
DESIGN AND DEVELOPMENT OF AN IMAGE-GUIDED
VISION SYSTEM FOR ROBOTICS PALLETIZING

MOHAMAD ZAID BIN MOHAMAD ZAIHIRAIN

FACULTY OF ENGINEERING

UNIVERSITY OF MALAYA
KUALA LUMPUR

 2021Univ

ers
iti

Mala
ya

DESIGN AND DEVELOPMENT OF AN IMAGE-
GUIDED VISION SYSTEM FOR ROBOTICS

PALLETIZING

MOHAMAD ZAID BIN MOHAMAD ZAIHIRAIN

RESEARCH PROJECT SUBMITTED TO THE

FACULTY OF ENGINEERING UNIVERSITY OF
MALAYA, IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF
MECHANICAL ENGINEERING

FACULTY OF ENGINEERING
UNIVERSITY OF MALAYA

KUALA LUMPUR

2021
Univ

ers
iti

Mala
ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Mohamad Zaid Bin Mohamad Zaihirain

Matric No: S2000546/1

Name of Degree: Master of Mechanical Engineering

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Design and Development of and Image-Guided Vision System for Robotics

Palletizing Field of Study: Computer vision, Robotics and Automation

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

Univ
ers

iti
Mala

ya

iii

DESIGN AND DEVELOPMENT OF AN IMAGE-GUIDED VISION SYSTEM

FOR ROBOTICS PALLETIZING

ABSTRACT

The ever-evolving trend in modern manufacturing techniques has led to a shift from

the conventional method to the heavily automated manufacturing process. Modern

intelligent technologies are being used to simplify, accelerate, and improve the quality of

traditional manufacturing methods. Automation of production lines through robotic

implementation can improve the manufacturing performance while lowering the

associated costs because it helps standardize the stacking and palletization procedures.

Current automation on palletizing system relies heavily on a predetermined sorting

system due to its inability to detect irregular-shaped object. A vision system is needed to

increase the flexibility of the robotic palletizing system by detecting the type of object

and its orientation. To this end, this project aims to design and develop an image-guided

vision system through the application of YOLO object detection and OpenCV for small-

scale robotics palletizing of non-uniform shaped object, i.e., 3D printed chicken wings

and drumsticks. A YOLO object detection model is trained using 5000 images containing

the chicken wings and drumstick. This object detection model is then used to determine

the type of object. Then, this information on type of object is used along with an

orientation detection program to find each object’s orientation. The orientation detector

is programmed with a contour detector called “Canny Edge detector” and a “fitEllipse”

function that generates the angle of orientation. Using the location and orientation

information generated by the detection programs, a pick and place operation is simulated

in RoboDK. Through several case studies, this detection models works great if the objects

in the images are arranged in a certain way, i.e., not closely packed together, or overlaps

Univ
ers

iti
Mala

ya

iv

onto one another. In an ideal case, the pick and place simulation work flawlessly with the

information obtained from the YOLO object detection and orientation detection program.

Keywords: Robot vision, YOLO object detection, Orientation detection, RoboDK

Univ
ers

iti
Mala

ya

v

REKA BENTUK DAN PEMBANGUNAN SISTEM PENGLIHATAN

BERPANDUKAN IMEJ BAGI PALETISASI ROBOTIK

ABSTRAK

Kecenderungan ke arah teknik pembuatan moden yg sentiasa bertambah baik telah

menyebabkan peralihan daripada kaedah konvensional kepada proses pembuatan secara

automatik. Teknologi pintar moden digunakan untuk mempermudah, mempercepat, dan

meningkatkan kualiti kaedah pembuatan tradisional. Automasi barisan pengeluaran

melalui pelaksanaan robot dapat meningkatkan prestasi pembuatan sambil menurunkan

kos yang berkaitan kerana membantu menyeragamkan prosedur susun dan palletisasi.

Automasi semasa pada sistem palletizing sangat bergantung pada sistem penyusunan

yang telah ditentukan kerana ketidakmampuannya untuk mengesan objek berbentuk tidak

seragam. Sistem penglihatan robotic diperlukan untuk meningkatkan fleksibiliti sistem

paletisasa robotik dengan mengesan jenis objek dan orientasinya. Untuk tujuan ini, projek

ini bertujuan untuk mereka bentuk dan membangunkan sistem penglihatan berpandukan

imej melalui penerapan pengesanan objek YOLO dan OpenCV untuk paletisasi robotik

skala kecil untik objek berbentuk tidak seragam, sebagai contoh, kepak dan paha ayam

yg dicetak secara 3D. Model pengesanan objek YOLO dilatih menggunakan 5000 gambar

yang mengandungi sayap dan paha ayam. Model pengesanan objek ini kemudian

digunakan untuk menentukan jenis objek. Kemudian, maklumat mengenai jenis objek ini

digunakan bersama dengan program pengesanan orientasi untuk mencari orientasi setiap

objek. Detektor orientasi diprogram dengan detektor kontur iaitu "Canny Edge detector"

dan fungsi "fitEllipse" yang menjana sudut orientasi. Menggunakan maklumat lokasi dan

orientasi yang dihasilkan oleh kedua-dua program pengesanan, operasi memetik dan

meletakkan disimulasikan dalam RoboDK. Melalui beberapa kajia, model pengesanan ini

berfungsi dengan baik jika objek dalam gambar disusun dengan cara tertentu, iaitu, tidak

terlalu rapat antara satu sama lain, atau saling bertindih. Dalam kes yang ideal, simulasi

Univ
ers

iti
Mala

ya

vi

memetik dan meletakkan berfungsi dengan sempurna menggunakan maklumat yang

diperoleh dari program pengesanan objek YOLO dan pengesanan orientasi objek.

Kata kunci: Penglihatan robotic, Pengesanan objek YOLO, Pengesanan orientasi,

RoboDK

Univ
ers

iti
Mala

ya

vii

ACKNOWLEDGEMENTS

All praises to Allah S.W.T. for granting me the knowledge and perseverance in

completing my Master of Mechanical Engineering research project report. I am forever

grateful to Allah for all the blessings that has been blessed upon me.

I would like to express my deepest appreciation to my project supervisor, Dr. Yap Hwa

Jen from the Mechanical Engineering department for sharing his knowledge and expertise

with me. The ongoing help and guidance from him are greatly appreciated.

To my parents and family who supported and motivated me throughout my life, I am

infinitely grateful. I would not be able to complete my master’s degree without the

constant support of my beloved family.

I am grateful for the lecturers at University of Malaya that have persevered during this

pandemic in which they continued to provide helpful knowledge to us students. It has

been wonderful and enjoyable learning experience despite the online learning

environment.

Univ
ers

iti
Mala

ya

viii

TABLE OF CONTENTS

Design And Development Of An Image-Guided Vision System For Robotics Palletizing

Abstract .. iii

Reka Bentuk Dan Pembangunan Sistem penglihatan Berpandukan Imej Bagi Paletisasi

Robotik Abstrak .. v

Acknowledgements ... vii

Table of Contents ... viii

List of Figures .. xi

List of Tables ... xiv

List of Abbreviations .. xv

List of Appendices ... xvi

CHAPTER 1: INTRODUCTION .. 1

1.1 Overview of the Research .. 1

1.2 Problem Statement ... 5

1.3 Aim of the Research .. 6

1.4 Objectives of the Research .. 6

1.5 Scope of the Research .. 6

1.6 Report Organization .. 6

CHAPTER 2: LITERATURE REVIEW .. 8

2.1 Robotic Palletizing .. 8

2.2 Vision/Image-Guided Systems .. 12

2.3 YOLO Object Detection .. 15

2.4 Orientation and Shape/Contour Detection ... 16

Univ
ers

iti
Mala

ya

ix

CHAPTER 3: METHODOLOGY ... 19

3.1 Introduction ... 19

3.2 3D Printed Wings and Drumstick .. 21

3.3 YOLOv4-Tiny Training and Testing ... 22

3.3.1 Image Acquisition .. 23

3.3.2 Labelling and Annotation ... 26

3.3.3 Data Augmentation ... 27

3.3.4 YOLO Training and Validation ... 28

3.3.5 Testing .. 30

3.4 Contour/Orientation Detection .. 31

3.4.1 Contour Detection .. 31

3.4.2 Orientation Detection ... 34

3.5 Combining YOLO and Orientation Detections ... 37

3.6 RoboDK Simulation .. 39

3.6.1 Reference Frames ... 41

3.6.2 Pick and Place Operations .. 42

CHAPTER 4: EXPERIMENTS AND DISCUSSION ... 46

4.1 Ideal Case .. 46

4.1.1 Detector Results and RoboDK Simulation ... 47

4.2 Case Study 1: Objects close together .. 49

4.3 Case Study 2: Object Overlapped .. 50

4.4 Case Study 3: Partially displayed object ... 52

4.5 Case Study 4: Computer Performance ... 53

CHAPTER 5: CONCLUSION ... 55

5.1 Summary .. 55

Univ
ers

iti
Mala

ya

x

5.2 Future Work ... 55

References ... 57

Appendix A: 1-DataCollection.py .. 60

Appendix B: yolov4-tiny-custom.cfg ... 61

Appendix C: placeTargetsGenerator.py .. 66

Appendix D: YOLOv4-Orientation-multipleImages.py ... 68

Appendix E: createObj-Pick-Place.py .. 72

Univ
ers

iti
Mala

ya

xi

LIST OF FIGURES

Figure 2.1: Movement of Mecanum wheel (WIKIPEDIA, 2020b) 10

Figure 2.2: An overhead fixed camera causes the pixels to correspond to physical
Cartesian coordinates (Webster & Brannon, 2002) .. 14

Figure 2.3: Comparison of the proposed YOLOv4 and other object detectors
(Bochkovskiy et al., 2020) .. 16

Figure 3.1: Research project flow chart .. 20

Figure 3.2: 3D model of a chicken drumstick (printable_models, 2019) 21

Figure 3.3: 3D model of a chicken wing designed in Solidworks 21

Figure 3.4: Top view of drumstick .. 22

Figure 3.5: Top view of left wing and right wing in order from the left 22

Figure 3.6: YOLOv4-tiny training and testing flowchart ... 23

Figure 3.7: Equipment setup for image acquisition and object detection 24

Figure 3.8: Sample output of the image acquisition process (4 out of 1000 images) 25

Figure 3.9: LabelImg labeling and annotation sample .. 26

Figure 3.10: Text file containing the labels of an image .. 27

Figure 3.11: Image and label augmentation through rotation (original 0o, 45o, 90o and 180o
in order from left to right .. 28

Figure 3.12: YOLO training and validation chart ... 29

Figure 3.13: YOLO object detection testing results.. 30

Figure 3.14: Original image and blurred image in order from the left 31

Figure 3.15: Gray scaled image and the resulted image after Canny edge detection. 32

Figure 3.16: Trackbars for Canny edge detection algorithm containing the thresholds and
minimum area ... 32

Figure 3.17: Dilated image showing thicker contour lines ... 33

Figure 3.18: Image of contour lines overlayed onto original image 33

Univ
ers

iti
Mala

ya

https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984527
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984528
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984528
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984529
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984529
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984530
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984531
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984532
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984533
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984534
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984535
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984536
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984537
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984538
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984539
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984540
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984540
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984541
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984542
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984543
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984544
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984545
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984545
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984546
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984547

xii

Figure 3.19: Result of fitting an ellipse on the contours using fitEllipse function 34

Figure 3.20: Contour in red is rotated CCW of the angles displayed to produce contours
in cyan ... 35

Figure 3.21: Contour in red is the original, contour in teal is rotated using the angles
displayed and contour in orange is the final contour .. 36

Figure 3.22: Flowchart of the contour/orientation detection program 37

Figure 3.23: Sample image demonstrating the combination of the YOLO object detector
and orientation detection program .. 38

Figure 3.24: Image showing the result of the detector program 38

Figure 3.25: Virtual environment for pick and place in RoboDK 39

Figure 3.26: Close-up image of gripper .. 41

Figure 3.27: Reference frames for the drumstick, left wing and right wing in order from
the left ... 41

Figure 3.28: Targets for the placing operations on Table 3 and Table 2 in order from the
left ... 42

Figure 3.29: Sample txt file generated from the detection program 43

Figure 3.30: Virtual model of the objects generated in RoboDK and the image from the
detector programs .. 43

Figure 3.31: Gripper picking sample images .. 44

Figure 3.32: Image of pick and place operation in RoboDK .. 45

Figure 4.1: Images used for the ideal case .. 46

Figure 4.2: Resultant images from the detector program .. 47

Figure 4.3: Txt file generated for image 00006 .. 47

Figure 4.4: Image after all the objects in all images have been picked and placed in
RoboDK .. 48

Figure 4.5: Images used for Case Study 1 .. 49

Figure 4.6: Results from YOLO object detection for Case Study 1 49

Figure 4.7: Images used for Case Study 2 .. 50

Univ
ers

iti
Mala

ya

https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984548
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984549
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984549
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984550
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984550
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984551
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984552
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984552
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984553
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984554
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984555
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984556
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984556
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984557
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984557
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984558
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984559
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984559
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984560
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984561
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984562
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984563
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984564
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984565
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984565
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984566
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984567
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984568

xiii

Figure 4.8: Orientation detector result for image “over1” .. 51

Figure 4.9: YOLO object detection result for Case Study 2 ... 51

Figure 4.10: Images used for Case Study 3 .. 52

Figure 4.11: YOLO object detector result for Case Study 3 ... 52

Univ
ers

iti
Mala

ya

https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984569
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984570
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984571
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984572

xiv

LIST OF TABLES

Table 3.1: Specification of Webcam used for image acquisition 25

Table 3.2: Robot specifications (RoboDK, 2021a) ... 40

Table 4.1: Specifications for Lenovo Legion Y530 gaming laptop 53

Table 4.2: Specifications for Raspberry Pi 4 Model B computer 53

Table 4.3: Computation time results ... 54

Univ
ers

iti
Mala

ya

xv

LIST OF ABBREVIATIONS

AP : Average Precision

CAD : Computer Aided Design

CCD : Charge Coupled Device

CCW : Counterclockwise

CNN : Convolutional Neural Networks

CPU : Central Processing Unit

CW : Clockwise

FPS : Frame Per Second

GUI : Graphical User Interface

IC : Integrated Circuit

IDE : Integrated Development Environment

mAP : Minimum Average Precision

OpenCV : Open Computer Vision

PLA : Polylactic Acid

PLC : Programmable Logic Controller

RAM : Random-access Memory

RoboDK : Robot Development Kit

YOLO : You Only Look Once

Univ
ers

iti
Mala

ya

xvi

LIST OF APPENDICES

Appendix A: 1-DataCollection.py ………………………………………………... 60

Appendix B: yolov4-tiny-custom.cfg …………………………………………….. 61

Appendix C: placeTargetsGenerator.py ………………………………………….. 66

Appendix D: YOLOv4-Orientation-multipleImages.py …………………………. 68

Appendix E: createObj-Pick-Place.py ……………………………………………. 72

Univ
ers

iti
Mala

ya

1

CHAPTER 1: INTRODUCTION

1.1 Overview of the Research

As the world moves towards a new age of technology, particularly the fourth industrial

revolution, the automation of traditional manufacturing practices advanced rapidly.

Modern intelligent technologies are being used to simplify, accelerate, and improve the

quality of traditional manufacturing methods. Robots are great examples of current

intelligent technology that have been used for almost six decades since the first industrial

robot, the Unimate, was implemented at General Motors production plant in 1961 for die

casting handling and spot welding (RobotWorx, n.d.).

Automation of production lines through robotic implementation can improve the

manufacturing performance while lowering the associated costs because it helps

standardize the stacking and palletization procedures (Wurll, 2016; Yi et al., 2017). For

the past decade, the amount of stock required to fulfil the impending operations for

industrial robots has steadily increased and is expected to continue with the same trend in

the near future (Moura & Silva, 2018). This demonstrates that the need for industrial

robots has continued to rise, since most manufacturing companies would like to invest in

technologies that may boost production rates while keeping costs low.

Moura and Silva (2018) mentioned that among the numerous applications for robots

in the industrial sector, handling activities such as palletizing have been prevalent since

they play an essential role in the last step of contemporary production lines. Since

palletizing is one of the last processes before product transportation, it has a substantial

impact on the manufacturing line. The order in which the items are placed on the pallets

has a major influence on the stack's stability, which has a profound influence on the

product's transportation process to the consumer. Most automated palletizing operations

rely on the accuracy and repeatability of the industrial robot as it will be doing the same

operations multiple times. These operations usually do not depend on variation in the

Univ
ers

iti
Mala

ya

2

products locations since the products will be packaged in a box and placed on a specified

location and orientation. The robot would just need to pick the already packaged products

and place it on the pallet without the integration of a live visual input. Although this

appears to be an efficient method, it lacks flexibility because it can only be used when the

product is already packed or boxed and relies on the assembly line to orient the packaged

commodity. However, it is not a terrible technique of employing robots to automate the

manufacturing line, it is dependable since it can perform the same work repeatedly while

using less resources.

For other palletizing systems, in addition to the fixed location and orientation of the

object, employ sensors to detect whether the packaged products have arrived at the

picking point, and the robot will subsequently select the already packed goods. Sensors

are the preferred approach for regularly shaped objects such as boxes and packed products

since just the location of the product is required for the robot to pick up the object. The

packaged products will be sorted by the custom mechanism on the assembly line, and the

robot will subsequently pick the box using suction tools or specialized grippers. This

method is preferred as fewer variables is needed to program the robot since the location

of the object to be picked up is consistent and the orientation can be neglected since they

are all in a uniformly shaped packages or already oriented through the custom

mechanisms in the assembly line.

In order to improve the flexibility of the robotic automation system, an artificial

intelligence aspect can be integrated into the system. A vision system can be implemented

on the industrial robot through the use of cameras and a programmable logic controller

(PLC). A live image will be captured through the camera and will be processed to

determine the location and orientation of the goods. Thus, the sorting mechanism can be

removed from the assembly line since the robot itself can distinguish the location and

orientation of the goods through its own vision system. By employing an image-guided

Univ
ers

iti
Mala

ya

3

vision system on the industrial robot, an irregular-shaped object can also be distinguished

and picked up by the robot. A much more complicated programming is required as well

as the application of machine learning algorithms on the vision system so that the robot

can determine the type, location, and orientation of the irregularly shaped object. The

vision system would be trained to identify the specific objects to be palletized. Therefore,

automation of palletizing operations based on machine vision is a viable option for

reducing reliance on human labor and can decrease costs while boosting assembly line

productivity.

In order for the industrial robot to detect irregularly shaped objects, an object detection

algorithm need to be applied. There are two types of deep learning-based object detection

methods: candidate region-based models and regression-based models. The basis of a

two-stage detection model is the candidate region-based model, which generates the

region proposals in the first stage. Following that, features are then extracted from the

proposals to obtain the bounding box and classification regression (Ren et al., 2017).

Many applications such as fruit recognition had implemented this object detection method

through the use of deep Convolutional Neural Networks (CNN). Despite the recognition

accuracy of the two-stage object detection, it is still considered as a slow approach and

cannot be applicable to real time applications due to its requirements of needing two-

stages of processes to recognize the object This is where single-stage detectors flourish,

since they approach object detection problem as a straightforward regression model that

accepts the entire image as input and outputs the bounding boxes and class probabilities

at the same time. Class probabilities is the type of the object detected. This single-stage

approach has made this model much faster than the two-stage object detection methods.

You Only Look Once (YOLO) model is a single-stage object detection model that is

developed by Redmon et al. (2016) to be use in real time application as it is fast. Multiple

versions of YOLO models have been developed to either increase it detection time and

Univ
ers

iti
Mala

ya

4

accuracy, or to be use for various applications such as number plates detection or

electronic object detection (Junos et al., 2020).

Although the YOLO object detection can detect the type of object and its location

through the bounding boxes, it cannot establish the orientation of the object. Thus, another

algorithm is required in addition to the object detection model in order to accurately

determine the object’s orientation to be picked up by the robotic arm. If a gripper is used

on the robotic arm, the orientation of the object is critical as each object has a specific

location on its body that can be readily picked up by the robotic arm and the orientation

is also needed so that the robot can place the object in the desired orientation to be

packaged. This is done through the use of a contour detection algorithm along with a fit

ellipse function in Open Computer Vision (OpenCV) python. The contour detection

method is used to trace the boundary of the object, which can determine its shape/form,

and with the help of the fit ellipse function, the orientation of the object can be determined.

The process begins by extracting each bounding boxes from the object detection image

(i.e., image of 3D printed chicken drumstick and wing), then the contour detection traces

the perimeter of the object, which are then fitted with an ellipse to establish the orientation

of the object.

These detection models would then be utilized to identify and locate the object on the

pallet for the pick and place operation, which would be simulated in a software called

Robot Development Kit (RoboDK), an industrial robot and robot programming simulator

that is both comprehensive and cost-effective. The advantage of using the simulation and

offline programming capabilities of RoboDK is that robots may be programmed outside

of the production environment which saves both time and utilities (RoboDK, 2021b). The

RoboDK simulator is a universal offline programming tool that makes it possible to

program robots of all kinds as well as to generate brand-specific robot programs. RoboDK

owns a library of more than 500 industrial robot arms, from famously known robot

Univ
ers

iti
Mala

ya

5

manufacturers such as ABB, Fanuc, KUKA and Universal Robots, as well as numerous

additional tools and objects that may be used in the simulations of robots (Garbev &

Atanassov, 2020). RoboDK's simple and user-friendly Graphical User Interface (GUI)

makes it easier to simulate and program industrial robots without the need in field

experience. The free version of RoboDK, as well as the trial edition of RoboDK, are

adequate to inform and familiarize the programmer/user with the system's capabilities.

Thus, the combination of the vision system equipped with the YOLO object detection

and the orientation detection program will enable the simulation of pick and place of

irregular shaped object, in this case, 3D printed chicken wing and drumstick are used.

The location and orientation provided by the vision system will enable the robotic arm

equipped with a gripper to pick the object and place it in the correct pallet with the desired

orientations.

1.2 Problem Statement

The following are some of the issues that prompted the creation of this project:

• Current automation on palletizing system relies on a predetermined sorting system

due to its inability to detect irregular-shaped object. A vision system is needed in

order to increase the flexibility of the robotic palletizing system by detecting the

type of object.

• Most robotic palletizing system can only work on already packaged/boxed object

since they are easily picked up by the robot because of their uniform shape.

However, if the object is irregular, i.e., chicken drumstick, the orientation of the

object is needed to enable the robot to pick it up using the gripper as random

picking position would result in improper placement of the object.

Univ
ers

iti
Mala

ya

6

1.3 Aim of the Research

To design and develop an image-guided vision system through the application of

YOLO and OpenCV for small-scale robotics palletizing of non-uniform shaped object,

i.e., 3D printed chicken wing and drumstick.

1.4 Objectives of the Research

The objectives of the research are listed below:

1. To develop an algorithm to identify the product with non-uniform shapes.

2. To identify the location and orientation of the products for end-effector

picking/grasping.

3. To integrate the vision system with robotic arms for the palletizing process.

1.5 Scope of the Research

This research is limited to only developing a vision system that could detect the type,

location, and orientation of the object for a pick and place operation. The vision system

will provide the data for the robotic arm for the palletizing operation. Only simulation in

RoboDK will be used to demonstrate the detection algorithm workings with the use of

real images of randomly sorted objects. The objects used for detection in this research are

3D printed chicken wings and drumstick, and the robotic arm used for simulation is the

UR10e from Universal Robots. The camera used in this research is a computer webcam

that is easily accessible.

1.6 Report Organization

The remaining parts of this research report will be organized and modelled as following:

• Chapter 2 deals with the literature review of relevant research associated with this

research project namely robotic palletizing, YOLO object detection and

orientation detection.

Univ
ers

iti
Mala

ya

7

• Chapter 3 consist of the research methodology which describes the methods and

procedures used in conducting this research project along the simulations

involved.

• Chapter 4 contains the implementation of the detection models through simulation

of an ideal case and other case studies used to test the detection models.

• Chapter 5 concludes the research project by summarizing the report and providing

future work on this research.

Univ
ers

iti
Mala

ya

8

CHAPTER 2: LITERATURE REVIEW

The study of industrial automation has now taken on a worldwide platform, with

engineers and researchers focusing largely on ease of implementation. In this literature

review, this research subject of image-guided vision system for robotic palletizing will be

divided into four sections namely robotic palletizing, vision/image-guided systems,

YOLO object detection and Orientation detection.

2.1 Robotic Palletizing

Several studies had been conducted with regards to industrial robotics palletizing to

either improve the stacking algorithm or to improve the structure of the robotic palletizing

system. Wurll (2016) did a study on mixed case palletizing using industrial robots which

starts by converting the customer’s order into stable, organized, and dense stacks, which

will then give instructions to the robots to build the pre-determined pallet stacks before

being transported. Mixed palletizing is an industrial stacking technique applied by placing

boxed/packaged products of different types and sizes onto a single pallet (palletizer.org).

Mixed palletizing allows the factory to transport a smaller number of pallets since each

pallet is able to carry a variety of products with the same level of stability as stacking one

type of product due to the stacking algorithm developed. The advantages of implementing

a robotic mixed pallet building system is that it can reduce labour and save shipping cost

by fully filling the pallets by mixing the variety of products instead of just shipping one

type of product on each single pallet (Nowak, 2011). For instance, the grocery store might

just need a few bottles of detergents, however, in order to fully utilize the pallets, the

warehouse will want to stack the pallets with other products that the store needs.

However, to enable the automated mixed palletizing system, more data or information

regarding the products and consumer need to be organized and kept track of for the

warehouse management system. This mixed palletizing system relies heavily on stacking

Univ
ers

iti
Mala

ya

9

algorithm as different products have different shape and size for their packaging. Most of

the companies presented in the studies regarding robotic palletizing relies heavily on a

palletizing algorithm which calculate the optimum arrangement of the packaged products

with regard to the hardware constraints of the robotic gripper arm in order to automate

the stacking process (Wurll, 2016; Xu et al., 2016). The stacking algorithm used would

improve the production efficiency by increasing the rate at which the packaged product

is palletized and also increasing the number of products being palletized. However, the

stacking algorithm used are pre-determined as it only depends on the weight and size of

the packaged product since most the finalized products would be in a regular shaped

boxes or packaging.

Other than relying on the stacking algorithm to further improve the pelletizing system,

some researchers aim to increase the efficiency of the palettizing robot by increasing its

mobility. A typical robotic palletizing involves three main parts which are the palletizing

robot, driving or conveyer belt and the pallets (Xu et al., 2016). The palletizing robot is

usually a robotic arm with four degrees of freedom which enables it to lift the products

from the conveyer belt to the pallets. The robotic arm itself is fixed onto stationery

platform which constrains the workspace for the robot as it only allows the robot to be

placed on one specific location. This would result in a transporting system need to be

included in order to transfer the pallets in another location. Despite this disadvantage, this

fixed palletizing robot allows for a much bigger and heavier products to be palletized as

a large robotic arm can be use. Yang et al. (2018) developed an omnidirectional compact

palletizing robot that combines transport and stacking functions for small product

palletizing in order to rival the standard robotic palletizing that are large and stationery.

They developed this robot with increased mobility in mind as they aim to integrate the

staking ability of the robot and its ability to relocate the finished pallets. This robot uses

a Mecanum wheels to provide more mobility as it can travel to the targeted location using

Univ
ers

iti
Mala

ya

10

the fastest path due to its capability to turn in narrow spaces. Mecanum wheels is a type

of wheel with multiple diagonally positioned roller attached to its circumference (Dejan,

2019). These multiple diagonally positioned rollers enables the wheels to move in any

direction using the same driving components as for regular wheels. Each Mecanum

wheels are independently drive, in order to utilise its multidirectional capabilities. By

combining different rotation of the wheels, the robot will be able to move in any direction

using only a small space. To further clarify on this notion of combining different rotation

of the wheels, an image showing the direction with regard to the rotation of the wheels is

shown in Figure 2.1. The movement of the Mecanum wheel, (blue: wheel drive direction,

red: vehicle moving direction). a) Moving straight ahead, b) Moving sideways, c) Moving

diagonally, d) Moving around a bend, e) Rotation, f) Rotation around the central point of

one axle. This robot is able to achieve high stacks of cargo through this unique mechanical

design and staking features. This high stacking method combine with robot’s ability to

move in narrow spaces allows for more efficient space usage.

To further improve upon the palletizing robot, several studies had been done in order

to find the suitable method to analyse the performance of the robots. Guan and Wang

(2011) did a study on the mechanical design and kinematic analysis on a palletizing robot.

This study provided some mathematical derivation using kinematic analysis in order to

Figure 2.1: Movement of Mecanum wheel (WIKIPEDIA, 2020b)

Univ
ers

iti
Mala

ya

11

be used to analyse the mechanical aspect of the robotic arm to be used in palletizing

system. The kinematic analysis was testified using practical experimental data which is

then used to simulate the working space of the robotic arm using MATLAB. This

kinematic analysis would allow the users to understand the degree of freedom of the

robotic arm through the expression provided which would then allow for a more complex

movement to be applied by to the robot by manipulating the provided expressions. The

results obtained from this research would help in conducting theoretical analysis and

further exploitation of using the robotic arm in a production palletizing system. In

addition to analysing the kinematic elements of the robot, a study in reducing the energy

consumption of the robot had also been conducted. Fu et al. (2019) did a research by using

RobotStudio software in reducing the energy consumption for the palletizing robot. This

study aims to increase the efficiency of the robot by implementing an optimal speed and

movement of the robot that would use less energy but still accomplishing the task.

RobotStudio is a software that allows user to program a robot in the virtual world before

beginning its real-life operations, which means this software is able to provide simulations

of the working program for the robot. Using this software, Fu et al. (2019) investigated

the energy required with each type of movement commands and compared them in order

to find which command suits the tasks while using less energy. RobotStudio enables a

realistic simulation to be perform and can create a much easier energy-optimal path

planning for the robotic arm in the palletizing operations.

There are also a few studies done to further increase the efficiency and production rate

for robotic palletizing by implementing redundant safety mechanism. Since it is hard to

ensure a fully successful application of using robots in palletizing, the overall automation

system must have the capability to restore quickly when failure or by equipping a

redundant alternative mechanism to continue the production when the main palletizing

Univ
ers

iti
Mala

ya

12

system breaks down (Yuan & Wang, 2016). This feature is needed as it would help in

stabilizing the production rate of the factory.

All of the studies mentioned regarding robotic palletizing really highlights the

importance of automation in the manufacturing industry as it helps to reduce the

manufacturing time while increasing the manufacturing quantity. Despite all this

advantages, the studies on robotic palletizing does not include the use of machine learning

especially with regards to robotic vision system which is what this research report is

aiming for.

2.2 Vision/Image-Guided Systems

Multiple studied had been done regarding vision or image-guided system for robotic

applications. This vision system would be use to guide the robot in order to accomplish a

specific task. Zhang and Skaar (2009) developed a robotic de-palletizing system by

combining camera-space manipulation with laser-assisted image analysis to find the gaps

on paper bag stack. Robotic de-palletizing is more difficult to automate compared to

palletizing work as it requires a much more sophisticated vision system that would allow

the robot to detect the gaps between each layer of paper stack in this case. The vision

system applied to this study is by using laser spots and camera-space manipulation to

locate the edges and corners of the stack in order to find the gaps to be fitted with an

insertion dowel. Although this study includes an image-guided system, it can only be

implemented on objects that have a regular sides, edges, and corners as it is used to insert

a tool into the gaps on the stack to lift the paper bags. In order for this vision system to

be implemented to irregular packaged products, a more sophisticated algorithm need to

me applied in order to identify the overall shape and orientation of the product.

There are also other studies regarding vision-guided system that are not specific to

palletizing process. Ji et al. (2012) conducted a study on a machine visions system that is

Univ
ers

iti
Mala

ya

13

used to recognize and locate apples in order to harvest the fruits. This study aims to

develop an automatic harvesting system that is guided using image processing algorithm

in order to recognize which apples that can be harvested. They first start by implementing

a colour Charge Coupled Device (CCD) camera to capture the images of the fruits, and

these images will be processed using an industrial computer in order to recognize the

fruits. Charge coupled device camera is a video camera that contain a transistorized light

sensor on an integrated circuit (IC), in other word a digital camera (KISI, n.d.). CCD

camera allows for visual input to be converted into digital image or video. During the

image processing stage, a vector median filter is applied to remove the noises that would

influence the image quality. This filter also highlights the apple fruits forward by

weakening the noise and reducing the sharpness of the background. This filtered image

is then followed to an image segmentation process where the apple in the image is further

differentiated form the complex background that include leaves and branches. Then, an

image shape recognition feature extraction algorithm is applied by removing the

background completely after the apple fruit is recognized. These data would be used by

the harvesting machine to locate the ripe apples to be harvested.

There are also other studies about image-guided robotic applications in the sports

industry. In 2002, a robot that is capable of replacing a ball boy for a tennis court is

developed (Webster & Brannon, 2002). This study aimed to develop a mobile robot that

can interact with its environment by locating the objects near it and determine what are

the objects. The robot relied on a charge-coupled device (CCD) camera as its vision

system to identify the location of the tennis balls. The vision system employed in this

study is an overhead camera mounted with its optical axis is directly perpendicular to the

tennis court surface. They chose this type of configuration for the vision system as it helps

to eliminate the error in distance measurements that come with onboard camera systems

where the camera reference frame is always changing as the robot moves. The other

Univ
ers

iti
Mala

ya

14

advantage of using the overhead camera vision system is that the pixels of the camera can

be directly translated into physical coordinates. To identify the robot’s own location and

the location of the tennis balls, the vision system converts the pixels of the image into

Cartesian coordinates which would simplify the calculations for location mapping as

shown in Figure 2.2. For each image captured, the vision system must be able to identify

the location and the orientation of the robot, the location of the tennis balls and any

obstacles on the court before calculating the path for the robot to follow. The path must

be able to collect all the ball in the shortest amount of time while avoiding the obstacles

on the tennis court. In order for the vision system to recognise the orientation of the robot,

they place an identifying marking on robot that is uniform in diameter with a recognizable

shape in order to identify it orientation. This vision system also implements an RGB filter

that removes any unnecessary information and classify the pixels into four categories: the

robot, ball, obstacle, and the background. Several algorithms are then used to create a

path for the robot to follow in order to collect all the tennis balls in the shortest amount

of time. The algorithm used for this case, is quite simple as it only depends on 2-

dimensional coordinate systems for the path of the robot to follow.

Figure 2.2: An overhead fixed camera causes
the pixels to correspond to physical Cartesian

coordinates (Webster & Brannon, 2002)

Univ
ers

iti
Mala

ya

15

The studies mentioned regarding vision guided system for robotic application signifies

many advantages to adding vision system in robots. For most of this vision system, the

type of object is identified by a specific label, or they each have distinct features that is

easily recognize by the robot. Since only few objects are involved, they only need to take

into account a fixed number of parameters which is why machine leaning is not needed

here. However, if multiple type of objects with irregular shapes and orientations are

involved, an object detection algorithm is required.

2.3 YOLO Object Detection

You only look once (YOLO) model is a single-stage object detection model that is

developed by Redmon et al. (2016) to be use in real time application as it is fast. Single-

stage object detection is much faster and more robust compared to two-stage detectors as

YOLO treats object detection problems as a simple regression problem that takes the

image as an input and simultaneously generates class probabilities and multiple bounding

boxes (Junos et al., 2020). Multiple applications have applied these YOLO detection

model by modifying and training the model to suite the respective applications. The most

common and latest model by Redmon et al. (2016) which is the YOLOv3 have the best

detection performance with respect to its previous model but a long computation time is

required to train the model due to network complexity. Therefore, a lighter version of

YOLOv3 that can be trained a shorter time and satisfy real time object detection is

developed which is called YOLOv3 tiny. YOLOv3 tiny is based on a constrained

environment in which the memory, storage capacity and processing power are limited (Li

et al., 2020) which means that a low computation cost is needed in order to train the

model. In this research report, YOLOv4 tiny is used instead of YOLOv3 as it can detect

object faster and more accurate as shown in Figure 2.3. YOLOv4 improves YOLOv3

average precision (AP) by 10% and frame per second (FPS) by 12% (Bochkovskiy et al.,

2020). YOLOv4 tiny is applied in this research as it can be trained much faster with low

Univ
ers

iti
Mala

ya

16

computation cost compared to YOLOv4, thus making it suitable when the equipment is

limited. Due to the increase in the FPS, the AP will be slightly sacrificed but acceptable

since the environment used for object detection in this research will not change.

2.4 Orientation and Shape/Contour Detection

Most of these studies on robotic palletizing are heavily on the stacking algorithm of

the packaged products and for heavy-duty palletizing. The vision system used are for

identifying the location of the product only and not for shape recognition. For this project,

a vision system that can identify the product with non-uniform shape will be develop and

will work alongside a robotic arm to correctly orient the product before palletizing. Shape

recognition algorithm can further increase the flexibility of the robotic palletizing system

as it allows for the vision system to recognise the shape and orientation of any products.

Not many studies can be found regarding implementing a shape recognition algorithm in

the palletizing processes. However, some studies regarding this matter are conducted for

Figure 2.3: Comparison of the proposed YOLOv4 and other object
detectors (Bochkovskiy et al., 2020)

Univ
ers

iti
Mala

ya

17

other usage such as recognizing hand-palm orientation for sign language by Phadtare et

al. (2012). These researchers aimed to develop an automatic gesture recognition

specifically purposed of understanding sign languages by translating the hand-palm

orientations. Their vision system also implements Microsoft Kinect to capture the colour

and depth of the images being processed.

The vision system analyzed the depth data corresponding to only the hand-palm region

and compare it to the examples shapes in the predetermined sign language databases. The

other benefit of using the Kinect system is that it can provide human skeletal joint location

which is then can be used to determine the location of the hand of the user. The Kinect

system is manufactured for gaming purposes (XBOX) which lets the players controls the

game using only their body movements instead of the traditional controllers

(WIKIPEDIA, 2020a). The motion sensing abilities of the Kinect vision system allows

for a better hand gestures recognition. Junyeong et al. (2013) also did a similar study

using the Kinect vision system to develop a hand shape recognition for interaction

between robots and humans. This study translated the hand gestures by laying simple

shapes on top of the hand such as using ovals as the palm and lines as the fingers. They

then translate these lines and ovals to specific meaning by using the predetermined

databases.

Pagano et al. (2020) did a study aimed to develop and automatic gluing system for

footwear industry that is guided using a vision system. The objective is that to further

increase the manufacturing productivity by implementing a vision system in order to

identify the shape and position of the unknown object and identify the gluing area that is

usually located along the object perimeter. The vision system for this footwear gluing

traces the perimeter/contour of the sole and it needs to be able to process 3-dimensional

coordinates as it need to be able to identify the depth of the sole of the shoe as it often has

Univ
ers

iti
Mala

ya

18

raised edges. The study uses a Microsoft Kinect V2 vision system as it consists of a RGB

camera with a high resolution and an infrared sensor that enables distance measurement

to be conducted. This vision system allows for the location and reconstruction of the shape

of the object virtually which enables the trajectory of the gluing robot to be planned and

executed.

In summary, several studies had been conducted in improving the palletizing process

using robots. However, many studies regarding robotic palletizing are heavily rely on the

stacking algorithm of a predetermined or uniformly shaped products. By implementing a

vision system along with a shape recognition algorithm, a more flexible robotic

palletizing process can be developed in order to reduce the amount of human interaction

needed in the palletizing process. In this study, an image-guided vision system would be

used along with a robotic arm to palletize an irregular shaped product. A shape

recognition algorithm would be employed in the vision system to recognize the shape and

the orientation of the product before packaging.

Univ
ers

iti
Mala

ya

19

CHAPTER 3: METHODOLOGY

3.1 Introduction

This chapter presents the method and procedures that was done in developing the

image-guided vision system for robot. The objects used for detection are 3D-printed

chicken wings and drumstick as they are easier to manage compared to raw chicken. The

objects used here are just for demonstration and can be swapped with other objects with

new object detection training. Most of the coding and detection are done using a regular

desktop webcam (Logitech C170 webcam) and PyCharm which is an Integrated

Development Environment (IDE) in computer programming that is specific for the

Python language. The robot simulation is done in the free version of RoboDK. Figure 3.1

is a flowchart showing the sequence of how this research project is conducted.

Univ
ers

iti
Mala

ya

20

Figure 3.1: Research project flow chart Univ
ers

iti
Mala

ya

21

3.2 3D Printed Wings and Drumstick

The objective of this research is to detect non-uniformly shaped object; thus, the

chosen object are chicken wings and drumsticks. The wings and drumsticks used here can

be replaced with any other object, they are merely chosen in order to demonstrate the

vision system developed. Using raw chicken wings and drumsticks would induce other

non-essential problems such as hygiene, thus 3D-printed versions of the object will be

used. The 3D model of the drumstick is obtained from an online 3D model platform

“free3D.com” that offers a variety of 3D models shared throughout the community.

Figure 3.2 shows the 3D model of the drumstick obtained from the website. As the 3D

model of the chicken wing is not available for free online, the wing model is designed in

Solidworks, a Computer Aided Design (CAD) software. The design is not an exact copy

Figure 3.2: 3D model of a chicken
drumstick (printable_models, 2019)

Figure 3.3: 3D model of a chicken
wing designed in Solidworks

Univ
ers

iti
Mala

ya

22

of the real chicken wing but have similar size and shape. The models are 3D printed using

the Ender3 3D printer with the Polylactic Acid (PLA) filament. The type of material used

to print the objects is not relevant to these study as the objects is only used to demonstrate

the vision system.

3.3 YOLOv4-Tiny Training and Testing

For the object detection algorithm, the YOLOv4-tiny is used with three object classes

namely drumstick, right wing, and left wing. For drumsticks, the left and right wide are

similar in shape and size, thus only needing one class. However, for wings, the right and

left side are mirrored, thus needing two classes to differentiate the wings. Figure 3.4

shows the top view of the drumstick and Figure 3.5 shows the top view of both the right

wing and the left wing.

Figure 3.4: Top view of drumstick

Figure 3.5: Top view of left wing and right wing in order
from the left

Univ
ers

iti
Mala

ya

23

Figure 3.6 shows the flowchart for the YOLO object detection training and testing

procedure. The training process starts with the image acquisition and ends after testing is

done.

3.3.1 Image Acquisition

The images are collected by using a regular desktop webcam (Logitech C170 webcam)

through a Python code. Table 3.1 shows the specification of the C170 webcam used for

data collection. Figure 3.7 shows the equipment setup for the image acquisition that

consists of a desktop webcam, fluorescent light, and black panels. Black panels are used

so that it would not reflect the light from the fluorescent bulb and damaging the image.

The python code, “1-DataCollection1.py” in Appendix A is used to automate the image

acquisition process by specifying the minimum blurriness percentage (50%). This means

that if the image is below 50% in blurriness, then it will not be saved. The images are

saved with a 640 x 480 resolution which in this project, translates to a 640 mm by 480

mm physical cartesian coordinates. This allows for a one-to-one ratio between the images

and the coordinates for the robot later. This resolution can be scaled to match any physical

Figure 3.6: YOLOv4-tiny training and
testing flowchart

Univ
ers

iti
Mala

ya

24

coordinates, but, in this case, it is not significant, since this research would only be a

demonstration of a vision system.

The images are then filtered through manually to check for repetitions and hand

movement since the object are placed randomly by hand in each frame. All the objects

are kept inside the resolution boundary so that none of the object is only showing part of

its body, and objects that overlaps are not taken as part of the data. The code is executed

Figure 3.7: Equipment setup for image acquisition and object detection

Univ
ers

iti
Mala

ya

25

until 1000 images are obtained and all the images are sorted/shuffled randomly and

renamed. Figure 3.8 shows four sample images out of the 1000 images gathered for the

YOLO training process.

Table 3.1: Specification of Webcam used for image acquisition

Type USB Webcam

Max Resolutions 1024 x 768

Interface USB 2.0 – 4 pin USB Type A

Manufacturer Logitech

Model C170

Figure 3.8: Sample output of the image acquisition process (4 out of 1000
images)

Univ
ers

iti
Mala

ya

26

3.3.2 Labelling and Annotation

The 1000 images were manually labelled and annotated by drawing bounding boxes

and classifying the class/categories for each object in the images. An open-source

labelling and annotation tool called LabelImg created by Lin (2017) was used for this

process. All the images were annotated into three classes that were named LeftWing,

RightWing and Drumstick. In each image, every object was labelled with a bounding box

that represents the location of the object in the image. Figure 3.9 shows one of the images

being labelled and annotated with different bounding box colors corresponds to different

classes.

Each labelled image is then saved using the YOLO format in a txt file that contains

the class and the bounding box coordinates of each object in the image as shown in Figure.

The txt file is formatted as object-class, x, y, width, and height where:

• Object-class is an integer number of objects from 0 to 2 in which, 0 is

LeftWing, 1 is RightWing and 2 is Drumstick

• x, y, width, and height are float values relative to width and height of the

images which can be equal from 0.0 to 1.0 (x and y are center of the rectangle)

Figure 3.9: LabelImg labeling and annotation sample

Univ
ers

iti
Mala

ya

27

• for example:

o 𝑥 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑥 ⁄ 𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ

o ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑖𝑚𝑎𝑔𝑒⁄ ℎ𝑒𝑖𝑔ℎ𝑡

3.3.3 Data Augmentation

The 1000 labelled and annotated images are then augmented to obtain 4000 more

images for the YOLO training. Data augmentation enables user to significantly increase

the number and diversity of the data available for training models, without the need of

gathering new data. There are multiple methods for data augmentations such as image

rotation, adding noise, image flipping etc. In this research, only the image rotation method

is used. An open source image augmentation code created by whynotw (2019) in GitHub

is used. The rotation angles used for this image augmentations are 0o, 45o, 90o, 180o and

270o. This resulted in each original image is augmented to produce four new images and

labels. Figure 3.11 shows a sample of the augmentation process of an image and its

resultant 45o, 90o and 180o rotated image and labels. This augmentation process results in

a total of 5000 images for YOLO training and validation. These 5000 images are then

divided into 70% as training data and 30% as validation data for the training process.

Figure 3.10: Text file containing the labels of
an image

Univ
ers

iti
Mala

ya

28

3.3.4 YOLO Training and Validation

YOLO training is done using a modified YOLOv4 training tutorial by theAIGuysCode

(2020) in GitHub through Google Colab using its free graphic processing unit (GPU). In

the training configurations file, ‘yolov4-tiny-custom.cfg’ shown in Appendix B, several

parameters are modified to match the research. The batch size and subdivision of 64 and

32 was used to prevent error from GPU limitations. The image width and height are set

to 416x416 to enable faster training durations. Other variables are configured as below:

• max_batches = (# of classes) *2000 = 3*2000 = 6000

• steps = (80% of max_batches), (90% of max_batches) = (4800), (5400)

• filters = (# of classes + 5) *3 = (3+5) *3 = 4

• classes = 3

Figure 3.11: Image and label augmentation through rotation (original 0o, 45o,
90o and 180o in order from left to right

Univ
ers

iti
Mala

ya

29

A pre-trained weight for the convolutional layers created by AlexeyAB (2020) called

“yolov4-tiny.conv.29” is used to help trained the custom object detector. This pre-trained

weight helps this custom detector to be more accurate and not have to train as long. The

training is executed until the loss is converged to the lowest average loss. For this

research, the training process continued until about 6000 iterations and the lowest average

loss of about 0.2 with a minimum average precision (mAP) of 99.63%. During the

training, the resultant weights file was saved for every 1000 iteration as a backup and also

to find the best weights file. More iterations do not mean greater precision but sometimes

can lead to overfitted detection. Figure 3.12 shows a chart of both the loss and mAP for

the training process. This chart shows that at about 5000 iterations, the mAP remains

Figure 3.12: YOLO training and validation chart

Univ
ers

iti
Mala

ya

30

relatively constant, thus the best suited weight for detection is the 5000th iteration weight

file.

3.3.5 Testing

The resultant weight file is tested using several images and live video input from the

webcam using a modified python code by Hassan (2020) to suit the new YOLO model,

with the same equipment setup. When testing, the objects are placed randomly and not

close together similar to the images for training. This testing is just to observe whether

the weights file obtain from the training process can be used to detect the wings and

drumsticks from other images and the live input video from the webcam. Other case study

that involves object stacked onto each other and placed close together will be shown in

CHAPTER 4:Experiments and Discussion. Figure 3.13 shows the result obtained when

using the detection with the weight file obtained from the training process. These images

Figure 3.13: YOLO object detection testing results

Univ
ers

iti
Mala

ya

31

show the bounding boxes that surround each object that contains the class type and the

detection confidence for each object that is detected.

3.4 Contour/Orientation Detection

3.4.1 Contour Detection

The program for contour detection is based on a OpenCV shape detection tutorial by

Hassan (2019). In the tutorial, the shapes are identified by using edge detectors which

detects the outer perimeter of each object. The edge detector used is called the “Canny

Edge detector” which is an operator that uses a multi-stage algorithm to detect a wide

range of edges in images. This operator was developed by John F. Canny in 1986. The

Canny edge detector used in this project is the one available in the OpenCV library.

Before running the edge detector algorithm, a few preparations need to be done to the

image to avoid errors in the detection. The edge detection is highly sensitive to image

noises, which is why noise reduction is required. Noise reduction in the image is done

through a blurring/smoothing process available in OpenCV called “GaussianBlur”. This

smoothing process prevents unnecessary edges to be detected. Figure 3.14 shows the

original image and the Gaussian blurred image that have reduced noise level.

The blurred image is then converted to a grayscale format through the use of a OpenCV

function, COLOR_BGR2GRAY. This function cenverts any image to a single channel

Figure 3.14: Original image and blurred image in order from the left

Univ
ers

iti
Mala

ya

32

grayscale image with every pixel is assigned a value from 0-255 to represent its intesity.

By converting the image to grayscale, a thresholding process can be done for the Canny

edge detection. These thresholds converts the image to black and white, which highlight

the object of interest for the edge detection algorithm. Figure 3.15 shows the grayscaled

image and the resulted edge detection image after the thresholds are applied. Thresholding

converts the borders/perimeter of the object in the image completely white, with all the

pixels having the same intensity and the rest of the pixels, the background into black.

The Canny edge detection is use along with these thresholds to detect the borders of these

white pixels. The threshold values is tested by using trackbars in the code to find the

suitable values for the edge detector. Other than the thresholds, the minimum area for the

contour is also applied in the trackbars. This is so that only contours that have area greater

than the specified minimum area to be generated which prevents any unwanted contour

Figure 3.15: Gray scaled image and the resulted image after Canny edge
detection.

Figure 3.16: Trackbars for Canny edge detection algorithm containing the
thresholds and minimum area

Univ
ers

iti
Mala

ya

33

to be displayed. Figure 3.16 shows the values obtained for the thresholds and minimum

area for the Canny edge detection algorthm. The contours obtained from these Canny

edge detection is then dilated to obrained a more thicker contour lines as shown in Figure

3.17. Figure 3.18 shows the resulted dilated contour overlayed on the original image with

number of points and the contour area information. The contours make up of points that

are connected together to form the edges. These points obtained from the detected

edges/contours is then used for the orientation detection process.

Figure 3.17: Dilated image showing thicker contour lines

Figure 3.18: Image of contour lines overlayed onto original image

Univ
ers

iti
Mala

ya

34

3.4.2 Orientation Detection

The orientation of the contours/objects are determined by using a function available in

the OpenCV library called “fitEllipse”. This function takes in the contours which contains

several sets of 2D coordinates that represent each object and fits an ellipse on the contour

(OpenCV, 2021). This function outputs several parameters that contains the center of the

ellipse, the major and minor diameter of the ellipse, and the angle of the major diameter.

The angle of the major diameter is measured from a vertical axis towards the major

diameter in a clockwise (CW) direction. Figure 3.19 shows the resultant angle and ellipse

after using the fitEllipse function on the contours. The navy-colored lines on the

drumstick on the left side of the figure are showing how the angle is measured which

applies to the other objects as well. The angle is measured from vertical axis to major

diameter, however, it is not consistent with the shape of the object, i.e., for the drumsticks

Figure 3.19: Result of fitting an ellipse on the contours using fitEllipse
function

Univ
ers

iti
Mala

ya

35

in Figure 3.19, the angle 150o is measured from the vertical axis to the meat side while

the 55o is measured to the bone side.

In order to obtain a default and consistent angle of orientation, all the contours are

rotated counterclockwise (CCW) of the angles obtained from the fitEllipse function as

shown in Figure 3.20. This would make all the rotated contours to have a zero-degree

rotation. The contours in teal are displaying the rotated contour and as observed, the

drumsticks rotated contours does not match since the way the angle measured is different

as mentioned above.

To correct the issue of the inconsistent angle measured, the fitEllipse function is used

on the rotated contour (teal colored) to obtain the center points of the ellipse. The center

points of the ellipse are then compared with the center points of the rotated contour. If the

y-value of the center of the contour is greater than the y-value of the ellipse, then the

Figure 3.20: Contour in red is rotated CCW of the angles displayed to produce
contours in cyan

Univ
ers

iti
Mala

ya

36

contour will be rotated clockwise of 180o and if it is not greater, then the contour will not

be rotated. Figure 3.21 shows the final contour in orange color and the blue circle is the

center of the contour in teal and gray circle is the center of the ellipse fitted to the teal

contour. As observed, all the orange contour of the drumstick match with each other. All

the value of the angles used for each rotation are added together (negative angles for CCW

rotations) to be used as the object’s orientation information.

To summarize the contour/orientation detection section, a flowchart showing the steps

for the orientation detection program is shown in Figure 3.22. The angles of rotation is

added together, i.e., for the drumstick on the left in Figure 3.21, the final angle would

−150𝑜 + 180𝑜 = 30𝑜.

Figure 3.21: Contour in red is the original, contour in teal is rotated using
the angles displayed and contour in orange is the final contour

Univ
ers

iti
Mala

ya

37

3.5 Combining YOLO and Orientation Detections

From the YOLO detection program, each object in the image will be bounded by a

box, in which the coordinates and dimension of the box can be obtained. Each object in

the bounding box is then used along with the orientation detection program to determine

their orientation. Using the final angle obtained from the orientation detection and the

class information from the YOLO object detection, the suitable picking orientation for

each object is calculated. The added angle of rotation for each wing and drumstick are

different in which the LeftWing is rotated 45o CW, RightWing is rotated 45o CCW and

drumstick is rotated 90o CW. Figure 3.23 showing the sample result of combining the two

detections programs for the drumstick on the left of the figure. The image is cropped to

only the drumstick in the bounding box and it is run through the orientation detection

Figure 3.22: Flowchart of the contour/orientation
detection program

Univ
ers

iti
Mala

ya

38

program that displays the contours and calculates the angle for pick and place procedure

in RoboDK. The same process is repeated for other object in their respective bounding

boxes until all the orientations of each object is obtained. The green contour shows the

final orientation of the drumstick to be placed by the robot arm onto the pallet. Figure

3.24 shows the picking angle for the robot gripper (negative of the angle needed to rotate

the objects to the desired final orientation), the blue circle represents the centroid of the

objects and the green contour shows the final orientation desired when placing the objects

on the pallet in the RoboDK simulation.

Figure 3.23: Sample image demonstrating the combination of the YOLO object
detector and orientation detection program

Figure 3.24: Image showing the result of the
detector program

Univ
ers

iti
Mala

ya

39

3.6 RoboDK Simulation

In order to simulate the pick and place procedure in RoboDK, a virtual environment

need to be set up. The virtual environment would include a robot arm, gripper, tables etc.

As mentioned previously that the 640 x 480 resolution of the images, translates to a 640

mm by 480 mm physical cartesian coordinates, thus the table used should be bigger than

the specified length and width. All the virtual equipment is obtained in the RoboDK

library except for the 3D model of drumstick and wings. Figure 3.25 shows the full virtual

environment used fot the pick and place simulation in RoboDK. Table 1 is for picking

operation and the other tables are for placing proceedures. The Robot used in this

simulation is the UR10e from Universal Robots and its specification is shown in Table

3.2. This robot is chosen as it have a reach of 1300 mm which is barely enough to pick

and pllace between the tables. As this is just for simulation, the payload of the robot which

Figure 3.25: Virtual environment for pick and place in RoboDK Univ
ers

iti
Mala

ya

40

exceeds the weight of the objects to be picked up by a large amount is ignored. The robot

is merely chosen for its reachability. The robot is placed on top of a pedestal so that its

base is higher than the table.

Table 3.2: Robot specifications (RoboDK, 2021a)

The gripper used in this simulation is the Gripper RobotiQ 2F 85 (open). This gripped

cannot open or close in the simulation, it is there to show that the gripper can use the data

obtain from the detection programs to find and pick the object. As this is using the free

version of RoboDK, the accessibility is limited, thus, the most suitable method is chosen

to show the workings of the smiulation. Figure 3.26 shows the close-up image of the

gripper used in the simulation. The way to pick and place the object using the gripper is

by using the build in command “gripper.AttachClosest” and “gripper.DetachAll”. This

does not show that the gripper will grip the object but merely attaching the object to the

gripper.

Brand Universal Robots

Type 6 DOF

Axes 6

Payload 10 kg

Reach 1300 mm

Repeatability 0.050 mm

Weight 29 kg

Univ
ers

iti
Mala

ya

41

3.6.1 Reference Frames

For the pick and place simulation to work, each object would need reference frame.

All the equipment used from the library already have their own reference frame. Thus,

only the reference frame of the 3D model of wings and drumstick are needed. The 3D

models are first imported into the RoboDK environment, and their centroid is placed

similar to the centroid obtained in the orientation detection. However, the centroid in

orientation detection only contains 2D data, thus the z-coordinates is approximated.

Figure showing the reference frame for each object in which the red is the x-direction,

green is y-direction and blue is z-direction.

For placing operations, a target reference frame needs to be added. The targets in Table

2 would be for placing the drumstick and targets in Table 3 would be for both left and

right wing. The targets are placed using a python code developed in RoboDK (see

Figure 3.26: Close-up image of gripper

Figure 3.27: Reference frames for the drumstick, left wing and right wing in
order from the left

Univ
ers

iti
Mala

ya

42

Appendix C: placeTargetsGenerator.py) using a txt file that contains the class type,

coordinates, and orientation of the placing targets. The targets are placed within the 640

mm by 480 mm on the table with Table 3 is divided in half for each wing. Figure 3.27

shows the position and orientation of the targets to be used for the placing operations. The

objects shown are for demostrating the placing orientation, only the reference frame is

generated for the targets.

3.6.2 Pick and Place Operations

Before beginning the pick and place procedure, a txt file containing the class type,

coordinates and orientation need to be generated. This txt file is generated from the YOLO

and orientation detector program. The txt file will contain the x, y, z coordinates and the

orientation (rotation about x, rotation about y and rotation about z). The rotation about z

is obtain from the orientation detection while the rotation about x and y are constant for

the objects as they are laid flat on a surface. The z-coordinates depends on the thickness

of the objects. The program containing the YOLO and orientation detection that generates

this txt file is available in Appendix D: YOLOv4-Orientation-multipleImages.py. Figure

Figure 3.28: Targets for the placing operations on Table 3 and Table 2 in order
from the left

Univ
ers

iti
Mala

ya

43

3.29 shows the txt file generated that contains the class type, x, y, z coordinates and the

rotation about x, y, and z.

This generated txt file will be used alongside a python code in RoboDK to generate

virtual objects to be picked and placed in RoboDK (see Appendix E: createObj-Pick-

Place.py). This code will copy the 3D model of drumstick and wing, to be generated in a

location and orientation similar to the image used in the detection program. Figure 3.30

shows the generated virtual model of the objects in RoboDK from the image used in the

detector program. To differentiate between the models, colors are applied to the virtual

models, blue is for left wing and pink is for right wing. After all the virtual models have

been generated, the pick and place operation begin. Figure 3.31 shows some sample

Figure 3.29: Sample txt file generated from the detection program

Figure 3.30: Virtual model of the objects generated in RoboDK and the image
from the detector programs

Univ
ers

iti
Mala

ya

44

images of the gripper picking up the objects. For the drumstick, as the gripper claw is

shorter than the length of drumstick, it seems like it is poked through the drumstick. As

mentioned previously, the gripper cannot be opened or closed as this is the limitation of

the free version of RoboDK. However, the images prove that the data obtained from the

detector programs can be used as the picking information for the gripper. The objects are

just attached virtually to the gripper using the command “gripper.AttachClosest” and will

release the object using “gripper.DetachAll”. These images shows that the location and

orientation of the gripper match with the object that it’s going to pick up. Thus, if another

bigger gripper is used, the orientation can still match.

In summary, the images will be run through the detector programs to generate txt file

that contains the class type, locations, and orientations of the objects. Then, that

information is used in RoboDK to generate the virtual object models on Table 1 to be

picked up by the robot and gripper and placed to Table 2 if it’s a drumstick, and to Table

3 if it’s a wing. Figure 3.32 shows an image of the ongoing pick and place operations in

RoboDK.

Figure 3.31: Gripper picking sample images

Univ
ers

iti
Mala

ya

45

Figure 3.32: Image of pick and place operation in RoboDK

Univ
ers

iti
Mala

ya

46

CHAPTER 4: EXPERIMENTS AND DISCUSSION

Using the programs developed, several case studies are conducted to test the

performance of the vision system.

4.1 Ideal Case

For the ideal case, 10 images are acquired for the detector programs. In each image,

the objects are fully within the 640 x 480 resolution meaning that 100% of the object’s

body are in the frame. In addition, the objects are not closely packed together and have at

least 30 mm separation between them. This also means that there are no objects that are

stacked or overlapped onto each other. This is so that there is no problem in object

detection and also the contour detection. Figure 4.1 shows the six images used for the

ideal case study. All of the objects in each image are not close to each other and 100% of

their body is visible in the frame. Each image will represent one pallet that contains the

objects. The total number of drumsticks are 10, left wings are six and right wings are six.

Figure 4.1: Images used for the ideal case Univ
ers

iti
Mala

ya

47

4.1.1 Detector Results and RoboDK Simulation

The images are ran through the detector programs to detect the type of objects and

location as well as each object’s orientation. Figure 4.2 shows the result after the six

images area ran through the detector program. In each image, the class type, picking

orientations and the final placement contours are displayed. For each image, a txt file

containing the class type, x, y, z coordinates and rotation about x, y, z is generated. Figure

4.3 shows the txt file generated for image 00006 that contains the class, location, and

orientation information to be passed through in RoboDK. In RoboDK, the pick and place

are done through one image at a time. The objects in the first image are virtually

generated, then they are picked and placed by the robot. After all the generated object

Figure 4.2: Resultant images from the detector program

Figure 4.3: Txt file generated for image 00006

Univ
ers

iti
Mala

ya

48

from first image is picked and placed, then, the objects in the second image are generated,

picked and placed beside the first generated objects. The process is then repeated until all

the objects in the last image have been generated, picked, and placed. Figure 4.4 shows

the images after the pick and place operation are done in RoboDK and the total number

of drumstick placed are 10, left wings are six and right wings are also six. These numbers

match with the number of objects in the six images used in the detector program which

means that all objects have been accounted for.

For most of the case studies, the images gathered are first tested using the YOLO object

detection due to the fact that the orientation detection rely on the bounding boxes

generated by the object detector program.

Figure 4.4: Image after all the objects in all images have been picked and placed
in RoboDK

Univ
ers

iti
Mala

ya

49

4.2 Case Study 1: Objects close together

For this case study, a set of six images are gathered. In each image, the objects are

placed close together with minimal gaps. These images are tested using the YOLOv4-

tiny object detector first to determine whether this object detection program can detect

every object on these images. Figure 4.5 shows images where all the objects are closely

packed together with minimal gaps.

 These images are ran through the YOLO object detector program to test the detector’s

performance on objects that are closely arranged. Figure 4.6 shows the results obtained

Figure 4.5: Images used for Case Study 1

Figure 4.6: Results from YOLO object detection for Case Study 1

Univ
ers

iti
Mala

ya

50

from the YOLO object detection program. For most of the images, the number of

detection by the program are less than the number of objects. For example in image

“close4out”, the program managed to only detect two objects out of the four, and in image

“close3out”, it can only detect two out of the three drumsticks. And in some images, the

wings are incorrectly detected, i.e., in image “close6out”, both the LeftWing are detected

as RightWings. This is maybe due to the the initial images used for training. Most of the

training images does not contain objects that are closely packed together. Since the

orientation detection program uses the bounding boxes from the YOLO object detection,

its result are also not reliable when the objects are placed close together. This is due to

more than one object in the same bounding boxes, thus, creating more contours. One way

to prevent the objects being closely together in a pallet is by applying a separator or by

vibrating the pallet to loosen the arrangement.

4.3 Case Study 2: Object Overlapped

Six images containing several objects that overlapped or stacked onto each other are

gathered. Figure 4.7 shows the images that contain multiple objects being stacked onto

one another. Smilar results as Case Study 1 are obtained. The number of detection are

less than the number of object and several objects are detected with a wrong class type.

Figure 4.7: Images used for Case Study 2

Univ
ers

iti
Mala

ya

51

Figure 4.9 shows the results obtain from the YOLO object detection. Several objects are

missing in the detection that is showed by the lower number of bounding boxes compared

to the number of objects in each image. This is may be due to the objects having similar

color which is why the objects seems indistinguishable.

To demonstrate that the orientation detection program result depends on the bounding

boxes of the object detection, image “over1” is tested using the orientation detector.

Figure 4.8 shows the result obtained from using the orientation detector on image “over1”.

The contour displayed (in red) does not have the shape of the drumstick, since there is

more than one object in the bounding box. The angles showed in the images cannot

Figure 4.9: YOLO object detection result for Case Study 2

Figure 4.8: Orientation detector
result for image “over1”

Univ
ers

iti
Mala

ya

52

represent the orientation of each object since the contours are wrong. To prevent object

from overlapping with one another, the pallet can be shaken or vibrated using a machine.

4.4 Case Study 3: Partially displayed object

For this case study, the objects are intentionally placed along the border of the

platform, so that the image acquired will contain objects that its body is only partially

displayed. Figure 4.10 shows the images that contains only partially visible objects.

These images are first ran through the object detector to test whether the detector can

detect object that are only partially visible. Figure 4.11 shows the result obtained from

the YOLO object detector. For both images “edge1” and “edge2”, all the objects are

detected correctly, but in image “edge3”, two objects were not detected. Then, the two

images that their object are detected correctly are tested with the orientation detection

program. Whent tested, the program resulted in an error, since it cannot detect the

contours of the objects at the borders. The countour were not closed9 to which the detector

Figure 4.10: Images used for Case Study 3

Figure 4.11: YOLO object detector result for Case Study 3

Univ
ers

iti
Mala

ya

53

produce the error. To prevent the object to be over the edge of the pallet, a physical border

could be place around the pallet so that all the objects can be 100% visible.

4.5 Case Study 4: Computer Performance

In this case study, the images from the ideal case were used. However, two different

computers with different specifications are used to run the YOLO and orientation detector

programs. The program will output all the resultant images and every txt file for each

image. The main point of comparison would be the time taken for the program to finish

computing. The computers used are a gaming laptop, Lenovo Legion Y530 and the

Raspberry Pi 4 computer. The specifications for both computers are shown in Table 4.1

and Table 4.2.

Table 4.1: Specifications for Lenovo Legion Y530 gaming laptop

CPU Intel(R) Core (TM) i7-8750H CPU @ 2.20GHz

RAM 16.0 GB DDR4 2666 MHz

Storage ADATA SX8200PNP M.2 SSD

Table 4.2: Specifications for Raspberry Pi 4 Model B computer

CPU 64-bit Quad-Core Cortex-A72 processor @ 1.5GHz

RAM 4GB LPDDR4

Storage SanDisk Ultra A1 Class 10 Micro SD Memory Card

Both the computers are tested with the same number of images containing the exact same

objects. In the program, a delay of 3000 milliseconds will be added so that each detection

result can be displayed and observed. In addition, each computer will also be tested when

only the txt file is generated without any output images and delays. The objective of this

Univ
ers

iti
Mala

ya

54

experiment is to observe the performance of the detection program on different computer

systems of different specifications and prices in which the gaming laptop is much more

expensive than the miniature computer. Table 4.3 shows the computation time for each

computer to run the detection program with and without the delays. The difference in

computation time between the two computers are about five seconds for six images. Thus,

to have a seamless operation between the program and the simulation, a higher frequency

CPU is needed or by modifying the program to have a lighter computational cost.

Table 4.3: Computation time results

Computer Lenovo Gaming Laptop Raspberry Pi 4

Computation time with delays

and image generation
18.635288953781128 s 23.69989275932312 s

Computation time without

delays and image generation
0.44082212448120117 s 5.044687271118164 s

In summary, this YOLO object detection and the orientation detection program can be

applied to a robotic palletizing system through a vision system as long as the objects are

arranged in a certain manner. The objects should not be overlapped with one another and

should have a gap between them, so that the objects are not in contact with each other. To

achieve such arrangement, a sorting or vibrating mechanism can be applied in the

production line. The size of the pallets can be changed as the image resolution can be

scaled to match the desired pallet sizes. In addition, the type of objects can be manipulated

by training a new YOLO detection model and its picking orientation can be modified by

manipulating the angles in the program.

Univ
ers

iti
Mala

ya

55

CHAPTER 5: CONCLUSION

5.1 Summary

In this research project, an image-guided vision system has been developed and tested.

A YOLO object detection model was trained using images acquired using a regular

desktop webcam (Logitech C170). The object detection model managed to achieve

minimum losses and a high average precision. This detection model is able to detect the

type of object in the images with high confidence and also generate the bounding boxes

that contain the objects’ location. The orientation of the objects is detected using a contour

detection function in OpenCV called “Canny Edge detection” and “fitEllipse” function.

By combining these two functions, the suitable picking orientation and position are

generated which would enable a robotic arm equipped with a gripper to pick up the

objects.

The class type, coordinates and orientation of the objects are used to simulate a pick

and place operation in RoboDK. The objects in the image are successfully generated

virtually in the RoboDK environment with the exact location and orientation from the

real image. The robotic arm equipped with the gripper manage to pick up the objects with

the suitable picking orientation and successfully placed them in the correct pallets with

the desired orientations and arrangements.

It is hoped that this image-guided vision system can be applied to real-life robotic

applications to increase the productivity and efficiency of manufacturing lines.

5.2 Future Work

Currently, images are gathered and passed through the detection programs, however,

in real manufacturing lines, a live visual input of the pallets/conveyer belts would be

favorable. This information from the live input would be passed through to the robotic

arm to pick the objects. Due to hardware and software limitations, the actual real-life

Univ
ers

iti
Mala

ya

56

testing of the detection programs is not able to be conducted, only simulation is able to

be done. Thus, to further test this vision system, a real-life testing rig would be built, and

the performance of the detection models can be tested.

To apply to other objects, the YOLO object detection model can be retrained with

other sets of images containing the objects desired. This would enable this vision system

to be applied to any other palletizing operations and not just on chicken wings and

drumsticks. And the orientation detection program can be modified to comply with any

final placing orientation that is desired to match with the newly trained YOLO model.

Univ
ers

iti
Mala

ya

57

REFERENCES

AlexeyAB. (2020). darknet.
https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/y
olov4-tiny.conv.29

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-y. (2020). YOLOv4: Optimal Speed and

Accuracy of Object Detection.

Dejan. (2019). Arduino Mecanum Wheels Robot.
https://howtomechatronics.com/projects/arduino-mecanum-wheels-robot/

Fu, C., Jing, B., Huiyu, W., & Xiaoguang, X. (2019, 3-5 June 2019). Reducing the Energy
Consumption of a Palletizing Robot through RobotStudio. 2019 Chinese Control
And Decision Conference (CCDC),

Garbev, A., & Atanassov, A. (2020, 1-3 Oct. 2020). Comparative Analysis of RoboDK
and Robot Operating System for Solving Diagnostics Tasks in Off-Line
Programming. 2020 International Conference Automatics and Informatics (ICAI),

Guan, X., & Wang, J. (2011, 15-17 July 2011). Mechanical design and kinematic analysis
of a new kind of palletizing robot. 2011 Second International Conference on
Mechanic Automation and Control Engineering,

Hassan, M. (2019). Real time Shape Detection using Contours [9] | OpenCV Python

Tutorials for Beginners 2020.
https://www.youtube.com/watch?v=Fchzk1lDt7Q&t=490s

Hassan, M. (2020). YOLO v3 EASY METHOD | OpenCV Python (2020).
https://www.youtube.com/watch?v=GGeF_3QOHGE&t=4s

Ji, W., Zhao, D., Cheng, F., Xu, B., Zhang, Y., & Wang, J. (2012). Automatic recognition
vision system guided for apple harvesting robot. Computers & Electrical

Engineering, 38(5), 1186-1195.
https://doi.org/https://doi.org/10.1016/j.compeleceng.2011.11.005

Junos, M. H., Mohd Khairuddin, A. S., Thannirmalai, S., & Dahari, M. (2020). An
optimized YOLO-based object detection model for crop harvesting system. IET

Image Processing, n/a(n/a). https://doi.org/https://doi.org/10.1049/ipr2.12181

Junyeong, C., Byung-Kuk, S., Daeseon, L., Hanhoon, P., & Jong-Il, P. (2013, 24-26 Oct.
2013). RGB-D camera-based hand shape recognition for human-robot interaction.
IEEE ISR 2013,

KISI. (n.d.). CCD Cameras: An Overview. https://www.getkisi.com/guides/ccd-camera

Li, T., Ma, Y., & Endoh, T. (2020). A Systematic Study of Tiny YOLO3 Inference:
Toward Compact Brainware Processor With Less Memory and Logic Gate. IEEE

Access, 8, 142931-142955. https://doi.org/10.1109/ACCESS.2020.3013934

Lin, T. (2017). LabelImg. https://github.com/tzutalin/labelImg

Univ
ers

iti
Mala

ya

https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.conv.29
https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.conv.29
https://howtomechatronics.com/projects/arduino-mecanum-wheels-robot/
https://www.youtube.com/watch?v=Fchzk1lDt7Q&t=490s
https://www.youtube.com/watch?v=GGeF_3QOHGE&t=4s
https://doi.org/https:/doi.org/10.1016/j.compeleceng.2011.11.005
https://doi.org/https:/doi.org/10.1049/ipr2.12181
https://www.getkisi.com/guides/ccd-camera
https://doi.org/10.1109/ACCESS.2020.3013934
https://github.com/tzutalin/labelImg

58

Moura, F. M., & Silva, M. F. (2018, 25-27 April 2018). Application for automatic
programming of palletizing robots. 2018 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC),

Nowak, J. (2011, 14 October 2011). The Pros and Cons of Implementinfg a Robotic Mixed

Pallet Building System. Retrieved 15 December 2020 from
https://www.bastiansolutions.com/blog/the-pros-and-cons-of-implementing-a-
robotic-mixed-pallet-building-system/

OpenCV. (2021). Creating Bounding rotated boxes and ellipse for contours.
https://docs.opencv.org/3.4/de/d62/tutorial_bounding_rotated_ellipses.html

Pagano, S., Russo, R., & Savino, S. (2020). A vision guided robotic system for flexible
gluing process in the footwear industry. Robotics and Computer-Integrated

Manufacturing, 65, 101965.
https://doi.org/https://doi.org/10.1016/j.rcim.2020.101965

palletizer.org. Mixed Palletizing. Retrieved 12 NOV from http://palletizer.org/mixed-
palletizing/mixed-
palletizing.html#:~:text=Mixed%20palletizing%20is%20the%20increasingly,siz
es%20on%20a%20single%20pallet.&text=Mixed%20palletizing%20is%20a%2
0challenge,complex%20and%20integrated%20palletizing%20systems.

Phadtare, L. K., Kushalnagar, R. S., & Cahill, N. D. (2012, 9-9 Nov. 2012). Detecting
hand-palm orientation and hand shapes for sign language gesture recognition
using 3D images. 2012 Western New York Image Processing Workshop,

printable_models. (2019). Fried Chicken Drumstick V1 3D Mode. https://free3d.com/3d-
model/fried-chicken-drumstick-v1--641412.html

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016, 27-30 June 2016). You Only
Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 39(6), 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031

RoboDK. (2021a). Robot Library. https://robodk.com/library

RoboDK. (2021b). Simulate Robot Applications - Program any Industrial Robot with One

Simulation Environment. https://robodk.com/

RobotWorx. (n.d.). Industrial Robot History. https://www.robots.com/articles/industrial-
robot-history

theAIGuysCode. (2020). YOLOv4-Cloud-Tutorial.
https://github.com/theAIGuysCode/YOLOv4-Cloud-Tutorial

Univ
ers

iti
Mala

ya

https://www.bastiansolutions.com/blog/the-pros-and-cons-of-implementing-a-robotic-mixed-pallet-building-system/
https://www.bastiansolutions.com/blog/the-pros-and-cons-of-implementing-a-robotic-mixed-pallet-building-system/
https://docs.opencv.org/3.4/de/d62/tutorial_bounding_rotated_ellipses.html
https://doi.org/https:/doi.org/10.1016/j.rcim.2020.101965
http://palletizer.org/mixed-palletizing/mixed-palletizing.html#:~:text=Mixed%20palletizing%20is%20the%20increasingly,sizes%20on%20a%20single%20pallet.&text=Mixed%20palletizing%20is%20a%20challenge,complex%20and%20integrated%20palletizing%20systems
http://palletizer.org/mixed-palletizing/mixed-palletizing.html#:~:text=Mixed%20palletizing%20is%20the%20increasingly,sizes%20on%20a%20single%20pallet.&text=Mixed%20palletizing%20is%20a%20challenge,complex%20and%20integrated%20palletizing%20systems
http://palletizer.org/mixed-palletizing/mixed-palletizing.html#:~:text=Mixed%20palletizing%20is%20the%20increasingly,sizes%20on%20a%20single%20pallet.&text=Mixed%20palletizing%20is%20a%20challenge,complex%20and%20integrated%20palletizing%20systems
http://palletizer.org/mixed-palletizing/mixed-palletizing.html#:~:text=Mixed%20palletizing%20is%20the%20increasingly,sizes%20on%20a%20single%20pallet.&text=Mixed%20palletizing%20is%20a%20challenge,complex%20and%20integrated%20palletizing%20systems
http://palletizer.org/mixed-palletizing/mixed-palletizing.html#:~:text=Mixed%20palletizing%20is%20the%20increasingly,sizes%20on%20a%20single%20pallet.&text=Mixed%20palletizing%20is%20a%20challenge,complex%20and%20integrated%20palletizing%20systems
https://free3d.com/3d-model/fried-chicken-drumstick-v1--641412.html
https://free3d.com/3d-model/fried-chicken-drumstick-v1--641412.html
https://doi.org/10.1109/TPAMI.2016.2577031
https://robodk.com/library
https://robodk.com/
https://www.robots.com/articles/industrial-robot-history
https://www.robots.com/articles/industrial-robot-history
https://github.com/theAIGuysCode/YOLOv4-Cloud-Tutorial

59

Webster, R. J., & Brannon, A. S. (2002, 11-15 May 2002). The Electronic Ball Boy: a
reactive visually guided mobile robot for the tennis court. Proceedings 2002 IEEE
International Conference on Robotics and Automation (Cat. No.02CH37292),

whynotw. (2019). rotational-data-augmentation-yolo.
https://github.com/whynotw/rotational-data-augmentation-yolo

WIKIPEDIA. (2020a, 4 December 2020). Kinect. https://en.wikipedia.org/wiki/Kinect

WIKIPEDIA. (2020b, 18 August 2020). Mecanum wheel.
https://en.wikipedia.org/wiki/Mecanum_wheel

Wurll, C. (2016, 21-22 June 2016). Mixed Case Palletizing with Industrial Robots.
Proceedings of ISR 2016: 47st International Symposium on Robotics,

Xu, Y., Liu, Y., Hao, L., & Cheng, H. (2016, 6-10 June 2016). Design of palletizing
algorithm based on palletizing robot workstation. 2016 IEEE International
Conference on Real-time Computing and Robotics (RCAR),

Yang, X., Zhang, H., Cheng, T., Ni, X., Wu, C., Zong, H., Lu, H., Lu, Z., & Shen, Y.
(2018, 24-27 Aug. 2018). An Omnidirectional and Movable Palletizing Robot
based on Computer Vision Positing. 2018 IEEE International Conference on
Intelligence and Safety for Robotics (ISR),

Yi, Z., Nianjun, L., & Jun, C. (2017). A automatic Matching Algorithm and Simulation
for Irregular Cigarette Package Stacking. Procedia Engineering, 174, 1235-1243.
https://doi.org/https://doi.org/10.1016/j.proeng.2017.01.292

Yuan, J., & Wang, C. (2016, 6-10 June 2016). Innovative design of palletizing system for
China's local industries. 2016 IEEE International Conference on Real-time
Computing and Robotics (RCAR),

Zhang, B., & Skaar, S. B. (2009, 10-15 Oct. 2009). Robotic de-palletizing using
uncalibrated vision and 3D laser-assisted image analysis. 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems,

Univ
ers

iti
Mala

ya

https://github.com/whynotw/rotational-data-augmentation-yolo
https://en.wikipedia.org/wiki/Kinect
https://en.wikipedia.org/wiki/Mecanum_wheel
https://doi.org/https:/doi.org/10.1016/j.proeng.2017.01.292

