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RETINAL VESSEL SEGMENTATION IN FUNDUS IMAGES USING DEEP 

LEARNING 

ABSTRACT 

Retinal vessel is the only microvascular system that can be viewed from digital fundus 

cameras directly and non-invasively, they are closely relative with human blood 

circulation, so the appearance and change of retinal blood vessels can reflect 

cardiovascular and cerebrovascular diseases, such as diabetic and hypertensions. In 

practice, observing retinal blood vessels has become a crucial step for ophthalmologist to 

make diagnosis and conduct timely treatment. However, retinal vessels in fundus images 

are difficult, tedious and time-consuming to recognize for ophthalmologist. Hence, 

computer-aided diagnosis was introduced to make automatic retinal vessels segmentation. 

Deep learning is used as it is a promising technique since its high efficiency and accuracy. 

In this project, we proposed a new method to conduct automatic retinal vessel 

segmentation. Firstly, we enhanced the quality of raw fundus images by using image 

processing technique, which the pre-processed images present a better quality than 

before. Secondly, we proposed a deep-learning based model to make predictions. Inspired 

by U-net and ensemble learning, our model is comprised of two cascaded U-shaped 

networks, and each of the sub-network is composed of CBR (Conv., BatchNormalization, 

ReLU) blocks. The second sub-network aims to fine-tune coarse vessel maps produced 

by the first sub-network, since it learns features from combination of coarse vessel map 

and raw input. To enlarge the receptive field, dilation convolution was adopted with 

whose dilated rates arranged deliberately to make dense sampling. In addition, residual 

learning was adopted to ease the optimization and sufficient skip connections were added 

between the two sub-networks to make full use of feature maps. Finally, three public 

databases were chosen to verify the proposed model and compared its performance with 

other recent publications. The model produced an accuracy of 0.9552/0.9699/0.9642, an 
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AU_ROC of 0.9787/9852/9846, a sensitivity of 0.8211/0.8466/0.8395 on DRIVE, 

STARE and CHASE_DB1 databases, respectively. Cross-validation was also conducted 

to evaluate the generation capacity of the proposed model. In these intensive experiments, 

the proposed model can produce a good performance after training, so it can provide a 

good reference for ophthalmologist to perform diagnosis. 

Keywords: Retinal vessel segmentation, fundus images, deep learning, convolutional 

neural network, computer-aided diagnosis. 
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SEGMENSI VESEL RETINAL DALAM GAMBAR FUNDUS MENGGUNAKAN 

PEMBELAJARAN DEEP  

ABSTRAK 

Saluran retina adalah satu-satunya sistem mikrovaskular yang dapat dilihat dari kamera 

digital fundus secara langsung dan tidak invasif, ia sangat berkaitan dengan peredaran 

darah manusia, jadi penampilan dan perubahan saluran darah retina dapat mencerminkan 

penyakit kardiovaskular dan serebrovaskular, seperti diabetes dan hipertensi. Dalam 

praktiknya, memerhatikan saluran darah retina telah menjadi langkah penting bagi pakar 

oftalmologi untuk membuat diagnosis dan melakukan rawatan tepat pada masanya. 

Walau bagaimanapun, kapal retina dalam gambar fundus sukar, membosankan dan 

memakan masa untuk dikenali oleh pakar oftalmologi. Oleh itu, diagnosis berbantukan 

komputer diperkenalkan untuk membuat segmentasi kapal retina automatik. 

Pembelajaran mendalam digunakan kerana merupakan teknik yang menjanjikan kerana 

kecekapan dan ketepatannya yang tinggi. Dalam projek ini, kami mencadangkan kaedah 

baru untuk melakukan segmentasi kapal retina automatik. Pertama, kami meningkatkan 

kualiti gambar fundus mentah dengan menggunakan teknik pemprosesan gambar, yang 

mana gambar yang diproses sebelumnya mempunyai kualiti yang lebih baik daripada 

sebelumnya. Kedua, kami mencadangkan model berasaskan pembelajaran mendalam 

untuk membuat ramalan. Diilhamkan oleh pembelajaran U-net dan ensemble, model kami 

terdiri daripada dua rangkaian berbentuk U lata, dan masing-masing sub-rangkaian terdiri 

dari blok CBR (Konv., BatchNormalization, ReLU). Sub-rangkaian kedua bertujuan 

untuk menyempurnakan peta kapal kasar yang dihasilkan oleh sub-rangkaian pertama, 

kerana ia mempelajari ciri-ciri dari kombinasi peta kapal kasar dan input mentah. Untuk 

memperbesar bidang penerimaan, konvolusi pelebaran diadopsi dengan kadar dilatasi 

yang disusun dengan sengaja untuk membuat persampelan padat. Di samping itu, 

pembelajaran sisa diadopsi untuk memudahkan pengoptimuman dan sambungan langkau 
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yang memadai ditambahkan di antara dua sub-jaringan untuk memanfaatkan peta ciri 

sepenuhnya. Akhirnya, tiga pangkalan data awam dipilih untuk mengesahkan model yang 

dicadangkan dan membandingkan prestasinya dengan penerbitan lain yang baru-baru ini. 

Model menghasilkan ketepatan 0.9552/0.9699/0.9642, AU_ROC 0.9787/9852/9846, 

kepekaan 0.8211/0.8466/0.8395 pada pangkalan data DRIVE, STARE dan 

CHASE_DB1. Pengesahan silang juga dilakukan untuk menilai kapasiti penjanaan model 

yang dicadangkan. Dalam eksperimen intensif ini, model yang dicadangkan dapat 

menghasilkan prestasi yang baik setelah latihan, sehingga dapat memberikan rujukan 

yang baik bagi pakar oftalmologi untuk melakukan diagnosis. 

Kata kunci: Segmentasi kapal retina, gambar fundus, pembelajaran mendalam, rangkaian 

saraf konvolusional, diagnosis berbantukan komputer. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Eye is one of the most important organs of human-beings since it provides sufficient 

environment information. Its health has a crucial effect on our life. 

As the most important part of eyes, fundus retina is the only deeper microvascular system 

that can be observed non-invasively from the digital fundus camera. Retina locates in the 

inner layer of the eyeball and it is the most sensitive area of visual information. Retinal 

fundus images can be acquired by a digital fundus camera attached with a low-power 

microscope. Pupil of the human eye is used as entry/exit point for fundus camera 

illumination and imaging light beams on the retina. Retinal fundus images can also be 

acquired by using Scanning Laser Ophthalmoscopy (SLO) (Webb & Hughes, 1981). The 

fundus image of the retina illustrates its structure such as retinal blood vessel tree, optic 

disk (OD), fovea, macula, and abnormal structures such as microaneurysms (MAs), 

haemorrhages, exudates, cotton wool spots, if exist (Franklin & Rajan, 2014). Figure 1.1 

presents 2 examples of retinal fundus images with structure annotations. Retinal blood 

vessel tree is composed of central retinal artery and vein, and their branches. Figure 1.1 

shows the annotated structure of retinal in a retinal fundus image from HRF dataset 

(Köhler et al., 2013) 
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Figure 1.1: Examples of retinal fundus images with annotations. Left: image form 
DRIVE (Staal, Abràmoff, Niemeijer, Viergever, & Van Ginneken, 2004) dataset, 
annotated by us. Right: image from IDRiD (Porwal et al., 2018), annotated by T. Li 
et al. (2021). 

Changes in the structure and morphology of retinal blood vessels are the most common 

form of fundus disease. Because the blood circulation of the retinal blood vessels is 

affected by the local tissues around it, many other cardiovascular and cerebrovascular 

diseases are often the cause of the structural variation of the retinal blood vessels in the 

human eye. For example, it is common that the lens of the fundus image is cloudy and 

the boundary is unclear for cataract patients, glaucoma patients may have symptoms such 

as optic atrophy and reduced visual field, atherosclerosis and cotton wool spots often 

exists in fundus images of hypertension patients, diabetic patients may have edema and 

hemorrhage in the retina, even new blood vessels in some severe cases. 

Since geometric characteristics of retinal vessels such as vessel diameter, branch angles, 

and branch lengths reflect clinical and pathological features such as hypertension, 

diabetes, and atherosclerosis (Fathi & Naghsh-Nilchi, 2013; Group, 1991; Kanski & 

Bowling, 2011). Retinal image assessment has been an indispensable step for 

identification of retinal pathology. Precise identification and diagnosis of eye 

abnormalities and their timely medication are vital in preventing blindness. 
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1.2 Problem statement 

Geometric characteristics of retinal blood vessels such as width, curve, and length reveal 

important healthy status of patients such as diabetic retinopathy (DR), diabetic 

maculopathy (MD) and hypertension. Traditionally, retinal blood vessels in fundus 

images are segmented by ophthalmologists manually, which is tedious and time-

consuming. At the same time, the segmentations of different experts maybe inconsistent 

since the complex image condition. Unsupervised methods such as matching filter 

methods, vascular tracing-based segmentation methods and model-based segmentation 

methods still need handcrafted features which limit their generalization capacity, and they 

do not produce satisfying performance since they cannot learn from existing ground truth.  

1.3 Objectives of research 

The objectives of this research are: 

1. To propose a model based on deep learning that can segment vessels in color 

fundus images with the help of image processing technique. 

2. To evaluate the performance and accuracy of the proposed model in fundus 

images. 

1.4 Scope of study 

The scope of this research is limited to the design of deep learning-based model and its 

implement, training and evaluation. To be specific, the model is based on convolutional 

neural networks (CNNs) and implemented using Python, it is cooperated with Google 

Tensorflow framework based on GPU. The analysis is based on recognition capacity for 

pixels in fundus images, several public databases are used in this project. 
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1.5 Thesis organization 

The thesis is organized as follows. Chapter 1 illustrates the background of this project, as 

well as the problem statement, project objectives and scope of research. Chapter 2 gives 

an overview of deep learning and a detailed literature review of retinal vessel 

segmentation. Chapter 3 indicates the research methods to conduct this task. Chapter 4 

presents the test results of the proposed method and result discussion. Chapter 5 concludes 

the whole thesis and points out possible future works for this project. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter presents an overview of deep learning, including learning types, basic terms, 

the history of deep learning and some prevalent models. In addition, this chapter also 

illustrates others researches about retinal vessel segmentation. It also introduces some 

prevalent software and hardware to implement the task. 

2.2 Overview of deep learning 

Deep learning is a sub-field of machine learning, which mainly uses hierarchical 

structured neural layers to translate input information into a meaningful output. Deep 

learning has been developed a rich family since 1990 (Schmidhuber, 2015), such as deep 

neural networks (DNNs) (Schmidhuber, 2015), auto-encoders (AEs) (G. E. Hinton & 

Salakhutdinov, 2006) and stacked auto-encoders (SAEs) (Vincent et al., 2010) neural 

networks, deep believe network (DBNs) (Bengio, Lamblin, Popovici, & Larochelle, 

2007; G. E. Hinton, Osindero, & Teh, 2006), restricted Boltzmann machines (RBMs) (G. 

Hinton, 2010), convolution neural networks (CNNs) (LeCun et al., 1990), recurrent 

neural networks (RNNs) (Bengio, Simard, & Frasconi, 1994; Hochreiter & Schmidhuber, 

1997). 

Deep learning is categorized into supervised learning and unsupervised learning. In 

supervised learning, a model is trained to learn features from input and produces a result 

that is desired to equal to corresponding label pair of that input. While in unsupervised 

learning, we train a model with only input data and do not feed corresponding label pair 

to it. Generally, AEs, SAEs, DBNs and RBMs are categorized as unsupervised learning, 

while DNNs, CNN and RNNs are regarded as supervised learning. 
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In this section, we will discuss the most widely used CNNs architectures for image 

computer vision tasks. 

2.2.1 Convolutional neural networks (CNNs) 

Convolutional Neural Networks (CNNs) originate from multi-layered perceptrons 

(MLPs), and have been widely used for image processing such as classification, 

segmentation and localization. Hubel and Wiesel (1968) conducted a first experiment 

based on CNN, which indicated that cells in cat's visual cortex were responsible for 

detecting light in corresponding receptive fields. LeCun et al. (1990) proposed another 

CNN based network that recognized handwritten digits. The network was comprised of 

convolution operation and pooling operation, the network was trained by using back-

propagation algorithm. Later, LeCun, Bottou, Bengio, and Haffner (1998) proposed the 

LeNet-5 for document recognition. However, these architectures were not widely used 

since the lack of training data and computation power at that time. Krizhevsky, Sutskever, 

and Hinton (2012) proposed a powerful deep CNN for image classification, called 

AlexNet. The model showed significant improvement and outperformed all existing 

methods, thus won the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 

(Deng et al., 2009). AlexNet has a deeper architecture than LeNet-5 and utilizes ReLU 

function as activation function. Figure 2.1 and Figure 2.2 show the architecture of LeNet-

5 and AlexNet, respectively. 

 
Figure 2.1: Architecture of LeNet-5 (LeCun et al., 1998). C: convolution layer, S: 

sub-sampling layer, F: fully connected layer. 
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Figure 2.2: Architecture of AlexNet (Krizhevsky et al., 2012). 

Encouraged by AlexNet, a large amount of research has been explored based on CNN 

architectures. Several applications based deeper architectures were proposed to improve 

the performance. VGGNet (Simonyan & Zisserman, 2014) was the first to explore much 

deeper networks which stacked small, fixed sized kernels in each convolutional layer. 

Simonyan and Zisserman (2014) proposed deeper CNNs with different number of 

convolution layers, such as 13, 16 and 19. Finally, VGG19 with 19 convolutional layers 

won the ImageNet challenge of 2014. Szegedy et al. (2015) introduced GoogleNet which 

contained 22 layers and adopted Inception module (M. Lin, Chen, & Yan, 2013).  

2.2.1.1 CNN architecture components 

A CNN is comprised of hierarchical structured layers with optimized parameters to 

conduct classification or regression task, here we will interpret main components in 

CNNs. 

(a) Convolutional layer 

The convolutional layer is the most important layer in CNNs that extracts features from 

input data. The convolution layer contains several stacked convolution kernels to conduct 

convolution operation (see Figure 2.3). In convolution operation, these convolution 

kernels move from left to right and from up to down to learn features in special regions, 

which are referred to as receptive field. These special regions share kernels with each 

other, which is known as weight sharing. Weight sharing can reduce the complexity of 
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the model and make training process easier. Mathematically, the feature map z generated 

by convolution kernel can be expressed as: 

 z = W ∗ x + b (2.1) 

where x is the input image, W is the convolution kernel, while b is the bias for the 

convolution layer. 

 
Figure 2.3: Convolution operation in convolutional layer. Stride=1 and assume 

bias=0. 

(b) Batch normalization 

The input or feature maps generated by convolutional layer may vary greatly, so for large 

or small values sent to activation function they face a problem of vanishing/exploding 

gradients, which hamper the training process (Bengio et al., 1994; Glorot & Bengio, 

2010). To address this problem, batch normalization (Ioffe & Szegedy, 2015) was 

proposed to accelerate the training process, which scaled the input of activation function 

and reduced internal covariate shift by applying normalization operation to each mini-

batch. Generally, batch normalization is performed before activation function, but the 

function can also be used after activation function based on application.  

(c) Activation function 

Activation function are non-linear functions that map inputs into outputs non-linearly, 

they are applied to improve the feature representation ability. It often follows 

convolutional layers and uses feature maps as input in neural networks. Sigmoid function 
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(Mhaskar & Micchelli, 1994) is a prevalent alternative for activation function, which is 

defined as: 

 𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥
 (2.2) 

where x is the input and y represents the output. The sigmoid function faces the vanishing 

gradient problem for very large or very small input. 

ReLU (Nair & Hinton, 2010) is another frequently used activation function, which 

preserves the positive part in the feature maps and prunes the negative part to 0. It is 

expressed as:  

 y = ReLU(x) = max⁡(x, 0) (2.3) 

where x is the input of ReLU function and y represents its output. ReLU can alleviate the 

problem of vanishing gradient since its gradient is 1 when the input is positive, no matter 

how large it is. 

However, when the input is negative, the output of ReLU and its gradient is always 

assigned to 0. It does reduce over-fitting, but it also obstacles CNNs to learn in some 

cases because 0 means disconnection of neurons. LReLU was proposed to address the 

problem of zero gradient when the input is negative for ReLU function (Maas, Hannun, 

& Ng, 2013). LReLU preserves the negative part by scaling it in a ratio λ (range from 0 

to 1) as well as preserves the positive part completely. It is expressed as: 

 y = LReLU(x) = max(x, 0) +λmin⁡(0, x) (2.4) 

when the input is negative, both output and gradient are non-zero value. 

Softmax function is able to produce a normalized probability distribution of input, and it 

is often used as the last activation in CNNs for K-classes classification task. It is expressed 

as:  
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 𝑦(𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝐾
𝑖=1

 (2.5) 

where 𝑥 is input vector with K-dimension, 𝑥𝑖 is its components.⁡𝑦(𝑥)𝑖 is the output that 

represents the probability of the input vector to be classified into the 𝑖𝑡ℎ class. 

(d) Pooling layer 

The feature map produced by convolutional layer records position of pixels precisely, so 

it is very sensitive to the location of features, which means a small movement of the 

feature position, such as rotation, zoom and shift, will cause a different map, thus 

decreases the robustness of CNNs. Considering this, pooling layer is applied to CNNs 

and inserted after convolutional layer. Pooling layers conduct pooling operation, which 

can reduce specific feature positioning reliance and increase the shift-invariance of 

CNNs. At the same time, pooling operation can also decrease the computation burden by 

reducing the resolution of feature maps. 

Pooling operation can be divided as max pooling (Boureau, Ponce, & LeCun, 2010), 

average pooling (T. Wang, Wu, Coates, & Ng, 2012) and sum pooling. Figure 2.4 shows 

pooling operations: a sliding window is placed upon feature maps, then the max value, 

average value or sum value in this window is calculated as output according to the pooling 

type. Specially, if the size of pooling window equals to that of feature map, it is referred 

to as global pooling, otherwise it is local/regional pooling.  
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Figure 2.4: Pooling operations, with 2*2 filter and stride=2. 

(e) Fully connected layer 

Fully connected layers (FCs) are flattened layers like MLP. Each neuron in fully 

connected layer has connection with all the neurons in previous layer, then all activations 

can be computed with matrix multiplication followed by biases.  

2.2.1.2 Loss function  

The loss function is used to evaluate the difference between predicted result and desired 

result. An appropriate loss function can measure the difference between result and label 

properly and guide a fast and correct training process. Here we introduce some popular 

loss functions that are widely used in CNN architectures. 

Cross-entropy function loss is the mostly used in multi-classes classification task. It is 

given as:: 

 ℒ = −∑ 𝑐𝑖log⁡(𝑝𝑖)
𝑀
𝑖=1  (2.6) 

where M is the number of classes, 𝑐𝑖 is the practical label of an input belongs to 𝑖𝑡ℎ class 

so it is 0 or 1, 𝑝𝑖 is the probability of the input predicted by networks.  

Cross-entropy can also be used in binary classification task, then Softmax function is 

degraded to sigmoid function. The binary cross-entropy loss function is expressed as: 

 ℒ = −(ylog(p) + (1 − y)log⁡(1 − p)) (2.7) 

where y is ground truth and p is predicted value. 

Dice loss is widely adopted in image segmentation tasks. It is represented as: 

 𝐷𝑖𝑐𝑒 =
2|𝐺𝑇∩𝑆𝑅|

|𝐺𝑇|+|𝑆𝑅|
 (2.8) 
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where |𝐺𝑇|  represents the ground truth magnitude while |𝑆𝑅|  represents the 

segmentation result magnitude, |𝐺𝑇 ∩ 𝑆𝑅| represents the common elements between 𝐺𝑇 

and 𝑆𝑅. 

2.2.2 Fully convolutional networks (FCNs) 

In image segmentation task, we need to predict each pixel in an image using contextual 

information, however, traditional CNNs predict the center pixel of an image or image 

patch once a time, so it is slow and heavy computation burden. Long, Shelhamer, and 

Darrell (2015) proposed fully convolutional networks (FCNs) to make dense prediction. 

They replaced fully connected layer in CNNs by up-sampling layers, then the feature 

maps were resized to the same size with the input images by up-sampling. The proposed 

FCN architecture is shown in Figure 2.5. FCNs are able to predict each pixel in an image 

or image patch, so it is more suitable and fast for image segmentation task than traditional 

CNNs.  

 
Figure 2.5: Architecture of a FCN (Long et al., 2015). 

2.2.3 U-net 

Ronneberger, Fischer, and Brox (2015) proposed U-net which has symmetrical encoder-

decoder structure and skip connections from encoding path to decoding path. In the U-

net, Features were extracted in encoder and images were reconstructed in decoder. Skip 

connections sent low level feature maps generated in encoder to decoder directly. Since 

low-level feature maps contained local information while high-level feature maps 
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contained global information, the proposed U-net integrated low-level and high-level 

feature map and thus made better prediction. Figure 2.6 shows the architecture of U-net. 

 
Figure 2.6: Architecture of U-net (Ronneberger et al., 2015). 

2.3 Retinal vessel segmentation 

We need to assign a label, that is, vessel or non-vessel, for each pixel in the field of view 

(FOV) of retinal fundus images. Initially, ophthalmologist would manually segment 

vessel, but that is time-consuming and tedious, so computer-assist automatic 

segmentation came into being. Earlier, unsupervised methods are the most common 

approach for automatically segments the retinal vessels, which do not rely on any 

annotation for segmentation (M. M. Fraz et al., 2012). These methods are roughly divided 

into matching filter (Al-Rawi, Qutaishat, & Arrar, 2007), vascular tracing based 

segmentation (Yin, Adel, & Bourennane, 2012) and model-based segmentation methods 

(Kaba, Salazar-Gonzalez, Li, Liu, & Serag, 2013). Unsupervised methods show some 

defects in their performance because they cannot benefit from the hand-labelled ground 

truth. 

Later, supervised models were introduced into this task. Supervised models retinal vessel 

segmentation in two stages: feature extraction and pixels classification. Features can be 

further divided into handcrafted features or automatically learned features. In machine 
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learning, the process of feature extraction from fundus images is manual, and some typical 

classifiers are adopted, such as k-nearest neighbour classifier (KNN) (Staal et al., 2004) 

and support vector machine (SVM) (You, Peng, Yuan, Cheung, & Lei, 2011). However, 

selecting features manually lacks of generalization ability and may miss some useful 

patterns (Mo & Zhang, 2017). 

Currently, deep learning, especially CNNs, has gained much attention for images analysis 

(Litjens et al., 2017; Pouyanfar et al., 2018). Deep learning methods learn features 

automatically by using massive data without human inference. They have better 

generalization ability and recognition capability because they can learn different level 

patterns automatically, thus they are not application specific. In this task, many 

researchers have proposed their networks to segment retinal vessels. 

Khalaf, Yassine, and Fahmy (2016) constructed a CNN with 7 layers. They divided pixels 

in an image into 3 classes: background, large vessel and small vessel to reduce the intra-

classes variance. They extracted green channel of images and applied adaptive histogram 

equalization (AHE) and top-hat filtering to green channel in pre-processing phase. The 

green channel and AHE increased image contrast and suppressed noise, and top-hat 

filtering enhanced vessels in training images. 

Oliveira, Pereira, and Silva (2018) proposed an FCN and added skip connection to 

propagate features from shallow layer to deeper layer. They also explored the multiscale 

nature of the vascular system by using stationary wavelet transform (SWT) which added 

extra channels to input. Their result illustrated that deep learning methods can benefit 

from domain knowledge.  

Z. Jiang, Zhang, Wang, and Ko (2018) used a network based on the fully convolutional 

version of AlexNet. In pre-processing phase, they replaced the black ring in fundus 
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images and refilled these areas with average value from FOV, then they applied Gaussian 

smooth to reduce the discontinuity between FOV and the replaced region. After they 

performed contrast enhancement and placed a black ring back again to reduce training 

complexity. They extracted image patches and enlarged it to magnify the details. The 

segmented vessels were thicker than ground truth, so Z. Jiang et al. (2018) applied a 9*9 

filter to refine the result and reduce noise in post-processing phase. 

Since the consecutive down-sampling operations in encoder lead to loss of information, 

which is critical to determine vessel boundaries and thin vessels. Y. Luo, Cheng, and 

Yang (2016) proposed a size-invariant fully convolutional neural network (SIFCN) to 

reduce its effect. They hold the size of feature maps in each layer by padding and 

assigning strides and thus reduces loss of information.  

Zhang and Chung (2018) adopted a U-shaped network with long-term and short-term 

skip-connection. They regarded retinal vessel segmentation as multi-class classification 

task and introduced an edge-aware mechanism. They divided pixels into 5 classes: 

background, thick vessels, thin vessels, background near thick vessels and background 

near thin vessels. The network can pay more attention to the boundary areas of vessels in 

this way. They leveraged deep supervision to ease optimization. 

Y. Jiang, Tan, Peng, and Zhang (2019) proposed a U-shaped network integrated residual 

block with dilated convolution for retinal vessel segmentation. They used three residual 

sub-blocks to construct dilated convolution block and replaced several regular 

convolution blocks in U-net by it. They arranged the dilated convolution block with 

different dilated rates deliberately to obtain dense sampling of input and thus avoid 

chessboard effect. They introduced multi-scale information fusion module to capture 

different sized feature maps, where they connected several depthwise separable 
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convolution parallelly (Howard et al., 2017) to reduce the computation cost and number 

of parameters. 

Mou et al. (2019) proposed a dense dilated U-net which used residual block as building 

block to extract image features. They added dense dilated blocks between encoder and 

decoder to compute an initial map of vessels. They fused multi-level feature maps in 

decoder to generate a coarse segmentation and adopted multi-level dice loss to train the 

network. Finally, they introduced probability regularized walk (PRW) algorithm to 

reconnect fractured vessels. PRW is an extension of random walk algorithm on 

probability map. 

Attention mechanism (Vaswani et al., 2017) has been applied to locate region of interest 

(ROI) and strengthen feature representations in retinal vessel segmentation. Lian et al. 

(2019); Z. Luo et al. (2019); Lv, Ma, Li, and Liu (2020) made attention masks manually 

with the same size of original images and multiplied it by final feature maps in element-

wise. Lian et al. (2019); Z. Luo et al. (2019) assigned elements as 1 in FOV and 0 in other 

region, while Lv et al. (2020) assigned θrange from 0 to 1 for pixels outside the FOV. 

X. Li, Jiang, Li, and Yin (2020); B. Wang et al. (2020) designed attention modules to 

strengthen feature representations. The proposed modules took intermediate feature maps 

as input and generated masks by a set of element-wise addition and multiplication of 

feature maps. The attention matrixes were learned by networks instead of assigned by 

experts. B. Wang et al. (2020) also introduced a structure loss by adding spatial weights 

to cross-entropy loss to guide the network to focus more on the thin vessels and 

boundaries. 

Inspired by U-net and feature pyramid network (T.-Y. Lin et al., 2017), Liu et al. (2021) 

proposed a feature pyramid U-net which adopted U-net as backbone and added two extra 
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feature pyramid pathways. The feature pyramid pathways are used to extract multi-level 

features. Their proposed network can reduce the effect of optic discs and capture more 

details. 

Many researchers had found the limited prediction capability of a single model, so they 

proposed multi-model networks for stronger prediction ability. A simple U-Net proposed 

in (Yan, Yang, & Cheng, 2018) could not performed well, therefore a three stage 

segmentation network is proposed for retinal vessels using three sub-networks (Yan, 

Yang, & Cheng, 2019). The segmentation of the whole vessel tree was divided into three 

sub-tasks: thick vessel segmentation using FCN, thin vessel segmentation using U-net 

and fusion of segmentations. The proposed three-stage segmentation can be regarded as 

coarse-and-fine segmentation because it separated thick and thin vessels separately. 

More researchers proposed coarse-to-fine segmentation by cascading several sub-

networks. The following sub-network can inherit the learning experiences of previous 

sub-models (Budak, Cömert, Çıbuk, & Şengür, 2020; Francia, Pedraza, Aceves, & Tovar-

Arriaga, 2020; Hu et al., 2019; L. Li, Verma, Nakashima, Nagahara, & Kawasaki, 2020; 

K. Wang, Zhang, Huang, Wang, & Chen, 2020; Y. Wu, Xia, Song, Zhang, & Cai, 2020; 

Xia, Zhuge, & Li, 2018). Generally, they added intra- and inter- skip connections to send 

low-level feature maps and learned knowledge to deeper layers and sub-networks. The 

followed sub-network segmented vessels coarsely and the following sub-network refined 

vessel maps. The following sub-model used segmented result of previous sub-models and 

original images as input. Therefore, it can learn correct knowledge that had been learned 

and not get stuck into incorrected knowledge. Y. Wu et al. (2020) added an auxiliary layer 

to the followed network to get an auxiliary loss, so their model was trained by main 

supervision and auxiliary supervision. 
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GAN (Goodfellow et al., 2014) is a type of deep unsupervised learning model, composed 

of a generator and a discriminator elements. C. Wu, Zou, and Yang (2019) adopted U-net 

as generator and improved it by dense block. Additionally, they introduced attention gate 

to each block in decoder for focusing on target structure. They used a CNN as 

discriminator and inserted several dense blocks to reuses features. Park, Choi, and Lee 

(2020) chained two U-nets in generator and inserted multi-kernel pooling block between 

these 2 U-nets to support the scale-invariance. The proposed M-GAN used residual 

convolution block as building block in both generator and discriminator. They utilized 

automatic color equalization (ACE) to enhance images in pre-processing phase with 

Lanczos resampling method to smooth the vessel branches and reduce false negatives in 

post-processing phase. 

Table 2.1 summarizes the existing methods briefly. 

Table 2.1: Overview of papers for retinal vessel segmentation. 

Reference Method Remarks 
Al-Rawi et al. (2007) Unsupervised 

method 

Matching filter 
Yin et al. (2012) Vascular tracing based segmentation 
Kaba et al. (2013) Model based segmentation 
Staal et al. (2004) Machine 

learning 
KNN as classifier 

You et al. (2011) Used SVM as classifier 

Khalaf et al. (2016) CNN 
3-class classification, grayscale conversation, 
adaptive histogram equalization and top-hat 
filtering 

Oliveira et al. (2018) FCN Skip connection, stationary wavelet transform  

Z. Jiang et al. (2018) FCN 
Transfer learning, matching filter in post-
processing phase 

Y. Luo et al. (2016) FCN Size-invariant feature map to reduce of 
information 

Zhang and Chung 
(2018) U-net 

Long- and short-term skip connections, multi-
class classification, edge-aware mechanism. 
deep supervision 

Y. Jiang et al. (2019) U-net Residual learning, dilated convolution, depth-
wise separable convolution 
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Reference Method Remarks 

Mou et al. (2019) U-net 
Dense connection, dilated convolution, 
probability regularized walk algorithm, coarse-
to-fine segmentation 

Lv et al. (2020) U-net Attention mechanism to locate region of 
interest 

B. Wang et al. 
(2020) U-net Attention mechanism to strengthen features 

T.-Y. Lin et al. 
(2017) U-net Feature pyramid pathways 

Yan et al. (2019) U-net Three stage segmentation, coarse-and-fine 
segmentation 

Y. Wu et al. (2020) U-net Ensemble learning, deep supervision 
C. Wu et al. (2019) GAN U-net as generator, dense block, attention gate 

Park et al. (2020) GAN 
chained two U-nets in generator, residual 
learning, Lanczos resampling method in post 
processing phase 

 

2.4 Hardware and software 

To implement the model and complete the task, hardware and software are required. 

Central processing units (CPU) and graphics processing units (GPU) are the most 

common hardware to deploy deep learning models. GPUs are highly parallel computing 

engines, which can afford more execution threads than CPUs. With current hardware, 

deep learning on GPUs is generally faster than on CPUs. 

In addition to hardware, software is also necessary to implement various models. There 

are several open source software packages widely used in deep learning, which are: 

1. Tensorflow: developed by Google and widely used in industry. It provides C++ 

and Python interface. 

2. Pytorch: developed by Facebook. It can be regarded as a Python version of torch, 

which provides a Lua interface. 
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There are third-party packages written upon these frameworks, such as Keras and 

Lasagne. 

2.5 Summary 

This chapter provides an overview of deep learning, including some prevalent models 

used for image segmentation. It also reviewed some publications for the specific task, 

from the review we can see, CNNs were adopted to segment vessels in the earlier, then 

FCNs were introduced to this task to make dense predictions. Currently, U-net has gained 

much attention because their excellent performance, at the same time lots of researchers 

introduced various improvement methods to U-net, such as dilated convolution, residual 

learning and attention mechanism. Some researchers constructed multi-model networks 

to improve the performance, they connected several sub-networks serially or in parellel. 

Finally, we introduced hardware and software to implement and deploy deep learning 

models. 
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CHAPTER 3: METHODS 

3.1 Introduction 

This chapter illustrates the method used to segment retinal vessels, including the database, 

metrics to evaluate model performance, the image processing technique, the proposed 

model and its implementation details. 

3.2 Database 

For retinal vessel segmentation, DRIVE (Staal et al., 2004) and STARE (Soares, Leandro, 

Cesar, Jelinek, & Cree, 2006), CHASE_DB1 (Muhammad Moazam Fraz et al., 2012) and 

HRF (Köhler et al., 2013) are mostly used databases which are also publicly available.  

DRIVE (Digital Retinal Images for Vessel Extraction) database comes from the 

Netherlands-initiated DR screening project. It contains 40 images with a unified 

resolution of 584x565, and each image is color fundus image with three 8-bit channels. 

Each image is assigned a binary field of view (FOV) mask and ground truth (GT) with 

respect to manual annotations of 2 independent experts. Actually, these 40 images are 

selected from 400 diabetic subjects randomly, and 33 images are from healthy persons 

while other 7 images are from persons that has shown symptoms of early DR. Usually, 

the manual annotations of the first expert are used as ground truth to train networks while 

the annotations of the second expert are used to evaluate the performance of networks. 

The STARE (Structured Analysis of the Retina) database composes of 20 color fundus 

images with a unified resolution of 605x705. The first 10 images are pathological images 

while the last 10 images are healthy images. Each image is also assigned with manual 

annotations of two observers, but without any FOV mask. The performance of networks 

is usually evaluated by the manual segmentation of the first observer.  
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The CHASE_DB1 (Child Heart and Health Study in British) database is a subset of retinal 

images of multi-ethnic children. It is comprised of 28 color fundus images and each image 

has a resolution of 960x996. Each image is assigned with manually segmented 

annotations but without FOV mask. The training and testing data are not partitioned by 

experts, so the first 20 images are usually used for training while the last 8 images for 

testing of networks. Compared with images in DRIVE and STARE database, images of 

CHASE_DB1 has uneven background illumination, low contrast between background 

and vessels, and broader arterioles.  

ARIA (FARNELL, 2006; Farnell et al., 2008) has 143 images for vessel segmentation 

and is not split into training and test dataset. The images were captured at a resolution of 

768x584 pixels, and each image was annotated by two experts. 61 images were captured 

from healthy subjects, 59 from diabetic patients and 23 from patients with age-related 

macular degeneration. 

DRiDB (Prentašić et al., 2013) contains 50 colorful images with a uniformed resolution 

of 720x576 pixels and a 45° FOV. 36 images contain signs of the diabetic retinopathy 

and 14 images do not contain any signs of the diabetic retinopathy. 

In addition, Scanning Laser Ophthalmoscopy (SLO) (Webb & Hughes, 1981) technique 

can also be leveraged to capture retinal images, with the advantages of lower light 

exposure and better contrast (LaRocca, Nankivil, Farsiu, & Izatt, 2014). By the means of 

SLO, IOSTAR and RC-SLO datasets were established. IOSTAR dataset contains 30 

images with a uniformed resolution of 1024x1024 pixels and a 45° FOV. The RC-SLO 

dataset contains 40 images with a resolution of 360x320 pixels. Both IOSTAR and RS-

SLO datasets provide FOV masks and contain a ground truth of vessel trees for each 

image, but did not split samples into training and test dataset. 
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This project chose DRIVE, STARE and CHASE_DB1 to evaluate model performance. 

Since only DRIVE has FOV masks, we generated FOV masks for CHASE_DB1 and 

STARE database by using binary-threshold method. Figure 3.1 shows image samples and 

corresponding labels, masks from these databases. 

 

Figure 3.1: Image-label-mask show. 

3.3 Evaluation metrics 

Generally, pixels in FOV of fundus images are classified as vessel pixel (positive) or non-

vessel pixel (negative). To measure the identification of pixels, ground truth label is 

compared with pixel identification. On the basis, there are four basic pixel measures i.e., 

TP (true positives), FP (false positives), FN (false negatives), and TN (true negatives). 

Table 3.1 shows the measures of these elements through pixels. 
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Table 3.1: Pixel measures in vessel segmentation. 

Classification result 
Ground truth 

Vessel Non-vessel 

Segmentation result 
Vessel TP FP 

Non-vessel FN TN 

Several evaluation metrics are defined to evaluate the performance of segmentation 

networks. Some of the prevalent metrics are listed in Table 3.2. 

Table 3.2: Evaluation metrics for image segmentation. 

Matric Expression 

Sensitivity 𝑆𝑒𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 𝑆𝑝𝑒 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision 𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Accuracy 𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

F1-score 𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Meanwhile, AUC_ROC (the area under the ROC curve) and AUC_PR (the area under 

the PR curve) are available to evaluate the performance of the networks. The ROC curve 

illustrates the relationship between sensitivity and specificity by changing the threshold 

on the generated probability map image, while PR curve illustrates the relationship 

between precision and sensitivity. 

3.4 Image pre-processing 

The low quality of existing image samples hinders models to learn better feature 

representations. Image noise, uneven illumination, low contrast especially for thin vessels 

decrease the performance of proposed models. In this project, we applied some image 
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processing technique to enhance raw mages, which includes grayscale conversion, 

contrast limited adaptive histogram equalization and gamma correction. Finally, we 

normalize the images to adjust its variance and mean value. 

3.4.1 Grayscale conversion 

The original images from databases are colorful with low contrast, so we can use 

grayscale conversion to enhance the contrast and reduce computation burden of networks. 

Images can be converted to grayscale by combining pixel intensity of RGB channels: 

 grayscale = ⁡α ∗ R + β ∗ ⁡G + γ ∗ ⁡B (3.1) 

Here, we set 𝛼 = ⁡𝛾 = 0 while 𝛽 = 1, which means we just extracted green channel 

because it has the best contrast (as shown in Figure 3.2).  
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Figure 3.2: Images and their channel splits. From top to bottom: DRIVE, 
CHASE_DB1, STARE. 

3.4.2 Normalization 

We need to normalize images since they were captured at different time, different 

illumination and even by different devices, then there exists great variance in the 

grayscale distribution. Generally, min-max normalization and mean-standardization 

normalization. We adopted Mean-standardization in this experiment, which can be 

represented by: 

 𝐼 = ⁡
𝐼−⁡𝜎

𝜇
 (3.2) 

3.4.3 Contrast limited adaptive histogram equalization 

Histogram equalization (HE) is a common method used to enhance the contrast of image. 

It transforms grayscale of images by histogram of grayscale distribution. It adjusts 
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contrast of images based on the global image, so it cannot enhance local contrast 

efficiently. It shows unsatisfactory performance when there exist obviously dark regions. 

Adaptive histogram equalization (AHE) is improved based on histogram equalization. It 

split the whole image into several regions, then applies histogram equalization to each 

region. It can enhance contrast of images locally, but it also causes over amplification of 

noise, which leads to increase local contrast too much (Mosaic effect) and distortion of 

background. 

We applied contrast limited adaptive histogram equalization (CLAHE) in this experiment 

because CLAHE can increase contrast as well as alleviate Mosaic effect. As shown in 

Figure 3.3, we set a threshold (the horizontal line in Figure 3.3) to the cumulative 

distribution function of each region and then limit the local contrast. It cuts the histogram 

that exceeds the set height and distribute the upper area to the low-end gray distribution 

histogram.  

 

Figure 3.3: Contrast Limited Adaptive Histogram Equalization.  

3.4.4 Gamma correction 

Gamma correction is used to adjust the brightness of images. Pixel intensity is reflected 

by using a non-linear function, which is expressed: 

 𝐼 = ⁡ 𝐼𝛾 (3.3) 

where I is normalized pixel intensity. 
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Figure 3.4 indicates the result of image preprocessing techniques. 

 

Figure 3.4: Result of image preprocessing technique. From top to bottom: DRIVE, 
CHASE_DB1, STARE. From left to right: green channel, normalization, CLAHE 
and gamma correction. 

3.5 Data augmentation 

There are 40 images in DRIVE databases, 20 images in STARE database and 28 images 

in CHASE_DB1 database. It is not enough to train the model, so we adopted data 

augmentation method to enlarge databases. We flipped images horizontally or vertically 

and rotate them then we other seven times images, then we cropped images into image 

patches. 

3.6 Model architecture 

In this experiment, we chained 2 U-nets and added more skip-connections between these 

2 sub-networks to reuse low-level information. Figure 3.5 shows the architecture of our 
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model. The first network makes coarse prediction and the second network fine-tunes the 

coarse map to make fine segmentation. We generate first vessel maps using feature maps 

produced in the front network and send it to the second network together with original 

input, the vessel map produced in the second network is combined with the intermediate 

vessel map to generate the final vessel map. We added more skip connection between 

decoder of first sub-network and encoder of second sub-network to reuse features better.  

Each sub-network is composed of CBR (convolution-BatchNormolization-ReLU) block 

and residual-dilated-CBR block, whose architectures are shown in Figure 3.6. Residual 

learning could ease the optimization of network and improve its performance. In addition, 

we adopted dilated convolution and arranged dilation rate as 2 and 3 deliberately to avoid 

chessboard effect. The combination of dilated convolutions can enlarge the receptive field 

as well as making dense sampling. Figure 3.7 illustrates the effect of cascaded dilated 

convolutions. There are 3 convolution layers in each level totally, if we set all dilation 

rates as 1, which means no dilation, the receptive field is 7. If we set all dilation rates as 

2, the receptive field is enlarged but sparse sampling also appears, which is called as 

chessboard effect. If we set dilation rates as 1, 2 and 3, then the receptive field is enlarged 

to 14 and the sampling is still dense. 
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Figure 3.5: Architecture of segmentation model. 

 

Figure 3.6 Architecture of building blocks. (a): CBR block, (b): residual-dilated 
CBR block. 

 

Figure 3.7: Sampling of cascaded dilated convolution. d means dilation rate. 

Univ
ers

iti 
Mala

ya



 

46 

3.7 Loss and optimizer 

In this experiment, we adopted weighted binary cross-entropy loss function to alleviate 

the unbalance problem between classes. In addition, we added regularization term to 

reduce overfitting, so the final loss function can be expressed as: 

 ℒ = ⁡−(α ∗ ylog(p) + (1 − y) log(1 − p)) +⁡
𝜆

2𝑛
∑ ||𝑤||2 (3.4) 

where α is the weight coefficient for positive samples,⁡𝑤 represents weight factors and 𝜆 

is coefficient of regularization term. we set α = 2 and 𝜆 = 0.01 in the experiment. 

An appropriate optimizer could speed up the training process and reduce local optimal. 

We adopted Adam optimizer in this experiment, which can calculate adjustment of weight 

factors adaptively. The adjustment of weight factors by Adam optimizer is shown as: 

  𝑔 =⁡
1

𝑚
∇𝜃 ∑ℒ(f(𝑥𝑖, 𝜃), 𝑦𝑖) (3.5) 

 𝑠 = 𝜌1 ∗ 𝑠 + (1 − 𝜌1) ∗ 𝑔 (3.6) 

 𝑟 = ⁡𝜌2 ∗ 𝑟 + (1 − 𝜌2)𝑔
2 (3.7) 

 𝑠̂ = ⁡
𝑠

1−𝜌1∗𝑡
 (3.8) 

 𝑟̂ = ⁡
𝑟

𝜌2𝑡
 (3.9) 

 ∆𝜃 = ⁡−𝜂
𝑠̂

√𝑟̂+𝛿
 (3.10) 

 𝜃 = ⁡𝜃 +⁡∆𝜃 (3.11) 

where⁡𝜃 represents weight factors in neural network, 𝑚 is the number of samples, 𝑥𝑖 and 

f(𝑥𝑖, 𝜃)  represent input and outputs of model, 𝑦𝑖  represents ground truth. 𝑔  is local 
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gradient calculated by loss function ℒ, 𝑠, 𝑟 and 𝜂 are first moment estimate, second-raw 

moment estimate and learning rate respectively. 𝜌1  and 𝜌2  are hyper-parameters. In 

Adam optimizer, 𝜌1 = 1.0, 𝜌2 = 0.999, 𝜂 = 0.001, 𝛿 = ⁡10−8. 

3.8 Implementation details 

The experiment was implemented with Keras (Tensorflow as backend) in Google Colab. 

Images in DRIVE databases have been split into training samples or testing samples after 

download. In STARE database, we selected 15 images as training images and the rest 5 

images (the 1st, 9th, 12th, 17th, 18th images) as testing images. In CHASE_DB1 database, 

we chose the first 20 images as training images and the rest 8 images as testing images. 

We extracted 400,000 image patches from every database to train the network. All of 

these image patches were extracted randomly and were ensured that at least half of pixels 

in patches locate in FOV. In testing phase, the whole test images were split into patches 

in sequence with overlap, then we recomposed vessel maps after prediction. 

We adopted Adam optimizer to optimize the model and set a decayed learning rate. We 

set the initial learning rate as 0.0001 and decay it with a factor of 0.8 when the valid loss 

does not decrease after 3 epochs. We set batch size as 512 and reduce training time by 

using EarlyStopping method. 

3.9 Summary 

This chapter presents the method for retinal vessel segmentation. Firstly, we introduced 

databases used to do this experiment, then we introduced some metrics to evaluate the 

model performance. We conducted image preprocessing and data augmentation since the 

complex condition and limited number of fundus images. We proposed a cascaded U-net 

to learn features and segment retinal vessels, the model is composed of CBR and residual-

dilated CBR blocks. Finally, we showed our implementation details of this task. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter represents the test results of the proposed model on the forgoing databases. 

This chapter includes the characteristic curves in training phase, the predictions in testing 

samples and the performance of the model. At last, we compared our results with the-

state-of-the-art. 

4.2 Training process 

We conducted intensive experiments on these databases. Figure 4.1 indicates the accuracy 

and loss in training phase. It is obvious that the characteristic curves converge rapidly. 

 

Figure 4.1: Training curves in public databases. From top to bottom: CHASE_DB1, 
DRIVE, STARE. From left to right: loss, accuracy, AU_ROC. 

4.3 Overall performance 
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Figure 4.2, Figure 4.3 and Figure 4.4 indicate the overall segmentation results of part 

samples of the three databases. The overall segmentation results show an accurate 

segmentation and the segmented structure is completed. Thick vessels and most thin 

vessels can be recognized accurately. 

 

Figure 4.2: Retinal vessel segmentation examples for CHASE_DB1 database. (a): 
pre-processed images, (b): ground truth images, (c): segmentation results. 

Univ
ers

iti 
Mala

ya



 

50 

 

Figure 4.3: Retinal vessel segmentation examples for DRIVE database. (a): pre-
processed images, (b): ground truth images, (c): segmentation results. 

 

Figure 4.4: Retinal vessel segmentation examples for STARE database. (a): pre-
processed images, (b): ground truth images, (c): segmentation results. 
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4.4 Comparison with the state-of-art 

Figure 4.5 shows the Receiver Operating Characteristic curve (ROC) and Precision-

Recall curve (PR_curve) of the proposed model on the testing phase. Table 4.1 indicates 

the confusion matrix of the proposed method on three testing databases. 

 

Figure 4.5: ROC curve and PR curve on testing databases. From top to bottom: 
CHASE_DB1, DRIVE, STARE. From left to right: ROC curve, PR curve. 

Table 4.4, Table 4.3 and Table 4.4 list the performance evaluations of the proposed 

method and compare them with other recent publications. In the comparison, we can see 

that our proposed model can produce a good performance although not the best 

performance in all metrics. Most publications always obtain better performance in some 
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metrics instead of all metrics, because the metrics are correlated and traded off. In 

addition, we obtained 0.8928, 0.9094 and 0.9179 area under PR curve on CHASE_DB1, 

DRIVE, STARE databases, respectively. We do not list them in tables since most 

publications did not adopted this metrics. 

Table 4.1: Confusion matrix of proposed model on three databases. 

Prediction result 
Ground truth 

Vessel Non-vessel 

Prediction 
(DRIVE) 

Vessel 3860503 99991 

Non-vessel 103345 474304 

Prediction 
(STARE) 

Vessel 1352381 24452 

Non-vessel 21196 117026 

Prediction 
(CHASE_DB1) 

Vessel 4721480 112900 

Non-vessel 77608 405812 
 

Table 4.2: Performance comparison on DRIVE database. 

Methods 
Performance 

Pre Sen Spe Acc AUC F1_score 

Lv et al. (2020) / 0.7941 0.9798 0.9558 0.9847 0.8216 
Mishra, Chen, and Hu 
(2020) / 0.8916 0.9601 0.9540 0.9724 / 

X. Li et al. (2020) / 0.7921 0.9810 0.9568 0.9806 / 
Upadhyay, Agrawal, and 
Vashist (2021) 0.760 0.8840 0.9730 0.9660 0.980 0.817 

Liu et al. (2021) 0.8745 / / 0.9503 0.9650 0.7949 
Ours (2021) 0.8259 0.8211 0.9748 0.9552 0.9787 0.8235 

 

Table 4.3: Performance comparison on STARE database. 

Methods 
Performance 

Pre Sen Spe Acc AUC F1_score 

Lv et al. (2020) / 0.7598 0.9878 0.9640 0.9824 0.8142 

Mishra et al. (2020) / 0.8805 0.9651 0.9601 0.9763 / 
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Methods 
Performance 

Pre Sen Spe Acc AUC F1_score 
X. Li et al. (2020) / 0.8352 0.9823 0.9678 0.9875 / 

Upadhyay et al. (2021) 0.6800 0.8960 0.9630 0.9580 0.9820 0.7750 
Liu et al. (2021) 0.8525 / / 0.9686 0.9702 0.7817 

Ours (2021) 0.8272 0.8466 0.9822 0.9699 0.9852 0.8368 
 

Table 4.4: Performance comparison on CHASE_DB1 database. 

Methods 
Performance 

Pre Sen Spe Acc AUC F1_score 

Lv et al. (2020) / 0.8167 0.9704 0.9608 0.9865 0.7892 
B. Wang et al. (2020) / 0.8427 0.9836 0.9706 0.9824 0.8105 

Mishra et al. (2020) / 0.8771 0.9634 0.9571 0.9742 / 
X. Li et al. (2020) / 0.7818 0.9819 0.9635 0.9810 / 

Liu et al. (2021) 0.7372 / / 0.9585 0.9594 0.6976 
Ours (2021) 0.7823 0.8395 0.9766 0.9642 0.9846 0.8099 

 

To verify the generalization capacity of our proposed model, we also conducted cross-

validation on these databases, which means train the model in one database while test it 

in other databases without retraining. Table 4.5, Table 4.6 and Table 4.7 show the result 

of cross-validation on three databases. From the tables we can see the proposed model 

can still make good prediction on DRIVE/ STARE database although there is slightly 

performance degradation between DRIVE and STARE databases. However, the proposed 

model obtained a very bad result in cross-validation between CHASE_DB1 and 

DRIVE/STARE databases, since images in CHASE_DB1 database have quite different 

background condition. They have more background noise than images in DRIVE/STARE 

databases, as shown in Figure 3.1, Figure 3.2 and Figure 3.3. 
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We suppose the inconsistent distribution of data (pixel intensity) is the main cause of 

performance degradation in cross-validation between DRIVE and STARE, but we do not 

regard it as the main cause of that between CHASE_DB1 and STARE/DRIVE. Figure 

4.6 indicates the pixel histogram of images shown in Figure 3.1 (only in FOV), from 

where we can see that the distribution of pixel intensity between DRIVE and STARE 

database are different, but there is only a slight performance degradation between these 

two databases (Table 4.5, Table 4.6). The pixel distribution between STARE and 

CHASE_DB1 are similar, but there still exists great performance degradation. We 

attribute the performance degradation between CHASE_DB1 and STARE/DRIVE to the 

different background conditions. Images in CHASE_DB1 have more background noise 

than images in DRIVE/STARE databases, which can be seen in Figure 3.1, Figure 3.2 

and Figure 3.3. 

 

Figure 4.6 Pixel histogram of image samples from three databases. 
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Table 4.5: Cross-validation on DRIVE database. 

Train dataset Methods Pre Sen Spe Acc AUC 
F1-
score 

STARE 

Mo and Zhang 
(2017) / 0.7412 0.9799 0.9492 0.9653 / 

Oliveira et al. 
(2018) / 0.6706 0.9916 0.9505 0.9748 / 

Guo et al. 
(2019) / 0.7446 0.9784 0.9502 0.9709 / 

Yan et al. 
(2019) / 0.7443 0.9814 0.9509 0.9720 / 

Y. Wu et al. 
(2020) / 0.7187 0.9881 0.9538 0.9761 / 

Zhuo, Huang, 
Lu, Pan, and 
Feng (2020) 

/ / / 0.9499 / 0.8010 

Liu et al. 
(2021) 0.8149 / / 0.9359 0.9392 0.6962 

Ours (2021) 0.8823 0.7315 0.9858 0.9534 0.9687 0.7998 

CHASE_DB1 

Mo and Zhang 
(2017) / 0.7315 0.9778 0.9460 0.9650 / 

Guo et al. 
(2019) / 0.6960 0.9699 0.9377 0.9523 / 

Liu et al. 
(2021) 0.7061 / / 0.9222 0.9010 0.6454 

Ours (2021) 0.9135 0.5034 0.9930 0.9307 0.9453 0.6490 
 

Table 4.6: Cross-validation on STARE database. 

Train dataset Methods Pre Sen Spe Acc AUC 
F1-
score 

DRIVE 

Mo and 
Zhang (2017) / 0.7009 0.9843 0.9570 0.9751 / 

Oliveira et al. 
(2018) / 0.8453 0.9762 0.9597 0.9846 / 

Guo et al. 
(2019) 

/ 0.7188 0.9816 0.9548 0.9686 / 

Yan et al. 
(2019) / 0.7319 0.9840 0.9580 0.9678 / 

Y. Wu et al. 
(2020) / 0.7378 0.9785 0.9540 0.9635 / 
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Train dataset Methods Pre Sen Spe Acc AUC F1-
score 

Zhuo et al. 
(2020) / / / 0.9569 / 0.7866 

Liu et al. 
(2021) 0.8263 / / 0.9628 0.9641 0.7536 

Ours (2021) 0.7437 0.8410 0.9709 0.9590 0.9756 0.7894 

CHASE_DB1 

Mo and 
Zhang (2017) / 0.7387 0.9787 0.9549 0.9620 / 

Guo et al. 
(2019) / 0.6799 0.9808 0.9501 0.9517 / 

Liu et al. 
(2021) 0.6871 / / 0.9496 0.9416 0.6582 

Ours (2021) 0.8428 0.6676 0.9875 0.9583 0.9724 0.7451 
 

Table 4.7: Cross-validation on CHASE_DB1 database. 

Train 
dataset Methods Pre Sen Spe Acc AUC F1-

score 

DRIVE 

Mo and Zhang 
(2017) / 0.7003 0.9750 0.9478 0.9671 / 

Guo et al. 
(2019) / 0.6980 0.9715 0.9441 0.9511 / 

Liu et al. (2021) 0.5132 / / 0.9309 0.9104 0.5135 

Ours (2021) 0.6292 0.3922 0.9769 0.9237 0.7361 0.4832 

STARE 

Mo and Zhang 
(2017) / 0.7032 0.9794 0.9515 0.9690 / 

Guo et al. 
(2019) / 0.6726 0.9710 0.9411 0.9511 / 

Liu et al. (2021) 0.5949 / / 0.9478 0.9183 0.5338 

Ours (2021) 0.7143 0.3672 0.9853 0.9291 0.8071 0.4850 
 

4.5 Limitation 

Figure 4.7, Figure 4.8 and Figure 4.9 show some enlarged image patches, where we can 

view more details. We can see that although the basic structure of vessels can be 

recognized completely, some thin vessels and vessel boundary still cannot be identified 
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correctly. At the same time, some vessels are fractured, i.e. they are not connected with 

other vessels. 

 Figure 4.8 indicates a sample with many abnormalities. There are many non-vessel pixels 

are classified as vessel pixels due to the abnormality, thus there are some isolated bright 

blocks in the segmentation results. Figure 4.9 indicates a sample from CHASE_DB1 

database, which has a terrible background condition in the preprocessed image, hence 

some background pixels are also identified as vessel pixels due to the disturbance of 

background noise, which lower the precision of segmentation results. 

The generalization capacity still should be improved, especially between CHASE_DB1 

and DRIVE/STARE databases. 

 

Figure 4.7: Enlarged image patches of image in DRIVE database. From left to right: 
preprocessed image, enlarged image patches, ground truth image patches, 
segmentation result patches. 
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Figure 4.8: Enlarged image patches of image in STARE database. From left to right: 
preprocessed image, enlarged image patches, ground truth image patches, 
segmentation result patches. 

 

Figure 4.9: Enlarged image patches of image in CHASE_DB1 database. From left 
to right: preprocessed image, enlarged image patches, ground truth image patches, 
segmentation result patches. 

4.6 Summary 

This chapter indicates the test results of the proposed performance on three public 

databases. We showed the overall segmentation of part samples in these databases. We 

can see a completed vessel structure in these overall segmentation, thick vessels and most 

thin vessels are identified correctly. We also conducted quantitative analysis to the 

performance of the proposed model, we calculated several import evaluation metrics and 
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compared them with other recent works. The proposed model produced a good 

performance compared with other publications. 
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CHAPTER 5: CONCLUSION AND FEATURE WORK 

5.1 Conclusion 

Retinal fundus images can be captured easily and non-invasively. Retina abnormality can 

appear in various types, but the change of retinal vessel is the most common. Retinal 

vessel is the only structure that can be observed intensively and directly. It is also closely 

relative with human blood circulation, so the status of retinal vessels can reflect many 

diseases, such as diabetic retinopathy (DR) and hypertension. Extracting retinal vessels 

is a crucial procedure for ophthalmologist to make diagnosis. 

In this project, we proposed a deep learning-based model for automatic retinal vessel 

segmentation. It is a challenging task since the retinal fundus images are under low 

contrast and uneven illumination. At the same time, various structures, image noise and 

uneven texture also hinder the classification of pixels, thus we applied image processing 

technique to enhance the quality of raw images. We adopted residual learning and dilation 

convolution to construct basic building block, then we leveraged these building blocks to 

format a U-net and obtained the final model by cascading two U-nets. We selected three 

public databases and conducted intensive experiments to evaluate the performance of the 

proposed model. The model can produce an over 95% accuracy on all three databases. 

The experiments indicate the proposed model can be used to provide a good reference for 

ophthalmologist, and it can also be applied to other tasks after appropriate adjustment and 

improvement. 

5.2 Future work 

The proposed model can produce good performance in public databases, but there still 

exist some limitations for the method. In the future, the project can be extended for these 

research works. 
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1. The model makes predictions according to contextual information, but the model 

can only leverage less information due to limitation of computation capacity and 

receptive field, although we have adopted dilation convolution. There are still 

some vessels that cannot be segmented well, especially for thin vessels and 

boundary pixels. Hence, we should introduce a new method to leverage more 

information as well as reducing the computation burden. 

2. Ophthalmologist makes diagnosis according to not only vessel appearance but 

also geometric parameters. Thus, we could measure parameters such as vessel 

width after vessel segmentation in the future. 

3. We also should consider multi-task segmentation/detection, since there often 

exists other abnormalities in fundus images, such as soft/hard exudates and 

hemorrhages. We can also consider joint segmentation of optic disc and blood 

vessels. 

4. The proposed method is supervised method, which requires massive data to train 

the model. However, the labeled training sample are rare, although we leveraged 

data augmentation to enlarge the databases. Therefore, we can consider semi-

supervised method, combining supervised and unsupervised methods, to make 

full use of massive unlabeled data. 
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