are additional similarities between the two models, as can be seen in Figure 2.12

which shows the service properties used in QMOOD model. The strength of the service

properties is that, based on the quality attribute, the weight could range from 0.5 to 1 if it

has a positive impact on the system; or otherwise, the weight could be -0.5 to -1. This

quality assessment technique has also been used in MM4S. While QOOMD was proposed

for the object-oriented systems, MM4S has more tangible metrics for microservice-based

systems.

The suggested service properties for MM4S are elucidated below.

Univ
ers

iti
Mala

ya

37

1- The absolute importance of the service (AIS): This parameter is quantified

based on the usage of the services. This property is aligned with the

recommendations for QOOMD (Figure 2.11), i.e. average number of directly

connected services. QOOMD differentiates between consumers and service

providers who consume a service. MM4S does not discuss this much detail.

2- The absolute dependence of the service (ADS): This refers to the number of

services that a service S depends on. It means that the service S calls for at

least one function. This property is aligned with the “average number of

directly connected services” parameter in Figure 2.113 for QOOMD as well.

3- Service interdependence in the system (SIY): This denotes the number of

bidirectional dependencies, i.e. the number of times that service S1 calls S2.

In this case, function calls from S2 to S1 should be avoided. Therefore, the

ideal state for this relation is no call and 0 is preferred.

The comparison of MM4S and QOOMD shows MM4S is simpler and more relevant

to quality measurement for microservice-based systems.

Univ
ers

iti
Mala

ya

Univ
ers

iti
Mala

ya

39

calculations based on the product itself. Table 2.4 shows some measurable metrics in the

maintainability model for microservice-based systems.

Table 2.4: Measurable Quality Attributes Based on MM4S

Metrics Meaning Description

AIS
The absolute importance of the

service

The number of clients that

invoke at least one method

of the service

ADS
The absolute dependence of the

service

The number of services that

current service depends on

SIY
Service interdependence in the

system

Number of bidirectional

dependencies

2.5.5 Coupling in Microservices

Coupling refers to the extent to which a module in the system depends on another

module. Coupling and cohesion are the most essential factors for the quality of

modularisation in the software industry (Tempero & Ralph, 2018). A bounded context

and clearly defined business boundaries are vital for making a microservice business-

oriented and loosen its dependencies.

 With modularity and layering, tight coupling between technology and domain-

specific elements is going to disappears, even in monolithic applications. As mentioned

before, there is a significant relationship between a microservice and coupling.

Microservice aims to lose coupling between the system modules. Microservices are

independently deployable and much more decoupled than monolithic services. Each

microservice only concentrates on one business aspect, domain area, or business capacity.

Univ
ers

iti
Mala

ya

40

The lower the coupling, the greater cohesion between microservices. (Nadareishvili,

Mitra, McLarty, & Amundsen, 2016).

2.5.6 Metrics for Measuring Coupling

Some studies on modularisation and componentisation assessment techniques are

present in the literature. The majority of the works are based on object-oriented systems,

and the evaluations were done using structural information and dynamic information.

Interpreting the structural information involved a static code analysis based on the number

of calls between classes, inheritance, and variable access. The runtime executions

specified some dynamic information (Russo & Oliveto, 2016).

Based on MM4S, which was discussed in the previous section, the coupling is a service

property that falls under maintainability. This provisioning is useful when it comes to the

assessment of the decoupling improvement in micro-service architecture. Apart from the

categorisation, the service metrics described by MM4S were used as quantitative metrics

in this study.

Descriptive metrics form another group of metrics, the most famous and classic of

which is the Bunch tool. This tool is a kind of abstraction tool that provides suggestions

for clustering a domain. Clustering a domain or, in other words, model decomposition is

a vital activity that has been previously discussed in Section 2.5 in the context of

Viscovery system. As mentioned before, the authors divided the domain into four

different groups. In the other architectures that were discussed before, including PaloPro

and even older module-based systems as well, this kind of division can be observed. The

Bunch tool suggests drawing a Module Dependency Graph (MDG) for the clustering or

model decomposition purpose. The graph would consist of clusters, with each cluster

including some edges and nodes. High cohesion is observable based on the number of the

edges among the nodes in one cluster, and coupling can be measured using the

Univ
ers

iti
Mala

ya

41

dependencies of different clusters. Fitness functions can also be used in this method to

evaluate the quality of graph partitions. By using a heuristic search space algorithm, this

method provides optimised cluster decomposition (Russo & Oliveto, 2016).

One of the strengths of the Bunch tool is that it introduces an interface and API to

integrate with other tools. Further, it is possible to introduce third-party optimisation

algorithms. Figure 2.14 shows the extendibility feature of this tool. As a result, this is a

kind of framework rather than an application.

Figure 2.14: Extendibility of Bunch Tool as a framework

Having a proper and effective way of decomposing microservices is a crucial part of

microservice-based SDLC, and it is important to define the boundaries such that they

preserve the modules. There is a graph-based model called CoCoMe (Tyszberowicz et

Univ
ers

iti
Mala

ya

42

al., 2018) that can be used for this purpose. CoCoMe aims to cluster microservices to

achieve low coupling, which is relevant to this study. The following section discusses

ways for microservice visualization methods to qualitatively assess the coupling.

2.5.7 Coupling in Microservice-Based Architecture

 The main aim of microservice architecture is flexibility for change, and it is directly

related to having loosely coupled services. By decomposing a domain into functions and

specifying functions related to each other, functionally related features can be specified

using a cluster (Tyszberowicz et al., 2018). Each cluster is a candidate for a microservice

or a group of related microservices.

2.5.8 Design Patterns for Microservice-Based Systems

In microservices, there are some patterns to follow and implement. Some of them are

classical patterns inherited from the ancestor architectures, While some of them belong

to the microservices ecosystem. As previously mentioned in Section 2.5, one of the main

issues related to the microservices is the bounded context. The bounded context has a

direct relationship with the older pattern separation of concerns. The pattern gathers

together the features that are most likely to change together for the same reason and

separates the parts that may change for different reasons (Killalea, 2016). If a change

going to affects microservices in different clusters, something is wrong in the design

(Mayer & Weinreich, 2018). Therefore, designing the communication occurring between

microservices is essential.

There is also an API gateway pattern for the case when there are multiple

microservices. While thick provisioning may be required for these services and also

different devices may need different formats, the API Gateway will take care of this by

sitting in front of a group of microservices. The Viscovery sentiment analysis platform

discussed in Section 2.5.2 has implemented this API gateway (Espinoza et al., 2018b).

Univ
ers

iti
Mala

ya

43

However, it is mostly an API aggregator and does not perform load balancing and routing

tasks alone.

2.6 Summary

This chapter first introduced the domain for the sentiment analysis and review

analyses. The existing architectures for PRA systems were discussed with the aim to

propose an improved architecture. The microservice architecture was then introduced to

highlight its usefulness in PRA systems. Coupling was explained as a software quality

attribute that assesses the proposed architecture. Quality attribute models were compared,

and the maintainability model was highlighted, as it is suitable for microservice-based

systems. A directed graph was introduced to visualize the microservice clusters aligned

with business sectors.

Univ
ers

iti
Mala

ya

44

CHAPTER 3: RESEARCH METHODOLOGY

3.1 Introduction

This chapter presents the overall method followed in this research. The study was

initiated by a review of existing works, as presented in the previous chapter. The

architectures of existing PRA systems, which were extracted from recent works, were

also explored. Following this, the problem statement, scope, research questions, and

objectives were elaborated further. After that, an improved architecture was proposed,

and the advantages and outcomes of the proposed architecture were mapped along with

the research objectives. Then, a prototype PRA system was implemented, and, finally,

the metrics for coupling and cohesion were used as the quality measurement criteria.

Figure 3.1 depicts the research methodology.

Univ
ers

iti
Mala

ya

45

Figure 3.1: Research Methodology

3.2 Review Existing Architectures in the Literature

For conducting this dissertation, a systematic search was performed along with ad-hoc

searches. Due to the diversity of the subjects, topics such as opinion mining, review

analysis, platform, architecture, microservice architecture, coupling, cohesion, and

software quality metrics were used for the searches. Finding the relevant literature

demanded outstanding effort and time. The main focus was looking for architectures in

the existing literature to find a gap. For this purpose, architecture and platform were the

major search criteria always in the literature exploration.

Univ
ers

iti
Mala

ya

46

3.2.1 Selection of Documents and highlight the main architecture

Almost all documents for the literature review were selected from journal and

conference articles. Generally, online databases such as Science Direct, IEEExplore, Web

of Science, and Scopus were searched into. Most of the papers on the subject of PRA

system platforms and architectures within a specified area were selected for review to

assess fitness to the scope of this study. The architectures presented explicitly or

implicitly in the articles were extracted as the main focal point for the analysis. Books

and articles were also referred to for extracting fundamental concepts such as stream

processing, microservice architecture and software quality metrics.

3.2.2 Selection of Search Queries

Noticeable query results were obtained using sentiment analysis, opinion mining, and

customer review analysis as the search query parameters. The search was refined further

with the terms platform and architecture, and there were zero results when “microservice

architecture” was added to the search queries. Therefore, most of the documents were

selected by using the first set of search items, i.e. sentiment analysis, opinion mining, and

customer review analysis.

Based on the literature reviewed, it is clear that architecture and framework were not

included among the keywords for most of the studies. To meet the objectives of this study,

microservice architecture, architecting microservices, componentisation, modularisation,

coupling, and cohesion metrics in software architecture were independently used to find

microservice-related references.

3.3 Formulation of the Problem Statement

Even though many of the query results were about solving non architectural related

problems, accurate exploration on the search contents led to some explicitly documented

or undocumented PRA system architectures. Based on the initial works, the main

Univ
ers

iti
Mala

ya

47

components of the architectures and relationships between the components could be

identified.

 Studying the selected documents from the literature search led to a compilation of the

chronology of existing architectures and platforms. The platforms were compared, and

their architectures extracted to help identify the research gaps and verify the problem

statement.

3.4 Find A Systematic Approach for Proposing a New Architecture

 Base on the existing literature it was not clear enough how the module decomposition

has been done, how the final architectural component has been mapped into the

decomposed modules. This research aimed to find a systematic approach to mapping

decomposed modules into architectural components. The core modules for the PRA

system extracted from the existing literature. This mapping helps for a better comparsion

between new architecture and exiting ones.

After identifying the modules the main problem how to map and convert the modules

into microservices as the main bulding blocks for the proposed architecture. For this

purpose, the study explored within the existing techniques for microservis decomposition.

 Common Component Modeling Example (CoCoME) model is identified as a result

for the research (Tyszberowicz et al., 2018). Based on the CoCoMe model, by relying on

the use case specifications, the researcher specified certain actions and state variables.

The relationships between the action and state variables were used as the input for

splitting the domain into subsystems or modules as well as discovering microservices

candidates. Considering the microservices clusters and the use of a directed graph to

represent them, as previously discussed in section 2.5.6, this criterion is important for the

third objective of this research, which is about moving towards a weakly coupled system.

Univ
ers

iti
Mala

ya

48

So, the CoCoMe model was the preferred choice for this story to align the CoCoMe model

with the directed graphs (Mitchell & Mancoridis, 2006) for measuring the quality.

Figure 3.2 depicts the concrete steps taking in this study to decompose the sample

domain into microservices and come up with a new architecture. As mentioned before,

the idea for the steps involved in this study, came from an existing work on the CoCoME

model (Tyszberowicz et al., 2018). This model has already been introduced in Section

2.5.6. The motivation for choosing this method was the fact that it aligns well with the

Bunch model, and there are some structured methods appropriate for decomposing

microservices. The steps mentioned above will be further elaborated in the subsequent

sections.

Figure 3.2 Concrete steps for MicroPRA development

3.5 Proposal for a New Architecture and MicroPRA development

The main objective of this research was to propose a new and an improved architecture

for PRA systems in order to reduce coupling. First, the general features for the existing

Univ
ers

iti
Mala

ya

49

PRA system were analysed based on the literature. The main modules and building blocks

of PRA systems were identified by analysing the requirements of PRA systems. The next

step was to decompose the modules into reusable microservices. Finally, the complete

microservice architecture with peripheral components and a message broker provided the

outcome for filling the gap in the existing review, which will be discussed further in later

sections.

3.5.1 Identifying The Core Modules Based on the Existing Works

As mentioned before by studying the existing literature, the core modules for a general

PRA system is understandable. Therefore, as a first step the identifying modules were

significant.

As indentified in the Section 2.3 while exploring the architectures in the existing

literature, the PRA subdomain based on the work of Petz et al. (2014b) was decomposed

into the modules as shown in Figure 3.3. The descriptions for each module are given

below. This study decided to pick this decomposition as it is a quite good candidate and

it is somehow similar to the other relevant works. On the other hand, it is a suitable choice

for applying architectural improvements and prototype it as proof of the concept for the

proposed architecture.

Univ
ers

iti
Mala

ya

50

Figure 3.3: New module decomposition aligned with (Petz et al., 2014)

The describtion for the modules are as follows:

1- Product Catalogue Module

This module is needed to manipulate the product and service information along with

channels that the PRA system will use to gather online reviews.

2- Review Collection Module

For manipulating reviews, the review collection module is in charge of hosting all the

review collection microservices that involve different e-commerce channels and different

formats. This microservice plays a major role in the review text supply for the PRA

system.

3- Review Analysis Module

Univ
ers

iti
Mala

ya

51

The core part of a PRA system is analysis, including review usefulness, entity

recognition, context identification, POS tagging, and sentiment analysis. Due to the

presence of a variety of algorithms, this study focused on POS tagging and sentiment

analysis only. Nevertheless, the efficiency of the algorithms is not the main problem

addressed in this dissertation.

4- Statistics Module

To visualise the analytical results, more processing tasks such as aggregation and

statistics need to be performed, which this module would be in charge of.

5- Analytics dashboard

Some of the previous researches involved the use of Kibana or DFR	 Browser

(Espinoza et al., 2018b). In this work, for simplicity, analytical bar charts and a word

cloud were used.

3.5.2 Identifying application core features and behaviour (use case diagram)

The first step in designing the MicroPRA system is to divide the application’s core

features into major and critical parts. According to the existing works, as discussed in

Section 2.3, generally a PRA system should collect and analyse reviews, and provide

analytical reports to visualise the output through front-end applications. The use case

diagram in Figure 3.4 provides a reference for PRA system behaviour and operations. Univ
ers

iti
Mala

ya

52

Figure 3.4 Use case diagram for a PRA system

Table 3.1 shows brief use case descriptions. To maintain the simplicity of this work and

clarity of discussion, only important use cases were covered.

Use case Description

Manipulate the

product catalogue

The administrator creates or updates the product information,

including the product’s unique ID in each channel, channels

for collecting reviews (Amazon, Twitter,etc.), and the

endpoints for collecting reviews.

Collect new reviews
The system should periodically grab reviews from different

channels.

Analyse the review

The PRA system should analyze the collected review. Some

algorithms, such as POS tagging and sentiment analysis, can

be applied and stored in the system.

View the analytical

report

PRA users can access the dashboard and see the analytical

report, including a bar chart and word cloud.

Table 3.1: The primary use case descriptions

Univ
ers

iti
Mala

ya

53

3.5.3 Identity Operations and State Variables

Based on the system functionalities and behaviours described in the previous section,

the required modules were identified and decomposed in a conventional PRA system.

There is no rigid rule for decomposition. Typically, decomposition is done based on the

intuitive experience of the developers, but, as a practice, the business capacity or bounded

context can be referenced.

Business capacity is the outcome of the business functionality that generates or

provides value to the end-users or clients. As a rule of thumb and inspired by the Domain-

Driven-Development (DDD) concepts, one microservice was designed for each area of

functionalities.

Decomposition is essential. Bad decomposition may lead to a distributed monolithic

application. Also, the communication between services as well as data consistency had to

be considered when splitting the functional requirements into microservices.

Communication frequency and data transfer volume are essential because of the network

latency issue. Network latency leads to the challenge of service availability.

Decomposition based on business capability or domain model is one of the approaches

for identifying microservices. That is why DDD and microservice architecture are a

perfect match for PRA systems. As a simple yet common practice, microservices with

close functionalities and respond to the same kinds of changes are placed together.

For the aggregate, in this work, in order to achieve microservice decomposition, the

scientific techniques were relied upon, and CoCoME and state-actions tables are utilised

for the decomposition.

Univ
ers

iti
Mala

ya

54

3.5.4 Creation of an Operation-State Relationship Table

As discussed in the previous section, microservices are heuristically and intuitively

identified based on the experience of the designers. (Tyszberowicz et al., 2018) One of

the approaches extracted from the CoCoME model was to refine the operations and

entities as well as the relationships between them. In practice, a business model consists

of a finite set of operations and entities. The operations aligned with the use cases help to

decompose the services and specify the boundaries. This semantic approach was

described by Tyszberowicz et (2018). The authors compared this semantic approach with

the manual design, and then obtained acceptable results. This was the reason for choosing

this method for the MicroPRA service decomposition.

Table 3.2 shows the relationship between the operations and states. If the relation is a

read or write operation, the number is one; otherwise (for read and write), the number is

two. The operations were aligned with the use cases depicted in Figure 3.4. Review and

Product Catalogue were the main entities in the MicroPRA core domain.

The collect review operation collects reviews and adds it to the database or storage, so

the cardinality for the relation between this operation and entity is 1. On the other hand,

the analyse review operation reads a review entity and processes it; the processed one is

written in the database. So, the cardinality is 2.

Univ
ers

iti
Mala

ya

55

Operation/Entity Review Product Catalogue

Collect review 1 (write) 1 (read)

Analysis review 2(read and write) NA

Show analysis result 1(read) NA

Manipulate catalogue NA 1 (read)

Table 3.2: Operation-state relationship for CoCoME Model

Based on the dependencies, visualisation was done in a way such that each service had

access to its own state variables, which helped identify the clusters of the dens

relationship. Dens relationship refers to the relationship between microservices

performing functionally related tasks. This is discussed further in the next section.

3.5.5 Identifying Microservices

It is also important for each service to have access to its state variables. Each

microservice covers a specific functionality in a way that there is just one reason to change

it. Following this rule decreases the density and relationships between modules or

subsystems. Figure 3.5 shows how following the CoCoME model led to the identification

and extraction of candidate microservices. First, the variables (states) and verbs were

specified based on the use case diagram. Table 3.2: was used for accomplishing this task.

Each microservice has its own entity and operation space. If one microservice needed

anything from another, it was made possible through an API call. Based on this, Figure

3.5 depicts a graphical representation of the operation/entities table. This graph was later

used for service decomposition.
Univ

ers
iti

Mala
ya

56

Figure 3.5: Graphical Display for Operation-State Relationship

Based on the dependency graph in Figure 3.5, the candidate microservices were

identified as shown in Figure 3.6. Each operation that shared less data with another was

a good candidate for a microservice or cluster of microservices. This implies a weaker

relationship between microservices that satisfies the low coupling requirement.

MicroPRA is a small prototype system, so there is no cluster of microservices. However,

it can be assumed that a subdomain such as a product catalogue, in practice, would contain

multiple microservices. The relationship between the microservices in a cluster or the

internal relationship within a microservices would be dense as they would be large

amounts of states or data to share. This relies on high cohesion among the microservices

in the cluster.

Univ
ers

iti
Mala

ya

57

Figure 3.6: Microservices Identified using CoCoME Model

As a result, a meaningful model that guided development of the MicroPRA

microservices was obtained. It was important to ensure consistency of the MicroPRA

implementation with this model.

Modularisation and the identification of domain clusters are not new tasks in software

development. What makes them much more noticeable in microservice development is

the tendency towards having much more decoupled services based on the visualization.

The visualisation itself was derived from the operation-state table, which was extracted

based on the use case. Thus, the requirement was traceable, making CoCoME a useful

technique for extracting microservices as well.

3.5.6 Implementation of a Prototype for MicroPRA System

 As discussed in the previous sections, improvements were required for MicroPRA

system, and certain tools, technologies, and platforms were used to facilitates the

achievement of these improvements. Peripheral components such as microservice

registry, dedicated API gateway, and message broker, were the major changes in the

implementation. The details will be discussed further in Chapter 5, and the following

section covers the important decisions made in detail.

Univ
ers

iti
Mala

ya

58

3.6 Important Architectural Decisions

Architectural decisions that helped discriminate MicroPRA from Viscovery played a

significant role in this study, as they were aimed to achieve the improvement that was set

as the goals for this study. Using stream processing platform (message broker) allowed

for reduced coupling between the services. NoSQL database was selected because of its

compatibility with unstructured data. API gateway and registry were used in the

implementation as supplementary components for microservice architecture.

3.6.1 Stream Processing Platform as a Message Broker

To avoid direct communication between microservices, an event-based system that

relies on a stream-processing platform was proposed for MicroPRA. There is no direct

service call in the MicroPRA. The event-driven approach decouples the client (service

consumer) from the service. Reducing the need for client or service calls was the second

outcome of this approach. The stream processing platform employed was the proposed

architecture for two reasons. First, it used a publish-subscribe model and decreased the

coupling between microservices. The subscriber and the publisher were decoupled from

each other, and they did not need to know anything about each other. Second, it is was a

stream-processing platform that serves as a middleware, and the PRA system can leverage

the scalable characteristic of such middleware. As stated before, one of the issues with

PRA systems is the growing volume of the reviews from different channels.

3.6.2 No-SQL Database

A feature of the No-SQL database is the lack of binding to a specific structure

(Zablocki, 2015). In the review analysis domain, PRA systems always deal with

unstructured data. Even in the review text, the use of emoji and emoticons reveal the

sentiment of the review writer. The requirement of grabbing and manipulating this kind

of text also leads to the decision to adopt a NoSQL database for the proposed PRA

Univ
ers

iti
Mala

ya

59

architecture. The PRA system also does not need as much consistency as SQL-based

databases usually do. Thus, the PRA system can enjoy the schema-less feature of the

NoSQL database.

3.6.3 Using Supplementary Components for the Microservice Architecture

For achieving scalability and easy provisioning of the microservice, the proposed

MicroPRA included a Registry and API Gateway. This decision was inspired by patterns

of microservice architecture. Registry and API gateway pattern are recommended pattern

for microservice-based systems. 4.4 describes the role for API Gateway and registry for

facilitating service provisioning and load balancing between services.

3.7 Evaluation of the Proposed Architecture

As previously discussed in Section 2.5.5, coupling is related to design quality, and it

is an essential measurement of the extent to which software components are inter-related.

In the following sections, further details about the quality model for coupling are

provided. RAs mentioned earlier, measuring all QAs achievements requires a bigger

effort and it is out of the scope of this study.

3.7.1 Fine-grained Microservices

A microservices-based system should be composed of fine-grained services. Fine-

grained means the size and number of microservices are small enough in order to achieve

some quality attributes. There is always a trade-off for the size and number of

microservices. (Tyszberowicz et al., 2018). The CoCoME model helps to come up with

a more reasonable micro service decomposition and having a conceptual cluster of

microservices with less dependency.

Univ
ers

iti
Mala

ya

60

3.7.2 Assumptions Made for Viscovery for Comparison with MicorPRA

The necessary details for performing a comprehensive benchmarking is not available

for Viscovery. The authors of Viscovery (Espinoza et al., 2018b) did not mention about

the microservice decomposition technique they used. On the other hand, CoCoME was

utilised for MicroPRA to reach the stage that the candidate microservices could be

extracted as a design element. With regard to microservice decomposition, assuming that

Viscovery’s microservices were aligned with microservice decomposition using

CoCoME, MicroPRA’s microservices are comparable to that of Viscovery, as CoCoME

is a technique comparable with human design. Chapter 6 states further detail on the

comparison between the two systems.

3.7.3 Descriptive and Quantitative Metrics

As quoted by Tempero & Ralph (2018), coupling is defined by Yourdon and

Constantine as:	

Coupling as an abstract concept—the degree of interdependence between

modules—may be operationalized as the probability that in coding, debugging, or

modifying one module, a programmer will have to take into account something

about another module. (Tempero & Ralph, 2018, p. 215)

As a conceptual rule, the more dependent a component is from the others, the more

tightly coupled the components are, making it difficult to reuse and change them. Most

literature reviewed concern coupling metrics for object-oriented or structured programs,

and they are dealing with dependencies between classes and class hierarchies (Tempero

& Ralph, 2018). In the context of this study, microservices are more granular, for which

there are no well-defined metrics yet. That is why a descriptive method was also chosen

as the quality assurance tool for this study.

Univ
ers

iti
Mala

ya

61

Apart from using the dependency graph as a descriptive method, another quantitative

method selected for assuring the quality was MM4S. This method was chosen because it

concerns method calls, and due to the layering architecture used for implementing

microservices, it is a suitable metric for measuring internal dependencies between the

microservices. MM4S was devised specially for microservice-based systems. It was

inspired by the previous quality model used for object-oriented and service-oriented

systems. (Senivongse & Puapolthep, 2015)

3.8 Summary

The steps involved in forming the proposal for the MicroPRA as well as the

reasoning behind the methods for extracting the microservices as a significant step in the

design have been discussed in this chapter. The important decisions taken for the

MicroPRA design and rationale for the quality assessment model were described as well.

The detailed architecture of MicroPRA will be discussed in the next chapter.

Univ
ers

iti
Mala

ya

62

CHAPTER 4: THE PRPOSED ARCHITECTURE (MICROPRA)

4.1 New Architecture Desicions

According to the approach for decomposing a PRA system into microservices as

discussed in Section 3.5, the proposed microservice architecture is shown in Figure 4.1.

The microservice registry, streaming processing software platform (or message broker in

this context), separate databases, and a gateway with newer functionalities are

architectural decisions proposed for MicroPRA which are different from the existing ones,

like Viscovery.

Figure 4.1 Conceptual View for the Proposed MicroPRA Architecture

Univ
ers

iti
Mala

ya

63

4.2 Comparsion between MicroPRA and Viscovery

Figure 4.1 shows the proposed architecture adapted from Viscovery. MicroPRA

architecture has an auto-discovery feature for the web services, and the API gateway role

is aligned with that of Viscovery. It is worth noting that the discovery feature sometimes

can be delegated to the deployment infrastructure, but in MicroPRA, each service needs

to undergo a configuration for auto-discovery.

The following results could be obtained by comparing the architecture of MicroPRA

in Figure 4.1 with the architecture of Viscovery in Figure 2.8 :

1- A gateway was introduced in MicroPRA for routing and load balancing.

2- The service registry provisions the MicroPRA services, but the component does

not exist in Viscovery.

3- Communications in MicroPRA are via a message broker and through the events.

Viscovery does not have message broker and all communications between the

services happens through direct call.

4- Viscovery Novaviz API gateway is an entry point for the utility services for review

processing, but MicroPRA API gateway is the only entry point for the entire

system.

Table 4.1presents comparative view between Viscovery and MicroPRA in terms of the

main architectural componsts.

Univ
ers

iti
Mala

ya

64

Table 4.1 Architectral Comparsion between MicroPRA and Vsicovery

Component Component Type MicroPRA Viscovery

Injestor Main functional
component Ö Ö

PreProcessor Main functional
component Not available* Ö

Processor Main functional
component Ö Ö

Indexer Main functional
component Not available* Ö

Event publisher Non functional Ö Not available

Service Registry

Complimentary
Component for
microservice
architecture

Ö Not available

Auto discovery

Non functional
requirement for

microservice
architecture

Ö Not available

API Gateway

Complimentary
Component for
microservice
architecture

Ö Not available**

Frontend
***Dashboard

Main functional
component Ö Ö

 *Implementing all the equivalent components same as indexer and preprocessor are out

of the scope of the MicroPRA as it requires much more effort. Leaving out this functional

component does not have any effect on the evaluation of the improvement.

** As mentioned before, what Viscovery calls as API gateway (Novaviz) is not what

MicroPRA meant by API gateway. API gateway in MicroPRA works as a complementary

component required for microservice architecture. It does routing between microservices.

Novaviz is kind of integrated API for NLP and other required utilities for review analysis.

*** The purpose of front-end dashboard is different, as Vsicovery is meant for improving

topic browsing but MicroPRA is meant for improving the architecture.

Univ
ers

iti
Mala

ya

65

4.3 Decompose a PRA System into MicroServices

Using a systematic approach (CoCoME) as described in Section 3.3.4, microservices

required for building MicroPRA were identified. The microservices in the proposed

architecture are discussed in the following sub-sections.

4.3.1 Product Catalog Microservice

 This microservice manipulates the product or service information, including the

channels that the PRA system can go through for collecting reviews. Different e-ommerce

channels have different identifiers for each product, so this microservice needs to identify

those as well.

4.3.2 Review Collector Microservice

The collector microservice collects reviews from different e-commerce channels. Each

channel has a different structure for the reviews, and their communication channels are

also different. Some of them do have a well-defined API for exposing product reviews to

external parties, but others do not. Hence, there is a need to hire an HTML scraper or web

crawler for the latter.

4.3.3 Review Statistics Microservice

 This microservice is keeping track of statistics and it is a kind of housekeeping

analytical service that decides how often the reviews should be collected by the collector

microservice. An existing architecture, Paolo Pro, includes a feature of the prioritisation

of resource such that the platform would decide which resource would be prioritised for

collecting the reviews (Tsirakis et al., 2015). This microservice can identify the products

getting noticed for having more reviews and on which channels. The proposed

housekeeper microservice performs a similar functionality, including prioritising

products to review.

Univ
ers

iti
Mala

ya

66

4.3.4 Review Analysis Microservice

Review analysis is the core business of any PRA system. Most of the e-commerce

channels provide user rankings, but in the majority of the cases, the user rank does not

indicate the customer’s feelings about the product. Therefore, quantifying sentiments as

negative, positive, or neutral helps review analysts to verify the helpfulness of a review

and the correctness of a user ranking (Cambria et al., 2017). Helpfulness, from the

customer’s perspective, refers to the extent to which a product meets their expectations,

which helps suppliers identify defects and improve the product.

In this work, the Stanford NLP library was used for the purpose of sentiment analysis.

It includes a variety of algorithms, but only sentiment and POS tagging features were

engaged in the proposed sentiment microservice. This will be elaborated further in

Section 5.2.6.

4.4 Supplementary Components

Despite the advantages of microservice architecture, there are also some pitfalls. For

instance, managing and monitoring the microservices is hard. Thus, some supplementary

components were introduced.

The microservice registry was one of the components, and it facilitates keeping the

dynamic locating of microservices and helps improve scalability. The purpose of a service

registry is to obtain information about which and where a service is running. To provide

more scalability in practice, most high-volume PRA systems would have more than one

instance running from one microservice. The registry keeps track of the existing

microservice instances and dynamically locates them (Balalaie et al., 2018). The idea is

simple; each service needs to register its network location with a service registry. When

a new request comes in, service discovery queries the service registry to get a list of

available instances for the related service.

Univ
ers

iti
Mala

ya

67

Another supplementary component is the microservice API Gateway. The API

gateway routes the requests to the service and composes the responses. It also performs

authentication and rate-limiting tasks. Rate-limiting limits the requests for either a

specific client or all clients. When there are many microservice instances, load needs to

be balanced between instances, since one microservice may serve other microservices as

well. That is why a load balancer was a part of the gateway too.

Some architectures limit the API gateway component to routing and composition only.

In such cases, authentication and the other functions are delegated to a new service, which

is usually called an edge service. One advantage of this is the better separation of

concerns. Each request would first be received by the edge service and, after processing,

be routed to the API gateway. The major drawback, however, is network latency, though.

In the proposed PRA architecture, all the functionalities are concentrated in an API

gateway.

4.5 The Outcomes of the New Architecture

In this architecture, a simple dashboard has been exposed as a porotype to consume

the REST API that microservices present as well as visualise the output for the users.

As explained earlier in Section 2.3, Viscovery is the latest PRA system based on

microservice architecture. By comparing MicroPRA with Viscovery, some findings have

been highlighted to address research questions 1 and 2 mentioned in Section 1.3.

However, since there is no access to Viscovery’s implementation documents, this

comparison was only based on assumptions made from the information available in the

literature

In Section 2.5.32.5.4, the MM4S model has been introduced as the selected quality

model in this study. One of the focus points for the improvement of the system is

Univ
ers

iti
Mala

ya

68

coupling. Coupling is an abstract quality model and the underlying service property for

maintainability. According to MM4S, the service metrics for coupling are AIS, ADS,

and SIY. Based on the proposed architecture and the relations between the services, the

service property metrics were calculated. Table 4.2 shows the metrics for coupling based

on the MM4S.

1- AIS:

Since MicroPRA utilises an event-based system, there is no direct

communication between services. On the other hand, the communication between

services in Viscovery is not countable as there is no such detail to count. Further,

based on the article reviewed, each component of Viscovery uses utilities as

services, so there are direct calls between components and service. For

MicorPRA, the only mentionable consumer is the system dashboard that directly

interacts with the API gateway, which is why only the calculated values for AIS

were mentioned in this dissertation. Viscovery gets much more weight for this

service parameter.

2- ADS:

As indicated by the absolute dependency of services (ADS) shown in

Table 4.2, MicroPRA certainly has better value since it uses the event publishing

method to decouple services. All the services communicate in an asynchronous

manner using event publishing and subscribing methods. Based on the authors’

description, no such design decision was made for the Viscovery architecture, and

there is a dependency between injector, analyzer and indexer components.

3- SIY:

In terms of independence, MicroPRA’s services are independent because

of the leveraging of the message broker role in the architecture. This is not true

Univ
ers

iti
Mala

ya

69

for Viscovery as there is a coupling between the components, and Viscovery is a

component-based system that uses microservices as utilities. For this reason, in

this comparison table, SIY value is assumed to be at least 4 for Viscovery. Again,

due to the lack of detail about Viscovery’s architecture, accurate values were not

achievable.

Table 4.2: Service Property Metrics for MicroPRA

Metric
MicroPRA
Value Description

AIS 1 The dashboard portal invokes the API for analytics
ADS 0 Because of event publishing and subscribing, there are no direct calls between services.

SIY 0 There are no direct service calls or dependencies between the services.

Table 4.2 shows that MicroPRA achieves the research objectives that are described in

Section 1.4.

4.5.1 Scalability

The scalability of a system is its ability to deal and cope with more stuff with additional

resources, including users, requests, data, messages (Brown, 2014) . The choice of

technology and protocol can impact meeting scalability as a non-functional requirement.

Using registry as an additional component in the improved architecture would bring

more scalability in the case of system expansion. In case there is a need for more than one

instance of a microservice, the registry keeps track of the new instances and their

availabilities, and the API gateway gets a list of available nodes from the registry.

Therefore, in case the volume of requests increases in MicroPRA, it is possible to add

multiple instances for the services using the API gateway and registry, and the system

does not experience degradation.

Univ
ers

iti
Mala

ya

70

Future development would also be much easier as some independent microservices

publish the results as events. The independent team can work on different microservices

and improve the efficiency of different functionalities, including review collection,

analysis, and visualisation. When a microservice asynchronously receives all the

information required for the event, the demand for availability will be relieved.

4.6 Summary

In this chapter, the MicoPRA architecture has been explained in detail, and some

analytical results were obtained to show the achievements of the proposed architecture of

MicroPRA as compared with Viscovery. The next chapter will focus on the technical

details for implementing the MicroPRA.

Univ
ers

iti
Mala

ya

71

CHAPTER 5: IMPLEMENTATION OF THE NEW ARCHITECTURE

5.1 Introduction

In this chapter, details about the implementation of the MicroPRA are be highlighted

to address research question 4 mentioned in Section 1.3, The technology stack used for

this purpose will be described further in the subsequent sections.

5.2 Technologies Used

To develop the prototype, the technology stack shown in Table 5.1was used. The source

code is open source and hosted on the researcher’s GitHub4.

Language/platform/library Type Purpose

Java8 Programming Language Developing the
microservices

Spring Boot 2, Jhipster Framework
Facilitate the
development of
microservices

CouchBase Database
NoSQL Database for
handling unstructured
text

Apache Kafka Stream processing
middleware

More decoupled
microservices

Stanford NLP Sentiment analysis library Used in review
analysis microservice

HTML, BootStrap, Angular,
TypeScript, Word Cloud Front-end Dashboard Visualisation

Table 5.1: Technology stack used in the PRA prototype implementation

5.2.1 Apache Kafka

Kafka is a stream processing middleware that can perform processing tasks using

multiple pipelines, including aggregation and enrichment, where raw data is consumed

4 Refer to https://github.com/medimohammadise/review-analysis ,
https://github.com/medimohammadise/cra-dashboard

Univ
ers

iti
Mala

ya

72

from Kafka topics (kafka.apache.org, 2019). With Kafka, the PRA system can publish

and subscribe to streams the way a message queuing system does. Kafka stores streames

for durability and failover. Kafka can span and run on multiple cluster nodes, which is

suitable for scalability.

Figure 5.1 Kafka Cluster (kafka.apache.org, 2019)

The purpose of using Kafka in this architecture is to decouple the microservices

further. Each microservice just publishes events rather than calling the required functions.

Event listeners in the relevant microservices that can grab the events and perform the

actions. Kafka is a crucial component in this architecture, as it helps increase the

performance by asynchronously running some works.

Univ
ers

iti
Mala

ya

73

5.2.2 Jhipster Supplementary Microservice Components

In this work, the existing supplementary components for Jhipster were used to

implement the Jhipster Registry and API gateway, as shown in Figure 5.2.

Figure 5.2: Jhipster Registry and API Gateway in the architecture

diagram(https://www.jhipster.tech/, 2019)

5.2.3 Jhipster Registry

The Jhipster registry is an open-source Apache2 licensed application that is based on

Netflix Eureka. Using Eureka features, the registry can handle routing, loading, and

scalability for microservices (https://www.jhipster.tech/, 2019). It also comes with a

dashboard for monitoring services and managing applications. Figure 5.2 illustrates all

the communications from external consumers, such as Web UI, are possibly using the

gateway. The Gateway balances the requests based on the information that it receives

Univ
ers

iti
Mala

ya

74

from the registry about available services. These two components help to detect the

running services and routing to the available services.

5.2.4 Jhipster API Gateway

Jhipster also generates an API gateway as the front-end for all microservices and

provides load balancing and rate-limiting, security, and quality of services and API

documentation for all microservices.

5.2.5 Couchbase

Couchbase was the NoSQL database used in this work. It is document-based, and the

clustering feature supports scaling out when the amount of review collection and analysis

work increases.

5.2.6 Sandford NLP Library

The Stanford NLP library was chosen for sentiment analysis in this system. It is easy

to adopt and simple to use as it is annotation based. Stanford NLP is a Java-based toolkit

and supports most core NLP processing, including tokenisation. It is also a pipeline-based

framework (Manning et al., 2014). Figure 5.3 shows the overall architecture for Stanford

NLP. Raw data is fed into the framework, and through each pipeline, the data is getting

enriched with annotations. The resultant annotation would contain all required analysed

data. In this study, a tokeniser and POS pipeline were used. The tokeniser converts the

text into a sequence of tokens, and the POS labels the tokens with its part of speech. Univ
ers

iti
Mala

ya

75

Figure 5.3 Overall architecture of StanfordNLP (Manning et al., 2014)

5.3 How Does the Prototype PRA System Work?

The implemented PRA system is a simple form of event sourcing. In the event sourcing

for each domain object, some possible events that change entity state in the event life

cycle need to be specified. Each service emits some events in order to indicate the

outcome of each operation or consumes events published by the other services. For

example, a review needs to be collected, which is an event that the housekeeper

microservice emits. As another sample, the review collected is emitted by the review

collection service, and the same goes for an analysed review. Table 5.2 provides the list

of events and the microservice that triggers each event. Event sourcing helps the

microservices to achieve higher decoupling. As another benefit, it helps to maintain the

consistency between different databases for microservices.

Univ
ers

iti
Mala

ya

76

Publisher Microservice Event Subscriber

Review housekeeper Review(s) ready to
collect

Review collection
microservice

Review collection
microservice New review(s) collected Review analysis

Review analysis Review(s) analysed Review collection

Table 5.2: Event Publisher and Subscriber Services in the MicroPRA System

By having a message broker, each microservice publishes the messages in specific

channels, and the message broker delivers the message to the receiver. Thus, a

microservices does not need to directly communicate with another. A microservice could

continue its work without the need for blocking and waiting for the response. This idea is

depicted in Figure 5.4.

This decision was made for the architecture because minimising the synchronous

communications between microservices makes them loosely coupled, and, in turn,

improves availability. For instance, when any new review is available for any product,

the message broker buffers the message if the review collection microservice is not

available. As soon as the review collection microservice is live, the message is delivered

to the microservice. The event-based architecture makes the application much more

resilient because of this feature (Rihcardson, 2019).

 Univ
ers

iti
Mala

ya

77

Figure 5.4: Event Channels in MicroPRA Message Broker

It should be noted that, for simplicity, the MicroPRA does not fully utilise event

sourcing, as one of the recommendations is to store the event order and recreate the entity

state based on the events. The main benefit of this would be a reliable audit log and

temporal queries.

This architectural style also provides the capacity for the MicroPRA to use a

notification service for the clients. In addition, event publishing facilitates predictive

analysis and early notification to the users. For instance, the MicroPRA users would be

informed just after receiving any negative review or if the frequency of negative reviews

increases or exceeds a predefined limit. The architecture also makes MicroPRA easier to

integrate with external or new features by the event-based approach.

5.4 Front-end Dashboard and Analytic Visualization

For visualisation, a simple front-end dashboard was developed. Some external open-

source frameworks such as CoreUI and Word Cloud were employed for providing the

Univ
ers

iti
Mala

ya

78

output. For collecting the reviews, two channels were chosen, i.e. Lazada5 and Amazon.

Figure 5.5 shows a sample output of a visualisation component.

The MicroPRA collected reviews for the product “Apple iPhone X, fully unlocked 5.8,

64 GB Space Gray”. The channels for the collection were Amazon and Lazada, as mentioned

above. The reason for choosing Lazada was to compare the regional attitudes for buying iPhoneX.

MicroPRA obtained reviews from Lazada Malaysia. Further, Amazon, being as an international

market, was a good choice to refer to what people in other regions thought about iPhoneX. After

collecting the reviews, MicroPRA fed them into sentiment analysis microservice. Sentiment

analysis processed the text using Stanford NLP and provided the result. Polarity for each review

text is obtained. By calculating the average for the polarities, very interesting results could be

extracted. Figure 5.5 depicts this information. In the aggregate, more than 60 percent were found

to be satisfied with iPhoneX in Malaysia. The review texts analysed were from 2019 in Malaysia.

The aggregate percentage was even higher for the UK at the end of 2018. The trend of customers

liking the product and being satisfied with it could be measured using these analytics.

5 Lazada Group is a Southeast Asian e-commerce company founded by Rocket Internet in 2012, and
owned by Alibaba Group. In this case for review collection we used Malaysia region from
www.lazada.com.my/

Univ
ers

iti
Mala

ya

79

Figure 5.5: Sentiment comparison in Lazada and Amazon for iPhoneX in
MicroPRA

For presenting the chart in Figure 5.5, the front-end communicates with the API

gateway and invokes the reporting API from the analytics microservice. Lazada turned

out to offer iPhoneX starting from 2019 as that’s when the product reviews began. The

highest recorded satisfaction and positive sentiment were found in October 2018 on

Amazon UK. The output could also be visualised through a word cloud, as depicted in

Figure 5.6.

Figure 5.6: Word cloud from reviewing text gathered from Lazada and Amazon

Univ
ers

iti
Mala

ya

80

5.5 Summary

In this chapter, the implementation of the MicroPRA architecture was explained. The

technology stack used was elaborated. The sample outputs for the system were included

to show that MicroPRA runs correctly. The reasoning behind the implementation

concerns was given in this chapter as well.

Univ
ers

iti
Mala

ya

81

CHAPTER 6: EVALUATION OF THE PROPOSED ARCHITECTURE

6.1 Introduction

This chapter describes the evaluation of the proposed architecture, including,

decreased coupling and improved maintainability, ease of deployment, and scalability

achieved in MicroPRA. As previously mentioned in Section 3.7, two types of software

quality assessment models were chosen to evaluate the MicroPRA. The first was

qualitative, and the second one was quantitative. The qualitative method was used for

descriptively analyse the architecture, and the quantitative method was used to analyse,

design, source code, and implementation of the system.

For the qualitative method, a Directed Acyclic Graph (DAG) was used to visualise the

dependencies, for better comparison and analysis of the achievements. As discussed in

3.7, the quantitative methods involved the use of MM4S for checking the maintainability

of the MicroPRA.

Even though the use of quantitative methods requires details about the implementation

of the architecture to be accessible, since no detail information is available for Viscovery,

MM4S is used to determine the extent to which the MicroPRA brings improvements.

Qualitative or descriptive parts need evidence and experience along with the concepts

to assess achievement. Experience is required to double-check the extent to which the

software addresses the requirements concerning the design and architectural decisions.

6.2 Evaluation Result using Qualitative Methods

The MicroPRA architecture has previously been explained in Section3.4, using some

architectural diagrams that represent the microservices and relations between them. In

this section, as a base for the comparison and better understanding the dependencies

between services, a Directed Acyclic Graph (DAG) is used for representation. This

Univ
ers

iti
Mala

ya

82

method is a popular one to represent in the modular systems, and microservice

architecture facilitates modularity in the context of autonomous services. Generally,

microservice architecture tackles complexity by modularising the system. Services are

designed based on a business’ capability or business context. For each functional area

of the PRA domain, a service could be defined.

 DAG is the proposed method for tracking the dependencies between services as

suggested by Chirotti, Reilly, & Rentz (2018). DAG can be used as a visual reference

for tracking and controlling dependencies as well. Another advantage of DAG is the

avoidance of cyclic dependencies. Tracking is a passive approach but controlling is an

active approach. (Chirotti, Reilly, & Rentz, 2018)

There is a functional alignment between the MicroPRA microservices and some of the

components of Vsicovery, As mentioned before, the detail about Viscovery’s internal

architecture is not completely available. So, relying on some of the assumptions based on

the overall findings from the architecture shows that there are still some direct

dependencies between the services in Viscovery.

As explained in Section 2.3, certain Viscovery components interact with each other,

Data Injector component collects reviews from different sources, such as Twitter and web

forums, using a web crawler. The web crawler is a microservice provided by the API

gateway.

The Preprocessor component calls microservices such as stopword-removal, cpas

normalisation, symbol/punctuation removal as well as dynamic topic models and

sentiment analysis microservices using the API gateway. The Indexer components is used

for opinion search and retrieval.

Univ
ers

iti
Mala

ya

83

 By depicting the above scenario using DAG, dependency models of the services were

compared in this study. Figure 6.1represents the explained scenarios.

Figure 6.1 Viscovery representation with DAG

Figure 6.1 shows the communications between the Viscovery components and

microservices. The representation clearly shows that even though Viscovery utilises

Novaviz API, the high coupling is seen in the graphical visualisation. As a result, the

Novaviz API gateway also seems to be the central aggregator for utilities that are exposed

as microservices. So, the gateway role in Viscovery is different from that of the

MicroPRA. In the MicroPRA, the gateway performs routing and load-balancing roles

only. As previously mentioned in Section 3.6.3, the Gateway was introduced as a

supplementary component in the MicroPRA architecture. In contrast, by modelling the

dependency of MicroPRA microservices led to Figure 6.2. As mentioned before,

MicroPRA leverages on the advantages of a message broker.(Secion 3.6.1)

Figure 6.2 Dependency Graph in the Prototyped MicroPRA

Communication between microservices without having a message broker in the

architecture makes the microservices highly coupled to each other. Apart from having

higher dependencies between microservices, in this kind of architecture, if one service is

Univ
ers

iti
Mala

ya

84

not available, the whole system’s functionality will get degraded or fail. This issue

decreases the system’s availability. In the aggregate, degrading service availability could

be cascaded through the entire system due to the number of dependencies between

services.

On the other hand, using a message broker increases the effort required to maintain the

system, as the message broker itself, as a component, requires administration and

maintenance. The message broker was used in MicroPRA, as it provides greater

decoupling and, in the case of an increasing volume of customer reviews, the message

broker provides greater scalability using stream processing features.

Another issue with Viscovery is that, although it uses an API gateway, the authors

never mentioned whether this gateway checks for the available services; i.e. it is not clear

that whether it uses the functionality of the service registry to understand which service

is running and where the service is running. Assuming that Viscovery does not utilise the

service registry feature, this will degrade the Viscoverys’s availability and reliability as

well.

On the other hand, in MicroPRA, as mentioned before, each service has its own

database schema. The API gateway or edge services aggregated the API as the front end

of a group of microservices, and clients need to talk to the API gateway. Each service can

be independently deployed. This fact has been reflected in the DAG graph given in Figure

6.2.

As MicroPRA uses event-driven architecture, there is no direct RPC or API call in the

proposed architecture. So, it does not make sense to draw a dependency between the

microservice and the event publisher. After each microservice performs its job, it

immediately emits an event through the message broker.

Univ
ers

iti
Mala

ya

85

 Figure 6.2 shows the dependency between the API gateway and the collection,

analyse_review and sentiment_analysis microservices. The API gateway is responsible

for routing and load balancing between services. There is no dependency between the

API gateway and microservices. The API gateway is a bridge to reach each service when

a request is received by MicroPRA. All these services get registered in the registry. The

autodiscovery feature has been discussed in Section 4.4. As a result, from the DAG graph,

a weak dependency between the microservices and registry is assumable.

Microservice’s dependency on the message broker can be considered as a kind of a

weak dependency as it is asynchronous. Dependencies between microservices and

databases are considered as data coupling.

Relying on the events is a significant change toward higher availability, and less

coupling. with a message broker, as each service does not need to be aware of the other

services and their locations. The service only publishes an event to the channel. Figure

6.3 shows how the dependencies between the services would be without the message

broker. Each service would call the adjacent service, and it is hard to maintain this sort of

a system. Events change into external system calls. External service calls would improve

the coupling metrics (AIS, ADS, SIY) of the MM4S model discussed in Section 2.5.4.

That means that there would be greater coupling between the services and the entities in

such a way that entities get shared between the services. Next section describes the

quantitative results obtained. Univ
ers

iti
Mala

ya

86

Figure 6.3: Dependencies between the Services in Broker-Less Architecture

To summarise the abovementioned descriptions, Table 6.1 represents the comparisons

between MicroPRA and Viscovery.

Table 6.1 Comparing MicroPRA and Viscovery based on qualitative metrics

Metric MicroPRA Viscovery

Scalability Microservice registry Does not exist

Maintainability API Gateway

(Load balancer and router)

Exists just for the exposed

microservices. It does not perform

load balancing.

Low coupling of

services

Message broker Does not exist

Univ
ers

iti
Mala

ya

87

Reusability All the components are

microservices

Only the utilities are reusable

6.3 Evaluating MicroPRA Using Quantitative Methods (MM4S)

Based on the MM4S model elaborated in Section 2.4.4, Table 6.2 shows that there are

no direct service-to-service calls in MicroPRA. The metrics in Table 6.2 are based on the

dependencies between the services and the number of direct calls between the services.

MicroPRA has no inter-service dependencies and no direct service calls because of its

event-based nature. MicroPRA satisfies the microservice architecture in other aspects as

well, as each business capacity is exposed as a microservice. MicroPRA utilises more

fine-grained services, which are aligned with the business capacity. Thus, the MM4S

service properties show the achievements and improvements in terms of having loosely

coupled services in the MicroPRA.

Table 6.2 Descriptive Comparison of Viscovery and MicroPRA Based on MM4S

MM4S Metrics MicroPRA
Direct service calls (ADS) More fine-grained services decoupled by the message

broker. There are no direct service calls at all.
Dependency for other services
(AIS)

Just emits events; no dependency at all.

Number of bidirectional calls
(SIY)

No direct calls.

Table 6.3 quantitatively compares MicroPRA and Viscovery in terms of MM4S

metrics. However, since information about Viscovery’s core components was not

available from the literature, this study made some assumptions to perform a comparative

analysis. Assumptions made before analysisng the dependencies are the following:

Univ
ers

iti
Mala

ya

88

1- Viscovery introduced ingestor, preprocessor, processor and indexer components.

This study assumed that each component is a microservice. These micro services

are the main building blocks of Viscovery.

2- Novaviz API gateway introduced by Viscovery is an aggregator for utilities such

as NLP. Thus, those utilities will be considered as one service in this study.

Table 6.3 Quantitative analysis for MicroPRA and Viscovery based on MM4S

MM4S Metrics MicroPRA Viscovery
ADS 0 0 (based on the literature, main components are

decoupled)
Dependency for
other services
(AIS)

0 1 (all components are dependent to Novaviz API
gateway to function. We assume that the API
gateway is just one compoent)

Number of
bidirectional
calls (SIY)

0 0

MicroPRA leverages event-based mechanism and there is no direct service call.

Therefore, there is no dependency to other microservices. By emitting events, each

microservice informs the others about the changes in the system. Table 6.3 shows that

MicroPRA exhibits some improvements in achieving better coupling than Viscovery

based on the MM4S metrics.

However, in this comparison, only the dependencies between the core services were

considered. There are some utility services in MicroPRA and Viscovery such as NLP,

POS-Tagger service, were not evaluated in relation to the MM4S metrics.

6.4 Summary

The research target for this work was to study and improve the existing architecture

for PRA systems. The prototyped system was implemented based on the proposed event-

Univ
ers

iti
Mala

ya

89

based microservice architecture called MicroPRA. Despite some limitations, the

qualitative perspectives that were used to evaluate the outcomes, show improvements in

terms of different quality attributes. In terms of the descriptive metrics, utilizing of the

supplementary components and the event-based approach improved MicroPRA system.

Applying some microservice architecture patterns such as event-based architecture,

service registry, and API gateway makes the microservices more autonomous and

independently deployable.

Even though some prerequisites for doing effective quantitative comparsion between

MicroPRA and the existing systems is not fullfiled, using a quantitative quality model

which relies on MM4S; and analyses shown that MicroPRA has achieved most

improvements, in terms of having weakly-coupled microservices.

Univ
ers

iti
Mala

ya

90

CHAPTER 7: CONCLUSION

7.1 Introduction

This chapter is organised into two sections, First, the achievements of the objectives

are explained, followed by elaboration on the limitations of the existing work and

suggestions and ideas for future works.

7.2 Contributions and Achievement of the Objectives

This research began with studying of the existing PRA systems. Afterwards, the

existing literature was reviewed from an architectural perspective. Among the literature,

Vsicovery was focused on as it inclines towards the microservice architecture. The

purpose was to improve the architecture by applying some design patterns. Evaluating

the quality of the MicroPRA architecture relied on some quality models meant for service-

oriented architecture, particularly microservice-based architecture.

Based on the research objectives mentioned in Section 1.4, new quality attributes were

brought into PRA systems by moving toward microservice architecture. That is why the

prototyped system is called MicroPRA. Examining the objectives individually provides

a clearer picture of the outcomes.

1- To propose a new architecture, based on the microservice-based architecture for

PRA systems that reduces coupling between the components.

The MicroPRA microservices are loosely coupled compared to the similar

system of Viscovery. The facts and figures based on the qualitative criteria show

that the coupling is decreased in the MicroPRA due to the event-based system

utilised.

2- To implement a prototype PRA system based on the proposed microservice-

based architecture as a proof of concept.

Univ
ers

iti
Mala

ya

91

The implemented system was used to grab reviews about iPhoneX from Amazon

and Lazada. The analyses for this case study shows that MicroPRA works and

performs the targeted tasks.

3- To evaluate coupling of the implemented prototype PRA system based on the

selected metrics to achieve loosely coupled modules or services as compared to

existing systems.

The CoCoME model was used in this study to identify microservices. It was

used for the systematic decomposing of the defined sub-domains into

microservices. MM4S was used for measuring the achievement of improving

maintainability. Table 6.2 shows improvements in the MicroPRA as compared

to Viscovery. Another key factor is that the MicroPRA is an event-based system

and makes use of a message broker.

The descriptive analysis also involves the use of a Directed Acyclic Graph (DAG) to

show the extent to which coupling is weaker than Viscovery. A Microservice registry was

also introduced in the MicroPRA. The registry provides much more reliability and

scalability for the system as it keeps track of the existing tasks and available microservices

that exist. The registry supplies this information to the API gateway, and the API gateway

does load balancing based on the availability. Thus, MicroPRA improves the system’s

availability, reliability, and scalability.

The major contributions of this research are outlined as follows:

1- Some identified PRA architectures were extracted from the existing studies.

Evolution of the architectures was analyzed and the research gap in the

literature was identified.

2- A new architecture with lower coupling based on microservices utilising an

event-based mechanism was proposed.

Univ
ers

iti
Mala

ya

92

7.3 Limitations and Future Work

Some of the limitations and future work of this work are as follows:

1- This work does not fully utilise event sourcing such as event repository or event

log. Using event sourcing would allow the system to move, follow, and keep track

of the histories for each review. By storing events, it would be possible to recreate

entities based on the events. For instance, from the time that the review is collected,

filtered and processed, all these events would be logged, and the system would rely

on the events to generate core data and entities. Adding an event log feature would

be beneficial. Keeping an event history would help replay and regenerate data in

case of a failure. So, this feature would improve the system with regard to fault

tolerance and reliability.

2- Of the service properties proposed by MM4S, only coupling was used in this study.

Covering the rest would enable the PRA system to testify against this quality

model, and quality assurance would be much more comprehensive.

3- Only the POS tagging feature from the StanfordNLP was used in the MicroPRA.

Using more algorithms from this library could bring much more analytical values.

4- Due to a variety of resources for reviews and user content, working on adapter

patterns would bring much more flexibility to the system and facilitate its

adaptation to different E-WOM sources.

5- Aggregating the data would make the final visualisation and statistical results

much faster and resilient. For this purpose, technologies such as GraphQL can be

utilised.

6- Bringing in machine learning and big data techniques might require some

additional considerations in the proposed architecture.

Univ
ers

iti
Mala

ya

93

REFERENCES

Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D. A., & Lynn, T. (2018).
Microservices migration patterns. Softw Pract Exper, 1-24.

Bahatia, S., Chaudhary, P., & Dey, N. (2020). Opinion mining in information retrieval.
Springer.

Bogner, J., Wagner, S., & Zimmermann, A. (2017). Towards a Practical Maintainability
Quality Model for Service- and Microservice-based Systems. Association for
Computing Machinery, ACM ISBN 978-1-4503-5217-8/17/09.

Brown, S. (2014). Software acrhitecture for developers: Leanpub.

Bucur, C. (2015). Architecture of a sentiment analysis platform. Information society and
sustainable development.

Cambria, E., Das, D., Bandyopadhyay, S., & Feraco, A. (2017). A Practical Guide to
Sentiment Analysis: Springer.

Chen, M., & Sun, Y. (2017). Sentimental Analysis with Amazon Review Data. Retrieved
from Stanford University: http://cs229.stanford.edu/proj2017/

Chirotti, S. E., Reilly, T., & Rentz, A. (2018). Tracking and controlling microservice
dependencies. Communicattions of the ACM, 61, 98-104.

Eirinaki, M., Pisal, S., & Singh, J. (2011). Feature-based opinion mining and ranking.
Journal of Comupter and System Siences,78, 1175–1184.

Espinoza, I., Mendoza, M., & Ortega, P. (2018a). Viscovery: A Platform for Trend
Tracking in Opinion Forums. WISDOM’17, August 2017, Halifax, Nova Scotia,
Canada.

Espinoza, I., Mendoza, M., & Ortega, P. (2018b). Viscovery: A Platform for Trend
Tracking in Opinion Forums.

Flory, L., Kweku-Muata, Osei-Bryson, & Thomas, M. (2017). A new web personalization
decision-support artifact for utility-sensitive customer review analysis. Decision
Support Systems, 94, 85.

Francesco, P. D. (2017). Architecting Microservices. IEEE International Conference on
Software Architecture Workshops, 224-229.

Galin, D. (2018). Software quality concepts and practice: IEE Press.

Granchelli, G., Cardarelli, M., Francesco, P. D., Malavolta, I., Iovino, L., & Salle, A. D.
(2017). Towards Recovering the Software Architecture of Microservice-Based
Systems. IEEE International Conference on Software Architecture Workshops
(ICSAW), 46-53.

Gerald, P. (2019). Opinion mining in Web 2.0. Springer Gabler.

Univ
ers

iti
Mala

ya

94

Jhipster. (2021). Generate a full stack Java + Angular/React application in a few steps.
Retrieved January 21, 2021, from https://www.jhipster.tech/

Hu, M., & Liu, B. (2004). Mining Opinion Features in Customer Reviews. American
Association for Artificial Intelligence.

Kafka. (2019). Apache Kafka, a distributed streaming platform. Retrieved from
https://kafka.apache.org/uses

Pozzi, F. A., Fersini, E., Messina, E. & Li, B. (2016). Sentiment Analysis in Social
Networks. Morgan Kaufmann.

Killalea, T. (2016). The Hidden Dividends of Microservices. Communications of the
ACM, 19, 42-45.

 Lewis, J., & Fowler, M. (2014). Microservices, a definition of this new architectural
term. Retrieved from https://martinfowler.com/articles/microservices.html.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & McClosky, D.
(2014). The Stanford CoreNLP Natural Language Processing Toolkit.
Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics:System Demonstrations, 55–60.

Mayer, B., & Weinreich, R. (2018). An Approach to Extract the Architecture of
Microservice-Based Software Systems. 2018 IEEE Symposium on Service-
Oriented System Engineering, 21-30.

Mitchell, B. S., & Mancoridis, S. (2006). On the Automatic Modularization of Software
Systems Using the Bunch Tool. IEEE Computer Society.

Nadareishvili, I., Mitra, R., McLarty, M., & Amundsen, M. (2016). Microservice
Architecture: Aligning Principles, Practices, and Culture. O’Reilly.

Petz, G., Karpowicz, M., Fürschuß, H., Auinger, A., Strítesky, V. c., & Holzinger, A.
(2014). Computational approaches for mining user’s opinions on the Web 2.0.
Information Processing and Management, 50, 899-908.

Rihcardson, C. (2019). Microservice patterns with examples in Java: Maning.

Robson, K., Farshid, M., Bredican, J., & Humphrey, S. (2013). Making sense of online
consumer reviews: a methodology. International Journal of Market Research, 55.

Candela, I., Bavota, G., Russo, B., & Oliveto, R. (2016). Using Cohesion and Coupling
for Software Remodularization: Is It Enough? ACM Transactions on Software
Engineering and Methodology, 25(3), Article 24.

Senivongse, T., & Puapolthep, A. (2015). A Maintainability Assessment Model for
Service-Oriented Systems. Proceedings of the World Congress on Engineering
and Computer Science.

Subramanian, V. (2020). Agile Learner. Retrieved from https://www.agilelearner.com/

Univ
ers

iti
Mala

ya

95

Tempero, E., & Ralph, P. (2018). A framework for defining coupling metrics. Science of
Computer Programming, 214–230.

Tsirakis, N. (2017). Large scale opinion mining for social, news and blog data. The
Journal of Systems and Software, 127, 237–248.

Tsirakis, N., Poulopoulos, V., Tsantilas, P., LTD, P., & Varlamis, I. (2015). A platform
for real-time opinion mining from social media and news streams. IEE Trustcome.

Tyszberowicz, S., Heinrich, R., Liu, B., & Liu, Z. (2018). Identifying Microservices
Using Functional Decomposition. Dependable Software Engineering. Theories,
Tools, and Applications. SETTA 2018, 10998.

Zablocki, J. (2015). Couchbase essentials. Packt Publishing.

Univ
ers

iti
Mala

ya

