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DESIGN AND DEVELOPMENT OF AN IMAGE-GUIDED VISION SYSTEM 

FOR ROBOTICS PALLETIZING 

ABSTRACT 

The ever-evolving trend in modern manufacturing techniques has led to a shift from 

the conventional method to the heavily automated manufacturing process. Modern 

intelligent technologies are being used to simplify, accelerate, and improve the quality of 

traditional manufacturing methods. Automation of production lines through robotic 

implementation can improve the manufacturing performance while lowering the 

associated costs because it helps standardize the stacking and palletization procedures. 

Current automation on palletizing system relies heavily on a predetermined sorting 

system due to its inability to detect irregular-shaped object. A vision system is needed to 

increase the flexibility of the robotic palletizing system by detecting the type of object 

and its orientation. To this end, this project aims to design and develop an image-guided 

vision system through the application of YOLO object detection and OpenCV for small-

scale robotics palletizing of non-uniform shaped object, i.e., 3D printed chicken wings 

and drumsticks. A YOLO object detection model is trained using 5000 images containing 

the chicken wings and drumstick. This object detection model is then used to determine 

the type of object. Then, this information on type of object is used along with an 

orientation detection program to find each object’s orientation. The orientation detector 

is programmed with a contour detector called “Canny Edge detector” and a “fitEllipse” 

function that generates the angle of orientation. Using the location and orientation 

information generated by the detection programs, a pick and place operation is simulated 

in RoboDK. Through several case studies, this detection models works great if the objects 

in the images are arranged in a certain way, i.e., not closely packed together, or overlaps 
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onto one another. In an ideal case, the pick and place simulation work flawlessly with the 

information obtained from the YOLO object detection and orientation detection program. 

Keywords: Robot vision, YOLO object detection, Orientation detection, RoboDK 
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REKA BENTUK DAN PEMBANGUNAN SISTEM PENGLIHATAN 

BERPANDUKAN IMEJ BAGI PALETISASI ROBOTIK 

ABSTRAK 

Kecenderungan ke arah teknik pembuatan moden yg sentiasa bertambah baik telah 

menyebabkan peralihan daripada kaedah konvensional kepada proses pembuatan secara 

automatik. Teknologi pintar moden digunakan untuk mempermudah, mempercepat, dan 

meningkatkan kualiti kaedah pembuatan tradisional. Automasi barisan pengeluaran 

melalui pelaksanaan robot dapat meningkatkan prestasi pembuatan sambil menurunkan 

kos yang berkaitan kerana membantu menyeragamkan prosedur susun dan palletisasi. 

Automasi semasa pada sistem palletizing sangat bergantung pada sistem penyusunan 

yang telah ditentukan kerana ketidakmampuannya untuk mengesan objek berbentuk tidak 

seragam. Sistem penglihatan robotic diperlukan untuk meningkatkan fleksibiliti sistem 

paletisasa robotik dengan mengesan jenis objek dan orientasinya. Untuk tujuan ini, projek 

ini bertujuan untuk mereka bentuk dan membangunkan sistem penglihatan berpandukan 

imej melalui penerapan pengesanan objek YOLO dan OpenCV untuk paletisasi robotik 

skala kecil untik objek berbentuk tidak seragam, sebagai contoh, kepak dan paha ayam 

yg dicetak secara 3D. Model pengesanan objek YOLO dilatih menggunakan 5000 gambar 

yang mengandungi sayap dan paha ayam. Model pengesanan objek ini kemudian 

digunakan untuk menentukan jenis objek. Kemudian, maklumat mengenai jenis objek ini 

digunakan bersama dengan program pengesanan orientasi untuk mencari orientasi setiap 

objek. Detektor orientasi diprogram dengan detektor kontur iaitu "Canny Edge detector" 

dan fungsi "fitEllipse" yang menjana sudut orientasi. Menggunakan maklumat lokasi dan 

orientasi yang dihasilkan oleh kedua-dua program pengesanan, operasi memetik dan 

meletakkan disimulasikan dalam RoboDK. Melalui beberapa kajia, model pengesanan ini 

berfungsi dengan baik jika objek dalam gambar disusun dengan cara tertentu, iaitu, tidak 

terlalu rapat antara satu sama lain, atau saling bertindih. Dalam kes yang ideal, simulasi 
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memetik dan meletakkan berfungsi dengan sempurna menggunakan maklumat yang 

diperoleh dari program pengesanan objek YOLO dan pengesanan orientasi objek. 

Kata kunci: Penglihatan robotic, Pengesanan objek YOLO, Pengesanan orientasi, 

RoboDK 

 

 

 

 

Univ
ers

iti 
Mala

ya



vii 

ACKNOWLEDGEMENTS 

All praises to Allah S.W.T. for granting me the knowledge and perseverance in 

completing my Master of Mechanical Engineering research project report. I am forever 

grateful to Allah for all the blessings that has been blessed upon me. 

I would like to express my deepest appreciation to my project supervisor, Dr. Yap Hwa 

Jen from the Mechanical Engineering department for sharing his knowledge and expertise 

with me. The ongoing help and guidance from him are greatly appreciated. 

To my parents and family who supported and motivated me throughout my life, I am 

infinitely grateful. I would not be able to complete my master’s degree without the 

constant support of my beloved family. 

I am grateful for the lecturers at University of Malaya that have persevered during this 

pandemic in which they continued to provide helpful knowledge to us students. It has 

been wonderful and enjoyable learning experience despite the online learning 

environment. 

Univ
ers

iti 
Mala

ya



viii 

TABLE OF CONTENTS 

Design And Development Of An Image-Guided Vision System For Robotics Palletizing 

Abstract ............................................................................................................................ iii 

Reka Bentuk Dan Pembangunan Sistem penglihatan Berpandukan Imej Bagi Paletisasi 

Robotik Abstrak ................................................................................................................ v 

Acknowledgements ......................................................................................................... vii 

Table of Contents ........................................................................................................... viii 

List of Figures .................................................................................................................. xi 

List of Tables ................................................................................................................. xiv 

List of Abbreviations ...................................................................................................... xv 

List of Appendices ......................................................................................................... xvi 

CHAPTER 1: INTRODUCTION .................................................................................. 1 

1.1 Overview of the Research ........................................................................................ 1 

1.2 Problem Statement ................................................................................................... 5 

1.3 Aim of the Research ................................................................................................ 6 

1.4 Objectives of the Research ...................................................................................... 6 

1.5 Scope of the Research .............................................................................................. 6 

1.6 Report Organization ................................................................................................ 6 

CHAPTER 2: LITERATURE REVIEW ...................................................................... 8 

2.1 Robotic Palletizing .................................................................................................. 8 

2.2 Vision/Image-Guided Systems .............................................................................. 12 

2.3 YOLO Object Detection ........................................................................................ 15 

2.4 Orientation and Shape/Contour Detection ............................................................. 16 

Univ
ers

iti 
Mala

ya



ix 

CHAPTER 3: METHODOLOGY ............................................................................... 19 

3.1 Introduction ........................................................................................................... 19 

3.2 3D Printed Wings and Drumstick .......................................................................... 21 

3.3 YOLOv4-Tiny Training and Testing ..................................................................... 22 

3.3.1 Image Acquisition .................................................................................... 23 

3.3.2 Labelling and Annotation ......................................................................... 26 

3.3.3 Data Augmentation ................................................................................... 27 

3.3.4 YOLO Training and Validation ............................................................... 28 

3.3.5 Testing ...................................................................................................... 30 

3.4 Contour/Orientation Detection .............................................................................. 31 

3.4.1 Contour Detection .................................................................................... 31 

3.4.2 Orientation Detection ............................................................................... 34 

3.5   Combining YOLO and Orientation Detections ................................................... 37 

3.6 RoboDK Simulation .............................................................................................. 39 

3.6.1 Reference Frames ..................................................................................... 41 

3.6.2 Pick and Place Operations ........................................................................ 42 

CHAPTER 4: EXPERIMENTS AND DISCUSSION ............................................... 46 

4.1 Ideal Case .............................................................................................................. 46 

4.1.1 Detector Results and RoboDK Simulation ............................................... 47 

4.2 Case Study 1: Objects close together .................................................................... 49 

4.3 Case Study 2: Object Overlapped .......................................................................... 50 

4.4 Case Study 3: Partially displayed object ............................................................... 52 

4.5 Case Study 4: Computer Performance ................................................................... 53 

CHAPTER 5: CONCLUSION ..................................................................................... 55 

5.1 Summary ................................................................................................................ 55 

Univ
ers

iti 
Mala

ya



x 

5.2 Future Work ........................................................................................................... 55 

References ....................................................................................................................... 57 

Appendix A: 1-DataCollection.py .................................................................................. 60 

Appendix B: yolov4-tiny-custom.cfg ............................................................................. 61 

Appendix C: placeTargetsGenerator.py .......................................................................... 66 

Appendix D: YOLOv4-Orientation-multipleImages.py ................................................. 68 

Appendix E: createObj-Pick-Place.py ............................................................................ 72 

Univ
ers

iti 
Mala

ya



xi 

LIST OF FIGURES 

Figure 2.1: Movement of Mecanum wheel (WIKIPEDIA, 2020b) ................................ 10 

Figure 2.2: An overhead fixed camera causes the pixels to correspond to physical 
Cartesian coordinates (Webster & Brannon, 2002) ........................................................ 14 

Figure 2.3: Comparison of the proposed YOLOv4 and other object detectors 
(Bochkovskiy et al., 2020) .............................................................................................. 16 

Figure 3.1: Research project flow chart .......................................................................... 20 

Figure 3.2: 3D model of a chicken drumstick (printable_models, 2019) ....................... 21 

Figure 3.3: 3D model of a chicken wing designed in Solidworks .................................. 21 

Figure 3.4: Top view of drumstick .................................................................................. 22 

Figure 3.5: Top view of left wing and right wing in order from the left ........................ 22 

Figure 3.6: YOLOv4-tiny training and testing flowchart ............................................... 23 

Figure 3.7: Equipment setup for image acquisition and object detection ....................... 24 

Figure 3.8: Sample output of the image acquisition process (4 out of 1000 images) ..... 25 

Figure 3.9: LabelImg labeling and annotation sample .................................................... 26 

Figure 3.10: Text file containing the labels of an image ................................................ 27 

Figure 3.11: Image and label augmentation through rotation (original 0o, 45o, 90o and 180o 
in order from left to right ................................................................................................ 28 

Figure 3.12: YOLO training and validation chart ........................................................... 29 

Figure 3.13: YOLO object detection testing results........................................................ 30 

Figure 3.14: Original image and blurred image in order from the left ........................... 31 

Figure 3.15: Gray scaled image and the resulted image after Canny edge detection. .... 32 

Figure 3.16: Trackbars for Canny edge detection algorithm containing the thresholds and 
minimum area ................................................................................................................. 32 

Figure 3.17: Dilated image showing thicker contour lines ............................................. 33 

Figure 3.18: Image of contour lines overlayed onto original image ............................... 33 

Univ
ers

iti 
Mala

ya

https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984527
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984528
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984528
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984529
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984529
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984530
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984531
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984532
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984533
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984534
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984535
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984536
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984537
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984538
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984539
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984540
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984540
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984541
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984542
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984543
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984544
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984545
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984545
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984546
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984547


xii 

Figure 3.19: Result of fitting an ellipse on the contours using fitEllipse function ......... 34 

Figure 3.20: Contour in red is rotated CCW of the angles displayed to produce contours 
in cyan ............................................................................................................................. 35 

Figure 3.21: Contour in red is the original, contour in teal is rotated using the angles 
displayed and contour in orange is the final contour ...................................................... 36 

Figure 3.22: Flowchart of the contour/orientation detection program ............................ 37 

Figure 3.23: Sample image demonstrating the combination of the YOLO object detector 
and orientation detection program .................................................................................. 38 

Figure 3.24: Image showing the result of the detector program ..................................... 38 

Figure 3.25: Virtual environment for pick and place in RoboDK .................................. 39 

Figure 3.26: Close-up image of gripper .......................................................................... 41 

Figure 3.27: Reference frames for the drumstick, left wing and right wing in order from 
the left ............................................................................................................................. 41 

Figure 3.28: Targets for the placing operations on Table 3 and Table 2 in order from the 
left ................................................................................................................................... 42 

Figure 3.29: Sample txt file generated from the detection program ............................... 43 

Figure 3.30: Virtual model of the objects generated in RoboDK and the image from the 
detector programs ............................................................................................................ 43 

Figure 3.31: Gripper picking sample images .................................................................. 44 

Figure 3.32: Image of pick and place operation in RoboDK .......................................... 45 

Figure 4.1: Images used for the ideal case ...................................................................... 46 

Figure 4.2: Resultant images from the detector program ................................................ 47 

Figure 4.3: Txt file generated for image 00006 .............................................................. 47 

Figure 4.4: Image after all the objects in all images have been picked and placed in 
RoboDK .......................................................................................................................... 48 

Figure 4.5: Images used for Case Study 1 ...................................................................... 49 

Figure 4.6: Results from YOLO object detection for Case Study 1 ............................... 49 

Figure 4.7: Images used for Case Study 2 ...................................................................... 50 

Univ
ers

iti 
Mala

ya

https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984548
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984549
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984549
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984550
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984550
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984551
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984552
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984552
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984553
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984554
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984555
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984556
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984556
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984557
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984557
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984558
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984559
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984559
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984560
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984561
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984562
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984563
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984564
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984565
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984565
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984566
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984567
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984568


xiii 

Figure 4.8: Orientation detector result for image “over1” .............................................. 51 

Figure 4.9: YOLO object detection result for Case Study 2 ........................................... 51 

Figure 4.10: Images used for Case Study 3 .................................................................... 52 

Figure 4.11: YOLO object detector result for Case Study 3 ........................................... 52 

 

Univ
ers

iti 
Mala

ya

https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984569
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984570
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984571
https://d.docs.live.net/e1545d03dac0040d/Desktop/Research%20Project/Research%20Project%20Report.docx#_Toc80984572


xiv 

LIST OF TABLES 

Table 3.1: Specification of Webcam used for image acquisition .................................... 25 

Table 3.2: Robot specifications (RoboDK, 2021a) ......................................................... 40 

Table 4.1: Specifications for Lenovo Legion Y530 gaming laptop ................................ 53 

Table 4.2: Specifications for Raspberry Pi 4 Model B computer ................................... 53 

Table 4.3: Computation time results ............................................................................... 54 

 

Univ
ers

iti 
Mala

ya



xv 

LIST OF ABBREVIATIONS 

AP : Average Precision  

CAD : Computer Aided Design  

CCD : Charge Coupled Device  

CCW : Counterclockwise 

CNN : Convolutional Neural Networks 

CPU : Central Processing Unit 

CW : Clockwise 

FPS : Frame Per Second  

GUI : Graphical User Interface 

IC : Integrated Circuit 

IDE : Integrated Development Environment 

mAP : Minimum Average Precision  

OpenCV : Open Computer Vision  

PLA : Polylactic Acid  

PLC : Programmable Logic Controller 

RAM : Random-access Memory 

RoboDK : Robot Development Kit  

YOLO : You Only Look Once  

 

  

Univ
ers

iti 
Mala

ya



xvi 

LIST OF APPENDICES 

Appendix A: 1-DataCollection.py ………………………………………………... 60 

Appendix B: yolov4-tiny-custom.cfg …………………………………………….. 61 

Appendix C: placeTargetsGenerator.py ………………………………………….. 66 

Appendix D: YOLOv4-Orientation-multipleImages.py …………………………. 68 

Appendix E: createObj-Pick-Place.py ……………………………………………. 72 

 

Univ
ers

iti 
Mala

ya



1 

CHAPTER 1: INTRODUCTION 

1.1 Overview of the Research 

As the world moves towards a new age of technology, particularly the fourth industrial 

revolution, the automation of traditional manufacturing practices advanced rapidly. 

Modern intelligent technologies are being used to simplify, accelerate, and improve the 

quality of traditional manufacturing methods. Robots are great examples of current 

intelligent technology that have been used for almost six decades since the first industrial 

robot, the Unimate, was implemented at  General Motors production plant in 1961 for die 

casting handling and spot welding (RobotWorx, n.d.).  

Automation of production lines through robotic implementation can improve the 

manufacturing performance while lowering the associated costs because it helps 

standardize the stacking and palletization procedures (Wurll, 2016; Yi et al., 2017). For 

the past decade, the amount of stock required to fulfil the impending operations for 

industrial robots has steadily increased and is expected to continue with the same trend in 

the near future (Moura & Silva, 2018). This demonstrates that the need for industrial 

robots has continued to rise, since most manufacturing companies would like to invest in 

technologies that may boost production rates while keeping costs low. 

Moura and Silva (2018) mentioned that among the numerous applications for robots 

in the industrial sector, handling activities such as palletizing have been prevalent since 

they play an essential role in the last step of contemporary production lines. Since 

palletizing is one of the last processes before product transportation, it has a substantial 

impact on the manufacturing line. The order in which the items are placed on the pallets 

has a major influence on the stack's stability, which has a profound influence on the 

product's transportation process to the consumer. Most automated palletizing operations 

rely on the accuracy and repeatability of the industrial robot as it will be doing the same 

operations multiple times. These operations usually do not depend on variation in the 
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products locations since the products will be packaged in a box and placed on a specified 

location and orientation. The robot would just need to pick the already packaged products 

and place it on the pallet without the integration of a live visual input. Although this 

appears to be an efficient method, it lacks flexibility because it can only be used when the 

product is already packed or boxed and relies on the assembly line to orient the packaged 

commodity. However, it is not a terrible technique of employing robots to automate the 

manufacturing line, it is dependable since it can perform the same work repeatedly while 

using less resources. 

For other palletizing systems, in addition to the fixed location and orientation of the 

object, employ sensors to detect whether the packaged products have arrived at the 

picking point, and the robot will subsequently select the already packed goods. Sensors 

are the preferred approach for regularly shaped objects such as boxes and packed products 

since just the location of the product is required for the robot to pick up the object. The 

packaged products will be sorted by the custom mechanism on the assembly line, and the 

robot will subsequently pick the box using suction tools or specialized grippers. This 

method is preferred as fewer variables is needed to program the robot since the location 

of the object to be picked up is consistent and the orientation can be neglected since they 

are all in a uniformly shaped packages or already oriented through the custom 

mechanisms in the assembly line. 

In order to improve the flexibility of the robotic automation system, an artificial 

intelligence aspect can be integrated into the system. A vision system can be implemented 

on the industrial robot through the use of cameras and a programmable logic controller 

(PLC). A live image will be captured through the camera and will be processed to 

determine the location and orientation of the goods. Thus, the sorting mechanism can be 

removed from the assembly line since the robot itself can distinguish the location and 

orientation of the goods through its own vision system. By employing an image-guided 

Univ
ers

iti 
Mala

ya



3 

vision system on the industrial robot, an irregular-shaped object can also be distinguished 

and picked up by the robot. A much more complicated programming is required as well 

as the application of machine learning algorithms on the vision system so that the robot 

can determine the type, location, and orientation of the irregularly shaped object. The 

vision system would be trained to identify the specific objects to be palletized. Therefore, 

automation of palletizing operations based on machine vision is a viable option for 

reducing reliance on human labor and can decrease costs while boosting assembly line 

productivity. 

In order for the industrial robot to detect irregularly shaped objects, an object detection 

algorithm need to be applied. There are two types of deep learning-based object detection 

methods: candidate region-based models and regression-based models. The basis of a 

two-stage detection model is the candidate region-based model, which generates the 

region proposals in the first stage. Following that, features are then extracted from the 

proposals to obtain the bounding box and classification regression (Ren et al., 2017). 

Many applications such as fruit recognition had implemented this object detection method 

through the use of deep Convolutional Neural Networks (CNN). Despite the recognition 

accuracy of the two-stage object detection, it is still considered as a slow approach and 

cannot be applicable to real time applications due to its requirements of needing two-

stages of processes to recognize the object This is where single-stage detectors flourish, 

since they approach object detection problem as a straightforward regression model that 

accepts the entire image as input and outputs the bounding boxes and class probabilities 

at the same time. Class probabilities is the type of the object detected. This single-stage 

approach has made this model much faster than the two-stage object detection methods. 

You Only Look Once (YOLO) model is a single-stage object detection model that is 

developed by Redmon et al. (2016) to be use in real time application as it is fast. Multiple 

versions of YOLO models have been developed to either increase it detection time and 
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accuracy, or to be use for various applications such as number plates detection or 

electronic object detection (Junos et al., 2020).  

Although the YOLO object detection can detect the type of object and its location 

through the bounding boxes, it cannot establish the orientation of the object. Thus, another 

algorithm is required in addition to the object detection model in order to accurately 

determine the object’s orientation to be picked up by the robotic arm. If a gripper is used 

on the robotic arm, the orientation of the object is critical as each object has a specific 

location on its body that can be readily picked up by the robotic arm and the orientation 

is also needed so that the robot can place the object in the desired orientation to be 

packaged. This is done through the use of a contour detection algorithm along with a fit 

ellipse function in Open Computer Vision (OpenCV) python. The contour detection 

method is used to trace the boundary of the object, which can determine its shape/form, 

and with the help of the fit ellipse function, the orientation of the object can be determined. 

The process begins by extracting each bounding boxes from the object detection image 

(i.e., image of 3D printed chicken drumstick and wing), then the contour detection traces 

the perimeter of the object, which are then fitted with an ellipse to establish the orientation 

of the object. 

These detection models would then be utilized to identify and locate the object on the 

pallet for the pick and place operation, which would be simulated in a software called 

Robot Development Kit (RoboDK), an industrial robot and robot programming simulator 

that is both comprehensive and cost-effective. The advantage of using the simulation and 

offline programming capabilities of RoboDK is that robots may be programmed outside 

of the production environment which saves both time and utilities (RoboDK, 2021b). The 

RoboDK simulator is a universal offline programming tool that makes it possible to 

program robots of all kinds as well as to generate brand-specific robot programs. RoboDK 

owns a library of more than 500 industrial robot arms, from famously known robot 
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manufacturers such as ABB, Fanuc, KUKA and Universal Robots, as well as numerous 

additional tools and objects that may be used in the simulations of robots (Garbev & 

Atanassov, 2020). RoboDK's simple and user-friendly Graphical User Interface (GUI) 

makes it easier to simulate and program industrial robots without the need in field 

experience. The free version of RoboDK, as well as the trial edition of RoboDK, are 

adequate to inform and familiarize the programmer/user with the system's capabilities. 

Thus, the combination of the vision system equipped with the YOLO object detection 

and the orientation detection program will enable the simulation of pick and place of 

irregular shaped object, in this case, 3D printed chicken wing and drumstick are used. 

The location and orientation provided by the vision system will enable the robotic arm 

equipped with a gripper to pick the object and place it in the correct pallet with the desired 

orientations. 

1.2 Problem Statement 

The following are some of the issues that prompted the creation of this project: 

• Current automation on palletizing system relies on a predetermined sorting system 

due to its inability to detect irregular-shaped object. A vision system is needed in 

order to increase the flexibility of the robotic palletizing system by detecting the 

type of object.  

• Most robotic palletizing system can only work on already packaged/boxed object 

since they are easily picked up by the robot because of their uniform shape. 

However, if the object is irregular, i.e., chicken drumstick, the orientation of the 

object is needed to enable the robot to pick it up using the gripper as random 

picking position would result in improper placement of the object. 
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1.3 Aim of the Research 

To design and develop an image-guided vision system through the application of 

YOLO and OpenCV for small-scale robotics palletizing of non-uniform shaped object, 

i.e., 3D printed chicken wing and drumstick.  

1.4 Objectives of the Research 

The objectives of the research are listed below: 

1. To develop an algorithm to identify the product with non-uniform shapes. 

2. To identify the location and orientation of the products for end-effector 

picking/grasping. 

3. To integrate the vision system with robotic arms for the palletizing process. 

1.5 Scope of the Research 

This research is limited to only developing a vision system that could detect the type, 

location, and orientation of the object for a pick and place operation. The vision system 

will provide the data for the robotic arm for the palletizing operation. Only simulation in 

RoboDK will be used to demonstrate the detection algorithm workings with the use of 

real images of randomly sorted objects. The objects used for detection in this research are 

3D printed chicken wings and drumstick, and the robotic arm used for simulation is the 

UR10e from Universal Robots. The camera used in this research is a computer webcam 

that is easily accessible. 

1.6 Report Organization 

The remaining parts of this research report will be organized and modelled as following: 

• Chapter 2 deals with the literature review of relevant research associated with this 

research project namely robotic palletizing, YOLO object detection and 

orientation detection. 
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• Chapter 3 consist of the research methodology which describes the methods and 

procedures used in conducting this research project along the simulations 

involved. 

• Chapter 4 contains the implementation of the detection models through simulation 

of an ideal case and other case studies used to test the detection models. 

• Chapter 5 concludes the research project by summarizing the report and providing 

future work on this research.
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CHAPTER 2: LITERATURE REVIEW 

The study of industrial automation has now taken on a worldwide platform, with 

engineers and researchers focusing largely on ease of implementation. In this literature 

review, this research subject of image-guided vision system for robotic palletizing will be 

divided into four sections namely robotic palletizing, vision/image-guided systems, 

YOLO object detection and Orientation detection. 

2.1 Robotic Palletizing 

Several studies had been conducted with regards to industrial robotics palletizing to 

either improve the stacking algorithm or to improve the structure of the robotic palletizing 

system. Wurll (2016) did a study on mixed case palletizing using industrial robots which 

starts by converting the customer’s order into stable, organized, and dense stacks, which 

will then give instructions to the robots to build the pre-determined pallet stacks before 

being transported. Mixed palletizing is an industrial stacking technique applied by placing 

boxed/packaged products of different types and sizes onto a single pallet (palletizer.org). 

Mixed palletizing allows the factory to transport a smaller number of pallets since each 

pallet is able to carry a variety of products with the same level of stability as stacking one 

type of product due to the stacking algorithm developed. The advantages of implementing 

a robotic mixed pallet building system is that it can reduce labour and save shipping cost 

by fully filling the pallets by mixing the variety of products instead of just shipping one 

type of product on each single pallet (Nowak, 2011). For instance, the grocery store might 

just need a few bottles of detergents, however, in order to fully utilize the pallets, the 

warehouse will want to stack the pallets with other products that the store needs. 

However, to enable the automated mixed palletizing system, more data or information 

regarding the products and consumer need to be organized and kept track of for the 

warehouse management system. This mixed palletizing system relies heavily on stacking 
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algorithm as different products have different shape and size for their packaging. Most of 

the companies presented in the studies regarding robotic palletizing relies heavily on a 

palletizing algorithm which calculate the optimum arrangement of the packaged products 

with regard to the hardware constraints of the robotic gripper arm in order to automate 

the stacking process (Wurll, 2016; Xu et al., 2016). The stacking algorithm used would 

improve the production efficiency by increasing the rate at which the packaged product 

is palletized and also increasing the number of products being palletized. However, the 

stacking algorithm used are pre-determined as it only depends on the weight and size of 

the packaged product since most the finalized products would be in a regular shaped 

boxes or packaging. 

Other than relying on the stacking algorithm to further improve the pelletizing system, 

some researchers aim to increase the efficiency of the palettizing robot by increasing its 

mobility. A typical robotic palletizing involves three main parts which are the palletizing 

robot, driving or conveyer belt and the pallets (Xu et al., 2016). The palletizing robot is 

usually a robotic arm with four degrees of freedom which enables it to lift the products 

from the conveyer belt to the pallets. The robotic arm itself is fixed onto stationery 

platform which constrains the workspace for the robot as it only allows the robot to be 

placed on one specific location. This would result in a transporting system need to be 

included in order to transfer the pallets in another location. Despite this disadvantage, this 

fixed palletizing robot allows for a much bigger and heavier products to be palletized as 

a large robotic arm can be use. Yang et al. (2018) developed an omnidirectional compact 

palletizing robot that combines transport and stacking functions for small product 

palletizing in order to rival the standard robotic palletizing that are large and stationery. 

They developed this robot with increased mobility in mind as they aim to integrate the 

staking ability of the robot and its ability to relocate the finished pallets. This robot uses 

a Mecanum wheels to provide more mobility as it can travel to the targeted location using 
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the fastest path due to its capability to turn in narrow spaces. Mecanum wheels is a type 

of wheel with multiple diagonally positioned roller attached to its circumference (Dejan, 

2019). These multiple diagonally positioned rollers enables the wheels to move in any 

direction using the same driving components as for regular wheels. Each Mecanum 

wheels are independently drive, in order to utilise its multidirectional capabilities. By 

combining different rotation of the wheels, the robot will be able to move in any direction 

using only a small space. To further clarify on this notion of combining different rotation 

of the wheels, an image showing the direction with regard to the rotation of the wheels is 

shown in Figure 2.1. The movement of the Mecanum wheel, (blue: wheel drive direction, 

red: vehicle moving direction). a) Moving straight ahead, b) Moving sideways, c) Moving 

diagonally, d) Moving around a bend, e) Rotation, f) Rotation around the central point of 

one axle. This robot is able to achieve high stacks of cargo through this unique mechanical 

design and staking features. This high stacking method combine with robot’s ability to 

move in narrow spaces allows for more efficient space usage. 

To further improve upon the palletizing robot, several studies had been done in order 

to find the suitable method to analyse the performance of the robots. Guan and Wang 

(2011) did a study on the mechanical design and kinematic analysis on a palletizing robot. 

This study provided some mathematical derivation using kinematic analysis in order to 

Figure 2.1: Movement of Mecanum wheel (WIKIPEDIA, 2020b) 
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be used to analyse the mechanical aspect of the robotic arm to be used in palletizing 

system. The kinematic analysis was testified using practical experimental data which is 

then used to simulate the working space of the robotic arm using MATLAB. This 

kinematic analysis would allow the users to understand the degree of freedom of the 

robotic arm through the expression provided which would then allow for a more complex 

movement to be applied by to the robot by manipulating the provided expressions. The 

results obtained from this research would help in conducting theoretical analysis and 

further exploitation of using the robotic arm in a production palletizing system. In 

addition to analysing the kinematic elements of the robot, a study in reducing the energy 

consumption of the robot had also been conducted. Fu et al. (2019) did a research by using 

RobotStudio software in reducing the energy consumption for the palletizing robot. This 

study aims to increase the efficiency of the robot by implementing an optimal speed and 

movement of the robot that would use less energy but still accomplishing the task. 

RobotStudio is a software that allows user to program a robot in the virtual world before 

beginning its real-life operations, which means this software is able to provide simulations 

of the working program for the robot. Using this software, Fu et al. (2019) investigated 

the energy required with each type of movement commands and compared them in order 

to find which command suits the tasks while using less energy. RobotStudio enables a 

realistic simulation to be perform and can create a much easier energy-optimal path 

planning for the robotic arm in the palletizing operations. 

There are also a few studies done to further increase the efficiency and production rate 

for robotic palletizing by implementing redundant safety mechanism. Since it is hard to 

ensure a fully successful application of using robots in palletizing, the overall automation 

system must have the capability to restore quickly when failure or by equipping a 

redundant alternative mechanism to continue the production when the main palletizing 
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system breaks down (Yuan & Wang, 2016). This feature is needed as it would help in 

stabilizing the production rate of the factory.  

All of the studies mentioned regarding robotic palletizing really highlights the 

importance of automation in the manufacturing industry as it helps to reduce the 

manufacturing time while increasing the manufacturing quantity. Despite all this 

advantages, the studies on robotic palletizing does not include the use of machine learning 

especially with regards to robotic vision system which is what this research report is 

aiming for. 

2.2 Vision/Image-Guided Systems 

Multiple studied had been done regarding vision or image-guided system for robotic 

applications. This vision system would be use to guide the robot in order to accomplish a 

specific task. Zhang and Skaar (2009) developed a robotic de-palletizing system by 

combining camera-space manipulation with laser-assisted image analysis to find the gaps 

on paper bag stack. Robotic de-palletizing is more difficult to automate compared to 

palletizing work as it requires a much more sophisticated vision system that would allow 

the robot to detect the gaps between each layer of paper stack in this case. The vision 

system applied to this study is by using laser spots and camera-space manipulation to 

locate the edges and corners of the stack in order to find the gaps to be fitted with an 

insertion dowel. Although this study includes an image-guided system, it can only be 

implemented on objects that have a regular sides, edges, and corners as it is used to insert 

a tool into the gaps on the stack to lift the paper bags. In order for this vision system to 

be implemented to irregular packaged products, a more sophisticated algorithm need to 

me applied in order to identify the overall shape and orientation of the product. 

There are also other studies regarding vision-guided system that are not specific to 

palletizing process. Ji et al. (2012) conducted a study on a machine visions system that is 
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used to recognize and locate apples in order to harvest the fruits. This study aims to 

develop an automatic harvesting system that is guided using image processing algorithm 

in order to recognize which apples that can be harvested. They first start by implementing 

a colour Charge Coupled Device (CCD) camera to capture the images of the fruits, and 

these images will be processed using an industrial computer in order to recognize the 

fruits. Charge coupled device camera is a video camera that contain a transistorized light 

sensor on an integrated circuit (IC), in other word a digital camera (KISI, n.d.). CCD 

camera allows for visual input to be converted into digital image or video. During the 

image processing stage, a vector median filter is applied to remove the noises that would 

influence the image quality. This filter also highlights the apple fruits forward by 

weakening the noise and reducing the sharpness of the background. This filtered image 

is then followed to an image segmentation process where the apple in the image is further 

differentiated form the complex background that include leaves and branches. Then, an 

image shape recognition feature extraction algorithm is applied by removing the 

background completely after the apple fruit is recognized. These data would be used by 

the harvesting machine to locate the ripe apples to be harvested. 

There are also other studies about image-guided robotic applications in the sports 

industry. In 2002, a robot that is capable of replacing a ball boy for a tennis court is 

developed (Webster & Brannon, 2002). This study aimed to develop a mobile robot that 

can interact with its environment by locating the objects near it and determine what are 

the objects. The robot relied on a charge-coupled device (CCD) camera as its vision 

system to identify the location of the tennis balls. The vision system employed in this 

study is an overhead camera mounted with its optical axis is directly perpendicular to the 

tennis court surface. They chose this type of configuration for the vision system as it helps 

to eliminate the error in distance measurements that come with onboard camera systems 

where the camera reference frame is always changing as the robot moves. The other 
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advantage of using the overhead camera vision system is that the pixels of the camera can 

be directly translated into physical coordinates. To identify the robot’s own location and 

the location of the tennis balls, the vision system converts the pixels of the image into 

Cartesian coordinates which would simplify the calculations for location mapping as 

shown in Figure 2.2. For each image captured, the vision system must be able to identify 

the location and the orientation of the robot, the location of the tennis balls and any 

obstacles on the court before calculating the path for the robot to follow. The path must 

be able to collect all the ball in the shortest amount of time while avoiding the obstacles 

on the tennis court. In order for the vision system to recognise the orientation of the robot, 

they place an identifying marking on robot that is uniform in diameter with a recognizable 

shape in order to identify it orientation. This vision system also implements an RGB filter 

that removes any unnecessary information and classify the pixels into four categories: the 

robot, ball, obstacle, and the background. Several algorithms are then used to create a 

path for the robot to follow in order to collect all the tennis balls in the shortest amount 

of time. The algorithm used for this case, is quite simple as it only depends on 2-

dimensional coordinate systems for the path of the robot to follow. 

Figure 2.2: An overhead fixed camera causes 
the pixels to correspond to physical Cartesian 

coordinates (Webster & Brannon, 2002) 

Univ
ers

iti 
Mala

ya



15 

The studies mentioned regarding vision guided system for robotic application signifies 

many advantages to adding vision system in robots. For most of this vision system, the 

type of object is identified by a specific label, or they each have distinct features that is 

easily recognize by the robot. Since only few objects are involved, they only need to take 

into account a fixed number of parameters which is why machine leaning is not needed 

here. However, if multiple type of objects with irregular shapes and orientations are 

involved, an object detection algorithm is required. 

2.3 YOLO Object Detection 

You only look once (YOLO) model is a single-stage object detection model that is 

developed by Redmon et al. (2016) to be use in real time application as it is fast. Single-

stage object detection is much faster and more robust compared to two-stage detectors as 

YOLO treats object detection problems as a simple regression problem that takes the 

image as an input and simultaneously generates class probabilities and multiple bounding 

boxes (Junos et al., 2020). Multiple applications have applied these YOLO detection 

model by modifying and training the model to suite the respective applications. The most 

common and latest model by Redmon et al. (2016) which is the YOLOv3 have the best 

detection performance with respect to its previous model but a long computation time is 

required to train the model due to network complexity. Therefore, a lighter version of 

YOLOv3 that can be trained a shorter time and satisfy real time object detection is 

developed which is called YOLOv3 tiny. YOLOv3 tiny is based on a constrained 

environment in which the memory, storage capacity and processing power are limited (Li 

et al., 2020) which means that a low computation cost is needed in order to train the 

model. In this research report, YOLOv4 tiny is used instead of YOLOv3 as it can detect 

object faster and more accurate as shown in Figure 2.3. YOLOv4 improves YOLOv3 

average precision (AP) by 10% and frame per second (FPS) by 12% (Bochkovskiy et al., 

2020). YOLOv4 tiny is applied in this research as it can be trained much faster with low 
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computation cost compared to YOLOv4, thus making it suitable when the equipment is 

limited. Due to the increase in the FPS, the AP will be slightly sacrificed but acceptable 

since the environment used for object detection in this research will not change. 

2.4 Orientation and Shape/Contour Detection  

Most of these studies on robotic palletizing are heavily on the stacking algorithm of 

the packaged products and for heavy-duty palletizing. The vision system used are for 

identifying the location of the product only and not for shape recognition. For this project, 

a vision system that can identify the product with non-uniform shape will be develop and 

will work alongside a robotic arm to correctly orient the product before palletizing. Shape 

recognition algorithm can further increase the flexibility of the robotic palletizing system 

as it allows for the vision system to recognise the shape and orientation of any products. 

Not many studies can be found regarding implementing a shape recognition algorithm in 

the palletizing processes. However, some studies regarding this matter are conducted for 

Figure 2.3: Comparison of the proposed YOLOv4 and other object 
detectors (Bochkovskiy et al., 2020) 
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other usage such as recognizing hand-palm orientation for sign language by Phadtare et 

al. (2012). These researchers aimed to develop an automatic gesture recognition 

specifically purposed of understanding sign languages by translating the hand-palm 

orientations. Their vision system also implements Microsoft Kinect to capture the colour 

and depth of the images being processed. 

The vision system analyzed the depth data corresponding to only the hand-palm region 

and compare it to the examples shapes in the predetermined sign language databases. The 

other benefit of using the Kinect system is that it can provide human skeletal joint location 

which is then can be used to determine the location of the hand of the user. The Kinect 

system is manufactured for gaming purposes (XBOX) which lets the players controls the 

game using only their body movements instead of the traditional controllers 

(WIKIPEDIA, 2020a). The motion sensing abilities of the Kinect vision system allows 

for a better hand gestures recognition. Junyeong et al. (2013) also did a similar study 

using the Kinect vision system to develop a hand shape recognition for interaction 

between robots and humans. This study translated the hand gestures by laying simple 

shapes on top of the hand such as using ovals as the palm and lines as the fingers. They 

then translate these lines and ovals to specific meaning by using the predetermined 

databases. 

Pagano et al. (2020) did a study aimed to develop and automatic gluing system for 

footwear industry that is guided using a vision system. The objective is that to further 

increase the manufacturing productivity by implementing a vision system in order to 

identify the shape and position of the unknown object and identify the gluing area that is 

usually located along the object perimeter. The vision system for this footwear gluing 

traces the perimeter/contour of the sole and it needs to be able to process 3-dimensional 

coordinates as it need to be able to identify the depth of the sole of the shoe as it often has 
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raised edges. The study uses a Microsoft Kinect V2 vision system as it consists of a RGB 

camera with a high resolution and an infrared sensor that enables distance measurement 

to be conducted. This vision system allows for the location and reconstruction of the shape 

of the object virtually which enables the trajectory of the gluing robot to be planned and 

executed. 

In summary, several studies had been conducted in improving the palletizing process 

using robots. However, many studies regarding robotic palletizing are heavily rely on the 

stacking algorithm of a predetermined or uniformly shaped products. By implementing a 

vision system along with a shape recognition algorithm, a more flexible robotic 

palletizing process can be developed in order to reduce the amount of human interaction 

needed in the palletizing process. In this study, an image-guided vision system would be 

used along with a robotic arm to palletize an irregular shaped product. A shape 

recognition algorithm would be employed in the vision system to recognize the shape and 

the orientation of the product before packaging. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

This chapter presents the method and procedures that was done in developing the 

image-guided vision system for robot. The objects used for detection are 3D-printed 

chicken wings and drumstick as they are easier to manage compared to raw chicken. The 

objects used here are just for demonstration and can be swapped with other objects with 

new object detection training. Most of the coding and detection are done using a regular 

desktop webcam (Logitech C170 webcam) and PyCharm which is an Integrated 

Development Environment (IDE) in computer programming that is specific for the 

Python language. The robot simulation is done in the free version of RoboDK. Figure 3.1 

is a flowchart showing the sequence of how this research project is conducted. 
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3.2 3D Printed Wings and Drumstick 

The objective of this research is to detect non-uniformly shaped object; thus, the 

chosen object are chicken wings and drumsticks. The wings and drumsticks used here can 

be replaced with any other object, they are merely chosen in order to demonstrate the 

vision system developed. Using raw chicken wings and drumsticks would induce other 

non-essential problems such as hygiene, thus 3D-printed versions of the object will be 

used. The 3D model of the drumstick is obtained from an online 3D model platform 

“free3D.com” that offers a variety of 3D models shared throughout the community. 

Figure 3.2 shows the 3D model of the drumstick obtained from the website. As the 3D 

model of the chicken wing is not available for free online, the wing model is designed in 

Solidworks, a Computer Aided Design (CAD) software. The design is not an exact copy 

Figure 3.2: 3D model of a chicken 
drumstick (printable_models, 2019) 

 

Figure 3.3: 3D model of a chicken 
wing designed in Solidworks  
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of the real chicken wing but have similar size and shape. The models are 3D printed using 

the Ender3 3D printer with the Polylactic Acid (PLA) filament.  The type of material used 

to print the objects is not relevant to these study as the objects is only used to demonstrate 

the vision system.  

3.3 YOLOv4-Tiny Training and Testing 

For the object detection algorithm, the YOLOv4-tiny is used with three object classes 

namely drumstick, right wing, and left wing. For drumsticks, the left and right wide are 

similar in shape and size, thus only needing one class. However, for wings, the right and 

left side are mirrored, thus needing two classes to differentiate the wings.  Figure 3.4  

shows the top view of the drumstick and Figure 3.5 shows the top view of both the right 

wing and the left wing.  

Figure 3.4: Top view of drumstick 

Figure 3.5: Top view of left wing and right wing in order 
from the left 
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Figure 3.6 shows the flowchart for the YOLO object detection training  and testing 

procedure. The training process starts with the image acquisition and ends after testing is 

done. 

3.3.1 Image Acquisition 

The images are collected by using a regular desktop webcam (Logitech C170 webcam) 

through a Python code. Table 3.1 shows the specification of the C170 webcam used for 

data collection. Figure 3.7 shows the equipment setup for the image acquisition that 

consists of a desktop webcam, fluorescent light, and black panels. Black panels are used 

so that it would not reflect the light from the fluorescent bulb and damaging the image. 

The python code, “1-DataCollection1.py” in Appendix A is used to automate the image 

acquisition process by specifying the minimum blurriness percentage (50%). This means 

that if the image is below 50% in blurriness, then it will not be saved. The images are 

saved with a 640 x 480 resolution which in this project, translates to a 640 mm by 480 

mm physical cartesian coordinates. This allows for a one-to-one ratio between the images 

and the coordinates for the robot later. This resolution can be scaled to match any physical 

Figure 3.6: YOLOv4-tiny training and 
testing flowchart 
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coordinates, but, in this case, it is not significant, since this research would only be a 

demonstration of a vision system.  

The images are then filtered through manually to check for repetitions and hand 

movement since the object are placed randomly by hand in each frame. All the objects 

are kept inside the resolution boundary so that none of the object is only showing part of 

its body, and objects that overlaps are not taken as part of the data. The code is executed 

Figure 3.7: Equipment setup for image acquisition and object detection 
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until 1000 images are obtained and all the images are sorted/shuffled randomly and 

renamed. Figure 3.8 shows four sample images out of the 1000 images gathered for the 

YOLO training process. 

Table 3.1: Specification of Webcam used for image acquisition 

Type USB Webcam 

Max Resolutions 1024 x 768 

Interface USB 2.0 – 4 pin USB Type A 

Manufacturer Logitech 

Model C170 

 

Figure 3.8: Sample output of the image acquisition process (4 out of 1000 
images) 
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3.3.2 Labelling and Annotation 

The 1000 images were manually labelled and annotated by drawing bounding boxes 

and classifying the class/categories for each object in the images. An open-source 

labelling and annotation tool called LabelImg created by Lin (2017) was used for this 

process. All the images were annotated into three classes that were named LeftWing, 

RightWing and Drumstick. In each image, every object was labelled with a bounding box 

that represents the location of the object in the image. Figure 3.9 shows one of the images 

being labelled and annotated with different bounding box colors corresponds to different 

classes. 

Each labelled image is then saved using the YOLO format in a txt file that contains 

the class and the bounding box coordinates of each object in the image as shown in Figure. 

The txt file is formatted as object-class, x, y, width, and height where: 

• Object-class is an integer number of objects from 0 to 2 in which, 0 is 

LeftWing, 1 is RightWing and 2 is Drumstick 

• x, y, width, and height are float values relative to width and height of the 

images which can be equal from 0.0 to 1.0 (x and y are center of the rectangle) 

Figure 3.9: LabelImg labeling and annotation sample 
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• for example:  

o 𝑥 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑥 ⁄ 𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ 

o ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑖𝑚𝑎𝑔𝑒⁄ ℎ𝑒𝑖𝑔ℎ𝑡 

3.3.3 Data Augmentation 

The 1000 labelled and annotated images are then augmented to obtain 4000 more 

images for the YOLO training.  Data augmentation enables user to significantly increase 

the number and diversity of the data available for training models, without the need of 

gathering new data. There are multiple methods for data augmentations such as image 

rotation, adding noise, image flipping etc. In this research, only the image rotation method 

is used. An open source image augmentation code created by whynotw (2019) in GitHub 

is used. The rotation angles used for this image augmentations are 0o, 45o, 90o, 180o and 

270o. This resulted in each original image is augmented to produce four new images and 

labels. Figure 3.11 shows a sample of the augmentation process of an image and its 

resultant 45o, 90o and 180o rotated image and labels. This augmentation process results in 

a total of 5000 images for YOLO training and validation. These 5000 images are then 

divided into 70% as training data and 30% as validation data for the training process. 

Figure 3.10: Text file containing the labels of 
an image 
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3.3.4 YOLO Training and Validation 

YOLO training is done using a modified YOLOv4 training tutorial by theAIGuysCode 

(2020) in GitHub through Google Colab using its free graphic processing unit (GPU). In 

the training configurations file, ‘yolov4-tiny-custom.cfg’ shown in Appendix B, several 

parameters are modified to match the research.  The batch size and subdivision of 64 and 

32 was used to prevent error from GPU limitations. The image width and height are set 

to 416x416 to enable faster training durations. Other variables are configured as below: 

• max_batches = (# of classes) *2000 = 3*2000 = 6000 

• steps = (80% of max_batches), (90% of max_batches) = (4800), (5400) 

• filters = (# of classes + 5) *3 = (3+5) *3 = 4 

• classes = 3 

Figure 3.11: Image and label augmentation through rotation (original 0o, 45o, 
90o and 180o in order from left to right 
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A pre-trained weight for the convolutional layers created by AlexeyAB (2020) called 

“yolov4-tiny.conv.29” is used to help trained the custom object detector. This pre-trained 

weight helps this custom detector to be more accurate and not have to train as long. The 

training is executed until the loss is converged to the lowest average loss. For this 

research, the training process continued until about 6000 iterations and the lowest average 

loss of about 0.2 with a minimum average precision (mAP) of 99.63%. During the 

training, the resultant weights file was saved for every 1000 iteration as a backup and also 

to find the best weights file. More iterations do not mean greater precision but sometimes 

can lead to overfitted detection.  Figure 3.12 shows a chart of both the loss and mAP for 

the training process. This chart shows that at about 5000 iterations, the mAP remains 

Figure 3.12: YOLO training and validation chart 
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relatively constant, thus the best suited weight for detection is the 5000th iteration weight 

file. 

3.3.5 Testing 

The resultant weight file is tested using several images and live video input from the 

webcam using a modified python code by Hassan (2020) to suit the new YOLO model, 

with the same equipment setup. When testing, the objects are placed randomly and not 

close together similar to the images for training. This testing is just to observe whether 

the weights file obtain from the training process can be used to detect the wings and 

drumsticks from other images and the live input video from the webcam. Other case study 

that involves object stacked onto each other and placed close together will be shown in 

CHAPTER 4:Experiments and Discussion.  Figure 3.13 shows the result obtained when 

using the detection with the weight file obtained from the training process. These images 

Figure 3.13: YOLO object detection testing results 
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show the bounding boxes that surround each object that contains the class type and the 

detection confidence for each object that is detected.  

3.4 Contour/Orientation Detection 

3.4.1 Contour Detection 

The program for contour detection is based on a OpenCV shape detection tutorial by 

Hassan (2019). In the tutorial, the shapes are identified by using edge detectors which 

detects the outer perimeter of each object. The edge detector used is called the “Canny 

Edge detector” which is an operator that uses a multi-stage algorithm to detect a wide 

range of edges in images. This operator was developed by John F. Canny in 1986. The 

Canny edge detector used in this project is the one available in the OpenCV library. 

Before running the edge detector algorithm, a few preparations need to be done to the 

image to avoid errors in the detection. The edge detection is highly sensitive to image 

noises, which is why noise reduction is required. Noise reduction in the image is done 

through a blurring/smoothing process available in OpenCV called “GaussianBlur”. This 

smoothing process prevents unnecessary edges to be detected.  Figure 3.14 shows the 

original image and the Gaussian blurred image that have reduced noise level. 

The blurred image is then converted to a grayscale format through the use of a OpenCV 

function, COLOR_BGR2GRAY.  This function cenverts any image to a single channel 

Figure 3.14: Original image and blurred image in order from the left 
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grayscale image with every pixel is assigned a value from 0-255 to represent its intesity. 

By converting the image to grayscale, a thresholding process can be done for the Canny 

edge detection. These thresholds converts the image to black and white, which highlight 

the object of interest for the edge detection algorithm. Figure 3.15 shows the grayscaled 

image and the resulted edge detection image after the thresholds are applied. Thresholding 

converts the borders/perimeter of the object in the image completely white, with all the 

pixels having the same intensity and  the rest of the pixels, the background into black. 

The Canny edge detection is use along with these thresholds to detect the borders of these 

white pixels. The threshold values is tested by using trackbars in the code to find the 

suitable values for the edge detector.  Other than the thresholds, the minimum area for the 

contour is also applied in the trackbars. This is so that only contours that have area greater 

than  the specified minimum area to be generated which prevents any unwanted contour 

Figure 3.15: Gray scaled image and the resulted image after Canny edge 
detection. 

Figure 3.16: Trackbars for Canny edge detection algorithm containing the 
thresholds and minimum area 
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to be displayed. Figure 3.16 shows the values obtained for the thresholds and minimum 

area for the Canny edge detection algorthm. The contours obtained from these Canny 

edge detection is then dilated to obrained a more thicker contour lines as shown in Figure 

3.17. Figure 3.18 shows the resulted dilated contour overlayed on the original image with 

number of points and the contour area information.  The contours make up of points that 

are connected together to form the edges. These points obtained from the detected 

edges/contours is then used for the orientation detection  process.  

  

Figure 3.17: Dilated image showing thicker contour lines 

Figure 3.18: Image of contour lines overlayed onto original image 
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3.4.2 Orientation Detection 

The orientation of the contours/objects are determined by using a function available in 

the OpenCV library called “fitEllipse”. This function takes in the contours which contains 

several sets of 2D coordinates that represent each object and fits an ellipse on the contour 

(OpenCV, 2021). This function outputs several parameters that contains the center of the 

ellipse, the major and minor diameter of the ellipse, and the angle of the major diameter. 

The angle of the major diameter is measured from a vertical axis towards the major 

diameter in a clockwise (CW) direction. Figure 3.19 shows the resultant angle and ellipse 

after using the fitEllipse function on the contours. The navy-colored lines on the 

drumstick on the left side of the figure are showing how the angle is measured which 

applies to the other objects as well. The angle is measured from vertical axis to major 

diameter, however, it is not consistent with the shape of the object, i.e., for the drumsticks 

Figure 3.19: Result of fitting an ellipse on the contours using fitEllipse 
function 
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in Figure 3.19, the angle 150o is measured from the vertical axis to the meat side while 

the 55o is measured to the bone side. 

In order to obtain a default and consistent angle of orientation, all the contours are 

rotated counterclockwise (CCW) of the angles obtained from the fitEllipse function as 

shown in Figure 3.20. This would make all the rotated contours to have a zero-degree 

rotation. The contours in teal are displaying the rotated contour and as observed, the 

drumsticks rotated contours does not match since the way the angle measured is different 

as mentioned above. 

To correct the issue of the inconsistent angle measured, the fitEllipse function is used 

on the rotated contour (teal colored) to obtain the center points of the ellipse. The center 

points of the ellipse are then compared with the center points of the rotated contour. If the 

y-value of the center of the contour is greater than the y-value of the ellipse, then the 

Figure 3.20: Contour in red is rotated CCW of the angles displayed to produce 
contours in cyan 
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contour will be rotated clockwise of 180o and if it is not greater, then the contour will not 

be rotated. Figure 3.21 shows the final contour in orange color and the blue circle is the 

center of the contour in teal and gray circle is the center of the ellipse fitted to the teal 

contour. As observed, all the orange contour of the drumstick match with each other. All 

the value of the angles used for each rotation are added together (negative angles for CCW 

rotations) to be used as the object’s orientation information. 

To summarize the contour/orientation detection section, a flowchart showing the steps 

for the orientation detection program is shown in Figure 3.22. The angles of rotation is 

added together, i.e., for the drumstick on the left in Figure 3.21, the final angle would 

−150𝑜 + 180𝑜 = 30𝑜. 

 

Figure 3.21: Contour in red is the original, contour in teal is rotated using 
the angles displayed and contour in orange is the final contour 
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3.5   Combining YOLO and Orientation Detections 

From the YOLO detection program, each object in the image will be bounded by a 

box, in which the coordinates and dimension of the box can be obtained. Each object in 

the bounding box is then used along with the orientation detection program to determine 

their orientation. Using the final angle obtained from the orientation detection and the 

class information from the YOLO object detection, the suitable picking orientation for 

each object is calculated.  The added angle of rotation for each wing and drumstick are 

different in which the LeftWing is rotated 45o CW, RightWing is rotated 45o CCW and 

drumstick is rotated 90o CW. Figure 3.23 showing the sample result of combining the two 

detections programs for the drumstick on the left of the figure. The image is cropped to 

only the drumstick in the bounding box and it is run through the orientation detection 

Figure 3.22: Flowchart of the contour/orientation 
detection program 
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program that displays the contours and calculates the angle for pick and place procedure 

in RoboDK. The same process is repeated for other object in their respective bounding 

boxes until all the orientations of each object is obtained. The green contour shows the 

final orientation of the drumstick to be placed by the robot arm onto the pallet. Figure 

3.24 shows the picking angle for the robot gripper (negative of the angle needed to rotate 

the objects to the desired final orientation), the blue circle represents the centroid of the 

objects and the green contour shows the final orientation desired when placing the objects 

on the pallet in the RoboDK simulation.  

Figure 3.23: Sample image demonstrating the combination of the YOLO object 
detector and orientation detection program 

Figure 3.24: Image showing the result of the 
detector program 
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3.6 RoboDK Simulation 

In order to simulate the pick and place procedure in RoboDK, a virtual environment 

need to be set up. The virtual environment would include a robot arm, gripper, tables etc. 

As mentioned previously that the 640 x 480 resolution of the images, translates to a 640 

mm by 480 mm physical cartesian coordinates, thus the table used should be bigger than 

the specified length and width. All the virtual equipment is obtained in the RoboDK 

library except for the 3D model of drumstick and wings. Figure 3.25 shows the full virtual 

environment used fot the pick and place simulation in RoboDK. Table 1 is for picking 

operation and the other tables are for placing proceedures. The Robot used in this 

simulation is the UR10e from Universal Robots and its specification is shown in Table 

3.2. This robot is chosen as it have a reach of 1300 mm which is barely enough to pick 

and pllace between the tables. As this is just for simulation, the payload of the robot which 

Figure 3.25: Virtual environment for pick and place in RoboDK Univ
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exceeds the weight of the objects to be picked up by a large amount is ignored. The robot 

is merely chosen for its reachability. The robot is placed on top of a pedestal so that its 

base is higher than the table. 

Table 3.2: Robot specifications (RoboDK, 2021a) 

 

The gripper used in this simulation is the Gripper RobotiQ 2F 85 (open). This gripped 

cannot open or close in the simulation, it is there to show that the gripper can use the data 

obtain from the detection programs to find and pick the object. As this is using the free 

version of RoboDK, the accessibility is limited, thus, the most suitable method is chosen 

to show the workings of the smiulation. Figure 3.26 shows the close-up image of the 

gripper used in the simulation. The way to pick and place the object using the gripper is 

by using the build in command “gripper.AttachClosest” and “gripper.DetachAll”. This 

does not show that the gripper will grip the object but merely attaching the object to the 

gripper. 

Brand Universal Robots 

Type 6 DOF 

Axes 6 

Payload 10 kg 

Reach 1300 mm 

Repeatability 0.050 mm 

Weight 29 kg 
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3.6.1 Reference Frames 

For the pick and place simulation to work, each object would need reference frame. 

All the equipment used from the library already have their own reference frame. Thus, 

only the reference frame of the 3D model of wings and drumstick are needed. The 3D 

models are first imported into the RoboDK environment, and their centroid is placed 

similar to the centroid obtained in the orientation detection. However, the centroid in 

orientation detection only contains 2D data, thus the z-coordinates is approximated. 

Figure showing the reference frame for each object in which the red is the x-direction, 

green is y-direction and blue is z-direction. 

For placing operations, a target reference frame needs to be added. The targets in Table 

2 would be for placing the drumstick and targets in Table 3 would be for both left and 

right wing. The targets are placed using a python code developed in RoboDK (see 

Figure 3.26: Close-up image of gripper 

Figure 3.27: Reference frames for the drumstick, left wing and right wing in 
order from the left 
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Appendix C: placeTargetsGenerator.py) using a txt file that contains the class type, 

coordinates, and orientation of the placing targets. The targets are placed within the 640 

mm by 480 mm on the table with Table 3 is divided in half for each wing. Figure 3.27 

shows the position and orientation of the targets to be used for the placing operations. The 

objects shown are for demostrating the placing orientation, only the reference frame is 

generated for the targets. 

3.6.2 Pick and Place Operations 

Before beginning the pick and place procedure, a txt file containing the class type, 

coordinates and orientation need to be generated. This txt file is generated from the YOLO 

and orientation detector program. The txt file will contain the x, y, z coordinates and the 

orientation (rotation about x, rotation about y and rotation about z). The rotation about z 

is obtain from the orientation detection while the rotation about x and y are constant for 

the objects as they are laid flat on a surface. The z-coordinates depends on the thickness 

of the objects. The program containing the YOLO and orientation detection that generates 

this txt file is available in Appendix D: YOLOv4-Orientation-multipleImages.py. Figure 

Figure 3.28: Targets for the placing operations on Table 3 and Table 2 in order 
from the left 
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3.29 shows the txt file generated that contains the class type, x, y, z coordinates and the 

rotation about x, y, and z. 

This generated txt file will be used alongside a python code in RoboDK to generate 

virtual objects to be picked and placed in RoboDK (see Appendix E: createObj-Pick-

Place.py). This code will copy the 3D model of drumstick and wing, to be generated in a 

location and orientation similar to the image used in the detection program. Figure 3.30 

shows the generated virtual model of the objects in RoboDK from the image used in the 

detector program. To differentiate between the models, colors are applied to the virtual 

models, blue is for left wing and pink is for right wing. After all the virtual models have 

been generated, the pick and place operation begin. Figure 3.31 shows some sample 

Figure 3.29: Sample txt file generated from the detection program 

Figure 3.30: Virtual model of the objects generated in RoboDK and the image 
from the detector programs 
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images of the gripper picking up the objects. For the drumstick, as the gripper claw is 

shorter than the length of drumstick, it seems like it is poked through the drumstick. As 

mentioned previously, the gripper cannot be opened or closed as this is the limitation of 

the free version of RoboDK. However, the images prove that the data obtained from the 

detector programs can be used as the picking information for the gripper. The objects are 

just attached virtually to the gripper using the command “gripper.AttachClosest” and will 

release the object using “gripper.DetachAll”. These images shows that the location and 

orientation of the gripper match with the object that it’s going to pick up. Thus, if another 

bigger gripper is used, the orientation can still match. 

In summary, the images will be run through the detector programs to generate txt file 

that contains the class type, locations, and orientations of the objects. Then, that 

information is used in RoboDK to generate the virtual object models on Table 1 to be 

picked up by the robot and gripper and placed to Table 2 if it’s a drumstick, and to Table 

3 if it’s a wing. Figure 3.32 shows an image of the ongoing pick and place operations in 

RoboDK. 

  

Figure 3.31: Gripper picking sample images 
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Figure 3.32: Image of pick and place operation in RoboDK 
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CHAPTER 4: EXPERIMENTS AND DISCUSSION 

Using the programs developed, several case studies are conducted to test the 

performance of the vision system. 

4.1 Ideal Case 

For the ideal case, 10 images are acquired for the detector programs. In each image, 

the objects are fully within the 640 x 480 resolution meaning that 100% of the object’s 

body are in the frame. In addition, the objects are not closely packed together and have at 

least 30 mm separation between them. This also means that there are no objects that are 

stacked or overlapped onto each other. This is so that there is no problem in object 

detection and also the contour detection. Figure 4.1 shows the six images used for the 

ideal case study. All of the objects in each image are not close to each other and 100% of 

their body is visible in the frame. Each image will represent one pallet that contains the 

objects. The total number of drumsticks are 10, left wings are six and right wings are six. 

Figure 4.1: Images used for the ideal case Univ
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4.1.1 Detector Results and RoboDK Simulation 

The images are ran through the detector programs to detect the type of objects and 

location as well as each object’s orientation. Figure 4.2 shows the result after the six 

images area ran through the detector program. In each image, the class type, picking 

orientations and the final placement contours are displayed. For each image, a txt file 

containing the class type, x, y, z coordinates and rotation about x, y, z is generated. Figure 

4.3 shows the txt file generated for image 00006 that contains the class, location, and 

orientation information to be passed through in RoboDK. In RoboDK, the pick and place 

are done through one image at a time. The objects in the first image are virtually 

generated, then they are picked and placed by the robot. After all the generated object 

Figure 4.2: Resultant images from the detector program 

Figure 4.3: Txt file generated for image 00006 
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from first image is picked and placed, then, the objects in the second image are generated, 

picked and placed beside the first generated objects. The process is then repeated until all 

the objects in the last image have been generated, picked, and placed. Figure 4.4 shows 

the images after the pick and place operation are done in RoboDK and the total number 

of drumstick placed are 10, left wings are six and right wings are also six. These numbers 

match with the number of objects in the six images used in the detector program which 

means that all objects have been accounted for.  

For most of the case studies, the images gathered are first tested using the YOLO object 

detection due to the fact that the orientation detection rely on the bounding boxes 

generated by the object detector program. 

Figure 4.4: Image after all the objects in all images have been picked and placed 
in RoboDK 
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4.2 Case Study 1: Objects close together 

For this case study, a set of six images are gathered. In each image, the objects are 

placed close together with minimal gaps. These images are tested using the YOLOv4-

tiny object detector first to determine whether this object detection program can detect 

every object on these images. Figure 4.5 shows images where all the objects are closely 

packed together with minimal gaps. 

 These images are ran through the YOLO object detector program to test the detector’s 

performance on objects that are closely arranged. Figure 4.6 shows the results obtained 

Figure 4.5: Images used for Case Study 1 

Figure 4.6: Results from YOLO object detection for Case Study 1 
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from the YOLO object detection program. For most of the images, the number of 

detection by the program are less than the number of objects. For example in image 

“close4out”, the program managed to only detect two objects out of the four, and in image 

“close3out”, it can only detect two out of the three drumsticks. And in some images, the 

wings are incorrectly detected, i.e., in image “close6out”, both the LeftWing are detected 

as RightWings. This is maybe due to the the initial images used for training. Most of the 

training images does not contain objects that are closely packed together. Since the 

orientation detection program uses the bounding boxes from the YOLO object detection, 

its result are also not reliable when the objects are placed close together. This is due to 

more than one object in the same bounding boxes, thus, creating more contours. One way 

to prevent the objects being closely together in a pallet is by applying a separator or by 

vibrating the pallet to loosen the arrangement. 

4.3 Case Study 2: Object Overlapped 

Six images containing several objects that overlapped or stacked onto each other are 

gathered. Figure 4.7 shows the images that contain multiple objects being stacked onto 

one another. Smilar results as Case Study 1 are obtained. The number of detection are 

less than the number of object and several objects are detected with a wrong class type. 

Figure 4.7: Images used for Case Study 2 
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Figure 4.9 shows the results obtain from the YOLO object detection. Several objects are 

missing in the detection that is showed by the lower number of bounding boxes compared 

to the number of objects in each image. This is may be due to the objects having similar 

color which is why the objects seems indistinguishable. 

To demonstrate that the orientation detection program result depends on the bounding 

boxes of the object detection, image “over1” is tested using the orientation detector. 

Figure 4.8 shows the result obtained from using the orientation detector on image “over1”. 

The contour displayed (in red) does not have the shape of the drumstick, since there is 

more than one object in the bounding box. The angles showed in the images cannot 

Figure 4.9: YOLO object detection result for Case Study 2 

Figure 4.8: Orientation detector 
result for image “over1” 
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represent the orientation of each object since the contours are wrong. To prevent object 

from overlapping with one another, the pallet can be shaken or vibrated using a machine.  

4.4 Case Study 3: Partially displayed object 

For this case study, the objects are intentionally placed along the border of the 

platform, so that the image acquired will contain objects that its body is only partially 

displayed. Figure 4.10 shows the images that contains only partially visible objects. 

These images are first ran through the object detector to test whether the detector can 

detect object that are only partially visible. Figure 4.11 shows the result obtained from 

the YOLO object detector. For both images “edge1” and “edge2”, all the objects are 

detected correctly, but in image “edge3”,  two objects were not detected. Then, the two 

images that their object are detected correctly are tested with the orientation detection 

program. Whent tested, the program resulted in an error, since it cannot detect the 

contours of the objects at the borders. The countour were not closed9 to which the detector 

Figure 4.10: Images used for Case Study 3 

Figure 4.11: YOLO object detector result for Case Study 3 
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produce the error. To prevent the object to be over the edge of the pallet, a physical border 

could be place around the pallet so that all the objects can be 100% visible. 

4.5 Case Study 4: Computer Performance 

In this case study, the images from the ideal case were used. However, two different 

computers with different specifications are used to run the YOLO and orientation detector 

programs. The program will output all the resultant images and every txt file for each 

image. The main point of comparison would be the time taken for the program to finish 

computing. The computers used are a gaming laptop, Lenovo Legion Y530 and the 

Raspberry Pi 4 computer. The specifications for both computers are shown in Table 4.1 

and Table 4.2. 

Table 4.1: Specifications for Lenovo Legion Y530 gaming laptop 

CPU Intel(R) Core (TM) i7-8750H CPU @ 2.20GHz 

RAM 16.0 GB DDR4 2666 MHz 

Storage ADATA SX8200PNP M.2 SSD  

 

Table 4.2: Specifications for Raspberry Pi 4 Model B computer 

CPU 64-bit Quad-Core Cortex-A72 processor @ 1.5GHz 

RAM 4GB LPDDR4 

Storage SanDisk Ultra A1 Class 10 Micro SD Memory Card 

 

Both the computers are tested with the same number of images containing the exact same 

objects. In the program, a delay of 3000 milliseconds will be added so that each detection 

result can be displayed and observed. In addition, each computer will also be tested when 

only the txt file is generated without any output images and delays. The objective of this 
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experiment is to observe the performance of the detection program on different computer 

systems of different specifications and prices in which the gaming laptop is much more 

expensive than the miniature computer. Table 4.3 shows the computation time for each 

computer to run the detection program with and without the delays. The difference in 

computation time between the two computers are about five seconds for six images. Thus, 

to have a seamless operation between the program and the simulation, a higher frequency 

CPU is needed or by modifying the program to have a lighter computational cost. 

Table 4.3: Computation time results 

Computer Lenovo Gaming Laptop Raspberry Pi 4 

Computation time with delays 

and image generation 
18.635288953781128 s 23.69989275932312 s 

Computation time without 

delays and image generation 
0.44082212448120117 s 5.044687271118164 s 

 

In summary, this YOLO object detection and the orientation detection program can be 

applied to a robotic palletizing system through a vision system as long as the objects are 

arranged in a certain manner. The objects should not be overlapped with one another and 

should have a gap between them, so that the objects are not in contact with each other. To 

achieve such arrangement, a sorting or vibrating mechanism can be applied in the 

production line. The size of the pallets can be changed as the image resolution can be 

scaled to match the desired pallet sizes. In addition, the type of objects can be manipulated 

by training a new YOLO detection model and its picking orientation can be modified by 

manipulating the angles in the program. 
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CHAPTER 5: CONCLUSION 

5.1 Summary 

In this research project, an image-guided vision system has been developed and tested. 

A YOLO object detection model was trained using images acquired using a regular 

desktop webcam (Logitech C170). The object detection model managed to achieve 

minimum losses and a high average precision. This detection model is able to detect the 

type of object in the images with high confidence and also generate the bounding boxes 

that contain the objects’ location. The orientation of the objects is detected using a contour 

detection function in OpenCV called “Canny Edge detection” and “fitEllipse” function. 

By combining these two functions, the suitable picking orientation and position are 

generated which would enable a robotic arm equipped with a gripper to pick up the 

objects.  

The class type, coordinates and orientation of the objects are used to simulate a pick 

and place operation in RoboDK. The objects in the image are successfully generated 

virtually in the RoboDK environment with the exact location and orientation from the 

real image. The robotic arm equipped with the gripper manage to pick up the objects with 

the suitable picking orientation and successfully placed them in the correct pallets with 

the desired orientations and arrangements. 

It is hoped that this image-guided vision system can be applied to real-life robotic 

applications to increase the productivity and efficiency of manufacturing lines. 

5.2 Future Work 

Currently, images are gathered and passed through the detection programs, however, 

in real manufacturing lines, a live visual input of the pallets/conveyer belts would be 

favorable. This information from the live input would be passed through to the robotic 

arm to pick the objects. Due to hardware and software limitations, the actual real-life 
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testing of the detection programs is not able to be conducted, only simulation is able to 

be done. Thus, to further test this vision system, a real-life testing rig would be built, and 

the performance of the detection models can be tested. 

To apply to other objects, the YOLO object detection model can be retrained with 

other sets of images containing the objects desired. This would enable this vision system 

to be applied to any other palletizing operations and not just on chicken wings and 

drumsticks. And the orientation detection program can be modified to comply with any 

final placing orientation that is desired to match with the newly trained YOLO model. 
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