
ACCELERATING DATA RETRIEVAL USING
INDEX PRIORITIZATION APPROACH

SHATHA ALI MOHAMMED AL-ASHWAL

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2019

Univ
ers

iti
Mala

ya

1

ACCELERATING DATA RETRIEVAL USING

INDEX PRIORITIZATION APPROACH

SHATHA ALI MOHAMMED AL-ASHWAL

DISSERTATION SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF MASTER OF

SOFTWARE ENGINEERING

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2019Univ
ers

iti
Mala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Shatha Ali Mohammed Al-Ashwl

Matric No: WOC160025

Name of Degree: Master of Software Engineering

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Accelerating Data Retrieval Using Index Prioritization Approach

Field of Study: Database

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and sufficiently
and the title of the Work and its authorship have been acknowledged in this
Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be the owner of the
copyright in this Work and that any reproduction or use in any form or by any
means whatsoever is prohibited without the written consent of UM having been
first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright, whether intentionally or otherwise, I may be subject to legal action or
any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

Univ
ers

iti
Mala

ya

iii

ACCELERATING DATA RETRIEVAL
USING INDEX PRIORITIZATION APPROACH

Abstract

The last few decades have witnessed a huge growth in the size of generated data; the total

amount of information that can be saved by all of the world's technical devices is doubling

about every 40 months since 1980s. From 2012 to the present, 2.5 exabytes (2.5 x 1018)

bytes of information are produced daily. Database systems have to adjust with this rapid

data growth. The capabilities for storing the generated data are also available. The only

concern now is how to retrieve the stored data when needed and in a timely and accurate

manner.

Many researchers have studied different approaches in the aspect of data retrieval,

producing different ways that serves different scenarios. However, the most common way

to speed up data retrieval is indexing. There are multiple types of indexing databases, but

the most used ones in relational databases are the B-Tree and Bitmap index. These types of

indexes speed up query response time, but with a price on storage and performance, as

indexes need to be stored and maintained after each delete and write operation. Moreover,

these indexes depend on indexing an attribute or two, and not the whole record, which

make them limited to a limited number of queries that contain these attributes in the

‘where’ clause.

This research proposed a covering index that depends on the priority of the records. It is

known that data in a table are not in the same level of importance. Some records are more

important than the others in a dataset. Some records need to be fetched in a timely manner,

Univ
ers

iti
Mala

ya

iv

while others do not need to be retrieved very fast. Each company knows the criteria of

important records, so it can decide the ranking of the records.

Ranking of records can be done by using triggers or procedures. A procedure or trigger

should be created to meet the company’s definition or criteria of the priority of the records.

Once the records are prioritized, they are sorted according to the rank field. When a query

is run, the records are scanned in an order according to their rank; the higher a record in the

rank, the first it is going to be scanned. The Priority index overcomes the limitations of the

classic indexes, as it does not need maintenance in each write or delete operation.

Maintenance can be scheduled and made at night or weekends. Moreover, it can be useful

for a variety of bounded queries as it indexes the whole record and not a single attribute. In

addition, it is faster than the common index when querying the highly ranked records. The

size of Priority index is also smaller than the size of the common indexes.

This work required multiple experiments by running different types of queries on three

tables; one indexed by B-Tree index, another one by Bitmap index, and the third by the

proposed index. The outcome of the experiments show that Priority index is faster when

retrieving highly ranked records, while the size of the Priority index is still smaller.

Univ
ers

iti
Mala

ya

v

Abstrak

Beberapa dekad kebelakangan ini telah menyaksikan pertumbuhan yang pesat dalam saiz

data yang dijana. Jumlah maklumat yang dapat disimpan oleh semua peranti teknikal di

dunia meningkat dua kali ganda bagi setiap 40 bulan semenjak tahun 1980-an. Pada tahun

2012 sehingga kini, sebanyak 2.5 exabytes (2.5 x 1018) bait maklumat dihasilkan setiap

hari. Oleh itu, sistem pangkalan data perlu memenuhi spesifikasi bagi menyediakan

keperluan seiring pertumbuhan data yang pesat ini. Keupayaan untuk menyimpan data

storan yang dijana telah tersedia namun cabaran utama adalah bagaimana untuk

mendapatkan semula data yang disimpan pada waktu dan mengikut ketetapan masa yang

bertepatan.

Ramai penyelidik telah menjalankan kajian dengan menggunakan kaedah berbeza dalam

aspek menjana pertanyaan dalam pemprosesan rekod data pada keadaan senario yang

pelbagai. Kaedah yang biasa digunakan untuk mempercepatkan pemprosesan janaan data

adalah pengindeksan. Terdapat pelbagai pangkalan data jenis pengindeksan. Walau

bagaimanapun, hubungan pangkalan data jenis B-Tree dan indeks Bitmap sering

digunakan, iaitu jenis indeks yang memberi tindak balas cepat kepada janaan pertanyaan

data dengan ruang penyimpanan data dan prestasi indeks yang perlu kekal disimpan setelah

operasi memadam dan menulis dilakukan. Indeks ini bergantung kepada pengindeksan satu

atau dua atribut sahaja dan bukan pada keseluruhan rekod, menjadikan bilangan janaan

pertanyaan terhad dan tertentu, dan mengandungi atribut-atribut yang termaktub pada

klausa sahaja.

Kajian ini meliputi indeks yang bergantung kepada keutamaan rekod. Seperti yang

diketahui, data di dalam jadual berada pada tahap yang tidak sama kepentingan keutamaan

di mana sebahagian rekod data adalah lebih penting daripada set data yang lain. Sebahagian

Univ
ers

iti
Mala

ya

vi

rekod perlu diperoleh pada tempoh masa yang tepat, manakala sebahagian yang lain tidak

perlu penjanaan segera. Setiap syarikat perlu mengetahui kriteria sesuatu rekod penting

agar dapat menentukan kedudukan rekod berkenaan.

Kedudukan rekod boleh diperolehi melalui kaedah pencetus atau berdasarkan prosedur.

Prosedur atau pencetus perlu dihasilkan bertepatan definisi atau kriteria keutamaan rekod

syarikat. Setelah rekod disusun mengikut keutamaan, ia disusun mengikut medan susunan.

Apabila janaan pertanyaan diberi keutamaan untuk pemprosesan, rekod pada medan

susunan diimbas berdasarkan susunan kedudukan, iaitu semakin tinggi kedudukan pada

susunan rekod maka ia akan diimbas terlebih dahulu. Kaedah Indeks keutamaan ini dapat

mengatasi jenis indeks biasa yang digunakan kerana tidak memerlukan penyelenggaraan

pada setiap operasi menulis atau memadam. Ia boleh diselenggara mengikut jadual dan

ketetapan pada waktu malam atau hujung minggu. Selain itu, ia sangat berguna untuk

pelbagai pertanyaan rekod tanpa had kerana menjana keseluruhan indeks bukan hanya pada

satu atribut tunggal. Ia juga lebih cepat dijana berbanding indeks biasa apabila menjana

rekod data pada kedudukan tinggi. Saiz jenis indeks keutamaan juga lebih kecil berbanding

saiz indeks biasa.

Di dalam kajian ini, beberapa eksperimen telah dilaksanakan dengan pelbagai pertanyaan

dijana ke atas tiga jenis jadual iaitu pada indeks jenis B-Tree, jenis indeks Bitmap serta

indeks yang dicadangkan. Hasil eksperimen menunjukkan bahawa indeks keutamaan lebih

cepat menjana rekod pada susunan kedudukan yang lebih tinggi dengan saiz indeks

keutamaan yang tetap kecil.

Univ
ers

iti
Mala

ya

vii

ACKNOWLEDGEMENTS

Alhamdulillah, all praises to Allah for blessing me and giving me the strength to finish my

master's degree at the University of Malaya. It is my privilege to express my gratitude to all

those who have helped me during the completion of this work.

I express my deepest gratitude to my supervisors Dr. Maizatul Akmar Binti Ismail and Dr.

Mumtaz Begum Binti Peer Mustafa for provoking ideas, encouragements, helpful insights,

valuable assistance, useful comments as well as meticulous reading and editing of the draft

of this thesis. This research would never be accomplished without their supervision.

I must express my very profound gratitude to my parents for their continuous

encouragement and love that never stops. I would not be where I am today without their

help and support.

I dedicate this thesis to my family; my beloved husband Niyazi Al-Ashwal who supported

me during my studies and believed in me, and to my children Aiham and Farah for their

love.

Last but not least, I would like to thank my siblings for being a special part of my life and a

source of inspiration.

Univ
ers

iti
Mala

ya

viii

Contents
ACCELERATING DATA RETRIEVAL USING INDEX PRIORITIZATION
APPROACH ... iii
Abstract ... iii

Abstrak ... v

ACKNOWLEDGEMENTS ... vii

Chapter 1: INTRODUCTION .. 1
1.1 Overview .. 1

1.2 Research Background ... 1

1.3 Research motivation ... 2

1.4 Statement of Problem ... 3

1.5 Research Objectives ... 4
1.6 Research Questions .. 5

1.7 Scope of research .. 5

1.8 Expected research outcomes... 6

1.9 Significance of the research.. 6
1.10 Thesis Organization .. 6

Chapter 2: LITERATURE REVIEW ... 8

2.1 Introduction .. 8

2.2 Relational Database .. 9
2.3 Materialized views ... 10

2.4 Scale Independence .. 11

2.5 Prioritization ... 12

2.6 Indexing .. 13
2.6.1 B-Tree index .. 15

2.6.2 Bitmap index .. 18

2.6.3 Covering index ... 19

2.6.4 Recent work that tackles one or more database index challenges 20
2.7 Summary of literature ... 24

Chapter 3: RESEARCH METHODOLOGY ... 25

3.1 Document analysis ... 25

3.1.1 Main insights.. 26

3.2 Identification of the proposed index approach ... 26
3.3 Design and Development ... 27

Univ
ers

iti
Mala

ya

ix

3.3.1 Data collection ... 27

3.3.2 Building the proposed index .. 28

3.3.3 Baseline approaches ... 29

3.4 Experiment ... 29

3.4.1 Experimental design .. 29
3.4.2 Experimental steps ... 30

3.5 Evaluation method .. 33

3.6 Summary ... 33

CHAPTER 4: PRIORITY INDEX DESIGN AND DEVELOPMENT 34
4.1 Development Tools and Environments .. 34

4.2 Oracle SQL Developer ... 34

4.3 What is Priority Index? ... 34

4.4 When to use Priority Index? ... 35
4.5 Priority Index Operations ... 37

4.5.1 Write .. 37

4.5.2 Maintenance ... 37

4.5.3 Read ... 38
4.6 Data collection .. 39

4.7 Implementation ... 41

4.7.1 Table creation .. 41

4.7.2 Importing ... 43
4.7.3 Indexing ... 43

4.8 Implementing Priority index for a second example ... 45

4.8.1 Dataset ... 45

4.8.2 Table creation .. 46

4.8.3 Importing ... 46
4.8.4 Inserting the rank value.. 46

4.8.5 Inserting dataset files to HR.CANADA_TRADE_PR .. 47

4.8.6 Indexing ... 47

4.9 Summary ... 49
CHAPTER 5: EXPERIMENTS, EVALUATION AND RESULTS 50

5.1 Experiments and Evaluation ... 50

5.1.1 Retrieval Time ... 50

5.1.2 Index size ... 52

Univ
ers

iti
Mala

ya

x

5.1.3 Maintenance: .. 52

5.2 Results .. 53

5.2.1 Index Size .. 53

5.2.2 Retrieval Time ... 54

5.3 Discussion .. 58
5.3.1 Size... 58

5.3.2 Retrieval time ... 58

5.3.3 Maintenance ... 58

5.4 Summary .. 59
CHAPTER 6: CONCLUSION ... 60

6.1 State of the art ... 60

6.2 Research objectives revisited ... 60

6.2.1 First objective .. 60
6.2.3 Second objective .. 61

6.3 Contribution .. 61

6.4 Interpretations of Results and Insights ... 61

6.5 Limitation of work .. 62
6.6 Recommendations for future works ... 62

References .. 63

Appendices ... 66

Univ
ers

iti
Mala

ya

1

Chapter 1: INTRODUCTION

1.1 Overview

Humans have always stored data. The tally sticks are the earliest example of data storing. It

was invented in C 18,000 BCE. People used to make marks into sticks or bones to keep

track of trading activity and food supplies. In C 2400 BCE, the abacus was constructed in

Babylon, which is a dedicated device for performing calculations. In addition, libraries

appeared in this period, representing humans’ first attempt at mass data storage. 1663 was

the year of statistical Emergence. In that year in London, John Graunt made the first

recorded experiment in statistical data analysis. By recording information about death, he

theorized that he can design an early warning system for the bubonic plague ravaging

Europe. In 1970, IBM mathematician Edgar F Codd presented his framework for a

“relational database”. The model provides the framework that many modern data services

use today, to store information in a hierarchical format, which can be accessed by anyone

who knows what they are looking for. Quoted from (Marr, 2015).

This teaches us that humans have always been storing data, and with advanced technology,

people are able to store more data. The important issue nowadays is how to retrieve the data

in a timely manner, and how to find answers for our questions in this pool of data.

1.2 Research Background

As a reason of the recent technologies such as internet and Smart phones, we are

encountered by a huge size of data in many fields. Databases are increasing rapidly in size.

These days, companies have started to keep data that they used to get rid-off in the past, the

Univ
ers

iti
Mala

ya

2

kept data gives valuable information for the companies. For example, a company can

predict a customer’s behaviors from the pages the customer visits, the comments the

customer writes, and the searches the customer does, which means that they need to store a

lot of data and retrieve useful information when needed.

It is easy to store data as long as the capacity is available. Companies now find themselves

having a huge size of data that most of the time, it is cheaper to keep all the data than

deciding which to keep, but it can prioritize the importance of the data. A company can

benefit from big data, to have better insights, understanding issues that can lead the

company to increase its profits and find new opportunities in business.

Big data have five characteristics, which are volume, velocity, variety, veracity, and value

(Philip Chen and Zhang, 2014). Those characteristics are what make managing big data a

challenging task. Data comes in big size and in different types, such as texts, videos,

images, and audios. It also expands in a high rate, and it contains a lot of noise.

Accelerating data retrieval is a crucial aspect in today’s industry. There are multiple

approaches that deal with accelerating data retrieval. One approach is indexing the data,

which improves the speed of data retrieval operations on a dataset, at the cost of additional

writes and storage space, to maintain the index data structure. Another way is dealing with

the necessary data only using Materialized Views.

1.3 Research motivation

As a result of the progress of data storage devices, companies have started to store more

data and never get rid of any data. The problem that rose was among all the stored data is it

became difficult to find the important data the company needs. In addition, the big amount

Univ
ers

iti
Mala

ya

3

of data slowed down data retrieval. Nowadays, it is easier to store data than to retrieve it.

Moreover, it is sometimes cheaper to keep data than determining which data is worth

keeping

In the last decade, many researchers undertook significant amount of work to improve the

performance of database retrieval. There are multiple ways that speed up retrieval time,

such as indexing, and materialized views. Each approach has limitations that can be

expensive in regards to accuracy, space, and maintenance.

As data is growing rapidly, data retrieval is slowing down, and to speed up data retrieval we

need to improve the existing approaches so that queries can run faster and companies can

get timely accurate reports that lead to better decision making.

1.4 Statement of Problem

The last decade witnessed a massive switch to digital technology, digitizing information of

all kinds, such as audios, books, photos and videos. Households then began to switch to

digitization, and the information they held (documents, photos, videos, music, etc.) were

switched over in turn. By the 2000s, the digitization process was complete, as digital

television, e-books, digital cinema, and so on, opened up a new era with loads of digital

data to store. In addition, multiple sensors provide a huge volume of information (Bounie

and Gille, 2012). The growth of data and accumulation of complex data collections have

become a challenge for information retrieval (Fasolin et al., 2013).

Querying big data is time consuming. Databases nowadays are increasing at a rapid rate as

we are collecting more data from different sources, like users, electronic devices, and

media. In addition, we have started to keep all the data, as sometimes it is cheaper to keep

Univ
ers

iti
Mala

ya

4

all the data than finding which data is worth keeping. For example, a linear scan of a

dataset of PB size takes days using a solid state drive with a read speed of 6 GB/s, and it

takes years if a dataset is of EB size (Fan et al., 2015).

Indexing is the most common approach for speeding up query retrieval time. There are

muliple types of indexing database, such as B-Tree, Bitmap, and Hash index. Each type is

used for determined circumstances, but all index approaches are designed according to

columns and not the entire query, which slows the query operations (Wu et al., 2017).

Moreover, they increase the size of data needed to be stored, which means the database will

increase more in size. In addition, maintaining an index is a high latency job because the

database management system have to locate and update the index pages that are affected by

tables changes (Yu and Sarwat, 2016).

1.5 Research Objectives

The aim of this research is to develop a database retrieval approach that speeds up the

retrieval time in big data with fewer side effects than the existing approaches i.e. the

proposed index will occupy less space and require less maintenance.

The following objectives were set to achieve the main aim of this research:

1. To develop a suitable index scheme approach to accelerate the query retrieval time

in big data.

2. To evaluate and compare the proposed approach with the common available

approaches in terms of retrieval time, space occupied and maintenance.

Univ
ers

iti
Mala

ya

5

1.6 Research Questions

Objective 1: To develop a suitable index scheme approach to accelerate the query retrieval

time in big data.

• How can the retrieval time of data be improved?

Objective 2: To evaluate and compare the proposed approach with the common

available approaches in terms of retrieval time and space occupied.

• What are the factors in evaluating the performance of database index?

1.7 Scope of research

This research focuses on accelerating data retrieval time in relational database. A suitable

approach is going to be developed; this approach depends on prioritizing the dataset

records. Two different datasets will be downloaded from the internet, rebuilt and imported

to the database. Four tables will be created. Each two tables are the same, containing the

same data. One table of each dataset will be indexed by the proposed index scheme, the

other table of each dataset will be indexed once using B-Tree index and then by using

Bitmap index. Experiments will be conducted to compare the proposed index with the B-

Tree index, and the Bitmap index which are the most used index schemes in relational

database. In these experiments we will use bounded queries with different selectivity.

Univ
ers

iti
Mala

ya

6

1.8 Expected research outcomes

The expected outcome is to develop an index approach that outperforms the common index

approaches. The proposed approach is expected to have the following advantages over the

common index approaches

 Faster retrieval time for higher priority records.

 Less space needed for the index.

 Easier maintenance, as it is not going to be needed during each write.

1.9 Significance of the research

This is an era of digital technology. We are faced with massive switch to digital

technology, and databases have to store more data than it used to in the past.

This research should be of great benefit as database system applications are encountering

huge numbers of records and companies are starting to keep all the data without getting rid

of any.

The proposed approach should be beneficial in database system, whether they are using

data warehouses or not, as this approach will help in accelerating the query retrieval time

and will reduce the needed maintenance.

1.10 Thesis Organization

The rest of the dissertation is organized as follows:

Univ
ers

iti
Mala

ya

7

Chapter (2): The second chapter reviews the relevant literatures of speeding up data

retrieval in big data. This chapter is divided into two parts:

• The first part reviews the generally used approaches to enhance database retrieval

time.

• The second part reviews the different types of index approaches and their

limitations.

Chapter (3): This chapter is dedicated to the research methodology.

Chapter (4): This chapter is dedicated to the design and development of the proposed

approach.

Chapter (5): This chapter contains the conducted experiments and evaluation of the

proposed approach; it discusses the performance of the proposed approach, as well as the

comparison against the common index types.

Chapter (6): This chapter contains the findings of our research, explains the limitations of

the work, and provides suggestions for future work that can be carried from this research.

Univ
ers

iti
Mala

ya

8

Chapter 2: LITERATURE REVIEW

2.1 Introduction

Nowadays, databases have to store huge amounts of data, as data is being generated at a

rapid rate. Eric Schmidt, executive chairman of Google, said in a conference that “as much

data is now being created every two days, as was created from the beginning of human

civilization to the year 2003”. Data growth has many reasons, such as the growth of the

Internet, the use of advanced sensors, and the switch to digital technology. Database

systems store the generated data to be used in the system to benefit the decision maker, the

system owners, and the customers.

Hardware also is being improved, servers could now process zettabytes (trillion gigabytes)

of data, which in turn encouraged the companies to keep all of the data and never get rid of

any of them. Companies are keeping track of almost all of their transactions and all of their

logs. Sometimes, it is cheaper to keep all the data than deciding which data is worth

keeping.

As the collected data increases and its complexity grows, the challenge of retrieving data in

a timely manner grows higher. (Fasolin et al., 2013), for example, a sequential scan of a PB

dataset in size takes days using a compact drive with a read speed of 6 GB/s, and it takes

years if a dataset is EB in size (Fan et al., 2015).

Currently, most big data analysis is for structured data that can be handled in relational

database, but the problem that it faces is the query retrieval time (Durham et al., 2014).

Many researchers have worked in enhancing query operation time as a need to enhance the

overall performance of the systems and database warehouses, where several issues are

Univ
ers

iti
Mala

ya

9

illustrated. When volume and variety of data are involved, the required time for queries to

retrieve the needed data is affected negatively, and so different solutions were discussed in

different researches. (Durham et al., 2014) proposed the use of a new model that decreases

the volume of handled data by the application, which in turn leads to a lower retrieval time.

They rebuilt the big data applications to serve in this way using relational database. Other

researchers preferred speeding up the query operation by using indexes, such as (Yu and

Sarwat 2016; Chong et al., 2016); Goldstein et al., 1998; Wu et al., 2006). (Fan et al., 2015)

explored the possibility of querying big data by accessing a limited amount of the data.

They were solving the issue of time consumed when querying big data, and trying to speed

up retrieval time with the least possible cost.

2.2 Relational Database

A relational database stores data in tables that have relations among them as records, and

each record contains multiple fields. Data can be accessed, updated, or deleted by running

SQL queries. Relational database have many positive characteristics, as they have been

developed and used for decades; they are famous for their reliability, security, and handling

complicated queries. (Fan et al., 2015 and Durham et al., 2014) suggested that applications

should use relational databases when complicated queries have to be handled or have

repetitive data analysis. Currently, most big data analysis is for structured data that can be

handled in relational database, but they are facing query retrieval time issues as developers

think of how the application would put the data in and ignore how they will retrieve the

data (Durham et al., 2014).

Univ
ers

iti
Mala

ya

10

2.3 Materialized views

Materialized views are used to speed up query retrieval time in the database system and in

database warehouses. Materialized views are different from the regular views in many

aspects as they are stored in true tables, which are not virtual ones, while regular views are

stored in virtual tables. Materialized views can be indexed, while regular views cannot.

Querying a materialized view is like querying a table (Sharma and Sood, 2014).

Materialized views have a wide diversity of data management issues such as query

enhancement, maintenance, and data integration (Pottinger and Halevy, 2001)

Materialized views reduce query retrieval time (Sohrabi and Azgomi 2017; Sohrabi and

Ghods 2016; Zhou et al., 2007) by pre-computing all the aggregations and join operations,

in contrast to the regular views that only compute aggregations and joins when a calling

query is run. Materialized views can be used in many areas, but they are mostly used in

systems that support decision making and in data warehouses. A critical issue in

materialized views is that they should be updated regularly, so when a query is run against

a materialized view, the results will not be accurate unless the materialized view is up-to-

date (Sharma and Sood, 2014). Materialized view’s drawback is the cost of storage and

maintenance. Materialized views occupy true space, and they have to be refreshed regularly

whenever there is a change in a base table. To sum up, materialized views speed up query

execution time and they can be enhanced by indexing. Choosing a suitable index would

improve the performance of a materialized view.

Univ
ers

iti
Mala

ya

11

Figure 2.1: Materialized view mechanism

2.4 Scale Independence

Scale Independence means that even if the dataset Ds is big or grows bigger by the day, the

subset dataset Dsq will remain almost the same because it is independent of the size of the

dataset Ds. So, the retrieval time will still be small independent of the size of Ds dataset.

Dsq ⊂ Ds and

Q (Dsq) = Q (Ds)

In this case, we can customize our query to only scan the needed records, such as using

group-by and rollup clauses (Bellamkonda et al., 2013) i.e. we can use bounded query.

A study conducted by (Fan et al., 2015) used bounded evaluable queries to access small

data of the big dataset, avoiding to scan the entire dataset. They used bounded queries, but

when the queries are not bounded, they used two approaches to answer the query by

scanning limited records. First, they searched for upper and lower envelopers that are

bounded for the query. Second, they initiated the needed parameters for the query to

Table

MView

MVLog

SQL> Select …

Univ
ers

iti
Mala

ya

12

become boundedly evaluable. They studied the way of changing an unbounded query to a

bounded one and illustrated the difficulty of different types of queries. The main take away

from this study is that an unbounded query can be changed to a bounded one, and a

bounded query outperforms an unbounded query. In summary, most queries can be a

bounded evaluability, which means that we can decrease the number of records that a query

has to scan if we try to enhance the used query by making it bounded.

Average time vs |D|

Figure 2.2: Comparison between generated bounded query plan vs mysql query plan by
(Geerts 2016)

2.5 Prioritization

Prioritize definition in Oxford English dictionary is “1 decide the order of

importance of a number of tasks. 2 treat something as being more important than

other things.” Prioritization is used in many things in life from the daily tasks to the

goals in life. Prioritization has been used in multiple different fields helping in

concentrating on what matters mores and starting with the important things and

avoiding the distracting matters from disturbing. For instance, (Goldsmith et al.,

Univ
ers

iti
Mala

ya

13

2014) used prioritization to develop a consumer product ingredient database for

chemical exposure.

Software companies usually has multiple requirements when building a software

product but they are often faced with limitations in resources (Bebensee et al., 2010)

used binary priority list to develop a tool that prioritize software requirements which

would ease choosing which requirement to implement.

(Garg and Datta, 2012) used prioritization in testing. Test cases were prioritized

when doing regression tests so errors are detected early; in their work they proposed

a novel automated test case prioritization technique that automatically finds any

changes in the database, prioritizes test cases according to degree of relevance to the

changes in the database, and executes them in priority order. (Narayanan and Waas,

2011) introduced a mechanism that prioritize queries in database systems according

to their importance, the database administrators are also capable of changing the

priority of a query, series of experiments were conducted to show the efficiency of

this mechanism and achieved near optimal results.

2.6 Indexing

Indexing is a data structure approach that improves the speed of data retrieval time on a

dataset at the cost of additional writes and storage space, to maintain the index data

structure. Index performance is measured by retrieval time, index size, and the required

maintenance. “A database index usually yields 5% to 15% additional storage overhead.

Although the overhead may not seem too high in small databases, it results in non-

ignorable dollar cost in big data scenarios” (Yu and Sarwat, 2016).

Univ
ers

iti
Mala

ya

14

Database indexes need maintenance in each write or delete process. A DBMS has to

reorder the index after inserting to, or deleting from an indexed table. DBMS has to locate

and reorder affected indexes after any operation, which makes maintenance a time

consuming job, which affects the performance of the overall system (Yu and Sarwat, 2016).

(Philip Chen and Zhang, 2014; Qin, 2016) made an experiment that compared between the

most common index approaches, which are B-Tree, Bitmap index, Physical Data Block

Range Index, and Logical Data Block Range Index. In the conducted experiments, they

compared between the four indexes in terms of required time to build the index, space

occupied by the index, query operation time in various selectivity, and index maintenance

cost. We can conclude from their experiment that Bitmap index and B-Tree index are slow

in query retrieval time, and that these indexes occupy large spaces, as compared to Logical

Data Block Range Indexes. However, Logical Data Block Range Indexes are not suitable

for hot database as all blocks may contain eligible records, which mean fewer records may

be excluded. A hot database is a database that always has transactions.

Univ
ers

iti
Mala

ya

15

Table 2.1: A comparison between the common index types

 Retrieval
time

Space
occupied

Maintenance
time

Create
time

Remarks

Bit map When the
selectivity
is 0.01%,
retrieval
time is 100
ms

Using 300
GB of data,
index size
is 67MB

1900 ms
when
inserting 100
k new
records

Using 300
GB of data,
creation
time is
1890s

Slow retrieval time and
high cost for
maintenance and
storage

B-Tree When the
selectivity
is 0.01%,
retrieval
time is 129
ms

Using 300
GB of
data, index
size is
2.4G

1600 ms
when
inserting 100
k new
records

Using 300
GB of
data,
creation
time is
4800s

Slow retrieval time and
high cost for
maintenance and
storage

Physical
DBRI

When the
selectivity
is 0.01%,
retrieval
time is 64
ms

Using 300
GB of
data, index
size is 88.3
MB

78 ms when
inserting 100
k new
records

Using 300
GB of
data,
creation
time is
600 ms

In hot database it may
break as all blocks may
contain eligible records
which means fewer
records may excluded

Logical
DBRI

When the
selectivity
is 0.01%,
retrieval
time is 87
ms

Using 300
GB of
data, index
size is 72.7
MB

50 ms when
inserting 100
k new
records

Using 300
GB of
data,
creation
time is 602
ms

In hot database it may
break as all blocks may
contain eligible records
which means fewer
records may excluded

2.6.1 B-Tree index

The B-Tree is similar to a Binary tree search, but it is more complicated as it has multiple

branches per node instead of two (Adamu et al., 2015). It is used because it keeps keys in

sorted order for sequential traversing as relational database is slower at performing random

seeks.

Univ
ers

iti
Mala

ya

16

“B-Tree indexes satisfy range queries and similarity queries, also known as Nearest

Neighbor Search (NNS), using comparison - operators (<, < =, =, >, > =). B-Tree

algorithm consumes huge computing resources when performing indexing on Big Data”

(Alvarez et al., 2015).

The performance of a B-Tree index is measured by the speed of retrieving data, size of

index, and cost of maintenance.

Index operations, illustrations taken from wikipedia.

Write operation:

To insert a new record, the tree is searched to find the leaf node where the value should be

added.

Steps to add a new value:

• If the node contains fewer than the maximum allowed number of elements, then there is

room for the new value. Inserting the new value in the node keeps the node's elements

ordered.

• If the node is full, it is evenly split into two nodes, so:

A single median is chosen from among the leaf's elements and the new element.

Values less than the median are put in the new left node and values greater than the

median are put in the new right node, with the median acting as a separation value. The

separation value is inserted in the node's parent, which may cause it to be split, and so

on. If the node has no parent, in other words, if it is a root node, a new root is created

above this node (increasing the height of the tree).

Univ
ers

iti
Mala

ya

17

Deletion:

There are two strategies for deletion from a B-Tree; Locate and delete the value, then

restructure the tree to retain its stable state, or restructure the tree before deleting. There are

two special cases to consider when deleting an element:

1- The element in an internal node is a filter for its child nodes

2- Deleting an element may put its node under the minimum number of elements and

children

The procedures for these cases are in the order below.

Deletion from a leaf node:

1. Search for the element to delete.

2. If the value is in a leaf node, simply delete it from the node.

3. If underflow happens, rebalance the tree.

Deletion from an internal node:

Each element in an internal node acts as a separation value for two subtrees, therefore we

need to find a replacement for separation. Note that the largest element in the left subtree is

still less than the filter. Likewise, the smallest value in the right subtree is still greater than

the filter. Both of those elements are in the leaf nodes, and either one can be the new filter

for the two subtrees.

Limitations of B-Tree:

 The index is built on one or more attributes and not the whole record, i.e. it speeds up

limited number of queries.

Univ
ers

iti
Mala

ya

18

 The index size grows rapidly when increasing the size of the dataset.

 Maintenance is expensive, as in each write or delete, there is a need to reorder the

index.

ID First name Department

5 Ahmad Finance

28 Ali Finance

33 Sara Finance

41 Arwa IT

46 Aiham Finance

47 Farah IT

85 Nathir IT

99 Waddah Finance

Figure 2.3: Example of B-Tree index

2.6.2 Bitmap index

Bitmap indexes are efficient for low-cardinality columns (Wu et al., 2006), which

have a small number of distinct values. For example, sex column in a table can be

33|47

5|28 41|46 85|99

Univ
ers

iti
Mala

ya

19

indexed by Bitmap as it has two values, either M or F. Bitmap indexes use bit arrays

and answer queries by performing bitwise logical operations on these bitmaps.

Bitmap indexes occupy a smaller space compared to B-Tree index as it only stores

the record position and series of bits. Their disadvantage is that their query

operation time slows down in high cardinality attribute, especially unique columns.

The performance of a Bitmap index is measured by the speed of retrieving data, size

of index, and the cost of maintenance.

Name Sex Bitmap Index

Hadil F 0 1

David M 1 0

Sam M 1 0

Nasim F 0 1

Amat F 0 1

Layal F 0 1

Amal F 0 1

Figure 2.4: Example of Bitmap index

2.6.3 Covering index

A covering index is an index that contains all of the attributes needed to be fetched

from a table through a query. Using a covering index speeds up the retrieval time as

once a record is located, it is retrieved immediately. In the other index schemes, the

Univ
ers

iti
Mala

ya

https://en.wikipedia.org/wiki/Bit_array
https://en.wikipedia.org/wiki/Bitwise_operation

20

index is used just to locate the needed data, to resolve the query. After locating the

needed data, the next step is to go to the location and fetch the required records. The

maintenance of a covering index may be more expensive if it was not built

appropriately. Choosing a general covering index affects the overall performance

(Kaushik et al., 2002).

2.6.4 Recent work that tackles one or more database index challenges

As the data grows more and as more studies try to improve the common indexing

approaches, some studies are dedicated to a certain field while other studies are

useful in specific conditions, but all are trying to speed up the time for query

operation.

2.6.4.1 Scientific big data

In the last few decades, scientific data is being generated at a rapid rate. As it grows

in size, it becomes more difficult to organize in an efficient manner, so it becomes

even slower to find a needed data. Bit map index can be useful in indexing scientific

big data as it is efficient in indexing multidimensional data for speedy data retrieval

time. It is more efficient in the scientific case as there are less write operations.

Most of the time, scientific data are stored in distributed clusters, while the

traditional Bitmap scheme is designed for single server. (Chong et al., 2016)

improved the Bitmap index for scientific big data by introducing FastBit, in a

distributed environment. They proved that this approach, ‘FastBit’, outperforms the

classic Bitmap both in small and large data sizes by conducting experiments on

astronomical big datasets.

Univ
ers

iti
Mala

ya

21

2.6.4.2 Compressed Bitmap scheme

Compressing a Bitmap index squeezes its size, which is a great benefit as it reduces

the size of an index. Word-Aligned Hybrid (WAH) is a compression Bitmap index

which reduces the size of an index and improves the query operation time. This

scheme was proposed by (Wu et al., 2006). It answered multidimensional queries by

using compressed Bitmap indexes, as other indexes like B-Tree index cannot be

used to answer multidimensional queries. This study proved that WAH compressed

Bitmap index outperforms projection indexes, as they are three times faster in

retrieving data and can be used in the case of high-cardinality columns. This scheme

solved the size and high cardinality issues with the Bitmap index, but did not solve

the problem of using Bitmap in a frequently updated dataset. (Fusco et al., 2010)

used the principle of Bitmap compression scheme to develop a prototype using

commodity hardware for network flow data, based on the on-the-fly compression

and optimized Bitmap index, with an online LSH-based constructing scheme to

save even more space.

2.6.4.3 Compressed B-Tree scheme

Similar to compressed Bitmap scheme, compressed B-Tree scheme reduces the

space size dramatically. An example of a compressed B-Tree index is the

compressed index proposed by (Goldstein et al., 1998). The proposed approach

decreases the space size of the index, and gives the ability to decompress an

individual field rather than the whole relation at a time. This approach indexes the

low to medium cardinality fields of numbers, which can be used in decision support

Univ
ers

iti
Mala

ya

22

systems, as the biggest part in these application is the fact tables which do not

contain text columns, and the columns are of low and medium cardinality. The

drawback of this approach is that it can only be used with number attributes that are

not high cardinality. In other words, it cannot be used with text fields or with any

type of fields that are high cardinality.

2.6.4.4 Hippo index

(Yu and Sarwat, 2016) proposed Hippo index which is a scalable and fast database

indexing approach. Hippo stores disk page range instead of column pointer, which

leads to smaller index size. When a query is run, Hippo weighs the page ranges and

histogram-based page summaries to find out the pages that do not contain the

answer for the query, and predicates and inspects the remaining pages. An

experiment based on real datasets was conducted and the results showed that Hippo

occupies less storage than B-Tree, but still has the same level of performance as B-

Tree, meaning no change in query retrieval time. To sum up, Hippo index has many

advantages as it reduces the size of the index and ease the maintenance without

affecting the query operation.

Univ
ers

iti
Mala

ya

23

Table 2.2: Summary of recent works improving common index

Title Authors

Work significance

On-the-fly compression,
archiving and indexing
of streaming network
traffic

 Francesco et al.,
2010

Used the principle of Bitmap
compression scheme to
develop a prototype for unique
on-the-fly solution for
archiving and indexing of
network flow database

Performance
Comparison of Index
Schemes for
Range Query of Big
Data

Xiongpai QIN, 2016 A study of the common index
schemes (B-Tree, Bitmap
index, Physical Data Block
Range Index, and Logical Data
Block Range Index)

Accelerate Bitmap
indexing construction
with massive scientific
data

Chong, Li, Chen, & Zhu, 2016 Improved Bitmap index for
scientific big data by
introducing FastBit, in a
distributed environment

Compressing relations
and indexes

Goldstein, Ramakrishnan, and
Shaft, 1998

The proposed approach
decreases the space size of the
index, and gives the ability to
decompress an individual field
rather than the whole relation
at a time. This approach
indexes the low to medium
cardinality fields of numbers.

Two birds, one stone: a
fast, yet lightweight,
indexing scheme for
modern database
systems

Yu, and Sarwat, 2016 Less space storage than B-
Tree.

Optimizing Bitmap
indices with efficient
compression

Kesheng Wu, Ekow Otoo, and
Arie Shoahani, 2006

Concentrates on the efficiency
of using compressed Bitmap
indices to answer
multidimensional range
queries.
This approach is also effective
in the case of high-cardinality
attributes.

Univ
ers

iti
Mala

ya

https://dl.acm.org/author_page.cfm?id=81453621430&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=81453621430&coll=DL&dl=ACM&trk=0

24

2.7 Summary of literature

There have been many studies in the field of accelerating query response time. Indexing is

the most common approach that speeds up query operations. Indexing approaches speed up

query retrieval time but they are designed according to columns and not the entire query,

which slows the query operations (Wu et al., 2017). Moreover, they increase the size of

data needed to be stored, and maintaining an index is a time consuming job because the

database management system has to locate and update the index pages that are affected by

table changes (Yu and Sarwat, 2016).

Prioritization is used in different fields to help to concentrating on the meaningful and

important things, instead of wasting valuable time on the unnecessary. (Bebensee et al.,

2010; Garg and Datta 2012; Narayanan and Waas 2011; Goldsmith et al., 2014) all used

prioritization in their fields of study.

The most used index schemes are Bitmap index and B-Tree index. These two types have

limitations. These limitations worsen in big data scenarios (Yu and Sarwat, 2016). Many

researchers use these two indexes or one of them as a benchmark, such as (Yu and Sarwat,

2016; Wu et al., 2006; Chong et al., 2016).

It is noticed that some work have been dedicated to a significant field such as (Chong et al.,

2016) that improved scientific data indexing using Bitmap. Others have concentrated on the

size of index only (Fusco et al., 2010; Wu et al., 2006; Goldstein et al., 1998). (Yu and

Sarwat, 2016) improved both, size of index and maintenance performance.

Index approaches can be improved if it gets the use of scale independence ideas, meaning

that the index scans as less records as possible.

Univ
ers

iti
Mala

ya

25

Chapter 3: RESEARCH METHODOLOGY

This chapter focuses on the research methodology adopted in this research to achieve the

research objectives. The main objective is to propose an approach that speeds up the query

operation time with fewer side effects, i.e. maintenance, and storage size.

Figure 3.1: Research Methodology

3.1 Document analysis

The aim of the literature review of related researches is to obtain useful information in

speeding up query operation time approaches, and to find the limitation of the used index

schemes. We went through plenty of researches; some were dedicated to solving a single-

issue, others proposed wider solutions.

•Review the existing work in speeding up query retrieval
time.

•Review the existing index schemes that are used in big data.
•Identify the drawbacks of the existing index schemes.

Document analysis

•The proposed index uses methods that enhance the retrival
time, such as covering index and bounded queries.

Identification of the proposed index
approach

• Datasets were collected.
• Priority index was built.

Design and Development of the
proposed approach

• Experiments were conducted to compare between
the Priority index, Bitmap index and B-Tree index.

Experiments, evaluation and
results

Univ
ers

iti
Mala

ya

26

3.1.1 Main insights

Indexing is the most common way to speed up queries operation time. Materialized

views are also used to speed up query operation, but materialized views can be

enhanced by indexing them.

Prioritization is used in many different fields to concentrate on the important.

Indexes have some limitations, such as they need to be reordered after each write or

delete operation. Indexes are also built on one attribute, and not the whole record,

which limit the number of queries that an index can speed up. Using Covering index

speeds up the retrieval time, as when a record is found, it is fetched immediately as

the index contains all the attributes that are needed to be fetched from a table. So

once a record is located, it is fetched immediately, unlike other indexes that have

two steps, first to locate the record and next to fetch it. Scale independence

illustrates that not all records has to be scanned to get the query result.

3.2 Identification of the proposed index approach

Referring to the insights that were driven from the literature review, the scheme of the

Priority index was determined, which is an index proposed by the author.

The main features of Priority index are:

1. It ranks the records, from higher to lower, according to priority.

2. It scans the records linearly, from a higher rank to a lower rank.

Univ
ers

iti
Mala

ya

27

3. It is a covering index, i.e. once a record is located, it is returned immediately. The

query engine does not need to look up the records, since all of the requested

columns are available within the index.

4. It is not built on a specific attribute, which means it speeds up the query operation

regardless of what is in or is not in the where clause.

5. The idea of Priority index was taken from scale independence discussed in chapter2.

3.3 Design and Development

3.3.1 Data collection

This work uses two existing datasets:

1. NYC Taxi and Limousine Commission: NYC yellow taxi dataset was

downloaded from the official web pages of the NYC Taxi and Limousine

Commission (NYC). Twelve CSV files were downloaded, each file represents

the rides information of a month in the year 2017. This dataset was prioritized

according to date, meaning that the more recent the data the higher the priority.

This dataset was chosen because it was used in a published work (Yu and

Sarwat 2016) that developed an index for big data. 36,000,000 records from this

dataset were used sized around 2.6 Gigabytes. The fields of this dataset are:

(VendorID, tpep_pickup_datetime, tpep_dropoff_datetime, Passenger_count,

Trip_distance, PULocationID, DOLocationID, RateCodeID,

Store_and_fwd_flag, Payment_type, Fare_amount, Extra, MTA_tax,

Improvement_surcharge, Tip_amount, Tolls_amount, Total_amount).

Univ
ers

iti
Mala

ya

28

2. Canadian International Merchandise Trade (CIMT): online database offers

detailed trade data using the Harmonized System (HS) classification of goods

(based on the 6-digit commodity level) ((CIMT) 2017 -2018). The fields of this

dataset are: (HS_CODE, UOM_EXPORTS, COUNTRY, STATE, GEO,

VALUE, QUANTITY, YEAR, MONTH). This dataset was chosen as it is

suitable for comparing the proposed index with the common indexes, as the

code column in this dataset have a variety of values. This means it has high

selectivity, which in turn leads to an increase in the query response time for the

common index schemes. Additionally, it can be prioritized according to the HS

code, assuming that the dataset is being used by a company that mostly used

specific goods. This dataset contains 99 files, 2,727,391 records, sized 128

Megabytes, each file is a chapter in the goods code. This dataset is prioritized

according to the chapter of goods.

It was supposed that this dataset was indexed for a company that is trading in

toys and stationery goods, so usually their queries fetches items of these two

types. Thus the stationery and toys records were prioritized, which are of

chapters 95 and 48, i.e. records in these two chapters were given rank values.

3.3.2 Building the proposed index

Priority index is to be built in Oracle Database 12c, using Oracle SQL Developer

Version 4.2.0.17.089. Index is to be built according to the priority of the records,

and not a certain attribute, which speeds up a variety of queries. NYC Taxi dataset

records would be prioritized by recent date and (CIMT) dataset records would be

prioritized if goods are stationery or toys.

Univ
ers

iti
Mala

ya

29

The records are to be sorted according to the priority of the records, and when a

query is run, the query scans the records sequentially until it answers the query.

3.3.3 Baseline approaches

Bitmap and B-Tree indexes are the baseline approaches as they are the most

common indexes that are used to evaluate other types of indexes; Bitmap and B-

Tree indexes are already built in Oracle Database 12c, this research used the already

built-in indexes as a baseline.

3.4 Experiment

Six experiments are to be conducted using multiple queries, to compare the performance of

Priority index, Bitmap index, and B-Tree index. The comparison factors are the retrieval

time and index size using the two datasets mentioned above in section 3.3.1.

3.4.1 Experimental design

Table 3.1: Experiments

Experiment Dataset Selectivity
E1 NYC dataset 0.000001
E2 NYC dataset 0.00001
E3 NYC dataset 0.0001
E4 CIMT dataset 0.000001
E5 CIMT dataset 0.00001
E6 CIMT dataset 0.0001

Univ
ers

iti
Mala

ya

30

Table 3.2: Experiments using different selectivity on NYC dataset

Selectivity 0.000001 0.00001 0.0001
Priority Index
B-Tree Index
Bitmap Index

Table 3.3: Experiments using different selectivity on CIMT dataset

Selectivity 0.000001 0.00001 0.0001
Priority Index
B-Tree Index
Bitmap Index

Six experiments are to be conducted; three for each dataset each time the selectivity of the

query will be changed - selectivity is the number of fetched records over the number of

records -, selectivity would be 0.0001 in the first experiment, 0.00001 in the second

experiment and 0.000001 in the third experiment. In these experiments the retrieval time of

the 3 indexes will be compared. Retrieval time is affected by query selectivity and a good

index should be fast even in high selectivity, it’s noted that published work compare

between indexes retrieval time in three different selectivity such as (Yu and Sarwat, 2016;

Qin, 2016). Ten queries are to be run for each experiment; the queries are to be run three

times, each time using a different index. The selectivity is to be changed in each experiment

for each dataset, as shown in tables 3.2 and 3.3.

The objective of these experiments is to compute the average speed of retrieval time for

each index scheme.

3.4.2 Experimental steps

1- Two tables are to be created using the NYC taxi dataset.

Retrieval time average to be
calculated from E1, E2, and E3

Retrieval time average to be
calculated from E4, E5, and E6

Univ
ers

iti
Mala

ya

31

Table 3.4: Sample of the NYC dataset

VendorID tpep_pickup_datetimetpep_dropoff_datetimepassenger_counttrip_distanceRatecodeIDstore_and_fwd_flagPULocationIDDOLocationIDpayment_typefare_amountextra mta_tax tip_amounttolls_amountimprovement_surchargetotal_amount

1 01-04-17 0:00 01-04-17 0:15 1 1.8 1 N 158 113 2 10.5 0.5 0.5 0 0 0.3 11.8

1 01-04-17 0:00 01-04-17 0:16 3 3.7 1 N 87 158 2 14.5 0.5 0.5 0 0 0.3 15.8

2 01-04-17 0:00 01-04-17 10:20 1 0 1 N 264 193 1 0 0 0 0 0 0 0

1 01-04-17 0:00 01-04-17 0:37 2 3.3 1 N 230 4 1 23.5 0.5 0.5 4.95 0 0.3 29.75

1 01-04-17 0:00 01-04-17 0:02 1 0.7 1 N 142 143 2 4.5 0.5 0.5 0 0 0.3 5.8

1 01-04-17 0:00 01-04-17 0:07 1 2.2 1 N 170 263 1 8.5 0.5 0.5 2.45 0 0.3 12.25

1 01-04-17 0:00 01-04-17 0:08 1 0.7 1 N 100 48 1 7 0.5 0.5 1.65 0 0.3 9.95

1 01-04-17 0:00 01-04-17 0:02 1 0.4 1 N 166 166 2 4 0.5 0.5 0 0 0.3 5.3

2 01-04-17 0:00 01-04-17 0:10 1 1.23 1 N 113 68 1 8 0.5 0.5 1 0 0.3 10.3

2 05-04-17 7:52 05-04-17 7:55 1 0.55 1 N 68 68 1 4 0 0.5 0 0 0.3 4.8

2 26-04-17 15:45 26-04-17 16:10 6 3.72 1 N 88 246 1 18.5 1 0.5 3.04 0 0.3 25.29

2 26-04-17 16:12 26-04-17 16:28 6 2.29 1 N 246 114 1 12.5 1 0.5 1 0 0.3 15.3

2 26-04-17 16:32 26-04-17 23:46 6 1.81 1 N 113 170 2 10 1 0.5 0 0 0.3 11.8

2 01-04-17 0:00 01-04-17 0:46 1 5.67 1 N 162 261 2 33 0.5 0.5 0 0 0.3 34.3

2 01-04-17 0:00 01-04-17 0:31 1 18.21 2 N 132 234 1 52 0 0.5 14.64 5.76 0.3 73.2

2 01-04-17 0:00 01-04-17 1:19 6 7.27 1 N 100 52 1 50.5 0.5 0.5 12.95 0 0.3 64.75

2 01-04-17 0:00 01-04-17 0:06 6 1.06 1 N 230 142 1 6.5 0.5 0.5 1.56 0 0.3 9.36

1 01-04-17 0:00 01-04-17 0:09 2 1.8 1 N 181 61 2 9 0.5 0.5 0 0 0.3 10.3

2 01-04-17 0:00 01-04-17 0:12 1 1.71 1 N 170 79 1 9.5 0.5 0.5 2.16 0 0.3 12.96

2 01-04-17 0:00 01-04-17 0:26 1 3.08 1 N 144 25 1 18.5 0.5 0.5 3.96 0 0.3 23.76

1 01-04-17 0:00 01-04-17 0:18 2 3.6 1 N 164 140 1 15 0.5 0.5 3 0 0.3 19.3

1 01-04-17 0:00 01-04-17 0:18 1 3.5 1 N 211 97 1 15.5 0.5 0.5 3.36 0 0.3 20.16

2 01-04-17 0:00 01-04-17 0:24 5 4.31 1 N 113 141 1 18.5 0.5 0.5 3.96 0 0.3 23.76

2 01-04-17 0:00 01-04-17 0:13 5 3.54 1 N 75 116 1 13 0.5 0.5 2 0 0.3 16.3

1 01-04-17 0:00 01-04-17 0:20 1 5 1 N 125 263 1 17.5 0.5 0.5 3.75 0 0.3 22.55

1 01-04-17 0:00 01-04-17 0:35 3 10.3 1 N 234 228 1 34.5 0.5 0.5 8.3 5.76 0.3 49.86

1 01-04-17 0:00 01-04-17 0:05 2 0.7 1 N 161 162 2 5.5 0.5 0.5 0 0 0.3 6.8

2 01-04-17 0:00 01-04-17 0:05 1 0.6 1 N 79 113 1 5 0.5 0.5 1.89 0 0.3 8.19

2 01-04-17 0:00 01-04-17 0:08 1 0.7 1 N 148 232 1 7 0.5 0.5 1.66 0 0.3 9.96

2 01-04-17 0:00 01-04-17 0:18 1 3.79 1 N 142 79 1 15.5 0.5 0.5 5.04 0 0.3 21.84

2 01-04-17 0:00 01-04-17 0:10 4 1.93 1 N 158 48 2 9.5 0.5 0.5 0 0 0.3 10.8

2 01-04-17 0:00 01-04-17 0:05 3 1.41 1 N 234 161 1 6.5 0.5 0.5 1.56 0 0.3 9.36

2 01-04-17 0:00 01-04-17 0:11 1 2.02 1 N 79 233 1 10 0.5 0.5 2.26 0 0.3 13.56

2 01-04-17 0:00 01-04-17 0:06 1 0.96 1 N 48 186 2 6 0.5 0.5 0 0 0.3 7.3

2 01-04-17 0:00 01-04-17 0:20 1 3.38 1 N 79 255 1 16 0.5 0.5 3.46 0 0.3 20.76

1 01-04-17 0:00 01-04-17 0:15 1 4.7 1 N 264 264 1 15 0.5 0.5 2 0 0.3 18.3

2 01-04-17 0:00 01-04-17 0:07 1 1.15 1 N 230 186 1 6.5 0.5 0.5 1.56 0 0.3 9.36

2 01-04-17 0:00 01-04-17 0:06 1 1.3 1 N 100 50 2 6 0.5 0.5 0 0 0.3 7.3

2 01-04-17 0:00 01-04-17 0:02 2 0.53 1 N 141 263 1 4 0.5 0.5 1.06 0 0.3 6.36

Univ
ers

iti
Mala

ya

32

2- Two tables to be created using CIMT dataset.

Table 3.4: Sample of the NYC dataset

HS_CODE UOM_EXPORTS COUNTRY STATE GEO VALUE QUANTITY YEAR MONTH
60490 N/A 9 1038 1 15368 0 2017 10
60490 N/A 9 1038 1 74216 0 2017 11
60490 N/A 9 1038 1 6101 0 2018 2
60490 N/A 9 1038 35 11627 0 2017 7
60490 N/A 9 1038 35 60535 0 2017 8
60490 N/A 9 1038 35 93795 0 2017 9
60490 N/A 9 1038 35 15368 0 2017 10
60490 N/A 9 1038 35 74216 0 2017 11
60490 N/A 9 1038 35 6101 0 2018 2
60490 N/A 9 1039 1 85335 0 2017 4
60490 N/A 9 1039 1 82925 0 2017 5
60490 N/A 9 1039 1 6602 0 2017 6
60490 N/A 9 1039 1 18195 0 2017 7
60490 N/A 9 1039 1 11143 0 2017 8
60490 N/A 9 1039 35 85335 0 2017 4
60490 N/A 9 1039 35 82925 0 2017 5
60490 N/A 9 1039 35 6602 0 2017 6
60490 N/A 9 1039 35 18195 0 2017 7
60490 N/A 9 1039 35 11143 0 2017 8
60490 N/A 9 1040 1 8209 0 2017 8
60490 N/A 9 1040 1 19370 0 2017 11
60490 N/A 9 1040 35 8209 0 2017 8
60490 N/A 9 1040 35 19370 0 2017 11
60490 N/A 9 1041 1 2901 0 2017 2
60490 N/A 9 1041 1 5019 0 2017 3
60490 N/A 9 1041 1 11518 0 2017 4
60490 N/A 9 1041 1 5669 0 2017 5
60490 N/A 9 1041 1 11745 0 2017 6
60490 N/A 9 1041 1 17826 0 2017 8
60490 N/A 9 1041 1 2696 0 2017 11
60490 N/A 9 1041 1 4505 0 2018 1

3- One table of each dataset is to be indexed by Priority index.

4- The other tables are to be indexed, first by B-Tree index, then by Bitmap index.

Univ
ers

iti
Mala

ya

33

5- The size of each index is to be measured.

6- Different queries with different selectivity are to be run to compare the retrieval time of

each index in different selectivity.

3.5 Evaluation method

In this research, the evaluation factors are the retrieval time, index size, and maintenance,

as they are the factors that assess the performance of indexes. These factors were used to

evaluate indexes in many researches. (Philip Chen and Zhang 2014, Qin 2016; Yu and

Sarwat, 2016) used retrieval time, index size and maintenance to evaluate performance of

indexes in big data, while (Wu et al., 2006) used retrieval time, and index size only to

evaluate index performance. The accuracy of Priority Index query results is measured by

comparing the results obtained using Priority Index by the results obtained using the other

two indexes.

3.6 Summary

The main objective of this research is to develop an index scheme that speeds up query

retrieval time while occupying small space with less maintenance needed. The listed

methods in this chapter were used to achieve the objectives of this work. The methodology

adopted in this research led to creation of an index that outperforms the common indexes,

as the new index speeds up the retrieval time while occupying less space and needing less

maintenance.

Univ
ers

iti
Mala

ya

34

CHAPTER 4: PRIORITY INDEX DESIGN AND DEVELOPMENT

This chapter is dedicated to the design and development of Priority index.

4.1 Development Tools and Environments

In this research, the following tools and environments were used:

 Oracle VM Virtual Box Manager 5.2.8.

 Integrated Development Environment (IDE): Oracle SQL Developer Version

4.2.0.17.089.

 Database: Oracle Database 12c.

 Operating System: Oracle Linux Server 7.3.

 Processor: Intel® Core™ i7-3630QM CPU @ 2.40GHz.

 Memory: 3.9 GiB

4.2 Oracle SQL Developer

“Oracle SQL Developer is the Oracle Database IDE. A free graphical user interface, Oracle

SQL Developer allows database users and administrators to do their database tasks in fewer

clicks and keystrokes. A productivity tool, SQL Developer's main objective is to help the

end user save time and maximize the return on investment in the Oracle Database

technology stack.

SQL Developer supports Oracle Database 10g, 11g, and 12c, and will run on any operating

system that supports Java,” (Oracle 2004).

4.3 What is Priority Index?

Univ
ers

iti
Mala

ya

35

Priority index is a covering index; it overcomes the limitations of the commonly used

indexes. It is dedicated to the whole query and not to a significant attribute, which means it

is always useful regardless of which fields are in or are not in the where clause. It also

decreases the size of index as it only adds an attribute to the original table that keeps the

necessary rank values. In addition, it increases the query retrieval time for the highly ranked

records as they are scanned first, and being a covered index saves time as once a record is

located it is returned immediately. The query engine does not need to look up the records,

since all the requested columns are available within the index.

Figure 4.1: Read and Write operations in Priority index

4.4 When to use Priority Index?

Univ
ers

iti
Mala

ya

36

This Priority index depends on the idea that not all data have the same importance,

sometimes some data are never going to be used. Or at least some data are required to be

retrieved fast, like the timely transactions, while other data are not needed in a timely

manner.

Priority Index can be useful in the following cases:

 When having a huge table of data and the records are not of the same importance.

 When a big number of records are not queried in a big table.

 When there is a possibility to determine the criteria of the records that need to be

queried in a fast manner.

Prioritization examples:

1- New data gets higher ranks, using a trigger that increases the value of the rank by

one each time a record is added, in case the recent data needs to be fetched faster

than the older data.

2- When special data is added, they get predefined ranks, using a trigger to insert a

predefined value, in case there are some criteria and if they are met, the ranking of a

record is calculated and inserted.

3- When a table has no more writes but is still used for query purpose, and we are not

sure which are the important records and which are the useless ones, a suggestion is

that when a field or fields are fetched by a query, a trigger increase their rank by

one, so the more a record is queried the faster it will be retrieved.

Univ
ers

iti
Mala

ya

37

4.5 Priority Index Operations

4.5.1 Write

Any number of records can be added easily without having to locate attributes or

reconstruct the index. Records are added and if they need a value for rank, it is

added either manually by the user or automatically by a predefined trigger,

depending on the type of business.

Figure 4.2: Write operation in Priority index

4.5.2 Maintenance

All types of index need maintenance, which is a cost on the database management

system. The Priority index maintenance job is to reorder the records in the indexed

table in a descending manner according to the value of the rank field.

The Priority index needs reordering, in case of adding new records (write) but it

does not have to be immediate. Maintenance can be done at times when there are

fewer transactions, or it can be scheduled according to the needs of the work. This is

an advantage, as the write process will be fast, and as there will not be any type of

reconstructing the index while writing. It also improves the performance of the

database management system as maintenance can be done overnight after the day’s

work is over. Delaying the maintenance will not affect the accuracy of the returned

Insert a record

Other value for the rank field
as defined by the user

Rank field of the record equals
the highest ranked value +1

Univ
ers

iti
Mala

ya

38

data, so it does not have to be in each write. In case of delete, there is no need to do

any type of maintenance.

Figure 4.3: Maintenance operations in Priority index

4.5.3 Read

The data is going to be scanned sequentially; sequential read is faster than random

read. As the maintenance job is to reorder the records in a descending manner

according to the value of the rank field, the records with higher value for the rank

attribute will be scanned first. The query will stop scanning the table when it is

answered. For the read to be efficient, bounded query must be used. If not, the

Univ
ers

iti
Mala

ya

39

reading process will scan the whole table which takes O(N) time, which is time

consuming in the situation of big data.

Figure 4.4: Read operations in Priority index

4.6 Data collection

A search for a suitable dataset was conducted for the proposed index and NYC Taxi and

Limousine Commission (TLC) dataset was chosen. The dataset of yellow taxi was

downloaded from the official web pages of the NYC Taxi and Limousine Commission.

Twelve CSV files were downloaded, each file represents the ride information in a month in

the year 2017 in NYC. The taxi trip records include fields capturing pick-up and drop-off

dates/times, pick-up and drop-off locations, trip distances, itemized fares, rate types,

payment types, and driver-reported passenger counts. The data used in the datasets were

collected and provided to the NYC Taxi and Limousine Commission (TLC) by technology

Return answer

Read the next ranked
record

Scan highest ranked
record

Found
answ

Found
answ

Return answer

No

Yes

No
Yes

Univ
ers

iti
Mala

ya

40

providers authorized under the Taxicab & Livery Passenger Enhancement Programs

(NYC).

Table 4.1: Data dictionary of NYC Yellow Taxi dataset (NYC 2018)

Field Name Description

VendorID A code indicating the TPEP provider that provided the
record.

1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.

tpep_pickup_datetime The date and time when the meter was engaged.

tpep_dropoff_datetime The date and time when the meter was disengaged.

Passenger_count The number of passengers in the vehicle.

This is a driver-entered value.

Trip_distance The elapsed trip distance in miles reported by the
taximeter.

PULocationID TLC Taxi Zone in which the taximeter was engaged

DOLocationID TLC Taxi Zone in which the taximeter was disengaged

RateCodeID The final rate code in effect at the end of the trip.

1= Standard rate

2=JFK

3=Newark

4=Nassau or Westchester

5=Negotiated fare

6=Group ride

Store_and_fwd_flag This flag indicates whether the trip record was held in
vehicle memory before sending to the vendor, aka “store
and forward,” because the vehicle did not have a
connection to the server.

Y= store and forward trip

N= not a store and forward trip

Univ
ers

iti
Mala

ya

41

Payment_type A numeric code signifying how the passenger paid for the
trip.

1= Credit card

2= Cash

3= No charge

4= Dispute

5= Unknown

6= Voided trip

Fare_amount The time-and-distance fare calculated by the meter.

Extra Miscellaneous extras and surcharges. Currently, this only
includes the $0.50 and $1 rush hour and overnight
charges.

MTA_tax $0.50 MTA tax that is automatically triggered based on
the metered rate in use.

Improvement_surcharge $0.30 improvement surcharge assessed trips at the flag
drop. The improvement surcharge began being levied in
2015.

Tip_amount Tip amount – This field is automatically populated for
credit card tips. Cash tips are not included.

Tolls_amount Total amount of all tolls paid in trip.

Total_amount The total amount charged to passengers. Does not include
cash tips.

4.7 Implementation

4.7.1 Table creation

Two tables were created using Oracle Sql Developer ‘NYC’, and ‘NYC_PRIORITY’. Each

table contains the following fields with the associated data type

"VendorID" NUMBER,

 "tpep_pickup_datetime" TIMESTAMP (6),

 "tpep_dropoff_datetime" TIMESTAMP (6),

Univ
ers

iti
Mala

ya

42

 "passenger_count" NUMBER(*,0),

 "trip_distance" NUMBER,

 "RatecodeID" NUMBER(*,0),

 "store_and_fwd_flag" CHAR(1 BYTE),

 "PULocationID" NUMBER,

 "DOLocationID" NUMBER,

 "payment_type" NUMBER(*,0),

 "fare_amount" NUMBER,

 "extra" NUMBER,

 "mta_tax" NUMBER,

 "tip_amount" NUMBER,

 "tolls_amount" NUMBER,

 "improvement_surcharge" NUMBER,

 "total_amount" NUMBER.

‘NYC_PRIORITY’ has an extra field, which is ‘rank’, with data type number, for the

purpose of Priority index.

Univ
ers

iti
Mala

ya

43

4.7.2 Importing

4.7.2.1 Importing dataset files to ‘NYC’ table:

36,000,000 records from the NYC yellow taxi dataset were imported. The first

3,000,000 records in each file of the 12 datasets were imported to ‘NYC’ table, one

file at a time creating a large table of 36,000,000 records, sized around 2.6

Gigabytes.

 4.7.2.2 Importing dataset files to ‘NYC_PRIORITY’:

Records are imported to ‘NYC_PRIORITY’ table using an insert statement, which

inserts all records from ‘NYC’ table that was created previously, and inserts the data

to it. The insert statement sorts the records before inserting them; they are sorted

according to pick up date and time value (tpep_pickup_datetime) attribute.

4.7.3 Indexing

 ‘NYC’ table was indexed first using B-Tree index. The index was on the

attribute "tpep_pickup_datetime" as it is suitable for B-Tree index, as it is a

high-cardinality column i.e. has variety of values.

 After running the needed queries on ‘NYC’ table and taking the needed

measurements, B-Tree index was dropped and ‘NYC’ was indexed using

Bitmap index. The index was on the attribute "tpep_pickup_datetime".

 ‘NYC_PRIORITY’ table was indexed using the Priority index described in

the following.

Univ
ers

iti
Mala

ya

44

4.6.3.1 Priority Index

As the chosen dataset is the data of taxi rides, The priority of this dataset

was to be the date, i.e. the more recent the data the higher the rank. In most

cases, there will not be a need to query an old ride in a timely manner. For

example, if a problem happened during a ride, the data of that ride can be

fetched in a timely manner. A passenger can appeal regarding a recent ride,

or if a passenger reported something was lost or a problem happened during

a ride, the information should be available in a timely manner. Data that is

months old will not be needed in a timely manner.

As the records in NYC_PRIORITY table were already sorted, as the records

were inserted into the table in a sorted manner, the remaining work was to

fill the rank attribute.

The attribute rank was filled using a code that inserts values, starting with a

value equal to the number of records, and it subtracts 1 as it fills the

previous records. So the rank field will be filled with numbers, starting by

the number of records, and subtracting one for each record until it reaches

the last record with a value of zero.

Univ
ers

iti
Mala

ya

45

Table 4.2: Part of table NYC_PRIORITY

4.8 Implementing Priority index for a second example

4.8.1 Dataset

The Canadian International Merchandise Trade (CIMT) online database offers

detailed trade data using the Harmonized System (HS) classification of goods

(based on the 6-digit commodity level) ((CIMT) 2017 -2018).

This dataset contains nine columns (HS_CODE, UOM_EXPORTS, COUNTRY,

STATE, GEO, VALUE, QUANTITY, YEAR, MONTH).

VendorID
tpep_pickup_dateti

me

tpep_dropoff_dateti

me

pas

sen

ger_

cou

nt

trip_di

s tance

Rat

eco

deI

D

stor

e_a

nd_

fwd

_fla

g

PULo

catio

nID

DOLocat

ionID

pay

men

t_ty

pe

fare_am

ount
extra

mta_t

ax

tip_am

ount

tol ls

_am

ount

improv

ement

_surch

arge

total_amo

unt
rank

2 01-JAN-17 06.53.58.000000000 AM01-JAN-17 07.02.00.000000000 AM6 1.8 1 N 79 68 2 8.5 0 0.5 0 0 0.3 9.3 17

1 01-JAN-17 06.53.56.000000000 AM01-JAN-17 07.12.56.000000000 AM1 9.1 1 N 79 257 1 26.5 0 0.5 5.45 0 0.3 32.75 16

2 01-JAN-17 06.53.55.000000000 AM01-JAN-17 07.00.09.000000000 AM3 1.01 1 N 237 142 1 6.5 0 0.5 1.46 0 0.3 8.76 15

1 01-JAN-17 06.53.54.000000000 AM01-JAN-17 06.58.06.000000000 AM1 1.4 1 N 237 75 2 6 0 0.5 0 0 0.3 6.8 14

1 01-JAN-17 06.53.53.000000000 AM01-JAN-17 07.17.48.000000000 AM1 16.1 2 N 229 132 1 52 0 0.5 13.2 0 0.3 66 13

2 01-JAN-17 06.53.53.000000000 AM01-JAN-17 07.05.07.000000000 AM5 7.44 1 N 168 250 2 21 0 0.5 0 0 0.3 21.8 12

2 01-JAN-17 06.53.53.000000000 AM01-JAN-17 06.57.35.000000000 AM2 0.97 1 N 238 166 2 5.5 0 0.5 0 0 0.3 6.3 11

1 01-JAN-17 06.53.50.000000000 AM01-JAN-17 07.25.43.000000000 AM1 11.6 1 N 62 239 2 36 0 0.5 0 0 0.3 36.8 10

2 01-JAN-17 06.53.50.000000000 AM01-JAN-17 06.58.51.000000000 AM1 1.58 1 N 249 186 2 7 0 0.5 0 0 0.3 7.8 9

1 01-JAN-17 06.53.49.000000000 AM01-JAN-17 06.59.14.000000000 AM1 1.2 1 N 48 246 2 6.5 0 0.5 0 0 0.3 7.3 8

2 01-JAN-17 06.53.49.000000000 AM01-JAN-17 07.18.37.000000000 AM1 11.86 1 N 249 138 1 34.5 0 0.5 15 0 0.3 50.3 7

2 01-JAN-17 06.53.49.000000000 AM01-JAN-17 07.14.30.000000000 AM2 6.29 1 N 90 181 2 21.5 0 0.5 0 0 0.3 22.3 6

2 01-JAN-17 06.53.49.000000000 AM01-JAN-17 06.59.19.000000000 AM1 1.45 1 N 234 186 2 6.5 0 0.5 0 0 0.3 7.3 5

2 01-JAN-17 06.53.48.000000000 AM01-JAN-17 06.54.44.000000000 AM1 0.42 1 N 255 256 2 3.5 0 0.5 0 0 0.3 4.3 4

1 01-JAN-17 06.53.45.000000000 AM01-JAN-17 06.56.43.000000000 AM1 1 1 N 236 262 1 5 0 0.5 1 0 0.3 6.8 3

2 01-JAN-17 06.53.45.000000000 AM01-JAN-17 07.10.08.000000000 AM5 3.84 1 N 48 75 2 15 0 0.5 0 0 0.3 15.8 2

2 01-JAN-17 06.53.43.000000000 AM01-JAN-17 07.02.22.000000000 AM1 1.99 1 N 37 255 2 8.5 0 0.5 0 0 0.3 9.3 1

Univ
ers

iti
Mala

ya

46

4.8.2 Table creation

Two tables were created using Oracle Sql Developer HR.CANADA_TRADE_PR,

and HR.CANADA_TRADE. Each table contains the following fields with the

associated data type

HS_CODE NUMBER(6,0),

 UOM_EXPORTS VARCHAR2(5 BYTE),

 COUNTRY NUMBER(6,0),

 STATE_NO NUMBER(6,0),

 GEO NUMBER(3,0),

 AMOUNT NUMBER(9,0),

 QUANTITY NUMBER(9,0),

 "YEAR" NUMBER(4,0),

 "MONTH" NUMBER(2,0),

“RANK” NUMBER(6)

4.8.3 Importing

Data of The Canadian International Merchandise Trade (CIMT) was imported to

HR.CANADA_TRADE table using oracle sql developer, 99 files were imported

one file at a time to create a table of 2,727,391 records, sized 128 Megabytes.

4.8.4 Inserting the rank value

It was supposed that the company that will use the Priority index is a company that

is interested in stationery and toys. The company will rank all the toys goods with

one, and rank the stationery goods with two. We used the following code:

DECLARE

Univ
ers

iti
Mala

ya

47

i number;

l number;

BEGIN

select count (*) INTO l from HR.CANADA_TRADE_PR;

 FOR i IN 1..l

 LOOP

UPDATE HR.CANADA_TRADE_PR

 SET "RANK" = 2

 where HR.CANADA_TRADE_PR.HS_CODE LIKE '95%';

 UPDATE HR.CANADA_TRADE_PR

 SET "RANK" = 1

 WHERE HR.CANADA_TRADE_PR.HS_CODE LIKE '48%';

 END LOOP;

END;

4.8.5 Inserting dataset files to HR.CANADA_TRADE_PR

Records are imported to ‘HR.CANADA_TRADE_PR’ table using an insert statement

that inserts all records from ‘HR.CANADA_TRADE’ table that we created previously

and inserts the data into it. The insert statement sorts the records before inserting;

they are sorted according to rank field.

4.8.6 Indexing

 HR.CANADA_TRADE table was indexed first using B-Tree index, the

required queries were run against the table and all needed measurements

were taken. Then this index was dropped and the table was indexed by

Bitmap index.

Univ
ers

iti
Mala

ya

48

 HR.CANADA_TRADE_PR table was indexed using the Priority index

described in the following.

4.6.3.1 Priority Index

As the dataset is the detailed trade data, it was supposed that the company

that will use this dataset is a company that works with stationery and toys, so

the company is mostly interested in goods that codes start with 95 and 48.

As Rank value was already set in HR.CANADA_TRADE table using the

code above, the data was inserted into table HR.CANADA_TRADE_PR

using an insert statement that inserts records from HR.CANADA_TRADE

to HR.CANADA_TRADE_PR ordered by Rank.

Univ
ers

iti
Mala

ya

49

Figure 4.5: Part of table CANADA_TRADE_PR

4.9 Summary

This chapter explains the process of developing the Priority Index. The datasets were

imported to the database and records, were ranked, and sorted according to their

importance. In read operation, records are scanned sequentially, so the important data is

scanned first. Maintenance for Priority index is not needed in each operation. It can be

scheduled to be done at any preferred time. Tables in the database were indexed by Priority

Index, B-Tree Index, and Bitmap index.

Univ
ers

iti
Mala

ya

50

CHAPTER 5: EXPERIMENTS, EVALUATION AND RESULTS

This chapter illustrates the experiments conducted and the evaluation of Priority index in

terms of retrieval time and space occupied. It compares the Priority index with Bitmap

index and B-Tree index. In addition, it discusses the obtained results.

5.1 Experiments and Evaluation

The indexed tables created in chapter 4 are used in 6 experiments to calculate the average

retrieval time for each index scheme.

In this research, the evaluation factors are retrieval time, index size, and maintenance, to

measure the performance of the proposed and baseline approaches in accelerating the

retrieval time in big data.

5.1.1 Retrieval Time

To compare the retrieval time for Bitmap index and B-Tree index, a field to build

the index on should be the same; a field with higher selectivity increases the index

retrieval time, i.e. high-cardinality attribute.

 Selectivity = number of distinct values over number of records.

 "tpep_pickup_datetime" field was used to create the Bitmap and B-Tree index

as this field has a high variety of values, which means it has high selectivity,

thus making it a good choice for speeding up the retrieval time in index. The

selectivity is 9095084/36000000 = 0.25

Univ
ers

iti
Mala

ya

51

 Figure 5.1: Queries to get the needed information to calculate selectivity for NYC

dataset

 “hs-code” field was used to create the Bitmap and B-Tree index as this field has a

variety of values which means it has high selectivity to increase the query response

time. The selectivity of index is 4830/2727391 = 0.002

 Figure 5.2: Queries to obtain the needed information to calculate selectivity for CIMT

dataset

SELECT COUNT(*) FROM HR.NYC;

 -- The result of the statement is 36000000

SELECT COUNT(DISTINCT(TPEP_PICKUP_DATETIME)) FROM HR.NYC;

--The result of the statement is 9095084

SELECT COUNT(DISTINCT (HS_CODE)) FROM HR.CANADA_TRADE;

 -- The result: 4830

SELECT COUNT(*) FROM HR.CANADA_TRADE;

--The result of the statement is 2727391

Univ
ers

iti
Mala

ya

52

5.1.2 Index size

The following queries are used to determine the size of the Bitmap and B-Tree indexes.

Figure 5.3: Queries to determine the size of Bitmap and B-Tree indexes

The size of Priority index is calculated by calculating the size of the rank attribute which

were added for the sake of indexing using Priority index. The size of the Priority index is

the size of the table, with the rank attribute minus the size of the original table.

5.1.3 Maintenance:

Maintenance was not measured in experiments as it is not done in each insert or

delete operation in Priority Index.

SELECT BYTES, SEGMENT_NAME FROM USER_SEGMENTS

WHERE SEGMENT_NAME = 'NYC_BTREE_IDX';

SELECT BYTES, SEGMENT_NAME FROM USER_SEGMENTS

WHERE SEGMENT_NAME = 'NYC_BITMAP_IDX';

SELECT BYTES, SEGMENT_NAME FROM USER_SEGMENTS

WHERE SEGMENT_NAME = 'CIMT_BTREE_IDX';

SELECT BYTES, SEGMENT_NAME FROM USER_SEGMENTS

WHERE SEGMENT_NAME = 'CIMT_BITMAP_IDX';

Univ
ers

iti
Mala

ya

53

5.2 Results

5.2.1 Index Size

By running queries in figure 5.3 to calculate the size of Bitmap index and B-Tree

index, and by calculating the size of rank attribute to get the size of Priority index,

the following results were found.

Table 5.1: Comparison between the indexes in terms of index size

Index\ Dataset NYC Taxi CIMT

Priority 171 Megabytes 0.09412 Megabytes

B-Tree 752 Megabytes 150 Megabytes

Bitmap 336 Megabytes 80 Megabytes

Figure 5.4: A comparison between the indexes (Priority, B-Tree and Bitmap) in

terms of index size

171

752

336

0.09412

150

80

0

100

200

300

400

500

600

700

800

Priority B-tree Bitmap

Sp
ac

e
o

cc
u

p
ie

d
 in

 M
eg

ab
yt

es

Index

NYC Taxi CIMT
Univ

ers
iti

Mala
ya

54

Table 5.1 and Figure 5.4 compares between Priority index, B-Tree index and Bitmap

index in terms of index size. It is noted that Priority index is small in size compared

to B-Tree and Bitmap index. The size of Priority index is the size of the rank field

only. Which means the size of the index will always be smaller than Bitmap and B-

Tree index even if the dataset contained huge number of records.

It is also noticeable that Priority index size is very small for CIMT dataset and the

reason is that there are only 2 values inserted to the rank column, which are “1” and

“2”.

20681 records have the value 1 and 78006 records have the value 2. Value 1 and 2

occupy 1 byte only, i.e. the size of Priority index for CIMT dataset is 20681 bytes +

78006 bytes. Even if the records are increased in this dataset, the size of the index

will only increase by one byte, if the inserted record is of high priority. If the inserted

records are not of high priority, there will be no effect in the size of the Priority

index.

5.2.2 Retrieval Time

Queries with different selectivity were used to measure the query response time.

Selectivity here is the number of fetched records over the number of records, as

shown in figure 5.5, and 5.6 respectively.

Univ
ers

iti
Mala

ya

55

Figure 5.5: Example of the used queries in the experiment for NYC dataset

Figure 5.6 Example of the used queries in the experiment for CIMT dataset

SELECT FARE_AMOUNT FROM HR.NYC WHERE TPEP_PICKUP_DATETIME > '01-
NOV-17 06.53.43.000000000 AM' AND ROWNUM <= 3,600;

-- Selectivity is 0.0001

SELECT FARE_AMOUNT FROM HR.NYC_PRIORITY WHERE
"TPEP_PICKUP_DATETIME" > '01-DEC-17 06.53.43.000000000 AM' AND ROWNUM <=
360;

-- Selectivity is 0.00001

SELECT FARE_AMOUNT FROM HR.NYC WHERE TPEP_PICKUP_DATETIME > '01-
DEC-17 06.53.43.000000000 AM' AND ROWNUM <= 36;

-- Selectivity is 0.000001

SELECT * FROM (SELECT AMOUNT FROM HR.CANADA_TRADE_PR WHERE
(HS_CODE BETWEEN 480000 AND 489999) OR (HS_CODE BETWEEN 950000 AND
959999)) WHERE ROWNUM <= 272;

-- Selectivity is 0.0001

SELECT * FROM (SELECT AMOUNT FROM HR.CANADA_TRADE WHERE (HS_CODE
BETWEEN 480000 AND 489999) OR (HS_CODE BETWEEN 950000 AND 959999)) WHERE
ROWNUM <= 27;

-- Selectivity IS 0.00001

SELECT * FROM (SELECT AMOUNT FROM HR.CANADA_TRADE_PR WHERE
HS_CODE BETWEEN 480000 AND 489999) WHERE ROWNUM <= 2;

-- Selectivity is 0.000001

Univ
ers

iti
Mala

ya

56

The outputs of the queries were the same for all the three indexes when using the

same query. The differences were in the retrieval time which means that the

proposed index query results are accurate.

Table 5.2: NYC taxi dataset response time

Index \ Selectivity 0.000001 0.00001 0.0001

Priority 0.0152 0.068 0.778

B-Tree 0.245 0.262 0.607

Bitmap 0.239 0.265 0.642

Figure 5.7: NYC taxi dataset response time

0.0152
0.068

0.778

0.245 0.262

0.607

0.239 0.265

0.642

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.000001 0.00001 0.0001

R
et

ri
ev

al
 t

im
e

in
 s

ec
o

n
d

s

Selectivity

Priority B-tree BitmapUniv
ers

iti
Mala

ya

57

Table 5.2 and figure 5.7 illustrate a comparison between Priority index, B-Tree

index and Bitmap index in terms of query retrieval time for NYC taxi dataset in

selectivity 0.000001, 0.00001 and 0.0001. Retrieval time is measured in seconds.

Table 5.3: CIMT dataset response time

Index \ Selectivity 0.000001 0.00001 0.0001

Priority 0.0101 0.05 0.573

B-Tree 0.25 0.301 0.67

Bitmap 0.29 0.3 0.579

Figure 5.8: CIMT dataset retrieval time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.000001 0.00001 0.0001

R
et

ri
ev

al
 t

im
e

in
 s

ec
o

n
d

s

Selectivity

Priority B-tree Bitmap

Univ
ers

iti
Mala

ya

58

Table 5.3 and figure 5.8 illustrate a comparison between Priority index, B-Tree

index and Bitmap index in terms of query retrieval time for CIMT dataset in

selectivity 0.000001, 0.00001 and 0.0001. Retrieval time is measured in seconds.

5.3 Discussion

5.3.1 Size

Priority index occupy a small size compared to Bitmap index and B-Tree index. It is

known that the common indexes increase the table size from 5% to 15% (Yu and

Sarwat 2016) which is a big space when data is in Gigabytes; on the other hand,

Priority index only adds to the original size of a table, size of a column of a number

datatype.

5.3.2 Retrieval time

It is noticed that Priority index is faster in retrieving records compared to Bitmap

and B-Tree index, especially in the small selectivity. Priority index retrieval time is

not affected by the size of the dataset as long as the required records are among the

high priority records; Priority index starts scanning the important records, so it

reaches the important records in a timely manner regardless of the size of the

dataset.

5.3.3 Maintenance

Maintenance in Priority index can be scheduled and does not have to be done after

each operation; on the other hand, maintenance in the common indexes has to be

done after each operation, which is a high cost to the operating system.

Univ
ers

iti
Mala

ya

59

5.4 Summary

In this chapter, the performance of the Priority index was evaluated in terms of retrieval

time and space occupied compared to B-Tree index and Bitmap index. It was obvious that

Priority index occupies a small space compared to the speed of retrieval time. It is also

noted that Priority index does not increase much in size when the dataset is increasing, but,

Priority retrieval time slows down when selectivity is high, which makes Priority index a

good fit when querying big data and trying to retrieve small size of important data.

Univ
ers

iti
Mala

ya

60

CHAPTER 6: CONCLUSION

This chapter summarizes the major findings of this research, towards the development of an

index scheme. This chapter revisits the objectives of this research, as well as the steps taken

to achieve those objectives. Furthermore, this chapter also discusses the contributions and

work limitations, as well as suggestions that can be carried out in future.

6.1 State of the art

Speeding up retrieval time is important to system applications as operations can be faster

and reports can be timely generated. Speeding up query retrieval comes with a cost to

Database Management Systems. Using index is a common solution to speed up retrieval

time, but an index comes with a price of extra space and extra maintenance, a faster index

is a bigger index in size. There is a need to have an index that increases the speed of

retrieval time without leading to much increment in size and maintenance.

6.2 Research objectives revisited

6.2.1 First objective

The first objective was to develop a suitable index scheme approach to accelerate

the query retrieval time in big data. This objective was met by developing the

Priority index approach. The performance of Priority index was analyzed, and it was

clear that Priority index is quicker in retrieval time than Bitmap and B-Tree indexes,

especially when retrieving small amount of high priority records.

Univ
ers

iti
Mala

ya

61

6.2.3 Second objective

The second objective was to evaluate the proposed approach with the common

available approaches in terms of retrieval time and space occupied. This objective

was achieved by conducting experiments using two different datasets that were

indexed using Bitmap index, B-Tree index and Priority index. The sizes of the

different indexes were measured. And the retrieval time were calculated using

different selectivity. The results showed that Priority index outperforms the other

index schemes in terms of space occupied and retrieval time.

6.3 Contribution

The main contribution of this research is the design of the Priority index, which

outperforms B-Tree and Bitmap index in retrieval time and space occupied. Priority index

occupies a smaller size compared to the speed of query operation, in addition, Priority

Index is not affected by cardinality. The maintenance of the Priority index can be scheduled

and does not have to be in each write and delete operation, as this does not affect the

accuracy of the retrieved data.

6.4 Interpretations of Results and Insights

 Priority index depends on the whole record and not on a single attribute, i.e. it is

always useful regardless of what the where clause includes.

 Priority index depends on ranking the records of a dataset, and its retrieval time is

small when the high ranked records are queried. It is suitable for indexing big data

when the records are not of the same importance, especially in low selectivity.

Univ
ers

iti
Mala

ya

62

 The reason behind the high speed of query operation in Priority index is that the

important data are scanned first, so when the query result is among the highly

ranked data, it is retrieved in a very short time. In addition, Priority index is a

covering index, i.e. once a record is located it is returned immediately.

 Priority index needs less maintenance, as it can be scheduled and does not have to

be in each write or delete.

 Priority index performance is not affected by cardinality, whether the dataset

contains high or low cardinality attributes that makes no change in the performance

of Priority Index.

6.5 Limitation of work

The limitation of the Priority index is that it is useful in bounded query only, i.e. if the

query is not a bounded query, the query will scan the whole dataset, which means a slow

retrieval time.

The used database is the oracle express version, which has limitation in size as it is a free

database, and this is the reason behind not creating huge sized tables.

6.6 Recommendations for future works

A recommendation for future work that can be done using the Priority index approach is to

create a module that uses the Priority index to index big datasets, and develop an approach

that helps in building bounded queries instead of using unbounded queries, i.e. a module

that has the ability to convert queries to bounded queries, so the index can answer any

query in high speed.

Univ
ers

iti
Mala

ya

63

References

(CIMT), C. I. M. T. D. (2017 -2018). "Canadian International Merchandise Trade Database
(CIMT)." Retrieved 15-08-2018, 2018, from
https://open.canada.ca/data/en/dataset/b1126a07-fd85-4d56-8395-143aba1747a4.

Adamu, F. B., et al. (2015). "A Survey On Big Data Indexing Strategies." SLAC-PUB 6
pages (December 2015): 6.

Alvarez, V., et al. (2015). A comparison of adaptive radix trees and hash tables. 2015 IEEE
31st International Conference on Data Engineering.

Bebensee, T., et al. (2010). Binary Priority List for Prioritizing Software Requirements,
Berlin, Heidelberg, Springer Berlin Heidelberg.

Bellamkonda, S., et al. (2013). "Adaptive and big data scale parallel execution in oracle."
Proc. VLDB Endow. 6(11): 1102-1113.

Bounie, D. and L. Gille (2012). Info Capacity| International Production and Dissemination
of Information: Results, Methodological Issues and Statistical Perspectives.

Chong, G., et al. (2016). Accelerate bitmap indexing construction with massive scientific
data. 2016 5th International Conference on Computer Science and Network Technology
(ICCSNT).

Durham, E. E. A., et al. (2014). A model architecture for Big Data applications using
relational databases. 2014 IEEE International Conference on Big Data (Big Data).

Fan, W., et al. (2015). Querying Big Data by Accessing Small Data. Proceedings of the
34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.
Melbourne, Victoria, Australia, ACM: 173-184.

Fasolin, K., et al. (2013). Efficient Execution of Conjunctive Complex Queries on Big
Multimedia Databases. 2013 IEEE International Symposium on Multimedia.

Fusco, F., et al. (2010). "NET-FLi: on-the-fly compression, archiving and indexing of
streaming network traffic." Proc. VLDB Endow. 3(1-2): 1382-1393.

Univ
ers

iti
Mala

ya

https://open.canada.ca/data/en/dataset/b1126a07-fd85-4d56-8395-143aba1747a4

64

Garg, D. and A. Datta (2012). Test Case Prioritization Due to Database Changes in Web
Applications. 2012 IEEE Fifth International Conference on Software Testing, Verification
and Validation.

Geerts, F. (2016). "Scale Independence: Using Small Data to Answer Queries on Big
Data." 61.

Goldsmith, M. R., et al. (2014). "Development of a consumer product ingredient database
for chemical exposure screening and prioritization." Food and Chemical Toxicology 65:
269-279.

Goldstein, J., et al. (1998). Compressing relations and indexes. Proceedings 14th
International Conference on Data Engineering.

Hougaard, R., et al. (2016). Priorities. One Second Ahead: Enhance Your Performance at
Work with Mindfulness. New York, Palgrave Macmillan US: 39-46.

Kaushik, R., et al. (2002). Covering indexes for branching path queries. Proceedings of the
2002 ACM SIGMOD international conference on Management of data. Madison,
Wisconsin, ACM: 133-144.

Marr, B. (2015). "A brief history of big data everyone should read." Retrieved 22/07/2018,
2018, from https://www.weforum.org/agenda/2015/02/a-brief-history-of-big-data-
everyone-should-read/.

Narayanan, S. and F. Waas (2011). Dynamic prioritization of database queries. 2011 IEEE
27th International Conference on Data Engineering.

NYC. "Taxi trips." Retrieved 25-07-2018, 2018, from
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.

NYC (2018). "NYC data dictionary." Retrieved 18/07/2018, 2018, from
http://www.nyc.gov/html/tlc/downloads/pdf/data_dictionary_trip_records_yellow.pdf.

Oracle (2004). "What is SQL Developer?". Retrieved 18/07/2018, 2018, from
http://www.oracle.com/technetwork/developer-tools/sql-developer/what-is-sqldev-
093866.html.

Philip Chen, C. L. and C.-Y. Zhang (2014). "Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data." Information Sciences 275: 314-347.

Univ
ers

iti
Mala

ya

https://www.weforum.org/agenda/2015/02/a-brief-history-of-big-data-everyone-should-read/
https://www.weforum.org/agenda/2015/02/a-brief-history-of-big-data-everyone-should-read/
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/downloads/pdf/data_dictionary_trip_records_yellow.pdf
http://www.oracle.com/technetwork/developer-tools/sql-developer/what-is-sqldev-093866.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/what-is-sqldev-093866.html

65

Pottinger, R. and A. Halevy (2001). "MiniCon: A scalable algorithm for answering queries
using views." Vldb Journal 10(2-3): 182-198.

Qin, X. (2016). Performance comparison of index schemes for range query of big data.
2016 12th International Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD).

Sharma, A. and M. Sood (2014). Utilizing materialized views to formulate business
intelligence. 2014 International Conference on Parallel, Distributed and Grid Computing.

Sohrabi, M. K. and H. Azgomi (2017). "TSGV: a table-like structure-based greedy method
for materialized view selection in data warehouses." Turkish Journal of Electrical
Engineering and Computer Sciences 25(4): 3175-3187.

Sohrabi, M. K. and V. Ghods (2016). "Materialized View Selection for a Data Warehouse
Using Frequent Itemset Mining." Journal of Computers 11(2): 140-148.

Wu, H., et al. (2017). A Performance-Improved and Storage-Efficient Secondary Index for
Big Data Processing. 2017 IEEE International Conference on Smart Cloud (SmartCloud).

Wu, K., et al. (2006). "Optimizing bitmap indices with efficient compression." ACM Trans.
Database Syst. 31(1): 1-38.

Yu, J. and M. Sarwat (2016). "Two birds, one stone: a fast, yet lightweight, indexing
scheme for modern database systems." Proc. VLDB Endow. 10(4): 385-396.

Zhou, J., et al. (2007). Lazy maintenance of materialized views. Proceedings of the 33rd
international conference on Very large data bases. Vienna, Austria, VLDB Endowment:
231-242.

 Univ
ers

iti
Mala

ya

