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EXPLORATION OF NEW BISMUTH AND LEAD – BASED METAL-ORGANIC 

FRAMEWORKS FEATURING FREE O AND N DONORS: SYNTHESIS, 

STRUCTURES AND PROPERTIES  

ABSTRACT 

This work describes the syntheses, characterizations and the properties of two new metal 

organic frameworks (MOFs) based on bismuth and lead cations with two different ligand 

linkers: 2,3-pyrazine dicarboxylic acid (H2Pzdc) and benzene 1,3,5-tricarboxylic acid 

(H3BTC). Bi-Pzdc MOFs have been synthesized by employing simple dissolution-slow 

evaporation method using mixture of water/DMF with different stoichiometric molar ratios 

and recruiting imidazole (Im) or imidazolium iodide (ImZm) as modulator agents. Pb-BTC 

MOFs synthesis have been conducted by employing simple and optimized solution 

layering approach using different mixture of water/1,4-Dioxane; water/DMF; and 

water/MeOH using same stoichiometric molar ratios and adopting Aniline (Ani) or Im as 

auxiliary ligands. The physical and chemical features of these MOFs have been 

characterized by using optical microscope, UV light black box, Scanning  Electron 

Microscope coupled with Energy Dispersive X-Ray Spectroscopy SEM/EDX, Single 

Crystal and Powder X-ray diffraction (SC-XRD and PXRD), Thermo-gravimetric Analysis 

(TGA), elemental analysis (CHN), solid state Nuclear Magnetic Resonance (SS-NMR), 

Fourier Transform Infrared Spectrometry (FTIR), Ultra Violet-Visible (UV-Vis) 

spectrophotometry (solid and liquid state), solid state photoluminescence (PL), BET 

surface area analysis and proton conductivity measurements. SCXRD and PXRD 

measurements reveal that the new, water stable Bi-MOFs: (compounds 1 to 12), which all 

exhibit same structure; Bi(Pzdc)(HPzdc)(H2O); (H2pzdc= C6H3N2O4), crystallize in 

P21/n space group (a =14.1738(7) Å, b =21.682(1) Å, c =14.7988(8) Å,  =109.2103(8)°) 

and built from 2D slabs interlinked by Pzdc ligands into 3D MOF with 10.5 Å× 8.9 Å 
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aperture size. A presence of hydrogen-bonded along the crystallographic c-direction, 

within the 2D slabs, possibly lead to the observed proton conductivity. Interestingly, its 

visible and photoluminescence colors depend on water content. Three new, closely 

resembled Pb-based organic frameworks are also reported in here along with their 

structural characterizations, photoluminescence, and dyes adsorption properties. Their 

SCXRD and PXRD measurements confirmed that Compounds 13 and 14 offered same 

formula, Pb(HBTC)(1,4-dioxane)0.5, and crystallize in the C2/c space group (a 

=17.239(2) Å, b =7.0225(8) Å, c =19.911(2) Å,  =104.74(1)); Compounds 15 and 17 

display same formula as well, Pb2(HBTC)2(H2O)5, and crystallize in the  P-1 space group 

(a = 7.3989(4) Å, b =8.2196(4) Å, c =10.1437(5) Å, α =94.336(4)°,  =104.943(4), γ 

=108.270(3)°); while Compound 18 with the formula, Pb(HBTC)(DMF), crystallizes in 

the P21/n space group (a = 10.5004 (3) Å, b = 7.1398 (3) Å, c = 17.1285 

(5) Å,  =102.160(2)); (H3BTC= C9H6O6). All three lead compounds are built from 

slightly different 1D structures interconnected into 3D MOFs by BTC ligands forming 

different pore sizes which are governed by the solvent used during synthesis. Among them, 

only compound 17 showcases an interesting, near white-light emission, single-component 

phosphor with CIE coordinate of (0.33, 0.36), while compound 14 adsorbs methylene blue 

and methyl red dyes. 

Keywords: Porous Coordination polymers, p-block metals, proton conductivity, 

photoluminescence, dyes adsorbent. 
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PENEROKAAN KERANGKA LOGAM-ORGANIK BARU BERASASKAN 

BISMUT DAN PLUMBUM YANG BEBAS PENDERMA O DAN N: SINTESIS, 

STRUKTUR DAN SIFAT 

ABSTRAK 

Kajian ini menerangkan tentang sintesis, pencirian dan aplikasi oleh dua rangka organik-

besi (MOFs) berdasarkan kation bismut dan plumbum dengan dua ligan penghubung yang 

berbeza iaitu: asid 2,3-pirazin dikarbosilik (Pzdc) dan asid 1,3,5-trikarbosilik (BTC). Bi-

Pzdc MOFs telah disintesis dengan menggunakan teknik penyerapan-penyejatan perlahan 

mudah diantara campuran air/DMF dengan nisbah molar stokiometrik yang berbeza dan 

imidazol (Im) atau imidazolium ioda (ImZm) sebagai ligan pembantu, manakala sintesis 

Pb-BTC MOFs telah berjaya dilakukan dengan mudah dan nisbah molar stokiometrik 

berbeza telah dioptimumkan diantara campuran air/1,4-dioxan; air/DMF; dan air/metanol 

sebagai bahan pelarut serta diadaptasi oleh Anilina (Ani) atau Im sebagai ligan pembantu. 

Fizikal dan kimia MOFs ini telah dicirikan oleh mikroskop optikal, kotak hitam cahaya 

UV, Pengimbas Mikroskop Elekton berserta Analisa Tenaga Cambahan X-Ray 

Spektroskopi SEM/EDX, Kristal tunggal, dan serbuk pembelahan X-ray (SC-XRD dan 

PXRD), Analisis Termogravimetrik (TGA), Analisis elemen (CHN), bentuk pepejal 

Resonan Magnetik Nuklear (SS-NMR), Spekroskopi Inframerah (FT-IR), dan Ultra-Violet 

spektroskopi (UV-Vis) (cecair dan pepejal bentuk), bentuk pepejal fotoluminasi (PL), 

analisis luas permukaan BET dan pengukuran konduktiviti proton. Pengukuran SCXRD 

dan PXRD membuktikan bahawa sebatian Bi-MOFs yang baru ini: (1) ke (12) adalah stabil 

air dan mempunyai struktur yang sama iaitu; Bi(C6H2N2O4) (C6H3N2O4) (H2O) atau 

Bi(pzdc)(Hpzdc)(H2O) yang mempunyai dalam ruang kumpulan kristal P21/n dengan (a = 

14.1738(7) Å, b = 21.682(1) Å, c = 14.7988(8) Å,  = 109.2103(8)°), ianya berbentuk 2D 

dan telah dihubungkan dengan ligan Pzdc untuk menghasilkan bentuk 3D MOF yang 

bersaiz 10.5 Å× 8.9 Å.  Kehadiran ikatan-hidrogen air disepanjang kristallographi arah-c, 
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iaitu diantara papah 2D, kemungkinan konduktiviti proton boleh dilihat. Menariknya, ianya 

bercahaya dan warna fotoluminasinya adalah bergantung kepada kandungan air. Tiga 

MOFs baru yang menyerupai rangka organik-Pb telah dilaporkan bersama dengan 

perincian struktur, fotoluminasi, dan keupayaan penyerapan pewarna. Pengukuran SCXRD 

dan PXRD mengesahkan bahawa sebatian 13 dan 14 mempunyai formula yang sama iaitu, 

C13H13O9Pb atau Pb(HBTC)(1,4-dioxane)0.5, dan mempunyai ruang kumpulan kristal 

C2/c (a = 17.239(2) Å, b = 7.0225(8) Å, c = 19.911(2) Å,   = 104.74(1)o); Sebatian 18 

mempunyai formula yang sama iaitu C12H11NO7Pb atau Pb(HBTC)(DMF), dikristalkan 

dalam ruang kumpulan kristal P21/n (a =10.5004(3) Å, b =7.1398(3) Å, c 

=17.1285(5) Å,  =102.160(2)); sementara sebatian 15 dan 17 mempunyai formula yang 

sama iaitu C18H8O17Pb2 or Pb2(HBTC)2(H2O)5, dan kristalnya dalam ruang kumpulan P-1 

(a = 7.3989(4) Å, b =8.2196(4) Å, c =10.1437(5) Å, α =94.336(4)°,  =104.943(4), γ 

=108.270(3)°). Kesemua sebatian plumbum berbentuk struktur 1D dihubung oleh ligan 

BTC untuk berbentuk 3D MOFs dengan menghasilkan saiz pori yang berbeza dimana 

ditentukan oleh pelarut yang digunakan semasa sintesis. Diantara semua, hanya sebatian 

17 yang menarik, hampir pelepasan cahaya-putih, komponen tunggal fosfur dengan 

koordinasi CIE (0.33, 0.36), manakala sebatian 14 menyerap pewarna metalina biru dan 

metil merah. 

Katakunci: Koordinasi polimer berpori, logam blok P, konduktiviti proton, fotoluminasi, 

penyerapan pewarna. 
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CHAPTER 1: INTRODUCTION 

1.1 Background study 

Hybrid materials are developed by scientists in the early 21st century upon the 

availability and advances physico–chemical characterization methods, which enable 

better approaches to novel materials. The hybrid materials consist of two main building 

blocks: an inorganic part which provides mechanical strength and an overall structure and 

the organic part which delivers bonding between the inorganic and organic sections 

[1]. There are two different types of interaction that can be observed between the two 

components in the hybrid materials, weak and strong interactions. The weak interactions, 

such as Van der Waals forces [2], electrostatic interactions, - interaction, the intra 

and/or intermolecular hydrogen bonding, and another interactions that dubbed 

"supermolecules" [3].  Whilst, the strong interactions is chemical covalent bonds between 

them [4, 5], see Figure 1.1.  

 

Figure 1.1: Selected interactions typically applied in hybrid materials and their 
relative strength [1]. 
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A new class of inorganic-organic hybrid materials called metal organic materials 

(MOMs) have been investigated and rapidly developed in the past decade. MOMs is 

composed of metal-containing nodes connected by organic linkers through chemical 

bonds that built from a combination of metal moieties with organic ligands, the resulting 

properties often obtained from synergic combination of both constituents  [6, 7].  

MOMs can be divided into two main categories: I) the non-polymeric hybrid materials, 

which is called metal–organic polygons/polyhedra (MOPs), that have discrete structural 

features (display 0D means no extension),  and II) the polymeric hybrid materials that 

have infinite structural features (display 1D-3D) which can also be divided into two 

categories: i) the polymeric porous materials, which is called metal–organic frameworks 

(MOFs) and ii) the polymeric non-porous materials that called coordination polymers 

(CPs) [8], see Scheme 1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.1: Classification of hybrid materials according to the extension [9]. 

Non-Polymeric 
materials  

Metal–Organic Polygons 
/polyhedra (MOPs) 

 Discrete Complexes 

Zero Dimensional (0D) 

Polymeric materials  

Hybrid materials (MOMs) 

Non-Porous materials 

(Coordination Polymers) 

CPs 

Porous materials 

(Metal Organic Frameworks) 
MOFs 

Two Dimensional (2D) 

Three Dimensional (3D) 

One Dimensional (1D) 

Two Dimensional (2D) 

Three Dimensional (3D) 
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MOFs or porous coordination polymers (PCPs), a second generation of MOMs, is a 

three-dimensional extended structures with permanent porosity [10 - 13].  For more than 

two decades, MOF, predominantly transition metal (TM) and post TM base [14], has 

proven its importance through several groundbreaking discoveries in several applications 

such as gas storage and separation, luminescence, and magnetic properties  [15 - 21] 

exploiting its versatile Reticular Chemistry [22].  

MOFs can collaboratively combine the rigidity of inorganic compounds with the 

flexibility and tunability of organic matter to display the non-extended molecular solid 

state structures, contain potential voids [7], [23]. 

 

1.2 Classification and description of MOFs 

MOFs can be categorized based on the charge of the framework into cationic [24], 

neutral and an anionic MOFs (iMOFs) [25]. MOFs, the second generation of MOM, 

belong to an important class of coordination network which can be considered as a 

subclass of CPs with special feature that they are always porous (have a permanent 

porosity) [10]. They have reported as special class of nano-porous materials [12] and 

named as “a periodic net” because they can be described as a separated type of graph [26].  

Based on the ability of structural transformation, MOFs can be classified into flexible 

and robust/ rigid categories. The flexible class can shows the structural transformation 

phenomenon upon employing the external stimuli such as heat, guest molecules, electric 

or magnetic field, while the robust class of MOFs does not show this phenomena [27].  
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1.3 Why Lead (Pb) and Bismuth (Bi) metals 

P-block metals-containing compounds protruded among the periodic table elements 

because they have a variety of applications in electroluminescence [28], photovoltaic 

conversion, crop protection agents, polymers, catalysts [29], disinfectants, fertilizers [30], 

solar cells, explosives, fluorescent sensors [31], medicines [32 - 34], and organic light–

emitting diodes (OLEDs) [35]. However, little reports on p-block containing MOFs 

comparing to s-, d- and even f- block metal ions [36].  

Tl+, Pb2+ and Bi3+ cations, which belong to the sixth-row elements of periodic table, 

have the electronic configuration of [Xe] 4f145d106s2 in their lower oxidation states, 

featuring lone electrons pair in s-orbital, which typically form hemi-directed metal-

organic polyhedra (distorted polyhedra) as building blocks of MOM with irregular 

network topologies, making them comparatively less explored [37 - 44]. In rare cases, 

however, these lone pair metals can form surprisingly regular network topologies, such 

as a Kagomé Lattice [45] and a paddle-wheel moiety [46 - 48] due to formation of only 

slightly distorted, holo-directed polyhedral, i.e. the lone pairs are not stereo-chemically 

active in most Bi3+ compounds, and there are only few compounds of Bi3+ with six 

coordination number that have a stereo-chemically active lone pair electron, which 

stimulates the Bi3+ cation to introduce versatile coordination geometries that form hemi 

directed MOPs (distorted polyhedral) as a building block  [49]. Conversely, the lone 

electrons pair in Pb2+ compounds can be either active (hemi-directed) or inactive (holo-

directed), which introduce numerous coordination geometries due to the ability of Pb2+ to 

form antibonding molecular orbital interactions (Pb 6s ligand np) [50, 51]. 

This lone electrons pair authorizes the metal ion to act as an electron pair donor (Lewis 

base) in addition reactions [52], and besides being a determining factor in the structural 

formation, lone electrons pair, also plays a very important role in responding to electric 
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and mechanical field perturbations that provides important technological properties, such 

as ferroelectric and piezoelectric [53].  

Among the p-block metals, Pb2+ merits other several advantages, include tolerant to 

defect, hence possibility of tunable electronic properties. According to Pearson’s hard-

soft acid-base theory, Pb2+and Bi3+ ions are border line metal ions that have a high affinity 

for both softer (:N) and harder (:O) donor ligands, thus, adaptable to a variety 

coordination environment [54, 55].  

Due to their large ionic radius 1.16 Å for Bi3+ and 1.33 Å for Pb2+, and the flexibility 

of Bi3+ and Pb2+ in coordination numbers (CN) ranging from 2–10 higher dimensionality 

cationic frameworks could easily be formed [56, 57].  

Lead has two common oxidation states, +2 and +4, however, Pb2+ is more stable than 

Pb4+, while the most stable oxidation state for bismuth is +3, which is govern its 

chemistry. The Bi3+ cation has a high Lewis acidity, which sometimes displays irregular 

coordination geometry. Other observed bismuth compounds’ oxidation states include +5, 

as well as the +2, +1 and even -3 [58]. 

Despite its identity as a heavy metal ion, bismuth compounds are generally nontoxic 

to humans and pose minimum threat to the environment. In spite of its low solubility, 

bismuth exists in wide applications as antibacterial and antifungal agents [35, 57].  

Although lead is used in various technologies, it is poisoning to the human and the 

environment. Unfortunately, there is no oral chelator available to treatment of lead 

poisoning, but there is a growing interest to find selective lead binding materials. 

Simultaneously, many interesting lead-based coordination chemistry are under discovery 

[59- 61]. 

Univ
ers

iti 
Mala

ya



6 

1.4 Why H2Pzdc and H3BTC ligands  

The chemical stability and the structural rigidity as well as the appropriate connectivity 

of the two ligands that used in this study pyrazine -2,3-dicarboxylic acid (H2Pzdc) and 

benzene tricarboxylic acid (H3BTC), make them as the most successful multifunctional 

ligands which enable them to produce robust and stable frameworks [62]. They have multi 

donor sites (O and/or N) and their partially or fully deprotonated anions (Hpzdc¯ and 

Pzdc2-) and (H2BTC¯, HBTC2- and BTC3-), respectively, enable them to extend in two 

and/or three dimensional (2D, 3D) structures and behave as poly-functional donors and/or 

bridging ligands with multi coordination modes in complexes and/or in coordination 

polymer compounds. ligands containing multi-carboxylates like H2Pzdc and H3BTC have 

been proven to be an effective strategy to construct intriguing MOFs due to the fact that 

carboxylic acid groups can provide reliable coordination modes to regulate pore size [63]. 

1.5 Problem statement 

Considering the continues demand for energy production and in line with the key role 

of proton conductivity, which assumes in the production of electricity in hydrogen fuel 

cells, that some MOFs played because of the free proton inside their pores, besides the 

ability of the flexible MOFs to absorb different sizes of different molecules, like solvents, 

dyes or other toxic compounds, there is an obvious interest for designing and synthesis 

adsorbing and storage agent porous materials with a high capacity of H+ active sites, 

and acid and base stability. 
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1.6 Scope of study 

This study deals with synthesis of some rare new BiMOFs which have ability to bear 

a water contents around 20% of their weight and remains stable that form an infinite 

network of hydrogen bonds inside its pores and also display different photoluminescence 

under UV and visible light. It deals also with some other new flexible/ breathing PbMOFs 

which exhibit an interesting near white light emission under UV light and can also absorb 

some organic molecules like dyes and some toxic compounds like aniline that makes them 

not only a good candidate to remove the aniline from environment but to be a promising 

candidate as aniline detector depending on the concentration of aniline in the medium. 

1.7 Objectives 

I. To develop and optimize the synthetic protocols for the synthesis of Bi and Pb-

based functional MOFs featuring N and O donor atoms. 

II. To characterize the structure as well as the physical and the chemical properties of 

the synthesized Bi and Pb-based functional MOFs.  

III. To investigate the proton conductivity behavior of the individual functional MOF. 

IV. To investigate the structure transformation behavior of the individual functional 

MOF using different solvents for synthesis.  

V. To investigate the guest adsorption properties of the functional MOFs. 
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CHAPTER 2: LITERATURE REVIEW  

 

2.1 Architecture of MOFs 

MOFs are inorganic-organic hybrid extended networks that built from two main 

components called the primary building units (PBUs): the linker or “strut” which is the 

organic ligand and the metal ions/clusters. The construction of MOFs starts by choosing 

proper PBUs, then combining them together to link covalently and form a discrete metal-

ligand cluster that generates a rigid existence with a simple geometry called secondary 

building units (SBUs) [64].  

SBU is an organic-inorganic fragment of poly-nuclear cluster entities (metal moiety 

that is more complex than simple ions), which considered as molecular complexes that 

form the subunits or a template of MOFs [65]. These entities are normally formed when 

an organic linker connects two or more metal cations and arranges in a style/ layout of a 

rigid, 0D metal-ligand cluster with a simple geometry [66, 67], for instance, Zn4O SBU, 

see Figure 2.1.  

 

 

 

 

 

Figure 2.1: The Zn4O cluster that named “ SBU” [68].  

 

MOF is a coordination network that containing potential voids formed by the 

connection between an organic ligand and a metal atom [69]. This network can be 
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extended through repeating coordinated entities, with cross links between two or more 

individual chains/loops, in a 1D, 2 or 3D structure [21, 70], see Figure 2.2.  

 

Figure 2.2: 1D, 2D and 3D frameworks based on two different metal coordination 
geometries with a linear organic bridge (black: metal; gray: organic bridge) [71]. 

 

The structures of MOFs can be designed as directional, stable and rigid building units 

in the architecture of predetermined robust crystalline composites, with potential 

properties depending on the poly-nuclear nature of the SBUs [65]. Therefore, the metal 

coordination environment and the ligand coordination mode can be exploited for the 

transformation of these discrete fragments into an extended porous network using 

multitopic linkers /or bridging ligands, such as terephthalic acid /benzene-1,4- 

dicarboxylic acid (BDC), biphenyl-4,4’-dicarboxylic acid (BPDC), pyrazine dicarboxylic 

acid (PzDC) or trimesic acid/ benzene -1,3,5-tricarboxylic acid (BTC)  [72]. These 

organic linkers can be classified into rigid, semi-rigid and flexible categories [73].  

There are three types of linkers are often used in designing a MOF: the cationic ligands 

(like imidazole, triazole or tetrazole), the neutral ligands (like pyrimidine, pyrazine, 4,4'-

bipyridyl) and the anionic ligands (which usually contain carboxylate COO¯, sulphate 

SO4
2- or phosphate PO4

3- groups) [27]. It is very obvious that rigid N-donor ligands are 

mostly used for synthesis of high dimensional coordination polymers, unlike the flexible 

N-donor, which are stronger due to their space orientation [74]. 
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Usually, the rigid or semi-rigid ligands [75, 76] are used to design a crystalline robust 

MOF that feature high porosity [77- 79]. However, using flexible ligands leads to produce 

a kind of MOFs that tend to be amorphous [80, 81]. Besides that, the aromatic linkers are 

favorable because an aliphatic part is less rigid than an aromatic part of the ligand.  

2.2 Introduction to the synthesizing approaches of MOFs 

The synthesis of MOFs has been advanced from the synthesis of zeolite where it 

usually needs organic "template" that is typically quaternary ammonium cations such as 

tetrapropyl ammonium hydroxide (TPA), cetyl trimethyl ammonium bromide (CTABr) 

or tetraethyl ammonium (TEA+) cations. These quaternary cations are used to develop the 

inorganic framework and will be removed later. In contrast with zeolites, MOFs are 

assembled from the SBU and bridging organic ligands that consider as a template of 

MOFs and remain intact/integral throughout the synthesis [82- 84].  

Zeolites and MOFs are created mostly by using conventional hydrothermal, 

solvothermal and non-solvothermal techniques in which the crystals are grown slowly 

from a hot solution of the starting materials with the solvents. A small scale of MOF 

precursor solution is heated within a temperature range (below/or at) boiling point of the 

solvents that generates autogenous pressure for different periods of time. Some materials 

are slowly developed as a result of many numerous conditions like temperature, pressure, 

time, concentration of precursor choice [85]. In order to minimize the reaction variables 

and/or optimize the product yield and/or control particle size, morphology and topology 

of MOFs, microwave assisted synthesis, electrochemical, mechanochemical, sono-

chemical and ligand exchange methods have been used [86]. 

Hydro-and solvothermal synthetic methods are convenient techniques for preparing 

metal-organic frameworks (MOFs) using aromatic dicarboxylic acid based ligands and 

transition elements, in particular post transition elements, with reported applications such 
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as gas storage [19, 87, 88], magnetic [16, 22, 89, 90] and luminescent applications [91], 

[18, 92]. The dissolution-crystallization, a rather less popular technique and yet requires 

less synthetic equipment, could potentially produce new, kinetically stable MOF that may 

merit its own structural library and applications [93, 94]. By similar token of facile 

dissolution-(re)-crystallization technique, post synthetic modification of MOFs exploits 

the relatively weak coordination bond of certain metal center to synthesize new 

compounds with tunable properties that are not possible to be made through conventional 

synthetic pathways [95, 96]. 

 

Scheme 2.1: A summary of the various approaches for MOFs preparation [97]. 

 

2.3 Nomenclature of MOFs 

The Reticular Chemistry Structural Resource (RCSR) database task group has 

developed a terminology and nomenclature system for MOFs and/or CPs. This system 

can designate the subunits of a MOF (SBUs) as a fragment, which organizes and describes 
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the framework structure in a way that can make it easier to illustrate the common 

topologies of several structures [26, 65]. 

The analysis and descriptors of these topologies is called “a net”, where atoms act as 

vertices of the net and the bonds act as links/ edges between atoms [98]. The topology 

assign/ or allocated as a symbol of three lower-case bold letters (sometime with a fourth 

letter after a hyphen) [70]. The pcu (Primitive Central Unit) topology net has been 

displayed by, for instance, MOF-76, MOF-5, MOF-1114(RE) and MOF-1115(RE) [69], 

while some others MOFs like MIL-47 and MOF-72 are featuring a hex topology, as 

shown in  Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Correlation matrix (topologies) of some MOFs and their respective nets 

[99, 100]. 

 

The modular nature of MOFs, the chemical and geometrical attributes of the multitopic 

linkers and the SBUs make the framework topology not only nicely predicted, but also 

allowed for synthesis and designing of a new targeted class of porous materials with high 

porosity and robust structures [66].  
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2.4 Properties and applications of MOFs 

Recently, MOFs have received a significant attention as a new family of nano-porous 

materials, largely due to variations in compositions, size, geometry, physicochemical 

properties and chemical functionality  [101].  

In storage technologies, MOFs are attractive platform that suffice the continuous need 

of energy for the next generation [102]. These variations enabled material scientists to 

investigate several thousands of different MOF structures.  

A careful selection of both the metal center and the multifunctional linkers with the 

appropriate properties for the construction of MOFs is essential to produce the targeted 

and a prerequisite properties of the produced structure [102]. It can be tailored for not 

only the fascinating topologies and structures but largely due to their potential 

applications in various fields, such as luminescence, volume specific applications in gas 

adsorption (capture, storage, purification, sensing etc.) [103], ion exchange, conductivity, 

magnetism, catalysis, membrane design and molecular recognition using surface 

modified MOF as well as biomedical applications due to their biocompatibility and 

biodegradability [22]. Moreover, the choice of an appropriate exchangeable solvent 

(should be volatile), which is used for synthesizing of MOFs and/or removing the guest 

molecules from the pores of the framework, plays a key role in the architecture of some 

MOFs, while some frameworks collapse after removing the guest molecules [104]. 

Exploiting of various solvents controls the shape and the size of pores in MOFs 

architecture, where the solvent could sometimes consider as a template for designing a 

proper framework and prevents catenation, for producing an open structure [105]. 

Therefore, there are some important factors to achieve a target MOF and aligned together 

for best results, such as a successful selection of the metal ion, the ligand, the counter ions 

and the solvent, then chose a proper molar ratios of these components [27]. 

Univ
ers

iti 
Mala

ya



14 

MOFs architecture are newly emerging and fast-growing field due to their intriguing 

benefits over the existing porous materials, such as zeolite and activated carbons.  MOFs 

usually show interested properties like higher surface areas (due to the high porosities), 

reasonable higher thermal and mechanical stabilities, structural robustness, flexibilities, 

potential activities, which are intrinsic advantages for a wider range of applications in 

different fields rather than other types of general polymers or porous materials. In 

addition, MOFs offer a shape and size selectivity which required for both catalysis and 

separation applications [69, 106].  

MOFs are classified as crystalline microporous materials [107], and the pores in most 

MOFs still stable during elimination of the guest molecules, i.e. solvents and other 

molecules could be refilled [108, 109]. Therefore, they are ideal for several volume-based 

related applications, such as adsorption-based gas separations [110], storage/capture of 

gases and/or fuel, such as carbon dioxide, methane and hydrogen [111, 112], gas/ liquid 

storage [113], separation/ purification [114, 115], super capacitors [116], chemical 

catalysis [117], catalysis [118, 119], sensing [120], luminescence [121], ion- exchange 

[122], cathode materials in lithium-ion batteries (LiBs) as lithium storage, [123], water 

desalination and purification, dehumidification and adsorption cooling technologies 

[105]. As well as, encapsulation, delivery and release of drugs [124- 127].  

Besides the vital features of MOFs like large surface areas, tunable pore sizes, and 

permanent porosity, some flexible MOFs show a unique gate-opening effect behavior i.e. 

breathing phenomena. In which, MOF undergoes expansion and contraction that cannot 

observed in rigid frameworks like Zeolite [128]. Such breathability occurs by changing 

of mechanical pressure/temperature/ adsorption of the guest (usually the solvent or any 

external stimuli), which filled the voids [129]. This structural transformation depends on 
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a number of factors, such as the nature of organic linkers, the nature of SBUs, the nature 

of solvent molecules and on the pore geometry  [130].  

2.5 Features of MOFs 

MOFs can offer some unusual features, such as conductivity [131, 132], high surface 

areas and large pore size for guest adsorption [133], luminescence [134, 135], structure 

transformation [130]. 

2.5.1 The Proton Conductivity phenomenon and its mechanism 

Physically, the liquid properties of water come from the presence of intersecting lines 

of hydrogen bond between its molecules, which make it a precious protons conductor 

[136]. The H-b forms as a dynamic attraction between two neighboring molecules 

involving one oxygen atom located between two hydrogen atoms called protiums in the 

water lattice [137]. Typically, the proton conductor is a solid electrolyte, in which the 

protium (H+ cation) is the primary charge carrier. The protium is a nucleus which has 

only one proton inside and no electron shell around it, therefore, it strongly interacts with 

the electron density of its environment [138]. 

 

 

Figure 2.4: The electronic structure of water molecule; a and b: the hydrogen 
bonds formation, c: the protium atom. 

 

 

a b c 
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In 1804 A.D, the conduction mechanism was studied first by Theodore von Grotthuss 

who suggested a “hop-turn” steps for this mechanism incidence by H+ transport across a 

tunnel between water molecules (H2O) and hydronium ions (H3O+), which involved a 

covalent bond exchange between H and O with a hydrogen bond [139].  

Usually, at the end of hydrogen bond network, a proton bounces to an adjacent group, 

as shown in Scheme 2.2 (a); subsequently the hydrogen bond power authorizes this H+ to 

substitute with another H+ that binds at the other/opposite end of the network, Scheme 

2.2 (a). This mechanism is named hop phase, then an alternation between water molecules 

in Scheme 2.2 (b) repeats structure (a) again, which is called turn phase [140]:  

 

Scheme 2.2: The proton conduction which occurs through a "hop-turn" 
mechanism, I is the hop phase; and II is the turn phase. 
 

 

The proton conductivity happens by the proton selective channels which conducts 

protons as H+ rather than the form H3O+, even though the protons almost subsist in the 

solution as H3O+ (vehicles of hydronium ions) [141]. A proton diffuses together via a 

vehicle to a water molecule by tunneling in a hydrogen bond in the aqueous solution.  The 

water molecule subsequently suffers reorientation in order to be able to take up the next 

proton. A counter diffusion of the un-protonated vehicles (e.g., H2O) allows a net 

transport of protons, and the “vehicles” show pronounced local dynamics of protiums 

while they reside in their sites, see Figure 2.5a, then protons being transferred within 

hydrogen bonds from one “vehicle” to another, see Figure 2.5b [142]. 
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Figure 2.5: Model of proton conduction. a) Vehicle Mechanism: the movement takes 
place with the aid of a moving “vehicle”, e.g. H2O or NH3, as complex ions (H3O+ or 
NH4+); b) Grotthuss Mechanism; the protons are passed along the hydrogen bonds 
[142]. 

 

The concept of the Vehicle Mechanism leads to new applications in many 

technological innovations of solid proton conductors, such as hydrogen permeation 

membranes, membranes for water electrolyzes [143], hydrogen and humidity sensors 

[144] and for high efficiency electrochemical energy conversion in fuel cell [145]. 

The protons move inside the pores of MOFs in an infinite reticular pathway of H-bs 

caused by the presence of water molecules/ or any source of the deprotonated hydrogen 

(protium /H+) like the quaternary cations (NH4+) or the Imidazole molecule (Im) in the 

pores cavity of the MOF [146]. Figure 2.6 shows the chain of hydrogen bonds in its 

ground state (a) then a proton enters from one side of the chain (b), and the hydrogen 

bonds re-arrange such that a proton on the other side of the chain is released (c), the water 

molecules have to turn (d) in order for changing back the chain to its ground state (e). 

 

 

 

a 

b 
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Figure 2.6: A schematic illustration of proton transferring through a hydrogen-
bonded water chain via Grotthuss mechanism. 

 

 

Considering the key role assumed by the proton conductivity in the photosynthesis 

process in green plants and electricity generation of the hydrogen fuel cells, which are 

promising future source of energy, the lanthanide contraction was employed by George 

K. H. Shimizu group (2017) to vary the unit cell dimensions systematically and tune the 

proton conducting pathways of crystalline MOFs series consisting of seven isomorphous 

members in PCMOF-5 family, [Ln(H5L)(H2O)n](H2O) (L=1,2,4,5-tetrakis 

(phosphonomethyl) benzene, Ln =La, Ce, Pr, Nd, Sm, Eu, Gd) [147].  

PCMOF-5 family contains 1D channels filled with water and terminated with free 

hydrogen phosphonate groups that gives a low activation energy pathway for proton 

transfer. The presence of water molecules and free acid groups positions in the 

frameworks have been confirmed by single crystallographic studies and the differences 

in particle size among the different members of the Ln series affirmed by SEM technique. 

The proton conductivities for La and Pr PC-MOFs were roughly an order of magnitude 

higher than other members of this series (10-3 S cm-1 vs. 10-4 S cm-1) and the 
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measurements of proton conductivity have assured that the high conducting La and Pr 

MOFs have the largest particle sizes. 

Recently, there is an exciting achievement in proton conductive materials with coming 

of MOFs as promising materials, although the exact mechanism in proton transfer in 

MOFs remains challenging and not well understood. Wei and coworkers (2017) report a 

successful solvothermal synthesis of proton conducting MOF (Me2NH2)[Eu(L)] (H4L = 

5-(phosphono methyl) isophthalic acid). This MOF composed of a layered anionic 

framework and counter cations embedded in the interlayer interact with phosphonate 

group to form strong hydrogen bonding chains, parallel to c-direction, Figure 2.7 (a, b). 

At 150 oC, the single crystal of this material was found to have anhydrous conductivity 

of 1.25 x 10-3 S.cm-1 and a water mediated proton conductivity of 3.76 x 10-3 S cm-1 at 

100 oC and 98 % relative humidity RH using a compacted pellet. Herein, authors observed 

directly the proton dynamics involved vibration and transferred with the N–H···O chains 

of the material using controlled experiments and an isotropic conductivity measurements 

using single crystal and pellets [148]. 

 

Figure 2.7: a) strongly hydrogen-bonded (N-H…O) chain assembled alternately by 
(Me2NH2)+ cations and uncoordinated O7 atoms of phosphonate groups of anionic 
host framework, b) sandwich-type structure along the c-axis with the counter 
cations (Me2NH2)+ periodically aligned in the interlayers.  

(a) 
(b) 
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Depending on imidazole molecules ability to be incorporated frequently into porous 

materials to improve their proton conductivity, Zhang and co-workers have designed 

Fe−based MOF exhibited a high proton conductivity. The Im@Fe−MOF with physically 

adsorbed imidazole has been prepared by encapsulating the free imidazole molecules into 

the pores of the parent Fe−MOF, where Im−Fe−MOF formed in which imidazole co-

ligand molecules coordinated to the metal nodes of the framework. The proton 

conductivity of Im−Fe−MOF (1.21 × 10−2 S cm−1) was two orders of magnitude greater 

than those of Fe−MOF and Im@Fe−MOF at room temperature. The density functional 

theory calculations suggested that coordinated imidazole molecules in Im−Fe−MOF can 

provide greater proton concentrations for the proton transportation than that of the 

coordinated water molecules in Fe−MOF alone, and the immobilized imidazole 

molecules by coordination bonds in the framework were more prone to form 

proton−conduction pathways and thus performed better and steadier in water-mediated 

proton conduction [149]. 

 

Figure 2.8: The variation in Imidazole incorporation inside Fe-MOF, Im-Fe-MOF, 
and Im-Fe-MOF hosts (left to right) respectively [149]. 
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2.5.2 The porosity and high surface areas  

2.5.2.1 The role of MOFs in Gases adsorption and separation 

Considering the rapid increase of carbon dioxide (CO2) emissions, especially from 

power plants, extensive attention for low cost and effective materials that can efficiently 

eliminate the post combustion CO2, is of increasing. The importance of CO2 storage, 

subsequent fixing and capture, for a clean energy, is of a great interest to scientists and 

engineers due to its economic importance. MOFs has shown to have a very promising 

potential for CO2 capture and conversion; largely, unsaturated open metal and abundant 

N, O-rich Lewis basic sites in the network are prerequisite for proper and effective 

interaction with CO2 that can pasture capturing of CO2 molecules in the pores [150]. 

Molecular simulations can guide experimental studies by providing insights into MOFs 

separation mechanisms of gas adsorption. A lot of molecular simulation studies have 

tested MOFs for adsorption-based CO2 separation that enable to identify MOFs. This was 

one of the most promising molecular properties for CO2 separation to extensive 

experimental efforts [111].  

Considerable effort has been exerted to improve the adsorption capacity and to 

incorporate different types of high-density open metal sites and Lewis basic sites. Liang 

and coworkers have recently, successfully synthesized a Cu-based MOF (FJI-H14) 

featuring high water stability, high density active sites with rare acid/base and high 

volumetric uptake of CO2 (171 cm3g-1) at 298 K and 1 atm. In addition, it was easily being 

synthesized in a large quantity.  FJI-H14 can efficiently converts CO2 from the post 

combustion flue gas to the corresponding cyclic carbonates in ambient condition and 

remarkable selectivity of CO2 over N2.  These activities were attributed to the synergetic 

effect of multiple high density active sites [151]. 
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In a related study, two MOFs were synthesized that showed very promising thermal 

and solvent stability, high CO2 uptake and excellent emission property [152]. They were 

basically Mg-based MOFs isomers with a molecular formula [Mg2(HCO2)2(NH2-

BDC)(DMF)2]n (NH2-BDC = 2-amino-1,4-benzene dicarboxylate) constructed using a 6 

connected metalla-crown SBUs, which resulted in 2D and 3D frameworks, due to 

different extended orientation of the SBUs. 

A solvothermal reaction between Pb2+ and H3L [(L=2-(pyridine-2-yl)-1H-imidazole-

4,5-dicarboxylic acid] have generated three new 3D PCPs, [Pb2(L)2]n; 1, [Pb3(L)3]n; 2 and 

[Pb(L)]·H2O; 3 see figure 2.9. The three MOFs offered numerous architectures 

influencing by utilizing various solvents; a multi-nodal 3,3,4,4-connected net for 1 and 

binodal 3,4- connected topological net with helices for 2, while a uni-nodal 3-connected 

net had displayed by 3, which possessed a micro pore that decorated with pyridyl and 

uncoordinated carboxylate oxygen atoms from the ligand.  MOF 3 exhibited small size 

and highly polar pores, which attracted CO2 strongly and led to a high sorption heat and 

significant selectivity for CO2 over N2 and H2 at 293 K [133]. 

 

 

 

 

 

 

Figure 2.9: A multi-nodal 3,3,4,4-connected net (1), helices of binodal 3,4- connected 
net (2), and uni-nodal 3-connected net (3).  
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Recently, a series of highly porous MOFs have been built successfully using multi-

functional linkers. For instance, a new MOF with NbO topology; Cu2L (ZJU-32); H4L = 

5′-((3,5-dicarboxyphenyl) ethynyl)- [1,1′:3′,1′′-terphenyl]-4,4′′-dicarboxylic acid) was 

solvothermally synthesized using a tetra topic ligand. ZJU-32, see Figure 2.10, was found 

to exhibit a BET surface area of 3831 m2 g-1 and pore volume of 1.482 cm3 g-1 made it a 

very suitable material for CO2 capture and CH4 storage at the room temperature [153].   

 

 

 

 

 

 

Figure 2.10: Gas adsorption isotherms of ZJU-32 for (a) N2 at 77 K, (b) high-
pressure methane at different temps (c) high-pressure CO2 at different 
temperatures.  

 

Walton and co-workers vote the IRMOF-1, Cu-BTC, IRMOF-3, and Zn2[bdc]2[dabco] 

MOFs for comparison to understand the reciprocation of the factors (open metal sites, 

electrostatics, pore size, ligand functionalization, and heat of adsorption), which 

participate in  CO2, CO, and N2 gases adsorption by MOFs using the atomistic grand 

canonical Monte Carlo simulations [154]. Discriminatory CO2 was adsorbed over CO and 

N2 in all these MOFs. CO2 selectivity increased with increasing CO2 concentration in the 

gas mixtures at a total pressure above 5 bar. The armature of the smaller pore size of 

MOFs, which included open metal sites or functionalized groups, can lead to greater 

reinforcement of these adsorption separation systems.  

a b c 
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Two isomorphic MOFs, [Co2(4-Ptz)2(BDC)(DMA)]n; 1 and [Co2(4-Ptz)2(2-NH2-

BDC)(DMA)]n; 2 [4-Ptz = 5-(4-Pyridyl)tetrazole, H2BDC = Terephthalic Acid, DMA = 

N,N-dimethyl acetamide and 2-NH2-H2BDC = 2-Aminoterephthalic Acid,] have been 

successfully erected through solvothermal reactions [155]. The crystallographic data 

confirmed that a tetrazole ring of 4-Ptz ligand which interacted with oxygen atom of 

DMA and two bridged neighboring Co2+ has resulted in a binuclear Co2+ cluster for both 

1 and 2. Higher adsorption quantities for 2 (33.8 cm3/g) than for 1 (26.2 cm3/g) has proven 

by measuring of CO2 adsorption isotherms at 273 K, which was assigned due to the 

presence of NH2- functional group in 2.  

It is necessary to remove hydrogen sulfide (H2S) in various industry applications, like 

syngas purification to avoid its toxicity and corrosion. The design of adsorbents which 

can bear the corrosion of H2S and control the competitive adsorption from carbon dioxide 

(CO2) is still a challenge.  To achieve a steady adsorption mechanism and keep stability 

of MOFs during H2S separation process, 11 MOFs based materials were utilized to 

capture H2S from CO2. Molecular dynamic studies, dynamic separation experiments and 

density functional theory were employed to inspect selective H2S/CO2 separation. Results 

showed that most of these MOFs displayed one-off high capacity and selectivity of H2S, 

when disposable chemical reaction occurred on HKUST-1, Cu-BDC(ted), Zn-MOF-74, 

MIL-100(Fe) gel and MOF-5. A complete reversible physical adsorption was definite on 

Mg-MOF-74, MIL-101(Cr), UiO-66, ZIF-8 and Ce-BTC, and an incomplete reversible 

adsorption happened on UiO-66(NH2). 

2.5.2.2 The role of MOFs as a Catalyst 

Two new porous coordination polymers based on cobalt, 

[Co6(oba)5(OH)2(H2O)2(DMF)4.5DMF] (TMU-10) and [Co3(oba)3(O)(Py)0.5]n. 

4DMF.Py  (TMU-12) (H2oba=4,4ˈ-oxybisbenzoic acid), have been solvothermally 

synthesized using a nonlinear dicarboxylate linker [156]. Under mild reaction conditions 
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(at atmospheric pressure and below 100°C), both MOFs exhibited good catalytic activity 

and reusability in oxidative desulfurization (ODS: an efficacious process that operates at 

mild reaction conditions and offers high sulfur removal efficiency). FTIR and mass 

analysis confirmed that the main product of dibenzothiophene (DBT) oxidation, which 

was prepared by dissolving DBT in n-hexane, was its corresponding sulfone that adsorbed 

on the surfaces of the catalysts, where the resulted activation energy was 13.4 kJmol-1. 

The architecture design of a MOF that can feature a high stability and reusable 

heterogeneous catalysts without losing performance remains a challenge. However, by 

adopting a modulated synthetic strategy, it was possible to build two new robust 3D 

porous metal-cyclam-based zirconium MOFs, VPI-100 (Cu) and VPI-100 (Ni) by Zhu et 

al (2018). These two frameworks are featuring eight-connected clusters of Zr6 that 

connect to metallocyclams organic linkers. This linker has accessible axial coordination 

sites in the cyclam core which enabled the framework to interact with the guest molecules. 

Both MOFs displayed a vital chemical stability in numerous aqueous and organic solvents 

with different pH environments and offer a high CO2 uptake capacity [157]. 

 

Figure 2.11: A porous metal- cyclam- based MOF that offer the highest catalytic 
activity values for the chemical fixation of CO2 with epoxides [157]. 
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2.5.2.3 The role of MOFs in removing the environment pollutants 

According to World Health Organization, about one billion people do not have access 

to clean drinking water, a concern expected to be high with the climate change. Excessive 

use of heavy metals and higher energy by industrial processes have escalated the chances 

of human exposure to these pollutants [158]. Currently, there are various sources of 

exposure to these heavy metals [159]. For instance, lead (Pb) in particular has been an 

ingredient in many industries, such as ceramic glaze, paints, toys, jewelry and pipes [60,  

61]. An increase in heavy metal pollution was also reported through improper industrial 

effluent disposals from industries, such as fertilizers, pesticides, tannery, dye and paint 

coatings, drugs, mining fossil fuel processes, electronics and battery manufacturing [160]. 

Heavy metals such as mercury, lead, cadmium, cobalt, copper, chromium, zinc, … etc, 

exhibit toxic effect and have relatively high density and of environmental concern due to 

their detrimental effects. Generally, these metals are non-biodegradable and need to be 

efficiently remove from the environment especially the water [161]. Scientist deployed 

considerable efforts to hit this problem using various methods, amongst which, adsorption 

technique was the most extensively used due to its low cost and easy to handle [162].  

Recently, Zhong and coworkers (2018) had developed a tap with a broad- spetrum for 

heavy metal capture by slotting the EDTA (ethylenediaminetetraacetic acid) inside a 

robust MOF structure. This trap is very effective, that it can captured various kinds of 

heavy metal ions, with high efficiency >99%, including the soft, hard and also the 

borderline Lewis metal ions via the breakthrough or the adsorption processes. This trap 

can be a platform candidate for removal and/or separation of versatile heavy metals or for 

catalysis applications [163].  
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Figure 2.12: Schematic illustration of the BS-HMT concept [163].  

 

Wendy Queen's group (2018) used a water stable MOF built with biologically and 

environmentally friendly materials by pining the dopamine on the internal surface of Fe-

BTC MOF. The dopamine can spontaneously polymerize to polydopamine through the 

pores by Fe3+ open site of this MOF. It was demonstrated that the material can remove 

heavy metals from water in seconds and render it safe for drinking. It displayed an 

efficient removal of heavy metals compared to other materials to date, where it removed 

mercury more than 1.6 times its weight and lead 40 percent of its weight [164]. 

Dyes and toxic materials removal by adsorption technologies, such as removal of 

iodine or aniline from contaminated water, is one of the competitive methods in industry 

because of simplicity and high efficiency of this operation [165].  The hydration and 

dehydration of new porous 3D CPs based on lead, observed a reversible crystal to crystal 

transformation from [Pb(4-bpdh)(NO3)2]n (HMTI-2) to [Pb(4-bpdh)(NO3)2(H2O)]n 

(HMTI-1). These MOFs, which have the same crystalline lattice, was synthesized by 

hydration and dehydration reaction via combining Pb2+ ions with 2,5-bis(4-pyridyl)-3,4-

diaza-2,4-hexadiene (4-bpdh) as a linker. Morsali’s group (2012) were successfully 
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loaded HMTI-2 and HMTI-1 with I2 and determined I2 delivery by UV-vis spectroscopy. 

They observed from the adsorption and desorption rate of iodide in these two MOFs that 

the presence of H2O molecules had an effective role in increasing of iodine adsorption in 

HMTI-1 [166].  

An increasing concern on the release of toxic chemicals from different manufacturing 

industries such as rubber, dye, paint, pesticides and many more. Such chemicals like 

aniline, though very important intermediate and widely used in these industries, its 

discharge into the environment, even at low concentration can be very dangerous may 

result into health related issues such as anemia, liver damage or skin cancer [167]. It is 

imperative to device efficient and effective technique that can detect and monitor aniline 

directly using naked eyes. This may help in avoiding the adverse effects on the 

environment and therefore human health. In light of this, MOFs were considered as a 

preferred candidate due to their high visible emission and long emission lifetimes. Vast 

number of MOFs were exploited for various application for the detection, capturing and 

sequestration of various environmental pollutants, however, MOFs based sensors for 

aniline detection are still very rare [168]. 

In a recent report, two lanthanide based isostructural MOFs were shown to exhibit and 

outstanding stability in solvents and efficient aniline sensing (Eu-based MOF), based on 

the analysis of the photoluminescence emissions. This MOF can be reused up to four 

times making it very promising detector for aniline. The two isostructural MOFs 

[(Ln(BTB)(H2O)]n (Ln = Eu and Dy) were constructed using try topic ligand 1,3,5-

benzenetribenzoic acid (H3BTB). Following the characterization, it reveals that, two 

lanthanide ions are bridged from four carboxylic group oxygens of different BTB ligands 

forming a binuclear SBUs. The SBUs extends in one dimensional chain via two bridging 

carboxylic groups that are subsequently linked by BTB3- to generate the three periodic 
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networks [165]. Furthermore, the Dy-based MOF show excellent slow magnetic 

relaxation behaviors with the energy barrier of 9.36 K. 

Iron, cobalt and copper as central metal ions in MOFs based on 1,2,4,5-tetrabenzene 

carboxylic acid as a linker, was successfully synthesized by Shooto and coworkers (2015 

& 2017). The new MOFs, which offered the creating of charges and functionalities on 

MOFs surface for adsorption, have been characterized by FTIR, TGA, x-ray diffraction 

and SEM/EDX techniques. The thermodynamic and kinetic studies, equilibrium and 

isotherm batch adsorption experiments were carried out to determine concentration, 

temperature and time effects. These MOFs have been employed as adsorbent for lead ions 

removal from aqueous solution. Results showed a remarkable fast adsorption affinity of 

Pb2+ by all MOFs, in which, Cu-MOF was more effective adsorbent than Co-MOF [169, 

170].  

In another study on dye adsorption properties, three new cobalt based coordination 

complexes i.e. {[Co(tib)2].2HNO3.2H2O}n, {[Co(tib)(4,4’-dpt)(H2O)2].5H2O}n, and 

{[Co2(tib)2(1,3-dpt)2].H2O}n (tib = 1,3,5-tri(1-imidazolyl)-benzene, 4,4’-dpt = p-

terphenyl -4,4’-dicarboxylate and 1,3-dpb = 1,3-di(4-carboxyl-phenyl)benzene), 

constructed using hydro/solvothermal technique. The first structure featured a rare two-

dimensional kgd network which was further connected by hydrogen bonds and C-H---O 

bonds to form 3D network. While the second structure featured hcb 2D structure, which 

was further linked by H-bs to assemble into a 3D supramolecular network. However, the 

third structure showed rather a novel 3 nodal (3,4,6)-connected 3D network. The study 

on dyes (GR and MGO) adsorption capability showed that the first and second 

frameworks were efficiently and selectively adsorbed GR and MGO dyes while the third 

framework was selectively adsorbed MGO  [171].  
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2.5.2.4 The role of MOFs in drug delivery  

The highly unprecedented porosity feature, surface modification, some unique 

chemical and physical characteristics, chemical composition, biological stability, high 

drug loading capacity, encapsulation efficiency, biodegradability, toxicological 

compatibility, and versatile functionality of many MOFs make them potential as a 

promising platform in medical and biomedical applications, such as drug storage, 

delivery, release and encapsulation, nitric oxide gas storage and delivery, imaging, and 

sensing [172].  

The MOFs might also consist of biologically active moieties in their framework 

structure which can be released via distraction/or degradation of the MOF framework, 

during therapeutic process. Therefore, Horcajada and coworkers had overviewed the drug 

administration routes and the controlled drug carriers in pharmaceutical technology. They 

had also introduced the formulation, synthesis, stability, toxicity and bio-applications of 

MOFs, then analyzed the efficiency of MOFs, in vitro and in vivo [173], Scheme 2.3.  

 

 

 

 

 

 

 

Scheme 2.3: The MOF manufacturing process for bio-applications. 
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Morris’ group described how triggered release methods in Co, Ni and Cu-based MOFs 

can be employed to deliver relevant amounts of NO (as a therapeutic agent) and they 

displayed the biological activity potential applications in several different areas, such as 

anti-thrombosis, dermatology and wound healing, anti-bacterial, and vasodilation [174]. 

Considering the non-toxicity of most MOFs and their excellent properties in release and 

encapsulation drugs efficiencies, they have recently been introduced in biomedicine 

applications [126].  

 

Scheme 2.4: (a) General scheme for using of MOFs as drug delivery vehicles. (b) In 
vivo conditions involved in the slow releasing of drugs [172]. 

 

2.5.3 The photoluminescence phenomenon 

Luminescence, defined as a soft, glowing light that does not derive energy from the 

temperature of the emitting body or as emission of light by a substance not resulting from 

heat [175]. It is a form of cold-body radiation caused by jumping of material's electrons 

from their origin level (ground state) to a higher energy level (excited state) when 

absorbing energy from some sources. The excited electrons are dropped down from the 

excited state to the ground state and emitted an energy they had previously absorbed as a 

light [176].  
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Figure 2.13: The possible physical process of absorption of a photon by a molecule. 
In the Singlet state: All electrons in the molecule are spin-paired, while in the Triplet 
state: One set of electron spins is unpaired. 

 

Luminescence can be caused by photoexcitation process, such as chemical reactions, 

electrical energy, subatomic motions or stress on a crystal, which all are ultimately caused 

by spontaneous emission. Luminescence is divided into two categories, fluorescence and 

phosphorescence. The fluorescence is a rapid process that defined as luminescence, which 

stops within 10 nanoseconds after an energy source has been removed, while the 

phosphorescence is a slow process that defined as luminescence, which continues for 

more than nanoseconds after an energy source has been removed [7, 28]. 

2.5.3.1 The photoluminescence phenomenon in MOFs 

Luminescence is a common property in many MOFs because of the multifaceted 

nature of their structure, i.e. almost the MOFs structures incorporate luminescent 

lanthanide ions or contain aromatic groups of a conjugated linker that is readily fluoresce 

(chromophoric) [31, 177]. The organic chromophoric ligands usually absorb the light and 

excited, then transfer this excitation energy to the metal ions in a process called Ligand 

to Metal Charge Transfer (LMCT); in which, the electronic transition in the excitation 
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state in a metal complex are populating the electronic state, where electron transfer from 

a ligand to metal center has occurred. In contrast, there is a Metal to Ligand Charge 

Transfer (MLCT) process (whereas, the electronic transition in a metal complex are 

populating an electronic state in which considerable electron transfer from a metal to 

ligand has occurred) [178]. 

 

 

 

 

 

Figure 2.14: a) LMCT involving an octahedral d6 complex, b) MLCT involving an 
octahedral d5 complex. 

 

Two photo luminescent MOFs based on Lead; 3D anhydrous MOF [Pb(fum)]n (1)  and 

3D hydrous MOF {[Pb2(fum)2(H2O)4]·2H2O}n (2); (fum= fumarate), were synthesized 

by the reaction of the fum anions with the Pb2+ cations in the presence of pyrazine and 

pyrazole, respectively.  

The fum ligands in 1 arranged to offer six- coordinated bonds around the lead atom 

and displays a hemidirected geometry, while the fum ligands' arrangement in 2 exhibits a 

coordination gap around the atom of metal center which occupied by the stereoactive lone 

pair electrons on Pb2+ and displays eight-coordinated bonds, see Figure 2.15. These MOFs 

were characterized by solid-state photoluminescence spectra which exhibit a maximum 

emission photoluminescence that located in UV region [179]. 

a b 
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Figure 2.15: a) The octa-coordination environment of Pb(II) by fumarate ligands in 
2, b) the polyhedral representation of PbO8 in 2. c) the Hexa-coordination 
environment of Pb(II) by fumarate ligands in 1, d) the polyhedral representation of 
PbO6 in 1. 

 

A self-assembly of 4,4’-biphenyl dicarboxylic acid (4,4’-H2BPDC) and Pb(NO3)2 

under solvothermal reaction has produced a new 3D pillared MOF, which has been 

characterized by IR spectroscopy, element analysis, TGA and SCXRD. The SCXRD 

results showed that the Pb2+ connected to six oxygen atoms from carboxylate groups in 

the ligand to obtain metal-carboxylate layers connected by (4,4’-BPDC) linkers that act 

as pillars to offer a novel 3D pillared framework and displayed a rare µ6 coordination 

mode. This 3D pillared MOF has a high thermally stable structure and showed blue 

photoluminescence at room temperature in the solid state [180]. 

Terephthalic acid (TA) and nitro terephthalic acid (NO2TA) have been reacted with 

Bismuth nitrate hydrothermally to produce two new 3D bismuth-based CPs consist of 

Bi2O2 layers and Bi4O3 chains, respectively. The bridge ligand (TA) has linked Bi2O2 

layers to form Bi2O2(TA), 1, which showed red-shifted photoluminescence comparing 

with that of (TA). Whilst, (NO2TA) bridge ligand has connected Bi4O3 chains to offer a 

novel compound Bi4O3(NO2TA)3(H2O).(H2O)0.68, 2, which quenched the 

photoluminescence [38], Figure 2.16. 

(a) 
(b) 
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Figure 2.16: The Bi2O2 layers and Bi4O3 chains that formed by changing the bridge 
liker [38]. 

 

A rare Bi-fluorophore luminescent MOF (LMOF-401) has been synthesized by 

interaction between 9-coordinated Bi3+ cations and H2tcbpe (H2tcbpe=4’,4’’,4’’’,4’’’’- 

ethene- 1,1’,2,2’-tetrayl) tetrakis (1,1’-biphenyl-4-carboxylic acid) linker which had a 

strong yellow aggregation induced emission (AIE). LMOF-401, featuring strong blue 

emission that converted to green then to yellow upon DMF solvent molecules removal 

within the structure. The activated MOF promises to be a candidate as phosphor coating 

in phosphor converted white light emitting diodes (PC-WLEDs) because it displays 

strong yellow emission with quantum yield (∼74%) under the blue light excitation [181].  

 

 

 

 

 

Figure 2.17: A Bi-fluorophore luminescent MOF [181]. 
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A novel 3D MOF which exhibited (Pb6O2) clusters as SBUs was prepared when Pb2+ 

cations as metal centre reacted with 4,4’-dicarboxy-2,2’-dimethoxy-1,1’-biphenyl (LH2) 

as a linker in a mixture of solvents H2O/EtOH (10:2) at pH 4 in the presence of triethyl 

amine and 2,2’-bipyridine. An emission and excitation properties observed with the 

luminescence spectra of this network (which was similar to the spectra of ligand) that can 

be attributed to the linker (LH2) only, but not to the metal. There was a little blue shifting 

of max in the MOF luminescence spectra (due to linker interaction with the cluster or 

with the polar organic EtOH solvent molecules) that in turn made this MOF be a 

promising candidate as a sensor for different organic solvents [182]. 

MOFs have also some scintillation properties which caused luminescence when 

excited by ionization radiations. In this example, a Zr and Hf-based MOFs M6(μ3-O)4(μ3-

OH)4(carboxylate)12 (M = Hf or Zr) using anthracene dicarboxylate linker to form the 

SBUs, which was found to have an excellent and effective X-ray antenna due to Zr and 

Hf large atomic number that served as an efficient to a visible light luminescence 

property. The mechanism depended on the absorption of x-ray photons by the SBUs and 

subsequently converted them to fast moving electrons by photo-electric effect. The 

generated electrons then excited multiple anthracene-based emitters in the MOF through 

inelastic scattering, leading to efficient generation of detectable photons in the visible 

spectrum. The MOF materials thus served as an efficient X-ray scintillators via 

synergistic X-ray absorption by the metal cluster SBUs and optical emission by the 

bridging ligands [183].  

Koppen and coworkers conducted a high throughput experiment by using triazine-

2,4,6-triyl-tribenzoic acid (H3TATB) and bismuth nitrate and investigated two Bi-based 

MOFs. Both structures were isolated by changing the solvent composition and the 

reaction time. The solvent mixture of water/DMF over 5 days formed the CAU-35 MOF; 
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[Bi2(O)(OH)(TATB)].H2O, Figure 2.18a. Whilst, the solvent mixture of methanol/DMF 

and shorter the time of synthesizing afforded the CAU-7-TATB MOF; 

[Bi(TATB)].DMF.6H2O, Figure 2.18b. On the other hand, using an amino functionalized 

H3TATB ligand, and cyclic anhydrides (phthalic and succinic anhydride), anhydrides 

(valeric and acetic anhydrides) and 1,3-propane sultone resulted a functionalized porous 

Bi-based MOF [Bi(TATB-NH2)].5H2O.0.5DMF via post synthetic modification. The 

conversion efficiency ranged between 33 % to 79 % REF [184]. 

 

Figure 2.18: a) The crystal structure of CAU-35, b) the crystal structure of CAU-7-
TATB. 

 

Casado’s group (2012) were successfully synthesized two new lead(II) butyrate 

compounds [Pb2(but)4(4,4′-bipy)(H2O)]n(1) and  [Pb2(but)4(bpe)(H2O)]n (2) using (4,4′-

bipy and bpe) as N bridging ligands [but = butyrate; 4,4′-bipy = 4,4′-bipyridine and bpe= 1,2-

bis(4-pyridyl)ethene]. Results showed various 3D structures from 2D lamellar for most of 

metal alkanoates and enhancing the properties of the synthesized composites [185]. The 

new compounds had characterized using UV-visible spectroscopy, differential scanning 

calorimetry, thermogravimetric analysis, steady-state fluorescence, lifetime measurements 

a 

b 
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and single crystal x-ray diffraction which confirmed that both MOFs showed a similar 3D 

(42638)-sra network in a monoclinic lattice (C2/c) with interesting photo-physical properties. 

Aggregation induced emission (AIE) involved a deliberate engineering and 

manipulation of fluorescence emission in materials. For example, a study was conducted 

using a hydroxyl functionalized ligand, the resulted MOFs featured AIE, where the 

emission can be tuned intentionally. This MOF can be turned “on” and “off” up on the 

removal or addition of 4,4'-bypyridine in the framework. Herein, the incorporating of this 

heterocyclic auxiliary ligand caused quenching of the emission (turn off), while its 

removal triggered the emission (turn on). The group workers revealed that by using the 

time-dependent DFT studies, the origin of the emission quenching was due to the 

occurrence of the excitation transference between AIE ligand and the conjugated 4,4'-

bypyridine ligand. This MOF was successfully applied as an “on”-“off” sensing probe for 

Al3+ detection in aqueous media. The sensing mechanism involved hydroxyl group played 

a vital role for selectively chelating Al3+ [186]. 

Main group, p-block based MOFs has also been successfully engineered and reported 

to have very interesting emissions for solid state lighting applications. The multi topic 

linker pyridine-2,5-dicarboxylic acid (Hpydc) has been employed to react hydrothermally 

with bismuth nitrate and/or lead nitrate to obtain a 2D (CP) based on bismuth 

Bi3(pydc)2(Hpydc)(H2O)2; 1 and 3D (CP) based on lead Pb(pydc)(H2O); 2, respectively. 

The structures of these CPs have been confirmed by SCXRD which assured that the 

bismuth-based polymers crystallized with P21/c space group and the Bi6O4 clusters in 1 

were connected by bridging ligands into 2D sheets. This offered a 3D supramolecular 

structure via hydrogen bonding along z-axis.  On the other hand, the lead-based polymer 

crystallized with P1 space group and a 1D chains of corner-sharing distorted face capped 

trigonal prisms of 2 were linked into 3D framework by (pydc) ligand. Both CPs displayed 
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a white photoluminescence that extended to display a wide spectral range comparing with 

the ligand spectra and attractive luminescence materials for solid state lighting 

applications [37]. 

 

 

 

Figure 2.19: The stereochemically active lone pair formation of the compounds, the 
arrow shows the approximate location of lone pair electrons. 

 

Wang and co-workers (2015) were synthesized a novel topology MOF based on 

bismuth ([Bi(BTC)(DMF)].DMF.(CH3OH)2,Bi-BTC) using a solvothermal reaction. 

Single crystal x-ray diffraction confirmed that Bi-BTC presented a novel 3D framework 

erected by {Bi2O14} SBUs which regularly assembled and connected to trimesic acid 

(H3BTC) and crystallized in P21/n space group to form two helix chains. The photo-

physical properties of Bi-BTC MOF have been studied and showed high activity of O2 

production as photo-catalysis [8].  

 

 

 

 

 

Figure 2.20: The Coordination Environment of (a) Bi3+ cations, b) polyhedral view 
of the centrosymmetric dimeric {Bi2O14} unit and the linked six BTC3- molecules.  

(b) (a) 
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The combination of Zn2+ ions and the 1,3,5- benzene tricarboxylic acid (H3BTC) under 

a solvothermal condition produced a new 3D trinodal (3,5,6)-c framework based on Zn 

with two different kinds of cluster nodes Zn3O and Zn4O, [Zn21(BTC)11(μ3-OH)3(μ4-

O)3(H2O)18].21EtOH (1). The SCXRD measurements confirmed that this MOF displayed 

a large octahedral cage, which resulted from a connection of nine Zn3O and nine of Zn4O 

nodes of SBUs with twenty- four triangular BTC linkers. The incorporation of Eu3+/Tb3+ 

cations produced a new derivative of 1 with 0.251% Eu3+ and 0.269% Tb3+, respectively. 

By changing the excitation wavelength from 308 to 315 nm it was possible to display a 

tunable luminescence from yellow to white and then to blue green. Besides, this MOF 

can consider as a selective luminescent sensor for Al3+ and Cu2+ cations. Moreover, an 

isomorphous Cu-based MOF, which offered a good adsorption capacity of  CO2 and N2 

gases can be produced from the metal ion exchange of this MOF with Cu2+ cation [101]. 

 

 

 

 

 

 

Figure 2.21: a) Zn3O SBU, b) Zn4O SBU, c) linking modes of BTC3− ligand, d) 
octahedral cage constructed by Zn3O and Zn4O cluster nodes and BTC3− linkers, 
e) octahedral cage by connecting Zn3O and Zn4O cluster nodes, f) Two octahedral 
cages are connected by sharing two edge-fused triangles, g) one octahedral cage 
surrounded by six identical cages. 
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2.5.4 Structure Transformation (breathing behavior) 

A subclass of MOFs undergoes a “breathing” phenomenon, which is a reversible 

flexing of the framework as a function of adsorbed guest. Besides the evident application 

of selective gas adsorption, breathing MOFs have also been utilized in applications such 

as chemical sensing and hazardous waste adsorption. Through gas adsorption/desorption 

processes, it became possible to synthesis many MOFs that can dynamically change in 

structure and offer identical changes in potential porosity that represent adsorption 

induced reversible structural transformations between large/wide-pore and small/narrow 

pore conformations in bistable frame systems. These MOFs have the ability to switch 

between both open and close (or wide and narrow) pore states upon gases and/or solvents 

adsorption that stimulates a design of multifunctional host materials.  This design 

combines the large surface areas with periodic and flexible frameworks in the gas storage 

for a renewable energy [187- 189].  

 

Figure 2.22: The breathing phenomena in some MOFs [129].  
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The design of flexible MOFs can be done by the judicious selection of organic linkers 

and/or the metal ions that can control the pores shape and sizes in a flexible manner. 

Barbour’s group (2018) have been designed a Zn(II)-MOF (1) which displayed special 

three-steps different breathing behaviors, Figure 2.23. Pressure-gradient differential 

scanning calorimetry (DSC), variable pressure PXRD and in situ single crystal x-ray 

diffraction (SCXRD) analyses were employed to explain these numerous porous forms 

of structure transferring using an environmental ethane gas cell pressure at the ambient 

temperature [190]. 

 

Figure 2.23: The three-step hysteretic breathing behavior under ethane gas 
pressure at ambient temperatures [190]. 

 

Most breathing MOFs which considered as an emerging class of soft porous crystals 

(SPCs), however, they have low surface area and/or low stability, unfortunately. Farha 

and co-workers (2015) were introduced a water-stable breathing MOF with a high surface 

area featuring ftw topology (NU-1105) [191]. The presence of fluorene units in FP arms 

of pyrene-tetracarboxylate (Py-FP) ligand offered significant potential properties, i.e. 

high surface area and played a key role in the promoting breathing behavior. Whereas, 
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Zr6-oxo clusters exhibited water stability. The closed pore (cp) ↔ open pore (op) 

transition of NU-1105 was tracked using in situ powder x-ray diffraction during propane 

sorption at ~3 bar pressure. Result affirmed that NU-1105 in (cp) mode at 1 bar has 

adsorbed less propane than in (op) mode, Figure 2.24. 

 

 

 

 

 

 

Figure 2.24: The open pore (op) & the closed pore (cp) modes in “Breathing” MOF 
(NU-1105) which display ftw topology. 

 

2.6 Introduction about the ligands that used in this study 

The various coordination modes of H2Pzdc ligand can be generated by the five donor 

atoms of this linker and ranged from bidentate chelating passion (a/c= 2: 1, 2), b=µ2: 

2, 2, tridentate (d/e/f= µ3: 1, 1, 2, g=µ3: 1, 1, 1), which represented in Scheme 

2.5, to multi-dentate chelating bridging passion (h= µ4: 1, 2, 2, 2, i/k=µ4: 1, 1, 2, 

2,  j=µ4: 1, 1, 1, 2, l/m=µ4: 1, 2, 2, 2, n=µ5: 1, 1, 1, 1, 2, o= µ5: 1, 2, 2, 

2, 2,), or bridging passion (p= µ7: 1, 1, 1, 1, 1, 1, 1) [192, 193], which 

represented in Scheme 2.6:  
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Scheme 2.5: 2,3-pyrazine dicarboxylic acid (H2pzdc) with 3 or 4 donor atoms that 
exhibit 7 different coordination modes [192, 193].  

 

 

 

 

 

 

 

 

 

 

 

 
 
Scheme 2.6: H2pzdc with 5 or 6 donor atoms that exhibit different 9 coordination 
modes. 
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Recently, a novel coordination mode of H2Pzdc, which is monodentate (1: 1) has 

been synthesized by Mutlu group [194]. These sixteen coordination modes (a-p) can form 

mono/dinuclear or polymeric materials with p, d-block and even f-block metals ions. 

H2Pzdc ligand, with or without co-ligand, is one of the most frequently used ligands to 

construct MOFs and/ or CPs, including catalytic properties of MOFs [195], photo 

luminescent CPs [196, 197], photonics applications of MOFs [197], MOFs hysteretic CO2 

adsorption [198], … etc.   

Conversely, H3BTC with its partially or fully deprotonated anions (H2BTC-, HBTC2- 

and BTC3-) exhibit multi donor sites that enable it to offer 3 to 6 donor atoms with 

different coordination modes, Scheme 2.7: 

 

 

 

 

 

 

Scheme 2.7: The coordination modes expected for Benzene 1,3,5-Tricarboxylic acid 
H3BTC [113]. 

 

H3BTC ligand, with or without co-ligand, is one of the most frequently used ligands 

to construct MOFs, including world-famous HKUST-1, Cu3(BTC)2(H2O)3 MOF. To date, 

HKUST-1 has been reported for catalytic [199], photocatalytic [200], enzyme 

encapsulation [201], and semiconducting applications [202].   

H2Pzdc has two carboxylate groups and H3BTC has three carboxylate groups that, 

each one could be coordinated to metal centers at least in one of the following modes, 

Scheme 2.8: 
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Scheme 2.8: The coordination modes expected for the carboxylate group [36]. 

 

Thus far, there are only five reports about Pb-based BTC, synthesized by solvo- or 

hydrothermally with four disclosed crystal structures and potential uses in luminescence 

applications [150, 176, 203- 205]. Our interests lie in discovering new bismuth and lead-

based MOF with exotic properties, using a less preferred, but a facile dissolution-

crystallization method. 

The researcher could conclude that; MOF is a subclass of (CPs) with special feature 

that they are always porous which both can consume as new classes of inorganic organic 

hybrid materials. MOF combines the rigidity of inorganic materials with the flexibility 

and tunability of organic matter to display 3D extended solid state structures, contain 

potential voids. It is built from organic ligand/ bridging linker “strut” that links/ connects 

two or more atoms (metal ions/ clusters) to form discrete metal-ligand cluster which 

generate a rigid existence with simple geometry named secondary building unit (SBU) 

that used as a template for architecture of MOF.  
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MOF exhibits interesting phenomena like; luminescence which is a spontaneous 

emission of light that a substance can emits and it is a form of cold-body radiation not 

resulting from heat, proton conductivity which occurs by the protons movement in an 

infinite network of hydrogen bonds caused by presence of water/any source of 

deprotonated hydrogen (H+) like imidazole (or any quaternary cation) in the pores of 

MOF, structural transformation/ gate-opening/ breathing, this breathability occurs by 

changing of mechanical pressure/ temperature or adsorption of guest / solvent or any 

external stimuli. 

MOF displays vital features and has many interesting properties/ features that offers 

potential activities, like; higher surface areas, higher thermal stability, structural 

robustness and diversity, tunable pore sizes and permanent porosity. Therefore, MOF can 

be used in various applications such as: gas/liquid purification, water desalination, 

dehumidification and adsorption cooling technologies, as super capacitors: 

storage/capture/ separation of gases/fuel, in catalysis: photo-catalysis, electro-catalysis 

and catalyst for production fine chemicals, as ion-exchanger, in sensing and cathode 

storage in lithium batteries. 

 

Univ
ers

iti 
Mala

ya



48 

CHAPTER 3: METHODOLOGY 

3.1 Materials  

Some of chemical used for synthesis were purchased commercially form Sigma 

Aldrich (St. Louis, USA) as analytical grade, others were commercially available at 

reagent grade and used as received without further purification. 

3.1.1 Chemicals and Reagents 

The inorganic materials: Bismuth(III) nitrate pentahydrate, Bi(NO3)3.5H2O ≥98%, 

Sigma-Aldrich; Lead(II) nitrate, Pb(NO3)2, ≥99%, Sigma-Aldrich; hydrochloric acid, 

HCl; sodium hydroxide, NaOH, 99%, EMSURE.  

The organic materials: 2,3-Pyrazine dicarboxylic acid (H2Pzdc), C6H4N2O4, 97%, 

Aldrich; Trimesic acid (benzene-1,3,5-tricarboxylic acid) (BTC), C6H3(CO2H)3, 95%, 

Aldrich; Imidazole, C3H4N2, ≥99%, Sigma-Aldrich; Imidazolium Iodide, C3H5IN2; 

Aniline (C6H5NH2), ≥99.5%, C6H7N; methyl red dye (azo compound), C15H15N3O2; 

methylene blue dye (methyl thioninium chloride), C16H18ClN3S. 

The solvents: 1,4-Dioxane, C4H8O2, ≥99.5%, EMSURE; Methanol (MeOH), CH3OH, 

≥99.8%, EMPARTA; Acetone (CH3COCH3), C3H6O; N,N-Dimethylformamide (DMF), 

C3H7NO, ≥99%, EMSURE;  Distilled water, H2O, Lab. grade; Ethyl acetate 

(CH3COOC2H5), C4H8O2. 

3.2 The instrumentations and measurement parameters 

Elemental analyses of the new MOFs were performed using Perkin Elmer precisely 

2400 series II CHNS/O elemental analyzer instrument and employing acetanilide as an 

internal standard and using EA 2400 Data Manager software (Version 1.0.0095). All 

measurements were taken under a constant flow of pure O2 gas (Chemistry department, 

Malaya University, Malaysia).  
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Thermo-Gravimetric analysis (TGA) which displays the mass loss data with jumping 

in temperature every 5 minutes (the heating rate), was conducted under nitrogen 

atmosphere in the range of room temperature (RT) to 900C using Perkin Elmer TGA 6 

Thermo-gravimetric and Perkin Elmer SII Pyris Diamond and TG/DTA Thermo-

gravimetric /Differential Thermal analyzers (Chemistry department, Malaya University, 

Malaysia).  

The photoluminescence characterizations were measured using photoluminescence 

spectroscopy (PL) FLS920 Edinburgh instrument (CRIM-INS, University Kebangsaan 

Malaysia), then the raw data were plotted on Origin Lab software. 

Solid state ultraviolet-visible (SSUV-Vis) measurements for these new compounds 

were conducted using UV-Vis-NIR Lambda 950/ Perkin Elmer spectrophotometer 

(CRIM-INS, University Kebangsaan Malaysia), then the raw data were plotted on Origin 

software. While the solution ultraviolet-visible (UV-Vis) absorption spectroscopy 

analyses were performed on UV-Vis spectrophotometer UV-2600 SHIMADZU and UV 

Probe software were used to draw the pattern chart from 200 to 800 nm for dyes 

adsorption measurements (Department of Chemistry, University of Malaya, Malaysia), 

then the raw data were plotted on Origin Lab software. 

Single crystal X-ray diffraction (SC-XRD) data for the new MOFs (1, 13, 15, 18) was 

collected using Oxford Supernova Dual Wavelength BURKER diffractometer (Mo K = 

0.7107 Å). High quality, fractured, optically clear crystal was selected under a polarizing 

microscope and mounted on a tip of a thin glass fiber using an epoxy, then this fiber is 

attached to a brass mounting pin and the pin was inserted then into goniometer head which 

then affixed to a diffractometer. Data processing and absorption correction was performed 

by multi-scan method using CrysAlis PRO, with empirical absorption correction using 

spherical harmonics. X-ray intensity data from colorless crystals of all synthesized 
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compounds were measured between 203(2) to 296(2) K using a Bruker SMART APEX 

diffractometer ((Mo K,= 0.7107 Å). Direct methods structure solution, difference 

Fourier calculations and full-matrix least-squares refinement against F2 were performed 

with SHELXT (Department of Chemistry, Chung-Ang University, Seoul, South Korea). 

 

 

 

 

 

Figure 3.1: Huber model 1004 goniometer head for SCXRD [206]. 

 

The crystallinity and the purity of the new compounds were measured by powder X-

ray diffraction technique (PXRD) using PANalytical, X’Pert Pro Powder diffractometer 

with primary monochromatic high intensity Cu-K1 (=1.5406 Å), K2 (=1.54443 Å) 

and K (=1.39225 Å) radiation. Ground mixtures of polycrystalline powders and/or 

single crystals of the samples were used to collect PXRD patterns using a PanAnalytical 

X'Pert Pro powder Diffractometer (Cu K radiation = 1.5418 Å) over the scanning range 

of (5-70) ° and step size (2) = 0.026  for 30 minutes scan rate with a scan speed of 0.25 

°/min. (Department of Chemistry, University of Malaya, Malaysia). These patterns then 

compared to the simulated diffraction patterns using the respective single crystal data and 

High Score plus software, after that the raw data were plotted on Origin Lab software.  

Enlarged image of the crystal 
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Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) 

was employed to collect the infrared spectra by using Perkin Elmer Spectrum 400 

FTIR/FT-FIR spectrometer and Spectrum software were used to draw the pattern chart 

(Department of Chemistry, University of Malaya, Malaysia), then the raw data were 

plotted on Origin Lab software. 

Surface morphology and elemental percentage were determined by Field Emission 

Scanning Electron Microscope coupled with Energy Dispersive X-Ray Spectroscopy 

Analysis FESEM-EDX using Hitachi SU8220 machine (Department of Chemistry, 

University of Malaya, Malaysia).  

For Specific Surface Area, Pore Sizes and Pore Volume, the Brunauer-Emmett-Teller 

(BET) method was employing using Micromeritics instrument and N2 gas as Analysis 

Adsorptive by using nitrogen adsorption-desorption isotherms method with analysis bath 

temperature = 77.315 K (IPPP, University of Malaya, Malaysia).  

Electrochemical impedance measurements were performed on a Princeton Applied 

Research VersaSTAT3 potentiostat/ galvanostat with environment maintained by an E-

Spec BTL-433 humidity-controlled oven to measure the proton conductivity of BiMOF. 

Experiments were performed in air, at temperatures between 25 °C and 85 °C while 

humidity levels were maintained at 95 % relative humidity (RH), after a full cycle of RH 

variation (from 35 to 95 %) at constant 25 °C. Samples were finely ground to a powder 

by mortar and pestle prior to loading in custom dual-sample 2-probe cells with titanium 

electrodes. Electrodes were hand tightened, then tightened to an unknown pressure (with 

a screw driver) to ensure good contact. Cell (sample) lengths were approximately between 

0.15- 0.3 cm, with a 0.317 cm diameter. At minimum two full heating/cooling cycles were 

performed with a minimum of 24 hours between temperature points. Duplicate 

measurements were obtained sweeping from 1 MHz to 0.1 Hz and then in reverse. Data 
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was collected using Versa Studio software (version 2.1). ZView Software was used to fit 

impedance data sets by simulating an equivalent circuit (University of Calgary, 

Alberta, Canada); then the proton conductivity improvement measurements were 

conducted at (Physical-chemical institute, Justus Liebig-University, GieBen; Germany).  

 

3.3 Synthesis of Compounds 

3.3.1 Syntheses of Bi-MOFs (1-12) 

Bismuth nitrate Bi(NO3)3· 5H2O precursor (is amongst the most common starting 

materials for synthesizing other bismuth complexes and frameworks), H2Pzdc ligand as 

O donor and imidazole (Im)/ or imidazolium iodide (ImZm) as N-containing ligand and/ 

or modulator agents would be employed to synthesize Bi-MOF by using slow evaporation 

method. The reaction conditions optimization would be taking place by varying solvents 

stoichiometric molar ratios to get fast and big crystals of product.  

A mixture of Bi(NO3)3· 5H2O (0.1213 gm, 0.25 mmoles); H2Pzdc (0.1009 gm, 0.6 

mmoles) and Im (0.0204 gm, 0.3 mmoles) was dissolved in 10 mL of DMF, followed by 

slow addition of 10 mL of distilled water (DW) with stirring at ambient temperature. A 

white precipitate started to show up inside the solution as soon as the H2O were added to 

DMF and the temperature of mixture increased up to 43 °C (nucleic temperature). The 

mixture was then heated to 50 °C (before boiling point of solvents mixture) and it was 

left to cool down to RT with continuous stirring. The precipitate which is the amorphous 

BiMOF was isolated upon filtration and the filtrate was kept in a vial covered by para 

film with some small holes and left for slow evaporation crystallization process. Plate 

shining crystals were formed after ca. 4-7 days. The final products (BiMOF crystals), 

Scheme 3.1, were washed thoroughly with fresh DW, isolated by vacuum filtration, and 

dried at RT. 

Univ
ers

iti 
Mala

ya



53 

 

 

 

Scheme 3.1: The pathway of synthesizing the Bi(Im)MOFs. 

 

3.3.1.1 Optimization of Reaction Conditions for Bi-MOFs (1-10) 

Attempts in optimizing the reaction conditions to obtain the different colored Bi-MOFs 

were performed systematically in order to discover suitable procedure that can increase 

the yield, quality of the crystals and reducing the reaction time. Therefore, a constant total 

volume of solvents mixture (20 mL) with variety of the stoichiometric molar ratio of the 

solvents (H2O: DMF) were used for synthesizing different batches of Bi-MOFs:  

Starting first with (10:10) molar ratios for the solvent’s mixture (DMF: H2O) then 

reduce the volume of one solvent and increase the volume of the other solvent; with fixed 

total volume of the solvents’ mixture (20 mL), e.g. 

Table 3.1: The molar ratios of the solvent’s mixture (DMF: H2O) 

The solvents mixture in mL The solvents mixture in mL 

DMF H2O DMF H2O 
11 9 12 8 
13 7 14 6 
15 5 16 4 
17 3 18 2 
19 1 20 0 
9 11 8 12 
7 13 6 14 
5 15 4 16 
3 17 2 18 

 

Bi(NO3)3.5H2O  + Bi-(Im)MOFs + → 

Bismuth nitrate 
penta hydrate H2pzdc ligand Imidazole (Im) 
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3.3.1.2 Improving the ionic conductivity of Bi-MOFs (1-10) 

(a) Replacing the N- containing (Im) with (ImZm) to synthesis (11&12):  

Attempts for improving the proton conductivity of compounds (1-10) were done by 

replacing the N donor Im with ImZm, a mixture of Bi(NO3)3· 5H2O (0.1213 gm, 0.25 

mmoles); H2Pzdc (0.1009 gm, 0.6 mmoles) and (ImZm) (0.0588 gm, 0.3 mmoles) would 

be dissolved by adding a mixture of (10 mL /or 14 mL) DMF and (10 mL /or 6 mL) of 

H2O with stirring at ambient temperature, a red solution formed and a yellow precipitate 

started to show up inside the red solution. The mixture then was heated to 50 °C (before 

boiling point of solvents mixture) and it was left to cool down to RT, filtered, and the 

filtrate kept in a vial covered by para film with some small holes to allow a slow 

evaporation for solvents and after 7-10 days shining yellow crystals formed. To check the 

I ¯ anions incorporation inside the MOFs for different time periods the EDX then proton 

conduction measurements were used. 

 

 

 

Scheme 3.2: The pathway of synthesizing the Bi-(ImZm)MOF. 

 

(b) Soaking the BiMOFs with NaCOOCH3 or Na2SO4: 

A (0.1213 gm, 0.2 mmoles) of NaCOOCH3 or (0.1213 gm, 0.2 mmoles) of Na2SO4 

was dissolved in 10 mL DW and added after filtration on (0.1213 gm, 0.1 mmole) of 

Bi(Im)MOF or Bi(ImZm)MOF in two separated beakers to improve the ionic 

conductivity of these Bi-MOFs by checking the Na+ cations and/ or SO4
2- anions 

incorporation inside the MOFs for different time periods using EDX then proton 

conduction measurements. 

→ Bi(NO3)3.5H2O  + Bi-(ImZm)MOFs + 

Bismuth nitrate 
penta hydrate H2pzdc ligand Imidazolium iodide (ImZm) 
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3.3.1.3 Study of stability of BiMOF (1-10) 

To investigate the stability of the different batches of BiMOF the researcher used 

various ways:  

(a) Soaking different batches of the BiMOF in different solvents  

A (0.028 gm, 0.05 mmoles) from different dry batches of Bi(Im)MOF was soaked in 

20 mL of different solvents (H2O, EtOH, Dioxane, Ethyl ether and DMF) in separated 

beakers for more than one month; the pH of the resulted solutions after soaking this MOF 

in these different solvents were (4, 4.5, 5, 6 and 6.5), respectively. 

 

(b) Soaking different batches of the BiMOF in different pH environments  

A (0.028 gm, 0.05 mmoles) from different dry batches of Bi(Im)MOF was soaked in 

different concentrations of diluted HCl and diluted NaOH solutions. 

 

(c) Investigating the stability of BiMOFs using reflux 

A (0.028 gm, 0.05 mmoles) from two dry batches of BiMOFs crystals (10D:10H, 

17D:3H and 13D:7H) were put in a round bottom flask then 15 mL of DW was added to 

each flask and start water refluxing for 3 days. The samples then filtered, dried and check 

its stability via the PXRD analysis. 

 

3.3.2 Syntheses of Pb-MOFs (13-21) 

The syntheses of Pb-MOFs were implemented by combination of Pb(NO3)2 with BTC 

linker, employing layering method, as procedure for synthesis, and adopting aniline (An), 

imidazole (Im) and piperazine (Pip) as modulating agents [207]. The compounds are 

made using a facile dissolution-crystallization method, exploiting the use of hard-soft acid 

base (HSAB) principle to find a suitable modulator to yield a phase pure product [208]. 
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3.3.2.1 Synthesis of compound 13 [Pb(HBTC)(1,4-dioxane)0.5] 

A Pb(NO3)2, (0.0331 gm, 0.1 mmole), was dissolved in 4 mL of Distilled Water (DW) 

then carefully and slowly this solution layered on the top of a solution contains H3BTC 

(0.021 gm, 0.1 mmole) that dissolved in 8 mL of 1,4-dioxane, (the layering process have 

conducted by dropping the solution on the inner wall of the beaker). White shining 

crystals, Scheme 3.3, was formed after 3 days with nearly quantitative yield.  

(a) Improving the PXRD pure phase of 13 by adding N-containing ligand 

A (0.0465 gm, 0.5 mmole; 0.0931 gm, 1 mmole; 0.0372 gm, 0.4 mmole) of (An) was 

weighed in three separated beakers and added as N- containing ligands to the same 

stoichiometric ratios of synthesizing 13 to produce compound 14a, 14b and 14c in order 

to get very pure phase of 13. 

3.3.2.2 Synthesis of compound 14 [Pb(HBTC)(1,4-dioxane)0.5] 

A Pb(NO3)2 (0.331 gm, 1 mmole) was dissolved in 4 mL of DW then carefully and 

slowly layered on the top of a solution contains H3BTC (0.21 gm, 1 mmole) that dissolved 

in 20 mL of 1,4-dioxane, after that a careful addition of An (0.0372 gm, 0.4 mmol) have 

conducted. White ribbon-like crystals were formed after 3 hrs. with nearly quantitative 

yield. The final product (compound 14) was washed thoroughly with fresh DW, isolated 

by vacuum filtration, and dried at RT. A quantitative analysis of the crystals obtained was 

performed by CHN analysis. Anal. Calc. (Found) for C13H13O9Pb: C, 29.99 (30.02); H, 

2.52 (2.49). 

3.3.2.3 Synthesis of compound 15 [Pb2(HBTC)2(H2O)5] 

A (0.0331 gm, 0.1 mmole) of Pb(NO3)2 dissolved in 4 mL of DW then carefully 

layered and slowly added on the on the top of a solution contains H3BTC (0.021 gm, 0.1 

mmole) which previously have dissolved in 4 mL of methanol (MeOH). White block 

crystals, Scheme 3.3, with near quantitative yield were formed after 5 hours. 
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(a) Improving the PXRD pure phase of 15 by adding N-containing ligand 

A (0.0465 gm, 0.5 mmole; 0.0931 gm, 1 mmole; 0.0372 gm, 0.4 mmole) of An was 

added as N donor ligands to the same stoichiometric ratios of synthesized 15 to produce 

compound 16. Then a (0.0341 gm, 0.5 mmole; 0.0681 gm, 1 mmole; 0.0272 gm, 0.4 

mmole) of Im was added as N donor ligands to the same stoichiometric ratios of 

synthesizing 15 to produce compound 17. 

3.3.2.4 Synthesis of compound (17) Pb2(HBTC)2(H2O)5 

A Pb(NO3)2 (0.331 gm, 1 mmole) dissolved in 4 mL of DW was carefully and slowly 

layered on the on the top of a solution contains H3BTC (0.21 gm, 1 mmole) which 

dissolved in 8 mL of MeOH, after that a careful addition of Im (0.0272 gm, 0.4 mmol) 

have done. White block crystals with near quantitative yield were formed after ca.1day. 

The final product (compound 17) was washed thoroughly with fresh DW, isolated by 

vacuum filtration, and dried at RT. A quantitative analysis of the crystals obtained was 

performed by CHN analysis. Anal. Calcd (Found) for C18H8O17Pb2: C, 23.74 (23.65); H, 

0.89 (0.90). 

3.3.2.5 Synthesis of compound 18 [Pb(HBTC)(DMF)] 

A Pb(NO3)2 (0.0331 gm, 0.1 mmole) was dissolved in 4 mL of DW then carefully and 

slowly layered on the top of a solution contains H3BTC (0.021 gm, 0.1 mmole) that 

dissolved in 2 mL of DMF. Small white plate-like crystals were formed in close to 

quantitative yield after ca.1 day. The final product (compound 18), Scheme 3.3, was either 

kept as it is in mother liquor or washed thoroughly with fresh DW, isolated by vacuum 

filtration, and dried at RT. A quantitative analysis of these crystals was not performed 

due to decomposition of the product outside of mother liquor. 
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(a) Improving the PXRD pure phase of 18 by adding N-containing ligand 

A (0.0465 gm, 0.5 mmole; 0.0931 gm, 1 mmole; 0.0372 gm, 0.4 mmole) of An was 

added as N donor ligand to the same stoichiometric ratios of synthesized 18 to get a pure 

phase of compound 18 and produce compound 19. Then a (0.0341 gm, 0.5 mmole; 0.0681 

gm, 1 mmole; 0.0272 gm, 0.4 mmole) of Im was added as N donor ligand to the same 

stoichiometric ratios of synthesized 18 to get a pure phase of compound 18 and produce 

compound 20. Then a (0.0431 gm, 0.5 mmole; 0.0861 gm; 1 mmole; 0.0345 gm, 0.4 

mmole) of Pip was added as N donor ligand to the same stoichiometric ratios of 

synthesized 18 to get a pure phase of compound 18 and produce compound 21. 

3.3.2.6 Synthesis of compound 22  

A Pb(NO3)2 (0.0331 gm, 0.1 mmole) was dissolved in 4 mL of DW then carefully and 

slowly layered on the top of a solution contains H3BTC (0.021 gm, 0.1 mmole) dissolved 

in 3 mL of Acetone. Large white shining crystals was formed immediately and change to 

white plate-like crystals were formed in close to quantitative yield after ca.1 day. The 

final product was either kept as it is in mother liquor or washed thoroughly with fresh 

DW, isolated by vacuum filtration, and dried at RT.  

3.3.2.7 Synthesis of compound 23  

A Pb(NO3)2 (0.0331gm, 0.1mmole) was dissolved in 4 mL of DW then carefully and 

slowly layered on the top of a solution contains H3BTC (0.021 gm, 0.1 mmole) dissolved 

in 4 mL of Ethyl acetate. Large colorless plate-like crystals were formed in close to 

quantitative yield after ca.7 days. The final product (compound 23) was either kept as it is 

in mother liquor or washed thoroughly with fresh DW, isolated by vacuum filtration, dried 

at RT.  
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Scheme 3.3: The pathway of synthesizing the Pb-MOFs. 

 

3.3.2.8 Investigating the guest absorbance efficiency of the new Pb-MOFs 

The compounds 14 and 17 have been chosen for this study because both of them have 

a pure phase pattern pxrd, therefore, they have known structures while compound 18 did 

not have a pure phase pattern of pxrd so it is unknown compound, therefore, it was not 

chosen. The dyes sorption experiments were carried out by using the following procedure: 

a) A (50 mg) of compound 14 was soaked into two separated solutions of 10 ppm from 

the two selective dyes; methyl red (MR) and methylene blue (MB) which were 

prepared in 10 mL volumetric flask, then the mixture of compound 14 with the dye 

solution were sealed tightly and shaken well then left to check the dyes absorption 

ability of compound 14 after (1, 3, 5 and 7 days). 

b) A (50 mg) of compound 17 was soaked into two separated solutions of 10 ppm from 

the two selective dyes; methyl red (MR) and methylene blue (MB) which were 

prepared in 10 mL volumetric flask, then the mixture of compound 17 with the dye 

solution were sealed tightly and shaken well then left to check the dyes absorption 

ability of compound 17 after (1, 3, 5 and 7 days).  

c) The UV-vis spectroscopy equipped with 1 cm quartz cells at = 525 nm for MR dye 

and = 660 nm for MB dye were then conducted. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 General Characterization of the synthesized MOFs 

The physical and chemical features and the solid state properties of the new 

compounds (1-18) were performed, by using optical microscope, black box for UV light, 

Scanning  Electron Microscope, coupled with Energy Dispersive X-Ray Spectroscopy 

SEM/EDX, Single Crystal and Powder X-ray diffraction (SC-XRD and PXRD), Thermo-

gravimetric Analysis (TGA), elemental analysis (CHN), solid state Nuclear Magnetic 

Resonance (SS-NMR), Fourier Transform Infrared Spectrometry (FTIR), Ultra Violet-

Visible (UV-Vis) spectrophotometry (solid and liquid state), solid state 

photoluminescence (PL), BET surface area analysis and proton conductivity 

measurements. 

4.2 Synthesis, characterization and properties of Bi based-MOFs  

Till date, there are only few Bi-based MOFs reported [8, 181, 209- 212]. Herein, we 

report a new, rare, and highly water stable bismuth-containing organic framework; 

Bi(pzdc)(Hpzdc)·xH2O, compound 1, which was successfully synthesized by using 

Bi(III) ions with H2Pzdc as O-donor ligand and with imidazole (Im)/ or imidazolium 

iodide (ImZm) as a modulation agent via a simple dissolution-slow evaporation method, 

unlike most of the Bi(III)MOFs that have been made by hydro- or solvothermal method. 

Such Bi MOF was synthesized by using an optimized, facile slow evaporation method 

showcasing highly water stable compound, that, together with hydrogen-bonded water 

feature along the crystallographic c-direction, lead to proton conductivity of 8.41 x10-6 

S.cm-1 at 85°C and 95% RH. Its optimized synthetic condition, structural, thermal, and 

photophysical characterizations in relation to water content and water stability, as well as 

proton conductivity property are presented.  
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Lattice water content, hence, the resulting color of the product, could be varied (x = 

0.5, 0.78, 0.86, 0.90, 1.0, 1.26, 1.5 and 6.0 based on TGA measurements) from white to 

yellow color, respectively by changing DMF: H2O molar ratios. Prior to this discovery, 

attempts were made to obtain quantitative yields, which involved combinations of the 

following variables, such as (a) molar ratio of Bi(NO3)3.5H2O and H2pzdc, (b) variety of 

solvent or mixture of solvents.  The compound was found to contain unknown impurity 

and/or amorphous phase. Inspired by the use of monocarboxylic acid modulator, to obtain 

pure and stable transition metal-based MOFs [213- 216].  Additional trials were 

attempted, following Pearson’s hard-soft acid base concept, in which borderline organic 

bases are suitable for borderline acids, e.g. Bi3+, and found that, the use of imidazole was 

required to make phase pure and stable compound of 1. Adding the suitable N-donor 

ligand resulted in the gradual disappearance of the unidentified impurity peaks, that 

eventually reached phase pure with nearly quantitative yields, achieving optimum 

synthetic condition. Activation attempts for 1, starting from rather harsh thermal 

activation, to relatively milder supercritical CO2, as well as, solvent exchange activations 

were unsuccessful, despite the fact that, there was 37% void space as analyzed by Platon 

[217]. 

The combination of Bi(NO3)3.5H2O and H2Pzdc (C6H4N2O4) linker, Figure 4.1 (a), 

with (Im)/ or (ImZm) in a mixture of DMF/H2O (with different stoichiometric molar 

ratios) produced a new porous coordination polymer /MOF, with a molecular formula of 

Bi (pzdc)(Hpzdc)·xH2O or [(C12H5BiN4O9)(H2O)X]; 1-12, and with molecular mass of 

560.20 gm/ mol, Figure 4.1 (b) show the expected coordination modes of H2Pzdc with Bi 

metal ions in compounds 1-12. The varying of the solvents molar ratios enables the 

researcher to get different crystals of Bi-Im-MOFs (1-10) and by changing the modulation 

agent (Im) with (ImZm) it was able to get Bi-ImZm-MOFs (11, 12). The compounds (1-

12) show different colors, under visible light and potential different photoluminescence 
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(PL) under the long wave length of UV light (365nm), with similar PXRD patterns, which 

matching with the simulated one, means that all of the synthesized Bi compounds have 

the same structure. 

 

Figure 4.1: (a) The sticks and the ball modules of the free linker H2Pzdc, (b) The 
expected coordination modes of H2Pzdc with Bi metal ions in compounds 1-12. 

 

The visual observation confirmed that, (10:10) (DMF: H2O) batch, 1, could give a 

large amount with small quality crystals in 4 days while (14:6) (DMF: H2O) batch, 5, can 

give a smaller amount comparing to (10:10) (DMF: H2O) batch, but big quality crystals 

in 5-6 days. Besides that, (9:11) (DMF: H2O) batch, 3, can give good quality crystals 

within 4-5 days at room temperature and within 2 days when it is kept at oven 38°C. The 

exchange of the auxiliary ligand (Im) with (ImZm) gave big crystals of Bi-ImZm-MOF 

which have the same PXRD pattern, that matches with the simulated one of compound 1, 

with (0.35- 0.46) % doping amount of iodide ions that displays dark yellow color under 

visible light and quenched PL under UV light because the iodide is a heavy metal ion, 

that has a significant fluorescence quenching of general fluorophores/ chromophore 

[218]. 
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4.2.1 Elemental analysis (C.H.N) of BiMOFs 

Results tabulated in Table 4.1 are summarized the molecular formula, molecular 

weight, %yield, color and appearance and elemental analyses for the new synthesized Bi-

MOFs. The molecular formula and molecular weights of the new compounds have been 

obtained from the SCXRD analyses. The elements analysis CHNO that run for both kind 

of Bi-MOFs (Im and ImZm) ensure that both MOFs have same kind of elements with 

nearly same percentage amounts, which are matched well the calculated values 

theoretically for both of them, indicating that both compounds have same structure. 

 

Table 4.1: The physical data of the new synthesized compounds. 

Comp. 
code 

Molecular formula, 
colour and appearance 

Molecular 
weight 

g/mole and 
Yield% 

Percentage of element 
(%) Experimental 

(Theoretical) 

C H N 

Bi(Im) 
MOFs  

= 1, 2, 3, 
4, 5, 6, 7, 
8, 9 & 10 

Bi(C6H2N2O4)(C6H3N2O4), 
(H2O) 

white, light yellow, dark 
yellow and orange crystals 

(depending on the water 
contents) 

560.20 

65-74% 

25.99  

(25.73) 

1.16 

(1.19) 

10.10 

(10.05) 

Bi(ImZm) 
MOFs 

= 11&12 

Bi(C6H2N2O4)(C6H3N2O4), 
(H2O) 

big yellow crystals 

560.20 

89, 93% 

25.57 

(25.73) 

1.17 

(1.29) 

10.23 

(10.00) 

 

4.2.2 FTIR Vibrational spectra of BiMOF  

Generally, the carboxylic acids usually show a strong, wide band for the OH stretching 

(O-H) appears as a very broad band (because the carboxylic acids usually exist as 

hydrogen-bonded dimers) in the region between 3300-2500 cm-1. It is centered at about 

3000 cm-1 and the exact position of this broad band, depends on whether the carboxylic 

acid is saturated or unsaturated, dimerized, or has internal hydrogen bonding [219]. 
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The FTIR spectral data of the free ligand linker H2Pzdc, Figure A-1; Appendix A, was 

compared with those of the new synthesized BiMOFs, Figures A-2 to A-6. It was 

observed that, IR spectra of Bi(Im) and Bi(ImZm) depicts peaks nearly in similar region, 

which beside the CHN values, PXRD patterns and TGA charts, confirmed that both of 

these compounds (Bi(Im) and Bi(ImZm)) have the same structures. The FTIR spectrum 

of the free ligand H2Pzdc, Figure A-1, shows a strong absorption band appears at 3099 

cm-1 which is attributed to (C-H) vibrations of sp2 C in the ring and also shows a broad 

band appears around 3263-2843 due to (O-H) of the COOH group. The (CH) vibrations 

of pyrazine ring generally appear as strong bands at 1000-1280 cm-1 [161], for H2Pzdc it 

appears at 1096 cm-1 region. The strong absorption bands that appear at the region 1751-

1688 cm-1 due to the stretching vibrations of (C=O) mode, while the bands at 1398-1357 

cm-1 due to (C-O) mode; both are attributed to the asymmetric and symmetric stretching 

vibrations of carboxylate group as,sy(COO) of the free ligand [220].   

The as,sy(COO) are shifted to the lower wavenumbers after coordination between the 

free linker and Bi(III) metal ions to form the Bi-MOF network, Figure A-2 and A-4.  They 

shifted and observed at the region around 1601-1556 cm-1 for C=O and 1393 cm-1 for C-

O of Bi(Im)MOF, Figure A-2, while they shifted and observed at the region around 1600-

1554 cm-1 for C=O and 1352 cm-1 for C-O of Bi(ImZm), Figure A-4 [221]. The 

differences between the as  and sy frequency of the (COO) of H2pzdc, [ = as (COO)  

- sy (COO)], is < 300 cm-1; ( = 226 -163 in Bi(Im) and 164 -160 cm-1 in Bi(ImZm) 

suggest a multi-dentate binding of the carboxylate group to the Bi(III) metal ions in these 

two new compounds [222]. The (COO) vibrations of multi carboxylate groups which 

connected to the pyrazine ring of H2Pzdc and the clear shifting, that observed for these 

stretching vibrations in the IR spectrum of BiMOFs, Figure A-2 and A-4, provide a good 

evidence that H2pzdc coordinated to Bi(III) cation and display a different coordination 
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modes. The pyrazine ring of the free ligand is aromatic in nature, therefore, the C=N 

frequency of this moiety could be assigned as the ring skeletal at 1577 and 1542, which 

are overlapped and shifted to appear at 1435 cm-1 in the MOF spectrum [223]. The peak 

at 1445 cm-1 is ascribed to the C-C vibration in the aromatic ring [223].  

The new bands that appeared at 466 cm-1 due to Bi-N stretching vibrations and at 550 

cm-1 due to Bi-O stretching vibrations in spectrum of Bi(Im). Besides, the new bands at 

445 cm-1 due to Bi-N stretching vibrations and 547 cm-1 due to Bi-O stretching vibrations 

in the spectrum of Bi(ImZm) confirmed the interaction between N and O atoms of the 

ligand with the Bi(III) metal ion [27] in these two MOFs, Figure A-6.  

The FTIR spectrum of BiMOF shows broad peak of (OH) vibrations of hydrogen 

bonded covering from 3600 to 3000 cm-1, Figure 4.2, is further supported by Figure 4.9 

in SCXRD study. 

 

 

 

 

 

 

 

 

 

Figure 4.2: FTIR of 1 with a zoom-in inset showing hydrogen-bonded lattice water 
peak extended from 3600-3000 cm-1. 
 
➢ Note: The FTIR patterns of other BiMOF compounds uploaded at Appendix A 
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4.2.3 Single Crystal X-Ray Diffraction (SCXRD) analysis 

The reactions of H2pzdc with Bi(NO3)3·5H2O under a simple slow evaporation 

resulted in Bi(pzdc)(Hpzdc)·xH2O or Bi(C6H2N2O4)(C6H3N2O4),(H2O) (pzdc = pyrazine-

2,3-dicarboxylate; x = 0.5, 1.0, 1.5 and 6.0), compound 1, whose structure was determined 

by SCXRD. The SCXRD structure determination confirms that compounds (1-12) which 

all have same structures (according to the PXRD patterns); crystallize in the monoclinic, 

P21/n space group (a =14.1738(7) Å, b =21.682(1) Å, c =14.7988(8) Å,  =109.2103(8)°) 

and built from 2D slabs which contain layers of Bi polymers that interlinked via H2pzdc 

ligands into 3D MOF with unit-cell volume = 4294.554141 Å3 and ~6Å× ~8Å aperture 

size occupied by water molecules with varied contents. Relevant crystallographic data 

from the single-crystal structure refinement are found in Table 4.2. Selected interatomic 

distances and angles of 1 are summarized in Table B-1 (Appendix B). 

Figure 4.3 (a) depicts the asymmetric unit cell and atom labels of 1, that consists of 

two unique bismuth atoms, two deprotonated pzdc and two monoprotonated Hpzdc 

ligands, and two lattice water molecules. The overall structure is built around Bi polymer 

layers extended along the c-axis. The nitrogen and oxygen atoms of the pzdc2- and Hpzdc- 

ligands complete the coordination sphere around the bismuth cations in the Bi polymer 

slabs to form Bi(1)O7N2 and Bi(2)O7N2 tricapped trigonal bipyramid, Figure 4.3 (a), with 

Bi-O distances ranging from 2.235(8)-2.775(8) Å, and Bi-N distances are between 

2.519(9) to 2.677(9) Å, typical of Bi compounds [46 - 48, 181, 210, 224, 225]. All the 

Bi3+ polyhedra are holo-directed and contain stereochemically inactive lone pairs shown 

in Figure 4.3 (b).  
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Figure 4.3: (a) Asymmetric structure and atomic labeling of compound 1, 
Displacement ellipsoids are drawn at the 50% probability level. (b) The holo-
directed bismuth centered polyhedra of the compound 1, Bi(1)O7N2 and Bi(2)O7N2. 

 

In fact, there is two crystallographically independent Bi units, the Bi(1) atoms are 

interlinked by the ligands to form polymers that featuring dioxo bridging from O(11) of 

the ligand. The Bi(1) polymer is correlated through inversion symmetry, Figure 4.4(a). 

Bi(2) atoms also form polymers, related by inversion symmetry, through the ligand. 

Unlike Bi(1) polymers, however, Bi(2) polymers do not exhibit dioxo bridging, Figure 

4.4(b). Both dimers are then connected by the ligand to form 2D structure along the ac-

plane, Figure 4.5, in which hydrogen-bonded water molecules are extended along the c-

direction, Figure 4.6. The existence of hydrogen bonds between free oxygen atoms of 

pzdc carboxylic acids and hydrogen atoms of lattice water, O(2)···H(21) and 

O(10)···H(11) with bond distance of ~1.965 Å.  

 

 

 

a b 
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Figure 4.4: (a) Bi(1) dimers linked by pzdc ligand in compound 1. (b) Bi(2) dimers 
linked by pzdc ligand in compound 1. Bi =green, O = red, N =dark blue, C = black. 

 

 

 

 

 

 

Figure 4.5: Combination of Bi(1) and Bi(2) dimers to form 2D structure of 
compound 1. 

 

b 

a 
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Figure 4.6: 2D structure of 1 along the ac-plane showing the hydrogen-bonded 
lattice water extended along the c-axis. 

 

The 2D slabs are further connected by the ligand along the b-axis to form 3D structure 

in which the 21 screw axis along the diagonal of the unit cell could be viewed, Figure 4.7. 

Zooming into the pore with approximate aperture size of ~6 Å × ~8 Å, there are 

uncoordinated N (N(4), (6), and (8)) and O atoms (O(2), (6), and (16)) of the ligands. 

 

Figure 4.7: 3D structure of compound 1, with a zoom-in picture of pore formation 
with uncoordinated N and O atoms. 
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Table 4.2: The Crystal data and structure refinement parameters of compound 1.a 

Empirical formula C12 H7 Bi N4 O9 

Formula weight 560.20 

Temperature 295(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group P 21/n 

Unit cell dimensions 

a = 14.1738(7) Å, α = 90.00° 

b = 21.6814(12) Å, β = 109.2103(8)° 

c = 14.7988(8) Å, γ = 90.00° 

Volume 4294.6(4) Å3 

Z 8 

Density (calculated) 1.733 g/cm3 

Absorption coefficient 8.255 mm-1 

F(000) 2096 

Crystal size 0.20 x 0.15 x 0.10 mm3 

θ range for data collection 2.38 to 27.71° 

Index ranges -18<=h<=18, -28<=k<=28, -19<=l<=18 

Reflections collected 42068 

Independent reflections 10002 [Rint = 0.0692] 

Completeness to θ = 27.71° 99.3% 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 10002 / 12 / 469 

Goodness-of-fit 1.046 

Final R indices [I>2σ(I)] Robs = 0.0582, wRobs = 0.1544 

R indices [all data] Rall = 0.0829, wRall = 0.1696 

Largest diff. peak and hole 4.741 and -1.399 e·Å-3 
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4.2.4 Microscopic Features 

The different colored crystals from different batches of BiMOF (which have same 

PXRD patterns) displayed different plated crystal shapes and morphologies with different 

crystal sizes that observed under the electrical microscope which can explain the 

difference in colors that these different batches exhibited, Figure 4.8.  

  

  

 

 

 

 

 

Figure 4.8: Optical-images of different batches of Bi-(Imi)MOFs took by the 
microscope. 

 

4.2.5 Photoluminescence (PL) Observation 

The different colored crystals from different batches of BiMOF (which have same 

PXRD patterns) displayed various PL colors under UV and visible light. The emission 

mechanism of this PL attributed to the presence of the organic fluorophores [226] and to 

the presence of different water contents in the pores of the new BiMOF framework. This 

feature could make the new BiMOF as promising candidate as a moisture sensor and/or 

proton conductor, Figures 4.9 and 4.10. 

 

Light yellow (4) Dark yellow (6) White (1) 
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Figure 4.9: photo-images of the different colored crystals of Bi-(Im)MOFs. 

 

 

 

 

 

 

 

Figure 4.10: Photo images of the different colored crystals from various batches of 
BiMOF. 

 

4.2.6 Powder X-ray diffraction (PXRD) analysis 

The combination of only Bi(NO3)3· 5H2O and H2pzdc to generate BiMOFs were found 

to contain unknown impurity and/or amorphous phase. Inspired by the use of 

monocarboxylic acid modulator to obtain pure and stable transition metal-based MOFs 

[213- 215] the researcher attempted additional trials. Following Pearson’s hard-soft acid 

base concept in which borderline organic bases are suitable for borderline acids, e.g. Bi3+, 

The researcher found that the use of (Im) was required to make phase pure and produce 

stable compound of 1-12 via modulating the framework of these compounds. The powder 

Under UV 
light 

13D:7H, 14D:6H, 18D:2H, 10D:10H, 18D:1H, 10D:10H, 17D:3H    
   Im,        ImZm,      Im,          Im,         Im,          ImZm,    Im 

Under Visible 
light 

PL under visible 
light for 1, 4 & 6 

PL under UV light 
for 1, 4 & 6 
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X-ray diffraction measurement (Figures 4.11-4.15) can show that Bi-MOFs (with all 

different molar rations) display a high degree of crystallinity with sharp and well-defined 

peaks in XRD patterns comparing with the simulated patterns which obtained from single 

crystal x-ray diffraction analysis (Crystallographic Information Framework, CIF file).  

4.2.6.1 Phase purity, water stability, and water content vs. resulting color 

Phase purity and the presence or absence of polymorph can be detected by PXRD. The 

purity of compound 1, plate crystals, was checked using PXRD. The PXRD pattern of 

compound 1 match the calculated pattern based on the single crystal structure as shown 

in Figure 4.11, demonstrating that within the resolution and detection limit of PXRD, the 

reaction products used for further physical characterizations are of single phase, and no 

additional polymorph is present, and no unreacted starting material remains in the 

samples. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: PXRD patterns of compound 1 showing: simulated vs. observed, with 
an inset shows plate crystal of 1. 
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The PXRD patterns' results confirmed that the compounds 1 to 10 (Figure 4.12) have 

the same structures. Furthermore, they confirmed that compounds 11 and 12 crystallize 

with high dense phase that share structural similarity with 1, (Figure 4.13).  

 

 

 

 

 

 

 

 

Figure 4.12: The PXRD measurement showing: simulated vs. observed patterns of 
various batches of synthesized BiMOFs. 

 

 

 

 

 

 

 

 

Figure 4.13: The PXRD measurement showing: simulated vs. observed and 
comparison between compound 1 and 11 patterns. 
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Realizing the moisture stable product with fully 3D coordination bond in the structure 

of 1 featuring an extended, hydrogen-bonded lattice water within the pores, Figure 4.6, 

the research went ahead to check the compound water stability by soaking it in water for 

2 months at RT as well as refluxing it in water for 1 day. The research also went ahead to 

check the compound stability in other solvents by soaking some crystals (0.05 mmol) of 

different batches from BiMOFs in 1,4-dioxane, ethyl acetate and DMF for 2 months at 

RT, the pH of these resulting solutions was 5.5, 6 and 6.5, respectively, whilst, the pH of 

water solution of BiMOF was 4, Figure 4.14 shows the robustness and structural integrity 

of 1 after soaking for 2 months and 1 d reflux, while Figure 4.15 shows the robustness 

and structural integrity patterns of BiMOFs after soaking for 2 months in different 

solvents in which in all patterns, there is no indication of product decomposition and the 

crystallinity is preserved. Interestingly, during the 2 months course of water soaking, we 

noticed there was some change in color of 1 from white to yellow and based on PXRD 

and TGA analysis, the structure was intact. From such finding, a successful synthetic 

procedure, as mentioned in Experimental section, was obtained to synthesize 1 with 

varied lattice water contents based on DMF: H2O used during synthesis. 

 

 

 

 

 

 

 
 

Figure 4.14: PXRD patterns of compound’s water stability after 1d reflux and 2 
months of soaking. 
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Figure 4.15: PXRD patterns of a mixture from compounds 1-10 show: simulated vs. 
observed for compounds' stability after 2 months of soaking in different solvents. 

 

Furthermore, in attempt to check the stability of compound 1 in different pH 

environments, the soaking of 1 in different pH solutions (the pH of the produced solutions 

was 7-1.5) was done using NaOHdil and HCldil was done. The PXRD results of soaking 

the various batches of BiMOF in different pH environments showed that the structure of 

this MOF collapsed at pH below 4 and it lose its crystallinity and became amorphous 

compound at pH around 7, Figure 4.16. Therefore, the researcher could conclude (from 

the soaking of this framework in different solvents and different pH environments) that 

this framework remained to maintain its structure at the acidic environment only with pH 

between (6.5 - 4) and it is not stable (became amorphous) in the basic environment. 
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Figure 4.16: PXRD patterns of compounds 1-10 showing simulated vs. observed for 
compound’s stability in different pH environments. 

 

4.2.7 TGA measurements 

To determine the thermal stability of the studied compounds, the thermo-gravimetric 

analysis was performed. Interestingly, the observation of variety in colors from by the 

different batches of BiMOFs, which produced via changing the molar ratios of the 

solvents' mixture, led to exhibit different TGA thermograms patterns based on the variety 

in water contents inside the pores (H2O molecules) for each framework that in return it 

gives different colors under UV and visible lights, which could be anticipated to employee 

them as moisture sensors or proton conductors.  

Highly water- stable compound (reach to about 20% of its weight) with nearly 

quantitative yield was identified by the reaction of DMF/H2O -based Bi(NO3)3·5H2O with 

H2pzdc in the presence of Im or ImZm under slow evaporation with optimized condition. 

The studied compounds of BiMOFs (1-12) were analyzed at TGA machine under 20 

ml/min flowing nitrogen gas (N2) with temperature ramping at a rate of 5 °C/min starts 

from RT to 900 °C. The bulk phase purity of 1-12 was further confirmed by TGA analysis 

in which, the observed weight losses of the corresponding solvent and the ligand are 
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closely matched with the theoretically expected values that was calculated from formulas 

obtained from crystallographic refinements, Figures 4.17, 4.18 (a - g). This may also 

support that, within the synthetic conditions, used in here, neither of the modulator is 

presented in the structure, in conjunction with crystallographic refinement results, as well 

as CHN analysis. Figure 4.17 displays TGA thermograms of 1 with varied water content; 

x = 0.5, 1.0, and 6.0 H2O molecule per formula unit that leads to change in color from 

white to yellow as the lattice water content increases.   

 

 

 

 

 

 

Figure 4.17: TGA thermograms of compound 1 showing varied lattice water 
contents. 

 

4.2.7.1 Discussion of TGA measurements patterns of other batches of BiMOF 

The first mass losing for the other different batches of BiMOF was around (100-85) % 

which started at around (60-90) °C corresponding to the releasing of hydrated water 

molecules that exist inside the pores of the frameworks. The frameworks of these MOFs 

remain stable until around (220-260) °C, when the organic ligand H2pzdc starts to 

decomposed and lose its mass from around (90-25) %, then at 315 °C, the bismuth or 

bismuth oxide started to precipitate, Figure 4.18 (a - g). TGA measurements results are 

summarized in table 4.3. 
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Table 4.3: The summarized results of the TGA charts for different batches of 
BiMOF. 

Comp. 

no. 

first mass losing % 

= solvent formula 

weight (g/mole) 

Temp. 

°C 

No. of 

solvent 

molecules 

Second mass losing 

% = ligand formula 

(g/mole) 

Temp. 

°C 

1 2.5% = 14 (g/mole) 60 0.78 H2O 67  (Hpzdc + pzdc) 250 

4 6% = 33.6 (g/mole) 50 1.87 H2O 65  (Hpzdc + pzdc) 230 

6 
19.9% = 111.64 

(g/mole) 
55 6 H2O 63  (Hpzdc + pzdc) 220 

7 5% = 28 (g/mole) 85 1.6 H2O 60  (pzdc + pzdc) 250 

10 4% = 22.4 (g/mole) 120 1.25 H2O 59  (Hpzdc + pzdc) 260 

11 4% = 22.4 (g/mole) 130 1.25 H2O 61  (Hpzdc + pzdc) 265 

12 3% = 16.81 (g/mole) 110 0.9 H2O 60  (Hpzdc + pzdc) 260 

 

 

 

Figure 4.18: (a), (b) TGA thermograms of compounds 1, 4 respectively, (c), (d) TGA 
thermograms of compounds 6, 7 respectively, (e), (f) TGA thermograms of 
compounds 10, 11 respectively, (g) TGA thermograms of compound 12. 
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Figure 4.18: Continued. 

 

 

 

 

 

 

 

 

 

Figure 4.18: Continued. 
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Figure 4.18: Continued. 

 

4.2.8 Solid state UV-Vis analysis 

As expected, the absorbance of yellow colored 1 is red-shifted [or Bathochromic 

Effect, which is a change in absorbance to a longer wavelength (λ)] from UV for (H2pzdc) 

to violet region for (1), as shown in the solid-state UV-Vis spectra of as received H2pzdc, 

1 (white, x= 0.5), and 1 (yellow, x = 6.0), Figure 4.19. 

 

 

 

 

 

 

Figure 4.19: Solid state UV-Vis spectra of H2pzdc (as received), 1 (white), and 1 
(yellow) with insets showing the digital images of sample’s color. 
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4.2.9 FESEM /EDX analysis 

As the researcher got a proton conductivity value of 8.41 x 10-6 S.cm-1 for compound 

1 and in order to improve/increase this value, there were some trials via the incorporating 

of Na+ cations and/ or SO4
2- anions inside the pores of the framework of BiMOF. The 

proton or ionic conductivity of 1 maybe increased by cation exchange with highly mobile 

ions or incorporating highly mobile guest cation that facilitate ion conductivity. 

Therefore, the researcher conducted the following ways: 

 

4.2.9.1 Soaking the BiMOFs [Bi-(Im) and/or Bi-(ImZm)] with NaCOOCH3: 

After soaking Bi(Im)MOF with aqueous solution of sodium acetate NaCOOCH3 for 1 

day, the highest percentage of Na+ cations doping amount was 2.24% while the highest 

percentage of Na+ cations doping amount was 5.62% after soaking this batch with 

NaCOOCH3 for 1 week using FESEM /EDX. The structure of the framework kept its 

crystallinity with some missing peaks (maybe because the solvent of soaking (H2O with 

Na+) effects on the coordination order of the metal inside the framework or cause a strong 

orientation texture, which will result in peak intensities very different from a randomly 

oriented crystalline sample), that confirmed by PXRD pattern, Figure 4.20.  

 

Figure 4.20: a), b) SEM image of Bi(Im)MOF after 1day, 1 week soaking with 
NaCOOCH3 solution, c) PXRD analysis showing: simulated vs. observed patterns 
after 1week soaking.  

a c 

b 
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The highest percentage of Na+ cations doping amount after soaking Bi(Im)MOF with 

an aqueous solution of NaCOOCH3 for 3 weeks (until it became nontransparent) using 

FESEM /EDX was 6.20 %. The structure of BiMOF was collapsed and became 

amorphous, the blue PXRD pattern, Figure 4.21, because the solution which used for 

soaking this framework is alkaline (the pH up to 6.5) and BiMOF is not stable at this 

range of pH as mentioned previously in the section of checking its stability in different 

pH environments. 

 

 

 

 

Figure 4.21: a) SEM image of Bi(Im)MOF, b) PXRD measurement showing: 
simulated vs. observed patterns of soaking various batches of synthesized 
Bi(Im)MOFs in NaCOOCH3 after 3 weeks. 

 

The highest percentage of doping amount for Na+ cations after soaking Bi(ImZm)MOF 

with an aqueous solution of NaCOOCH3 for 2 days was 9.26 % using FESEM /EDX, the 

structure that confirmed by PXRD pattern still maintain, Figure 4.22. 
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Figure 4.22: a) SEM image of Bi(ImZm), b) PXRD measurement showing: 
simulated vs. observed patterns of soaking of Bi(ImZm)MOFs in NaCOOCH3 for 2 
days. 

 

4.2.9.2 Soaking of BiMOFs [Bi-(Im) and/or Bi-(ImZm)] with Na2SO4: 

The highest percentage of doping amount for Na+ cations after soaking various batches 

of synthesized Bi(Im)MOF with an aqueous solution of sodium sulphate Na2SO4 for 1 

day was 8.33 % using FESEM /EDX, the structure kept its crystallinity with some missing 

peaks, confirmed by PXRD pattern, Figure 4.23.  

 

 

 

 

 

 

 

Figure 4.23: a) SEM image of Bi(Im), b) PXRD measurement showing: simulated 
vs. observed patterns of synthesized Bi(Im)MOFs soaked in Na2SO4 after 1day 
soaking.  
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b 
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The highest percentage of Na+ cations doping after soaking Bi(ImZm)MOF with an 

aqueous solution of Na2SO4 for 2 days using FESEM /EDX was 10.73 %, while it was 

21.60 % after soaking this MOF with same cations during 1 week and the structure 

reminded keep its crystallinity with some missing peaks according to the PXRD pattern, 

Figure 4.24.  

 

 

 

 

 

 

 

 

Figure 4.24: a) SEM image of Bi(ImZm) after 1 week soaking with Na2SO4 solution, 
b) PXRD measurement showing: simulated vs. observed patterns of soaking various 
batches of synthesized Bi(ImZm)MOFs in Na2SO4 for 1 week. 

 

Finally, the research can conclude from this study that even after soaking BiMOF with 

Na+ cations or SO4
2- anions, there were no improving for the proton conductivity of this 

compound maybe because these ions could not incorporate inside the pores of the 

framework. Furthermore, the soaking of Bi(ImZm)MOF batch in an aqueous solution of 

Na+ cations is better than the soaking of Bi(Im)MOF batch, also the soaking of these two 

batches (Im and ImZm) in Na2SO4 solution is better than soaking them in NaCOOCH3 

solution because it gave a high percentage of doping amount. 
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4.2.10 Proton Conductivity measurements 

The presence of an extended, hydrogen-bonded lattice water along the c-direction 

(Figure 4.6) that attract more dynamic lattice water into the pore (up to 4.5 water 

molecules per formula unit in this case) and the fact that the resulting compound is highly 

stable after 2 months of soaking and 1day reflux in water (Figures 4.14, 4.15), fulfill the 

general pre-requisite for proton conductivity [227, 228]. AC impedance analysis with 

controlled relative humidity (RH) and temperature was used to measure proton 

conductivity of 1 using a pelletized sample, the resulting conductivities were calculated 

from fitting of the Nyquist plots, Figure 4.25. As shown in Table 4.4, the room 

temperature conductivity increases with the increasing of RH with a highest value 6.11 x 

10-7 S·cm-1 at 95 % RH. A cycle of heating and cooling at maintained 95% RH results in 

the highest proton conductivity of 1, 8.41 x 10-6 S·cm-1, at 85°C and 95% RH, Table 4.5. 

Post measurement PXRD (Post PC), Figure 4.26, shows that, within the limit of PXRD, 

the structure integrity and the original phase of 1 is maintained with lowering of the 

crystallinity as the peaks broadened and there are some new unidentified peaks appear, 

which may indicate an additional phase co-exist within the compound after proton 

conductivity measurement (Post PC).  

From the single crystal structure, there are two features that suggest why the proton 

conductivity for this MOF is not higher. First, the channels only propagate in one 

dimension, meaning that multidirectional efficient transport is a challenge and 

consequently, grain boundary resistances would be enhanced [229]. Secondly, the 

hydrogen-bond pathway between the included water molecules is not continuous with 

significant jumps between dimeric units; the shortest distance between them is 11.5863(8) 

Å, Figure 4.9. The activation energy for the proton transfer is calculated as 0.31 eV, 

Figure 4.34 (b), which is in the higher end of that generally regarded for a Grotthuss 

mechanism, i.e. a less efficient proton hopping mechanism consistent with the crystal 
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structure. Although the proton conductivity of 1 is of moderate value for proton 

conducting MOFs, [227, 228, 230] its high water stability and the fact that lone-pair 

containing compounds are adaptable to defects [95, 144, 231, 232].  

 Table 4.4: Proton conductivity of 1 at 25 °C under variable humidity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature (oC) Humidity (% RH) Conductivity (S·cm-1) 

25 35 5.08 x 10-10 

25 45 6.61 x 10-10 

25 55 1.56 x 10-9 

25 65 3.95 x 10-9 

25 75 1.27 x 10-8 

25 85 5.35 x 10-8 

25 95 6.11 x 10-7 
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Table 4.5: Proton conductivity of 1 at 95% humidity RH under variable 
temperature. 

Temperature (oC) Humidity (% RH) Conductivity (S·cm-1) Δ (S/cm) 

25.0 95 
6.11 ×10-7 1.38E-08 

35.0 95 
1.43 ×10-6 3.24E-08 

45.0 95 
2.16 ×10-6 4.88E-08 

55.0 95 
2.92 ×10-6 6.58E-08 

65.0 95 
3.72 ×10-6 8.40E-08 

75.0 95 
1.76 ×10-6 3.98E-08 

85.0 95 
8.41 ×10-6 1.90E-07 

75.0 95 
2.96 ×10-6 6.67E-08 

65.0 95 
2.22 ×10-6 5.02E-08 

55.0 95 
1.82 ×10-6 4.11E-08 

45.0 
95 1.41 ×10-6 3.18E-08 

35.0 
95 2.08 ×10-6 4.70E-08 

25.0 
95 1.56 ×10-6 3.53E-08 

25.0 
95 6.96×10-6 1.57E-08 
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Figure 4.25: (a) Nyquist plot at 95% RH with varied temperatures, and (b) 
Arrhenius plot of compound 1. 

 

 

 

 

 

 

 

 

Figure 4.26: PXRD pattern of 1 after proton conductivity (Post PC) measurements: 
Simulated vs. Post PC. 
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4.3 Synthesis, characterization and properties of Lead based-MOFs   

Three new lead-based MOF; (14, 17, 18), with exotic properties by using a simple 

facile and optimized dissolution-crystallization method were successfully synthesized by 

using H3BTC, with or without aniline (An) or imidazole (Im). These new PbMOFs are 

reported along with their structural characterizations and photo luminescent properties.   

In recent years, there is an immense interest in discovering white-light single 

phosphors from Pb-based compounds, due to its intrinsic broadband emission originated 

from self-trapping excision and defects [233]. Several white emitting Pb-based MOCPs 

have also been reported [234]. Enriching the library of single component, near white-

emission Pb MOFs, herein the author reports three new BTC-containing PbMOFs, in 

which, compound 17 displays near white-light emission.  

It was able to get different porous compounds based on lead(II) that show different 

structures with different pore sizes and potential different photoluminescence (PL) under 

the long wave length of UV light (365nm) via only varying the solvents mixtures and 

employing simple and optimized solution layering approach [235].   

The combination of lead(II) nitrate, Pb(NO3)2, and benzene 1,3,5-tricarboxylic acid 

(H3BTC= C9H6O6) as O-donor ligand, Figure 4.27, with or without N-donor ligand (like 

aniline, imidazole) in a mixture of (H2O/1,4-dioxance), (H2O/methanol (MeOH)) or 

(H2O/DMF) produced three different new porous coordination polymers (13, 14, 15, 17 

and 18). The pores of these compounds was governed by the solvent, that used during the 

synthesis. Air stable compounds 14 and 17 with nearly quantitative yield were identified, 

by the reaction of aqueous-based Pb(NO3)2 with 1,4-dioxane or MeOH solution of 

H3BTC in the presence of aniline (An) or (Im) for compounds 14 or 17, respectively, 

under dissolution-crystallization with optimized condition. Compound 18, on the other 
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hand, was found to be relatively unstable at ambient condition; fresh batch with the use 

of mother liquor is required for structural characterizations. 

 

 

 

 

 

 

 

 

Figure 4.27: (a, b) The ball and sticks module, (c) the sticks module of the free linker 
H3BTC. 

 

The structure was determined, by single crystal X-ray diffraction, and its single-phase 

purity was examined by bulk sample measurements, by using powder X-ray diffraction 

coupled with TGA and CHN analysis. Prior to this discovery, the researcher attempted 

several synthetic conditions to obtain quantitative yields, that involved combinations of 

the following variables, such as (a) molar ratio of Pb(NO3)2 and H3BTC, (b)variety of 

solvent or mixture of solvents. All three compounds were found to change their structures, 

during storage, even in the presence of mother liquors. 
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The use of modulator, such as mono-protic acid or monocarboxylic acid, is often 

adopted to produce an air stable transition metal (TM)-based MOFs with quantitative 

yield [213- 216]. Further, Li et. al clarified that the use of an appropriate modulator, in 

some cases without being present in the structure, could modify the surface structure of 

TM-based MOFs, thus greatly enhances the stability and performance of the resulting 

MOF [236]. 

Based on the previous report, a borderline organic base is a suitable modulator for a 

borderline acid of Pb-based MOCP resulting in a stable and phase pure compound [94], 

in accordance with Pearson’s hard-soft acid base (HSAB) concept [237, 238]. Adopting 

the above, the researcher found that, the use of (An) or (Im), after several trials using 

other N-containing organic molecules as modulation agents, was required to make stable 

compounds of 14 and 17, respectively.  

The unidentified peaks in the PXRD patterns of 13 and 15 were gradually disappeared 

as the suitable, a modulation agent was added during reaction, that eventually, after 

optimizing the synthetic conditions, reached the PXRD phase pure patterns for 14 and 17 

respectively with close to quantitative yields. At the moment, using the above-mentioned 

synthetic conditions for 14 and 17, the researcher could not detect the presence of aniline 

nor imidazole within the structures crystallographically nor by TGA nor CHN analysis, 

which supports the role of modulation for aniline and imidazole in these cases. Further 

investigations to examine the role of the modulator during synthesis, reaction mechanism, 

and resulting structural defect vs. performance are currently on-going. 

The use of N-containing molecules as modulation agents gave big crystals of 14 and 

17 from the same stoichiometric ratios of 13 and 15 respectively, which both have pure 

phase PXRD patterns that matches with the simulated one with potential PL.  
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Unfortunately, attempts to make an air stable compound 18 was unsuccessful. 

Attempts to obtain these three phases by simple solvent exchange were unfruitful either. 

Activation attempts for 14 and 17, starting from rather harsh thermal activation to 

relatively milder supercritical CO2, as well as, solvent exchange activations were 

unsuccessful. 

4.3.1 Elemental analysis (C.H.N) 

Results tabulated in Table 4.6 summarized the molecular formula, molecular weight, 

%yield, and elemental analyses for the synthesized MOFs. The molecular formula and 

molecular weights of the new compounds was obtained from the SCXRD analyses. The 

elements analysis ensures that, the experimental results are matched well with the 

calculated values theoretically.  

 

Table 4.6: The physical data of the new Lead synthesized compounds. 

Comp.
code 

Molecular 
formula, colour and 

appearance 

Molecular 
weight 

g/mole 

Yield % 

Percentage of element 
(%) 

Experimental 
(Theoretical) 

C H N 

13 
C13H13O9Pb 

white small 
crystals 

520.46 

24.30% 
30.23 

(29.98) 
2.20 

(2.50) 
0.20      
(-) 

14 
C13H13O9Pb 

Light blue big 
crystals 

520.46 

88.37% 
30.02 

(29.98) 
2.52 

(2.50) 
0.00      
(-) 

15 
C12H11NO7Pb 

white tiny crystals 

488.44 

58.50% 

A quantitative analysis of the 
crystals was not performed due 
to decomposition of the product 

outside of mother liquor. 

17 
C12H11NO7Pb 

white small crystals 

488.44 

79.68% 
23.59 

(23.74) 
0.89 

(0.90) 
-0.01    

(-) 

18 
2(C9H4O8Pb),O 

white big crystals 

910.66 

91% 
23.65 

(23.74) 
0.89 

(0.90) 
0.00      
(-) 
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4.3.2 FTIR Vibrational spectra of PbMOFs 

The FTIR spectral data of the free ligand/ linker (H3BTC), Figure A-9 in Appendix A, 

were compared with those of the new synthesized Pb MOFs. It was observed from the 

FTIR spectra of 13 and 14, Figures A-10 and A-11, respectively, and also from the spectra 

of 15 and 17 Figures A-12 and A-13, respectively, that each pair of these compounds 

depict peaks nearly in similar region, which confirmed (beside the PXRD, TGA charts 

and CHN measurements) that, each pair of these compounds have the same structures. 

The FTIR spectrum of the free ligand H3BTC, shows also a broad band appears around 

3100-2546 cm-1 assigned to (O-H) of the COOH group. A weak band of absorption 

appears at 2993 cm-1 which is overlapped with the (O-H) and attributed to (C-H) 

vibrations of sp2 C of the ring. The (CH) vibration of benzene ring generally appears as 

strong sharp band at region 1271 cm-1 [161].  

The FTIR spectrum of the free ligand H3BTC shows also the characteristic symmetric 

and asymmetric stretching vibrations of carboxylate groups (Figure A-9). The (COO) 

vibrations of multi carboxylate groups, that connected to the benzene ring of the free 

H3BTC ligand appeared as a strong bands at 1715- 1694 cm-1 due to the out of plane 

vibrations of (C=O) mode and the bands that appear at 1402-1325 cm-1 due to (C-O) 

mode; both attributed to the asymmetric and symmetric (COO) vibrations of the free 

ligand [26].  

The (C=O) vibrations are shifted in the spectrum of PbMOFs with 1,4-dioxane to the 

lower wavenumbers and observed at the region 1695-1608 cm-1 for 13 and as a sharp 

peak at the region 1693 cm-1 for 14, an overlapped peak of (C-O) vibrations appear at 

1367 cm-1 for 13, Figure A-10, and at 1375 cm-1 for 14, Figure A-11. The (C=O) 

vibrations in the spectrum of PbMOFs with MeOH are also shifted and observed at the 

Univ
ers

iti 
Mala

ya



95 

region 1696-1607 cm-1 for 15 and 1699-1608 cm-1 for 17, respectively, whilst an 

overlapped peak appears at 1368 cm-1 for 15, Figure A-12 and at 1369 cm-1 for and 17, 

Figure A-13, respectively. The (C=O) vibration in the spectrum of PbMOFs with DMF, 

compound 18, Figure A-14, is shifted to the region 1695-1606 cm-1 and an overlapped 

peak appears at 1368 cm-1 attributed to (C-O) vibration, which provide a good evidence 

that, the ligand coordinated to the metal cations and display a different coordination 

modes [220, 221]. The peak at 1452 cm-1 is ascribed to the C-C vibration in the aromatic 

ring [223]. Furthermore, the band around 741 cm-1 is related to the bending vibration of 

C-H group of the tri-substituted ring [239].  

The coordination between the Pb metal ion and O atom of COO¯ group of the ligand 

H3BTC to form the new PbMOFs could confirmed also by observing some new bands, 

that appear in the spectra of the new compounds; at: 514 cm-1 for 13; 515 cm-1 for 14; 

522 cm-1 for 15; 535 cm-1 for 17 and at 516 cm-1 in the spectrum of 18, Figures A-10 to 

A-14, respectively. All these new bands attributed to a vibrational mode, that involving 

the metal center and confirm the formation of Pb-O interaction in these new MOFs and 

give a good evidence that H3BTC ligand coordinated to the metal center cation Pb(II) in 

the new compounds to display different coordination modes [194, 222], Figure 4.28, (All 

the FTIR patterns of other PbMOF compounds uploaded at Appendix A).  

The presence of Lewis base (the O–H moiety) in these compounds are confirmed by 

Attenuated Total Reflectance Fourier-Transform Infrared (ATR FTIR) spectra from the 

observation of a peak around 3575 cm-1 indicating the existence of weakly hydrogen-

bonded hydroxyl groups, Figure 4.29, confirming the observation in the crystal structure. 

Reduction of proton exchange due to relatively long hydrogen bonds leads to relatively 

sharp O-H stretch. A sharper peak, for a comparison, would be observed at 3600 cm-1 for 

a fully free O-H group of carboxylic acid in MOCP [240]. 
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Figure 4.28: ATR FTIR spectra of: (left) 13, 15 and 18 comparing with the H3BTC 
ligand, (right) 14, 17 and 18 comparing with the H3BTC ligand showing spectral 
region extended 4000-400 cm-1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29: ATR FTIR spectra of 14, 17 and 18; (left) showing spectral region 
extended 4000-400 cm-1, (right): showing spectral region (shaded in grey) of weakly 
hydrogen-bonded O-H stretch. 
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4.3.3 SCXRD analysis: Structural Description 

The single crystal structure refinements with their relevant crystallographic data for 

14, 17 and 18 are found in Table 4.7. Tables B-2 to B-4 in Appendix B show 

representative bond distances and angles of compounds 14, 17 and 18, respectively. 

Figure 4.30 (A) depicts the asymmetric unit of 14, that consists one site of a lead atom 

(Pb1iii) with one monoprotonated ligand (HBTC¯) at (O5) site, and a half molecule of 

uncoordinated 1,4-dioxane. The O atoms of HBTC¯ complete the coordination sphere 

around the lead cation, forming a distorted pentagonal bipyramid, PbO7, Figure 4.30 (B).  

 

 

 

 

 

Figure 4.30: (A) Labeling scheme of compound 14. Displacement ellipsoids drawn 
at the 50% probability level. (B) The coordination environment around the lead 
atom in 14. 

 

The asymmetric units of compounds 17 and 18, also comprised of one lead cation, one 

HBTC¯, with additional five uncoordinated molecular water for 17 and one coordinated 

DMF for 18. A distorted bicapped pentagonal bipyramid, PbO9, was observed for both 

17 and 18 with coordinated oxygen atoms are solely from the monoprotoned ligand 

(HBTC¯) for 17, Figure 4.31, whereas, 18 has an additional coordinated oxygen from 

DMF (because the N atom in DMF structure connected to two methyl groups that push 

the electron density away from N atom and towards O atom, which has a higher electron 

negatively than N atom), Figure 4.32.  

(A) 
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Figure 4.31: (A) Labeling scheme of compound 17. Displacement ellipsoids drawn 
at the 50% probability level. (B) The coordination environment around the lead 
atom in 17. 

 

 

 

 

 

 

 

 

 

 

Figure 4.32: (A) Labeling scheme of compound 18. Displacement ellipsoids drawn 
at the 50% probability level. (B) The coordination environment around the lead 
atom in 18. 
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Table 4.7: Crystal Data and Structure Refinement details for 14, 17 and 18.a 

 Compound 14 Compound 17 Compound 18 

Empirical formula C13 H13 O9 Pb C18 H8 O17 Pb2 C12 H11 N O7 Pb 

Formula weight 520.42 910.62 488.41 

Temperature 293(2) K 203(2) K 296(2) K 

Wavelength 0.71073 Å 

Crystal system monoclinic triclinic monoclinic 

Space group C2/c P -1 P 21/n 

Unit cell dimensions 

a = 17.239(2) Å,  

α = 90.00° 

b = 7.0225(8) Å,  

β= 104.735(10)° 

c = 19.911(2) Å,  

γ = 90.00° 

a = 7.3989(4) Å,  

α = 94.336(4)° 

b = 8.2196(4) Å,  

 β = 104.943(4)° 

c = 10.1437(5) Å, 

γ = 108.270(3)° 

a = 10.5004(3) Å, 

 α = 90° 

b = 7.1398(3) Å, 

 β = 102.160(2)° 

c = 17.1285(5) Å,  

γ = 90° 
Volume 2331.2(5) Å3 557.70(5) Å3 1255.32(7) Å3 

Z 6 1 4 

Density (calculated) 2.224 g/cm3 2.711 g/cm3 2.584 g/cm3 

Absorption coefficient 10.900 mm-1 15.163 mm-1 13.476 mm-1 

F(000) 1470 416 912 

Crystal size 
0.12 × 0.032 × 0.024 

mm3 

0.13 × 0.068 × 0.022 

mm3 

0.127 × 0.032 × 0.026 

mm3 

θ range for data collection 2.12 to 28.26° 2.648 to 28.35° 2.433 to 27.099° 

Index ranges -22<=h<=21, -9<=k<=9,      
-25<=l<=26 

-8<=h<=9, -10<=k<=10, 
-13<=l<=13 

-13<=h<=13,           
-9<=k<=9, -21<=l<=21 

Reflections collected 14566 9327 10151 

Independent reflections 2857 [Rint = 0.0910] 2752 [Rint = 0.0683] 
2686 [Rint = 

0.0719] 

Completeness to θ = 
27.56° 

98.4% 99.5% 97.8% 

Refinement method Full-matrix least-squares on F2 

Data / restraints / 
parameters 

2857 / 0 / 174 2752 / 122 / 169 2686 / 0 / 190 

Goodness-of-fit 1.000 1.006 1.029 

Final R indices [I>2σ(I)] 
Robs = 0.0389,              

wRobs = 0.0737 

Robs = 0.0471,              

wRobs = 0.1125 

Robs = 0.0371,          

wRobs = 0.0683 

R indices [all data] 
Rall = 0.0635,                  

wRall = 0.0819 

Rall = 0.0616,                 

wRall = 0.1207 

Rall = 0.0567,               

wRall = 0.0767 

Largest diff. peak and hole 1.523 and -1.321 e·Å-3 3.343 and -2.571 e·Å-3 1.384 and -1.087 e·Å-3 
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Such distorted polyhedral was also observed in other lead-based coordination 

compounds, the Pb-O bond length fall into the range of 2.415(6) - 2.738(7) Å, typically 

observed in Pb-based coordination polymers  [241- 246]. All coordination modes of 

HBTC¯ around Pb center for 14, 17 and 18 show O, O-chelation, oxygen bridging, 

monodentate, as well as, uncoordinated oxygen atoms, which includes oxygen bridging 

from DMF in 18, Figures 4.30 - 4.32. 

The three compounds are built from slightly different 1D structures, in which PbOx (x 

= 7 for 14, and 9 for 17 and 18) polyhedral are linked by oxygen bridging in zigzag 

manner to form 1D structures of (Pb2O12)n, (Pb2O16)n, and (Pb2O15)n moieties for 14, 17 

and 18, respectively, Figure 4.33. (Pb2O12)n and (Pb2O15)n moieties extend along the b-

axis, whereas, (Pb2O16)n stretches along the a-direction. Double oxygen bridges with 

zigzag pattern was observed for 14 (Figure 4.30) exhibiting nearly straight O-Pb-O angle 

(167.8 °), whereas, 17 and 18 exhibited slightly bent zigzag patterns (O-Pb-O angle of 

150.8° for 17 and 136.8° for 18), Figures 4.31, 4.32. Additional bridging oxygen from 

DMF was observed for 18, Figure 4.33 (C). Unlike the 1D moieties of 14 and 17, Figure 

4.33 (A and B), that comprise of alternate polyhedral related by 21 screw axis, an 

inversion center relates the alternate polyhedral in 18 forming the 1D building block of 

the compound, Figure 4.33 (C). 
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Figure 4.33: 1D building block of: (A) 14, (B) 17, and (C) 18, that builds into 3D 

MOF structures. 

 

Such distinct 1D building blocks, templated by different solvent, determine their final 

3D structures with slightly different frameworks, and pore sizes to accommodate their 

corresponding solvent in their infinite 1D channel, Scheme 4.1. In compound 14, the 

HBTC¯ connect the 1D (Pb2O12)n moieties in both a- and c-directions to form a porous 

3D framework, in which each 1D moiety is related by a glide plane along the c-directions, 

Scheme 4.1 (A). The HBTC¯ also link the 1D (Pb2O16)n in b- and c-directions forming a 

porous 3D framework of 17, in which an ac mirror plane relates each (Pb2O16)n moiety, 

Scheme 4.1 (B). The 1D (Pb2O15)n moieties, related by a glide plane along the c-axis, are 

connected in a- and c-directions through HBTC¯ to construct  a 3D framework of 18, 

Scheme 4.1 (C). Compounds 14 and 17 have a rather similar pore size (~7.50 Å), and are 

bigger than that of compound 18 (~3.05 Å pore size). Summarizing results from the 

different approaches that used in the synthesizing of different batches of PbMOFs was 

explained in Scheme 4.1:  
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Scheme 4.1: 3D MOF structures of: (A) 14 viewed along the b-axis, (B) 17 viewed 
along the a-axis, (C) 18 viewed along b-axis; with insets show the corresponding 
optical microscopy image of each crystal. 

 

Compounds (13 and 14) offered the same formula (based on PXRD 

measurements), [(C13H13O9)Pb];  Pb(HBTC)(1,4-dioxane)0.5, (HBTC= C9H6O6) and 

crystallize in the C2/c Monoclinic space group (a =17.239(2) Å, b =7.0225(8) Å, c 

=19.911(2) Å,  =104.74(1)) with molecular mass of 520.46 gm.mol-1; Compounds (15 

and 17) display the same formula (based on PXRD measurements), [(C18H8O17)Pb2]; 

Pb2(HBTC)2(H2O)5, and crystallize in the  P-1 Triclinic space group (a = 7.3989(4) Å, b 

=8.2196(4) Å, c =10.1437(5) Å, α =94.336(4)°,  =104.943(4), γ =108.270(3)°) with 

molecular mass of 910.66 gm.mol-1, while Compound 18 with the 
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formula, [(C12H11NO7)Pb]; Pb(HBTC)(DMF), crystallizes in the P21/n Monoclinic space 

group (a =10.5004(3) Å, b =7.1398(3) Å, c =17.1285(5) Å,  =102.160(2)) with 

molecular mass of 488.44 gm.mol-1 

Another common feature of the three compounds (14, 17 and 18), that may contribute to 

structural rigidity is the monoprotonated dicarboxylic acid, with Lewis base oxygen atoms 

(O(5) atoms of HBTC¯) located within the chains. There are weak hydrogen bonds, bond 

distances of 1.79 and 1.89Å, between O(2) atoms of HBTC¯ and H(5) atoms of the mono-

protonated dicarboxylic acid as shown in dashed blue bonds for 17 and 18, respectively, 

Figure 4.34 (B and C). For compound 14, Figure 4.34 (A), the weak hydrogen bond with 

bond length of 1.85Å, forms between O(1) atoms of HBTC¯ ligand and H(5) atoms of the 

mono-protonated dicarboxylic acid.  

 

 

 

 

 

 

 

 

 

Figure 4.34: Hydrogen bonding images in: (A) 14, (B) 17, and (C) 18, common to all 
structures. 
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The topological analysis [247] of the three 3D structures reveal a 5-c uninodal net with 

topological symbol of {46.64} for both 14 and 17; whereas, a topological symbol of 

{46.52.62}{46.56.63} simplified as a 5,6-c 2 nodal net is observed for compound 18. 

 

 

Figure 4.35: Normal and simplified underlying structure with 5,6-c net with 
stoichiometry (5-c)4(6-c)3; 2-nodal net Point symbol for net: {46.52.62}{46.56.63}, of 
compound 14, Topological type: NEW. 

 

 

Figure 4.36: Projection along 100 plane of compound 14. 
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Figure 4.37: Normal and simplified underlying structure with 5-c net; uninodal net 
of compound 17 Point symbol for net: {46.64}. 

 

 

 

 

Figure 4.38: Normal and simplified underlying structure with 5,6-c net with 
stoichiometry (5-c)(6-c); 2-nodal net of compound 18, Point symbol for net: 
{46.52.62}{46.56.63}, Topological type: NEW. 
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4.3.4 Microscopic Features 

The different batches (which produce from the same starting materials) of PbMOFs 

displayed different crystal shapes and morphologies with different crystal sizes observed 

under the electrical microscope, for instance, the stacks plate-like crystals, the ribbon-like 

crystals and the small thick block- like crystals. This feature can explain the key role of 

the varying of the solvent that use in the synthesizing procedure beside the use of a proper 

N-containing modulating agents to produce difference compounds from the same starting 

materials, Figure 4.39.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.39: Optical-images from different batches of PbMOFs. 

18: Pb(DMF)MOF 

15: Pb(MeOH)MOF 17: Pb(MeOH+Im)MOF 

14: Pb(Dioxane+An)MOF 13: Pb(Dioxane)MOF 
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4.3.5 Photoluminescence (PL) Observation 

The digital photo-images, that represented the PL observations under UV and visible 

light of different Pb-MOFs, Figure 4.40, shows that, compound 14 emits pale greenish 

yellow color because the absorption of the (An) molecules, while a “white” luminescent 

is emitted from compound 17 because the absorption of the (Im) molecules and a light 

yellow luminescent could be observed from compound 18 because the presence of the 

DMF molecules inside the pores of the framework.  

 

 

 

 

 

 

 

 

Figure 4.40: Digital photo-images of PL of PbMOFs for different compounds. 

 

4.3.5.1 Photoluminescence phenomena (PL)  

The use of luminescing ligand in luminescing MOF is advantageous in two folds; 

increasing PL intensity and/or shifting emission maxima for tunable PL color. The latter 

phenomena have been reported to relate with white emission reported in several MOFs 

[37, 248, 249].  

14c: (An=0.4mmol)  

Visible         UV  

14b: (An=1mmol)  

Visible         UV  

17c: (Im=0.4mmol)  

Visible        UV  Visible         UV  
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In recent years, there has been an immense interest in discovering white-light single 

phosphors from Pb-based compounds, due to its intrinsic broadband emission originated 

from self-trapping exaction and defects [233, 234]. Several white emitting Pb-based 

frameworks and coordination polymers (MOCP) have also been reported [37, 248, 249]. 

Enriching the library of single component, near white-emission Pb frameworks, herein 

the researcher report three new BTC-containing Pb frameworks, in which compound 17 

displays near white-light emission. The compounds are made by using a facile 

dissolution-crystallization method, exploiting the use of hard-soft acid base (HSAB) 

principle to find a suitable modulator to yield a phase pure product. 

The room temperature, solid state emission spectra of as received H3BTC ligand, and 

compounds 14 and 17, including their digital images representing their PL colors are 

shown in Figure 4.41. Compound 14, when excited at 350 nm, emits pale greenish yellow 

color with broad peak covering 530-570 nm, Figure 4.41. Contrasting UV-Vis spectrum 

14 to that of H3BTC, both Intra Ligand (ILCT) and Ligand-to-Metal Charge Transfers 

(LMCT) might be responsible for the observed emission spectrum. ILCT is corroborated 

by a similar absorption band appears in both 14 and H3BTC at maxima of 302nm. The 

disappearance of broad absorption shoulder of the ligand in 14 at 330nm, validates the 

LMCT, Figure 4.42.  

A bluish white luminescent is observed for as received H3BTC with broad emission 

spectrum covering almost entire visible range (420 to 620 nm) with several maxima at 

490, 544, and 615nm when excited at 350 nm, Figure 4.41. Such emission is typically 

due to n→* and/or →* transition [37, 248, 249]. A more pronounced “white” 

luminescent is emitted from compound 17 with a rather broad emission spectrum, 

covering also at 420 to 620 nm range, Figure 4.41. An additional feature of a shoulder 

band in yellow range (560-580 nm) was clearly observed for 17 compared to that of 
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ligand, that could be partly ascribed to Metal-to-Ligand Charge Transfer, MLCT [37, 248, 

249]. 

 

 

 

 

 

 

Figure 4.41: Solid state emission spectra and the corresponding PL color images of: 
(A) H3BTC, (B)14, and (C) 17. 

 

Overall, the observed near white light emission of 17 could be attributed to LMCT 

and/or MLCT, as well as, ligand-centered transitions (ILCT), which correspond well to 

UV-Vis spectra study, Figure 4.42. Comparing with spectrum of as received H3BTC 

ligand, a disappearance of broad shoulder at 330nm in 17 might indicate the presence of 

LMCT, and the emergence of new maxima at 228 nm in 17 signals the existence of 

MLCT. Further, similar maxima at 302nm indicates ILCT also occurring in 17. All of 

these transitions are represented by a broad emission spectrum, which leads to near white 

PL color emitted from 17. Such a broad, white emission spectrum was not only observed 

in Pb-based MOF, but also is reported in other Pb-based compounds, such as Pb-based 

perovskite halides, in which such abroad emission spectrum signature might stem from 

excitation self-trapping [233, 234].  
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Figure 4.42: Solid state UV-Vis spectra of H3BTC, compounds 14 and 17. 

 

The quantified colors of the emissions of all compounds are plotted in the Commission 

International l’Eclairage (CIE) chromaticity diagram, Figure 4.43: The as received 

H3BTC has CIE coordinates of (0.30,0.34), giving a white with blue tinge gamut, in 

accordance to the observed PL image, when excited at 350 nm. Compound 17 exhibits 

near white color gamut, when excited at 350 nm, with CIE coordinate of (0.33,0.36), 

showing potential for a single component white LED application. Several Pb-based 

MOFs were also reported, as a near white light single component phosphor with CIE 

coordinates very close to ideal (0.33, 0.33). The white light emission in these papers were 

likely due to combination of ILCT, LMCT and/or MLCT as well [37, 248, 249]. As 

expected, compound 14 gives greenish yellow CIE coordinate of (0.34, 0.44) under 350 

nm excitation. 
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Figure 4.43: Corresponding CIE chromaticity diagram for: H3BTC (A), 14 (B) and 
17 (C). 

 

4.3.6 Powder X-ray Diffraction (PXRD) analysis 

The measured patterns were compared to the simulated diffraction patterns by using 

the respective single crystal data. Based on PXRD patterns, the researcher could confirm 

that, the synthesized Pb-MOFs (with all different solvents) show a high degree of 

crystallinity, with sharp and well-defined peaks comparing with the simulated patterns, 

that obtained from single crystal x-ray diffraction analysis (Crystallographic Information 

Framework, CIF file). PXRD was used to confirm the purity of the new compounds as it 

could provide phase purity information and also reveal the presence or absence of 

polymorphs. 

After many trials to get a pure phase for the synthesized PbMOFs, it seems that, the 

addition of different appropriate modulator agent with exact molar ratio, to the PbMOFs 

helped in reducing the defects via giving a pure phase patterns and did a modulation on 

the framework structures of compounds 13, Figure 4.44 (left), and 15, Figure 4.46, which 

they had some unidentified peaks. The PXRD pattern of the products obtained after 

optimized synthetic conditions are showing the pure phase of 14, Figure 4.44 (right) and 

17, Figure 4.47, which confirm that, no additional polymorph is present in the sample that 

was used for further PL study. For instance, the addition of (0.4mmol) aniline to 13 gave 

(0.33, 0.36) 
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a pure phase PXRD pattren of compound 14(c), Figure 4.44 (right), while the addition of 

(0.5mmol)  of aniline to compound 13 gave a PXRD pattren which was not very matching 

with the simulated pattern, that was obtained from CIF, compound 14a, Figure 4.45 (left). 

Furthormore, the addition of (1mmol)  of aniline to compound 13 gave a different PXRD 

pattren which was not matching with the simulated pattern and showed many unidentified 

peaks, compound 14b, Figure 4.45 (right). 

 

 

 

 

 

Figure 4.44: PXRD patterns of: (left) compound 13 (without N-donor) showing 
some unidentified peaks, (right) compound 14c (13 with An = 0.4mmol) shows 
simulated, A, and observed, B, patterns.  

 

Figure 4.45: PXRD patterns of compounds: (left) 14a (with An=0.5mmole), (right) 
14b (with An=1mmole).  
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On the other hand, and after trials to get a pure phase from either dry or mother liqour 

batch of 15, Figure 4.46 (left or right), the researcher observed that, the addition of Im 

(0.4mmol) as a N-containing modulator agent to compound 15 gave a pure phase PXRD 

pattren of 17, Figure 4.47. Whilst, the addition of aniline to compound 15 did not give a 

pure phase PXRD pattern comparing with the simulated one, that was obtained from CIF, 

Figure 4.48. 

 

 

 

 

 

 

Figure 4.46: PXRD patterns of: (a) compound 15 in dry batch, (b) compound 15 in 
mother liquor batch. 

 

 

 

 

 

 

Figure 4.47: PXRD patterns of compound 17 shows the simulated, A, and observed, 
B, patterns.  
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Figure 4.48: PXRD patterns of observed 15, red, comparing with the simulated 
black and its observed pattern after adding aniline, blue. 

 

Besides that, the addition of (An) or (Im) or even Piperazine (Pip) to compound 18 did 

not give a pure phase PXRD pattern, Figure 4.50. While a washed and dried compound 

18, however, was found to coexist with unknown impurity, Figure 4.49, even after several 

optimization attempts; therefore, no further property was reported besides structural 

characterizations. 

  

 

 

 

 

 

Figure 4.49: PXRD patterns of: simulated, observed (* shows unidentified peak in 
washed and dried), and observed (in mother liquor) patterns of compound 18 (# due 
to mylar film).  

15 (washed & dried)          
15 in Mother Liquor 
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Figure 4.50:  PXRD patterns of the dry batch of 18 comparing with its pattern after 
adding of (0.4mmol) of: (a) Aniline, (b) Imidazole (c) Piperazine as N-donor ligand. 

 

4.3.7 TGA measurements 

To determine the thermal stability of the studied lead compounds, a thermo-

gravimetric analysis was performed. The studied compounds (13-18) were analyzed at 

TGA machine under 20 ml/min flowing nitrogen gas (N2) with temperature ramping at a 

rate of 5 °C/min starting from RT to 900 °C, Figures 4.51 (a - e).  

The bulk phase purity of 14 and 17 were further confirmed by TGA analysis in which, 

the observed weight losses of the corresponding solvent and the ligand are closely 

matched with the expected values that was calculated from formulas obtained from 

crystallographic refinements, Figure 4.51 (a) and (b). This may also support that, within 

the synthetic conditions, used in here, neither of the modulator is presented in the 

structure, in conjunction with crystallographic refinement results, as well as CHN 
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analysis. The following TGA results, Figures 4.51 (a - e), confirmed that the materials 

which used in the synthesizing of PbMOFs are the same (the ligand H3BTC and Lead 

cations) and the difference among the three different MOFs are only the used solvents. 

The first mass loss for compound 14, (100-89) %, started around 100 °C (near boiling 

point of dioxane) while the first weight loss for compound 17, (100-91.5) %, started at 65 

°C corresponding to the releasing of solvent molecules (H2O or MeOH). The frameworks 

of 14 and 17 remained stable until the second weight loss occurred around (89-48) % at 

390°C and around (89-44) % at 380 °C, respectively, when the organic ligand H3BTC 

started to decomposed. The lead oxide started to precipitate at 540 °C and the lead metal 

started to precipitate at 500 °C from the frameworks of 14 and 17, respectively, Figure 

4.51 (a and b).  

 

 

Figure 4.51: (a) TGA thermograms of 14, (b) TGA thermograms of 17, (c) TGA 
thermograms of 13, (d) TGA thermograms of 15, (e):  TGA thermograms of 18. 

 

(a) (b) 
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4.3.7.1 Discussion of TGA measurements patterns for the other batches of PbMOF 

The first mass loss for compound 13 and 15, (100-92) %, started around 90 °C (near 

boiling point of dioxane) and 67 °C (boiling point of Methanol), respectively, 

corresponding to the releasing of solvent molecules, which exist inside the pores of the 

framework. The framework of 13 remained stable until 390 °C when the second mass 

loss occurred (91-57) % and the H3BTC ligand started to decomposed, Figure 4.51 (c). 

Whilst, the framework of 15 remained stable until 400 °C when the organic ligand started 

to decomposed and the second weight loss occurred from (90-44) %, Figure 4.51 (d). The 

lead oxide started to precipitate around 540 °C from the framework of 13, and around 510 

°C from the framework of 15.  

 

Figure 4.51: Continued.   

 

The first mass loss for compound 18, (100-90) % started around 100 °C corresponded 

to the releasing of solvent molecules (DMF), that exist inside the pores of the framework. 

The second weight loss of this compound occurred from (88-47) % and the framework 

remained stable until 400 °C when the H3BTC started to decomposed, and around 510 °C 

the lead oxide started to precipitate, Figure 4.61 (e). 

(c) (d) 
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Figure 4.51: Continued. 

 

Table 4.8: The summarized results of the TGA charts for different batches of 
PbMOF. 

Comp. 
no. 

first mass losing 
% = solvent 

formula weight 
(g/mole) 

Temp. 
°C 

No. of 
solvent 

molecules 

Second mass 
losing % = 

ligand formula 
(g/mole) 

Temp. 
°C 

13 
8.5% = 44.05 

(g/mole) 
75-100 0.5 C4H8O2 37  H3BTC 390 

14 
8.04% = 44 

(g/mole) 
85 0.5 C4H8O2 41.8  H3BTC 390 

15 10% = 90 (g/mole) 70 3 MeOH 43  2H3BTC 395 

17 
9.72% = 89 

(g/mole) 
65 3 MeOH 47.8  2H3BTC 395 

18 
10% = 91.066 

(g/mole) 
100 1.25 DMF 42  2H3BTC 400 

 

 

(e) 
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4.3.8 FESEM analysis 

The bulk crystal morphologies show different corresponding stacks plate-like crystals 

for 14, ribbon-like crystals for 17 and small thick block- like crystals for 18, as shown in 

optical images, Figures 4.39, and SEM images, Figure 4.52. These results confirmed that 

by only changing of the solvents (1,4-dioxane, MeOH and DMF) which used in the 

synthesizing procedure it was able to get various structures with different morphologies 

from the same starting materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.52: SEM images of: (A) plate stacks-like crystals of compound 14, (B) 
ribbon-like crystals of compound 17, (C) small thick block- like crystals for 18.  

 

 

(A) 

(B) 

(C) 
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4.3.9 Dye adsorption study 

Water pollution becomes worldwide threat, as we witness scarcity of clean water, due 

to global industrialization [250- 252]. Dyes, used in textiles, painting, paper, and plastic 

industries, contribute the most water pollutant. Close to 100,000 dyes are available with 

production rate of 105 tons/year, from which 2% effluents were discharged into 

surrounding aquatic system. Parts of the effluents might contain hazardous and toxic 

compounds, that are harmful to aquatic organisms that might eventually affecting human 

health [253]. The need for effective and efficient dye adsorbent is critical. 

MOF, due to its versatile chemistry, is one of the most promising porous materials for 

dye adsorbent [254]. These new porous materials can absorb some guests such as water, 

solvents, organic molecules like dyes and aniline (An). The dyes Absorption behavior of 

some of the new synthesized compounds (14 and 17) were explored towards two organic 

dyes, methylene blue (MB; cationic dye) and methyl red (MR; neutral dye) through batch 

method and by using UV-vis spectrophotometer which confirm that 14 is more efficient 

than 17 in absorbing both MB and MR. The visual observations revealed that compound 

13 can be employed as aniline sensor because it can produce new compounds with 

different colors depending on the concentration of the absorbed amount (An). These 

results suggested that 13 is not only a promising candidate as adsorbent for (An) removal 

but to be as (An) detector base on the PL emissions under UV and visible light. Having 

an infinite 1D pore with suitable size to capture dyes [255], compounds 14 and 17 were 

used to remove methylene blue (MB) and methyl red (MR) dyes from aqueous solution. 

Figure 4.53, 4.54, 4.55 and 4.56 showcase the quantification method of dye removal by 

using UV-Vis spectroscopy technique, along with the optical images of 14 and 17 soaked 

in MB and MR aqueous solution taken, during dye adsorption process. Attempts to 

activate 14 and 17, starting from using rather harsh thermal activation to relatively milder 

supercritical CO2, as well as, solvent exchange activations were unsuccessful. In spite of 
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this, dyes adsorption of MB and MR onto both compounds, without activation (as 

synthesized) were successful. The amount of dyes left after 1 week of soaking was 1 ppm 

(~90% dye removal) for both compounds as quantified by UV-Vis spectra, for both MB 

and MR.  

 
 

Figure 4.53: Quantification method of MB dye removal by compound 14 using UV-
Vis spectroscopy technique. 

 

 

Figure 4.54: Quantification method of MB dye removal by compound 17 using UV-
Vis spectroscopy technique. 
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Figure 4.55: Quantification method of MR dye removal by compound 14 using UV-
Vis spectroscopy technique. 

 

 

 

 

 

 

 

Figure 4.56: Quantification method of MR dye removal by compound 17 using UV-
Vis spectroscopy technique. 

 

Furthermore, compound 17 was found to maintain its structural integrity 

comparatively, better than 14 after dyes adsorption as shown in PXRD patterns, Figure 

4.57. Since there are some new unidentified peak(s), observed after dyes adsorption in 

both 14 and 17, also the fact that, they could not be activated, dyes desorption followed 

by re-adsorption of these compounds were not attempted. 
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Figure 4.57: Powder X-ray diffraction patterns of: (left) compound 14 (after soaking 
with MR, MB dyes), (right) compound 17 (after soaking with MR, MB dyes) 
showing some unidentified peaks. 

 

4.3.10 Brunauer-Emmett-Teller (BET) surface area analysis: 

Stephen Brunauer, Paul Hugh Emmett, and Edward Teller (BET) published an article 

about the BET theory at Journal of American Chemical Society in 1938. The BET theory 

gives an information about the physical properties and structure of solid porous and/or 

non-porous materials, because it was used to measure the surface areas of such materials 

and shows how the surface area of these materials affect and interact with the environment 

[256]. The BET theory principle is applicable for porous and non-porous materials, 

regardless of the shape and/or the size of particles because, it utilizes the gas adsorption 

data, so it is a useful instrument for manufacturing and investigating various solids [257]. 

 Surface area analysis is a common method, that is widely used in the characterization 

of materials in order to manufacture and/or design of some solids. It is often correlated to 

some materials' properties, like moisture retention, dissolution rates, shelf life and 

catalytic activity [258]. 
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Figure 4.58: (Right): The BET instrument, (left): Schematic representation of the 
BET instrument showing the principle of measuring the surface areas and pore sizes 
process. 

 

Multilayer adsorption systems are usually employed in BET to measure the surface 

areas of the materials by using probing gases as adsorbents. The most common adsorbent 

gas that is used in BET for surface area probing is nitrogen N2 which has a boiling 

temperature about 77 K, that is why the standard BET analysis is usually conducted 

around this temperature [259]. There are some other gases that could be used as a probing 

adsorbent gas, such as carbon dioxide CO2, argon Ar and even water to allow measuring 

of surface area with different measurement scales and different temperatures. The probing 

adsorbent gas in BET should not be chemically able to react with the material surface, 

this is called physisorption process, and it different from chemisorption clearly [260].  
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The quantities of specific surface area property which determined via BET theory is 

depended on the adsorption cross section of the adsorbent molecule, because, it is a scale-

dependent property without definable single true value of specific surface area [261]. 

 

 

 

 

 

Table 4.9: Classification of the pores 

Pore Name Pore Size (Å) 

Ultra-micropore ˂ 5 
Micropore 5-20 
Mesopore 20-500 
Macropore ˃ 500 

 

Note: Å= 10-10 m, nm= 10-9 m, m= 10-6 m, so Å= 10-1 nm or 1nm= 10 Å 
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Scheme 4.2: Shows the different stages of gas adsorption process. 

 

MOF is a coordination network with organic ligands containing potential voids, which 

means that, many systems are dynamic, and changes in structure and thus corresponding 

changes in potential porosity or solvent and/or guest filled voids might occur depending 

on temperature, pressure, or other external stimuli. For these reasons, it is also not 

required that, an MOF be crystalline. There were some attempts to get away for 

maintaining the porosity of the new synthesized MOFs and/or for getting rid of solvent 

in the pore by using activation conditions, such as, vacuum oven and/or solvents' 

exchanges but, unfortunately, failed all.  

All industrial adsorbents, which are used as catalysts and supported materials in 

heterogeneous catalysis have large specific surface areas [262], e.g. silica gel has 300 -

350 m2/g, γ-alumina has 200 - 500 m2/g, zeolites have 500 - 1100 m2/g. In addition, 

activated carbons have more than 300 - 2500 m2/g of surface areas in a single gram. 

Therefore, they are highly porous or composed of very fine particles [260].  
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The physical adsorption isotherm charts can be classified as one of 6 types according 

to IUPAC classifications [263], Figure 4.59: 

Figure 4.59: Different types of the physical adsorption isotherm charts. 

 

The BET measurements of the new synthesized porous compounds which is 

summarized in Table 4.8, showed the lowest surface areas (0.6162, 1.6729) m2/g for 1, 

18, respectively, that 18 showed the largest pore sizes 979.12 Å. Compound 1 has lower 

pore size (141.73 Å) comparing with 18 but it has lower surface area, that is maybe 

attributed to the little number of pores within the selected surface area. Compound 13 

showed 2.4632 m2/g of surface area and large pore sizes 206.117 Å, while compound 14 

(which was prepared by the addition of (An) as N-donor ligand to 13) showed double of 

surface area (4.7061 m2/g) and reduced pore sizes 59.212 Å comparing with 13. 

Compound 15 has the highest surface areas (34.2916 m2/g) and the lowest pore size 

(37.729 Å) among the new synthesized compounds.  
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It thus becomes obvious that, compounds 1, 13, 14 and 15 under this study show type 

IV isotherm chart of BET (Figure 4.60 and Figures 16-20 in Appendix C) with pore sizes 

of 14.17, 20.61, 5.92 and 3.8 nm, respectively, since their pore size greater than 20 Å and 

less than 500 Å according to BET surface area and BJH pore size distribution results. 

This occurs in mesoporous materials on porous adsorbents with pores sizes in a range of 

2 – 50 nm showed hysterisis loop, capillary condensation and produce mono-multilayer 

adsorption. Whilst compound 18 shows type III with pore sizes of 97.9 nm which is 

usually be convex to P/Po axis and characterized by heats of adsorption less than the 

adsorbate heat of liquification. Adsorption proceeds as the adsorbate interaction with an 

adsorbed layer, is greater than the interaction with adsorbent surface and have adsorbate-

adsorbate interactions means unrestricted mono-multilayer adsorption occurs and 

indicates complete monolayer coverage for macro porous materials [264].  

Therefore, the researcher could conclude that, the addition of (An) to compound 13 

and producing of compound 14 did not only give a pure phase of PXRD for 13 but also 

increased the surface area and improve the adsorption isothermal pattern of this 

compound (The BET patterns of other synthesized MOFs uploaded at Appendix C). 

 

Table 4.10: The surface areas and pore sizes of the new synthesized compounds. 

Comp. 
Code 

S BET 
(m2g-1) 

BET 
Adsorption pore 

size (Å) 

BJH 
Adsorption pore 

size (Å) 

Pore volume 
(cm3g-1) 

1 0.6162 129.966 141.730 0.001895 

13 2.4632 213.007 206.117 0.012992 

14 4.7061 26.7889 59.212 0.002777 

15 34.2916 30.1488 37.729 0.020133 

18 1.6729 235.9610 979.120 0.009313 
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Figure 4.60: BET measurement of 14: shows the isotherm linear plot; red is 
adsorption curve, blue violate is desorption curve. 

 

The vacuum oven activation of compound 14 did not affect on the crystallinity of the 

compound, but the structure was not still maintaining, hence, there was a shifting in some 

origin peaks and many new unidentified peaks, that showed up in the PXRD pattern after 

the activation process, Figure 4.74 (left). On the other hand, the BET activation of this 

compound did not affect its crystallinity and there was a little unidentified peak, that 

showed up in the PXRD pattern after the activation process, Figure 4.74 (right).  

 

Figure 4.61: PXRD pattern of 14 after: (left) The vacuum oven activation, (right) 
the BET activation measurement. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In summary, we have successfully synthesized a new, rare, and highly water stable Bi 

MOF by combining H2pzdc ligand (which featuring O and N donor atoms) and Bi3+ cation 

using a simple slow evaporation method with an addition of imidazole required to obtain 

nearly quantitative yield. The resulting compound 1, Bi(pzdc)(Hpzdc)·xH2O (x= 0.5, 

0.78, 0.9, 1.25, 1.9, and 6.0), consists of Bi dimer slabs that are connected into 3D 

coordination polymer via H2pzdc linking ligands with hydrogen-bonded lattice water 

occupying the pore. The obtained publishable proton conductivity of 8.41 x 10-6 S·cm-1, 

at 85 oC and 95% RH is likely due to an extended hydrogen-bonded lattice water feature 

along the crystallographic c-direction reinforced by highly water stable structure of 1. 

We also have successfully synthesized three new lead MOFs based on H3BTC ligand 

(which featuring only O donor atoms) using a simple dissolution-crystallization method. 

Although these compounds were unstable during storage, even under mother liquor, and 

utilizing HSAB principle, further, we successfully made air stable versions of 14 and 17 

by adding a small amount of aniline and imidazole (as modulator agent), therefore they 

can be used for further bulk applications. In addition, the two compounds show different 

PL colors to that of BTC ligand, indicating a successful charge transfer. Compound 14 

was found to luminesce pale greenish yellow under 350 nm excitation, while an 

interesting near white emission was observed for 17 when excited at 350 nm. The latter 

has potential for single phase, white-light emitting compound for solid-state lighting 

application.  

Despite the fact that they cannot be activated, the researcher found that as synthesized 

14 and 17 have the ability to remove MB and MR dyes up to 90% that they could be 

promising candidates as adsorbent for dyes removal from the water's environment. 
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Most of the synthesized compounds under this study 1, 13, 14 and 15 are mesoporous 

materials since, their pore size greater than 20 Å and less than 500 Å, while compound 

18 with pore sizes of 97.9 nm is a macro porous material according to BET surface area 

and BJH pore size.  

5.2 Future work 

According to the results that obtained from the soaking of some different batches of 

BiMOFs in aqueous solution of sodium cation Na+ and acetate CH3COO− or sulfate SO4
2− 

anions to improve the proton conductivity of this MOF, our future work will be soaking 

these porous compounds in various cations and/or anions to check the ion- exchange 

ability of this kind of frameworks. Furthermore, there will be an attempt to explore the 

penetration of aniline and imidazole in the modulation process of the framework of 

PbMOFs (13 and 15) since these modulation agents did not incorporate in the structure 

of these compounds according to SCXRD measurements but only did an arrangement for 

the framework and gave very pure phase of PXRD pattern.
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