
UNSUPERVISED FEATURE-PRESERVING CYCLEGAN 
FOR FAULT DIAGNOSIS OF ROLLING BEARINGS USING 

UNBALANCED INFRARED THERMAL IMAGING  

 

 

 

 

LUJIALE GUO 

 

 

 

 

 

FACULTY OF ENGINEERING  
UNIVERSITI MALAYA 

KUALA LUMPUR 
 

  
 
 2025

Univ
ers

iti 
Mala

ya



UNSUPERVISED FEATURE-PRESERVING 
CYCLEGAN FOR FAULT DIAGNOSIS OF ROLLING 

BEARINGS USING UNBALANCED INFRARED 
THERMAL IMAGING SAMPLE 

 

 

 

 

 

LUJIALE GUO 

 

 
DISSERTATION SUBMITTED IN FULFILMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF MASTER 
OF ENGINEERING SCIENCE 

 

FACULTY OF ENGINEERING 
UNIVERSITI MALAYA 

KUALA LUMPUR 
 
 
 

2025 

Univ
ers

iti 
Mala

ya



ii 

UNIVERSITI MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate: Lujiale Guo                                                                                  

Matric No: S2137234              

Name of Degree: Master Of Engineering Science 

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):  

Unsupervised Feature-Preserving CycleGAN for Fault Diagnosis of Rolling Bearings 

Using Unbalanced Infrared Thermal Imaging Sample 

Field of Study: Signal and System (NEC 520: Engineering and Engineering Trades) 

    I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
Universiti Malaya (“UM”), who henceforth shall be owner of the copyright in
this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

           Candidate’s Signature   Date:19.02.2025 

Subscribed and solemnly declared before, 

           Witness’s Signature  Date:19.02.2025 

Name:                                     

Designation: 

Univ
ers

iti 
Mala

ya



iii 

 UNSUPERVISED FEATURE-PRESERVING CYCLEGAN FOR FAULT 

DIAGNOSIS OF ROLLING BEARINGS USING UNBALANCED INFRARED 

THERMAL IMAGING SAMPLE 

ABSTRACT 

The fault diagnosis of rolling bearing is of great significance in industrial safety. The 

method of infrared thermal image combined with neural network could diagnose the fault 

of rolling bearing in a non-contact manner, however its data in different scenes are often 

unbalanced and difficult to obtain. In this paper, an unsupervised learning framework 

named Feature-Preserving Cycle-Consistent Generative Adversarial Networks (FP-

CycleGAN) is designed for defect detection in unbalanced rolling bearing infrared 

thermography sample. Since the classical Cycle-Consistent Generative Adversarial 

Networks (CycleGAN) not designed to accurately transfer the target features of the image. 

To avoid this problem, a new discriminator is designed to identify whether the generated 

image A and B (refer to different conditional bearing image) belongs to two different 

classes, and a new class loss are proposed. To better extract fault features and perform 

features migration, the new generator is reconstructed based on the U-Network structure, 

the transpose convolution method of the up-sampling network is replaced by Bicubic 

Interpolation to effectively avoid the checkerboard effect of the generated images. The 

defect detection of the expanded dataset was performed using Residual Network and 

compared with the pre-expansion data to demonstrate the usability of the generated data 

and the superiority of the proposed FP-CycleGAN method for rolling bearing defect 

detection in small samples of infrared thermal images. Finally, the accuracy of the 

proposed model is 91.52%, which is better than the baseline model (76.81%). 

Keywords: Fault diagnosis, rolling bearing, infrared thermal imaging, unbalanced data, 

generative adversarial networks 
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CYCLEGAN PEMELIHARAAN CIRI-CIRI TANPA DIAWAS UNTUK 

DIAGNOSIS KESALAHAN BEARING GELARAN MENGGUNAKAN SAMPEL 

PENGIMEJIAN TERMA INFRA MERAH TIDAK SEIMBANG 

ABSTRAK 

Diagnosis kesalahan galas bergolek adalah sangat penting dalam keselamatan industri. 

Kaedah imej terma inframerah digabungkan dengan rangkaian saraf boleh mendiagnosis 

kesalahan galas bergolek secara bukan sentuhan, namun datanya dalam adegan yang 

berbeza selalunya tidak seimbang dan sukar diperoleh. Dalam kertas kerja ini, rangka 

kerja pembelajaran tanpa pengawasan yang dinamakan Rangkaian Adversarial Generatif 

Konsisten Kitaran-Pemeliharaan Ciri direka untuk pengesanan kecacatan dalam sampel 

termografi inframerah galas berguling tidak seimbang. Oleh kerana Rangkaian 

Adversarial Generatif Konsisten Kitaran (CycleGAN) klasik tidak direka bentuk untuk 

memindahkan ciri sasaran imej dengan tepat.. Untuk mengelakkan masalah ini, 

diskriminator baharu direka bentuk untuk mengenal pasti sama ada imej A dan B 

(merujuk kepada imej galas bersyarat yang berbeza) yang dijana tergolong dalam dua 

kelas berbeza, dan kehilangan kelas baharu dicadangkan. Untuk mengekstrak ciri 

kerosakan dengan lebih baik dan melakukan migrasi ciri, penjana baharu dibina semula 

berdasarkan struktur U-Network, kaedah convtraspose bagi rangkaian pensampelan atas 

digantikan dengan Interpolasi Bicubic untuk mengelakkan kesan papan dam bagi imej 

yang dijana dengan berkesan. Pengesanan kecacatan set data yang dikembangkan telah 

dilakukan menggunakan Rangkaian Sisa dan dibandingkan dengan data pra-

pengembangan untuk menunjukkan kebolehgunaan data yang dijana dan keunggulan 

kaedah FP-CycleGAN yang dicadangkan untuk pengesanan kecacatan galas bergolek 

dalam sampel kecil imej terma inframerah.  Akhir sekali, ketepatan model yang 

dicadangkan ialah 91.52%, iaitu lebih baik daripada model garis dasar (76.81%). 

Univ
ers

iti 
Mala

ya



v 

Keywords: Diagnosis kerosakan, galas bergolek, pengimejan terma inframerah, data 

tidak seimbang, rangkaian musuh generatif 

Univ
ers

iti 
Mala

ya



vi 

ACKNOWLEDGEMENTS 

Here, I'd like to thank my supervisor, Professor Ir. Dr. Chuah Joon Huang, for his teaching 

and help in my postgraduate study. He gave me the opportunity to study for this master's 

degree and gave me valuable experience in code writing and thesis writing. Thanks to my 

undergraduate tutor, Gu Xiaohui for providing me with experimental data and research 

help. I would also like to thank my other supervisor, Dr. Wong Jee Keen Raymond, for 

his help during the whole study period. 

In addition, I would also like to thank my roommate, Bingrui Huang, for his support and 

companionship in my daily study and life. Thanks for the spiritual encouragement given 

to me by my best friend, Pu Tao, at the final stage of writing and submitting the paper. 

I also want to thank the Office staff from the faculty of Engineering of the UM who helped 

me and the teachers who taught me. 

 

Lujiale Guo 

  

Univ
ers

iti 
Mala

ya



vii 

TABLE OF CONTENTS 

Abstract ............................................................................................................................ iii 

Abstrak ............................................................................................................................. iv 

Acknowledgements .......................................................................................................... vi 

Table of Contents ............................................................................................................ vii 

List of Figures .................................................................................................................. ix 

List of Tables .................................................................................................................... x  

List of Symbols and Abbreviations .................................................................................. xi 

CHAPTER 1: INTRODUCTION  ................................................................................. 1 

1.1 Background .............................................................................................................. 1 

1.2 Problem statement ................................................................................................... 4 

1.3 Questions ................................................................................................................. 5 

1.4 Objectives ................................................................................................................ 6 

1.5 Scopes of the Research ............................................................................................ 6 

1.6 Organization of the Thesis ....................................................................................... 6 

CHAPTER 2: LITERATURE REVIEW ...................................................................... 8 

2.1 Introduction ............................................................................................................. 8 

2.2 Vibration signals analysis ........................................................................................ 8 

2.3 Current analysis ..................................................................................................... 12 

2.4 Sound pressure analysis ......................................................................................... 14 

2.5 Rotary encoder analysis ......................................................................................... 16 

2.6 Infrared thermal imaging ....................................................................................... 19 

2.7 Sample imbalance algorithm ................................................................................. 22 

2.8 Generative algorithm ............................................................................................. 24 

Univ
ers

iti 
Mala

ya



viii 

2.9 Convolutional neural network ............................................................................... 27 

CHAPTER 3: METHODOLOGY ............................................................................... 29 

3.1 Theoretical background ......................................................................................... 29 

3.1.1 Generative Adversarial Networks ............................................................ 29 

3.1.2 Cycle Consistent Generative Adversarial Network .................................. 30 

3.1.3 Interpolation Algorithm ............................................................................ 33 

3.1.4 Depthwise Separable Convolution ........................................................... 35 

3.2 The proposed approach .......................................................................................... 37 

3.2.1 Architecture of the generator .................................................................... 39 

3.2.2 Architecture of the discriminator.............................................................. 43 

3.2.3 Loss function ............................................................................................ 44 

3.3 Summary ................................................................................................................ 47 

CHAPTER 4: RESULTS .............................................................................................. 49 

4.1 Introduction ........................................................................................................... 49 

4.2 Collection and description of laboratory bearing data sets .................................... 49 

4.3 Sample expansion performance evaluation ........................................................... 53 

4.4 Unbalance fault diagnosis results and analysis ...................................................... 57 

4.5 Summary ................................................................................................................ 74 

CHAPTER 5: CONCLUSION ..................................................................................... 76 

References ....................................................................................................................... 78 

List of Publications and Papers Presented .................................................................... 102 

Univ
ers

iti 
Mala

ya



ix 

LIST OF FIGURES 

Figure 2.1: Vibration detection test bench ........................................................................ 9 

Figure 2.2: DLMD overflow ........................................................................................... 11 

Figure 2.3: Current detection test bench ......................................................................... 12 

Figure 2.4: Sound pressure detection test bench ............................................................. 15 

Figure 2.5: Simplified structure of an optical encoder .................................................... 17 

Figure 2.6: Example of an infrared thermal image of the bearing housing. ................... 20 

Figure 2.7: Basic Lenet-5 bearing defect detection neural network ............................... 21 

Figure 2.8: Illustration on transfer learning-based fault diagnosis ................................. 23 

Figure 2.9: An residual learning unit .............................................................................. 28 

Figure 3.1: Basic structure of GAN ................................................................................ 29 

Figure 3.2: Basic structure of CycleGAN ....................................................................... 31 

Figure 3.3: The framework of the FP-Cyclegan ............................................................. 38 

Figure 3.4: The architecture of the ConvNeXt Block ..................................................... 40 

Figure 3.5: The architecture of the Generator ................................................................. 41 

Figure 3.6: The architecture of the discriminator D_AB ................................................ 43 

Figure 4.1: The rotating machinery test bench ............................................................... 50 

Figure 4.2: Thermal image acquisition system ............................................................... 51 

Figure 4.3: Single angle and state bearing rain900 data set ............................................ 52 

Figure 4.4: Multi angle and state bearing rain900 data set ............................................. 53 

Figure 4.5: Images generated by different up-sampling methods ................................... 56 

Figure 4.6: Images generated by different data amplification methods .......................... 60 

Figure 4.7: The confusion matrix for the classification network .................................... 69 

  

Univ
ers

iti 
Mala

ya



x 

LIST OF TABLES 

Table 4.1: Health conditions and labels of rolling bearings............................................ 49 

Table 4.2: Hyperparameter setting .................................................................................. 53 

Table 4.3: Results of different up-sampling methods ..................................................... 55 

Table 4.4: Results of different convolution methods ...................................................... 57 

Table 4.5: Results of different data amplification method .............................................. 61 

 

 

  

Univ
ers

iti 
Mala

ya



xi 

LIST OF SYMBOLS AND ABBREVIATIONS 

FP-

CycleGAN 
: 

Feature-Preserving Cycle-Consistent Generative Adversarial 

Networks 

CycleGAN : Cycle-Consistent Generative Adversarial Networks 

MK-MMD : Mean Difference Multi-Kernel variant 

PBR : Personalized binary relevance 

HML-

KNN 
: Hierarchical multi-label K-nearest neighbor 

PHM : Prognosis and health management 

VAEs : Variational Autoencoders 

GANs : Generative Adversarial Networks 

ViTs : Vision Transformers 

FID : Fréchet Inception Distance 

 

 

Univ
ers

iti 
Mala

ya



1 

CHAPTER 1: INTRODUCTION 

1.1 Background 

At present, machinery has always played a very important role in various fields, and 

the rolling bearing system, as its core component, has always been concerned about its 

safety (Rai & Upadhyay, 2016; Wu et al., 2022). The faults of bearings usually show 

corrosion, crack or peeling on the inner ring, outer ring, or roller. For the fault detection 

of bearings, the methods could be summarized as vibration analysis, current characteristic 

analysis, sound pressure analysis, rotary encoder analysis and infrared thermal image 

detection, etc (Hakim et al., 2023a). In the past, most of the methods used by people 

focused on the vibration analysis of rotor bearings (C. Li et al., 2019). However, the 

vibration analysis has some problems that affect the structure of the equipment, and it is 

difficult to install sensors (S. Zhang et al., 2020). In addition, because of the long signal 

transmission path, changeable working conditions and strong noise in practical 

applications, the processing of vibration signals will be very complicated (B. Sun et al., 

2025). 

The traditional bearing defect detect method including vibration, current, sound 

pressure and rotary encoder analysis  For example, the vibration analysis is a common 

bearing fault detection method, which is based on monitoring and analyzing the vibration 

signals generated by bearings during operation (Dolenc et al., 2016). When the bearing 

starts to fail, such as cracks or peeling, its vibration characteristics will change obviously. 

By monitoring these changes, potential failures could be identified and prevented in time. 

The advantage of this method is that it could be monitored in real time and has good 

sensitivity to early faults (Bianchini et al., 2011; Prudhom et al., 2017). However, this 

method requires complex signal processing technology to filter environmental noise and 

non-fault related vibration of the equipment itself, and also has high requirements on the 

installation position and mode of the sensor, which may affect the normal operation and 
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maintenance of the equipment (Pacheco-Chérrez et al., 2022). However, none of these 

methods can avoid the noise caused by vibration or the inconvenience of sensor 

installation. 

Infrared thermal image detection method uses infrared camera to capture the thermal 

image of bearing during operation (A. Kumar et al., 2024). By analyzing the temperature 

distribution in thermal images, we could find hot spots caused by excessive friction, poor 

lubrication or other mechanical failures (AlShorman et al., 2024). Abnormal heating of 

bearings is usually an obvious signal of fault development, and infrared detection could 

be used to identify and take measures in time. The advantage of this technology is that it 

could be detected remotely and without contact, which is very suitable for those 

applications that are difficult to access or in high temperature environment (Glowacz, 

2024). However, the equipment cost of infrared thermal imaging technology is high, and 

the professional knowledge of operators is high, so proper training is needed to effectively 

carry out fault analysis. 

Deep learning has gained significant attention in recent years for its ability to automate 

and enhance bearing fault detection systems (F. Dong et al., 2025; Snyder et al., 2025; S. 

Xie et al., 2025). Traditional methods such as vibration analysis, sound pressure analysis, 

and infrared thermal imaging often struggle with high noise levels, data complexity, and 

real-time processing challenges (Glowacz et al., 2025; J. Ma et al., 2024; R & Mutra, 

2025). Deep learning techniques, particularly convolutional neural networks (CNNs) and 

other advanced architectures, have demonstrated superior performance in addressing 

these issues by automatically extracting relevant features from raw data (D. He et al., 

2025; M. Liu et al., 2024). 

One of the primary advantages of deep learning in bearing fault detection is its ability 

to learn hierarchical feature representations directly from the raw sensor data, bypassing 
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the need for manual feature engineering (D. He et al., 2025; P. Wang et al., 2025; T. Yang 

et al., 2025; Ye et al., 2025). This is particularly beneficial when dealing with large 

datasets from multiple sensors (Rivas et al., 2024). For instance, deep residual networks 

(ResNets) have been used in fault diagnosis systems to automatically extract features 

from vibration signals, significouldtly improving diagnostic accuracy, especially in noisy 

environments (Han et al., 2024). 

Recent studies have explored deep learning's potential to handle multi-sensor fusion 

for bearing fault detection, where data from various sensor types, such as vibration, 

acoustic, and current signals, are combined to enhance detection performance (X. Li, 

Wang, et al., 2024; Ye et al., 2025; W. Zhang et al., 2024). In these systems, deep learning 

models like long short-term memory networks (LSTMs) and CNNs are used to analyze 

time-series data, which helps in detecting early-stage bearing faults that may not be 

identifiable by traditional methods (X. Li, Wang, et al., 2024; Shuming et al., 2025; Z. 

Xu et al., 2024). 

The robustness of deep learning models in fault detection is also demonstrated in their 

ability to work with limited labeled data through transfer learning techniques (X. Li et al., 

2025; Shi et al., 2025; Wei et al., 2025). Transfer learning has proven to be highly 

effective in adapting pre-trained models to new environments or machines with minimal 

additional training data (Deveci et al., 2024; Guo et al., 2025; Xiang et al., 2025). This 

approach has been successfully employed in various studies, such as the work by Lian et 

al. and S. Tang et al., where transfer learning models were trained on vibration signals 

and acoustic data, allowing for more generalized fault detection capabilities across 

different operating conditions (Lian et al., 2025; S. Tang et al., 2024). 

Additionally, the integration of deep learning with image-based defect detection has 

shown great promise (Jiang et al., 2025; P. Kumar & Hati, 2022; J. Li et al., 2022; Y. Liu 
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et al., 2025). For example, methods like the improved YOLOv5 model have been applied 

to bearing surface defect detection, where images of defects are analyzed using a deep 

learning framework that excels in object detection tasks (Hu et al., 2024). These models 

are particularly advantageous in workshops or environments where visual inspection is 

critical and could significouldtly reduce human error. 

Moreover, the development of hybrid models that combine deep learning with other 

advanced technologies, such as the minimum unscented Kalman filter (MUKF), further 

enhances fault diagnosis accuracy by efficiently extracting features from multi-sensor 

signals (H. Tang et al., 2024). These hybrid approaches enable more reliable fault 

detection, even in challenging environments with strong noise interference (X. Xie et al., 

2024; D. Zhao et al., 2024). 

In conclusion, deep learning technologies, particularly CNNs, LSTMs, and transfer 

learning, are revolutionizing bearing fault detection. Their ability to process large, 

complex datasets with high accuracy, even in noisy or unpredictable conditions, makes 

them a powerful tool in ensuring the reliability and safety of machinery in various 

industrial applications. 

 

1.2 Problem statement 

With the development of deep learning, it has been applied to the field of industrial 

target detection and is playing an increasingly important role. Thermal imaging 

technology is gradually combined with neural network, which could automatically 

identify faults that are helpful for early warning in a non-contact way, regardless of the 

speed of rotating machinery, to ensure the reduction of system downtime caused by 

bearing faults (Hakim et al., 2023b).  
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However, at present, the thermal image diagnosis method based on CNN could only 

deal with the same working conditions, but the working environment is changeable in 

practical application. A key challenge lies in developing a rolling bearing detection 

network that maintains high generalization performance across diverse operating 

conditions while being trained on a limited number of samples. 

At present, although there has been transfer learning or adversarial generative learning 

to solve the problem of low generalization of deep neural network, these methods are 

often not suitable for the latest new technology of non-contact bearing defect detection, 

or they are often used in other fields, which need further application, especially the 

application of adversarial generative network to image data (T. Zhang et al., 2022). 

Generative Adversarial Network is a technique of generating nonexistent images with 

the help of original images. It could extract and transfer the features of the original images, 

to obtain false images with different features in different backgrounds and achieve the 

effect of expanding data sets. This method is simple and efficient and could save a lot of 

manpower and resources. However, how to correctly use it to extract features from 

infrared thermal images and how to prove the authenticity of new images needs to be 

further explored through experiments. 

1.3 Questions 

Question 1: According to the infrared thermal image of rotor, what structure of neural 

network could achieve higher detection efficiency and accuracy? 

Questions 2: How does GAN network amplify the infrared thermal image samples of 

bearings? 

Questions 3: How to prove the authenticity and usability of GAN network? 
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1.4 Objectives 

Objectives 1: To select the backbone network for better detection ability, compare and 

choose the more advantageous activation function, optimizer, and network structure.  

Objectives 2: To set up an experimental platform to collect the infrared thermal images 

of bearings in different environments and select the appropriate GAN network for data 

amplification according to the diversity of samples. 

Objectives 3: To set up an ablation experiments evaluating the performance of various 

GAN structures and validating the usability of generated images for bearing defect 

detection. 

1.5 Scopes of the Research: 

The scope of this study is to train a Generative Adversarial Networks on the infrared 

thermal imaging of bearings and improve the performance of the damage detection 

network through the generated images. The scope of this study includes but is not limited 

to: 

1. Collect infrared thermal images of seven different damaged bearings and ensure 

different angles and distances. 

2. The proposed algorithm is written and trained by using pytorch library. 

3. Realize other algorithms to generate images. 

4. Compared with other methods, the proposed algorithm is tested to ensure that the 

algorithm has better performance in image generation and damage detection 

network optimization. 
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1.6 Organization of the Thesis: 

This thesis is organized into five main chapters. i) introduction; ii) literature review; 

iii) proposed methodology; iv) results and discussion and lastly; v) conclusion and future 

recommendation. The contents of each section in the thesis are summarized as follows: 

Chapter 1: This chapter expounds the background of the subject and the importance of 

bearing damage detection. It also describes the problem statement that provides the basis 

for the goal of this study. According to the purpose of the study, this dissertation also 

explains the scope of the study. 

Chapter 2: This chapter profoundly introduces the algorithm of bearing detection. First, 

it gives an overview of different methods for bearing detection. It also explains the 

advantages and disadvantages of various bearing detection methods. 

Chapter 3: In this chapter, the details of how to design the proposed algorithm are 

discussed in detail, the principles and advantages of Depthwise Separable Convolution 

and linear interpolation are explained, and a new loss function is added to the method to 

restrict the transfer of features in the generated image. 

Chapter 4: The comparison of this model with other technologies is presented in this 

chapter, evaluates the influence of the proposed linear interpolation, separable 

convolution and new loss function on the results, and analyzes the overall performance 

of the proposed model by using one subjective and eight different objective evaluation 

metrics. 

Chapter 5: This chapter summarizes the work of this paper, and discusses and optimize 

the future work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Currently, machinery plays a crucial role in various fields, and the rolling bearing 

system, as its core component, has always been a matter of great concern in terms of 

safety (J. Ma et al., 2024; Soomro et al., 2024). In complex or high intensity working 

environments, bearings often suffer from damage such as corrosion, cracks, or spalling in 

the inner ring, outer ring, or rolling elements, which could potentially lead to industrial 

accidents (Raouf et al., 2024). 

Therefore, conducting fault detection on rolling bearings to proactively identify the 

damage and enhance system safety is important (R. Liu et al., 2018; Shao et al., 2018; 

Xiong et al., 2023). 

2.2 Vibration signals analysis 

Vibration signals are frequently utilized as a method for diagnosing faults in bearings 

because bearings with different types of damage respond correspondingly to external 

stimuli while in operation, thus generating corresponding vibration fault signals within 

the vibration signal (Jin et al., 2025). For example, Dalvand et al. found that the stator 

current of a typical asynchronous motor involves the fundamental wave of power supply 

and its harmonics before and after bearing defects. A current noise reduction method 

based on time shift is proposed. The current residual could be obtained by adding the 

digital current signal to its own sampling delay representation as an anti-noise component. 

The amount of sampling delay depends only on the power frequency and sampling rate. 

This amount is set to eliminate the fundamental wave of the power supply and its odd 

harmonics. After obtaining the current residual, the characteristic fault frequency of the 

faulty bearing could be revealed by analyzing the frequency spectrum of the envelope of 
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the current residual (Dalvand et al., 2017; S. Yang et al., 2020). The vibration detection 

test bench is usually shown in Figure 2.1. 

 

Figure 2.1: Vibration detection test bench 

Furthermore, the low signal-to-noise ratio of fault signals in the early stage of motor 

bearing fault often leads to the low accuracy of fault state identification. Aiming at this 

problem, the bearing early fault diagnosis method based on differential local mean 

decomposition (DLMD) and current-vibration signal fusion can obtain better results. In 

this method, the current signal and vibration signal are decomposed by DLMD 

respectively, and the decomposed product function (PF) is weighed to reconstruct the 

signal according to kurtosis value, and the reconstructed signal is fused and normalized 

to obtain the current. Finally, the Hilbert envelope spectrum analysis of the fused signal 

is carried out, and the clear fault characteristic frequency is obtained. (B. Zhang et al., 

2024) 

DLMD is an improvement of traditional local mean decomposition. DLMD 

differentiates the signal without changing the frequency of the original signal, keeps the 

frequency with higher energy, and gradually filters out smaller stray interference signals, 

thus extracting fault characteristic signals. The specific steps of DLMD are as follows: 

Perform 𝑘𝑘 − 𝑡𝑡ℎ order differentiation of the original signal to obtain 𝑥𝑥(𝑘𝑘)(t). 
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Identify all local extremum points 𝑛𝑛𝑖𝑖 of the differentiated signal  𝑥𝑥(𝑘𝑘)(t), and calculate 

the average of all adjacent local extremum points: 

𝑚𝑚𝑖𝑖 =
𝑛𝑛𝑖𝑖 + 𝑛𝑛𝑖𝑖+1

2
(1) 

where 𝑛𝑛𝑖𝑖 is the 𝑖𝑖 − 𝑡𝑡ℎ local extremum point, 𝑛𝑛𝑖𝑖+1 is the (𝑖𝑖 + 1) − 𝑡𝑡ℎ local extremum 

point, and 𝑚𝑚𝑖𝑖 is the 𝑖𝑖 − 𝑡𝑡ℎ mean value. Because the number of 𝑛𝑛𝑖𝑖 characterizes the degree 

of waveform distortion and the content of impulse components in the 𝑥𝑥(𝑘𝑘)(t), the number 

of 𝑚𝑚𝑖𝑖 can also reflect the degree of waveform distortion and the content of impulse 

components in the signal. Connect all adjacent mean points 𝑚𝑚𝑖𝑖 with straight lines and 

apply a moving average method to smooth the resultant local mean function 𝑚𝑚11(𝑡𝑡) This 

function reflects the overall trend and periodic variations of the signal. Clearly, 𝑚𝑚11(𝑡𝑡) is 

influenced by the mean points 𝑚𝑚𝑖𝑖. However, compared to the number of 𝑚𝑚𝑖𝑖, the values 

of 𝑚𝑚𝑖𝑖 have a more significant impact on 𝑚𝑚11(𝑡𝑡). If the differences between each mean 

point are large, then the fluctuation of the local mean function 𝑚𝑚11(𝑡𝑡) will be large; 

conversely, if the differences are small, the fluctuation will be small. Therefore, the 

distribution of 𝑚𝑚𝑖𝑖 has an impact on the subsequent signal decomposition process in the 

form of the local mean function 𝑚𝑚11(𝑡𝑡). 
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Figure 2.2: DLMD Overflow 

The specific DLMD process is shown in figure 2.2 

In addition, many methods based on vibration analysis have been developed for other 

kinds of bearings. For example, for planetary bearings, when they are running, they need 

to bear the large torque load borne by planetary gear sets, which is prone to failure, but 

the kinematic characteristics and vibration characteristics of planetary bearings are 

complex, which often lead to poor fault diagnosis results. To solve this problem, the order 

spectrum analysis method based on dual rotary encoders can be used. In this method, the 

double rotary encoders are installed on the input shaft and the output shaft of the planetary 

gearbox respectively. Firstly, the zero-crossing detection method is used to identify the 

encoder pulse occurrence time, estimate the torsional vibration and resample in the 

angular domain. Then, the torsional angular displacement of each encoder pulse is 

estimated by using the angle difference of the two encoders. Accordingly, the torsional 

angular velocity and acceleration are estimated by using the first and second time 

derivatives of torsional angular displacement respectively. Next, the angular 

displacement, velocity and acceleration are resampled in the angular domain according 

to the encoder pulse generation time which is evenly distributed at a constant angle. 

Finally, the resampled torsional angular displacement, velocity and acceleration are 

Fourier transformed respectively, and the corresponding order spectra are obtained. The 

relative rotation between the two rotary encoders only reflects the torsional vibration of 

the planetary gearbox. This characteristic makes the proposed method free from the 

additional modulation effect caused by the rotation of the planet carrier and the 

interference of input and output devices. In addition, the order spectrum method further 

makes this method suitable for non-stationary signal analysis under the condition of time-

varying speed, which can successfully detect local faults on the inner ring, outer ring and 
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roller of planetary bearings under the condition of constant and time-varying speed. (Feng 

et al., 2025) 

However, vibration signal analysis faces several limitations, such as difficulties in 

sensor installation, the potential impact on equipment structure during signal acquisition, 

the variability of working conditions, and the presence of strong noise in practical 

applications. 

2.3 Bearing defect detect by current analysis 

Most machines in industry are driven by induction motors. Under extreme working 

conditions, both electrical and mechanical systems may fail prematurely. Bearing fault is 

the most common fault in motor (40%), followed by stator fault (37%) and rotor fault 

(10%). The result of these faults is increased operating cost and prolonged downtime. 

Different from bearings in mechanical devices, bearing defect detection in motors often 

includes vibration analysis, axial magnetic flux analysis, lubricating oil debris analysis, 

partial discharge and motor current characteristics analysis. Current detection test bench 

is usually shown as Figure 2.3. 

 

Figure 2.3: Current detection test bench 
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The current characteristic analysis detects the bearing fault by analyzing the current 

signal of the motor (Singh & Kumar, 2017). This method takes advantage of the abnormal 

fluctuation of motor current when the bearing fails. Because bearing damage will lead to 

changes in motor load and magnetic field distribution, and then affect current 

characteristics, monitoring these changes could effectively identify bearing problems 

(Blodt et al., 2008). The advantage of the current characteristic analysis method is non-

invasive and does not need direct contact with bearings, thus reducing the physical 

interference to equipment. The analysis of motor current characteristics is usually carried 

out by Fast Fourier Transform (FFT) (Marcelo et al., 2012).  

However, the traditional FFT has some shortcomings, such as poor resolution, 

spectrum leakage and inability to provide time-frequency relationships. Therefore, it is 

difficult to find out when the fault occurred, and if the amplitude of the fault is low 

compared with the noise generated by the machine, it is difficult to find out the fault 

components by using the traditional FFT. In order to overcome these shortcomings of 

FFT, many advanced signal processing technologies have been realized. It is a convenient 

and accurate method to use stator current spectrum subtraction and various wavelet 

decomposition, and the static wavelet transform based on stator current spectrum 

subtraction has a good indication for any type of fault, but different types of current 

spectrum may be suitable for different types of bearing faults, which limits the 

generalization of this method (Deekshit Kompella et al., 2018). 

In addition, for the fault detection and diagnosis of asynchronous motors, some studies 

have proved that the influence of bearing fault on motor current can be ignored. On the 

contrary, the more likely reason why faults can be detected in current is that they will 

produce fluctuating resistance torque, which will work immediately, while radial 

displacement takes time to integrate into perceptible displacement (Stack et al., 2004). 
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This is true even when the speed changes step by step. The method of detecting bearing 

defects based on instantaneous power factors which changes with torque oscillation can 

deal with this situation well. This method is a new method based on instantaneous power 

factor. By modeling bearing defects, it is shown that the possibility of radial movement 

is very small, and the more likely reason why faults appear in current is that they will 

produce fluctuating resistance torque, which will be reflected in stator current. The results 

prove that the detection effect of instantaneous power factor as a signal is better than 

instantaneous power (Ibrahim et al., 2008). 

However, this method requires high accuracy of current measuring equipment and 

stability of motor running state and may require special hardware and software support. 

2.4 Bearing defect detect by sound pressure analysis 

At present, a large number of research results on detecting and diagnosing bearing 

defects by vibration and acoustic methods have been published, most of which have been 

published in the past twenty years (Tandon & Choudhury, 1999). For example, the fault 

diagnosis method of multi-signal fusion is one of the current research trends, which can 

improve the reliability of diagnosis results. A new fusion demodulation method is 

constructed by using two signal demodulation methods to extract the characteristic 

frequency of single channel signal. Then, the characteristic spectrum of multi-channel 

signals is fused to extract the final characteristic frequency, which successfully reduces 

the content of noise components in the characteristic spectrum and highlights the fault 

characteristic frequency (Zheng et al., 2025). Sound pressure detection test bench usually 

be designed as Figure 2.4. 
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Figure 2.4: Sound pressure detection test bench 

Furthermore, the vibration analysis (VA) and acoustic emission (AE) methods have 

also achieved good results in predicting the severity of rolling bearing defects, because 

the signals obtained from bearings by sensors based on vibration methods will be distorted 

by other faults and mechanical noise of equipment. AE is a nondestructive testing 

technology for structural health monitoring. Because of its inherent high signal-to-noise 

ratio, its application in bearing defect diagnosis is gaining development momentum as an 

alternative diagnostic tool. Rao and Ratnam focus on the same type of seed defects on the 

outer ring of cylindrical roller bearings with radial load and run the defective bearings at 

different speeds and loads. A method of bearing defect detection based on AE and 

vibration probe data is designed and achieved good results (Rao & Ratnam, 2015). 

The sound pressure analysis uses acoustic sensors to capture the sound waves 

generated when the bearing is running and detects the abnormal state of the bearing by 

analyzing the frequency and amplitude of these sound waves (J. Yang et al., 2024). When 

the bearing is damaged, such as cracks or peeling, it will produce sound waves with 

specific frequencies, which are obviously different from those in normal operation (Z. 

Zhang & Wu, 2024). Sound pressure analysis method could find problems in the initial 
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stage of bearing damage, which is very suitable for those application scenarios that 

require high equipment safety (Guan et al., 2024).  

However, the method based on sound pressure is sensitive to environmental noise and 

needs to be carried out in a relatively quiet environment to avoid wrong diagnosis. 

2.5 Bearing defect detect by rotary encoder analysis 

The rotary encoder analysis relies on the encoder installed on the shaft to monitor the 

rotating speed and position of the bearing (Pang et al., 2024). By accurately measuring 

the rotation parameters of bearings, we could identify the slight changes caused by 

bearing faults. These changes include slight misalignment or imbalance of bearings, 

which may be early signs of bearing failure. The advantage of rotary encoder analysis 

method lies in its high accuracy, which is especially suitable for high-precision 

mechanical systems that need fine control of speed and position (Huang et al., 2024).  

When the rolling bearing has a local fault, the change of contact stiffness between the 

rolling body and the raceway at the fault position will lead to the regular fluctuation of 

instantaneous angular velocity (IAS) (Y. Wang et al., 2020), that is, the optical encoder 

contains abundant fault information, which can be used for condition monitoring of the 

failed rolling bearing. Compared with vibration, IAS has the advantages of low noise, 

direct correlation with mechanical dynamics, no need for periodic calibration and short 

transmission path (Miao et al., 2020). In addition, compared with visual measurement and 

acoustic emission, the optical encoder has the advantage of no external installation, and 

can extract IAS signals from the control system. Therefore, condition monitoring based 

on IAS has become hot research in the field of fault diagnosis. 

In recent years, because gears directly transmit torque, IAS signals are mainly used in 

gear-related fault diagnosis (M. Zhao et al., 2018). Although IAS signal contains 
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abundant rolling element bearing (REB) fault information, REB does not directly transmit 

torque, that is, IAS fluctuation caused by REB fault requires a certain radial load. 

Therefore, IAS fluctuation caused by REB fault is weak (Renaudin et al., 2010). In 

addition, the estimated IAS signal also includes some interference components, such as 

measurement error (Coats & Randall, 2014), encoder installation error and speed trend 

component caused by speed change; Because the regular IAS fluctuation caused by REB 

fault is weak under low load conditions, these interference components cannot be ignored 

for feature extraction of REB fault. Aiming at the installation error of encoder, cross-

correction (Deng et al., 2013) method and self-correction (Zeng et al., 2020) scheme are 

proposed, but cross-correction scheme needs high-precision reference devices, such as 

ring laser or polyhedral autocollimator, and self-correction method must provide high-

precision installation of reference devices. It should be noted that in some cases, such as 

industrial robots, the above installation requirements and harsh operating conditions may 

not be met. On the other hand, although the angle-based IAS is a stationary signal under 

the condition of variable speed, the amplitude of the velocity trend component will change 

with the speed, and the conventional Qualcomm filtering may not be able to reduce the 

interference component, because the fault spectrum related to REB may be at a low 

frequency under the condition of variable speed. The simplified structure of an optical 

encoder is shown as figure 2.5 (a) and voltage output is shown as figure 2.5 (b). 
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Figure 2.5: (a) Simplified structure of an optical encoder. (b) Voltage output. 

Savitzky-Golay (SG) filter is an effective tool for reducing noise while maintaining 

the shape and height of waveform peaks (Schafer, 2011). However, the effectiveness of 

the SG filter depends on the parameters (filter order P and fitting length 2M+1), that is, 

the optimal parameters determination of the SG filter for different conditions remains an 

open problem, which is often dependent on experience and prior knowledge. 

The SG filter is a widely used polynomial fitting tool, which can eliminate the 

interference components by setting suitable parameters (fitting length 2𝑀𝑀 + 1  and 

polynomial order P), it is defined as: 

𝑦𝑦[𝑛𝑛] = � ℎ[𝑛𝑛 −𝑚𝑚]𝑥𝑥[𝑚𝑚]
𝑚𝑚=𝑛𝑛+𝑀𝑀

𝑚𝑚=𝑛𝑛−𝑀𝑀

(2) 

where 𝑦𝑦[𝑛𝑛] and 𝑥𝑥[𝑚𝑚] indicate the fit data and the raw data, the convolution coefficient 

ℎ[𝑛𝑛 −𝑚𝑚] = (𝐵𝐵𝑇𝑇𝐵𝐵)−1𝐵𝐵𝑇𝑇 ,  𝐵𝐵𝑇𝑇 = [𝑀𝑀𝑎𝑎
0,  𝑀𝑀𝑏𝑏

1, ∙∙∙ ,  𝑀𝑀𝑏𝑏
𝑝𝑝]𝑇𝑇 , 𝑀𝑀𝑏𝑏

𝑝𝑝 = (−𝑀𝑀)𝑝𝑝, ∙∙∙, (−1)𝑝𝑝, 0, 1𝑝𝑝,∙∙∙

,  𝑀𝑀𝑝𝑝,  𝑀𝑀𝑎𝑎
0 = −𝑀𝑀, ∙∙∙,−1, 1, 1, ∙∙∙,𝑀𝑀,𝑃𝑃 = 1, 2, ∙∙∙.It should be noted that ℎ depends on 𝑃𝑃 

and 2𝑀𝑀 + 1, that is, the same weighting coefficients will be obtained at each group 

of 2𝑀𝑀 + 1 samples, and so we can think the SG filtering as a shift-invariant discrete 

convolution process (X. Chen et al., 2024). The SG filter requires that 2𝑀𝑀 + 1 is odd 

and 𝑃𝑃 ≤ 2𝑀𝑀. 

In order to effectively extract the characteristics of fault REB from IAS signals under 

variable speed conditions, an adaptive SG filter scheme can be adopted. Firstly, the 

parameter decomposition structure (PDS) is introduced, which can obtain high-precision 

optimal parameters with low computational cost. Secondly, the improved diagnostic 

characteristic index can be used to evaluate the effectiveness of SG filters with different 
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parameters under the condition of harmonic interference, which can be used to 

supplement the traditional diagnostic characteristic index. 

However, this method requires very high mechanical installation of equipment, and 

the installation and maintenance costs of encoders are relatively high. 

2.6 Infrared thermal imaging 

Infrared thermal imaging is a non-contact and non-invasive temperature measurement 

technology, which has the advantage of not changing the surface temperature and 

displaying the real-time temperature distribution. This technology has been applied in 

many industrial and/or research fields, including meteorology, environment, medicine, 

architecture, engineering and so on, in which temperature is the key parameter. The 

principle of measurement is based on the fact that any physical object will radiate energy 

at infrared wavelength (that is, in the infrared range of electromagnetic spectrum). The 

thermal imager can measure and visualize the infrared radiation caused. Therefore, the 

surface temperature distribution is recorded in the form of thermal maps. Based on this 

characteristic, thermal images are currently used in the field of machine condition 

monitoring and diagnosis (Younus & Yang, 2012). 

Infrared thermal imaging is a commonly used thermal measurement and diagnosis 

method, which is based on the measurement of infrared rays emitted by solids at a given 

temperature (Khor et al., 2024; Seong & Kim, 2024). The obtained spectrum is used to 

estimate the surface temperature of the elements under consideration (AlShorman et al., 

2024; Glowacz, 2024). Compared with the contact sensor that provides single point 

measurement, thermal imaging technology could estimate and visualize the temperature 

distribution on the surface of mechanical system (Touret et al., 2018). 
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Related literature has proved that infrared thermal imaging could detect several faults 

and situations in rotating machinery to some extent, such as rotor imbalance, 

misalignment, loose coupling, insufficient lumbriculid and damage of rolling bearings 

(Janssens et al., 2019). For some cases, it is not difficult to see the advantages of infrared 

thermal imaging, such as the detection of lubricant shortage. One of the main uses of 

lubricants is to control friction. If there is too little lubricant in the bearing housing, 

excessive friction will occur, resulting in heat that can be observed by infrared thermal 

imager. In addition, if there is too much lubricant in the bearing, agitation will occur and 

additional heat will be observed. However, in some cases, methods based on infrared 

thermal imaging can only provide suboptimal results, such as detecting the damage from 

rolling bearings. For example, the outer raceway damage can only be detected 45% of the 

time using the system based on infrared thermal imaging (Liao et al., 2023). Figure 2.6 

shows an example of an infrared thermal image of the bearing housing. 

 

Figure 2.6: Example of an infrared thermal image of the bearing housing 

Recently, the combination of infrared thermal imaging and artificial intelligence has 

gained increasing attention in the non-destructive fault diagnosis of rotating machinery. 

Compared to vibration signals, infrared thermal imaging offers advantages such as easy 
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installation, non-contact usage, and high precision (Shao et al., 2021). Choudhary et al. 

proposed a method for detecting bearing defects using infrared thermal imaging by 

combining artificial neural networks with convolutional neural networks. Their approach 

addresses the challenge of early bearing failure detection under different bearing 

conditions (Choudhary et al., 2021). This method firstly extracts continuous frames from 

IRT data, and then features the bearing fault based on ANN. Multiple parameters are used 

to interpret the time domain signal. A group of 15 such statistical time-domain parameters 

or features, namely mean value, root mean square value, standard deviation, shape factor, 

kurtosis, skewness, peak amplitude, crest factor, pulse factor, signal-to-noise ratio, 

variance, vitality, entropy, marginal factor and signal-to-noise ratio-to-distortion ratio, are 

extracted from thermal images of six data sets with different bearing conditions based on 

expert knowledge. The extracted features are then normalized in the range of 0 to 1, and 

then the classification accuracy is improved by neighborhood component analysis (NCA). 

The CNN model used is based on the LeNet-5 model architecture. This method is famous 

for its excellent performance in fault diagnosis of rotating machinery because of its pixel-

level feature extraction characteristics. Basic Lenet-5 bearing defect detection neural 

network is shown as Figure 2.7. 

 

Figure 2.7: Basic Lenet-5 bearing defect detection neural network 

Univ
ers

iti 
Mala

ya



22 

He et al. proposed a framework that combines a convolutional autoencoder with an 

enhanced convolutional neural network to achieve high diagnostic accuracy of small-

labeled infrared thermal images for rotor bearings (Zhiyi et al., 2020). Firstly, the infrared 

thermal image is measured to characterize various health states of the rotor bearing system. 

Secondly, an enhanced convolutional neural network is constructed by using exponential 

linear units and random pools. Then, the model parameters of CAE pre-trained with 

unlabeled thermal images are transmitted to initialize the enhanced convolutional neural 

network. Finally, the enhanced convolutional neural network is trained by using small 

label thermal image to further adjust the model parameters. The collected thermal images 

are used to test the diagnostic performance of the proposed method. Most of the past data-

driven defect detection methods are based on the premise that the training data samples 

are large, average, and easily available.  

However, in practical engineering applications, many defect samples under different 

conditions are very difficult to obtain, and deep learning models trained from samples in 

the laboratory usually do not work very well in practical engineering applications. 

2.7 Sample imbalance algorithm 

In industrial defect detection, it is often difficult to obtain the same amount of fault 

samples as healthy samples and the same characteristics as in real engineering, which 

leads to unsatisfactory results when the trained system is applied to complex conditions 

(G. Liu & Wu, 2024; Y. Liu & Lai, 2023; H. Wang & Zhang, 2024). Many solutions have 

been proposed for this problem (Mao et al., 2019; Ren et al., 2023).  

Transfer learning was introduced in 1995 to solve the lifelong learning problem by 

reusing previous knowledge, which relaxed the restriction that training and test data must 

follow the same distribution. Transfer learning is an effective method to solve new 

problems by using knowledge learned from different but related tasks. Its idea is inspired 
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by human learning mechanism, and it can reuse knowledge or skills summarized from 

tasks in other fields. For example, if a person learns to ride a bike, the skills of riding a 

bike will help him ride a motorcycle. The core idea of transfer learning is to find the 

common features of two or more related but different learning tasks and apply shared 

knowledge to solve new problems. In the actual bearing fault diagnosis scenario, the 

amount of normal data collected from bearings is usually far more than the amount of 

fault data, because laws and regulations usually prohibit long-term operation of actual 

machines with faulty bearings. This problem of insufficient fault data will significantly 

reduce the diagnostic performance of deep neural network]. Therefore, it is very 

important to introduce migration learning to solve the challenge of insufficient data. In 

fault diagnosis based on migration learning, the diagnosis model is pre-trained by using 

the source domain data and tasks, and then the learned knowledge (such as fault 

characteristics or model parameters) is reused in the target domain fault diagnosis tasks 

(X. Chen et al., 2023). Classical transfer learning-based fault diagnosis method is shown 

as Figure 2.8 

 

Figure 2.8: Illustration on transfer learning-based fault diagnosis. 
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Xiao et al. proposed a cross-domain bearing diagnosis framework based on 

transferable features and watershed embedding discriminative distribution adaptation to 

compensate for the imbalance between two real rolling bearing datasets (X. Yu et al., 

2023). Zhu et al. designed a migration learning method based on the Maximum Mean 

Difference Multi-Kernel variant (MK-MMD), enabling pseudo label learning to resist 

data imbalance and improve prediction accuracy (W. Zhu et al., 2023). Ma et al. proposed 

two multi-label learning algorithms, personalized binary relevance (PBR) and 

hierarchical multi-label K-nearest neighbor (HML-KNN), for prognosis and health 

management (PHM) of rolling bearings, which exhibit fast modeling and high global 

information analysis capability in bearing fault analysis, respectively, and could 

determine the type of compound faults using only a single fault sample (X. Ma et al., 

2021). However, most of the solutions for imbalanced data based on transfer learning or 

label learning are unable to explore the deeper differences between different features and 

have limited effects. In contrast, generative networks based on deep learning have the 

advantage of extending sample diversity and could amplify data in an unsupervised or 

semi-supervised mode (Y. Dong et al., 2024; Pan et al., 2024; Xia et al., 2022). 

2.8 Generative algorithm 

Classical generative models include Variational Autoencoders (VAEs) (Kingma & 

Welling, 2022) and Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), 

which typically generate data of higher complexity and closer to the true distribution than 

VAEs (J. Liu, Zhang, et al., 2022). GAN consists of two networks, a generator, and a 

discriminator, which could cleverly compute the difference between the distribution of 

the generated data and the distribution of the original data, so that the generated data could 

learn the features of the original data. Since the creation of GAN, various variants of GAN 

have emerged. Mirza and Osindero proposed CGAN, which generates type-specific data 

by adding a conditional vector to the input noise vector (Mirza & Osindero, 2014). The 
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goal of GAN training is to find the Nash equilibrium between the generator and the 

discriminator, but traditional GANs are often unstable and prone to pattern collapse due 

to the large oscillations between the generator and the discriminator during adversarial 

training. Moreover, the generator often generates a single output or non-ideal output to 

fool the discriminator, resulting in training failure. Radford et al. proposed DCGAN, 

which introduces convolutional neural networks to build generators and discriminators 

that could extract deeper features and generate higher quality images (Radford et al., 

2016). To solve the problem that when using JS Divergence, the value of JS Divergence 

for two distributions without overlapping is always Log2, and it is impossible to calculate 

the relationship between the two distributions in this state, Arjovsky et al. introduced the 

Wasserstein GAN. The Wasserstein distance was introduced on top of the traditional 

GAN to replace the original KL divergence and JS divergence. The Wasserstein 

divergence is used to calculate the distance between the original distribution and the 

generated distribution by using the idea of minimizing the earth mover's distance, which 

makes the GAN more stable and could generate higher quality data (Arjovsky et al., 2017). 

Later, in response to the problem that supervised learning algorithms require a large 

amount of data from two distributions corresponding to each other, but the data in the 

situation are often unbalanced, J.-Y. Zhu et al. proposed a model called CycleGAN, which 

transforms the features in the domain of two different distributions by constructing two 

sets of generators and discriminators, and introduced a loss function called ''cycle 

consistency loss'' which separates the key features from the rest of the data and fixes one 

to enable the other to be transformed. This enables the style migration of images. Probably 

the best-known example is their unsupervised training and image transformation on two 

image datasets of horses and zebras (J.-Y. Zhu et al., 2020). 

Recently, GAN has been gradually applied to solve the problem of engineering fault 

imbalance data. For example, Zhou et al. combined autoencoder (AE) and GAN to 
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generate fault features for several different fault samples to improve the accuracy of fault 

diagnosis (F. Zhou et al., 2020). Chen et al. proposed a Joint Atrium and Scar 

Segmentations generative adversarial network (JAS-GAN) to segment unbalanced atrial 

targets from late gadolinium-enhanced cardiac magnetic resonance (LGE CMR) images 

in an end-to-end mode, producing better segmentation performance (J. Chen et al., 2022). 

For health monitoring of civil structures, Luleci et al. proposed a deep convolutional GAN 

incorporating Wasserstein loss (CycleWDCGAN-GP), which allows the undamaged and 

damaged acceleration data to be transformed between the two domains and could be used 

for the possible response of healthy structures to potentially damaged conditions, solving 

the problem of scarcity and imbalance of SHM data (Luleci et al., 2023). 

Compared with the traditional fault diagnosis method for rolling bearings, GAN 

abandons the influence of human subjective factors on the results, and avoids the problem 

of poor applicability caused by the fact that fault data are only suitable for specific fault 

types. The generated large amount of data can make the fault diagnosis results based on 

data-driven algorithm closer to the actual working conditions. At the same time, different 

from the traditional neural network and deep learning methods, the antagonistic 

relationship between the discriminator and the generator eliminates the need for 

variational lower bound or approximate reasoning in the process of data generation, and 

avoids the calculation of partition function caused by repeated application of Markov 

chain learning mechanisms. GAN, as a new generation model, solves the problems of low 

efficiency and inaccurate data generated by traditional generation model, and at the same 

time, it has the idea of discriminating model, and greatly improves the accuracy and speed 

of generating data by using the confrontation between generator and discriminator. At the 

same time, the limitations of the traditional generation model on the dimension of 

generated samples and loss function have also been solved in this new generation model, 

which also gives GAN a very high degree of freedom in model design and greatly 
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enhances the possibility of its practical application. In just six years after the advent of 

GAN, a large number of innovations and application methods have emerged, which also 

makes its application in the industrial field possible. Generally, the steps of generating 

pseudo-real data of rolling bearings by using GAN method are as follows: constructing 

and training to generate confrontation network model. The data generated by the 

countermeasure are compared with the real data respectively, and the similarity between 

the generated data and the real data is verified (Huo et al., 2022). 

However, datasets generated using GAN often suffer from the problem of lack of 

realism and usability, and it is challenging to generate data with a natural distribution of 

fault features. There is still a lack of research on imbalanced data from infrared thermal 

images of bearings, and Cyclegan could transform features and generate images between 

thermal images of bearings with different types of faults, while maintaining the natural 

distribution of the images. However, further research and experimental validation is 

needed for how to generate high quality images using generative loss, adversarial loss, 

cycle consistency loss and identity loss to preserve and migrate target and non-target 

features in both domains while avoiding pattern collapse and gradient disappearance. 

2.9 Convolutional neural network 

The convolution layer uses convolution kernels to map and extract the features of the 

input signal, and the activation function enhances the learning ability of the network by 

adding nonlinear mapping. Down sampling is carried out in the pool layer to reduce the 

dimension of the feature map and the amount of calculated data; The full connection layer 

fuses and classifies the extracted features to reduce the loss of feature information; The 

output layer, also known as SoftMax classifier, transforms the output features into 

probability distribution for classification and discrimination. With the development of 

CNN, many classic models have emerged, such as LeNet, ResNet, AlexNet, DenseNet, 
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Vgg, GoogleNet and so on. On the whole, there are three advantages of CNN. The first 

advantage is the local connection. Each neuron is no longer connected with all neurons in 

the previous layer, but only connected with a few neurons, which reduces the number of 

parameters. The second advantage is weight sharing, a group of connections can share 

the same weight, which also reduces the network parameters; The last advantage is down 

sampling, which can be used to reduce the number of samples in each layer, further reduce 

the number of parameters and improve the robustness of the model (X. Li, Ma, et al., 

2024). 

The bearing fault detection method based on Resnet classifier and model-based data 

enhancement can achieve good results. This method constructs a four-degree-of-freedom 

dynamic model to describe the bearing system. The dynamic model is identified by 

comparing the simulation and experimental results. Then, a large amount of data under 

different conditions can be generated, and a training data set can be constructed on this 

basis, and the Resnet classifier can be trained to classify the bearing state. In addition, in 

order to narrow the gap between the simulated data and the actual data, the envelope 

signal is used instead of the original signal in the training process (Qian et al., 2022). 

Classical ResNet block is shown as Figure 2.9. 

 

Figure 2.9: A residual learning unit. 
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CHAPTER 3: METHODOLOGY 

3.1  Theoretical background 

3.1.1 Generative Adversarial Networks 

The basic structure of GAN is shown in Figure 3.1, where x represented the real sample 

and obeyed the prior distribution of 𝑃𝑃𝑟𝑟. z represented the random noise input into the 

network and obeyed the prior distribution of 𝑃𝑃𝑧𝑧 . Generally, 𝑃𝑃𝑧𝑧  often used Gaussian 

distribution and Uniform distribution. G represented the Generator, and the input 𝑧𝑧 could 

be mapped into a fake sample 𝐺𝐺(𝑧𝑧) and obeyed the distribution 𝑃𝑃𝑔𝑔. Then 𝐺𝐺(𝑧𝑧) and 𝑥𝑥 were 

input discriminator (D) to judge whether they conformed to the prior distribution 𝑃𝑃𝑟𝑟 , 

achieving direct confrontation between G and D and reaching Nash equilibrium by 

constantly adjusting parameters. 

The objective function of GAN was: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷

𝐿𝐿(𝐺𝐺,𝐷𝐷) = 𝐸𝐸𝑥𝑥~𝑃𝑃𝑟𝑟[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)] + 𝐸𝐸𝑧𝑧~𝑃𝑃𝑧𝑧 �𝑙𝑙𝑙𝑙𝑙𝑙 �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��� (3) 

 

Figure 3.1: Basic structure of GAN 

Here, the loss of G is log �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��, and the loss of D is −�log�𝐷𝐷(𝑥𝑥)�� +

log �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��. G hoped that the generated data would deceive D, meaning that 

𝐷𝐷�𝐺𝐺(𝑧𝑧)�  was close to 1. D hoped to detect the data generated by G, meaning that 

𝐷𝐷�𝐺𝐺(𝑧𝑧)� was close to 0, so that adversarial training could be realized and 𝑃𝑃𝑔𝑔 could be 
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made as close as possible to  𝑃𝑃𝑟𝑟. In other words, the generated samples conformed to the 

real sample distribution as much as possible (Mirza & Osindero, 2014). 

In the design of GAN, the input to the generator was random noise z, which was passed 

through a network to generate fake data. This design meant that GAN did not consider 

the specific features of the input data when generating samples, and therefore could not 

perform feature transformation for a specific domain. The goal of GAN was to make the 

generated fake data as similar as possible to the real data distribution Pr, rather than 

transforming or mapping the features of a specific input data. Since the generator G 

generated data based on noise and did not rely on the features of a specific input data 

sample, GAN could not guarantee that certain characteristics of the input data would be 

preserved during the generation process. As a result, GAN could not directly perform 

feature transformation of bearing image because its generation process was inherently 

random and did not learn or map features in a directed manner based on specific input 

images. This meant that while GAN could generate samples that resemble real data, the 

features of the generated samples would not align with the features of the input data, 

leading to the generated data not being usable as real data. 

3.1.2 Cycle Consistent Generative Adversarial Network 

In the field of image processing, the main purpose of CycleGAN was to exchange 

features between two images of different domains. It contained two generators, G_AB 

and G_BA, which could convert image A to B and image B to A respectively. It also 

contained two discriminators, D_A and D_B, which determined the authenticity of the 

generated and original images. The basic structure was shown in Figure 3.2. 
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Figure 3.2: Basic structure of CycleGAN 

The core idea was that Real A was desired to have not only the target features of the 

sample B distribution, but also the non-target features of the A distribution, except for the 

target features, after Real A had been transformed into Fake B by 𝐺𝐺𝐴𝐴𝐴𝐴. To achieve this, 

Cycle Consistency Loss and Identity Loss were introduced. 

Cycle Consistency Loss was achieved by feeding Fake B back into generator 𝐺𝐺𝐵𝐵𝐵𝐵, 

producing an image Rec A that was as similar as possible to the original Real A, which 

could be described as: 

𝐺𝐺𝐵𝐵𝐵𝐵�𝐺𝐺𝐴𝐴𝐴𝐴(𝐴𝐴)� = 𝐴𝐴 (4) 

However, it was difficult to keep the non-target features unchanged only by Cycle 

Consistency Loss, because 𝐺𝐺𝐴𝐴𝐴𝐴 might have learned the non-target features of non-input 

Real A, and the universal non-target features from other real pictures in the source domain 

could have deceiving 𝐷𝐷𝐴𝐴 as well. To solve this problem, Identity Loss is introduced. 

Identity Loss was realized by directly inputting Real A into generator 𝐺𝐺𝐵𝐵𝐵𝐵 to generate 

picture Idt A, and constraining Idt A to have only the characteristics of the input picture 
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Real A, without mixing the characteristics of other pictures from the source domain, 

which could be expressed as: 

𝐺𝐺𝐵𝐵𝐵𝐵(𝐴𝐴) = 𝐴𝐴 (5) 

When training the discriminator, the parameters of 𝐺𝐺𝐴𝐴𝐴𝐴 and 𝐺𝐺𝐵𝐵𝐵𝐵 were fixed and only 

the parameters of 𝐷𝐷𝐴𝐴  and 𝐷𝐷𝐵𝐵  were adjustable. The target was then changed from 

Minimize Loss to Maximize Loss. 

CycleGAN could be applied to bearing data generation by training a model that 

mapped laboratory data to real-world application data. Bearings were critical components 

in many mechanical systems, and gathering large amounts of real-world bearing data 

could be expensive, time-consuming, and sometimes impractical due to the difficulty in 

replicating certain operating conditions or failure scenarios. However, laboratory data, 

which was easier to collect and could cover a wide range of controlled conditions, was 

used as a source domain. CycleGAN could then have learned a mapping from this 

laboratory data (which might not perfectly represent real-world variations) to the real 

application data, effectively generating synthetic but realistic bearing data. This synthetic 

data could have been used to overcome the scarcity of real-world data, helping to avoid 

the challenges of collecting large datasets under realistic conditions. By training the 

CycleGAN model to transform laboratory data into realistic application data, the 

generator learned to produce realistic bearing data that mimicked the real-world 

distribution, even though the model had been trained on the laboratory data. This process 

enabled the creation of a large and diverse dataset of real-world-like bearing data, which 

could then be used to train models for fault detection, predictive maintenance, or other 

tasks. Additionally, by using this augmented dataset, a model trained on the generated 

data is likely to generalize better to real-world applications, since it could learn from a 

broader range of conditions and scenarios that were difficult to capture through traditional 

Univ
ers

iti 
Mala

ya



33 

data collection methods. Therefore, CycleGAN helped bridge the gap between the lab 

and the field by generating realistic, diverse data that improved the performance and 

generalization of machine learning models in real-world bearing applications. 

However, due to the complexity of the data and CycleGAN’s original design not being 

for data augmentation, constructing a model that could transform target features without 

altering other background features requires further refinement. This involves ensuring 

that the model focuses on the desired features—like fault conditions—while preserving 

background elements such as operating conditions. Achieving this required additional 

constraints or modified loss functions to prevent changes to non-target features, along 

with fine-tuning Cycle Consistency Loss and Identity Loss to maintain the right balance. 

The main contribution of this research is to try to build such a model. 

3.1.3 Interpolation Algorithm 

In the past, it was found that the up-sampling process of GAN for image generation 

often used transpose convolution for image reconstruction, but this frequently led to a 

tessellation effect (uneven overlap) in the generated images. The cause of this 

phenomenon was often considered to be frequency artifacts since the kernel size of the 

convolution was not divisible by the stride (C. Dong et al., 2016). This problem could be 

effectively avoided by using interpolation methods, such as nearest-neighbor 

interpolation, bilinear interpolation and bicubic interpolation, of which bicubic 

interpolation was more computationally intensive but produced the best results. 

Linear interpolation played a crucial role in various domains of image processing, 

medical imaging, geospatial data modeling, and computational interpolation techniques. 

In the domain of image demosaicing, traditional interpolation methods, such as bilinear 

interpolation, were widely used but suffered from fixed weight limitations, leading to 

suboptimal color reconstruction. The DTDeMo model introduces convolution 
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interpolation blocks (CIBs) with trainable interpolation parameters to enhance the 

interpolation process while maintaining the original pixel arrangement, thus achieving 

superior demosaicing results (Hou et al., 2024). Similarly, in airway segmentation, a data-

centric deep learning approach leverages big interpolated data to improve segmentation 

accuracy. The Interpolation-Split method utilized interpolation to refine the input data, 

ensuring high-quality feature extraction and boosting segmentation performance without 

excessive computational overhead (Cheung et al., 2024). 

In the field of MRI reconstruction, interpolation was vital for refining k-space data and 

enhancing image quality. The Faster Fourier Convolution-based Single-to-Group 

Network (FAS-Net) incorporates k-space interpolation to improve spatial domain 

reconstruction, effectively mitigating full-image artifacts and optimizing 3D MRI 

reconstruction (X. Liu et al., 2024). In geospatial data processing, machine learning-based 

spatial interpolation techniques provide a robust alternative to traditional kriging methods. 

A machine-learning-driven block discretization technique enables efficient spatial 

interpolation, reducing computational complexity while maintaining high accuracy in 

mineral resource estimation and geospatial modeling (Nwaila et al., 2024). Furthermore, 

in digital volume correlation (DVC), cubic B-spline interpolation was commonly 

employed to achieve sub-voxel accuracy. The introduction of a direct cubic B-spline 

interpolation method provides a fuzzy, weightless alternative to traditional interpolation 

approaches, minimizing RAM usage while ensuring robust and precise displacement 

computations (D. Li et al., 2024). 

The bicubic interpolation used the values of the 16 points around the point to be 

sampled to interpolate three times, considering the rate of change of the values of each 

neighbouring point in addition to the directly adjacent points. The formula was: 

Univ
ers

iti 
Mala

ya



35 

𝐵𝐵(𝑋𝑋,𝑌𝑌) = ��𝑎𝑎𝑖𝑖𝑖𝑖 × 𝑊𝑊(𝑖𝑖)
3

𝑗𝑗=0

3

𝑖𝑖=0

× 𝑊𝑊(𝑗𝑗) (6) 

Where 𝐵𝐵(𝑋𝑋,𝑌𝑌) was the target pixel, 𝑖𝑖 and 𝑗𝑗 were the rows and columns of the points 

to be sampled, and 𝑊𝑊(𝑥𝑥) is the Bicubic function: 

𝑊𝑊(𝑥𝑥) = �
(𝑎𝑎 + 2)|𝑥𝑥|3 − (𝑎𝑎 + 3)|𝑥𝑥|2 + 1          𝑓𝑓𝑓𝑓𝑓𝑓|𝑥𝑥| ⩽ 1
𝑎𝑎|𝑥𝑥|3 − 5𝑎𝑎|𝑥𝑥|2 + 8𝑎𝑎|𝑥𝑥| − 4𝑎𝑎    𝑓𝑓𝑓𝑓𝑓𝑓1 < |𝑥𝑥| < 2
0                                                                 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(7) 

Where a was the weight, often taken as -0.5 

3.1.4 Depthwise Separable Convolution 

CycleGAN contained multiple generators and discriminators, which often led to an 

increase of computing resources and time, especially in more complex networks. How to 

improve the training speed of the model without reducing the model effect was a problem 

that needs to be considered. 

Depthwise Separable Convolution was a form of convolution with factorization and 

was probably best known for its application in Mobile Nets, proposed by Howard et al. 

in 2017. Compared to traditional 3D convolution, Depthwise Separable Convolution 

reduced computational effort by splitting the standard convolution into two steps: depth 

convolution and point convolution (Howard et al., 2017).  

Depthwise Separable Convolution (DWSC) had been widely applied in various deep 

learning models to enhance computational efficiency while maintaining high 

performance across different domains. In medical image segmentation, DSML-UNet 

leverages depthwise separable convolution with multiscale large kernels to increase the 

receptive field while minimizing computational complexity, leading to improved 

segmentation accuracy in spine, skin, and lung datasets (B. Wang et al., 2024). Similarly, 
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the DCDS-Net integrates DWSC with residual connections and densely connected blocks 

to enhance feature learning in the diagnosis of gastrointestinal diseases, demonstrating 

superior classification accuracy (Asif et al., 2024). The MDSU-Net model further 

incorporated multi-attention mechanisms alongside DWSC to improve feature fusion and 

reduce model complexity for medical image segmentation (Y. Zhou et al., 2024). In 

medical imaging reconstruction, DP-GAN+B utilizes DWSC in a generative adversarial 

network to efficiently generate high-quality CT volumes from X-ray images, significantly 

reducing the number of model parameters while preserving image fidelity (Xing et al., 

2024). Beyond medical applications, depthwise separable convolution was also adopted 

in agriculture, as evidenced by MDSCIRNet, a novel deep learning model for potato leaf 

disease detection that integrates DWSC with Transformer networks, achieving state-of-

the-art classification accuracy (Catal Reis & Turk, 2024). These studies collectively 

highlight the versatility and efficiency of DWSC in deep learning models across different 

domains. 

The computation number 𝐶𝐶  and the parametric number 𝑃𝑃  of the standard 3D 

Convolution are: 

𝐶𝐶 = 𝐷𝐷𝑘𝑘 × 𝐷𝐷𝑘𝑘 × 𝑀𝑀 × 𝑁𝑁 × 𝐷𝐷𝐹𝐹 × 𝐷𝐷𝐹𝐹 (8) 

𝑃𝑃 = 𝐷𝐷𝑘𝑘 × 𝐷𝐷𝑘𝑘 × 𝑀𝑀 × 𝑁𝑁 (9) 

 

where 𝐷𝐷𝐹𝐹×𝐷𝐷𝐹𝐹×M was input feature maps, 𝐷𝐷𝑘𝑘×𝐷𝐷𝑘𝑘×M is kernel size, 𝐷𝐷𝐹𝐹×𝐷𝐷𝐹𝐹×N was 

output feature maps. 

The computation 𝐶𝐶𝐷𝐷𝐷𝐷  and the parametric number 𝑃𝑃𝐷𝐷𝐷𝐷   of the Depthwise Separable 

Convolution were: 
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𝐶𝐶𝐷𝐷𝐷𝐷 = 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ + 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

= 𝐷𝐷𝑘𝑘 × 𝐷𝐷𝑘𝑘 × 𝑀𝑀 × 𝐷𝐷𝐹𝐹 × 𝐷𝐷𝐹𝐹 + 𝑀𝑀 × 𝑁𝑁 × 𝐷𝐷𝐹𝐹 × 𝐷𝐷𝐹𝐹 (10) 

𝑃𝑃𝐷𝐷𝐷𝐷 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐷𝐷𝑘𝑘 × 𝐷𝐷𝑘𝑘 × 𝑀𝑀 + 𝑀𝑀 × 𝑁𝑁 (11) 

where 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ and 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ is the computation and parametric numbers respectively. 

Computational volume analysis of standard convolution with depthwise separable 

convolution: 

𝐶𝐶𝐷𝐷𝐷𝐷
𝐶𝐶

=
𝐷𝐷𝑘𝑘 × 𝐷𝐷𝑘𝑘 × 𝑀𝑀 × 𝐷𝐷𝐹𝐹 × 𝐷𝐷𝐹𝐹 + 𝑀𝑀 × 𝑁𝑁 × 𝐷𝐷𝐹𝐹 × 𝐷𝐷𝐹𝐹

𝐷𝐷𝑘𝑘 × 𝐷𝐷𝑘𝑘 × 𝑀𝑀 × 𝑁𝑁 × 𝐷𝐷𝐹𝐹 × 𝐷𝐷𝐹𝐹
=

1
𝑁𝑁

+
1
𝐷𝐷𝐾𝐾2

(12) 

This shows that with a 3x3 convolutional kernel, the parameters could be reduced by 

a factor of 8 to 9 with almost no loss of accuracy. 

3.2 The proposed approach 

The framework of the proposed unsupervised rotor bearing unbalance fault diagnosis 

method was shown in Figure 3.3. 

The main steps were as follows: 

Step 1: For the network master process, the real images Real A and Real B enter the 

generators G_AB and G_BA respectively to generate the target dummy images Fake B 

and Fake A. The generated images then entered the generators G_BA and G_AB to 

generate the reconstructed images Rec A and Rec B. Real A and RecA were used to 

calculate the loss cycle A, similar to Real B and Rec B. This loss helped the Generator 

maintain the non-target feature of the source domain data. Real A was directly input into 

Generator_BA to get idt A and calculate the loss idt A, similarly to Real B. This loss 

helped the Generator use the input data to generate images, rather than directly outputting 
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without considering the input. As for the design of loss gan, it followed the same design 

as normal GAN. The generator was trained by driving the generated image closer to the 

real image, and the discriminator was trained by driving the generated image to be 

distinguishable from the real image. 

Step 2: For the input of the new discriminator D_AB, each generated fake image and 

the corresponding real image are extracted into the image buffer with Query probability 

(total probability 1). Real A and Fake A composed the image buffer A, from which a 

random image was extracted and named New A. New B was generated by the same 

process. By classifying the data in buffer A and buffer B into corresponding categories, 

D_AB helped the generator generate images with target feature. 

Step 3: For the loss function, Real A was compared with Fake A using the 

discriminator D_A and the loss value was calculated using BCE. The process for Image 

B was the same as for A. In addition, New A and New B entered the discriminator D_AB 

for binary classification, and the loss value was calculated using the cross-entropy 

function. 

Step 4: All the losses were summed for gradient feedback and network parameter 

update, and finally the trained network was used to amplify the data and calculate the 

final accuracy and other metrics. 
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Figure 3.3: The framework of the FP-Cyclegan 

3.2.1 Architecture of the generator. 

With the development of Transformer frameworks based on self-attentive mechanisms, 

excellent vision backbone frameworks such as Vision Transformers (ViTs), Swin 

Transformers, etc. had emerged in the field of recognition vision and seem to be gradually 

replacing the old ConvNets (Dosovitskiy et al., 2021; Z. Liu et al., 2021). 

However, Z. Liu et al. found that, with the same key components of the network, 

ConvNets still had advantages that could not be replaced by the self-attentive mechanism 

and re-examined the design space to propose a network framework called ConvNeXt to 

achieve results comparable to those of Transformer (Z. Liu et al., 2022). Inspired by 

ConvNeXt, a U-shaped network was designed based on the ConvNeXt module for the 

generators of Cyclegan networks.  

ConvNeXt had been widely adopted in various domains due to its advanced 

convolutional architecture and performance improvements. In the field of computer 

vision, Yu et al. proposed InceptionNeXt, an extension of ConvNeXt that introduces an 

inception-style decomposition to large-kernel depthwise convolutions, achieving 

improved speed and accuracy for image classification tasks (W. Yu et al., 2024). In 

another study, Benchallal et al. developed a ConvNeXt-based semi-supervised learning 

approach for weed classification, effectively leveraging consistency regularization to 

improve classification performance with limited labeled data (Benchallal et al., 2024). In 

the aerospace sector, Yang et al. integrated ConvNeXt within an encoder-decoder 

framework to predict aerodynamic wall quantities for hypersonic vehicles, demonstrating 

superior accuracy compared to traditional computational fluid dynamics (CFD) models 

(Y. Yang et al., 2024). Moreover, Ramos et al. explored the application of ConvNeXt for 

enhanced image captioning, showing that it outperformed existing CNN-based and 
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transformer-based models in generating accurate textual descriptions of images (Ramos 

et al., 2024). In medical imaging, Gulsoy et al. introduced FocalNeXt, a ConvNeXt-

augmented FocalNet architecture designed for lung couldcer classification from CT 

scoulds, achieving state-of-the-art accuracy and robustness in couldcer detection tasks 

(Gulsoy & Baykal Kablan, 2025). Additionally, in image generation, Verma et al. 

incorporated ConvNeXt-V2 into a denoising diffusion probabilistic model, 

significouldtly improving image diversity and quality by leveraging ConvNeXt’s robust 

feature extraction capabilities (Verma et al., 2024). These studies highlighted 

ConvNeXt’s adaptability and efficiency across multiple disciplines, ranging from 

computer vision and healthcare to aerospace and generative modeling. 

The architecture of the ConvNeXt Block was shown in Figure 3.4. 

 

Figure 3.4: The architecture of the ConvNeXt Block 

The input was first passed through a depthwise separable convolutional layer with a 

kernel size of 7, the step size of 2, and the padding of 3, and then through two 1x1 

convolutional layers. Before the output, a scaling factor called layer scale was applied to 

adjust the expressiveness of the layer output and a drop path is introduced to randomly 

discard network paths to prevent overfitting and improve generalization. 

The architecture of the generator is shown in Figure 3.5. 
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Figure 3.5: The architecture of the Generator 

First, the pre-processing process scaleed and center-cropped the bearing thermal image 

to the size of 224x224x3 as input. 

For the down-sampling process, the image was first projected into a 56x56x96 feature 

map by a convolutional layer with a kernel size and stride of 4. The feature map was then 

downsampled three times, with each downsample module consisting of multiple 

ConvNeXt Blocks and a Conv2d layer. The final feature map of size 7x7x768 entered a 

bottleneck layer consisting of three ConvNeXt Blocks. The same number of blocks was 

maintained as in ConvNeXt-T [3,3,9,3]. 

For the up-sampling process, the output of the bottleneck layer was passed through 

three up sample modules, each consisting of a linear Interpolation or Transpose Covn2d 

layer and a Conv2d layer. Network Layer Fusion was also introduced, where the 

corresponding feature map sizes from the down-sampling and up-sampling processes 

were concatenated in the channel dimension to improve the expressiveness of the model 

and the perception of different levels of features in the image. The final feature map was 
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reconstructed back to an input size of 224x224x3 by a Transpose Covn2d layer with the 

kernel size and step size of 4 and output by Tanh as the activation function. 

In recent studies, the concat mechanism had been widely used to fuse features from 

different layers of neural networks, improving the performance in various image and 

scene classification tasks. For instance, the study by Liu et al. integrates deep feature 

fusion using concatenation techniques to combine multi-scale features, achieving 

enhanced results in plant leaf recognition (Hu et al., 2018). Similarly, MCFNet employs 

a multi-layer concatenation fusion network to improve medical image fusion, 

demonstrating that concatenation-based feature aggregation enhances classification 

accuracy (Liang et al., 2019). In another work, the authors leverage concatenation to fuse 

features from different convolutional layers for scene classification in remote sensing 

applications, enabling a more detailed representation of input data (C. Ma et al., 2019). 

Additionally, the two-stage deep feature fusion model proposed by Liu et al. utilized 

concatenation to combine information from both intermediate and fully connected layers 

to improve the model's performance in remote sensing classification (Y. Liu et al., 2018). 

Finally, a multiscale convolutional neural network also applies feature concatenation to 

effectively merge global and local features for scene classification, further enhancing the 

accuracy of the model (J. Liu, Sun, et al., 2022). 

Throughout the generator process, a smoother GELU and a more feature-focused 

LayerNorm were used as the activation function and normalization method after each 

layer of the network to improve the model's generalizability and training speed. 

In deep learning, both GELU and LayerNorm had become critical components in 

enhancing model performance and efficiency (Hendrycks & Gimpel, 2023; Kiliçarslan & 

Celik, 2024; Lee, 2023). The GELU activation function had been extensively analyzed 

for its smoothness, differentiability, and superior performance over traditional activation 
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functions like ReLU. In particular, GELU had been found to improve training stability 

and computational efficiency in various deep neural network architectures. On the other 

hand, LayerNorm was crucial for stabilizing training, especially in large pre-trained 

models such as BERT, by normalizing input distributions across layers (ValizadehAslani 

& Liang, 2024; J. Xu et al., n.d.). For example, Zhang et al. introduce an optimized 

version, Root Mean Square Layer Normalization (RMSNorm), which reduced 

computational overhead while maintaining the benefits of traditional LayerNorm (B. 

Zhang & Sennrich, n.d.). Together, GELU and LayerNorm (and its variants) had become 

fundamental in modern deep learning for improving both performance and efficiency. 

 

3.2.2 Architecture of the discriminator. 

The structure of the new discriminator D_AB was shown in Figure 3.6. 

 

Figure 3.6: The architecture of the discriminator D_AB 

The input to D_AB was the same as D_A and D_B, both pre-processed 224x224x3 

images of the centre of the rotor bearing thermal image. The difference was that the new 

D_AB finally compresses the feature map to 1x1x3072 and outputs it as a 4x1x1x2 matrix 

with a fully-connected layer, where 4 was the batch size and 2 was the target score for 

binary classification. The reason for this was to use CrossEntropyLoss instead of 
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MSELoss to avoid the problem of non-decreasing gradients when the output was close to 

0 or 1. 

3.2.3 Loss function 

The loss function of the whole model was: 

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝐹𝐹𝐹𝐹−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔 + 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (13) 

where 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔 was the classical GAN network adversarial loss. For the FP-Cyclegan 

network, there are two generators and two discriminators, so its expression was: 

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔 = ℒ𝑔𝑔𝑔𝑔𝑔𝑔(𝐺𝐺𝐴𝐴𝐴𝐴,𝐷𝐷𝐵𝐵 ,𝐴𝐴,𝐵𝐵) + ℒ𝑔𝑔𝑔𝑔𝑔𝑔(𝐺𝐺𝐵𝐵𝐵𝐵,𝐷𝐷𝐴𝐴,𝐴𝐴,𝐵𝐵) 

= 𝔼𝔼𝑎𝑎~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎)[log𝐷𝐷𝐴𝐴(𝑎𝑎)] + 𝔼𝔼𝑏𝑏~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏) �log �1 − 𝐷𝐷𝐴𝐴�𝐺𝐺𝐵𝐵𝐵𝐵(𝑏𝑏)��� (14) 

+𝔼𝔼𝑏𝑏~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏)[log𝐷𝐷𝐵𝐵(𝑏𝑏)] + 𝔼𝔼𝑎𝑎~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎) �log �1 − 𝐷𝐷𝐵𝐵�𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎)��� 

The goal of the generator was to bring the defective features of the generated image 

closer to the distribution of defective features in the target domain, and the goal of the 

discriminator was to be able to identify whether the image contains defective features in 

the source domain or in the target domain. 

The expression of the optimization objective in a mathematical formula was: 

𝐺𝐺𝐴𝐴𝐴𝐴∗ ,𝐺𝐺𝐵𝐵𝐵𝐵∗ ,𝐷𝐷𝐴𝐴∗,𝐷𝐷𝐵𝐵∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺𝐴𝐴𝐴𝐴
∗ ,𝐺𝐺𝐵𝐵𝐵𝐵

∗ 𝑚𝑚𝑚𝑚𝑚𝑚
 𝐷𝐷𝐴𝐴

 ,𝐷𝐷𝐵𝐵
 ℒ(𝐺𝐺𝐴𝐴𝐴𝐴 ,𝐺𝐺𝐵𝐵𝐵𝐵,𝐷𝐷𝐴𝐴,𝐷𝐷𝐵𝐵) (15) 

In addition, MSE Loss was used to calculate the loss of both, with the generated image 

label set to 0 and the original image label set to 1. The mathematical formula was: 

min
𝐷𝐷𝐵𝐵

1
𝑁𝑁
�𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐵𝐵(𝑏𝑏), 1)
𝑁𝑁

𝑖𝑖=1

(16) 
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min
𝐷𝐷𝐴𝐴

1
𝑁𝑁
�𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐴𝐴(𝑎𝑎), 1)
𝑁𝑁

𝑖𝑖=1

(17) 

min
𝐺𝐺𝐴𝐴𝐴𝐴

1
𝑁𝑁
�𝑀𝑀𝑀𝑀𝑀𝑀�𝐷𝐷𝐵𝐵�𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎)�, 0�
𝑁𝑁

𝑖𝑖=1

(18) 

min
𝐺𝐺𝐵𝐵𝐵𝐵

1
𝑁𝑁
�𝑀𝑀𝑀𝑀𝑀𝑀�𝐷𝐷𝐴𝐴�𝐺𝐺𝐵𝐵𝐵𝐵(𝑏𝑏)�, 0�
𝑁𝑁

𝑖𝑖=1

(19) 

The expression for 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 was: 

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝔼𝔼𝑎𝑎~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎)��𝐺𝐺𝐵𝐵𝐵𝐵�𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎)�−𝑎𝑎‖� 

                 +𝔼𝔼𝑏𝑏~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏)��𝐺𝐺𝐴𝐴𝐴𝐴�𝐺𝐺𝐵𝐵𝐵𝐵(𝑏𝑏)�−𝑏𝑏‖� (20) 

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  was implemented as L1 Loss, which, when minimizing 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , was 

equivalent to making the input image as consistent as possible with the image 

reconstructed by the two generators. This enables the generated image to acquire the fault 

features in the target domain while keeping the other non-target features in the source 

domain as constant as possible. 

The expression for 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 was:  

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 = 𝔼𝔼𝑎𝑎~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎)[‖𝐺𝐺𝐵𝐵𝐵𝐵(𝑎𝑎)−𝑎𝑎‖] + 𝔼𝔼𝑏𝑏~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏)[‖𝐺𝐺𝐴𝐴𝐴𝐴(𝑏𝑏)−𝑏𝑏‖] (21) 

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖  was implemented as L1 Loss. When minimizing 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 , the generated 

images tried to keep the non-target features of that original input image while obtaining 

the defective features of the target domain, instead of the non-target features of other 

images in the source domain. 

The expression for 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 was: 
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𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺𝐴𝐴𝐴𝐴,𝐷𝐷𝐴𝐴𝐴𝐴 ,𝐴𝐴,𝐵𝐵) + ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺𝐵𝐵𝐵𝐵,𝐷𝐷𝐴𝐴𝐴𝐴 ,𝐴𝐴,𝐵𝐵) 

= 𝔼𝔼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)[log𝐷𝐷𝐴𝐴𝐴𝐴(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)] 

+𝔼𝔼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) �log �1 − 𝐷𝐷𝐴𝐴𝐴𝐴�𝐺𝐺𝐵𝐵𝐵𝐵(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)��� (22) 

+𝔼𝔼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)[log𝐷𝐷𝐴𝐴𝐴𝐴(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)] 

+𝔼𝔼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) �log �1 − 𝐷𝐷𝐴𝐴𝐴𝐴�𝐺𝐺𝐴𝐴𝐴𝐴(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)��� 

where 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) was the joint distribution of the original image A distribution and 

the generated image A distribution, and 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) was the same. 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) = 𝜇𝜇𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎) + (1 − 𝜇𝜇)𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐺𝐺𝐵𝐵𝐵𝐵(𝑏𝑏)]   𝑏𝑏~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏) (23) 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) = 𝜇𝜇𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏) + (1 − 𝜇𝜇)𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎)]   𝑎𝑎~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎) (24) 

where 𝜇𝜇 was the ratio of the original images to the generated images in the new joint 

distribution, used to control the degree of transfer of the target features. 

In addition, 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 was implemented as Cross Entropy Loss instead of MSE Loss 

because the objective of the new discriminator D_AB could be seen as a logistic 

regression problem to classify images from 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 as binary categories. MSE 

Loss was more suitable for linear regression problems. 

In summary, if the features contained in the original input images A and B were 

represented by 𝐹𝐹𝐴𝐴 and 𝐹𝐹𝐵𝐵. Use 𝐹𝐹𝐺𝐺𝐵𝐵𝐵𝐵(𝐵𝐵) and 𝐹𝐹𝐺𝐺𝐴𝐴𝐴𝐴(𝐴𝐴) to represent the features contained in 

the generated images Fake A and Fake B. with 𝑃𝑃𝐹𝐹𝐴𝐴 and 𝑃𝑃𝐹𝐹𝐵𝐵 representing the defective 

features of images A and B. with 𝑁𝑁𝐹𝐹𝐴𝐴 and 𝑁𝑁𝐹𝐹𝐵𝐵 representing the non-defective features 

of images A and B. Then the input image features were: 

Univ
ers

iti 
Mala

ya



47 

𝐹𝐹𝐴𝐴 = (𝑃𝑃𝐹𝐹𝐴𝐴,𝑁𝑁𝐹𝐹𝐴𝐴) (25) 

𝐹𝐹𝐵𝐵 = (𝑃𝑃𝐹𝐹𝐵𝐵 ,𝑁𝑁𝐹𝐹𝐵𝐵) (26) 

The goal of FP-Cyclegan's output image features was: 

𝐹𝐹𝐺𝐺𝐵𝐵𝐵𝐵(𝐵𝐵) = (𝑃𝑃𝐹𝐹𝐵𝐵,𝑁𝑁𝐹𝐹𝐴𝐴) (27) 

𝐹𝐹𝐺𝐺𝐴𝐴𝐴𝐴(𝐴𝐴) = (𝑃𝑃𝐹𝐹𝐴𝐴,𝑁𝑁𝐹𝐹𝐵𝐵) (28) 

3.3 Summary 

In summary, this paper proposes a fault diagnosis framework called Feature Preserving 

CycleGAN. The core of the framework is the introduction of a new discriminator D_AB 

based on CycleGAN to constrain the non-target features in the source domain, which in 

turn migrates the target features in the source domain and reconstructs the generator 

structure. It solves the problem of data imbalance in the infrared thermal images of faulty 

rotor bearings and enhances the stability of the network and the realism of the generated 

images during the adversarial generation process. The main contributions of this paper 

are as follows: 

A new unsupervised fault diagnosis method called FP-CycleGAN is proposed. A new 

discriminator D_AB is introduced to efficiently migrate the target features while 

maintaining the non-target features during the transformation of the bearing thermal 

image from the source domain A to the target domain B. The total Loss function is 

reconstructed, and a new Loss-class is added. 

The generator is reconstructed to provide better feature extraction capability and data 

processing speed. It is possible to reduce the higher data volume caused by D_AB and 

the difficulty of bearing thermal image reconstruction in the new framework, which 

improves the operation speed of the network and the quality of the generated images. 
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Using the rotor bearing infrared thermal image fault simulation experiment bench to 

extract data and conduct extensive experiments, to verify the effectiveness of the 

proposed data amplification and fault diagnosis method. 
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CHAPTER 4: RESULTS 

4.1 Introduction 

In this chapter, the experimental results of image amplification and damage detection 

by the proposed method are given. At first, the design and operation details of collecting 

experimental data of bearing thermal image are introduced. Then, the ablation analysis of 

different modules of the proposed model is given and the numerical results of evaluation 

are given. The data sets with different data amplification methods are ablated and the 

index results are analyzed. 

4.2 Collection and description of laboratory bearing data sets. 

The faulty rotor bearing specimens used in the text are seven kinds of bearings with 

different failure points and degrees of damage, with a dimensional size of 650 mm outer 

ring radius and GCr15 material, and health condition names with corresponding labels as 

shown in Table 4.1. 

Table 4.1: Health conditions and labels of rolling bearings 

Health Condition Amount  

(Multi  

dimension) 

Amount (single 
dimension) 

Label 

F-N-0.6 300 400 Label 1 
F-N-0.8 896+300 400 Label 2 
F-N-1.0 300 400 Label 3 
F-Q-0.8 300 400 Label 4 
F-W-0.6 300 400 Label 5 
F-W-0.8 300 400 Label 6 
F-W-1.0 300 400 Label 7 

 

The label N indicates damage to the inner ring, Q indicates damage to the sphere, W 

indicates damage to the outer ring and the number indicates the degree of damage. 
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The infrared thermal image acquisition process of this experiment was carried out at 

the State Key Laboratory of Mechanical Behavior and System Safety of Traffic 

Engineering Structures, Shijiazhuang Tiedao University. The experimental data came 

from the rotating machinery test bench shown in Figure 4.1, mainly consisting of a driven 

motor, rotor shaft, bearing under test and drive belt. The infrared thermal imaging camera 

used is A315 made by FLIR, USA, which could collect the temperature field information 

of the faulty bearing at various points in the rotation, with a thermal sensitivity less than 

or equal to 0.05°C and a maximum acquisition temperature of 1200°C. The resolution 

was set to 370×240 pixels when shooting the camera is initially installed at 40cm from 

the fixed rotor shaft, and the position will change as the experiment progresses. 

 

Figure 4.1: The rotating machinery test bench 

The shooting software uses the professional analysis/detection system (BM_IR) of 

infrared thermal imager matched with A315. The interface is shown in Figure 4.2, the 

measuring range is -20.15-119.85, and the shooting frame rate is set to 1fps. 
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Figure 4.2: Thermal image acquisition system 

In the first stage of the experiment, thermal imaging images were taken at five speeds 

(1,000, 2,000, 3,000, 4,000 and 5,000 rev/min) for each healthy condition of the bearing 

at a constant distance, and 80 images were taken for each speed condition, i.e., 400 

experimental images for each bearing, for a total of 2,800 images. After the shooting, 

BTV files were obtained, and the files were transcoded to obtain a dataset of 2,800 images 

in the rain900 style, as shown in Figure 4.3. They will be used as the data for a single 

working condition in the laboratory to participate in the training of defect detection and 

data generation. In the proposed FP-CycleGAN model, the data of each kind of defects 

in this part will be used as the data in Real A to participate in the training. 
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Figure 4.3: Single angle and state bearing rain900 data set 

In the second phase of the experiment, 896 images of a bearing with health condition 

F-N-0.8 at a random speed were collected at a random distance and angle between the 

thermal imaging camera and the faulty bearing for data amplification. They will be used 

as data to simulate the complex working conditions of reality and participate in the 

training of data generation. In the proposed FP-CycleGAN model, this part of data will 

be used as Real B to guide the data in Real A to generate Fake A data under multiple 

working conditions. 

400 images of each of the seven healthy conditions of the bearing at random speeds 

were acquired at random distances and angles between the thermal imaging camera and 

the faulty bearing. This was used to construct a test set to simulate the data diversity in a 

real application. It was also converted to the rain900 style as shown in Figure 4.4. 
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Figure 4.4: Multi angle and state bearing rain900 data set 

4.3 Sample expansion performance evaluation 

The experimental algorithms in this paper were designed using Python 3.7.3 and 

Pytorch Stable (2.0.1). The experimental platform consists of an Intel Core i5-12400 CPU, 

NVIDIA RTX 3090 GPU and 32G RAM. 

The hyperparameters of the FP-CycleGAN framework are set as shown in Table 4.2. 

 

Table 4.2: Hyperparameter setting. 

Hyperparameter Value 
Adam Learning Rate 0.0001 

Adam momentum term  0.5 
Batch size 4 

Number of epochs 300 
Number of epochs with decay 300 

Load image size 260 
Crop image size 224 

Q 0.9 
𝜆𝜆 10 
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where Q is the proportion of real images in the image buffer used for discriminator 

D_AB training, and 𝜆𝜆 is the weight of 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. These hyperparameters were determined 

experimentally. 

The experimental scheme for the sample expansion was to use 896 F-N-0.8 bearing 

thermal images with multi-state information as domain A, and 400 of one of the other six 

single-state bearing thermal images as domain B, converting them in turn. The aim is to 

transform the defective features of the thermal image of domain B with those of domain 

A to obtain the 896 generated multi-state images of domain B, thus enabling the 

expansion of the imbalance data. 

To fully demonstrate the superiority of the proposed approach, it is necessary to 

investigate in turn the impact of the different modules of the FP-CycleGAN system on 

the system. A variety of evaluation metrics are used to quantify the different performances 

of the proposed model. The Fréchet Inception Distance (FID) value is a metric used to 

quantify the dissimilarity between images generated by a Generative Adversarial 

Network (GAN) and real images (Bynagari, 2019). It measures the distance between the 

distributions of feature representations extracted from a pre-trained neural network, 

typically an Inception network. A lower FID score indicates that the generated images are 

closer to the real images in terms of their high-level features, implying better performance 

of the GAN in generating realistic images.  

However, this metric could only be used to evaluate whether the generated images 

match the target domain distribution but could not measure whether the migration of the 

target feature distribution could be performed while preserving to the maximum extent 

the non-target feature distribution in the source domain. So, in the experiment, it is 

necessary to strive for both lowering the FID value and improving the accuracy of the 

final classification network. 
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The time metric Time is used to evaluate the amount of data and the speed at which 

the model could be run. Models with different up-sampling methods and convolution 

methods are combined with the proposed best models for comparison. All methods are 

tested in ten runs to overcome particularity and contingency. All tables with an asterisk 

(*) represent the optimal approach in the proposed FP-CycleGAN framework. Table 4.3 

shows the operation time and FID values for the FP-CycleGAN with different up-

sampling methods. 

The comparison shows that the interpolation algorithm could improve the quality of 

the images and avoid the tessellation effect as much as possible. Bicubic interpolation 

gives the best results for the generated images, although it takes a little longer, but the 

quality is improved more. The interpolation algorithm works better in the first half of the 

up-sampling (step1 and step2), whereas it reduces the quality of the resulting image in 

the latter half. 

Table 4.3: Results of different up-sampling methods. 

Up-simple method Time (s/epoch) FID score 
Transposed Convolution 97.75 65.7604 

Nearest neighbour 
interpolation 

(Step 1,2) 

91.57 62.7155 

Bilinear interpolation 

(Step 1,2) 
98.14 62.5304 

Bicubic interpolation* 

(Step 1,2) 
103.95 59.7446 

Bicubic interpolation (Step 
1,2,3) 105.45 60.5247 

Bicubic interpolation (Step 
1,2,3,4) 120.50 85.0308 

Bicubic interpolation (Step 
3,4) 102.60 94.3045 
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Figure 4.5 shows the images generated by the different up-sampling methods. 

 

Figure 4.5: Images generated by different up-sampling methods. 

Bicubic interpolation outperforms other up-sampling methods in the early stages (Step 

1 and Step 2) of the FP-CycleGAN process may be due to its ability to generate smoother 

and higher-quality images. This method considers more surrounding pixels compared to 

simpler techniques like bilinear or nearest-neighbor interpolation, resulting in a more 

refined and detailed image that avoids the tessellation effect (the blocky or pixelated 

artifacts that could appear during image up-sampling). The improved image quality is 

particularly important in thermal imaging, where subtle differences in temperature need 

to be preserved. However, Bicubic interpolation’s advantage diminishes in the later stages 

(Step 3 and beyond), where it may lead to blurring or distortion, negatively impacting the 

image quality. Thus, while it requires more time, Bicubic interpolation's superior quality 

in the initial steps makes it the best choice for improving image clarity and detail in FP-

CycleGAN's image generation process. 

Table 4.4 shows the operation time and FID values for different convolution methods. 
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The results show that the computation time of the generator structure with depth wise 

separable convolution is significouldtly less than that with normal convolution, and the 

generated images are slightly better than the normal convolution structure. 

Depthwise Convolution demonstrates a clear advantage over the original convolution 

method. This improvement is primarily due to its computational efficiency and ability to 

preserve important image features. Depthwise Convolution reduces the number of 

parameters by applying a separate filter to each individual input channel rather than using 

a single filter across all channels, as in the traditional convolution method. This leads to 

faster processing times and a reduction in computational complexity, which is crucial 

when working with large datasets or performing multiple iterations in the FP-CycleGAN. 

Despite the reduced complexity, Depthwise Convolution maintains or even enhances the 

quality of the generated images, as evidenced by the improved Fréchet Inception Distance 

(FID) values. This makes Depthwise Convolution not only more efficient but also more 

effective in preserving the quality of thermal images used for fault diagnosis of rolling 

bearings, thereby providing a better balance between computational cost and diagnostic 

accuracy. 

Table 4.4: Results of different convolution methods. 

Up-simple method Time (s/epoch) FID score 
Deep wise* 103.95 59.7446 

Original  114.6 60.8022 
 

4.4 Unbalance fault diagnosis results and analysis 

After determining the optimal FP-CycleGAN data augmentation framework, further 

comparative experiments for the diagnosis of thermal images of unbalanced faulty 

bearings are required to demonstrate that the generated images successfully perform the 

target defect feature transfer and improve the generalizability of the data. 
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The specific experimental scheme is: 

Construction of a data-free augmented training set: 400 single-angle and 15 multi-

angle images for each bearing defect category except for the label F-N-0.8. The category 

labelled F-N-0.8 contains 300 plus 400 multi-angle images. In this case, the trained neural 

network often has low generalization in the test set, because the training lacks data with 

sufficient generalization. This simulates the problem of often unbalanced data in practical 

engineering applications, where a small amount of data or a single piece of data often 

makes it difficult to obtain good detection results. 

Construction of the training set after data amplification: each bearing defect category, 

except for the label F-N-0.8, contains 400 single-angle and 15 multi-angle real images, 

as well as 896 generated multi-angle dummy images. The category labelled F-N-0.8 

contains 300 plus 400 multi-angle real images. 

Construction of the test set: Each category in the test set contains 400 images of 

random rotation speeds and angles to simulate the diversity of data in real applications. 

Besides the proposed method FP-CycleGAN, the classical CycleGAN with ResNet 

block and UNet as backbones and the FP-CycleGAN without D_AB were also used for 

comparison experiments, thus proving the superiority of the proposed method. 

After amplification of the data by different methods, ResNet18 was used uniformly for 

classification training and the results were compared on the test set, ten times for each 

training and the average was taken. 

Figure 4.6 presents a detailed comparison of the results obtained from various data 

amplification methods applied to thermal images of unbalanced faulty bearings, aiming 

to demonstrate the efficacy of the proposed FP-CycleGAN model. The comparison 
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includes the classical CycleGAN with two different backbones—ResNet and UNet—and 

the FP-CycleGAN method without the discriminator component D_AB. The purpose of 

this comparison is to assess the performance of these methods in transferring the defect 

features effectively and improving the model’s generalization capabilities. 

The image is structured as follows: 

First row (Input): Displays the raw thermal images of the bearings, which serve 

as the initial data before amplification. 

Second row (CycleGAN-Unet): Shows the results from the CycleGAN method 

using a UNet backbone for data amplification. The output images here reflect how 

this model handles feature transfer but may exhibit less accuracy in maintaining 

image realism compared to the FP-CycleGAN method. 

Third row (CycleGAN-Resnet): Displays the results from the CycleGAN method 

using a ResNet backbone. This row highlights the effects of using ResNet as a 

backbone in amplification the images, with a focus on how it influences the 

feature transfer and realism of the generated images. 

Fourth row (FP-CycleGAN without D_AB): Presents the output of the FP-

CycleGAN method without the D_AB component. This is an attempt to assess the 

impact of omitting the D_AB part on the quality of the generated images, showing 

that the exclusion may reduce the model's ability to maintain high-quality image 

generation. 

Fifth row (FP-CycleGAN): Shows the results of the proposed FP-CycleGAN 

approach. As the primary method under evaluation, FP-CycleGAN outperforms 
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the other models, addressing issues such as pattern collapse and ensuring the 

generated images retain more realism and better defect feature transfer. 

Each image in the columns represents the results for a different set of labels and 

amplification parameters, such as F-N-0.6, F-N-1.0, F-Q-0.8, and F-W with varying 

values (e.g., 0.6, 0.8, 1.0). These variations simulate real-world conditions where the fault 

characteristics of bearings may vary due to different rotational speeds and angles. 

The key takeaway from this comparison is that FP-CycleGAN significouldtly 

improves upon previous methods, effectively mitigating the problem of pattern collapse 

while preserving the realism of the thermal images. This is crucial in practical 

applications where accurate fault diagnosis requires high-quality images that could 

generalize well across different fault conditions and variations. The experimental results 

support the superiority of the FP-CycleGAN framework in handling the challenges posed 

by unbalanced data and ensuring reliable performance in bearing fault detection. 
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Figure 4.6: Images generated by different data amplification methods. 

Compared with the previous methods, the proposed method has been improved in 

precision, F1 score and recall. We also use the mean precision, top-1 accuracy, mean f1 

score to show the different result. 

Table 4.5 shows the results of the classification network ResNet18 after different 

methods of data enhancement. The comparison of the results shows that the accuracy, 

recall and F1 scores of the classification network trained on the proposed FP-CycleGAN 

amplified dataset have improved significouldtly on the test set. 

By comparison, the diagnostic accuracy of the classification network trained by all 

methods is 100% for the bearing images labeled F-N-0.8, but for the other six categories, 

the proposed method has a great improvement in the accuracy. 

 

Table 4.5: Results of different data amplification methods 

Data 
Amplification 

Method 
Label Pre (%) Rec 

(%) 

F1 (%) 

 

Mean 
Pre (%) 

Top-1 
Acc (%) 

Mean 
F1(%) 

No 
Amplification 

F-N-
0.6 78.67 71.00 74.64 

76.81 72.29 72.41 

F-N-
0.8 55.79 100.00 71.62 

F-N-
1.0 

77.88 62.50 69.35 

F-Q-
0.8 91.82 61.75 73.84 

F-W-
0.6 70.00 80.50 74.88 

F-W-
0.8 

65.48 69.25 67.31 

F-W-
1.0 97.99 61.00 75.19 
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Data 
Amplification 

Method 
Label Pre (%) Rec 

(%) 

F1 (%) 

 

Mean 
Pre (%) 

Top-1 
Acc (%) 

Mean 
F1(%) 

CycleGAN-
Unet 

F-N-
0.6 

100.00 62.50 76.92 

77.49 73.32 73.36 

F-N-
0.8 79.52 100.00 88.59 

F-N-
1.0 61.05 64.25 62.61 

F-Q-
0.8 62.17 71.50 66.51 

F-W-
0.6 

59.31 90.00 71.50 

F-W-
0.8 98.43 62.50 76.45 

F-W-
1.0 81.97 62.50 70.92 

CycleGAN-
ResNet 

F-N-
0.6 

100.00 62.50 76.92 

83.75 80.00 80.38 

F-N-
0.8 68.26 100.00 81.14 

F-N-
1.0 96.51 76.00 85.03 

F-Q-
0.8 59.40 79.00 67.81 

F-W-
0.6 86.49 80.00 83.12 

F-W-
0.8 75.57 75.00 75.28 

F-W-
1.0 100.00 87.50 93.33 

FP-
CycleGAN 

without 
D_AB 

F-N-
0.6 

99.67 75.00 85.59 

89.40 87.50 87.72 

F-N-
0.8 72.07 100.00 83.77 

F-N-
1.0 76.59 87.50 81.68 

F-Q-
0.8 97.77 87.50 92.35 

F-W-
0.6 89.51 87.50 88.50 

F-W-
0.8 100.00 87.50 93.33 

F-W-
1.0 90.21 87.50 88.83 
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Data 
Amplification 

Method 
Label Pre (%) Rec 

(%) 

F1 (%) 

 

Mean 
Pre (%) 

Top-1 
Acc (%) 

Mean 
F1(%) 

FP-
CycleGAN 

F-N-
0.6 

100.00 75.25 85.88 

91.52 87.93 88.61 

F-N-
0.8 61.07 100.00 75.83 

F-N-
1.0 83.73 87.50 85.57 

F-Q-
0.8 99.43 87.50 93.09 

F-W-
0.6 

98.37 90.25 94.13 

F-W-
0.8 100.00 87.50 93.33 

F-W-
1.0 98.04 87.50 92.47 

 

The table presents the results of different data augmentation methods applied to the 

classification network ResNet18. Each method is evaluated using various metrics, 

including Precision (Pre), Recall (Rec), F1 score (F1), Mean Precision (Mean Pre), Top-

1 Accuracy (Top-1 Acc), and Mean F1 score (Mean F1). Here's the analysis of each 

method and its results: 

1. The "No Amplification" method refers to the scenario where no data augmentation is 

applied to the training dataset. In this case, the classification network ResNet18 is trained 

directly on the original data without any synthetic data generation or transformations. As 

a result, the model's performance is relatively limited, with lower Precision, Recall, and 

F1 scores compared to methods involving data augmentation. Specifically, for the F-N-

0.8 label, although the Recall is perfect (100%), the Precision is only 55.79%, indicating 

that the model is overly optimistic in predicting positive instances but fails to accurately 

identify many true positives. This lack of augmentation leads to poorer generalization, as 
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the model struggles to distinguish between different categories, yielding suboptimal 

results in terms of both accuracy and F1 score across most labels. 

2. When applying the CycleGAN-Unet method for data augmentation, we could 

observe its ability to amplify thermal image data. This approach uses UNet as the 

generator architecture, addressing the issue of transferring different defect features in the 

data and generating images with multi-angle characteristics, thus expanding the diversity 

of the dataset. Specifically, the CycleGAN-Unet method effectively preserves defect 

features during image generation, but slightly lags behind FP-CycleGAN in terms of 

image realism (X. Sun et al., 2024). 

From the results, we see that CycleGAN-Unet achieves 100% accuracy for the F-N-

0.6 class, but the recall rate is only 62.5%. This indicates that the model is overly 

optimistic in predicting positive instances but fails to accurately identify many of the true 

positives. In the F-N-0.8 class, although the recall is 100%, precision is lower at 79.52%, 

suggesting that while the generated images transfer most of the defect features, there are 

still noticeable deviations in the synthetic images, potentially impacting overall 

classification performance. 

Another notable characteristic of CycleGAN-Unet is that it outperforms the baseline 

model (i.e., the "no augmentation" approach) across several metrics. Specifically, in the 

F-Q-0.8 category, it achieves a precision of 62.17% and recall of 71.5%. However, despite 

the more balanced generation of images, some finer details might not be fully recovered, 

leading to a lack of realism in the generated images, which could affect classification 

accuracy. 

In conclusion, while CycleGAN-Unet is effective at generating images with multi-

angle features and diversifying the dataset, its lower image realism might limit its 
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practical performance. With further optimization and integration with other techniques, 

this method holds potential for improving both the quality of the generated images and 

the overall model performance. 

3. When applying the CycleGAN-ResNet method for data augmentation, we observe 

its ability to generate multi-angle thermal image data, thereby addressing the challenge 

of transferring defect features in the dataset. This approach uses ResNet as the generator 

architecture, which is known for its deep learning capability and feature extraction 

prowess. The CycleGAN-ResNet method works effectively in amplifying the diversity of 

the dataset, producing synthetic images with varying characteristics that reflect different 

fault conditions. Specifically, the use of ResNet helps preserve important defect features 

during image generation, contributing to better fault identification compared to simpler 

methods (K. He et al., 2016). 

From the results, CycleGAN-ResNet achieves 100% accuracy for the F-N-0.6 class, 

demonstrating its ability to generate realistic images for this category. However, the recall 

rate is only 62.5%, suggesting that while the model is effective at identifying positive 

instances, it may miss some of the true positives, thus not fully capturing the diversity of 

fault features. In the F-N-0.8 class, although recall remains at 100%, the precision is 

slightly reduced to 68.26%. This indicates that while the generated images accurately 

transfer many defect features, some of the synthetic images exhibit deviations from real-

world fault patterns, which could affect classification accuracy. 

In the F-Q-0.8 class, CycleGAN-ResNet achieves a precision of 59.4% and recall of 

79%, showing a good balance in transferring defect features. However, similar to other 

methods, some subtle details may not be fully recovered in the generated images, which 

could reduce the realism of the synthetic data and, in turn, impact the final classification 

performance. 
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Notably, CycleGAN-ResNet outperforms the baseline model (i.e., the "no 

augmentation" approach) across several fault categories, demonstrating the effectiveness 

of using ResNet for feature extraction and improving dataset diversity. However, while 

the method shows promise, further refinements are needed to improve the precision and 

recall for certain classes, especially in cases where subtle defect details are critical for 

accurate fault detection. 

In conclusion, CycleGAN-ResNet is a robust data augmentation technique that 

generates diverse and defect-rich images, significouldtly improving model performance 

compared to the baseline. While it enhances feature transfer and image diversity, 

optimizing its ability to recover finer image details and improving overall image realism 

could further boost the method's practical applicability in bearing fault detection. 

4. When FP-CycleGAN without D_AB method is used for data expansion, we observe 

significant improvement in image generation, especially in defect feature transfer and 

image diversity. The FP-CycleGAN method aims to generate more realistic images using 

the optimized CycleGAN, without relying on the additional discriminator D_AB for 

feature-specific guidance. In this method, the generator learns to transmit defect features 

based on classical discriminators A and B, thus enhancing the quality and diversity of the 

generated data set. 

From the results, FP-CycleGAN without D_AB achieves a precision of 99.67% and a 

recall of 75.00% for the F-N-0.6 class, resulting in an F1 score of 85.59%. These metrics 

demonstrate that the model is highly effective at generating images that match real fault 

characteristics, though it still struggles somewhat in identifying all true positives. The 

precision and recall for the F-N-0.8 class are 72.07% and 100%, respectively, leading to 

an F1 score of 83.77%. Although recall is perfect, the reduced precision indicates that 
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there are still some synthetic images deviating from the real fault features, which could 

affect classification accuracy. 

In the F-Q-0.8 class, FP-CycleGAN without D_AB performs exceptionally well, with 

a precision of 97.77% and recall of 87.50%, resulting in an F1 score of 92.35%. These 

results highlight the method's ability to generate diverse, yet accurate, images across 

various fault categories. However, as with other methods, there may still be subtle image 

quality issues, particularly in terms of fine-grained defect details, which could affect 

performance in highly demanding classification tasks. 

In the F-W-0.6 and F-W-1.0 categories, FP-CycleGAN without D_AB achieves strong 

precision rates of 89.51% and 90.21%, respectively, while maintaining consistent recall 

values of 87.50%. These results demonstrate the method's overall robustness in 

generating synthetic images across a range of fault conditions. However, the method's 

lack of the additional discriminator (D_AB) for feature-specific guidance might still limit 

its ability to fully capture complex fault details, leading to slightly lower precision in 

certain scenarios. 

Overall, FP-CycleGAN without D_AB demonstrates impressive performance in fault 

detection tasks, with high precision and recall rates across various classes. Its ability to 

generate diverse and defect-rich images is clear, but the lack of D_AB's guidance may 

slightly impact the realism and precision of some generated images, particularly in 

complex fault categories. Despite this, the method shows great potential in improving the 

overall model performance for defect detection, with further optimization possible 

through the integration of more sophisticated feature extraction techniques. 

5. When applying the FP-CycleGAN method for data augmentation, we observe its 

significant impact on improving the diversity and quality of thermal images for bearing 
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fault diagnosis. FP-CycleGAN leverages a novel discriminator, D_AB, to preserve non-

target features in the source domain while efficiently migrating the target features to the 

target domain. This method addresses the issue of data imbalance in infrared thermal 

images of faulty rotor bearings and enhances the realism of the generated images, 

ensuring that critical fault features are not lost during the image transformation process. 

From the results, FP-CycleGAN demonstrates superior performance, achieving 100% 

precision for the F-N-0.6 class, with a recall rate of 75.25%. This indicates that the model 

is highly accurate in detecting defects, but it could potentially miss a few true positives, 

as evidenced by the slightly lower recall. In the F-N-0.8 class, FP-CycleGAN achieves 

100% recall, although the precision is reduced to 61.07%, which suggests that while the 

model successfully captures all positive instances, some of the generated images might 

include irrelevant features, lowering the overall precision. 

In the F-N-1.0 class, FP-CycleGAN achieves a precision of 83.73% and recall of 

87.50%, showing a good balance between detecting positive instances and minimizing 

false positives. This class demonstrates the model's ability to preserve defect 

characteristics while generating high-quality images that aid in fault detection. Moreover, 

FP-CycleGAN performs exceptionally well in the F-Q-0.8 class, achieving 99.43% 

precision and 87.50% recall, reflecting its ability to generate highly realistic fault images 

while maintaining classification accuracy. 

One of the key advantages of FP-CycleGAN, particularly when compared to the 

baseline model (no augmentation) and other methods like CycleGAN-Unet and 

CycleGAN-ResNet, is its ability to balance precision and recall across different fault 

categories. It shows improved results across several fault types, including F-W-0.6 (98.37% 

precision, 90.25% recall), F-W-0.8 (100% precision, 87.50% recall), and F-W-1.0 (98.04% 
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precision, 87.50% recall), indicating that the model could effectively preserve defect 

features while reducing data imbalance and generating more realistic thermal images. 

In conclusion, FP-CycleGAN, with its novel discriminator D_AB, demonstrates 

remarkable performance in fault diagnosis tasks by generating high-quality, realistic 

thermal images and enhancing the dataset's diversity. The method shows significant 

improvements over baseline models and other augmentation techniques, achieving higher 

precision and recall in multiple fault categories. While the precision may occasionally 

suffer in some classes, FP-CycleGAN's overall effectiveness makes it a promising 

approach for bearing fault diagnosis and thermal image data augmentation. Further 

optimization could further improve its precision, especially in terms of generating images 

with even finer details for fault classification. 

Figure 4.7 shows the confusion matrix for the classification network trained on the 

original and different data amplification datasets. 

 

(a) 
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(d) 

 

(e) 

Figure 4.7: The confusion matrix for the classification network. (a) No 
amplification. (b) Cyclegan-Unet. (c) Cyclegan-Resnet. (d) FP-Cyclegan- Without 

D_AB. (e) FP-Cyclegan 

The five confusion matrices shown represent the performance of different data 

augmentation methods used to improve the classification of bearing thermal images. Each 

matrix corresponds to a different model trained using the following methods: 
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a. No Amplification: 

The confusion matrix for the "No Amplification" method shows that the model 

struggles with classifying most categories correctly. There are several misclassifications, 

particularly for the F-N-0.6 and F-W-0.6 classes. The F-N-0.8 label achieves perfect 

accuracy with 400 correct predictions, but other labels exhibit considerable 

misclassification. For example, F-Q-0.8 has 148 instances misclassified as F-N-0.8, F-N-

1.0 has 84 instances misclassified as F-N-0.8. The overall performance is poor in terms 

of precision and recall across most categories, suggesting the lack of augmented data 

hampers the model's ability to generalize. 

b. CycleGAN-Unet: 

With the CycleGAN-Unet method, the model shows a notable improvement. The 

misclassifications are reduced, especially for F-Q-0.8, where fewer instances are 

misclassified into other labels. F-N-0.8 still has perfect recall (400), and F-N-0.6 and F-

N-1.0 also show fewer misclassifications compared to the "No Amplification" method. 

However, F-W-0.8 still experiences some misclassifications, although not as severe. This 

indicates that the CycleGAN-Unet method provides better feature transfer and class 

balance but still leaves room for improvement in the finer details of fault detection. 

c. CycleGAN-ResNet: 

The CycleGAN-ResNet method demonstrates further improvements. It maintains the 

perfect classification for F-N-0.8 and improves precision and recall in categories like F-

N-1.0 and F-Q-0.8. The F-W-1.0 categories see fewer errors compared to previous models. 

However, its performance in F-W-0.6 is worse, and 320 correct samples are reduced. We 
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guess this may be caused by the defects between F-W-0.6 and F-Q-0.8 are similar. The 

overall balance between precision and recall is better, which is indicative of the robust 

performance of the ResNet backbone in handling the thermal image features and 

generating more realistic data. 

d. FP-CycleGAN without D_AB: 

The FP-CycleGAN without D_AB model shows strong performance. The 

misclassifications in F-N-0.6 and F-N-0.8 are much lower than in earlier models. 

Although the F-N-1.0 class still faces some challenges (38 +12 misclassifications), the 

precision and recall for F-Q-0.8 and F-W-1.0 are improved. However, F-W-0.6 still faces 

some misclassifications. The absence of the D_AB discriminator affects the model's 

ability to maintain all non-target features, resulting in slightly reduced accuracy in some 

fault classes. Nevertheless, the model still performs well and offers a good balance 

between speed and image realism. 

e. FP-CycleGAN: 

The full FP-CycleGAN model demonstrates the best overall performance. Precision 

and recall are high for all classes, especially for F-W-0.6 (361 out of 400 correctly 

classified). The F-N-0.6 and F-N-1.0 categories show excellent results, with relatively 

few misclassifications. F-W-1.0 and F-Q-0.8 also perform well, with minimal errors. The 

results indicate that FP-CycleGAN, with the full implementation of the D_AB 

discriminator, significouldtly improves image quality and classification performance. 

In addition, we found that for the results of FP-CycleGAN, many other categories were 

wrongly classified into the category of F-N-0.8, which is acceptable and understandable, 

because all multi-angle data are generated by the multi-angle data of F-N-0.8 combined 
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with each single-angle data. After adding D_AB, more emphasis is placed on the 

information from the field of F-N-0.8. 

FP-CycleGAN performs best across all categories, with the highest precision and recall 

values, indicating its effectiveness in enhancing image realism and fault detection. 

CycleGAN-ResNet offers solid performance with fewer misclassifications compared to 

CycleGAN-Unet, especially for more complex categories. CycleGAN-ResNet and FP-

CycleGAN without D_AB show improvements over the baseline (No Amplification) but 

still lag behind FP-CycleGAN in terms of precision and recall balance. 

The results highlight the importance of data augmentation in improving the generalization 

of the model and ensuring accurate fault detection across various fault categories. 

4.5 Summary 

In this chapter, we have detailed the experimental results of applying the FP-

CycleGAN model for image amplification and bearing damage detection. The proposed 

method demonstrated significant improvements over traditional approaches by 

effectively handling data imbalance and enhancing image quality. By employing 

advanced techniques such as Bicubic interpolation and depthwise separable convolutions, 

the model achieved superior thermal image generation, retaining critical defect features 

while improving image clarity. The experiments were conducted using real bearing 

thermal images with varying fault conditions, where the FP-CycleGAN model utilized 

both single and multi-angle data to expand the training set, ensuring better generalization 

for fault detection. Furthermore, the comparison with other models, including CycleGAN 

with ResNet and UNet backbones, highlighted the advantages of the FP-CycleGAN 

framework in terms of both computational efficiency and image realism. Overall, the 

proposed method significouldtly outperformed previous algorithms, offering a robust 

solution for bearing fault diagnosis in real-world applications. The results support the 
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potential of FP-CycleGAN for improving the reliability and accuracy of fault detection 

in industrial systems 
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CHAPTER 5: CONCLUSION 

This research proposes an unsupervised learning framework based on CycleGAN for 

detecting defects in small sample rolling bearing thermal images. Infrared thermal images 

could be used to detect defects in a non-contact way, thus avoiding the shortcomings of 

traditional methods such as vibration signal, current characteristics and sound pressure 

analysis in bearing detection.  

The proposed model is mainly based on Cyclegan, and the generator and loss function 

are greatly optimized. The framework firstly reconstructs the generator for the highly 

complex rolling bearing defect thermal images to improve the extraction capability of the 

network for different dimensional features and the reconstruction capability of the images. 

To avoid the loss of features in the target domain of the generated images, a new D_AB 

is designed to identify whether the generated image A and the generated image B belong 

to two different classes, and a new class loss is proposed to ensure that the generated 

images should keep the fault features of the target domain. Thus, the accurate transfer of 

fault features is achieved while the non-fault features of the image are highly maintained. 

In other words, it solves the problem of lack of realism and non-fault features in the 

generated images, which are often found in adversarial generation networks. Experiments 

show that the proposed FP-CycleGAN algorithm outperforms the conventional 

CycleGAN-based feature transfer algorithms in terms of stability and accuracy. It is 

noteworthy that it provides a new research idea in maintaining the pattern non-collapse 

and the realism of the generated images while performing feature transfer. 

Future research work will focus on the processing time of the model and data collection. 

Although the performance of the proposed method has been greatly improved by adding 

a new loss function and reconstructing the generator, compared with other methods, this 

process needs more time and computing resources. Therefore, how to reasonably design 
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the architecture of generator and discriminator needs more experiments to explore. In 

addition, how to rationally allocate the weights of different loss functions, gradient return 

and parameter optimization also needs further experiments. For data collection and 

verification, although thousands of multi-angle thermal images of bearings have been 

collected, they are still not enough to be generalized to any possible application scenarios 

in practice. Therefore, more data collection experiments should be designed or cooperated 

with other research groups. 
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