CHAPTER 1

Introduction and Definitions

1.1 Preliminaries and Definitions

A graph G is an ordered pair (V, E) where V = V(G) is a non-empty set of
vertices and E = E(G) is a set of edges. Two vertices are adjacent if they are
joined by an edge. An edge joining a vertex to itself is called a loop. A simple
graph is a graph without loops or multiple edges. Unless otherwise stated, all
graphs are simple. The edge joining the two adjacent vertices a and b in a
graph G is denoted by (a,b). A graph with just one vertex and no edges is a
trivial graph and all other graphs are non-trivial. A null graph is a graph with
no edges. The degree of a vertex v in a graph G, denoted by deg(v), is the
number of edges incident to v.

The vertex v is an isolated vertezr if deg(v) = 0 and is an end-vertezr if
deg(v) = 1. A graph G is k-regular if deg(v) = k for all v € V(G). A regular
graph is one that is k-regular for some k.

Let G = (V,E) be a graph. A graph H = (V',E’) is a subgraph of G if
V! CV and E' C E. H is a proper subgraph of G if V' C V or E' C E. A
spanning subgraph of G is a subgraph H of G such that V' = V. A subgraph
H of G is an induced subgraph of G if for two vertices a,b € V', (a,b) € E(H)
if and only if (a,b) € E(G). In Figure 1.1, G, is a spanning subgraph of G; G»
is an induced subgraph of G.
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Figure 1.1



Two graphs G and H are isomorphic, written G = H, if there exists a one
to one correspondence between their vertex sets which preserves adjacency.
Figure 1.2 shows two isomorphic graphs.
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Figure 1.2

A path of a graph is an alternating scquoncc of vertices and edges vo.e;. vy.
€. ..., Un—1.€n, vy such that all the v;’s. 0 < i < n and ej's. 1 < j < n are
distinct. The length of a path is the number of edges that lies along that path.
The distance d(u.v) between two vertices u and v is the length of the shortest
path joining them if any.

A graph is connected if every two vertices are joined by a path, otherwise
it is disconnected. The complement of a graph G, denoted by G, has V(G) as
its vertex set, and two vertices are adjacent in G if and only if they are not
adjacent in G.

A cycle with n vertices, denoted by C,,, is a connected graph where each of
its vertices is of degree 2. Note that C, is 2-regular. A complete graph with
n vertices, denoted by K, has every pair of its vertices adjacent. Note that
Kpis (n — 1)-regular and that a Cy is also a K3. A bipartite graph G is a
graph whose vertex set can be partitioned into two subsets X and Y such that
vertices in X are adjacent only to vertices in Y and vice versa. If every vertex
of X is adjacent to every vertex of Y, then G is a complete bipartite graph. 1f G
is a complete bipartite graph with |X| = m and |Y| = n, we write G = K p.n.
A star is a complete bipartite graph K ,,.

A maximal connected subgraph of G is a connected component or component
of G. A cut-vertez of a graph is a vertex whose removal increases the number
of components in G. An acyclic graph contains no cycles. A tree with n
vertices, denoted by T,. is a connected acyclic graph. A path with n vertices,
denoted by P,. is a tree with precisely two end-vertices. Any graph without
cycles is a forest, so the components of a forest are trees. The connectivity
#(G) of a graph G is the minimum number of vertices whose removal results
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in a disconnected or trivial graph. If x(G) > n, then G is n-connected. In
Figure 1.3, the graph G3 is l-connected and u is a cut-vertex; the graph G4
is 2-connected and removing the vertices v and w will result in a disconnected
graph with two components. Note that x(T,) = 1. x(Cp) = 2. x(K,) =n — 1
and #(Kpm.,) = min{m.n}.

Figure 1.3

1.2 Colouring of Graphs and Chromatic Number

A colouring of a graph is an assignment of colours to its vertices so that no
two adjacent vertices have the same colour. The set of all vertices with a same
colour forms a colour class. An n-colouring of a graph G partitions the vertex
set V(G) into n colour classes.

A graph is called n-colourable if it has an n-colouring. The chromatic number
\(G) of a graph G is the minimum number k such that G is k-colourable. i.e

X(G) = k if G is k-colourable but not (k — 1)-colourable. The chromatic
numbers of the three graphs shown in Figure 1.4 are 4, 4 and 3 in that order.

Figure 1.4

A graph G is critical if \(G — v) < \(G) for every vertex v in G. The three
graphs shown in Figure 1.4 are all critical.
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Theorem 1.2.1. (i) x(K,)=p
(i) x(Kmn) =2
(i) x(C2n) =2: Xx(Cong1) =3.n>1.

Theorem 1.2.2. A graph is 2-colourable (bipartite) if and only if it contains
no cycle of odd length.

Since all trees are acyclic, we have the corollary.
Corollary 1.2.3. Every tree is 2-colourable.

If x(G) = n and every n-colouring of G induces the same partition of V (G)
into n colour classes. then G is said to be uniquely n-colourable.

Theorem 1.2.4 (Theorem 12.17 of [35], pg. 139). Every uniquely n-colourable
graph is (n — 1)-connected.

Corollary 1.2.5. In the n-colouring of a uniquely n-colourable graph. the
subgraph induced by any k colour classes 2 < k < n, is (k — 1)-connected.

Consider the graph in Figure 1.5. This graph is uniquely 3-colourable be-
cause every 3-colouring has the same partition {vo}, {vi.vs.vs}. {v2,vq.ve}
of V(G).

Figure 1.5



1.3 Chromatic Polynomials

Given A colours, the number of A-colourings of G is called the chromatic
polynomial of G and is denoted as P(G;\). This concept was first introduced
by Birkhoff [3] in 1912 in order to tackle the four colour problem (now the four
colour theorem) and was further developed by Read and Tutte.

The chromatic polynomial is a polynomial of degree n with integer coef-
ficients, where n is the number of vertices in G. For example, consider the
complete graph K,. Choose a vertex in K. There are A ways of colouring
this vertex. Picking another vertex we have A — 1 colours with which it can be
coloured. Pick another vertex; it is adjacent to both vertices already coloured,
and can therefore be coloured in A — 2 ways. We continue in this way; the last
vertex can be given any of the remaining A — (n — 1) colours. Hence

P(Kn;A)=XAA=1)...(A =n+1) = (A\)n.

Also, if G is a null graph on n vertices, denoted by N, any vertex can be given
any of the A colours and therefore P(N,;A) = A™.

The following results are useful in finding the chromatic polynomial of a
graph. For a given graph G, let G +e be the graph obtained from G by adding
an edge e to two non-adjacent vertices in G and G o e be the graph obtained
from G by contracting the edge e and removing all but one multiple edges in
the resulting graph.

Theorem 1.3.1. P(G;A) = P(G +e;)) + P(G oe; \).

Proof: Let e be the new edge joining the two non-adjacent vertices a and b in
G. The number of ways of colouring G using no more than A colours where a
and b are coloured differently is the number of ways of colouring G + e using no
more than A colours. The number of ways of colouring G using no more than A
colours where a and b are coloured the same is the number of ways of colouring
G o e using no more than A colours. Thus P(G;)) = P(G + ;1) + P(Goe; A)
and the result follows.

We usually let a drawing of a graph to represent its chromatic polynomial.
This notational device was introduced by Zykov [78].
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Theorem 1.3.1 is illustrated as follows

Let G — e be the graph obtained from G by deleting an edge e in G.
Corollary 1.3.2. P(G;)) = P(G —e;\) — P(Goe; ).

The recursive formulas in Theorem 1.3.1 and Corollary 1.3.2 allow us to
compute the chromatic polynomial of a graph in two ways. We can either use
Corollary 1.3.2 to reduce it to null graphs or use Theorem 1.3.1 to reduce it
to complete graphs. The former method is more suited to graphs with few
edges whereas the latter can be applied more efficiently to graphs with many

edges. The process of expressing chromatic polynomial in terms of chromatic
polynomials of complete graphs or null graphs is sometimes called “chromatic

3 N
. @*IX[”‘E Ao
-@wﬁv’ﬁ&’

Example 1.1.
(a)



= 0054400, +300),

® « «
Wy
= (0:7\34()0\))-(;\)-‘\0)

o0 o o o o
= (0 0-0 )-2(0 0-0 )+y( ©0-0)
0 o

s} o] o
= 0 0-3(0 )+3( )-(0)
o o o

= atintintag

Corollary 1.3.3. Let P(G:\) be the chromatic polynomial of a graph G with
|V(G)| = n. Then P(G:\) is a polynomial in A of degree n. Furthermore,
it has integer coefficients. with leading term A™, constant term zero and the
coefficients alternate in sign.

Proof: By the nature of the chromatic reduction, exactly one graph (either
K, or Ny,) will be obtained at the final stage. Hence P(G: ) is a polynomial in
A of degree n with leading term A™. Note that if the constant term of P(G:\)
is not zero i.e. P(G:0) # 0. it means that the graph can be coloured with no
colour, which is impossible. The fact that the coefficients alternate in sign is
proved by induction on the number of vertices and the number of edges. The
proof can be found in Read [56].

Corollary 1.3.4. If G is not Ny,. then the sum of the coefficients in P(G:\)
is equal to zero.

n

Proof: By Corollary 1.3.3. let P(G:)\) = ZA,-)\E Since G is not N,. it

i=1
cannot be coloured with 1 colour. so P(G:1) = 0 and the result follows.
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Corollary 1.3.5. Let P(G;\) = Za,-/\‘ be the chromatic polynomial of a
graph G. Then |an_1| = |E(G)|.

Proof: In the chromatic reduction, every deletion of an edge contributes 1
to .the absolute value of the coefficient of the second term of the chromatic
polynomial and the result follows.

Suppose G and G are graphs each containing a complete subgraph K.
The K ,-gluing of Gy and G is the union of G} and G2 obtained by identifying
the two subgraphs K,. If r = 1, the graph thus obtained is a vertez-gluing of
G, and G, and is called edge-gluing if r = 2.

Zykov (78] provides the following formula for finding P(G;A) where G is a
K ,-gluing of some graphs G and G3.

Theorem 1.3.6 [78]. Let G be a K,-gluing of Gy and G2. Then

P(G1;A)P(G2;A)

P(G;2) = P(KmN)

Theorem 1.3.7. The chromatic polynomial of a tree with n vertices Ty, is
P(Tn;A) = A(A = 1)"" L

Proof: By induction on n. Assume the result is true for n = k. Tkyy is a
vertex-gluing of Ty and K. By Theorem 1.3.6,

P(Ti; M) P(K2; )

P(Tk415A) = P(K1; )

A =D =T
e

=A(A - 1)k

By applying Corollary 1.3.2 and Theorem 1.3.7, it can be shown that



Theorem 1.3.8. P(Cp;A) = (A= 1)" + (=1)"(A = 1).
Definition 1.3.9. The join of two graphs G; and G2, denoted by G; + Ga,
is the graph obtained from the disjoint union of G, and G by joining every

vertex of G to every vertex of G5.

In particular, the wheel W, is the join of K| and Cp,—;. The single vertex K
is referred to as the hub of the wheel. To compute the chromatic polynomial
of W,,, we observe that

Lemma 1.3.10. Let G be the join of K| with a graph H. Then P(G;)) =
AP(H;A - 1).

Proof: The vertex K, can be coloured in A ways. The number of ways to
colour the graph H using no more than (A — 1) colours is P(H; A — 1). Hence
P(G;A) = AP(H;x = 1).

Using Lemma 1.3.10 and Theorem 1.3.8, we have
Theorem 1.3.11. P(Wp;A) = A((A = 2"~ + (=1)"" (A - 2)).

Let f(A) = > ai(A)m—i and g(A) = D bi(A)n—i- Then define f(A) o g()
i>0 >0
as f(A\)og(A) = Z @ibj(A)min—r. Here, the operation o is referred to as
r=its
umbral multiplication.

Let P(G1;A) and P(G2; A) be the chromatic polynomials expressed as sums
of falling factorials, that is

P(G1;A) = ao(A)m + a1(A)m-1 + a2(A)m-2 + - - + am(A)o
P(G2iA) = bo(M)n + b1(M)n=1 +b2(MN)n-2 + - + bn(A)o.
Then
P(G1;2) 0 P(G2;A) = agbo(N)m+n + (a0b1 + a160) (N mn-1

+ (agbz + a1by + azb0)(A)m4n—2+ -+ + ambn(A)o.



The following theorem is due to Zykov [78].

Theorem 1.3.12 [78]. Let G and G3 be any graphs. Then P(Gy + Ga;A) =
P(G1;2) 0 P(G2;A).

Notice that C4 = Na + Na. Applying Theorem 1.3.12, we see that
P(Ca;A) = {(N)2+ (M1} o {(N)2+ (M1}
=(A)a+2(A)s+ (A2
=" — A% 4+ 62% - 3.

In the wheel W, the edges that are incident to the hub are called the spokes
of the wheel, the rest of the edges are the rims of the wheel. Note that W,
has n — 1 spokes and n — 1 rims. The graph U, is obtained from the wheel
Wy by deleting one of the spokes. This graph is referred to as a wheel with a
missing spoke in [17]. Its chromatic polynomial is given by

Theorem 1.3.13. P(Un;A) = A((A = 2)"3(A2 = 38X + 3) + (=1)"3(A - 2)).

1.4 Automorphisms of Graphs

A one-to-one mapping from a finite set onto itself is called a permutation.
An automorphism of a graph G is a permutation a of V(G) which has the
property that (u,v) is an edge of G if and only if (a(u),a(v)) is an edge of
G. In other words, each automorphism « of G is a permutation of the vertices
V(G) which preserves adjacency. The set of all automorphisms of G, with the
operation of composition, is the automorphism group of G, denoted by Aut(G).

Consider the graph K4 with the vertices labelled as shown in Figure 1.6(a).
Now a = (12)(34) is a permutation on V (K4) which interchanges 1 and 2 and
interchanges 3 and 4. Then the image of K is represented in Figure 1.6(b).
Clearly o is an automorphism of K.
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o = (12)(34)
—_—

Figure 1.6(a) Figure 1.6(b)

The graph Af in Figure 1.7 has only two automorphisms, i.e. a = 1 (the iden-
tity permutation which fixes every number) and 8 = (34) which interchanges
3 and 4. Here, Aut(M) = {1,(34)}.

Figure 1.7 The graph A

We say that G is vertez-transitive if Aut(G) acts transitively on V(G). that
is given any two vertices u and v, there is an automorphism a € Aut(G) such
that a(u) = v. Note that these two vertices u and v must have the same
degree. Hence, if G is not regular, then it is not vertex-transitive. Examples of

vertex-transitive graphs are K,,. Cp, and the Petersen graph shown in Figure
1.8.
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Figure 1.8  Petersen graph

The graph G is edge-transitive if given any pair of edges there is an auto-
morphism which sends one into the other. Examples of edge-transitive graphs
are Ky, Cn and Ky .

The graph shown in Figure 1.9 is vertex-transitive but not edge-transitive
while the graph K, , with m # n is edge-transitive but not vertex-transitive.
Examples of regular graphs which are edge-transitive but not vertex-transitive
can be found in [6].

Figure 1.9



