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 STRESS ANALYSIS OF MECHANICAL SEAL IN PUMP (API610) 

ABSTRACT 

 

This research project uses Ansys Finite Element Analysis software to conduct Stress 

Analysis of Mechanical Seal used in API 610 pump. Maximum Sealing Pressure will be 

applied as per API682 requirement and maximum and minimum stress will be monitored.  

The finite element method has become a powerful tool for the numerical solutions of a 

wide range of engineering problems. Besides equivalent stress, strain and deformation of 

the mechanical seals will also be analyzed. The modeling of the mechanical seal was done 

by Ansys Design Modeler and the analysis was performed by using Ansys workbench 

2021 R1 version.  

In the model, the mechanical seal face parts are going to be in contact and the 

remaining parts like ring and steel support not combined. 

At the end of research, we will be able to select the best candidate for the critical part 

of mechanical seal in API 610, which is the sleeve part. 
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ANALISA TEKANAN TERHADAP PENGEDAP MEKANIKAL DI DALAM 

PAM (API610) 

ABSTRAK 

 

Projek Penyelidikan ini menggunakan perisian Ansys Finite Element Analysis untuk 

mengendalikan Analisa Tekanan kepada Pengedap Mekanikal yang digunakan di dalam 

Pam API610. Tekanan maksima pengedapan akan diaplikasikan menurut keperluan 

standard API682 dan maksimum dan minimum stress akan diperhatikan. Kaedah Element 

Terhad telah menjadi kaedah yang mapan sebagai solusi kepada banyak cabang masalah 

kejuruteraan. 

Selain tekanan kumulatif, tegangan kumulatif and pengubahan kepada bentuk 

Pengedap Mekanikal dibuat menggunakan Ansys Design Modeler dan Analisa telah 

dijalankan menggunakan Ansys workbench versi 2021 R1.  

Di dalam model, permukaan-permukaan pengedap mekanikal akan dicantumkan 

manakala komponen-komponen lain seperti cincin dan besi sokongan adalah berasingan.  

I akhir kajian, kita dapat menemukan calon material terbaik untuk pengedap mekanial 

bagi pam API610, iaitu bahagian pelindung. 

 

 

Keywords: Pengedap Mekanikal, FEA, ANYSY, API610 
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 INTRODUCTION 

1.1 Background of Study 

 

A mechanical seal is one of the important parts of a pump which directly affects the 

performance of the pump unit. Consistent operation of a mechanical seal is vital as this 

clearly affects the flowrate of the pump.  

Unfortunately, failure of mechanical seals is the most common type of pump 

downtime. As claimed by a research, by Grundfos Industry (Pump Handbook, 2004), 

mechanical seals account for 39% of pump failures (1). Other failures of pumps are 

contributed by Roller Bearing (15%), Operation (5%) and miscellaneous. 

 

 

Fig 1 Common causes of pumps failure 
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Because of the requirement of compliance of the stringent requirement for 

hydrocarbon emission, Oil & gas industry are evaluating possible alternative to cut the 

releases of fugitive emissions. 

Almost 70% of centrifugal pump maintenance is due to mechanical seal failures, which 

is a primary contributor of fugitive emissions. The new standard-API 682 was developed 

to set guidelines that determine mechanical seal performance and specifications. API-682 

describes centrifugal seal-sealing system performance and design criteria that will 

improve reliability and increase pump-seal life. Axial and radial force must be 

investigated in the design process of mechanical seal. 
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1.2 Problem Statement 

   Mechanical seal is designed for all pumps, especially heavy-duty pumps such as API 

610 pumps. The function is as a mechanism of sealing to prevent leakage under intense 

shaft speed, extreme pressure, and temperature condition. The life cycle of the pump is 

short contributed from the seal material failure. The material failure is mainly impacted 

form excessive stress during operation under the extreme condition, especially for 

API610 pumps.  

 

1.3 Objectives and Scope of Work 

The main objectives of this research are: 

1. To observe on which mechanical seal component affected by stress (critical part) 

when applied API610 pumps MAWP. 

2. To conduct Finite Element Analysis for mechanical seal for different materials. 

3. To observe minimum and maximum stress and select best material candidate for 

the critical component of API610 pumps Mechanical Seal. 

The scope of work for this research is to monitor the simulation of the stress profile by 

using ANSYS software on the mechanical seal. At the same time, theoretical calculation 

will be done to observe on the trend of the stress distribution, and then the trend will be 

compared with ANSYS simulation result. After the analysis, results between different 

materials will be observed and which material is the most suitable will be recommended 

based on API682 standards for mechanical seals. 
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 LITERATURE REVIEW 

 

2.1 Basic Design and Mechanism 

 

Fig. 2 Basic Components of Mechanical Seal 

The typical components and their primary function of mechanical seal are: - 

1. Spring Component: This item presses the seal faces all together, giving the 

appropriate amount of close force to suppress fluid under static conditions, while 

permitting the attached face differing degrees of freedom. In this way, the seal 

interface can suppress the fluid, despite certain level of wear, misalignment, run-

out, distortion, vibration and thermal expansion.  

2. Rotating Face: The shape of this ring has been designed to adapt to the different 

forces present during the operation. This component allows the seal to operate 

parallel to the stationary face for appropriate sealing performance, despite pressure 

and thermal affects. The ring usually made from carbon graphite. 

3. Stationary Seal Face: This ring rests within the stationary housing which is 

connected to the shaft housing.  
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4.  Shaft Sleeve: This item is intended to slip over the shaft, to allow the entire seal 

assembly to be positioned instantly as a container. The sleeve offers a controlled 

surface over the dynamic portion of the mechanical seal can slide and protects the 

shaft from wear.  

5. Secondary Containment Bushing: This item is to improve the containment of fluid 

if failure occurs. It does not provide full containment not unlike the sealing 

interface, but it can stop the flow.  

6. Seal Gland: This item bolts up to the shaft housing to help remove particulate from 

the seal interface. It acts as a secondary housing to take the stationary sealing ring, 

the secondary containment bushing, and link components together as a cartridge.  

7. Setting Clips: These clips are used to align the sealing components as a cartridge 

before installation and protect the seal during delivery.  

8. Drive Collar: It is the coupling between the shaft and the sleeve that causes the 

rotating parts to move together with the shaft.  

9. Drive Pins: It is a pin used to prevent the face from rotating together in relative 

motion with other components that hold the face. 

10. Dynamic gaskets: Gaskets are used where relative motion between components is 

big.  

11. Spring Holder: It is to hold the rotating components together. It has drive pins to 

engage the rotating face and allow the face to move axially to maintain the 

appropriate contact during operation. 

12. Backing Ring: It distributes the spring load evenly across the back of the rotating 

face to eliminate any localized spring distortion on the face. 

13. Flush Port: It allows control of the fluid environment of the seal by providing a 

method for positive displacement to remove particulate and vapor blocked above 

the sealing interface and for temperature and pressure control  
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14. Static gaskets: They are used in locations where relative motion between 

components is not significant.   

These components are designed to help beat the sealing environment, letting the seal 

interface to run as close together and parallel as possible, while retaining fluid within 

the interface. This is for mechanical seal to maintain appropriate sealing contact even 

though being exposed to environment where vibration, miss-alignment, expansion, 

and wear are present. 

 

2.2 Seal Operation and Sealing Components 

A mechanical seal is a method of containing fluid within pumps where a rotating shaft 

allows through a stationary housing where the housing revolves around the shaft. 

When sealing a pump, the challenge is to permit a rotating shaft to go in the ‘wet’ area 

of the pump, without allowing huge quantities of pressurized fluid to leak. A typical 

mechanical seal comprises of a rotary seal face with a driving system which turns at the 

same speed as the pump shaft. The primary seal is achieved by two very flat faces, which 

make it particularly difficult for the fluid to escape between them. All mechanical seals 

are made with three elementary set of parts (J. Edward Pope, 1997) (4). The first and most 

important set is the mechanical seal faces, as shown in Figure 1. The rotating seal face is 

mounted on the rotating shaft, while the stationary seal face, is attached to the housing 

via the gland ring. The faces are pressed against each other by a combination of hydraulic 

from the fluid and spring force of the seal plan. 

In this way, a sealing is maintained to prevent the fluid from leaking between the 

rotating and stationary areas of the pump. The second set contains of the secondary 

sealing members. These members consist of a wedge ring located under the rotor, an O-

Univ
ers

iti 
Mala

ya



7 

ring located on the stator, and the gland ring gasket. The third set is the seal hardware, 

consisting of the spring retainer, springs, set screw and gland ring. The spring retainer is 

used to mechanically drive the rotating seal face, as well as house the springs. The springs 

are a vital component for assuring that the seal faces remain in contact during any axial 

movement from normal seal face wear, or face misalignment. The set screw is used for 

transmitting the torque from the shaft. 

 

Fig. 3 Sealing Component of Mechanical Seal (Courtesy of J. Edward Pope) 

   The primary seal is essentially a spring-loaded vertical bearing - consisting of two 

extremely flat faces, one fixed, one rotating, running against each other.  The seal faces 

are pushed together using a combination of hydraulic force from the sealed fluid and 

spring force from the seal design. In this way a seal is formed to prevent process 

leaking between the rotating (shaft) and stationary areas of the pump. 

If the seal faces rotated against each other without some form of lubrication, they 

would wear and quickly fail due to face friction and heat generation. For this reason, 

some form of lubrication is required between the rotary and stationary seal face; this is 

known as the fluid film. There are four main sealing points in a mechanical seal, as 

illustrated in Figure 4.0 
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The seal faces are the primary sealing point (Point A). This point is achieved by 

pushing against each other two very flat, lapped surfaces, perpendicular to the shaft, that 

creates a very treacherous leakage path. Leakage is also minimized by the rubbing or 

sliding contact between the rotating and stationary faces.  

The second leakage point, Point B, is under the rotating seal face along the shaft. 

This point is blocked by a secondary O-ring. At Point C an additional secondary is used 

to prevent leakage between the gland ring and the stationary seal face. Point D is the 

gland ring gasket which prevents leakage between the equipment case and the gland (J. 

Edward Pope, 1997). 

 

Fig. 4 Sealing Faces of Mechanical Seal (Courtesy of J. Edward Pope) 
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2.3 Operation Conditions and Theory. 

In this analysis, pressure that is applied is 4.0 MPa, according to API610 maximum 

sealing pressure. Some assumptions and simplifications are considered. The sealed fluid 

enters between the faces and distributes itself in a way such as the average value of the 

fluid pressure between the faces is proportionate to the sealed pressure, Kp. This fluid 

pressure must support some of the applied load. The spring force ensures static 

equilibrium in the axial direction because of the hydrodynamic pressure or contact 

pressure in between the faces. 

Summarizing all the forces in the axial direction, 

 

 

The mean pressure can be calculated by this equation 

 

The value of K significantly affects the contact pressure, and it is called the K factor 

or the pressure gradient factor. If the fluid movement affected by the hydrostatic pressure 

throughout the face is laminar and incompressible, the value for K is presumed to be ½ 

and if it is a compressible flow, then K is 2/3.  
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2.4 Boundary Condition  

In typical case of mechanical seal face, the Reynolds equation involves a solution for 

the whole area of contacting faces. The boundary condition is shown by the arrow in  

Figure 5.0. 

 

Fig. 5 Boundary Condition 
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 METHODOLOGY 

 

3.1 Project Flow 
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3.2  Material Candidates Selection 

In order to identify material candidates, we will refer to the Ashby charts of materials. 

For mechanical seals, two main properties to determine good material candidates are:  

1. High Yield Strength  

2. High Elasticity (Young modulus) 

 

Fig. 6 Ashby chart: Yield Strength plotted against density. 

 

Fig. 7 Ashby chart: Young’s modulus plotted against strength 
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Based on this, and after counterchecking the API 682 standard, we have selected four 

(4) material candidates. 

Table 1: Material candidates Yield Strength 

MATERIAL CANDIDATES YIELD STRENGTH 

Carbon Graphite 208 MPa 

Tungsten Carbide 344.8 MPa 

Stainless Steel 207 MPa 

Silicon Carbide 3440 MPa 

 

Table 2: Material candidates Young Modulus 

MATERIAL CANDIDATES YOUNG MODULUS 

Carbon Graphite 21 GPa 

Tungsten Carbide 620 GPa 

Stainless Steel 193 GPa 

Silicon Carbide 414 GPa 
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3.3 Modeling 

3.3.1 Geometry 

 

 

Fig 8  Assembly view of mechanical seal 

 

 

Fig 9 Mechanical seal model- sleeve part 
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3.3.2 Assumption used in analysis 

1. Fluid is Newtonian 

2. Fluid is laminar and not turbulent 

3. Density is constant throughout the fluid 

4. Viscosity is constant throughout the fluid 

5. Fluid inertia effect is negligible 

6. The impact of roughness on fluid flow is negligible 

7. The film is thin as velocity gradient across the film predominate 

8. The impact of micro asperities as they create pressure on themselves is negligible 

9. Temperature is constant during the course of this analysis 

10. Sealing is zero leakage  

11. Characteristic of seal ring and seal medium do not change with temperature. 

For the numerical analysis, the stress calculation is concluded based on the theory of 

thick-walled cylinder. This is because of the shape of mechanical seal is cylinder and the 

radius of mechanical seal is more than 1/20 of its thickness. Figure 10 shows a 

microscopic element of unit thickness which classifies two radii parameter, r and r + r 

and angle ϴ. The typical radial acting on the microscopic element at distance r will be a 

σr while for variable stress will be σr + 
dor

 / dr. The results from this derivation are: 

For internal pressure case (Pi ≠0) & (Po=0) 

For radial: σr = p i r i2      (1 –r0
2)                                                                               (1) 

                              r0
2 – ri

2                     r2 

For tangential: σr = p i r i2   (1 + r0
2)                                                                          (2) 

                                     r0
2 – ri

2                      r2 
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The detail of derivation is as per attached in appendix I 

 

Fig 10 Element in mechanical seal 

3.4 Simulation 

The objective of the simulation is to analyze the stress distribution given to the seal. 

The load given will be as per maximum sealing pressure for API 610 pumps according to 

the standard, which is 4.0 MPa in tangential direction. Manual calculation is also 

conducted using theoretical formulations. 

3.4.1 Material Selection & Engineering Properties 

The simulation will be using four (4) material candidates with different mechanical 

and physical properties as per stated in Table 1.0. The simulation result using different 

type of material will be compared and the most suitable material will be recommended. 
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Table 3 Material and Physical Properties input for Carbon Graphite 

 

Table 4 Material and Physical Properties input for Tungsten Carbide 
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Table 5 Material and Physical Properties input for Stainless Steel 

 

Table 6  Material and Physical Properties input for Silicon Carbide 
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3.4.2 Meshing 

In this project, the model is meshed as per specifications in Table 7. The meshing shape 

will be different in all areas, depending on the minimum and maximum edge of the model. 

 

Fig. 11 Model mesh view 

 

Table 7 Meshing Details 
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3.4.3 Simulation 

All the properties will be examined, and pressure will be applied to the model. The 

deformation will be observed and critical parts prone to deformation will be noted. Then 

the result of Total Deformation, Equivalent Stress and Equivalent Strain will be 

monitored. 
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 RESULT AND DISCUSSION 

4.1 Numerical Calculation 

For numerical calculation analysis, equation (1) and (2) are used. 

This is because manual calculation can only be show for one point, so we have to 

distribute the stress based on the distance from the center point, and we take note on the 

maximum and minimum value. Then we will compare with the maximum and minimum 

value from ANSYS simulation result. 

For radial: σr = p i r i2      (1 –r0
2)                                                                               (1) 

                              r0
2 – ri

2                     r2 

For tangential: σr = p i r i2   (1 + r0
2)                                                                             (2) 

                                     r0
2 – ri

2                      r2 

The stress is distributed on radial and tangential direction using these formulas. 

 

4.1.1 Radial Distribution Stress 

Table 8 shows the date used to calculate the stress distribution in the mechanical seal 

for the radial direction. The initial pressure used is 2.21 MPa (according to datasheet as 

reference), with the constant inner and outer radius. The numerical result shows range 

from 2.20 MPa to 58Pa. From Figure 16.0, the radial stress distribution in the mechanical 

seal is inversely proportional to their distance. When the distance increases, the stress 

distribution decrease to zero. The graph shows that the mechanical seal is having tensile 

stress on the radial direction. The result is inversely proportional due to the seal is 

calculated using formula for hollow thick-wall cylinder while ANSYS test result is using 

the real geometry and dimension of the model. 
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Table 8 Radial stress distribution throughout mechanical seal 

 

 

 

Fig. 12 Radial stress distribution 
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4.1.2 Tangential Distribution Stress 

Table 9 shows the data used to calculate stress distribution in the mechanical seal in 

tangential direction. The initial pressure used is 2.21 MPa (according to datasheet as 

reference), with constant inner and outer radius. The numerical result shows range from 

-2.89 MPa to -0.69MPa. From Figure 17.0, the tangential stress distribution in the 

mechanical seal is inversely proportional to the radial distance of the mechanical seal. As 

the thickness increase, the stress decreases constantly on radial direction of mechanical 

seal. This shows that the mechanical seal is having compressive stress on the tangential 

side.  

 

Table 9 Tangential stress distribution throughout mechanical seal 
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Fig. 13 Radial stress distribution graph 

 

4.2 ANSYS Simulation Result 

4.2.1 Simulation using Carbon Graphite as material 

4.2.1.1 Equivalent Stress 

The equivalent von Mises stress profile shown in Figure 14 is the baseline result for 

this research., where the maximum stress shown is 98MPa, and minimum stress shown is 

797.69Pa. The stress mainly takes place on the Sleeve, so the Sleeve stress distribution is 

being focused on. Based on this distribution, it is aligned with numerical calculation, 

where both results show the model having tensile stress. 

 

Fig. 14 Simulation result of Equivalent Stress on Carbon Graphite  
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Fig. 15 Simulation result of Equivalent Stress on critical component of mechanical 

seal- Sleeve (using Carbon Graphite) 

4.2.1.2 Equivalent Elastic Strain 

The equivalent von Mises elastic strain shown in Figure 16 is the baseline result for 

this research, using Carbon Graphite material. The strain profile is almost like the stress 

profile in Figure 17 as the strain is proportionally to the stress. The minimum and 

maximum value if the strain throughout the mechanical seal is 0.000000047m/m and 

0.004739m/m respectively. The positive values indicate that the strain is in tensile 

condition. This is because material elongates in the direction of normal stress. 

 

Fig. 16 Simulation result of Equivalent Elastic Strain on Carbon Graphite 
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Fig. 17 Simulation result of Equivalent Elastic Strain on critical component of 

mechanical seal- Sleeve (using Carbon Graphite) 

 

4.2.1.3 Total Deformation  

The deformation is observed when 4.0 MPa pressure applies to the mechanical seal. 

The range of deformation on mechanical seal is from 0m to 0.000356m. The deformation 

is highest at the sleeve as can be seen in Figure 19. 

 

Fig. 18 Simulation result of Total Deformation on Carbon Graphite 

 

Univ
ers

iti 
Mala

ya



27 

 

Fig. 19 Simulation result of Total Deformation on critical component of mechanical 

seal- Sleeve (using Carbon Graphite) 

 

4.2.2 Simulation using Tungsten Carbide as material 

4.2.2.1 Equivalent Stress 

The equivalent von Mises stress profile shown is Figure 20 is the second analysis result 

for this study, using Tungsten Carbide as material. The minimum and maximum stress 

value is 1156Pa and 9.865867MPa respectively, all over the mechanical seal.  

 

Figure 20 Simulation result of Equivalent Stress on Tungsten Carbide 
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Fig. 21 Simulation result of Equivalent Stress on critical component of mechanical 

seal- Sleeve (using Tungsten Carbide) 

4.2.2.2 Equivalent Elastic Strain 

The equivalent von Mises elastic strain shown in Figure 22 is the second result for this 

research, using Tungsten Carbide material. The strain profile is quite similar to the strain 

through mechanical seal as the strain is proportional to the stress. The minimum and 

maximum value for the strain is around 0.0000000021m/m and 0.00016137 m/m 

respectively. The positive value shows the strain is under tensile condition. This is 

because when the material stretches in the direction of normal stress, contraction in 

perpendicular in direction occur. Univ
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Figure 22 Simulation result of Equivalent Elastic Strain on Tungsten Carbide 

 

 

 

 

Fig. 23 Simulation result of Equivalent Stress on critical component of mechanical seal- 

Sleeve (using Tungsten carbide) 
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4.2.2.3 Total Deformation 

The result as per Figure 24 is obtained when 4.0MPa pressure is applied to the 

mechanical seal. The range of the deformation on mechanical seal sleeve is from 0m to 

0.000012366 m. 

 

Figure 24 Simulation result of Total Deformation on Tungsten Carbide 

 

 

Fig. 25 Simulation result of Total Deformation on critical component of mechanical 

seal- Sleeve 
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4.2.3 Simulation using Stainless Steel as material 

4.2.3.1 Equivalent Stress 

The equivalent von Mises stress profile shown in Figure 26 is the third analysis result 

for this research, using Stainless Steel as the material. The stress mostly takes place on 

the sleeve. The minimum and maximum values is 802.01Pa and 98.073MPa. The stress 

is concentrating more on the 0-ring slot due to the end of the sleeve near to the 0-ring slot 

is fixed. As compared to the numerical calculation, stress distribution is same where both 

results demonstrate the stress in having tensile stress. 

 

Figure 26 Simulation result of Equivalent Stress on Stainless Steel 

 

Figure 27 Simulation result of Equivalent Stress on critical component of mechanical 

seal- Sleeve (using Stainless Steel) 
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4.2.3.2 Equivalent Elastic Strain 

The equivalent von Mises elastic strains shown in Figure 28 is the third result, using 

Stainless Steel as the material. The strain profile is quite like the stress profile in Figure 

30.0 as the strain is proportionally to the stress. The minimum and maximum value for 

the strain throughout the mechanical seal is around 0.0000000071818m/m to 

0.00051561m/m. The positive values show that the strain is under tensile condition. This 

is because the material elongates in the direction of normal stress, contraction in 

perpendicular direction occur. 

 

 

Figure 28 Simulation result of Elastic Strain on Stainless Steel 
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Figure 29 Simulation result of Elastic Strain on critical component of mechanical 

seal- Sleeve (using Stainless Steel) 

4.2.3.3 Total Deformation 

The result as per Figure 30 is obtained when 4.0MPa pressure is applied to the 

mechanical seal. The range of the deformation on mechanical seal sleeve is from 0m to 

0.000038772 m. 

 

 

Figure 30 Simulation result of Total Deformation on Stainless Steel 
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Figure 31 Simulation result of Total Deformation on critical component of 

mechanical seal- Sleeve (using Stainless Steel) 

 

4.2.4 Simulation using Silicon Carbide as material 

4.2.4.1 Equivalent Stress 

The equivalent von Mises stress profile shown in Figure 32 is the third analysis result 

for this research, using Stainless Steel as the material. The stress mainly takes place on 

the sleeve. The minimum and maximum values is 880.03 and 98.073MPa. The stress is 

more focusing on the 0-ring slot because the end of the sleeve near to the 0-ring slot is 

fixed. As compared to the numerical calculation, stress distribution is same where both 

results show the stress in having tensile stress Univ
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Figure 32 Simulation result of Equivalent Stress on Silicon Carbide 

 

 

Figure 33 Simulation result of Equivalent Stress on critical component of mechanical 

seal- Sleeve (using Silicon Carbide) 
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4.2.4.2 Equivalent Elastic Stress 

The equivalent von Mises elastic strains shown in Figure 34 is the third result, using 

Stainless Steel as the material. The strain profile is quite like the stress profile in Figure 

35 as the strain is proportionally to the stress. The minimum and maximum value for the 

strain throughout the mechanical seal is around 0.0000000071818m/m to 

0.00051561m/m. The positive values show that the strain is in tensile condition. This is 

because the material elongates in the direction of normal stress, contraction in 

perpendicular direction occur. 

 

Figure 34 Simulation result of Elastic Strain on Silicon Carbide 
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Figure 35 Simulation result of Equivalent Elastic Strain on critical component of 

mechanical seal- Sleeve (using Silicon Carbide) 
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4.2.4.3 Total Deformation 

                The result as per Figure 36 is obtained when 4.0MPa pressure is applied to the 

mechanical seal. The range of the deformation on mechanical seal sleeve is from 0m to 

0.000018754 m       

 

Figure 36 Simulation result of Total Deformation Silicon Carbide 

 

 

Figure 37 Simulation result of Total Deformation on critical component of mechanical 

seal- Sleeve (using Silicon Carbide) 
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4.3 Overall Result 

Table 10 shows the comparison value for all the analysis and simulation that has been 

done. After a few considerations, Silicon Carbide material has produced the most reliable 

result. 

 

Table 10 Value comparison and ranking based on analysis 
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 CHAPTER 5: CONCLUSION AND RECCOMENDATION 

5.1 Conclusion 

 

As a conclusion, the objectives of the study to observe on which mechanical seal 

component affected by stress (critical part) when applied API610 pumps MAWP, to 

conduct Finite Element Analysis for mechanical seal for different materials, and to 

observe minimum and maximum stress and select best material candidate for the critical 

component of API610 pumps Mechanical Seal, using FEM (Finite Element Method) as 

well as numerical calculation.  

It is found that the critical stress effect is on the Sleeve part. Meanwhile on the other 

areas, the distribution of stress equally distributed around the surface. Because the stress 

is proportional to the strain, the result for the strain was found similar to the stress pattern. 

For the rest analysis, the results are compared with the first analysis which acts as the 

benchmark to these analyses. Different material was used to differentiate the value of 

stress, strain and total deformation for all the analysis. The results are in shown in section 

4.5.  

It was found from the analysis and considering other factors, Silicon Carbide produced 

the best result and recommended to as the suitable material for mechanical seal of API610 

pumps. 
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5.2 Recommendation 

 

Few recommendations that can be studied to improve this research. Which are: - 

1. Actual experiment should be conducted and result to be compared with the analysis 

of this study for more accurate result.  

2. To include thermal analysis as for working temperature is a major influence that 

can cause mechanical seal failure. 

3. To include hydrodynamics analysis finite-volume method, as fluid condition is 

also a major influence that can cause mechanical seal failure. 
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