CHAPTER 4

The Chromatic Uniqueness of
Edge-Gluing of k,, and ¢,,

In this chapter, we prove the chromatic uniqueness of the edge-gluing of K5 ¢
(s > 1) and Cp, (m > 3), denoted as K24 Uz Crn. This result is also obtained
independently by Xu, Liu and Peng (77] using a different method.

Lemma 4.1. Let G ~ Y. Suppose G has at most one triangle. Then
n(C;,G) = n(C},Y) and —n(C3,G) + n(K23,G) = —n(C3,Y) + n(K23,Y).

Proof: The proof follows directly from Theorem 2.1.11 and Proposition 3.1.8.

Let G be a connected graph on p vertices and g edges. Then the cyclomatic
number of G is q — p + 1.

Lemma 4.2. Let G be a connected graph with cyclomatic number c. Then

c+1
the number of K33 in G is at most et

Proof: By induction on c.

If ¢ < 2, the result is trivially true. Suppose the result is true for all con-
nected graphs with cyclomatic number ¢ where ¢ > 2.

Let G be a connected graph with cyclomatic number ¢+ 1. Then G contains
a cycle C. Delete an edge e from C. The resulting graph G — e is connected
and has cyclomatic number c¢. By the induction hypothesis, the number of

. . c+1
K23 in G — e is at most +

Let {K2,4,,...,K24} denote the set of all subgraphs (which are complete
bipartite graphs) in G containing the edge e. Here s; > 3 fori = 1,...,t.
Notice that (sy —1) + -+ (st —1) < ¢+ 1. Then the number of K23 in G
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t
si—1
containing the edge e is Z ( ' 2 ) It is a routine exercise to show that this
i=1
. c+1 . .
number is no more than 2 . Consequently, the number of Kz3in G is

] 2
at most (C ; 1) + ((; 1) = (C: ) and this furnishes the proof.

Lemma 4.3. Suppose m; > 3 is an integer fori = 1,2,...,t. Then

£(5) s (57 ) e

= 3

Proof: The lemma is trivially true for ¢t = 1. It is routine to verify that
my ma my+mg—2
< -2
( 3 ) " ( 3 ) - ( 3 )

By repeatedly applying the above inequality, the lemma follows.

We can now prove the chromatic uniqueness of K25U2 Cm. Let H be a
graph containing a subgraph of the form K, for some ! > 2. Let z be a
vertex in H — K. Then z is called a t-vertez to K if z is adjacent to only
two vertices of K3, so that the resulting subgraph KU {z} is isomorphic to
Ka41.

Theorem 4.4. For any s > 1 and m > 3, the graph G = K4 U Cry is
uniquely determined by its chromatic polynomial.

Proof: Let Y be a graph such that Y ~ G. Then Y is a 2-connected graph
on s +m vertices and 2s +m — 1 edges (Proposition 3.1.8). By Theorem 3.1.7,
Y contains no K4-homeomorph as a subgraph because G contains no such
subgraph.

When s = 1, K3 ,U3 Cyy, is the vertex-gluing of K5 and C,,. It is chromati-
cally unique (see Theorem 3.2.13).

When s = 2, K3 4Uy Cy, is the 6-graph and is chromatically unique (see
[10]). For the case s = 3, the graph K33 Uy Cyy, is chromatically unique (see
Theorem 3.2.17). So we may assume that s > 4.

44



Since G has at most one triangle and n(K23,G) = ;), by Lemma 4.1,

n(K23,Y) > (;) if m # 5 and n(Kay3,Y) = ;) ~1if m = 5. In cither case,
we see that Y contains a subgraph K3 3. Let K denote this subgraph.

Let J be the graph Y — K and assume that there are e edges joining K to
J. Now note that J has s +m — 5 vertices and 2s + m — 7 — e edges and so
[EN=V(I)l=s-e-2.

Let Jy,..., Jk be the connected components of J, k > 1. Suppose there are
e; edges joining K and J;, i =1,...,k.

We make the following observations:

(O1) :  Each J; contains at most one t-vertex to K. This is because if
there are two t-vertices z, and z3 from J; to K, then there is a path in J;
connecting z1 and z2. This path together with K contains a K4-homeomorph
as a subgraph which is impossible.

(02) : If e; = 2, then J; contains a t-vertex only if J; is an isolated vertex
because Y is 2-connected.

k
Let c¢; denote the cyclomatic number of J;, i = 1,...,k. Then ZC‘ =

i=1
s —e— 2+ k. Consequently, e < s — 2+ k. Since e > 2k, it follows that

1 <k <s—2 Let 8 denote the number of J;’s that are isolated vertices.
Then clearly, 8 < k — 1.

There are two cases that we need to consider.
Case (1): All the J;'s are trees.

Assume that e; = 2 for i = 1,...,k. Then k = s — 2. From (02), each
isolated vertex of J could be a t-vertex to K and so

3+ s
< < .
n(K23,Y) < ( 3 ) < (3)
. . . 3+
Clearly, the second inequality holds if 8 = k —1. When 8 < k — 2, <

()1 3



Suppose 8 = k — 1. Then one of the J;, say Jk, is the path on m — 2
vertices and Jy, ..., Jx_1 are t-vertices to K. Now, the two edges joining Jx
and K are not incident to a common vertex in K or in Jg. Moreover, these
two edges must join the two end-vertices of Ji to two adjacent vertices in K.
This is because otherwise either Y contains a K4-homeomorph as a subgraph
or P(Y;)) # P(G;\). But thenY = G.

Assume that e; > 3 for some i. Then k < s — 3. Since each isolated vertex
in J contributes at most one t-vertex to K, we have

3+p4+1 s
Ky3,Y) < <
= (7))
Clearly, the second inequality holds if 3 = k—1and k = s—3. When 8 < k—2,
4+ < s 1
3 3 '
Suppose f = s —4 = k — 1. Then one of the J;, say Ji is a tree on m — 2
vertices and Jj,...,Jk_) are t-vertices to K. Since one of the end-vertices of
Ji is a t-vertex to K, Ji is a path. Now, the other end-vertex of Jx must

be adjacent to a vertex in K which is not of degree 2 because otherwise Y’
contains a K4-homeomorph as a subgraph. But then Y = G.

Case (2): Not all the J;'s are trees.

Assume that Jy,...,J, are not trees and Jyy1,...,Jx are trees so that
c1,...,¢¢ 2 1and cq1,...,ck = 0 for some t > 1.

Consider the subgraph induced by the vertices of J; U K. For each i, let H;

denote the graph obtained from J; U K by deleting all the edges in K. Let a;
denote the number of isolated vertices in H;. Then a; < 3.

Let H| denote the graph obtained from H; by deleting all the a; isolated
vertices. Then H/ is a connected graph with cyclomatic number ¢;+e;—5+a; <

itei—1
ci +e; — 2. By Lemma 4.2, n(K23, H]) < (C' +;' )
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By (01), since each J; contributes at most one t-vertex, we have

n(Ka3,Y) < (k ':: 3) + Xl: (c.- +§,~ - 1)

i=1

t
k (ci+ei—1)—2(t—1)
S(+3)+(i=zl e )—Z(t—l)
3 3
by Lemma 4.3.

Now observe that
k t

(citei—1)=2(t—1)= ci+y ei=3t+2

=1 i=1 =1

M-

k
=(s—e—-2+k)+e— Z e; —3t+2
i=t+1
S(s—2+k)—2(k—t)—3t+2

=s—-t—k

<s—k-—1

Thus we have
— k-
n(K23,Y) < (k-;g) + (5 3 1) —2(t-1)

< (;) -2t  Lemma 4.3

< (;) -2 because t > 1.

This completes the proof of the theorem.
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