
A CODE GENERATOR TOOL FOR THE GAMMA DESIGN

PATTERNS

./

NOVIA INDRIATY ADMODISASTRO

SUBMITTED TO FULFILL THE

PARTIAL REQUIREMENTS FOR THE DEGREE OF

MASTER OF SOFTWARE ENGINEERING

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY MALAY A

KUALA LUMPUR

APRIL 2003

Univ
ers

iti
Mala

ya

ABSTRACT

Software reuse has been recognized as an attractive idea with an obvious payoff

to achieve software that is faster, better and cheaper. One important component to be

highlighted in designing reusable object-oriented software is design patterns. Design

patterns describe a commonly recurring structure of communicating components that

solve a general design problem in a particular context. An important property of design

patterns is that they are independent of a particular application domain and programming

paradigm. As a result, design patterns facilitate reuse of software architecture, even

when other forms of reuse are infeasible. Despite the fact that design patterns have

tangible benefits, it was found difficult to put into practice. Since design pattern only

describes a solution to particular design problem, it does not lead to direct code reuse.

Some developers have found it difficult to make a leap from the pattern description into

a particular implementation. This complexity can overcome by using code generator tool

that assist the developers to transform a design pattern into code automatically. There

are a few existing tools in the market however most of them have limitations. Therefore,

this thesis describes an attempt to automate the design patterns implementation into its

concrete form and utilizing the WWW as its communication infrastructure. y-CGT is

introduces to implement the main features of the existing tools and tackles some of their

shortcomings. The tool has been evaluated and the results were reported to be

comparable and competitive to other pattern code generator tools.

11

Univ
ers

iti
Mala

ya

ACKNOWLEDGEMENT

First and foremost I would like to express my gratitude to Allah S.W.T that gave

me the possibility to complete this thesis. A very sinccre and special thanks to my supervisor

Prof. Dr. P. Sellapan, for his invaluable advice, guidance and for his subtle direction of

my efforts throughout the preparation of this thesis.

Secondly, I would like to thank my colleagues, lecturers and technical staffs

from the Department of Software Engineering for their endless assistance, technical

advice and co-operation. I would also like to thank Universiti Putra Malaysia (UPM) for

providing me a financial support throughout my study.

Last but not least, I would like to forward my deepest love and gratitude to my

beloved parents, Rezhan S. Ashraf[and Admodisastro family members for their

continuous support, encouragement and previous love during the years of her studies and

putting their heart and soul into her life .

•

lll

Univ
ers

iti
Mala

ya

TABLE OF CONTENTS

Page

ABSTRACT .. ii

ACKNOWLEDGMENT ... : iii ··

LIST OF FIGURES .. vii

LIST OF TABLES viii

LIST OF ABBREVIATION ... ix

1 INTRODUCTION .. 1

1.1 Design Patterns ... 3

1.2 Design Patterns Objectives ... 5

1.3 Benefits of Design Patterns................. 5

1.4 Design Patterns Difficulties .. 8 .

1.5 Easing Design Patterns Difficulties 9

1.6 Research Objectives ... 11

1.7 Project Methodology ... 12

1.8 Thesis Organization ... 12

2 LITERATURE REVIEW ... 15

2.1 Review of the Design Patterns .. 15

2.1.1 Organizing Design Patterns ... 15

2.1.2 Design Pattern Implementation Methodology .. 17

2.2 Pattern Code Generator Tools ... 18

2.2.1 Non-Web Based Pattern Code Generator Tools ... 20

2.2.1.1 S.C.U.P.E ... 20

2.2.1.2 SNIP .. 22

2.2.2 Web Based Pattern Code Generator Tools .. 23

2.2.2.1 Designer's Assistant Tool. ... 23

2.2.2.2 Automatic Code Generation ... 26

2.3 Identifying Main Features .. 30

2.4 Summary , ... 33

Univ
ers

iti
Mala

ya

3 RESEARCH FRAMEWORK ... ~,4

3.1 The Design Pattern Code Generator Tool Methodology · 34

3 .1.1 The Methodology Outline .. 35

3.1.2 The People ... 38

3.2 The Implementation of a Web-Based Design Pattern Code Generator Tool.. 38

3.2.1 Limitation .. · 40

3.3 Evaluating y-CGT .. 40

3.4 Summary ... 41

4 ANALYSIS AND DESIGN .. 42

4.1 y-CGT Analysis ... 42

4.1.1 Requirements Analysis ... 42

4.1.1.1 y-CGT Functional Requirements ... 42

4.1.1.2 y-CGT Non-Functional Requirements 45

4.1.2 y-CG Object-Oriented Analysis (OOA) ... 46

4.1.2.1 The Unified Modeling Language ... 46

4.1.2.2 Identifying y-CGT Use-Cases ... 47

4.1.2.3 Class Modeling .. 4 7

4.2 y-CGT Design ... 48

4.2.1 y-CGT Architecture ... 4 9

4.2.2 y-CGT Object-Oriented Design (OOD) .. s·o
4.2.2.1 The construction ofthe interaction diagram for each scenario ~1·

4.2.2.2 The construction of the detailed class diagram 52

4.2.3 y-CGT User Interface Design ... 52

4.3 Summary ... 54

5 IMPLEMENTATION AND EXECUTION .. 55

5.1 y-CGT Implementation .. 55

5.1.1 Implementation Environment 55

5.1.1.1 The Communication Infrastructure ... 55.

5.1.1.2 The Programming Language ... 59

5.1.1.3 The Database ... 57

5.1.1.4 The Web Server. .. 5.8

v

Univ
ers

iti
Mala

ya

5.1.2 y-CGT Objects 58

5.1.3 Implementation ofy-CGT Main Features 64

5.2 y-CGT Execution 69

5.3 Summary 71

6 EVALUATION AND RESULTS 72

6.1 y-CGT Evaluation ... 72

6.1.1 Pilot Study 72

6.1.1.1 Participants 73

6.1.1.2 Experimental Material.. ... 73

6.1.1.3 Environment. 74

6.1.1.4 Methodology 74

6.1.1.5 Quantitative Measurement. 74

6.1.1.6 Qualitative Measurement 7~

6.2 Comparison of y-CGT with Other Pattern Code Generator Tools 78

6.3 Results 79

6.4 Summary 80

7 CONCLUSION .. 81

7.1 Summary .. 81

7.2 Contributions R2

7.3 Future Work 83

APPENDIX A y-CGT Object-Oriented Analysis Design 85

APPENDIX B y-CGT Evaluation Material and Questionnaire 9l.

APPENDIX C The Catalog of Design Pattern 9.7

BIBLIOGRAPHY 99

VI

Univ
ers

iti
Mala

ya

LIST OF FIGURES

Page

Figure 1.1: Design patterns reside in object-oriented design methodologies 5

Figure 2.1: The design pattern methodology ... 19

Figure 2.2: S.C.U.P.E Main window ... 20

Figure 2.3: S.C.U.P.E customize window (left) and save menu (right) 21

Figure 2.4: SNIP Model .. 23

Figure 2.5: Budinsky's implementation trade-offs page ... 27

Figure 2.6: Budinsky's tool pattern description page .. 28

Figure 2.7: Budinsky's generated C++ code .. 29

Figure 3.1: Pattern code generator tool's methodology ... 35

Figure 4.1: y-CGT use-cases .. 47

Figure 4.2: y-CGT class diagram 48

Figure 4.3: y-CGT architecture 50

Figure 4.4: Identify design pattern interaction diagram.. 51

Figure 4.5: Detailed client, designer, and server classes .. 52

Figure 5.1: JSPs and JavaBeans resides in the Java ™ 2 Platform, Enterprise Edition (J2EE)

architecture ... 57

Figure 5.2: y-CGT main document browser .. 59

Figure 5.3: y-CGT catalog browser .. 60

Figure 5.4: y-CGT pattern browser. ... 61

Figure 5.5: y-CGT wizard browser. ... 62

Figure 5.6: y-CGT form browser 63

Figure 5.7: y-CGT pattern generated code browser .. 63

Figure 5.8: y-CGT diagram browser ... 64

Figure 5.9: Participants custornization wizard .. 66

Figure 5.10: y-CGT customize design pattern visualization .. 66

Figure 5.11: Help facility explain the pattern template .. 67

Figure 5.12: Alert message .. 63

Vll

Univ
ers

iti
Mala

ya

LIST OF TABLES

Page

Table 2.1: Pattern catalog .. 16

Table 2.2: A descriptive schema for an ADV .. 7.4

Table 2.3: Development constructor structure for a design pattern 25

Table 2.4: Summary of features of pattern code generator tools 31

Table 4.1: y-CGT functional requirements .. 43

Table 4.2: Identify design pattern scenario .. 51

Table 6.1: Summary of the questionnaire and its results .. 76

Table 6.2: Questionnaire answers scores ... 77

Table 6.3: Comparison y-CGT with other patterns generator tools 78

Vlll

Univ
ers

iti
Mala

ya

LIST OF ABBREVIATION

y-CGT Gamma Code Generator Tool

HTTP Hyper Text Transfer Protocol

lAS Inprise Application Server

JSP Java Server Pages

OMT Object Modeling Technique

UI User Interface

UML Unified Modeling Language

URL Unified Resource Locator

www World Wide Web

IX

Univ
ers

iti
Mala

ya

Chapter 1

INTRODUCTION

Over the past few decades, the software industry has grown dramatically. This

proliferation has led to a vast growing demand on successful software systems among

customers. Here, success refers to software systems that are faster, better, and cheaper

(Jacobson et al., 1997). Software reuse has been recognized as an attractive idea with an

obvious payoff to produce successful software systems.

The basic concept of software reuse is simple (Mcilroy, 1969), develop systems

components of a reusable size and reuse them. The idea of systems component is not

only focused on code alone but also on requirements, analysis models, designs, and tests.

All the software development processes stages are subjected to be "reuse". Reuse helps

developers minimize problem-solving effort and redundant work. It also enhances

reliability, which lead to reduced development time.

It is reported that the reuse process allows the management to expect substantial

gains, time to market: reductions of 2 to 5 times, defect density: reductions of 5 to 10

times, maintenance cost: reductions of 5 to 10 times, and overall software development

cost: reduction of around 15% to as much as 75% (Jacobson et al., 1997).

1

Univ
ers

iti
Mala

ya

One important component to be highlighted in designing reusable object-oriented

software is expert knowledge. Expertise is an intangible but unquestionably valuable

commodity (Budinsky et al., 1996). People acquire it slowly through hard work and

perseverance. Expertise distinguishes a novice from an expert and it is difficult for

experts to convey their expertise to novices. Emerging field patterns is a promising step

for capturing, communicating, and assimilating expertise. As a result, patterns enable

expertise to be tangible so it does not only reside in the experts' minds. These patterns

provide proven so.lutions that are certainly useful for designers to solve new design

problems. This is because recurring design problems always occur in object-oriented

software or known as design deja-vu. This makes object-oriented designs more flexible,

elegant and ultimately reusable.

Patterns are grouped into three categories namely architectural patterns, desigr1

patterns, and idioms (Buschmann et al., 1996). The difference between these three kinds

of patterns is in their corresponding levels of abstraction and detail. Architectural

patterns represent the highest-level patterns that concern large-scale components.

Whereas, design patterns (Gamma et al., 1995) are medium-scale patterns and have a

strong influence on the structure of subsystems. Lastly, idioms represent low-level

patterns, which are specific to a programming language (Coplien, 1992). Generally",

design patterns are scenes the far most well elaborated published patterns. Furthermore;

design patterns describe many examples of basic patterns and fundamental frameworks

structure that novice object-oriented designers should become familiar with (Brown,

1996).

2

Univ
ers

iti
Mala

ya

1.1 Design Patterns

Design patterns are popularized by Erich Gamma et al. through the published

book of (Gamma et al., 1995), which present a catalog consisting of 23 design patterns.

The design pattern catalog are found in Appendix C. Gamma et al. or frequently referred

as the Gang of Four (GoF) was much influenced by the work of a building architect,

Christopher Alexander. According to him,

"Each pattern describes a problem which occurs over and over again in our

environment, and then describe the core solution to that problem, in such a wa::;

that you can use this solutions a m ill ion times over, without ever doing it the

same way twice" (Alexander eta!., 1977; Alexander, 1979).

The idea as suggested by Alexander is relevant for object-oriented patterns. A

design pattern describes a commonly recurring structure of communicating components

that solve a general design problem in a particular context (Gamma et al., 1995). A.-'1

important property of all design patterns is that they are independent on a particula:

application domain and programming paradigm. Besides that, design patterns must have

a name as the design vocabulary and be represented using a consistent format called.

template. The template lends a uniform structure to the information, making the design

pattern easier to learn, comparable, and useful. It contains the following parts: Univ
ers

iti
Mala

ya

• The intent of the pattern

• The design forces that motivate the pattern

• The solution to these forces

• The structure and roles of classes in the solution

• The responsibilities and collaborations among classes

• The trade-offs and results using the pattern .

• Implementation guidance

• Example source code

• References to related patterns

The template shows that a design pattern captures both static (intent, design force

and solutions, trade-offs and results, implementation guidance, source code, and

references to related patterns), and dynamic (structure, participants, and collaboration)

structures of successful solutions to solve problem arise during building the applications

in a particular domain. Therefore, design patterns aid the development of reusable

software by expressing the structure and collaboration of components to designers at a

level higher than source code or object-oriented design models that focus on individual

objects and classes (Schmidt, 1996). Figure 1.1 illustrates the area of design pattern in

object-oriented design methodologies.

4

Univ
ers

iti
Mala

ya

large

Scale

small algorithm implementation

simple

architectural design

framework design

Complexity

..______ design
patterns

complex

Figure 1.1: Design patterns reside in object-oriented design methodologies (Buschmann et al. , 1996)

1.2 Design Patterns Objectives

The goal of design patterns within software engineering is to create a body of

literature to assist software designers to resolve recurring problems encountered

~ throughout the software development (Brad, 2000). Design patterns help create a shared ;:
~

language communication insight and experience about these problems and their E:::
.....
r:/)

solutions. &5

1.3 Benefits Of Design Patterns

> z
~:>

.)

There are a number of pragmatic benefits in using design patterns. Firstly, desigri J

patterns enable the widespread reuse of software architecture (Beck and Johnson, 1994;

Gamma, 1991; Johnson, 1992; Keller and Lajoie, 1994; Pree, 1994; Schmid, 1995), even

when other forms of r::use are infeasible. This infeasibility could be caused by the

fundamental differences in operating system mechanism or programming language

features. The Ericsson telecommunication switch management project (Schmidt and

5

Univ
ers

iti
Mala

ya

Stephenson, 1995) has proven the importance of pattern-based architectural reuse. The

project underwent extensive porting and modification of existing communication

software. In such a volatile environment, reusing design patterns is often the only viable

means of leveraging previous development expertise. This reduced project risk

significantly and simplified re-development effort.

Secondly, design patterns improve communication within and across softwari.:.

development teams because they provide developers with shared vocabulary and

concepts (Gamma et al., 1995; Beck et al., 1996; Cline, 1996). In addition, design

patterns helped to bridge the communication gap that exists among software developer,

managers, and non-technical team members in marketing and sales (Helm, 1995;

Schmidt, 1995a). Managers and non-technical team members often failed to understand

the system at the detailed object models or source code level. However, they frequently

could understand and evaluate the consequences and trade-offs among software

architecture concepts that are expressed as design patterns. Their feedbacks are valuablE

to ensure that the technical solutions do not drift away from the overall system

requirements.

Design patterns explicitly capture knowledge that experienced designers already

understand implicitly (Alexander et al., 1977; Buschmann et al., 1996; Coad, 1992;

Coplien, 1992; Fowler, 1996; Gamma et al., 1995). In this case, the use of patterns

permits experts document, discuss, and reason systematically about sophisticated

architectural concepts. Furthermore, explicitly capturing expertise through design

6

Univ
ers

iti
Mala

ya

patterns helps to impart this knowledge to less experienced designers. Research

conducted by Tao (2000), showed that the learning curve flatted and the framework was

used more effectively when design patterns were used to facilitate new designers.

Likewise, design patterns descriptions explicitly record engineering trade-offs and

design alternatives. These can be used to record why certain design choices were

selected and others rejected. If this rationale is not captured explicitly, it may be lost

over time (Schmidt, 1995a).

Schmidt (1995a) also stated that design patterns help to transcend "programming

language centric" viewpoints. This is beneficial because design patterns enabh

experienced developers from different language communities, such as Lisp, Smalltalk;

Ada, Eiffel, C++, C, and Erlang to share design insights of mutual interest without the

barrier of language wars. Once the experience developers moved beyond language

syntax and semantic differences, remarkable commonality of successful software

solutions can be shared.

Finally, at CEE a cellular network management and engineering system project,-

Helm (1995) reported that designs based on design patterns seemed to be more robust in

requirement changes, and minimize the need for class-refactoring and re-design during

later implementation. This is mainly because requirements variability is often factored

out by the design pattems.

Univ
ers

iti
Mala

ya

Many other companies implementing design patterns in real world environment

reported similar pragmatic benefits. Some of the companies involved are Motorola

Iridium (Schmidt, 1995b), Kodak Health Imaging Systems (Blaine et al., 1994), and

Phoenix-based AG Communications Systems (Goldfedder and Rising, 1996).

1.4 Design Patterns Difficulties

Despite the fact that design patterns have tangible benefits, however, it is found

that it is difficult to put into practice (Schmidt, 1995a; Sommerville, 2001). This is due

to struggles that the novice object-oriented designers have to go through to learn about

design patterns. According to Schmidt (1995a) they usually misunderstood that desigp

pattern can solve design problems. This postulation is erroneous because integrating

design patterns into a software development process is a human-intensive activity. Like

other software reuse technologies, reuse of patterns does not come without cost (Fayad

et al., 1996). Design patterns are no silver bullet that absolves designers from having to

wrestle with complex analysis, design, and implementation issues. There is simply no

substitute for creativity, experience, and diligence on the designers' parts.

Furthermore, design pattern only describes solutions to a particular design

problem and it does not lead to direct code reuse. Some designers found it difficult to

make the leap from the pattern description to a particular implementation, even though

the pattern includes code fragments in the Sample Code section. Other experienced

designers may have no trouble translating the pattern into code but they still find it a

hassle, especially when they have to do it repeatedly. A design change might require

8

Univ
ers

iti
Mala

ya

substantial re-implementation because different design choices in the pattern can lead to

vastly different codes. Moreover, in the abstract form, patterns cannot be used directly

by designers in their implementations and this make custom implementation vital. The

mechanics of implementing design patterns is left to the designers (Budinsky et al.,

1996).

These difficulties and many more (Cline, 1996; Levine and Schmidt, 1999;

Helm, 1995) make it arduous for some designers to reap the advantages of desigp

patterns.

1.5 Easing Design Pattern Difficulties

Perhaps the main obstacle in implementing design patterns is caused by their

abstract form. Although when actually recording a design, it is usually done at the more

primitive level of individual classes and objects, either in the form of class diagrams 01

in actual code (Hedin et al., 1998). The first step in relaxing this complexity is to provide

an explicit way of recording the design patterns implementation in the code. This can be

achieved by using code generator tool that aids designers to transform design patterns

into code automatically (Schmidt, 1995a). It might also be useful to visualize the

design pattern implementation to show the relationships between the design pattern

classes (Hedin et al., 1998).

9

Univ
ers

iti
Mala

ya

Besides being able to generate code and diagram, a well-designed web-based

tool can be much more efficient in helping designers to find and use design patterns than

a fully integrated "pattern-supporting" software development environment ever could be

(Buschmann et al., 1996). The web-based tool allows designers to access materials and

hypertext links to navigate information quickly through multiple levels of abstraction. It

is capable to execute on different operating systems such as Windows, Linux, and Unix.

It does not have working limits to allow anyone to access it at their preferences.

Moreover, the tool is globally distributed. In addition, the Web is an ideal tool for

disseminating, sharing, and communicating information (Berners-Lee, 1996).

Generally, a web code generator tool for design patterns has the following effect:

•

•

Patterns have achieved the status as a must-have or must-do both in object-oriented

circles and among software architects (Coplien, 1997). The tool aid in learning

process and is a valuable approach to make the knowledge and implementation of

design patterns widely accessible.

Enable less experienced designers to acquire the knowledge and understanding the

design patterns faster while more expert designers can modify or enhance the design

patterns.

• Ease, encourages and speed-up the process of design patterns implementation in tht

object-oriented software development. The tool also plays an important role in

introducing patterns as first-class citizens in an integrated object-oriented

development environment (Florijn et al., 1997).

10

Univ
ers

iti
Mala

ya

1.6 Research Objectives

This research is conducted to facilitate the design patterns implementation

process. There are two main aims ofthis project:

1. To build a web-based design pattern (Gamma et al., 1995) code generator tool that

distributes the design patterns' knowledge and ease designer's task to transform

design patterns into concrete form. The prototype is called y-CGT (Gamma C ode

Generator Tool). It is intended to solve some of the major problems found in using

design pattern by:

• Simplifying the process of generating source code by requmng only small

amount of customization from designers.

• Depicting the implemented design pattern into class diagram for visualizatio~
<

•

•

support. ;i

~
r/J

Providing necessarily tips for designers while they are using the tools. This is to~
>

make sure the less experienced designers will be able to cope with the~
z

implementation process. ~

<C
!:-

Expressing design patterns at a higher level of abstraction for reviews before ~

~
customizing process. ~

2. To evaluate the implemented prototype. The tool was evaluated against the above

objectives and a few of existing similar tools features.

11

Univ
ers

iti
Mala

ya

1.7 Project Methodology

There are a few pattern code generator tools in the market. This study focuses on

building a design pattern code generator tool that uses the web as a distributed

infrastructure. The strategy to achieve this task involves the following steps.

1. Conducting a study on the organization and methodology for applying design

pattern. This is to acquire a good understanding and to determine the steps in

applying design pattern into its concrete form. This offers a clear idea about the

structure of y-CGT.

2. Scrutinising the existing on-line tools in order to capture their good features and to

tackle their shortcomings in building y-CGT.

3. Measuring the success of y-CGT by conducting a pilot study involving a fev,.

participants. y-CGT 1s going to be evaluated by participant's feedback via a

questionnaire.

1.8 Thesis Organization

This study is organized in the following way:

Chapter 2, Literature Review

This chapter is divided into two mam sections. The first section

elaborates on the design patterns, explained the organization and methodology

for applying design pattern. The second section provides a review of the existing

12

Univ
ers

iti
Mala

ya

online pattern code generator tools. A number of main features in the existing

tools revealed the basic features for y-CGT.

Chapter 3, Research Framework

This chapter identifies the framework for this study and is divided into

three section namely the structure of design pattern code generator tool's

methodology, the construction of web-based design pattern code generator tool

known as y-CGT and the evaluation of y-CGT.

Chapter 4, Analysis and Design

This chapter presents analysis and the design of y-CGT. It includes the

requirement analysis, y-CGT object-oriented analysis and design and some

aspects of the user interface design.

Chapter 5, Implementation and Execution

This chapter presents the implementation of y-CGT. It also shows how to

use y-CGT in executing the design patterns implementation process. The

enhancements that y-CGT provide are also highlighted.

13

Univ
ers

iti
Mala

ya

Chapter 6, Evaluation and Results

This chapter describes the evaluation process and the results recorded

from the pilot study.

Chapter 7, Conclusion

This chapter summarizes the content and the contribution of this study.

This is followed by a conclusion and suggestions for future study.

14

Univ
ers

iti
Mala

ya

Chapter 2

LITERATURE REVIEW

This chapter rev1ews design patterns, which explains the organization and

methodology for applying design patterns. These reviews are important to understand

the design pattern before any further study can be conducted.

In addition, this chapter also discussed the pattern code generator tools found in

the market. This study shapes the main features of the pattern code generator tool.

2.1 Review of the Design Patterns

2.1.1 Organizing Design Patterns

Design patterns vary in their granularity and 1 evel of abstraction. This section

classifies design patterns as described in (Gamma et al., 1995) by grouping the design

patterns into families of related patterns. The classification helps designers to learn

patterns in the catalog faster and it can direct efforts to find new patterns as well .

15

Univ
ers

iti
Mala

ya

Table 2.1: Pattern catalog (Gamma et al., 1995)

Purpose

Creational Structural Behavioral

Scope Class Factory Adapter Interpreter

Template Method

Object Abstract Factory Adapter · Chain of Responsibility

Builder Bridge Command

Prototype Composite lterator

Singleton Decorator Mediator

Fayade Memento

Flyweight Observer

Proxy State

Strategy

Visitor

As shown in table 2.1 design patterns are classified into two criteria. The first

criterion is called 'Purpose' that reflects what a pattern does. Patterns can have

creational, structural or behavioral purposes. Creational patterns are focused with the

process of object creation while structural patterns deal with the composition classes or

objects. Behavioral patterns characterized the way each classes or objects interacts and

distributes responsibility.

The second criterion 1s called 'Scope', specifies whether the pattern applies

primarily to classes or objects. Class patterns deals with relationships between classes

and their subclasses. These relationships are established through inheritance thus, they

are static-fixed at compile time. Object patterns deals with object relationships, which

can be changed at run-time and more dynamic. Almost all patterns uses inheritance to

some extent hence, the only patterns labelled "class patterns" are those that focused on

class relationships.

16

Univ
ers

iti
Mala

ya

Creational class patterns defer some parts of object creation to subclasses, while

Creational object patterns defer object to another object. The Structural class patterns

use inheritance to compose classes, while the Structural object patterns describe ways to

assemble objects. The Behavioral class patterns use inheritance to describe algorithms

and control flow, whereas the Behavioral object patterns describe how a group of objects

cooperate to perform a task that no single object can carry out alone.

2.1.2 Design Pattern Implementation Methodology

A study conducted in this literature found only one methodology to guide

designers in implementing design pattern into their design problems. The methodology

presented in (Gamma et al., 1995) describes the systematic approach required to apply ~:t

design pattern effectively. It consists of seven important steps and Figure 2.1 depicts the

methodology in the form of diagram.

1. Read the pattern once through for an overview.

Designers must pay particular attention to Intent, Applicability, and Consequences

sections to ensure the pattern is right for their design problem.

2. The study of Structure, Participants, and Collaborations

Designers must make sure that they understand the classes and objects in the pattern and

how it relates to one another.

17

Univ
ers

iti
Mala

ya

3. The review of sample code

Studying the code helps designers to learn how to implement the pattern.

4. Selection of names for pattern participants

The names for participants in design pattern are usually too abstract to appear directly in

an application. Nevertheless, it is useful if designers incorporate the participants' names

into the name that appears in the application. This helps to make the pattern more

explicit in the implementation.

5. Define classes.

It is important to declare pattern interfaces, establish the inheritance relationships and

define the instance variables that represent data and object references. After that,

designers identify existing classes in the application that may affect the pattern and

modified them accordingly.

6. Define application-specific names for operations in the pattern.

The names generally depend on the application. Designers can use the responsibilities

and collaborations associated with each operation as a guide. The naming conventions

must be consistent.

18

Univ
ers

iti
Mala

ya

7. Implementation of the operations m carrymg out the responsibilities and

collaborations in the pattern.

The implementation section offers hints to guide designers in the implementation.

Pattern
Overview

Figure 2.1: The design pattern methodology

2.2 Pattern Code Generator Tools

This section describes the existing pattern code generator tools. It is divided into

two sub-sections. In the first sub-section, a review of non-web based pattern code

generator tools was made. In the second sub-section, web-based pattern code generator

tools are described. Based on this review, the main features for pattern code generator

tool are identified.

19

Univ
ers

iti
Mala

ya

2.1.1 Non-Web Based Pattern Code Generator Tools

2.2.1.1 S.C.U.P.E

S.C.U.P.E (Santa Clara University Pattern Editor) was developed by Mendoza &

Hall (1998). This is the only tool that generates code for design patterns (Gamma et al.,

1995) via graphical customization. The process begins by loading the "ChoosePattern"

window as shown in Figure 2.2. Designers learn about particular design patterns by

viewing their abstract description place at the center of "ChoosePattern" window.

Within the descriptions, there are figures references, which represent the design patterns

structure.

----·--·-------------------------

\ s:ruc:t~to

• R=hAvin".:tl

1?.'1

·~i ~I; .•.•.••..•.•

FI~UI'C 1 I

I'J ~\'on Ob.CC:1D ot:ct 1:~ ~CI"'I\<f:t whO"" Ito 1'1Cm;l :1()t: C1Qn~C~. r~oo~
\\ill ~PP~<~r .u 1.h<1· q11 h; ~1.~,-...

Figure 2.2: S.C.U.P.E Main window (Mendoza and Hall, 1998)

20

Univ
ers

iti
Mala

ya

Subsequently, designers can choose to customize a predefined pattern or loa1

pattern that they working on. Designers can graphically customize a design pattern that

they have chosen. Design patterns are shown in a UML format on the screen as depicted

in Figure 2.3 (left). Designers customize the pattern by changing class name, add or

delete methods, method expressions, instance variables, and delete classes. These

changes can be made by clicking on the class name, instance variable names or method

names text boxes and edit the information directly. Once customization is completed,

designers can choose either to generate Java source code for the customized design

patterns or not. Then, designers need to save their design patterns as shown in Figure 2.3

(right).

Hikft!Nf,l@bl
..... tOt\)

-I ~ .. 1--·1--1-1

!clxl

I

Open fU3

.Qpen J
Cancel I

Figure 2.3: S.C.U.P.E customize window (left) and save menu (right) (Mendoza and Hall, 1998)

This tool provides great help in local design patterns implementation. However,

it does not provide any appropriate help facility for designers especially to the novice~

because the help menu only describes information regarding the release and the

21

Univ
ers

iti
Mala

ya

copyright. Moreover, this tool does not support distributed design patterns

implementation.

2.2.1.2 SNIP

SNIP is a tool for instantiated patterns of code that can be derived from object

models. It was developed by Wild (1996) in order to instantiated C++ code for patterns

and these codes are defined as code patterns. Design patterns are logic in nature,

whereas code patterns are physical in nature. Code patterns focus on how a particular

structure or sequence of action is accomplished using the specific mechanisms of a

programming language. It is also known as an idiom (Buschmann et al., 1996). SNIP

generates code patterns by using object model as an instantiation context to be defined.

Designers need a well-defined implementation strategy, which requires designers to

apply set of code-creation rules, and placing them in a SNIP Template file. Based on the

rules apply into an executable Code Template with its objects and parts produce a Code

Files. A number of Code Template files that serve as good starting points for this come

with the tool or the template file can be develop interactively using SNIP's user

interface. In summary, SNIP allows both objects and their part characteristic to be

defined, and how these objects and their parts are mapped onto code elements. The

interconnection of object model and Code Template in SNIP to instantiated C++ code i~

illustrated in Figure 2.4.

22

Univ
ers

iti
Mala

ya

Object
Model

Code
Templates

...
Figure 2.4: SNIP Model (Wild, 1996)

SNIP can run either interactively as a Windows MDI application or as a batch

command. As a batch command, SNIP can run from inside other tools such as MS-

Visual C++ or as a translation rule within a make file. Apparently, the tool supports

different types of patterns.

2.1.2 Web-Based Pattern Code Generator Tools

2.2.2.1 Designer's Assistant Tool

Designer's Assistant Tool was developed by Huang (1996) in order to generate
.

code for design patterns (Gamma et al., 1995). The "Design Pattern Space" page serves

as a central focus while navigating through the tool. This page represents the 23 design

patterns in a well-organized catalog as depicted in (Gamma et al., 1995). Designers can

select a design pattern according to its name from the catalog in order to view the pattern

abstract description page. These sections are intended to remind designers of the

patterns. Apart from the customizing the design pattern, designers need to define names

for class participants based on the problem domain. Upon completing the customization

form, they have an option either to generate the customize pattern in C++, Java, or

23

Univ
ers

iti
Mala

ya

Smalltalk code. Designers may save the generated code. This procedure is repeated for

implementation of other design patterns.

Unlike other researchers, Huang (1996) used formal method as the process

language to describe the application of the design patterns. In addition, he introduced a

language based on a schema to describe objects and their interconnections. These

schemas do not restrict the designers' ideas, however restricts the way the designs are

expressed. The abstract schemas for objects specification and interconnection are baseci

on Abstract Design View Model (ADV). The ADV model uses two basic object types,

the Abstract Design View (ADV), and the Abstract Design Object (ADO). They

represent respectively, interface objects (views and interactions) and application objects,

which are interface independent. ADV can detect the identity of its corresponding ADO.

However, an ADO could not identify the identity of its interface. Table 2.2 shows the

schema structure used in the specification of the ADV s and explains briefly the intent of

each section.

Table 2.2: A descriptive schema for an ADV (Huang, 1996)

ADVADV_Name [For_ADO ADO_Name)
Declarations

Data Signatures sorts and functions
Attributes observable properties of the object
Input Actions input actions of this view
Effectural Actions actions triggered as effects of input events
Relationships Actions actions triggered as effects of input events
Effectual Actions aggregation, inheritance, and association

Static Properties
Constraints constraints on the attributes values
Derived Attributes non-primitive attribute descriptions

Dynamic Propertie ~
Interconnection description of communication among objects
Valuation pre- and post-conditions for actions
Behavior sequence of action occurrences in the object

End Money

24

Univ
ers

iti
Mala

ya

ADO schemas have a structure similar to an ADV schema except that ADOs

does not support input actions and does not know the identity of its corresponding

ADV s. Whereas, to demonstrate the process language, design patterns have been

factored into a descriptive section, and a process description. The descriptive part of the

structure briefly describes the characteristics of a design pattern. The process

descriptions use a simple primitive constructors language and a template or product text

specification to show how objects based on ADV and ADO schemas can be

interconnected in a specific design pattern. The process description part of the pattern

constructors indicates the result of its application in which the interconnection betweer..

ADV and ADO schemas is indicated by the use of a template. The template encapsulates

the interconnection specified in the design pattern in terms of the ADV and ADO

schemas. Based on these elements, a design pattern specification meta-schema has been

developed and this is shown in Table 2.3.

Table 2.3: Development constructor structure for a design pattern (Huang, 1996)

Operator ADV _Based Design Pattern Name
Objective - description of the intent of the pattern
Consequences - how pattern in primitive constructors
Process Steps - description of pattern in primitive constructors
Product Text -language dependent specification of pattern

End Operator

Based on Table 2.3 the objective section introduces the problem statement in

natural language. The primitive constructors for the process of applying a design pattern

are identified in the Process Steps section. The expected results are then reported in the

Consequences section. Product Text describes the interconnection structure.

25

Univ
ers

iti
Mala

ya

This tool has the ability to generate codes in different programming language~ .

This is a good web-based pattern code generator tool even though it uses formal method

specifications. However, it neither supports visualization after the design pattern I&

customized nor it provides help facility.

2.2.2.2 Automatic Code Generation

Automatic code generation is a tool developed by Budinsky et al. (1996) for

generating design patterns code in C++. It is often referred as Budinsky's Tool. This tool

has similarity as the Designer's Assistant tool in which the customization of design

pattern requires designers to define names for class participants. Although the

customization is made along with choices for the design trade-offs, yet designers are not

forced to accept these trade-offs. The choice of trade-offs for Composite design pattern

is shown in Figure 2.5.

26

Univ
ers

iti
Mala

ya

O<>eui'Jl<lnt UTI I.!

Onapnsite lmplcnac:auuion Trade-off:s

1"' tndui>!/E>:ctu~ (~U~d p::.lll'm)

.J Ap~n;J..Fttpm llbo'E inniOQ.;:.n;J)

!.J lnt:oa't,Roe-mC/',~ ltpo..~lfl.: p:c Rte<'l)

...- ~~-~l~ t,..:J !;::~~.:~~F-'S!!wtleni'lfPlte4to!-~.!l!?_tt.~~:l)

"" r .. :..:!:'~~~~!''fr~.f~~ ooty < r l~~e:~.W.::~~¥-i ro tt1E'nllty~1!l~-~o:~~'~

(Orlltr Dot,5I!JW P.utoornf IJnt..,rwtw. Q&A l
1 tl?[.JP..'!?r.;~w• o~• ;;e,.ct~tc<lm~ttaM •H•.'P•S•m1U

Figure 2.5: Budinsky's implementation trade-offs page (Budinsky et al., 1996)

27

Univ
ers

iti
Mala

ya

J i0 . !Je'km.t N!_Vft:JAI~ Attmlf8ftf f:!Oo':'limltt.·_,. r_s _____________ _

r.tolC\l,ll;lJ.ifll llti\H r t~jjr;;osi"tp Mct:~va.tiop

~~~~"~• ~~. Af>llir!'fJ!i!~·y ~~~Y.~>!, ~!'l~~~.lo!A"', f~;~$-!~lt(~!:of.-!<i>~~~~li~*"• l~~~~!"'• ~ 
c~, ~Yj!" U;t~.,!.· ~~t~~,~ 1\"~~·<£~-~~ ·~''"~Wt·~~. .ri '0 

·~••::Phi(.:;: lJfvli<:;Jlk:·l'J:: ltt.~dl'l:t•~ic1.t1 Mlr<Jt'$ 61J1 $'lhe•t••llto:: C·¢)C'lll'es':i'nenrs jr.~ t.~ts l;;l;1!·' 
c~tt;plex: :•rtiltJ.!S. 1t-..~ ~ ~ o llli"Y,.tar 
<i)fltf!.-z . .1~1 t¢.fOrm (tiH 1 E .· 
Uu?i~?Ut-.:ntt;~it;·n•;;.;o~Jtd ·!~h.~ ¢1~<;~.: fer g:\1-'tW::!d ptu:tut~'..utJ' S\>~·h .It: !'~:t t;n.t !..i~ pit.IS t.:Wt 

. ..;-L~1.thllt ~t £f> tXiJlt'4:t>.!r;s Set t~frh:qtJ I ~s. 

BUt ll'i:t~!·s ~tlll~'t·~rtl Witll Tb:J:S 61l}."i(~·h · O::de lls!'t! '-~ CM.;;e f.'l~~ tfl\J!!t n-ear prlttlftl'~ 61rl 
•:·.:mta•~ c.t:·r-:u •.:iL!f~-f~ntt;( .. ~~ !£ ~t1Mt ot tb:: ~1n1e w ~r tr~<-.tst~lll.l•'iarttcaHy Ht .. ."illg 
tO ,jt;:ti~u!m th:<Ji? Ot~tr ma~ tl:-U? Efl{J ll¢11! (Cf11ll.O.f"\? c:>rnpli!!:-£. ~C'btll.p:\';i'to!! pnttErn 

4.:--~tit..t~ hl!fl ~=· ~ ~~Utst.~.i\a ~Ol~:r.::itt·:•n:&!l tbtt otJ.-mcs dGt\"t 11~~ to. maM Utlft ~t;rlt,.,:~ion. 

. ....... 

I'J r-iwn ()o. •• ·~ ... 

AddtGupt~~) ¢ ·· 

~ i:PO•-~#pilll(;l 

Go..Cblllliintl 

.................. 

• 
L- -,J 111S:fs .~. kt<:1<t"11Jilk:~ 

"tb; t.c'r ;.~ tte OliD~ilc. pattern .S.:: M itlztnct J;[q that. Tey~t! bot(: prfmlt[~ Mi lhclr 
¢:*~ F~rm \lphl~sy.;i'etl!-trhi:>,d• t:tG-t$phh:. Or~t.~~~- rlltle~ llkt-! \ 
Ouw .th~tt ..r., * tr.• gr~hir.IU i;b~m. lt •Ill() ·~:1~ *ifi'«~l\sn tha ~mg.:u~it!ll oq{~t, 
-shill>: !l'Li::Jt- us o~i~·m f. :or jij:t::<ess~ ~'lf nttW\{1 t:Gi irs thil1t"etlt 

,~~. 

~~.:. 

1buutd&m4!J L in!t. F.•11:tllll>le. ;mj Tnt (aft pr1!1:«ding el&U:~i~) dt!t'lnt pdmjtl~ 
gr . liCflt oo .!'1.:~. ~A L:'l~ t >!nt t::oraw tl.l ~lraw l~. t.ttt, 

Figure 2.6: Budinsky's tool pattern description page (Budinsky et al., 1996) 

28 

Univ
ers

iti 
Mala

ya



Oo.etunttlt TIUt;," 

fJ(l.curnlt"lt 1.11{1 : J l~1:tJ:•: ll'flJ. 'ttlro1 at•. 1b11 . c~rrv'<:il-b1nt\Hzards, \ofoecn)::)cs .p1 i' 

i / G l• !1.~11 I~ t;Jel!J.b~r~ 
; i •:'tHld ~¢!:~~!! ·~·r~r~th-:.nt> 
'l t 1 I;IJ 'ii.l • ~) a ph 1 •:P· !::i<l..; t Cl\) 1•:1 1 n•:l'!l'l) l 
•: t rtual i~n9 C•:•ultt 1/ 'r.x:>rtst; 
•; Lt l:tlt• t O.>t~;.~;<;.lt ..,.:;:r bph1 <.:' IJ•:>t,O:nupvsl. t •:i( :>; 

.u ~t "1(~.rtr>::l Ci< t- l\l¢ttllt~r"!!' 
·n. r t\1 '"-:. ~~~"" ;.r;~• i .;(); 

'"-'~··7·~:-· ... _. ·---~-~------·--·--·:-- ·-··---:-·--·oi<Jooo,.,.;.:_,_ ._ . .__._. __ ....... 

'<!lass •:.t•lit~:t.~ei; t.Cr:-;;.pi'lle 
~t:.H.:- ·::;r~hJ.'~ I 

'PI-lt>l i.::: 
li C·)~~lt ... :;h', f 
U t;nH(;f tnan;JJ.., p(l.rntt<:>ns 
•rLn::ut1 ·•.'\?l.d tnc:lud~(•lnr;;btc• anohi•:;l; 
•drtua.l •.'?:id ltx<:-lud<t(Or.-Fhic" gnphl.-:1; 

II l.!n.:.l.<:l ~'.:'::~.: op<~t-ttt iotl.::' 
... t t tual <G:taphiot:<t G~r.ChHd [ l(itl.~ indt::.:L; 
Vlf ttJ al. l¢11g C<l•Uri.l.:d ) -:-:>ns. t; 
..:tttua! (oll()C.<.::11;:. . .!.:<~~r~;ph:tc* G~tl:r.•orpQnHt ); 

t / ~3dl>? tnior-ntat·i(Ja 
vtttt.la t ''»1d t1p:iat~f.!<.:~h~( }: 

ll s~•M..•~'<i I';+-~' mU!t>•r" 
<:t rt .;:~~it .;l;~f0;ol?b i.ct)'; 

priva.t'l!!: 
?t.1nl:~$lat.,1:t.,.pl!i;:kt.:.t ..!Jl!&J..'hfC; 

Figure 2.7: Budinsky's generated C++ code (Budinsky et al., 1996) 

29 

Univ
ers

iti 
Mala

ya



Designers add the generated source code to the rest of the application and will 

often enhance it with other application specific functionality. In addition, this tool also. 

supports design patterns abstract descriptions, which mirror the corresponding section in 

the (Gamma et al., 1995) and this is shown in Figure 2.6. The information content in 

Section Pages displays the section of a pattern, e.g. Intent, Motivation, and others in 

separate pages. Designers can access other design pattern sections either randomly or in 

a sequence. Finally, designers need to save the generated code in a file using the 

browser's "Save As ... " command. Figure 2.7 shows the generated C++ code for 

Composite design pattern. 

Although Budinsky's tool offers designers with choices of selecting design trade .. 

offs during the design pattern implementation, yet it does not provide viewing of the 

customized design pattern. 

2.3 Identifying Main Features 

The tools reviewed reveal the most important features for a pattern code 

generator tool. Seven features have been identified, namely: supporting abstract 

description, pattern structure representation, form-based or graphical customization~ 

visualize implement pattern, trade-offs constraints, and help facility. These features are 

listed in Table 2.4. 

30 

Univ
ers

iti 
Mala

ya



Table 2.4: Summary features of pattern code generator tools 

Features Non Web-Based Web-Based Tool 

S.C.U.P.E SNIP Budinsky's Designer's 
Tool Assistant 

Supporting Abstract Description ~ ~ ~ ~ 
Pattern Structure Diagram ~ ~ ~ 
Form-based Customization ~ ~ ~ 
Graphical Customization ~ 
Visualize Implement Pattern ~ 
Trade-offs Constraints ~ ~ 
Help Facility ~ ~ ~ 

1. Supporting Abstract Descriptions 

Supporting abstract descriptions contain the descriptions of static and dynamic part of a 

design pattern. The static parts are the pattern Intent, Motivation, Applicability, and 

Consequences whereas the dynamic parts are pattern Participants, and Collaboration. 

These descriptions should lead designers to make the right choice of pattern used in their 

design problems. The importance of these materials is proven when all reviewed tools 

support these features. 

2. Pattern Structure Diagram 

Most of the tools provide pattern structure diagram. Only SNIP does not support this 

feature. Pattern structure diagram is the dynamic part of a pattern that illustrates a 

graphical representation of the classes in the pattern using a notation based on the Object 

Modelling Technique (OMT). 

31 

[A ~ 1 t \ A 11 S r] 

Univ
ers

iti 
Mala

ya



3. Form-based Customization 

Form-based customization requires designers to define names for the pattern participantf; 

in a form. SNIP, Designer's Assistant and Budinsky's Tool have used this type of 

customization before generating codes for the pattern. The names for pattern class 

participants defined by designers must be meaningful in the application context. 

4. Graphical Customization 

S.C.U.P.E is the only tool that supports design pattern code generation via graphical 

customization. The diagrams are represented in UML format where designers cari 

directly edit the diagram that will be displayed on the screen. 

5. Visualize Implement Pattern 

It i s useful to view the pattern implementation to show the relationships between the 

pattern classes (Hedin et al., 1998). S.C.U.P.E is the only tool that provides this feature 

by visualizing the implemented design pattern in the "Customize Pattern Screen". 

6. Trade-off Constraint 

Trade-off constraints permit designers with substitute conditions in the pattern 

implementation. Budinsky's tool allows designers to choose pattern trade-offs. SNIP 

also acclaimed this feature by setting of code-creation rules and placing this rules in a 

SNIP Template file. 

32 

Univ
ers

iti 
Mala

ya



7. Help Facility 

Tools providing this feature is S.C.U.P.E, SNIP, and Budinsky's Tool. This feature is 

considered as one of the most important elements in software usability principles. 

2.4 Summary 

This chapter reviewed design patterns and existing pattern code generator tools 

thoroughly. In the first section, patterns organization and methodology for implementing 

design p attern were discussed. The second s ection reviewed the existing p attern code 

generator tools. It is divided into two subsections: non-web based pattern code generator 

tools and web-based pattern code generator tools. Finally, based on the study conducted 

in these two subsections, the main features for pattern code generator tools have been 

identified. 

33 

Univ
ers

iti 
Mala

ya



Chapter 3 

RESEARCH FRAMEWORK 

This chapter describes the framework of this research and is divided into three 

sections. The first section begins with an explanation of the structure design pattern code 

generator tool's methodology. The second section presents the structure of web-based 

design pattern code generator tool known as y-CGT. Finally, the third section describes 

the evaluation of y-CGT. The framework identified determines the clear boundaries fm 

this research. 

3.1 The Design Pattern Code Generator Tool Methodology 

In order to build a pattern code generator tool, a methodology for the 

development of design pattern transformation into its concrete form must first be 

presented. The purpose of this methodology is to ensure that the design pattern 

transformation preserves the proposed tool behaviour. This methodology adapts several 

steps of the Gamma et al. methodology in applying the design pattern as discussed in 

section 2.2.2 and some new steps based on the study conducted on existing pattern code 

generator tools. The methodology is depicted in Figure 3.1 and its justifications are 

pointed out in section 3 .1.1. 

34 

Univ
ers

iti 
Mala

ya



Identify Design 
Pattern 

Generate Source 
Code 

Visualize Implement 
Pattern 

Figure 3.1: Pattern code generator tool's methodology 

3.1.1 The Methodology Outline 

This methodology consists of seven important steps. The justification of each 

steps are pointed out below: 

1. Identifying design pattern 

It might be a daunting task to identify a right design patterns from over 20 design 

patterns available in the catalog. This would be a difficult task if the catalog were new 

and unfamiliar to the designer. Here, two approaches are addressed to guide the designer 

to find the suitable design pattern for their problem. First, the selection of design pattern 

is made through design pattern catalog. The designer is able to narrow down the search 

by specifying the problem 'Purpose' and 'Scope' of the design pattern. The problem 

35 

Univ
ers

iti 
Mala

ya



purpose may concern creational, structural, or behavioral pattern. Meanwhile, the scope 

maybe related either to object or classes. Revising the catalog directs the designer to the 

correct design pattern or groups of patterns. Secondly, the designer needs to study the 

design pattern Intent. Pattern Intent is seen as important information because it describes 

the design issue and problem that the pattern addresses. Finally, the designer is able to 

determine the right design pattern for their design problems. 

2. Revising Static Structures 

Revise static structures allows designer to study the static structure of the design pattern. 

Although the design pattern template contains several parts of static structure. only two 

segments that are considered most important are described. These are the pattern 

Applicability, and Consequences. Applicability explains the situation in which the 

design pattern can be applied, and the examples of poor designs that the pattern ca11 

address. Meanwhile, Consequences describes the pattern trade-offs and the results of 

using the pattern. 

3. Revising Dynamic Structures 

Besides the two segments of static structure that have been examined, the designer needs 

to study the dynamic parts of the design pattern as well. The dynamic parts are the 

pattern Structure, and Participants. Structure shows a graphical representation of classes 

or objects in the design pattern using a notation based on Object Modelling Technique 

36 

Univ
ers

iti 
Mala

ya



(OMT). Participants on the other hand explain the classes or objects participating in the 

design pattern and their responsibilities. 

4. Defining Names for Participants 

Once designer has decided that the design pattern is suitable for their design problem, 

they proceed with the implementation of the design pattern. In this phase design pattern 

in its abstract form is transform into concrete form that is seen as code. Designer needs 

to customize the design pattern by defining names for the class participants. The names 

for participants in design patterns are usually too abstract to appear directly in an 

application. Therefore, the designer must define names that are meaningful for the 

participants in the application context of design problem. 

5. Generation of Source Code 

The source code for the design pattern generated after the design pattern has been 

implemented. The generated pattern code can be later integrated by the designer into 

their own code of application that they wish to develop. The generated code is usually 

presented by using object-oriented language, for example Java, C++, and Smalltalk. 

6. Visualizing the Implemented Pattern 

Apart from the generated code, visualization of the implemented design pattern is useful 

for the designer. Visualization model the implemented design pattern into class diagram. 

31 

Univ
ers

iti 
Mala

ya



The purpose of modelling is to lessen the difficulty for the designer to understand the 

complexity of the relationship in classes, or objects in the design pattern. 

7. Rework & Finish 

After the completion of the process of implementing the design pattern, the designer can 

therefore reiterate the same process for other design problem they might have. On the 

contrary, the designer closes the browser after using the pattern code generator tool. 

3.1.2 The People 

The designer is someone who intends to implement design patterns in the 

software development design phase. The designer may range from beginner to expert, 

who has different level of skills and knowledge about design patterns and its 

implementations. 

3.2 The Implementation of a Web-Based Design Pattern Code Generator Tool 

Based on past studies, a tool named y-CGT (Gamma Code Generator Tool) was 

implemented. The tool includes the basic features required for the pattern code generator 

tool and an additional new feature that may benefit the tool. The following features are 

identified to constitute y-CGT. 

38 

Univ
ers

iti 
Mala

ya



1. The Support of the Abstract Description 

y-CGT provides descriptions about the design patterns using a consistent format. The 

information includes the description of static and dynamic structures of a design pattern. 

It also includes the design pattern description of its Intent, Applicability, Participants, 

and Consequences. 

2. Pattern Structure Diagram 

y-CGT illustrates the graphical representation of classes in the design pattern using a 

notation based on the Object Modelling Technique (OMT). 

3. Form-based Customization 

y-CGT used form-based customization mechanism to customize the chosen design 

pattern. This type of customization requires the designer to define the names for pattern 

class participants using a form. 

4. Visualize Implement Pattern 

y-CGT visualizes the implemented design pattern in class diagram by using Unified 

Modelling Language (UML) notations. The design pattern's class diagram given earlier 

is changed based on the customization done by the designer. 

39 

Univ
ers

iti 
Mala

ya



5. Help Facility 

y-CGT provides an online help throughout the design pattern implementation process. 

Feature suggestion: 

6. Alert Message 

y-CGT provides an alert message to the designer if an illegitimate action is committed 

while defining names for the pattern participants. This is to ensure that the designer has 

provided participants with valid names. 

3.2.1 Limitation 

Although y-CGT provides some good features, it has some limitations since y-CGT is 

only a prototype tool. y-CGT supports the abstract descriptions for all design patterns in 

the catalog but it provide only five design patterns to be implemented by the designer. In 

addition, the designer is allowed to define minimum participants for design pattern. 

3.3 Evaluating y-CGT 

y-CGT evaluation is carried out by using some experimental materials. The only 

purpose behind this experiment is to access the feasibility of executing the 

implementation of the des·ign pattern using y-CGT. 

40 

Univ
ers

iti 
Mala

ya



3.4 Summary 

This chapter specified the framework of this study, which is divided into three 

sections. In the first sectiDn, the structure of design pattern code generator tool's 

methodology was explained. The second section presented the structure of web-based 

design pattern code generator tool known as y-CGT. Finally, the evaluations of y-CGT 

were described. 

41 

Univ
ers

iti 
Mala

ya



Chapter 4 

ANALYSIS AND DESIGN 

This chapter presents the analysis and the design of the y-CGT. In the analysiG 

section, both the functional and the non-functional requirements are identified. The 

object-oriented analysis is also addressed. In the design section, the architecture of y­

CGT, the object-oriented design and some aspects of the user interface design are 

presented. 

4.1 y-CGT Analysis 

4.1.1 Requirements Analysis 

There are two main concerns o fthe y-CGT requirements: functional and non­

functional requirements. Functional requirements describe the functionality of y-CGT. 

Meanwhile, non-functional requirements describe aspects such as usability, portability, 

and other run time properties. 

4.1.1.1 y-CGT Functional Requirements 

The first major requirement for y-CGT is to implement the methodology that has 

been presented in chapter 3. Basically, each step is considered as one phase and tht. 

functionality of the tool is different with one another. The functional requirements of 

each phase are stated in table 4.1: 

42 

Univ
ers

iti 
Mala

ya



Table 4.1: y-CGT functional requirements 

I 

PHASE FUNCTIONAL REQUIREMENTS 
! 

Step 1 Identify Design Pattern I 
F.R 1.1 The designer loads web client. 

F.R 1.2 The web client displays the main Doc. 

F.R 1.3 The designer retrieves the design pattern catalog . 

F.R1.4 The design pattern catalog is displayed in catalogBrowser. 

F.R 1.5 The designer revises design pattern catalog . 

--j F.R 1.6 The designer chooses a design pattern 

F.R 1.7 The catalog Browser retrieves the design pattern abstract descriptions. ! 
i 
! 

F.R 1.8 The design pattern abstract description is displayed in pattern Browser. I 
I 

...; 

The designer revises design pattern Intent. 
I 

F.R 1.9 I 
·-

Step 2 Revise Static and Dynamic Structures ·. 

F.R 2.1 The designer loads web client. 

F.R 2.2 The client displays mainDoc. 

F.R 2.3 The designer retrieves design pattern catalog. 

F.R 2.4 The design pattern catalog is displayed in catalogBrowser. 

F.R 2.5 The designer chooses a design pattern. 

·-·i 
F.R 2.6 The catalog Browser retrieves the design pattern details. 

t 
- ·--; 

l 

F.R 2.7 The design pattern abstract description is displayed in patternBrowser. I 

i· 
F.R 2.8 The designer revises the design pattern static structures. ! 

r 

F.R 2.8 The designer revises the design pattern dynamic structures. I 

Step 3 Define Names for Participants 

F.R 3.1 The designer loads web client. 

F.R 3.2 The client displays patternBrowser. 

F.R 3.3 The designer retrieves wizardBrowser. 

F.R 3.4 The wizardBrowser displays list of design patterns based on pattern names. 

F.R 3.5 The designer chooses a design pattern from the list. 
.. 

F.R 3.6 The wizard Browser retrieves the design pattern participant form. I. 
F.R 3.7 The design pattern participant form is displayed in formBrowser. 

·-r 
f. 

F.R 3.8 The designer defines names for design pattern participants. l 
_f: 

43 

Univ
ers

iti 
Mala

ya



Table 4.1, continue 

Step 4 Generate Source Code 

F.R 4.1 The designer loads web client. 

F.R4.2 The client displays wizardBrowser. 

F.R 4.3 The designer chooses a design pattern from a list. 
. ....:.:... 

F.R 4.4 The wizardBrowser retrieves the design pattern participant form. 
· l 
71 

The design pattern participant form is displayed in formBrowser. F.R 4.5 
; 
.. 

-I 
F.R4.6 The designer defines names for design pattern participants . I 

i 

F.R4.7 The formBrowser passes the names to the server. I 
·-

F.R 4.8 The server generates source code for the design pattern. 

F.R4.9 The server passes the source code to the sourcecodeBrowser. 

F.R 4.10 The sourcecodeBrowser displays the generated source code. 

F.R4.11 The designer views the generated source code. 

Step 5 Visualize Implement Pattern 

F.R 5.1 The designer loads web client. --i F.R 5.2 The client displays wizardBrowser. 
.. ! 

F.R 5.3 The designer chooses a design pattern from a list. l: 

F.R 5.4 The wizard Browser retrieves the design pattern participant form. 
l. 

- l 
F.R 5.5 The design pattern participant form is displayed in form Browser. 

F.R 5.6 The designer defines names for design pattern participants. 

F.R 5.7 The formBrowser passes the names to the server. 

F.R 5.8 The server generates class diagram for the design pattern. 

F.R 5.9 The server passes the class diagram to the diagramBrowser. 

F.R5.10 The diagram Browser displays the generated class diagram. 

F.R5.11 The designer views the generated class diagram. 

Step 6 Rework & Finish t 
F.R6.1 The designer repeats the process to implement design pattern, or r 

F.R 6.2 The designer exit from y-CGT. -j' 

44 

Univ
ers

iti 
Mala

ya



4.1.1.2 y-CGT Non-Functional Requirements 

In addition to the above functional requirements, some other specific non­

functional requirements have been taken into account when building y-CGT. These non­

functional requirements are: 

1. Usability 

y-CGT is built in a way that portrays its functionality. One main issue, which reflects the 

functionality behind software tools, is the user interface. Therefore, the user interface is 

designed in a way that mimics the pattern catalog as in (Gamma et al., 1995). 

2. Portability 

In order to distribute the knowledge and implementation of design patterns, y-CGT is 

accessible from the normal web-browser and it runs on multiple platforms. 

3. Maintainability and expandability 

y-CGT is developed to be easily updated, maintained, and expanded. 

45 

Univ
ers

iti 
Mala

ya



4.1.2 y-CGT Object-Oriented Analysis (OOA) 

Object-oriented analysis technique has been used to identify the different aspects 

of y-CGT. The Unified Modelling Language (UML) notations are used to represent the 

y-CGT diagrams (UML, 2001). For the sake of simplicity, only one of the diagrams is 

presented in this chapter. The complete diagrams are presented in Appendix A . 

4.1.2.1 The Unified Modelling Language 

UML is a common notation that is used to specify, visualize and document the 

artefacts of an object-oriented system under development (Quatrani, 2000). It is 

developed based on the unification of three most popular analysis and design 

methodologies. There are Object Modelling Techniques (OMT), Booch technique, and 

Object Oriented Software Engineering (OOSE). There are two main steps that followed 

through the analysis phase: 

• Use-Case Modelling 

Describe the use of the system and show the courses of events that can be performed. 

This information is presented in the form of use-case diagrams and associated scenarios. 

This step is sometimes referred to as functional modelling. 

• Class Modelling 

Determine the classes and their attributes and the relationship between the classes. This 

information is usually presented in the form of class diagrams. 

46 

Univ
ers

iti 
Mala

ya



4.1.2.2 Identifying y-CGT Use-Cases 

The use-cases for y-CGT are shown in Figure 4.1. There are six identified use-

cases: identify design p attem, revise static and dynamic structures, defines names for 

class participants, generate source code, visualize the customize pattern, and lastl)r 

reiterate the above process or exit from the tool. 

0 
Identify Design 

~ Pottem 

Designer 

Rework & 
Finish 

0 
Revise Static & 

Dynamic Structures 

0 
Define Names for 

Participants 

0 
Generate 

Source Code 

0 
Visualize Implement 

Pattern 

Figure 4.1: y-CGT Use-cases 

4.1.2.3 Class Modelling 

From the requirement statement and the above use-cases diagram, the class 

diagram is depicted in Figure 4.2. 

47 

Univ
ers

iti 
Mala

ya



It appears from the class diagram that there are two main classes: Client class, 

and the Server class. Each uses a number of classes to accomplish its task. The Client 

class for example, has a main document browser, help browser, message composer, 

catalog browser, pattern browser, wizard browser, form browser, diagram browser, and 

code browser. The designer class uses the client side to access the entire browser. 

The Server class on the other side has a Database, which pass data to client class. 

The detailed classes are described in 4.2.2. 

has 

Helo Browser 

calls 

~ 
calls 

I Datdb,e I 

Figure 4.2: y-CGT class diagram 

4.2 y-CGT Design 

Pattern Browser 

has 
I 

Wizard Browser 

I 
has 

I 
Form Browser 

/ 
creates ' creates 

In order to satisfy the requirements identified in the analysis section as well as 

some of the features identified in chapter two, the following considerations were taken 

into account while designing the y-CGT: 

48 

Univ
ers

iti 
Mala

ya



4.2.1 y-CGT Architecture 

y-CGT is designed based on the multi-tier architecture, specifically the three-tiers 

application and this is depicted in Figure 4.3. This multi-tier architecture provides many 

benefits over traditional (two-tiered) client/server architecture (Nakhimovsky and 

Myers, 1999). By splitting an application across three tiers, three logical components of 

the application can be separated: user interface, computational logic, and data storage. 

Each logical unit can then be developed separately from the other, thus introducing an 

enormous degree of flexibility into the design of application. 

The middle tier usually benefits most from this three-tier application as it allows 

the computational logic to be developed at any degree of sophistication. This tier may 

contain multiple layers and can be completely changed without affecting the way the 

user interacts with it. Installing and deploying the user interface are virtually 

instantaneous - only the Web interface in the middle tier needs to be updated. By having 

the application logic on a single machine that each user must access ensures that any 

upgrade made to the application software is automatically "enforced" upon all users. 

This will avoids the nightmare of maintaining different versions of the same application. 

Without a "thick" client interface, it is easier to deploy, maintain, and modifj 

applications, no matter where the client is located. 

49 

Univ
ers

iti 
Mala

ya



Broviser on client 

Browser on clien t 

Browser on cl ient 

Presentation 
\ Tier . 

·································· 

·· .............................................. ·· 

Figure 4.3: y-CGT architecture 

4.2.2 y-CGT Object-Oriented Design (OOD) 

In the object-oriented design phase, the following steps are followed: 

• The construction of interaction diagrams for each scenario 

This can be represented usmg sequences diagram or collaboration diagrams. Both 

diagrams show the different objects and the messages passed between them. 

• The construction of the detailed class diagram 

In the analysis phase, the class diagram depicts the classes and some of their attributes 

only. In the design phase, some other attributes and methods are added to the class 

diagram. These methods are usually derived from the interaction diagrams of all 

scenarios. 

50 

Univ
ers

iti 
Mala

ya



4.2.2.1 The construction of the interaction diagram for each scenario 

There are six use-cases identified in the analysis phase. For each use-case, there 

should be an interaction diagram. The complete scenarios and their respective 

interaction diagrams are presented in Appendix A.2. For the sake of brevity, one scenario 

is stated in Table 4.2 along with its interaction diagram in Figure 4.4. 

Table 4.2: Identify design pattern scenario 

A designer identify design pattern scenario 

1- The designer loads web client. 
2- The client displays mainDoc. 
3- The designer retrieves design pattern catalog . 
4- The design pattern catalog is displayed in catalogBrowser. 
5- The designer revises the design pattern catalog. 
6- The designer chooses a design pattern. 
7- The catalogBrowser retrieves the design pattern details. 
8- The design pattern abstract description is displayed in patternBrowser. 
9- The designer revises the design pattern Intent. 

L-----------------------------------------------------------~ 

Note: 
Steps 5 - 9 is an iteration 
process until the designer 
has found the correct 
design pattern. 

web client 
catalog 

browser 
designer 

1: load I 
2: display mainDoc 

3: get pattern I 

catalog 
4: display 

5: revise P< ttern catalog 

pattern 
browser 

~ 6: chao !;e pattern 
7: get pattern details 8: display 

9: revise pattern lnten ::==1 1-"'11 

I 
Figure 4.4: Identify design pattern interaction diagram 

51 

Univ
ers

iti 
Mala

ya



4.2.2.2 The construction of the detailed class diagram 

By using the scenarios and their respective diagrams, the detailed attributes and 

methods are derived. The detailed class diagrams are similar to the diagram shown in 

Figure 4.2. However, the attributes and methods have been added. Some of the main 

classes with their full attributes and methods are presented in Figure 4.5. The rest of the 

classes and their complete attributes are found in Appendix A.3. 

Client 

serverName : Server 
mainDoc : Main Document Browser 
catalogBrowser: Catalog Browser 
patternBrowser : Pattern Browser 
wizardBrowser: Wizard Browser 
formbrowser : Form Browser 
helpBrowser : Help Browser 
messageBrowser : Message Browser 
diaJlram : Diagram 
co e: Code 

showMainDoc() 
showCatalogBrowser() 
showPatternBrowser() 
showWizardBrowser() 
showFormBrowser() 
createCode() 
create Diagram() 

Designer 

canSelectPattern : String 
canDefineParticipants : String 

getSelectPattern() 
getoefineParticipants() 
setSelectPattern() 
setoefineParticipants() 

Server 

database : Database 

send Email() 
getPattern() 

Figure 4.5: Detailed client, designer, and server classes 

4.2.3 y-CGT User Interface Design 

In providing good interface, some user interface design principles found in 

(Preece et al., 1996) is applied in y-CGT user interface. There are stated in the following 

section: 

52 

Univ
ers

iti 
Mala

ya



• Maintaining uniformity and consistency 

y-CGT consistency emerges from standard operations and representations. For example, 

in y-CGT every page has the same basic "look and feel" to ensure a consistent format 

and intuitive interface. 

• Error messages for unacceptable values 

y-CGT displays an error messages on any erroneous input given by the designer. p Of 

instance, error messages are displayed if designer has defined any illegitimate names for 

the format of design pattern participants while filling up the y-CGT participant form. 

• Minimal colour display 

y-CGT screen interface consists of four types of colour: yellow, purple, black, and grey. 

Based on the user interface principles, it is suggested to apply four to seven colours in 

the interface in order to avoid problems of distractions and confusions. 

• Default command 

y-CGT provides a reset button in the y-CGT wizard to ensure that the designer is able to 

retrieve back any default value in the wizard. For example, the default names for the 

design pattern participants. 

53 

Univ
ers

iti 
Mala

ya



4.3 Summary 

This chapter presents y-CGT analysis and the design. In the first part of this 

chapter, y-CGT functional and non-functional requirements have been stated. This was 

followed by object-oriented analysis in which the different use-cases with their 

respective scenarios were identified. The main classes were also modelled and presented 

in the form of class diagram. In the second part, y-CGT architecture has been presented. 

This has been followed by the object-oriented design in which the uses-cases identified 

in the analysis part have been transformed into interaction diagrams. These interaction 

diagrams uncovered the behaviour of y-CGT classes. Finally, some aspects of y-CGT 

user interface have been presented. 

54 

Univ
ers

iti 
Mala

ya



Chapter 5 

IMPLEMENTATION AND EXECUTION 

This chapter describes the different aspects of y-CGT implementation and its 

execution. The first section begins by describing the implementation of environment in 

which the communication infrastructure, the implementation programming language, the 

database option and the web server are described. In the second part of this section, y­

CGT main objects and their implementation are presented. In the following sub-section, 

the implementation of y-CGT 's main features is shown. 

5.1 y-CGT Implementation 

Many elements are used to implement y-CGT. Some of these elements are 

related to the development environment and some others are related to the technical 

aspects ofy-CGT's functions. These elements are described below: 

5.1.1 Implementation Environment 

5.1.1.1 The Communication Infrastructure 

The most important motivation behind building y-CGT is the exploration of the 

WWW as a medium of communication in building web tools. The WWW offers a 

number of characteristics over other available communication medium. These are as 

follow: 

55 

Univ
ers

iti 
Mala

ya



• 

• 

• 

The WWW is highly platform-independent. This allows the same code to be run on 

different programming operating systems such as Windows and UNIX. 

The WWW is global. 

No accessing time limits. Information stored on the Web pages can be accessed at 

any time. This allows users to work on their individual preferences instead of being 

confined within working hours. 

5.1.1.2 The Programming Language 

Java Server Pages (JSP) has been chosen to implement y-CGT. JSP is part of 

Java 2 Platform Enterprise Edition (J2EE) architecture and is considered as a Java 

programming language at the server side as shown in Figure 5 .1. As part of the J avaTM 

family, the JS p technology enables rapid development of web-based applications that 

are platform independent. JSP pages are efficient since the JSP loads into the web server 

memory on receiving the request at very first time and the subsequent calls are served 

within a very short period. 

In addition, JSP technology separates the user interface from content generation 

enabling overall page layout to change without altering the underlying dynamic content. 

The application logic residing in server-based resources are known as JavaBeans 

component architecture that the JSP page accesses with tags and scriptlets. By 

separating the page logic from its design and display may supports a reusable 

56 

Univ
ers

iti 
Mala

ya



component-based design. JSP technology makes it faster and easier than ever to build 

and maintain information-rich and dynamic web-based applications . 

.. - - ¥ ~'"-- • "-- ~ - " 
# ~ ~- ~ ...... - _,__ - ~ "' - ... - -

1 Tools · Application Programming Model 

Figure 5.1: JSPs and JavaBeans resides in the Java ™ 2 Platform 

Enterprise Edition (J2EE) architecture (Sun, 2001) 

Besides JSP, Java Applet has been used to generate visualization support for the 

design p attems. A Web browser executes Java Applet when the browser 1 oads a JS p 

pages that contains an applet tag. The applet source code is stored in *.java file and its 

bytecode is stored in *.class file. It is included in the JSP pages. The applet tag defines 

the width and height of the applet window within the JS P pages. The applet tag has 

numerous attributes to enhance its placement within the JSP pages. 

5.1.1.3 The Database 

The DataSet is used as data storage that resides in data tier of y-CGT 

architecture. The DataSet class is an abstract class that provides basic editing, view, and 

57 

Univ
ers

iti 
Mala

ya



cursor functionality for accessing two-dimensional data. This component or any other 

component that extends from StorageDataSet can be used to directly access tables stored 

in a DataStore database file. This component can be attached to any User Interface (UI) 

control in the same way that other subclasses of StorageDataSet connect to a UI control. 

It thereby, mimics single-user SQL server functionality although no database connectio~ 

is involved. 

5.1.1.4 The Web Server 

The Inprise Application Server (lAS) has been chosen to host "(-CGT. lAS is a 

suite of development and runtime facilities that allow users to build dynamic, scalable 

and high performing web applications. One of the major components of the AppServer 

is a Web container, designed to support development and deployment of web 

applications. The web container contains a Tomcat container, which provides the JSF 

compiler and engine. The first big advantage of lAS over most of its competitors is that 

IAS is built on CORBA and RMI-IIOP, which has already been proven to be reliable 

and scalable (Borland, 2001). 

5.1.2 'Y-CGT Objects 

"(-CGT is composed of several objects used to accomplish the design patter~ 

implementation process. The most important objects are: 

58 

Univ
ers

iti 
Mala

ya



1. Main document browser. 

The main document browser is the initial screen layout for y-CGT. The browser has 

been implemented to offer some important information about y-CGT to the designe·r 

before they begin using the tool. This description includes a brief overview and available 

features of y-CGT. After going through the information, the designer proceeds t 
0 

the 

next browser that is the catalog browser to start the design pattern implementation 

process. By clicking the link from y-CGT icon name it direct the designer to that 

browser. The browser is shown in figure 5.2. 

,_ fdt "'*" f<Mrift r• lillp 

i"""""' • ... • .l '11 !l! 4 ... ., Cil,....... .,_ u' ~· .J il· G:! 8 . 
r-...:rt!l .... //21ll.I ... I09.1:J9/--

(Gomma. Code G•nonoUon TooQ 

GAMr-iA· co"• Qoneradon Tool 

NoYII jndN'[y ~Cdllutto 
F~.Jty .X Computer Se~enCII 8. Tnform.toon Tecnnology 

Unn·•nltY M;tlily~ 
J<u.al<il.UtntiUr 

;;;;~~==================~~======================================J= -~ ~rr•;-;-=::----= lil-

F. 52· y-CGT main document browser 1gure .. 

59 

~· Univ
ers

iti 
Mala

ya



2. Catalog browser 

The catalog browser serves as the central focus while it can navigate through the tool 

and this is shown in Figure 5 .3. The catalog browser is implemented to facilitate the 

design pattern identification stage in the implementation of the design pattern process. 

The design pattern catalog mimics the pattern catalog found in Gamma et al. (1995). The 

purpose of having the same layout is to flatten the designer's learning process through 

familiarization of the Gamma et al. (1995) book they might have referred to before.. 

Moreover, the organization of the catalog is proven to enable the designer identify the 

required design pattern quickly and easily. In addition, the browser provides links to the 

main document browser, help menu, and email composer. The email composer allows 

the designer to send their comments and enquiries via email to the administrator. 

• 

.:J 

Figure 5.3: y-CGT catalog browser 

60 

Univ
ers

iti 
Mala

ya



3. Pattern browser 

The pattern browser is used to provide the designer with the detail descriptions of the 

design pattern that they have chosen. The descriptions include the design pattern Intent, 

Applicability, Consequences, Structure, and Participants. The top of the template shows 

the design pattern's name with its scope and purpose. Besides the template assists the 

designer to ascertain if whether they have chosen the right design pattern. On the 

contrary, the designer can use the Home link to re-visit the catalog browser to choose 

other patterns if the design pattern is not suitable for their design problem. The pattern 

browser is depicted in Figure 5.4. 

lnltnl Prowidt tllliiiM inleri~e lot sll'l olinltrlaca3 in a :subsysltt'll. FacOO• dsint:s a hightr·IMI inltrlace lhtl mak&!l t~ 

Stnn:but 

sub\JSttm USIII to IJU. 

• you want 10 ~·a 1111'\9lt 1nlt~n to a cOO'lpltlltUbtJS1tm. Subsysttm often get molt cornplu ts !My ...... 
, thert .,. many deptndtnclu b.t ... <een ditnts .ltld tht tmpltmtnt.1tion c!assas of an abstttclion. Introduce a 

racHt to dKGUplt tht subsysttm rrorn elitn!s and athtr tubsystems, tht~tby promot1ng tub1ytttrn 
111o.ptndtnct and polltt~1l~y. 

• you wart lo \tylill' :fOt.ll subi)'fltm 

• Fae~dt 

0 knowt which tst~btystem claues are tt:spoosibla for a reque:rt 

0 Qeltgaln cftnt requutt to ~ptopnatt suCsysttm objtctt. 

• Su..,.tMd_.. 
0 impiiiNnl subtytltf'l'l bletiGnaily 
o""'*,.,."SlQMdbyli>tFKiillolijoCL 

0 hM .- kni1Midgt ti lhe l'acadt, Jh:al is. they h&p M rtNrenceto i. 

ConN~Utnut The fxadt patttm ohtt the~ btntitl: 

, 1 thtld ,ijtnls tom subtyaltm compontrlll, thlltby rtdUCliiQ IN! number r/objtcttlhtt tlitnlt Get! with and 

Mingttllsubcy51trnUiittiOU!il. 
• 1 promaiH wnk eouping bttwftn tht tubfytttm wd It! dtl'll,. Oftln tht eompontru in t tubtystltl'l'l are 

!lrontl eMW Wtak e~ let• you wry tht component• ti tht su0t}'$11m Wlthoul altctlnQ ltl elitntt. 
• las!, prM(tl ~J~Picariont torn using subtyuttn ell:sus iftf'lly I'IHd to. '1'llul )'OU tan choose Mtwttn 

.... o/UOI .... ,...,.ay. 

.:J 
-------------------------------------------::::::=~rr~~.~~~---= 

Figure 5.4: y-CGT pattern browser 

61 

Univ
ers

iti 
Mala

ya



4. Wizard browser 

The wizard browser shown in Figure 5.5 provides the designer with the list of 

design pattern names. The designer must tick the bullet box containing the design 

pattern's name once they have decided the design pattern that they want to implement. 

Thereafter, the designer needs to click the Next button to invoke the form browser that is 

related to the design pattern. 

5. Form browser 

Y-CGT WIZARD 

Please choose design paltern to generate code: 

io Bridge 

r Builder 

I' Facade 

r Singleton 

r Strategy 

Figure 5.5: y-CGT wizard browser 

. .:J 

The form browser as depicted in Figure 5.6 facilitates the process of defining names for 

design pattern participants. The designer is required to define names for the design 

pattern participants. The given names must be meaningful in the application context of 

design problem. Subsequently, the designer must push the Next button to submit the 

names of pattern participants to the server. 

62 

Univ
ers

iti 
Mala

ya



6. Code Browser 

fiG J • l J 

File Edit View FoVOftes Tools Help 

1-CGTwtZARO 

Please type the application-specific names for the participants in the 
pattern : 

Fllcade : !Facade 

Subsystem(s) : ,....lto--,gi-n ---jlo3d0ption_mm le~eculeOplion 

Figure 5.6: y-CGT form browser 

l 

This browser provides the designer with the generated code of design pattern, whicl: 

they have chosen in the wizard browser. The generated code is in Java programming 

language form. Besides viewing the generated code, the designer can copy and paste the 

code into notepad and save it as java file. Later, the code can be integrated into their own 

application code they wish to develop. Example of C++ generated code for design 

pattern is shown in Figure 5.7. 

publlologlt\(lnl l){_ldontlllo•llon•l: } 
publio '~fold ntJd (int.u.tv111) {_id•n.tifico~ti<~>n •s•tv~l;] 

publlo ln1 o•t140 (,.tum _ld•ntHio..ltlon : } 

puollo void DoO 

{ 

l 
prlval• lnt _idotn.tlflo.atlon: 

ol..- lo.adOptlon_mnu 

public ludOptlon_rnnu(lnt I) {_ldontUicullon•o: } 
publlo ..-old s•tld (lntsetwal) {_ldentlflc:atlon •s•tv•l; } 

Figure 5.7: y-CGT pattern generated code browser 

-

63 

Univ
ers

iti 
Mala

ya



7. Diagram Browser 

The diagram browser shows the implementation of the chosen design pattern in class 

diagram using UML notation and this is shown in Figure 5.8. The designer is only 

allowed to view this class diagram to increase their understanding of the design pattern 

implementation. However, the tool has some limitations whereby it does not permit the 

designer to save this diagram. 

aGDPloot( fac~stateO!ag. ... Micro~intNn~E nt:t 

I 1 .... ucoOption 1 

I IOodOplion_mnul 

·Figure 5.8: y-CGT diagram browser 

5.1.3 Implementation of y-CGT Main Features 

y-CGT has implemented different features and techniques to achieve the design 

pattern implementation process. Recalling the features identified in chapter two, the 

following section show their implementation. 

64 

Univ
ers

iti 
Mala

ya



1. Supporting Abstract Description 

Supporting abstract description is vital in the pattern code generator tool. This feature 

leverage the material found in Gamma et al. (1995) to help the designers to refer to this 

material while using the y-CGT. To be most effective, therefore, the book's content 

especially the precise topic of interest to the designer is accessible from y-CGT. T be 

description includes the pattern Intent, Applicability, Participants, and Consequences. 

2. Diagram Representation 

Besides, the abstract description, y-CGT also shows the Structure description of design 

pattern as in Figure 5.4. Structure description is the graphical representation of the 

classes or object relationship in the design pattern. 

3. Form-based Customization 

y-CGT allows the designer to customize design p attern b y defining names for design 

pattern participants. This requires the designer to define names for the design pattern 

participants in text fields that have been displayed in the pattern form. This method of 

custornization is quite simple and easy to be done. Figure 5.9 shows pattern participants 

form for bridge design pattern. 

65 

Univ
ers

iti 
Mala

ya



File Edit View Favoriteo Toolo Help 

'Y-CGTWIZARD -----------------
Please type the application-specific names for the participants in the 
pattern : 

Abstraction : .I!A.bstraction 

Refined Abstractlon{s) 
: ]Ref.Abstraction2 

jRefAbstraction1 

Implementor : .llrt1plementor 

JConlmplementorA 
Concretelmplementor(s): J 

ConlmplementorB 

--------------~----~==~----~~ -
Close I < Prev II Nelrt > Reset I View I ..:.J 

Figure 5.9: Participants custornization wizard 

4. Customize Pattern Visualization 

pattern participants 

y-CGT has supporting visualization for the design pattern implementation m class 

diagram based on UML notations. The class diagram 1s displayed m the diagram 

Browser and this is shown in Figure 5.10. 

Figure 5.10: y-CGT customize design pattern visualization 

66 

Univ
ers

iti 
Mala

ya



5. Help Facility 

Help facility is important to assist the designer during the design pattern implementation 

process. y-CGT provides an on-line help facility throughout the design pattern 

implementation process. The help window allows the designer to view the design pattern 

template details as shown in Figure 5 .11. 

I File fcit v.ew feVOrites Tools Help 

Intent 

AppUnbiUty 

S1ructure 

Con.41quence• 

• A d'lort stat.erneri that enaw•$ the folowhg que:stlone: W'WIIt doeS' the de'!ign ~ern do? 
W1eC is ll.s: ratioNtfe Wid Honl? Wu.t particuler de$lgn ls.'Suas or problem does t address? 

• WW •e lhe MuMion in wt.ch the deSIQI'l peltern CW1 be eppl8d? w.t are: e xamples ol poor 
de~~ thM the panem een eddreu:? How can you recogrn:e tne.se ~? 

• A graphieal repre.senhiiJOn 01 the etesn..s n the pettern uelng • nottlltion ~ed on ihe Object 
hlo<1e4lng Tectnque (OMT). 

• How does the pattern support ts objecbvn? Y'Yhat .-e the tr'«fe.olts «<d resi.Ats of UUlg the 
petiorn? w.t aspect 01 sy.stewn dou j let yoy "~frY ndependarity? I 

S..-npM Code • Coc:te fregt'l\lent that ~rate how you mlgtt irnp6etnenl the ptlttem In Jave. I 
Oose J I 

...:J 

Figure 5.11: Help facility explain the pattern template 

6. Alert Message 

y-CGT provides an alert message to the designer while filling-up the pattern form. This 

ensures that the designer become alert to the mistakes that has been made. In the case 

that the designer has given an illegitimate names for the pattern participants or when the 

designer forget to define any names for the pattern participants alert message will be 

pop-up. Figure 5.12 shows an alert message when the designer has not defined any 

names for pattern participants. 

67 

Univ
ers

iti 
Mala

ya



'Y-CGT WIZAJ1D 

Phaol!l & t y- pa the application-sp 
pat1 ern : 

Facade 

Subsystam(s) : 

Figure 5.12: Alert message 

pop-up message 
given to alert the 

desianer 

Implementing y-CGT has incorporated some other requirements stated in section 

4.1.1.2. Their implementation is presented below: 

• Portability, Maintainability, and Expendability 

The programmmg language chosen to build y-CGT provides the means of 

making the tool portable, maintainable, and expandable. JSP, as a Java-based 

technology, enjoys a 11 the advantages that the Java language provides with respect to 

development and deployment. JSP supports the portability by not locking the 

deployment using specific hardware platform, operating system or server software. If a 

switch in any one of these components becomes necessary, all JSP pages and associated 

class can be migrated over as it is. 

By taking advantage of JSP's built-in support for JavaBeans, it becomes possible 

to maintain a strict separation between presentation and the program implementation.' 

The benefit of decoupling these two aspects is that changes in one can be made without 

requiring any changes in the other. For example, the way data is displayed can be 

68 

Univ
ers

iti 
Mala

ya



revised without ever having to modify any Java code. Similarly, as along as the 

component interface remains unchanged, the underlying implementation can be 

rewritten with no effects on any JSP pages that employ those components (Fields and 

Kolb, 2000). This virtue of component-centric design allows y-CGT to be easily 

maintained and expanded. 

5.2 y-CGT Execution 

The processes of design pattern implementation usmg y-CGT begin with 

identifying design pattern phase, which the designer tries to find the correct desigri 

pattern. Based on the design pattern catalog, the designer is thus able to narrow down the 

search by specifying the design problem purpose and scope. The design problem 

'Purpose' may concern creational, structural or behavioral pattern. Meanwhile the 

'Scope' might be related either to object or classes. Studying the catalog directs the 

designer to the right design pattern or group of patterns. Next, the designer studies the 

pattern Intent. This step becomes easier owing to the number of patterns to be reviewed 

becomes less after the designer has specified the pattern group. Pattern Intent is a very 

important description because it describes the design issue and problem that the pattern 

addresses. Finally, the designer is able to determine the right design pattern fort heir 

design problems. 

After the designer has chosen a design pattern, the next step is the review static 

structure phase. Here, the designer reviews the static structures, there are the design 

pattern Applicability and Consequences. Besides examining the static structures of a 

69 

Univ
ers

iti 
Mala

ya



design pattern, the designer need to undergo the review dynamic structure phase. The 

dynamic parts are the pattern Structure and Participants. Structure shows graphical 

representation of classes or objects in the design pattern using a notation based on 

Object Modelling Technique (OMT). 

Once the designer has decided that the pattern is suitable for their design 

problem, they proceed with the following phase that is defining names for design pattern 

participants. The names for participants in design pattern are usually too abstract to 

appear directly in an application. Therefore, the designer must define names for the 

participants that are meaningful in the application context of design problem. Finally, 

the designer must submit the names of the design pattern participants to the server. In 

the generate code phase, the code for the design pattern is generated and displayed in th(; 

code browser. The generated code is presented in Java programming language. The 

designer views and able to save the codes. This codes can be use to be integrated with 

the designer own application code that they wish to develop. The subsequent phase is 

visualization of the customized pattern. The designer should click "View button" in the 

y-CGT wizard to view the visualization of the design pattern implementation in class 

diagram. In the last phase of rework and finish, the designer should have completed the 

implementation of the design pattern and thus, repeat the same process for other design 

problems they may have. On the contrary, the designer should quit after they using the y­

CGT. 

70 

Univ
ers

iti 
Mala

ya



5.3 Summary 

Two main things were described in this chapter: y-CGT implementation and 

execution. In the implementation section, the communication infrastructure, the database 

option and web server was described. This is followed by the exploration of the y-CGT 

main browsers. Each object was described, the implementation of its functions was 

presented and its required and necessary graphical representation was shown. The finc.l 

part of the implementation was the implementation of the main features identified in the 

previous chapters. The second section of this chapter described the execution of the 

pattern implementation using y-CGT. 

71 

Univ
ers

iti 
Mala

ya



Chapter 6 

EVALUATION AND RESULTS 

One way of assunng the validation of software system is to evaluate its 

compliance with its requirements (Boehm, 1984). This chapter presents y-CGT 

evaluation process. It describes the pilot study conducted to evaluate its features and 

requirements, compares y-CGT with other pattern code generator tools and presents thb 

results obtained from within this study. 

6.1 y-CGT Evaluation 

y-CGT was evaluated by students from the Faculty of Computer Science & 

Information Technology, University of Malaya. The pilot study conducted is explainecl_ 

in section 6.1.1. 

6.1.1 Pilot Study 

The primary goal behind carrymg this study is to assess the feasibility of 

executing the design pattern implementation using y-CGT. The study is not intended to 

address any validation for the implemented pattern code generator tool nor its 

methodology. The pilot study includes a small number of postgraduate students with 

moderate to extensive knowledge on software engineering and reuse process. 

Nevertheless, all the participants have null to moderate knowledge about design patterns 

and their implementations. Thus, this study does not provide any scientific evidence for 

72 

Univ
ers

iti 
Mala

ya



its effectiveness. The study includes both quantitative and qualitative measurements. 

The quantitative measurements include the quantity measurement observed from this 

study and the qualitative measurements include the responses of y-CGT participants. 

The information is gathered using a questionnaire. 

6.1.1.1 Participants 

The study involves five graduate student volunteers. The students are 

postgraduate stude11ts in Software Engineering at the Department of Software 

Engineering, University of Malaya. All participants have moderate to extensiv~ 

knowledge on software engmeenng and reuse process. On the contrary, all the 

participants have null to moderate knowledge on design patterns and their 

implementations. 

6.1.1.2 Experiment Material 

The experimental material was adopted from (Cheng, 2002) and adapted to suit 

the requirements of this experiment. Although the pattern catalog consists of 23 design 

patterns yet only five design patterns will be involve. In which cover all the patterns in a 

short period of time usually blurring together or participants spending may more time on 

understanding the details of many different examples that on the pattern themselves 

(Goldfedder and Rising, 1996). Therefore, this material only seeded with four 

requirements with each of the requirements the participants have to specify the design 

pattern related. 

73 

Univ
ers

iti 
Mala

ya



6.1.1.3 Environment 

The participants used PC with the hardware specification of Pentium II with 128 

Megabyte RAM. The browser they used was either Internet Explorer ver.5 or Netscape 

ver. 4.7. 

6.1.1.4 Methodology 

Firstly, each participant was briefed on the design pattern implementation 

methodology and the experiment materials as in Appendix B. I before using y-CGT. At 

the end of the design pattern application process, each participant was given a 

questionnaire as enclosed in Appendix B.2. The questionnaire is categorized into 3 parts. 

The first part gathered the participant knowledge about design pattern and their 

application. Meanwhile, the second part consists of questions on the implementation 

aspect and the third part includes questions about the overall usage of y-CGT. 

6.1.1.5 Quantitative Measurement 

From the four requirements seeded in this experimental material, the quantitative 

measurement results are described. Three of the participants have performed well since 

they have managed to identify all the design patterns related to the requirements given. 

Meanwhile, two participants only managed to identify three and two design patterns 

respectively. Those that have i uentified the design patterns continued with the design 

patterns transformation into its concrete form and eventually view the visualization of 

the design patterns implementation. Although not all of the participants were able to 

74 

Univ
ers

iti 
Mala

ya



identify the whole design patterns for the given requirements, it is still a fine response 

gathered from them. This is due to the experiment is actually some of the participant 

first attempt to explore design patterns and their implementation. 

6.1.1.6 Qualitative Measurement 

Participants were asked to fill in the questionnaire at the end of the evaluation 

session. Table 6.1 shows the summary of the questionnaire and its results and Table 6.2 

stated the questionnaire answers scores. Generally, participants scored an above average 

mean score for all the questions. 

The first part of the questionnaire, contained questions related to the participants ' 

knowledge about design patterns and their implementation. It seems that three oft he 

participants have average knowledge about design patterns but only two of them have 

attempted using pattern code generator tool before. On the contrary, two of the 

participants have zero knowledge about design patterns but they have knowledge about 

software reuse. Hence, this evaluation assesses how y-CGT helps beginners in gaining 

understanding about design patterns and their implementation. 

In the second section, participants were asked to rate the effectiveness of the 

design pattern implementation process. The mean answer was between average and 

accurate. The highest mean scores are found in Q5 and Q6, which were above 3.00. This 

shows that the static and dynamic description of the design patterns have helped the 

75 

Univ
ers

iti 
Mala

ya



participants to gain understanding of the design pattern. The lowest mean score was 2.51 

for the Q4. It seems that the participants were tolerable with the pattern catalog facilities . 

Table 6.1: Summary of the questionnaire and its results 

! 
Q QUESTIONS AVE. I 

Section 1: Knowledge Level 
--

1 Have you ever encountered the terms of design patterns? Yes/N0 

2 Do you have any understanding about the contribution of design patterns in software Yes/No 
development? 

3 Have you ever used any specific tool or software related to design patterns? Yes/No 

Section 2: Implementation Session 

4 Does the pattern catalog ease the search of pattern that is right for your design problem? 2.51 

5 Does the pattern abstract description (static parts) help you to apply the design pattern? 3.02 

6 Does the pattern abstract description (dynamic parts) help you to apply the design 3.10 
i pattern? 

7 Is it easy to customize the design pattern? 2.90 
--

8 Does the pattern implementation visual help you to understand the relationship between 2.64 
the design pattern classes more clearly? 

9 What do you think of the help facilities given? 2.84 ' 

Section 3: Overall Implementation Session 

10 How satisfied are you with y-CGT in terms of its overall performance? 2.86 

11 How satisfied are you with y-CGT in terms of its reliability? 2.20 

12 Overall, how would you rate the usability of y-CGT? 2.65 

13 Do you feel that y-CGT improves any aspect of your performances? Is so, please state Free form 
which aspect(s) and reason(s)? 

14 Are there any features you think will enhance y-CGT? Free form 
I 

15 Do you feel that y-CGT has in any way or other slow down your performance? If so, Free form 
please state how? 

76 

Univ
ers

iti 
Mala

ya



Table 6.2: Questionnaire answers scores 

0 1 2 3 4 I 

Very difficult Difficult Average Easy Very easy 
·--

Very dissatisfied Dissatisfied Average Satisfied Very satisfied 

Totally unhelpful Unhelpful Average Helpful Very helpful 

Extremely unusable Fairly unusable Average Fairly usable Extremely usable 
·-

The last section contains questions about the overall v1ew of y-CGT. QlO 

required the participants to rate the overall performance of y-CGT. The mean scores 

record 2.86 and this shows that the participants faired between moderate to satisfitd . 

responses with y-CGT. Participants were also asked about the reliability of y-CGT and 

the response was between average and satisfied 2.20. Next, the participants were asked 

about the overall usability of y-CGT. The mean score was 2.65 in which the participants 

showed between moderate and satisfied responses in y-CGT usability. Finally, the 

questionnaire includes free-form questions. The first free- form question asked 

participants how y-CGT has improved the different aspects of their performances. Some 

of them have stated that the implementation process of the design pattern has becomes 

easier and the reuse process will certainly improve. The participants were also a skeci · 

about the additional features that they like to see in y-CGT. Some of them wanted the 

generated code to be in other object-oriented programming such as C++. In the last 

question, subjects were asked if y-CGT decrease their work performance. Some stated 

that the design pattern was quite new to employ into their working environment. 

Therefore, the process of using design patterns certainly required more time to adapt in 

their software development process. 

77 

Univ
ers

iti 
Mala

ya



6.2 Comparison ofy-CGT with Other Pattern Code Generator Tools 

Another way of evaluating y-CGT is by comparing it with the current available 

tools. This section compares y-CGT with other pattern code generator tools. Table 6.3 

includes y-CGT within the listed pattern code generator tools. 

It is clear that y-CGT has covered the most important features. The only hvo 

features that y-CGT has not covered are the graphical customization and trade-offs 

constraints. When compared to Budinsky's Tool, y-CGT has supported two additional 

features; it offers help facility and provides alert messages. Whereas compared to 

Designer's Assistant Tool, y-CGT offered three more features. It supports customized 

pattern visualization, offers help facility and provides alert message. On the contrary, 

when compared to non-web based pattern code generator tools namely S.C.U.P.E and 

SNIP, y-CGT appears to offer more features. Besides that, y-CGT has more credit in 

terms of the distribution of the design pattern and their implementation knowledge via 

www. 

Table 6.3: Comparison y-CGT with other pattern code generator tools 

Features Non Web-Based Web-Based Tool 

S.C.U.P.E SNIP Budinsky's Designer's y-CGT 
Tool Assistant 

Supporting Abstract Description ..j ..j ..j ..j ..j 
Pattern Structure Diagram ..j ..j ..j ..j 
Form-Based Customization ..j ..j ..j ..j 
Graphical Customization ..j 
Visualize Implement Pattern ..j ..j 
Trade-offs Constraints ..j 

Help Facility ..j ..j ..j 
Alert Message ..j 

78 

Univ
ers

iti 
Mala

ya



6.3 Results 

The above pilot study shows that implementing design patterns is feasible using 

y-CGT tool. It also reveals that y-CGT has achieved its objectives. This section describes 

how those objectives have been addressed. 

1. Simplifying the process of generating source code 

The process of generating code for the design patterns becomes simple via form-based 

customization. The participants are only required to supply legitimate names of design 

pattern participants before implementing the design pattern. The process is quite 

straightforward as the form provides default names of design pattern participants as 

reference. 

2. Depicting the implemented design pattern 

y-CGT visualizes the design pattern implementation into class diagram and displays it in 

the diagram browser. Although the participants are not able to save the diagram, yet they 

are still able to view the class diagram in order to understand the complexity of the 

relationship in classes or objects in the design pattern. 

3. Providing necessary helps to developers 

y-CGT provides help to the participants while they are using the tool. One of the help 

facilities given is the Windows help, which describes the design pattern template. 

79 

Univ
ers

iti 
Mala

ya



Besides Windows help, the tool also provides other help facilities, for example the alert 

message, and the automatic terms definition. 

4. Expressing design patterns at a higher level 

y-CGT leverages the material found in (Gamma et al., 1995) to show the static and 

dynamic structure of the design patterns. The materials that are displayed in the pattern 

browser include the descriptions about the design pattern Intent, Applicability, Structure, 

Participants, and Consequences. 

6.4 Summary 

This chapter has evaluated y-CGT against its requirements. It has described the 

pilot study conducted for the evaluation process. This pilot study resulted in both 

quantitative and qualitative measurements. These measures have been used to describe 

the overall satisfaction of y-CGT. y-CGT has also been compared with other existing 

patterns code generator tools. Finally, the evaluation results have been presented. 

80 

Univ
ers

iti 
Mala

ya



Chapter 7 

CONCLUSION 

7.1 Summary 

Patterns provide proven solutions that solve a general design problem in a 

particular context that are certainly useful for designers to solve new designs problem. 

This is because recurring design problems always occurs in object-oriented software 

design or known as design deja-vu. They are independent of a particular application 

domain and programming paradigm, thus enabling widespread reuse even when other 

forms of reuse components are infeasible. This definitely makes object-oriented designs 

more flexible, elegant, and ultimately reusable. 

One of the main obstacles facing design patterns is that it does not lead to direct 

code reuse. Some developers have found it difficult to make the leap from the pattern 

description to a particular implementation, even though the pattern includes code 

fragments in the Sample Code section. Other more experience developers may have no 

trouble translating the pattern into code, but they still find it a chore, especially when 

they have to do it repeatedly. A design change might require substantial re­

implementation, because different design choices in the pattern can lead to vastly 

different codes. These problems and others were identified in the first chapter of this 

thesis. The main objectives have been put forward to tackle these difficulties. 

81 

Univ
ers

iti 
Mala

ya



There exists number of pattern code generator tools . Those have been surveyed 

in chapter two. This study has resulted in capturing the main features of a pattern code 

generator tool. On the light of the study conducted, the framework for this research was 

specified. 

Based on the introduced tool, y-CGT functionality has been drawn. An extensive 

analysis and design have been carried out to shape its functionality. Many techniques 

have been used. These techniques have been discussed in chapter three. The following 

chapter has shown how the design elements identified were implemented. It has also 

described the ways to execute the implementation of the design patterns using y-CGT. 

One way to validate a software system is to extensively run it. y-CGT has been 

validated by a group of graduate students. The pilot study resulted in some qualitative 

and quantitative measurements. Although, these measures have revealed some 

limitations in y-CGT, it proven that y-CGT is usable and it has achieved its objectives. 

7.2 Contributions 

• 

Two main contributions have been achieved: 

The first contribution is a methodology for the pattern code generator tool, which has 

been presented in 3 .1 .1. This methodology ensures that the design pattern 

transformation preserves the tool behaviour. 

82 

Univ
ers

iti 
Mala

ya



• The second contribution is a prototype of a web-based pattern code generator tool 

called y-CGT has been designed and implemented. This tool applies the design 

patterns (Gamma et al., 1995) transformation into Java code. y-CGT has been found 

to be comparable and competitive to other pattern code generator tools. 

7.3 Future Work 

The study can be extended in several ways: 

Although the pilot study provided initial evidence about the effectiveness of the 

presented methodology, it was not enough to provide any explicit scientific evidence. 

The experimental materials were not that difficult because they were chosen to meet the 

average knowledge of the participants. For such reason, further research is needed to 

explore the effectiveness of the presented methodology. 

y-CGT has incorporated most of the main features that constitute a good pattern 

code generator tool. Some other features that increase the effectiveness of such tool 

should be integrated. y-CGT can be improved to: 

• Generate code for the pattern application into other programming language such as 

C++ and Smalltalk. This is beneficial to help designers from different programming 

backgrounds to transform the design pattern into its concrete form that they might 

prefer to use. 

83 

Univ
ers

iti 
Mala

ya



• Introduce some metrics into y-CGT to measure the intended benefits of the decisions 

to apply specific design pattern based on intuition that are often made by designers. 

This metrics help to verify whether the designer intuition is right or not. Besides 

being able to measure the benefits of a specific pattern, metrics may measure the 

quality of the software that has been developed using design patterns. 

Finally, design patterns as one of the most the successful reuse components, 

deserve further study to explore its full potential. 

84 

Univ
ers

iti 
Mala

ya



APPENDIX A: y-CGT Object-Oriented Analysis and Design 

These diagrams range from the use-cases in the analysis phase to the interaction diagrams in the 

design phase. This appendix presents these diagrams. 

A.l Use-Cases Diagram 

These use-cases are depicted in Figure A.l.l. The scenarios for these use-cases are shown in 

section A.2 where the interaction diagrams are drawn based on them. 

0 
Identify Design 

~ Pattem 

Designer 

Rework & 
Finish 

0 
Revise Static & 

Dynamic Structures 

0 
Define Names for 

Participants 

0 
Generate 

Source Code 

0 
Visualize Implement 

Pattern 

Figure A.l .l : y-CGT use-cases 

A.2 Scenarios and Interaction Diagrams 

The above identified use-cases have their respective scenarios and interaction diagrams. These 

scenarios and diagrams are shown in this section. 

85 

Univ
ers

iti 
Mala

ya



A.2.1 A designer identify design pattern scenario 

Note: 

1- The designer loads web client. 
2- The client displays mainDoc. 
3- The designer retrieves design pattern catalog. 
4- The design pattern catalog is displayed in catalogBrowser. 
5- The designer revises the design pattern catalog. 
6- The designer chooses a design pattern. 
7- The catalogBrowser retrieves the design pattern details. 
8- The design pattern abstract description is displayed in patternBrowser. 
9- The designer revises the design pattern Intent. 

web client 
catalog 

browser 
designer 

1: load I 
2: display mainDoc 

3: get pattern _I 

catalog 
-----·-... 4: display 

5: revise p< ttern catalog 

~ --·--·--... 
6: choo ~e pattern 

pattern 

browser 

Steps 5 - 9 is an iteration 7: get pattern details 
process until the designer 

8: display 

has found the correct 9: revise pattern lnt~r 
design pattern. 

Figure A.2.1: Identify a design pattern interaction diagram 

A.2.2 A designer revis.es static & dynamic structures scenario 

1- The designer loads web client. 
2- The client displays mainDoc. 
3- The designer retrieves design pattern catalog. 
4- The design pattern catalog is displayed in catalogBrowser. 
5- The designer chooses a design pattern. 
6- The catalogBrowser retrieves the design pattern details. 
7- The design pattern abstract description is displayed in patternBrowser. 
8- The designer revises the design pattern static structures. 
9- The designer revises the design pattern dynamic structures. 

::::=::::J ,_.. 

86 

Univ
ers

iti 
Mala

ya



web client 
catalog 

browser 
designer 

) 
1: load .. I 

2: display mainDoc 

3: get pattern ~--_1 
catalog 

4: display 

5: choose pattern 

pattern 

browser 

6: get pattern details 7: displ ay 

8: revise static structure 
I .. 

9: revise dvnamic structL res 

1 
Figure A.2.2: Revise static & dynamic structures interaction diagram 

A.2.3 A designer define names for participants scenario 

1- The designer loads web client. 
2- The client displays patternBrowser. 
3- The designer retrieves wizardBrowser. 
4- The wizardBrowser displays list of design patterns based on the pattern names. 
5- The designer chooses a design pattern from the list. 
6- The wizardBrowser retrieves the design pattern participant form. 
7- The design pattern participant form is displayed in formBrowser. 
8- The designer defines names for design pattern participants. 

web client 
wizard 

browser 

form 

browser 
designer 

1: load I 
2: display patternBrc wser 

3: get I 
wizard Browser 

4: display 

5: choo e pattern 

6: qet pattern form 

7: displ 
I 

8: define participants ames .... 
1 

Figure A.2.3: Define names for participants interaction diagram 

ay 

87 

Univ
ers

iti 
Mala

ya



A.2.4 Generate source code scenario 

1- The designer loads web client. 
2- The client displays wizardBrowser. 
3- The designer chooses a design pattern from a list. 
4- The wizardBrowser retrieves the design pattern participant form. 
5- The design pattern participant form is displayed in formBrowser. 
6- The designer defines names for design pattern participants. 
7- The formBrowser passes the names to the server. 
8- The server generates source code for the design pattern. 
9- The server passes the source code to the sourcecodeBrowser. 
10- The sourcecodeBrowser displays the generated source code. 
11- The designer views the generated source code. 

web client 
form 

browser 

source code 

browser 
designer 

1: load I . . )V 2: diSfllay w1zardBro ser 
-] 

3: choose patte~r ~---
4: load pattern forw 

~ displjy pattern for n 

6: define nam s for participants 
7: pass participants r ames 

8: generate source cp 
-·~ 

I~ pass source code 

11 : view gene rat d source code 1 ~fl 
1 I 

Figure A.2.4: Generate source code interaction diagram 

A.2.5 Visualize pattern scenario 

1- The designer loads web client. 
2- The client displays wizardBrowser. 
3- The designer chooses a design pattern from a list. 
4- The wizardBrowser retrieves the design pattern participant form. 
5- The design pattern participant form is displayed in formBrowser. 
6- The designer defines names for design pattern participants. 
7- The formBrowser passes the names to the server. 
8- The server generates class diagram for the design pattern. 
9- The server passes the class diagram to the diagramBrowser. 
10- The diagramBrowser displays the generated class diagram. 
11- The designer views the generated class diagram. 

de 

10: display 
generated 

code 

88 

Univ
ers

iti 
Mala

ya



web client 
form 

browser 
server ---

designer 

1: load I 
2: display wizardBro ~ser 

l 
3: choose pattern 

4: display pattern forr 
n 5: display pattern fo m 

6: define names f r pattern participants 
~---' 

ames 

diagram 

browser 

7: pass participants r 

I 
8: generate patte 

j~l 
rn iagram 

9: load pattern di 

11 : view visu alize diagram 

I 
Figure A.2.5: Visualize implement pattern interaction diagram 

A.2.6 Rework & finish scenario 

1- The designer loads web client. 
2- The client display catalogBrowser. 
3- The designer repeats the process to implement design pattern, or 
4- The designer exit from y-CGT. 

~ catalog 

browser 
designer 

1: get web client ~l 
2: display 

I 
3: rework 

\ 4: exit ~'/ 
7' 

Figure A.2.6: Rework & finish interaction diagram 

A.3 y-CGT Detailed Classes 

~r m 

~ 
10: display 

~ customize 
pattern 

This section shows the detailed classes with their attributes and methods. The detailed 

classes diagram depicted in figure A.3 .1. 

89 

Univ
ers

iti 
Mala

ya



Main Document Browser 

catalog : Catalog Browser 

Message Browser 

message : String 
receiverName : String 

getReceiverName() 
getMessage() 
setMessage() 
send Message() 

Catalog Browser 

has~ pattern : Patternlist has 

has 

as 

getPattern() 
setPattern() 
selectPattern() 

has 

Client 

serverName : Server 
mainDoc : Main Document Browser 
catalogBrowser : Catalog Browser 
patternBrowser : Pattern Browser 
wizardBrowser: Wizard Browser 
formbrowser : Form Browser 

. 
Pattern Browser 

wizard : Wizard Browser 

has 
I 

Wizard Browser 

pattern : Patternlist 

selectPattern() 

I 
has 

Form Browser 

' 

patternParticipants : String 

definePatternParticipants() 

helpBrowser : Help Browser 
messageBrowser : Message Brows 
diagram : Diagram I ~ ~ code Code I Help Brow?\ has . 
showMa1nDoc() 
showCatalog Browser() 

creates 
I 

Designer ses 

canSelectPattern : String 
canDefineParticipants : String 

getSelectPattern () 
getDefineParticipants() 
setSelectPattern() 
setDefineParticipants() 

showPattern Browser() 
showWizardBrowser() 
showFormBrowser() 
create Code() 
create Diagram() 

calls 

Server 

database : Database 

send Email() 
getPattern() 

calls 

Diagram Browser 

patternParticipants : String 

setPattern Participants() 
getPatternParticipants() 

Database 

getPattern() 

Figure A.3. 1: y-CGT detai led classes diagram 

6~IUJtJSTAKAAN UN1VERSITI MALAYA 

creates 

Code Browser 

patternPartcipants : String 

setPatternParticipants() 
getPatternParticipants() 

90 

Univ
ers

iti 
Mala

ya



Appendix B: y -CGT Evaluation Material & Questionnaire 

B.l Evaluation Material 

Project : Designing HACS Application 

Problem Statement 

HACS [Cheng, 2002] is a simple application Access Course Scores, enable the users consist of 

instructors or students to used the application to perform certain task. Here some of requirements 

have been stated and potential design patterns must be identified to accomplish each of the 

requirements. 

Requirements 

1- Choose a pattern to provide a unified interface to the HACS. The object will provide a 

single, simplified interface to the more general facilities of a subsystem. Within the object 

following methods must be include: 

a) Login: This method will implement the login functionality. 

b) Load_ Option Menu: This method will load the appropriate menu (instructor or student) 

c) Execute Option: This method will execute the appropriate option selected from the 

menu. 

2- Choose a pattern that will affect the Load_ Option Menu describe above: 

• There will be Person _Interface base class for Instractor _Interface and 

Student _Interface. 

• Provide the instructors with the option of creating their own course option menu. 

Note: create a separate class hierarchy for the implementation of different course option 

menus. 

• The students as well as the instructors can have different menu. 

3- In the Person _Interface class, the course_menu will depend on two things. 

• Course number 

• Instructor or Student 

Note: Base class Person Interface would not know which class to instantiate, choose a 

pattern that enable the subclasses decide which class to instantiate. 

91 

Univ
ers

iti 
Mala

ya



4- Implement a pattern as means for printing the grade report for the students. 

Design Suggestion 

Try to identify the design pattern for each of the stated requirements. 

Req. 1: Design Pattern Purpose 

Design Pattern Scope 

Design Pattern 

Class Participants 

Req. 2: Design Pattern Purpose 

Design Pattern Scope 

Design Pattern 

Class Participants 

Req. 3: Design Pattern Purpose 

Design Pattern Scope 

Design Pattern 

Class Participants 

Req. 4: Design Pattern Purpose : ________ _ 

Design Pattern Scope 

Design Pattern 

Class Participants 

92 

Univ
ers

iti 
Mala

ya



B.2 The Questionnaire 

QUESTIONNAIRE 

A Code Generator Tool for the Gamma Design Patterns 

Prepared by 

Novia Indriaty Admodisastro 

WGC 00005 

Master of Software Engineering 

Supervisor 

Assoc. Prof. Dr. P . Sellapan 

Faculty of Computer Science & Information Technology 

University of Malaya 

93 

Univ
ers

iti 
Mala

ya



Questionnaire Objectives: 

The objective of this questionnaire is to evaluate the implemented prototype of design 

pattern code generator tool known as y-CGT. The tool was evaluated against the 

research objectives, and against its features that have been identified from the existing 

similar tool. 

Instruction: Please mark 1:8:1 appropriate box. 

Section 1: Knowledge Level 

1. Have you ever encountered the terms of design patterns? 
0 Yes, give the definition of design pattern: _______________ _ 
0 No 

2. Do you have any understanding about the contribution of design patterns m software 
development? 
0 Yes, explain--------------------------
0 No 

3. Have you ever used any specific tool or software related to design patterns? 
0 Yes, give name of the tool/software: _________________ _ 
0 No 

Section 2: Implementation Level 

4. Does the pattern catalog ease the search of pattern that's right for your design problem? 
0 Totally unhelpful 
0 Unhelpful 
0 Average 
0 Helpful 
0 Very helpful 

5. Does the pattern abstract description (static part) help you to apply the design pattern? 
0 Totally unhelpful 
0 Unhelpful 
0 Average 
0 Helpful 
0 Very helpful 

94 

Univ
ers

iti 
Mala

ya



6. Does the pattern abstract description (dynamic part) help you to apply the design pattern? 
D Totally unhelpful 
D Unhelpful 

. D Average 
D Helpful 
D Very helpful 

7. Is it easy to customize the design pattern? 
D Very difficult 
D Difficult 
D Average 
D Easy 
D Very easy 

8. Does the pattern implementation visual help you to understand the relationship between the 
design pattern classes more clearly? 
D Totally unhelpful 
D Unhelpful 
D Average 
D Helpful 
D Very helpful 

9. What do you think of the help facilities given? 
D Totally unhelpful 
D Unhelpful 
D Average 
D Helpful 
D Very helpful 

Section 3: Overall Level 

10. How satisfied are you with y-CGT in terms of its overall performance? 
D Completely dissatisfied 
D Dissatisfied 
D Average 
D Satisfied 
0 Completely satisfied 

95 

Univ
ers

iti 
Mala

ya



11. How satisfied are you with y-CGT in terms of its reliability? 
D Completely dissatisfied 
D Dissatisfied 
D Average 
D Satisfied 
D Completely satisfied 

12. Overall, how would you rate the usability ofy-CGT? 
D Extremely unusable 
D Fairly unusable 
D Average 
D Fairly usable 
D Extremely usable 

13. Do you feel that y-CGT improve any aspect of your performances? Is so, please state which 
aspect(s) and reason(s)? 

14. Are there any features you think will enhance y-CGT? 

15. Do you feel that y-CGT has in any way or other slow down your performance? If so, please 
state how. 

0: Very difficult 
0: Very dissatisfied 
0: Totally unhelpful 
0: Extremely unusable 

1: Difficult 2: Average 
1 : Dissatisfied 2: Average 
1: Unhelpful 2: Average 
1: Fairly unusable 2: Average 

-Finish-

Thank you. 

3: Easy 4: Very easy 
3: Satisfied 4: Very satisfied 
3: Helpful 4: Very helpful 
3: Fairly usable 4:Extremely usable 

96 

Univ
ers

iti 
Mala

ya



Appendix C: The Catalog of Design Pattern 

The catalog consists of 23 design patterns. The design patterns names and intents are listed 

below for an overview. 

Abstract Factory: Provide an interface for creating families of related or dependent objects 

without specifying their concrete classes. 

Adapter: Convert the interface of a class into another interface client expects. Adapter lets 

classes work together that couldn't otherwise because of incompatible interface. 

Bridge: Decouple an abstraction from its implementation so that the two can vary 

independently. 

Builder: separate the construction of a complex object from its representation so that the same 

construction process can create different representations. 

Chain of Responsibility: Avoid coupling the sender of a request to its receiver by giving more 

that one objects a chance to handle the request. Chain the receiving objects and pass the request 

along that chain until an object handles it. 

Command: Encapsulate a request as an object, thereby 1 etting you parameterize clients with 

different requests, queue or log request and support undoable operations. 

Composite: compose objects into tree structures to represent part-whole hierarchies. Composite 

lets clients treat individual objects and compositions of objects uniformly. 

Decorator: Attach additional responsibilities to an object dynamically. Decorators provide a 

flexible alternative to sub-classing for extending functionality. 

Fac;ade: Provide a unified interface to a set of interfaces in a subsystem. Fas;ade defmes a 

higher-level interface that makes the subsystem easier to use. 

Factory Method: define an interface for crating an object, but let subclasses decide which class 

to instantiate. Factory method lets a class defer instantiation to subclasses. 

Flyweight: Use sharing to support large numbers offme-grained objects efficiently. 

97 

Univ
ers

iti 
Mala

ya



Interpreter: Given a language, define a representation for its grammar along with an interpreter 

that uses the representation to interpret sentences in the language. 

Iterator: provide a way to access the elements of an aggregate object sequentially without 

exposing its underlying representation. 

Mediator: define an object that encapsulates how a set of objects interacts. Mediator promotes 

loose coupling by keeping objects from referring to each other explicitly and it lets you vary 

their interaction independently. 

Memento: without violating encapsulation, capture and externalize an object's internal state so 

that the object can be restored to this state later. 

Observer: define a one to many dependencies between objects so that when one object changes 

state, all its dependents are notified and updated automatically. 

Prototype: specify the kinds of objects to create using a prototypical instance and create new 

objects by copying this prototype. 

Proxy: Provide a surrogate or placeholder for another object to control access to it. 

Singleton: Ensure a class only has one instance and provide a global point of access to it. 

State: Allow an object to alter its behavior when its internal state changes. The object will 

appear to change its class. 

Strategy: define a family of algorithm, encapsulate each one and make them interchangeable. 

Strategy lets the algorithm vary independently from clients that use it. 

Template Method: define the skeleton of an algorithm in an operation, deferring some steps to 

subclasses. Template Method lets subclasses redefine certain steps of an algorithm without 

changing the algorithm's structure. 

Visitor: represent an operation to be performed on the elements of an object structure. Visitor 

lets you define a new operation without changing the classes of the elements on which it 

operates. 

98 

Univ
ers

iti 
Mala

ya



Bibliography 

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King I. and Angel, S. 

(1977). A Pattern Language: Towns, Building and Construction. New York: Oxford University 

Press. 

Alexander, C. (1979). The Timeless of Building. New York: Oxford University Press. 

Beck, K. and Johnson, R. E. (1994). Patterns Generate Architectures. In Proceedings of 

European Conference on Object-Oriented Programming (ECOOP '94), p. 139-149. Bologna, 

Italy. 

Beck, K., Coplien, J. 0., Crocker, R., Dominick, L., Meszaros, G., Paulisch, F. and Vlissides, J. 

(1996). Industrial Experience with Design Patterns. In Proceedings of 181
h International 

Conference on Software Engineering (ICSE '96), p. 103-114. Berlin, Germany. 

Berners-Lee, T. (1996). WWW: Past, Present and Future. IEEE Computer, p. 69-77. 

Blaine, G., Boyd, M. and Crider, S. (1994). Project Spectrum: Scalable Bandwidth for the BJC 

Health System. HIMSS, Health Care Communications, p.71-81. 

Boehm, B. (1984). Verifying and Validating Software Requirements and Design Specifications. 

IEEE Software, p.75-88. 

Borland (2001). AppServer Documentation. Available from Borland Software Corporation 

Homepage. URL: http://www.borland.com. 

Brad, A. (2000). Patterns and Software: Essential Concepts and Terminology. Available from 

Brad Appleton Homepage. URL: http://www.enteract.com/~bradapp/. 

Brown, K. (1996). Design Reverse-Engineering and Automated Design Pattern Detection in 

Smalltalk. Master's Thesis. University of illinois. 

Budinsky, F. J., Finnie, M.A., Vlissides, J. M. and Yu, P. S. (1996). Automatic Code Generation 

from Design Patterns. IBM Systems Journal, 35(2): 151-171. 

99 

Univ
ers

iti 
Mala

ya



Buschmann, F., Meunier, R., Rohnert, H., Sornrnerland, P. and Stal, M. (1996). Pattern­

Oriented Software Architecture- A System of Pattern. New York: John Wiley & Sons. 

Cheng, B. (2002). Advance Software Engineering Notes. Available from Michigan State 

University Homepage. URL: http://www.cse.msu.edu/~cse870/. 

Cline, M.P. (1996). The Pros & Cons of Adopting and Applying Design Patterns in the Real 

World. Communications of the ACM, 39(10): 47-49. 

Coad, P. (1992). Object-Oriented Patterns. Communications of the ACM, 35(9): 152-159. 

Coplien, J.O. (1992). Advanced C++ Programming Styles and Idioms. Reading, MA: Addison­

Wesley. 

Coplien, J.O. (1997). Idioms and Patterns as Architectural Literature. IEEE Software: Special 

Issue on Objects, Patterns and Architectures. 

Fayad, M., Tsai, W. and Fulghum, M. (1996). Transition to Object-Oriented Software 

Development. Communications of the ACM, 39(2): 108-121. 

Fields, D.K. and Kolb, M.A (2000). Web Development with Java Server Pages. Greenwich, CT: 

Manning Publication. 

Florijn, G., Meijers, M. and Winsen, P.v (1997). Tool Support for Object-Oriented Patterns. In 

Proceedings of European Conference on Object-Oriented Programming (ECOOP '97). Finland. 

Fowler, M. (1996). Analysis Patterns: Reusable Object Models. Reading, MA: Addison-Wesley. 

Gamma, E. (1991). Object-Oriented Software Development based on ET++: Design Patterns, 

Class Library, Tools. Ph.D. Thesis. University of Zurich. 

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns: Elements of 

Reusable Object-Oriented Software. Reading, MA: Addison~Wesley. 

Goldfedder, B. and Rising, L. (1996). A Training Experience with Patterns. Communications of 

the ACM, 39(10): 60-64. 

100 

Univ
ers

iti 
Mala

ya



Hedin, G., Ive, A., Mughal, K., Norrnark, K., Ron, H. and Osterbye, K. (1998). Tools for Design 

Patterns. NWPER '98 Subworkshop on Tools for Software Architecture. 

Helm, R. (1995). Patterns in Practice. In Proceedings of 101h0bject-Oriented Programming, 

Systems, Languages and Applications (OOPSLA '95). Austin, Texas. 

Huang, J. Q. (1996). Formal Specification and Tool Support for 00 Design Patterns. Master's 

Thesis. University of Waterloo. 

Jacobson, I., Griss, M. and Jonsson, P. (1997). Software Reuse: Architecture Process and 

Organization for Business Success. Reading, MA: Addison-Wesley. 

Johnson, R. E. (1992). Documenting Frameworks Using Patterns. In Proceedings of Object­

Oriented Programming, Systems, Languages and Applications (OOPSLA '91). Vancouver BC, 

Canada. 

Keller, R.K. and Lajoie, R. (1994). Design and Reuse in Object-oriented Frameworks: Patterns, 

Contracts and Motifs in Concert. In Proceedings of 62nd Congress of the Association 

Canadienne Franr;:aise pour l 'Avancement des Sciences. Montreal, Canada. 

Levine, D.L. and Schmidt, D.C. (1999). Introduction to Patterns and Frameworks. Notes for 

Object-Oriented for Software Development Lab. Washington University. 

Mcilroy, D. (1969). Mass Produced Software Components. NATO Conference on Software 

Engineering, p.138-155. 

Mendoza, D. and Hall, M. (1998). S.C. UP.E. (Santa Clara University Pattern Editor). Master's 

Thesis. Santa Clara University. 

Nakhimovsky, A. and Myers, T. (1999). Professional Java XML Programming with Servlets and 

JSP. Chicago, Illinois: Wrox Press. 

Pree, W. (1994). Design Patterns for Object-Oriented Software Development. Reading, MA: 

Addison-Wesley. 

101 

Univ
ers

iti 
Mala

ya



Preece, J., Rogers, Y., Sharp, H. , Benyon, D., Holland and S., Carey, T. (1996). Human­

Computer Interaction. Wokingham: Addison-Wesley. 

Quatrani, T. (2000). Visual Modeling with Rational Rose 2000 and UML . New York: Addison­

Wesley. 

Schmid, H. A. (1995). Creating the Architecture of a Manufacturing Framework by Design 

Patterns. In Proceedings of JO'hObject-Oriented Programming, Systems, Languages and 

Applications (OOPSLA '95) . Austin, Texas. 

Schmidt, D.C. and Stephenson, P. (1995). Experiences Using Design Patterns to Evolve System 

Software Across Diverse OS Platform. In Proceedings of the 9'h European Conference Objet­

Oriented Programming (ECOOP '95). Denmark. 

Schmidt, D.C. (1995). Using Design Patterns to Develop Reusable Object-Oriented 

Communication Software. Communications of the ACM, 38(10): 65-74. 

Schmidt, D.C. (1995b). A System of Reusable Design Patterns for Communication Software. In 

The Theory and Practice of Object System, Special Issue on Patterns and Pattern Language, 

S.P. Berczuk edn. New York: John Wiley & Sons. 

Schmidt, D.C. (1996). Using Design Patterns to Guide the Development of Reusable Object­

Oriented Software. ACM Computing Surveys (CSUR), 28(4es). 

Sommerville, I. (2001). Software Engineering, 6th edn. Harlow, England: Addison-Wesley. 

Sun Mircosystems (2001). Java™ 2 Platform Enterprise Edition Documentation . Available from 

Sun Mircosystems Homepage. URL: http://www.java.sun.com,. 

Tao, Y. (2000) . Teaching Software Tools via Design Patterns. In Proceedings of the 

Australasian Computing Education (ACM) Conference. Australia, Melbourne. 

UML ( 2001 ). Unified Modeling Language Documentation. Available from R a tiona! Software 

Corporation Homepage. URL: http://www.rational.com/uml. 

Wild, F. ( 1996). Instantiating Code Patterns: Patterns Applied to Software Development, Dr. 

Dobb 's Journal: Patterns & Software Design , June . 

102 

Univ
ers

iti 
Mala

ya




