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SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS USING ITERATIVE 

HOMOTOPY ANALYSIS METHOD 

ABSTRACT 

Solving fractional differential equations (FDEs) using homotopy analysis method has 

been a challenging issue. It is mainly related to the difficulty of evaluation and low 

convergence rate at necessarily high order approximations. This research proposes 

iterative homotopy analysis method (IHAM) to fill the gap in the existing approach. At 

each iteration, an optimal convergence control parameter is computed that corresponds to 

a global minimum error of solution. When a fractional derivative of a function is much 

harder to evaluate, especially those involving both left-handed and right-handed 

fractional derivatives, it is possible to approximate the function through Taylor 

expansion. Numerical comparisons were conducted through various FDEs selected from 

the literature. The presented results conclude that IHAM delivers faster convergence and 

better accuracy. We hope that this study will initiate further research to identify other 

properties that would lead to a stable analytical method for FDEs. 

Keywords: iterative homotopy analysis method, fractional differential equations, left-

handed and right-handed fractional derivatives 

Univ
ers

iti 
Mala

ya



iv 

PENYELESAIAN PERSAMAAN PEMBEZAAN PECAHAN MENGGUNAKAN 

KAEDAH ANALISIS HOMOTOPI BERULANG 

ABSTRAK 

Penyelesaian persamaan pembezaan pecahan (FDE) menggunakan kaedah analisis 

homotopy telah menjadi isu yang mencabar. Ini terutamanya berkaitan dengan kesukaran 

penilaian dan kadar penumpuan yang rendah pada penghampiran yang semestinya tinggi. 

Kajian ini mencadangkan kaedah analisis homotopi berulang (IHAM) untuk mengisi 

jurang dalam kaedah itu yang sedia ada. Pada setiap lelaran, nilai optimum bagi parameter 

kawalan penumpuan dikira yang bersamaan dengan ralat minimum penyelesaian global. 

Apabila pembeza pecahan untuk fungsi lebih sukar untuk dinilai, terutamanya yang 

melibatkan kedua-dua pembeza pecahan tangan kiri dan tangan kanan, adalah mungkin 

untuk menghampiri fungsi itu melalui pengembangan Taylor. Perbandingan berangka 

dilakukan melalui pelbagai FDEs yang dipilih dari kesusasteraan. Hasil yang 

dibentangkan menyimpulkan bahawa IHAM memberikan penumpuan lebih cepat dan 

ketepatan yang lebih baik. Kami berharap kajian ini akan memulakan penyelidikan lebih 

lanjut untuk mengenal pasti sifat-sifat lain yang akan membawa kepada kaedah analisis 

stabil untuk FDEs. 

Kata kunci: kaedah analisis homotopi berulang, persamaan pembezaan pecahan, 

pembeza pecahan tangan kiri and tangan kanan 
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CHAPTER 1: INTRODUCTION 

We are familiar with the concept of integral and derivative in elementary calculus. 

Fractional calculus (FC) is the calculus that allows integral and derivative of arbitrary 

order. A fractional differential equation (FDE) is a generalized differential equation 

involving the fractional derivative. In the past few decades, considerable interests in FDEs 

stimulate the emergence of new applications in science. Although they are the 

generalization of ordinary differential equations, however, until recently, an effective 

general method for solving such equations was not readily accessible. This dissertation is 

devoted to a method for solving various FDEs. 

In the past decades, many scientists have developed various analytical and numerical 

methods for solving FDEs but need particular attention. Among these methods, optimal 

homotopy analysis method (OHAM) is probably the efficient procedure. In particular, it 

provides us freedom on a choice of the auxiliary linear operator and a way to control 

convergence. We also specify few improvements to eliminate a limitation that we 

encounter when solving FDEs with OHAM. 

1.1 Problem statements 

Indeed, finding an analytical solution of FDE is even harder than solving a standard 

ordinary differential equation. As seen in many treatises of FC, both left-handed and right-

handed fractional derivatives are non-local convolution integrals, depending on past 

values and future values of a function, respectively. Unfortunately, FDEs involve both 

operators simultaneously introduce an undesirable problem, as illustrated in fractional 

variational calculus and fractional optimal control problems (FOCPs). In particular, the 

integrability issue causes difficulty with the analytical evaluation of function value in 

finding the solution. Tackling the problem will have a significant practical benefit for the 

development of FC. 
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Undoubtedly, a key attribute to the success of OHAM is a convergence control 

parameter. However, due to a limited number of the parameter, we are still far away from 

reaching satisfactory accuracy to a solution of FDE that requires higher order 

approximations. Even if the number increase, it negatively impacts CPU performance as 

well. As we've already experienced, the same parameter gets repeatedly used during 

iteration, then calculating its value comes back from the starting point in series. The series 

may suffer from vanishing terms at higher order approximations, consequently, would 

lead to a lack of convergence region. Investigating the issue can potentially develop more 

robust OHAM in practice to solve FDE efficiently. For this purpose, we propose a novel 

approach called iterative homotopy analysis method (IHAM). 

1.2 Objectives 

Motivated by the above problem statements, a primary goal is to demonstrate the 

validity of IHAM for solving FDE and exploring the scope for further improvement. 

Thus, to achieve the objective, this research is guided by the following question: 

What are the possible impacts of solving FDE using IHAM? 

Since the aforementioned question may not be practically feasible, we need to narrow 

it down further to four sub-questions as follows: 

i. What issues do existing methods include OHAM, have on analytical 

solutions for different types of FDE? (CHAPTER 2) 

ii. What practical technique can benefit a relevant application to solve FDE 

better? (CHAPTER 2) 

iii. How can a convergence control parameter in IHAM be derived at each 

iteration to ensure its convergence? (CHAPTER 3) 

iv. How effective are IHAM compared to OHAM at increasing convergence 

criteria of FDE solution? (CHAPTER 4) 
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In summary, this research targets these currently unanswered questions and contributes 

knowledge that future research can build on. 

1.3 Dissertation organization 

We hope that this dissertation will be of interest to potential readers of this topic. For 

this reason, after this CHAPTER 1: INTRODUCTION, the rest is organized following a 

conventional structure. 

CHAPTER 2: LITERATURE REVIEW recalls an essential knowledge of FC that will 

be used in this dissertation, inclusive of the interplay between left-handed and right-

handed fractional operators. In this framework of FC, we consider fractional initial value 

problems (FIVPs), fractional boundary value problems (FBVPs), and fractional optimal 

control problems (FOCPs) for practically relevant tasks, as well as critical reviews of 

existing studies on these common FDEs. On the other hand, we describe the idea of 

OHAM and its shortcomings one would encounter. 

CHAPTER 3: METHODOLOGY details the implementation of IHAM. Unlike 

OHAM, we treat the convergence control parameter differently into its solution. 

CHAPTER 4: RESULTS AND DISCUSSION is devoted to a comparison between 

OHAM and our proposed IHAM attempted to solve six widely used FDE examples 

selected from the literature studied in CHAPTER 2. For each problem, we also discuss in 

detail outcomes and issues concerning obtained results. 

CHAPTER 5: CONCLUSION eventually summarizes the significance of our research 

findings and suggests future work for research. 

REFERENCES list particular papers and books that we believe are the most relevant 

cited in this dissertation. 

LIST OF PUBLICATIONS AND PAPERS PRESENTED provides a collection of 

articles that reflect our original works. 
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APPENDIX A at the end of this dissertation consists of MATHEMATICA codes for 

reproducing the results obtained in CHAPTER 4. 
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CHAPTER 2: LITERATURE REVIEW 

Fractional calculus (FC) is a generalization of classical calculus that allows derivative 

and integral to arbitrary order, see (Miller & Ross, 1993; Oldham & Spanier, 1974) for a 

detailed study. It was initiated by a discussion between L’Hospital and Leibniz in 1695. 

An interested reader may consult (Oldham & Spanier, 1974) as well as (Miller & Ross, 

1993) for a historical survey of FC. For three centuries, FC developed mainly as a pure 

mathematical realm. However, in recent decades, its applications in numerous diverse 

fields have gained wide attention and importance. Examples include viscoelasticity, 

anomalous diffusion, heat conduction, signal processing, control theory, dynamic 

systems, chaos and fractals, and so forth (Sun et al., 2018). One reason behind the recent 

interest in FC is a nonlocal property of the fractional differentiation process. The 

advantage of fractional derivative becomes apparent in modeling a hereditary property of 

viscoelastic material, as well as a history dependence behavior of anomalous diffusion 

(Podlubny, 1998). 

2.1 Laplace transform 

As one would expect, since a fractional operator is defined commonly by convolution 

operation, it is hard to evaluate the convolution integral, for instance, singularity behavior 

at the terminal of integration (Oldham & Spanier, 1974). The use of Laplace integral 

transform that we shall exploit to convert the fractional operator as convolution integral 

into a multiplication of algebra (see e.g. Theorem 2.5, Theorem 2.7, and Theorem 2.10). 

It facilitates relevant application easily to solve fractional differential equation (FDE) 

involving the operator, which can then be inverse transform through a table of Laplace-

transform pairs. Therefore, we recall the following definition for Laplace transform. 

Univ
ers

iti 
Mala

ya



18 

Definition 2.1 Let 𝑓(𝑡) be an integrable function on ℝ≥0. Then, integral ℒ{𝑓(𝑡), 𝑡; 𝑠} of 

𝑠 ∈ ℂ defined by 

   ℒ{𝑓(𝑡), 𝑡; 𝑠} = ∫ 𝑒−𝑠𝑡  𝑓(𝑡) 𝑑𝑡
∞

0

                                                                         

is called Laplace transform of 𝑓(𝑡), converges absolutely in the complex half-plane 

ℜ(𝑠) > 0 (Podlubny, 1998). 

2.2 Special functions 

Besides elementary functions, it is noteworthy that certain higher transcendental 

functions play a vital role in FC. For convenience, we present here the definitions with 

several essential properties that we need in the sequel. 

2.2.1 Gamma function 

Undoubtedly, the gamma function removes a discrete nature of the factorial function 

for fractional integral. Therefore, we start by recalling the following definition. 

Definition 2.2 If 𝑧 ∈ ℂ with ℜ(𝑧) > 0, then 

   Γ(𝑧) = ∫ 𝑥𝑧−1𝑒−𝑥  𝑑𝑥
∞

0

,                                                                                      (2.1) 

known as Euler’s gamma function, converges absolutely. Its useful property is a 

recurrence relationship in the following theorem. 

Theorem 2.1 For 𝑧 > 0, the following equation holds 

   Γ(𝑧 + 1) = 𝑧 Γ(𝑧).                                                                                                

Proof. Integration by parts applies to Eq. (2.1) concludes the proof (Oldham & Spanier, 

1974). ∎ 
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2.2.2 Mittag-Leffler function 

While the gamma function is a generalized factorial function, the Mittag-Leffler 

function is a generalized exponential function. During the last decade, the Mittag-Leffler 

function comes to prominence due to its role played in FC. For its detailed account of 

properties and applications, the reader may refer to the paper (Mainardi & Gorenflo, 

2000). Let us recall the following definition for the Mittag-Leffler function. 

Definition 2.3 If 𝑧 ∈ ℂ, 𝛼 ∈ ℂ with ℜ(𝛼) > 0 and 𝛽 ∈ ℂ, then the generalized Mittag-

Leffler function is defined by 

   𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘 + 𝛽)

∞

𝑘=0

.                                                                                   

A useful fact of 𝐸𝛼,𝛽(𝑧) is associated with its appearance in deriving analytical solutions 

of FDE via the Laplace transform method. Hence the following theorem is of importance. 

Theorem 2.2 Under the assumption that the 𝑘th derivative of 𝐸𝛼,𝛽(𝑧) exists, the following 

Laplace transform pair with 𝑠 ∈ ℂ holds 

   ℒ{𝑡𝛼 𝑘+𝛽−1𝐸𝛼,𝛽
(𝑘)(±𝑐 𝑡𝛼), 𝑡; 𝑠} =

𝑘! 𝑠𝛼−𝛽

(𝑠𝛼 ∓ 𝑐)𝑘+1
,                                               (2.2) 

where its 𝑘th derivative 𝐸α,β
(𝑘)(𝑧), 𝑘 = 0, 1, 2, … is given by 

   𝐸α,β
(𝑘)(𝑧) =

𝑑𝑘

𝑑𝑧𝑘
𝐸α,β(𝑧).                                                                                         

Proof. For details of the proof, see (Podlubny, 1998). ∎ 
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2.3 Fractional operators 

There are several definitions related to fractional derivative and fractional integral (de 

Oliveira & Machado, 2014). In this section, we will focus on Riemann-Liouville, Caputo, 

and Jumarie definitions. These are the most frequently used for applications. For the sake 

of brevity, our discussion is restricted to a real variable and function. 

2.3.1 Riemann-Liouville fractional integral and derivative 

Starting with generalized Cauchy’s repeated integration formula, we introduce the 

following definition of 𝛼th Riemann-Liouville fractional integrals. 

Definition 2.4 Suppose that 𝑓: [𝑎, 𝑏] → ℝ is a function, 𝛼 ∈ ℝ>0 , and Γ(𝛼) is Euler 

gamma function. Then, left-handed 𝛼 th Riemann-Liouville fractional integral of the 

function 𝑓(𝑡) with origin 𝑎 is defined by 

   𝐼𝑎
𝑅𝐿

𝑡
𝛼𝑓(𝑡) =

1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜏) 𝑑𝜏

𝑡

𝑎

.                                                         (2.3) 

Similarly, right-handed 𝛼 th Riemann-Liouville fractional integral of the function 𝑓(𝑡) 

with origin 𝑏 is defined by 

   𝐼𝑡
𝑅𝐿

𝑏
𝛼𝑓(𝑡) =

1

Γ(𝛼)
∫ (𝜏 − 𝑡)𝛼−1𝑓(𝜏) 𝑑𝜏

𝑏

𝑡

.                                                          

In light of such fractional integrals, one has the following 𝛼th fractional derivatives. 

Definition 2.5 Let 𝑓: [𝑎, 𝑏] → ℝ be a function, 𝑛 ∈ ℤ>0 , 𝛼 ∈ ℝ>0  such that 𝛼 ∈ [𝑛 −

1, 𝑛), then left-handed and right-handed 𝛼th Riemann-Liouville fractional derivatives of 

the function 𝑓(𝑡) are defined, respectively, by 
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   𝐷𝑡
𝛼

𝑎
𝑅𝐿 𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑓(𝜏) 𝑑𝜏

𝑡

𝑎

,                                   (2.4) 

and 

   𝐷𝑏
𝛼

𝑡
𝑅𝐿 𝑓(𝑡) =

(−1)𝑛

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫ (𝜏 − 𝑡)𝑛−𝛼−1𝑓(𝜏) 𝑑𝜏

𝑏

𝑡

.                                    

Remark 2.1 Unfortunately, 𝛼th Riemann-Liouville fractional derivative for constant is 

non-zero. Furthermore, the operator is only applicable to a problem with boundary 

conditions equal to zero. 

Now, let’s consider a property of 𝛼th Riemann-Liouville fractional integral, which is 

necessary for subsequent use. The useful fact that it satisfies the semigroup property in 

the following theorem. 

Theorem 2.3 For 𝑓: [𝑎, 𝑏] → ℝ, and 𝛼, 𝛽 ∈ ℝ>0, the following equations hold 

   𝐼𝑎
𝑅𝐿

𝑡
𝛼 𝐼𝑎

𝑅𝐿
𝑡
𝛽

𝑓(𝑡) = 𝐼𝑎
𝑅𝐿

𝑡
𝛼+𝛽

𝑓(𝑡),                                                                            (2.5) 

and 

   𝐼𝑡
𝑅𝐿

𝑏
𝛼 𝐼𝑡

𝑅𝐿
𝑏
𝛽

𝑓(𝑡) = 𝐼𝑡
𝑅𝐿

𝑏
𝛼+𝛽

𝑓(𝑡).                                                                             

Proof. For the proof, see (Hilfer, 2000). ∎ 

A consequence of Theorem 2.3 is the following corollary that the 𝛼 th Riemann-

Liouville fractional derivative provides operation inverse to the same order of 𝛼 th 

Riemann-Liouville fractional integral. 

Corollary 2.1 Assume that 𝑓: [𝑎, 𝑏] → ℝ, 𝑛 ∈ ℤ>0, 𝛼 ∈ ℝ>0  such that 𝛼 ∈ [𝑛 − 1, 𝑛). 

Then 
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   𝐷𝑎
𝑅𝐿

𝑡
𝛼  𝐼𝑎

𝑅𝐿
𝑡
𝛼𝑓(𝑡) = 𝑓(𝑡),                                                                                        

and 

   𝐷𝑡
𝑅𝐿

𝑏
𝛼  𝐼𝑡

𝑅𝐿
𝑏
𝛼𝑓(𝑡) = 𝑓(𝑡).                                                                                        

Proof. By assumption on 𝜙(𝑡) = 𝐼𝑎
𝑅𝐿

𝑡
𝛼𝑓(𝑡) and Eq. (2.3), allow us to rewrite Eq. (2.4) as 

   𝐷𝑡
𝛼

𝑎
𝑅𝐿 𝜙(𝑡) =

𝑑𝑛

𝑑𝑡𝑛
𝐼𝑎

𝑅𝐿
𝑡
𝑛−𝛼𝜙(𝑡).                                                                           (2.6) 

Substituting 𝜙(𝑡) = 𝐼𝑎
𝑅𝐿

𝑡
𝛼𝑓(𝑡)  into Eq. (2.6), and by semigroup property Eq. (2.5), 

operator 𝐼𝑎
𝑅𝐿

𝑡
𝑛−𝛼 and 𝐼𝑎

𝑅𝐿
𝑡
𝛼 obviously commute, we obtain 

   𝐷𝑎
𝑅𝐿

𝑡
𝛼 𝐼𝑎

𝑅𝐿
𝑡
𝛼𝑓(𝑡) = 𝑓(𝑡). ∎                                                                                    

It is well-known that power function is often used in infinite power series of solutions. 

Therefore, in the following lemma, we provide the 𝛼 th Riemann-Liouville fractional 

integral of power function for later applications. 

Lemma 2.1 Let 𝛼 ∈ ℝ>0, 𝛽 ∈ ℝ>−1 and 𝑡 ∈ [𝑎, 𝑏]. Then, 

   𝐼𝑎
𝑅𝐿

𝑡
𝛼(𝑡 − 𝑎)𝛽 =

Γ(𝛽 + 1)

Γ(𝛽 + 𝛼 + 1)
(𝑡 − 𝑎)𝛽+𝛼,                                                    (2.7) 

and 

   𝐼𝑡
𝑅𝐿

𝑏
𝛼(𝑏 − 𝑡)𝛽 =

Γ(𝛽 + 1)

Γ(𝛽 + 𝛼 + 1)
(𝑏 − 𝑡)𝛽+𝛼.                                                     

Proof. The proof utilizes properties of gamma and beta functions (Oldham & Spanier, 

1974). The condition 𝛽 > 1 arises as required of positive argument to the beta function. 

∎ 
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The next corollary asserts that there exists a relation between both 𝐼𝑎
𝑅𝐿

𝑡
𝛼 and 𝐼𝑡

𝑅𝐿
𝑏
𝛼 via 

fractional integration by parts on 𝑡 ∈ [𝑎, 𝑏] (Love & Young, 1938). More importantly, it 

is a fundamental tool to establish optimality conditions for fractional optimal control 

problems (FOCPs). 

Corollary 2.2 If 𝑓: [𝑎, 𝑏] → ℝ and 𝑔: [𝑎, 𝑏] → ℝ are arbitrary integrable functions for 

𝐼𝑎
𝑅𝐿

𝑡
𝛼𝑓(𝑡) and 𝐼𝑡

𝑅𝐿
𝑏
𝛼𝑔(𝑡) of order 𝛼 ∈ ℝ>0, respectively, then 

   ∫ 𝑓(𝑡) 𝐼𝑡
𝑅𝐿

𝑏
𝛼𝑔(𝑡) 𝑑𝑡

𝑏

𝑎

= ∫ 𝑔(𝑡) 𝐼𝑎
𝑅𝐿

𝑡
𝛼𝑓(𝑡) 𝑑𝑡

𝑏

𝑎

.                                                 

Proof. For details of the proof, see (Love & Young, 1938). ∎ 

Unfortunately, there is an issue that must be dealt with Definition 2.4. 𝐼𝑎
𝑅𝐿

𝑡
𝛼 performs 

on past of current value, whereas 𝐼𝑡
𝑅𝐿

𝑏
𝛼 performs on future of current value (Ciesielski & 

Blaszczyk, 2015, 2017). This problem poses difficulty with a calculation of the current 

value in finding a solution on finite interval 𝑡 ∈ [𝑎, 𝑏]. Owing to such shortcoming, we 

consider a function for the 𝛼th Riemann-Liouville fractional integral based on its Taylor 

series as suggested in (Hadamard, 1892; Wei et al., 2017). It provides an elegant way to 

deal with such a problem, where 𝐼𝑎
𝑅𝐿

𝑡
𝛼 and 𝐼𝑡

𝑅𝐿
𝑏
𝛼 are well defined. The following theorem 

is an alternate representation for 𝛼th Riemann-Liouville fractional integral of an analytic 

function. 

Theorem 2.4 Assuming that function 𝑓: [𝑎, 𝑏] → ℝ is analytic, and therefore can be 

represented by its Taylor series. Then, the following interesting facts are readily derived 

   𝐼𝑎
𝑅𝐿

𝑡
𝛼𝑓(𝑡) = 𝐼𝑎

𝑅𝐿
𝑡
𝛼 (∑

(𝑡 − 𝑎)𝑘

Γ(𝑘 + 1)

∞

𝑘=0

𝑓(𝑘)(𝑎)),                                                      

and 
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   𝐼𝑡
𝑅𝐿

𝑏
𝛼𝑓(𝑡) = 𝐼𝑡

𝑅𝐿
𝑏
𝛼 (∑(−1)𝑘

(𝑏 − 𝑡)𝑘

Γ(𝑘 + 1)

∞

𝑘=0

𝑓(𝑘)(𝑏)).                                          

Proof. From Eq. (2.3) and repeated integration by parts performed, we deduce 

   𝐼𝑎
𝑅𝐿

𝑡
𝛼𝑓(𝑡) =

(𝑡 − 𝑎)𝛼

Γ(𝛼 + 1)
𝑓(𝑎) +

1

Γ(𝛼 + 1)
∫ (𝑡 − 𝜏)𝛼𝑓(1)(𝜏)𝑑𝜏

𝑡

𝑎

                  

                     =
(𝑡 − 𝑎)𝛼

Γ(𝛼 + 1)
𝑓(𝑎) +

(𝑡 − 𝑎)𝛼+1

Γ(𝛼 + 2)
𝑓(1)(𝑎)

+
1

Γ(𝛼 + 2)
∫ (𝑡 − 𝜏)𝛼+1𝑓(2)(𝜏)𝑑𝜏

𝑡

𝑎

                                        

                     ⋮                                                                                                              

                     = ∑
(𝑡 − 𝑎)𝛼+𝑘

Γ(𝛼 + 𝑘 + 1)
𝑓(𝑘)(𝑎)

∞

𝑘=0

.                                                            

 

It follows, by exploiting Eq. (2.7), that 

   𝐼𝑎
𝑅𝐿

𝑡
𝛼𝑓(𝑡) = 𝐼𝑎

𝑅𝐿
𝑡
𝛼 (∑

(𝑡 − 𝑎)𝑘

Γ(𝑘 + 1)

∞

𝑘=0

𝑓(𝑘)(𝑎)) . ∎                                                 

Since 𝛼th Riemann-Liouville fractional integral is a convolution type pseudo-operator, 

let’s consider its Laplace transform in the following theorem. 

Theorem 2.5 Let 𝑓: [𝑎, 𝑏] → ℝ and 𝛼 ∈ ℝ>0. Then 

   ℒ{ 𝐼𝑎
𝑅𝐿

𝑡
α𝑓(𝑡), 𝑡 − 𝑎; 𝑠} =

1

sα
ℒ{𝑓(𝑡 + 𝑎), 𝑡; 𝑠},                                                 (2.8) 

and 

   ℒ{ 𝐼𝑡
𝑅𝐿

𝑏
α𝑓(𝑡), 𝑏 − 𝑡; 𝑠} =

1

sα
ℒ{𝑓(𝑏  −  𝑡), 𝑡; 𝑠}.                                                
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Proof. We start Eq. (2.3) as convolution integral followed by Laplace transform 

Definition 2.1 with respect to variable 𝑡 − 𝑎, 

   ℒ{ 𝐼𝑎
𝑅𝐿

𝑡
α𝑓(𝑡), 𝑡 − 𝑎; 𝑠} = ∫ 𝑒−𝑠(𝑡−𝑎)  ∫

(𝑡 − 𝜏)𝛼−1

Γ(𝛼)
𝑓(𝜏) 𝑑𝜏

𝑡

𝑎

𝑑𝑡
∞

𝑎

.               

Next, we apply Fubini’s theorem to interchange the integration order, yielding 

   ℒ{ 𝐼𝑎
𝑅𝐿

𝑡
α𝑓(𝑡), 𝑡 − 𝑎; 𝑠} = ∫ 𝑓(𝜏) ∫ 𝑒−𝑠(𝑡−𝑎)

(𝑡 − 𝜏)𝛼−1

Γ(𝛼)
 𝑑𝑡

∞

𝜏

𝑑𝜏
∞

𝑎

.             

Finally, performing a change of variable by 𝑢 = 𝑡 − τ followed by 𝜏 = 𝜈 + 𝑎, we obtain 

   ℒ{ 𝐼𝑎
𝑅𝐿

𝑡
α𝑓(𝑡), 𝑡 − 𝑎; 𝑠} = ∫ 𝑒−𝑠ν𝑓(𝜈 + 𝑎) 𝑑ν ∫ 𝑒−𝑠𝑢

𝑢𝛼−1

Γ(𝛼)
 𝑑𝑢

∞

0

∞

0

            

                                           =
1

sα
ℒ{𝑓(𝑡 + 𝑎), 𝑡; 𝑠}. ∎                                            

 

Remark 2.2 Even if the left-handed case is considered here, the discussion presented 

herein can be adapted easily to the right-handed case with only a minor difference 

(Baleanu et al., 2012). 

2.3.2 Caputo fractional derivative 

The necessity of including initial and boundary conditions requires a revision of the 

well-established Riemann-Liouville approach. Therefore, the alternative of fractional 

derivative introduced by Michele Caputo (Caputo, 1967) as follows: 

Definition 2.6 Assume function 𝑓(𝑡) has derivative up to integer order 𝑛 on [𝑎, 𝑏]. We 

denote the 𝑛th derivative by 𝑓(𝑛)(𝑡). Then, for real number 𝛼 ∈ [𝑛 − 1, 𝑛), left-handed 

and right-handed 𝛼th Caputo fractional derivatives of 𝑓(𝑡) are defined, respectively, by 
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   𝐷𝑡
𝛼

𝑎
𝐶 𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1 𝑓(𝑛)(𝜏) 𝑑𝜏

𝑡

𝑎

,                                       (2.9) 

and 

   𝐷𝑏
𝛼

𝑡
𝐶 𝑓(𝑡) =

(−1)𝑛

Γ(𝑛 − 𝛼)
∫ (𝜏 − 𝑡)𝑛−𝛼−1𝑓(𝑛)(𝜏) 𝑑𝜏

𝑏

𝑡

.                                         

Remark 2.3 The main advantage of Caputo’s definition is allowing utilization of 

physically interpreted initial and boundary conditions as well as its derivative for constant 

equals to zero. 

Having defined 𝛼th Riemann-Liouville fractional integral and 𝛼th Caputo fractional 

derivative, let’s consider the interaction of both operators. The following theorem shows 

the fractional integral is inverse to the same order of fractional derivative. 

Theorem 2.6 If 𝑓: [𝑎, 𝑏] → ℝ has 𝑛 ∈ ℤ>0  order continuous derivatives and 𝛼 ∈ ℝ>0 

such that 𝛼 ∈ [𝑛 − 1, 𝑛), then 

   𝐼𝑎
𝑅𝐿

𝑡
𝛼 𝐷𝑎

𝐶
𝑡
𝛼𝑓(𝑡) = 𝑓(𝑡) − ∑

(𝑡 − 𝑎)𝑘

Γ(𝑘 + 1)
𝑓(𝑘)(𝑎)

𝑛−1

𝑘=0

,                                              

and 

   𝐼𝑡
𝑅𝐿

𝑏
𝛼 𝐷𝑡

𝐶
𝑏
𝛼𝑓(𝑡) = 𝑓(𝑡) − ∑

(−1)𝑘(𝑏 − 𝑡)𝑘

Γ(𝑘 + 1)
𝑓(𝑘)(𝑏)

𝑛−1

𝑘=0

.                                   

Proof. Recall the definition of 𝐼𝑎
𝑅𝐿

𝑡
𝛼  in Eq. (2.3), the right-hand side of Eq. (2.9) has 

representation takes the following form: 

   𝐷𝑡
𝛼

𝑎
𝐶 𝑓(𝑡) = 𝐼𝑎

𝑅𝐿
𝑡
𝑛−𝛼𝑓(𝑛)(𝑡).                                                                                 (2.10) 
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Now, applying operator 𝐼𝑎
𝑅𝐿

𝑡
𝛼 to both sides of Eq. (2.10), then using Theorem 2.3, we 

deduce that 

   𝐼𝑎
𝑅𝐿

𝑡
𝛼 𝐷𝑎

𝐶
𝑡
𝛼𝑓(𝑡) = 𝐼𝑎

𝑅𝐿
𝑡
𝑛𝑓(𝑛)(𝑡)                                                                            

                              = 𝑓(𝑡) − ∑
(𝑡 − 𝑎)𝑘

Γ(𝑘 + 1)
𝑓(𝑘)(𝑎)

𝑛−1

𝑘=0

. ∎                                        
 

Let us now evaluate the following 𝛼th Caputo fractional derivative for power function. 

Lemma 2.2 If 𝑡 ∈ [𝑎, 𝑏], 𝑛 ∈ ℤ>0, 𝛼, 𝛽 ∈ ℝ>0 such that 𝛼 ∈ [𝑛 − 1, 𝑛) and 𝛽 > 𝑛 − 1, 

then 

   𝐷𝑡
𝛼

𝑎
𝐶 (𝑡 − 𝑎)𝛽 =

Γ(𝛽 + 1)

Γ(𝛽 − 𝛼 + 1)
(𝑡 − 𝑎)𝛽−𝛼 ,                                                     

and 

   𝐷𝑏
𝛼

𝑡
𝐶 (𝑏 − 𝑡)𝛽 =

Γ(𝛽 + 1)

Γ(𝛽 − 𝛼 + 1)
(𝑏 − 𝑡)𝛽−𝛼 .                                                     

Proof. Analogous to the proof of Lemma 2.1. ∎ 

As we have evaluated earlier Laplace transform of the fractional integral in Theorem 

2.5, let us consider Laplace transform for 𝛼th Caputo fractional derivative in the following 

theorem. 

Theorem 2.7 Under the assumption that 𝑛th differentiable of function 𝑓: [𝑎, 𝑏] → ℝ and 

𝛼 ∈ [𝑛 − 1, 𝑛), the Laplace transform formulas with 𝑠 ∈ ℂ can be developed as follows: 

   ℒ{ 𝐷𝑎
𝐶

𝑡
𝛼𝑓(𝑡), 𝑡 − 𝑎; 𝑠} = 𝑠𝛼 [ℒ{𝑓(𝑡 + 𝑎), 𝑡; 𝑠} − ∑  

𝑓(𝑘)(𝑎)

𝑠𝑘+1

𝑛−1

𝑘=0

],                  

and 
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   ℒ{ 𝐷𝑡
𝐶

𝑏
𝛼𝑓(𝑡), 𝑏 − 𝑡; 𝑠} = 𝑠𝛼 [ℒ{𝑓(𝑏  −  𝑡), 𝑡; 𝑠} − ∑(−1)𝑘

𝑓(𝑘)(𝑏)

𝑠𝑘+1

𝑛−1

𝑘=0

].      

Proof. It is a straightforward consequence of Laplace transform on Definition 2.6 

proceeds as the proof of Theorem 2.5 in a similar manner, and Laplace transform for 

𝑓(𝑛)(𝑡). For details of the proof see (Podlubny, 1998). ∎ 

Remark 2.4 For the right-handed case, the discussion presented herein can be similarly 

shown (Baleanu et al., 2012). 

2.3.3 Jumarie fractional derivative 

Each fractional derivative has its own drawbacks. Therefore, for instance, the 𝛼 th 

Riemann-Liouville fractional derivative for constant is nonzero, and the 𝛼 th Caputo 

fractional derivative is limited to a differentiable function (Almeida & Torres, 2011; 

Atangana & Secer, 2013; de Oliveira & Machado, 2014; Jumarie, 2006, 2007, 2009; 

Ortigueira & Machado, 2015). To circumvent these drawbacks, Jumarie (2006, 2009, 

2013) proposed the following definition that leverages the positive sides of both 

aforementioned fractional derivatives. 

Definition 2.7 Let 𝑓: [𝑎, 𝑏] → ℝ be a function and α ∈ (0, 1). Then one has left-handed 

and right-handed 𝛼th Jumarie fractional derivatives of 𝑓(𝑡) are defined, respectively, by 

   𝐷𝑡
𝛼

𝑎
𝐽 𝑓(𝑡) =

1

Γ(1 − 𝛼)

𝑑

𝑑𝑡
∫

[𝑓(𝜏) − 𝑓(𝑎)]

(𝑡 − 𝜏)𝛼
𝑑𝜏

𝑡

𝑎

,                                              (2.11) 

and 

   𝐷𝑏
𝛼

𝑡
𝐽 𝑓(𝑡) =

−1

Γ(1 − 𝛼)

𝑑

𝑑𝑡
∫

[𝑓(𝜏) − 𝑓(𝑏)]

(𝜏 − 𝑡)𝛼
𝑑𝜏

𝑏

𝑡

.                                               
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Remark 2.5 As desired, the 𝛼 th fractional derivative for constant equals zero. 

Furthermore, 𝑓(𝑎) = 𝑓(𝑏) = 0 is no longer condition for the 𝛼th fractional derivative of 

𝑓(𝑡) continuous on 𝑡 ∈ [𝑎, 𝑏], and 𝑓(𝑡) needs not to be differentiable. 

We have proven in Theorem 2.6 that the 𝛼th Riemann-Liouville fractional integral is 

indeed inverse to the 𝛼th Caputo fractional derivative. Similarly, the following theorem 

asserts that the fractional integral is also inverse to the same order of the Jumarie 

fractional derivative. 

Theorem 2.8 In particular, if 𝑓: [𝑎, 𝑏] → ℝ and α ∈ (0, 1), then 

   𝐼𝑎
𝑅𝐿

𝑡
𝛼 𝐷𝑎

𝐽
𝑡
𝛼𝑓(𝑡) = 𝑓(𝑡) − 𝑓(𝑎),                                                                            

and 

   𝐼𝑡
𝑅𝐿

𝑏
𝛼 𝐷𝑡

𝐽
𝑏
𝛼𝑓(𝑡) = 𝑓(𝑡) − 𝑓(𝑏).                                                                            

Proof. Utilizing Eq. (2.3), we can rewrite the right-hand side of Eq. (2.11) to 

   𝐷𝑡
𝛼

𝑎
𝐽 𝑓(𝑡) =

𝑑

𝑑𝑡
𝐼𝑎

𝑅𝐿
𝑡
1−𝛼[𝑓(𝑡) − 𝑓(𝑎)],                                                               (2.12) 

and the fundamental theorem of calculus reads 

   𝑓(𝑡) − 𝑓(𝑎) = 𝐼𝑎
𝑅𝐿

𝑡
1

𝑑

𝑑𝑡
𝑓(𝑡).                                                                              (2.13) 

We first apply operator 𝐼𝑎
𝑅𝐿

𝑡
1−𝛼 on both sides of Eq. (2.13) and note that operators 𝐼𝑎

𝑅𝐿
𝑡
1−𝛼  

and 𝐼𝑎
𝑅𝐿

𝑡
𝛼 commute, we obtain 

   𝐼𝑎
𝑅𝐿

𝑡
1−𝛼[𝑓(𝑡) − 𝑓(𝑎)] = 𝐼𝑎

𝑅𝐿
𝑡
1 𝐼𝑎

𝑅𝐿
𝑡
1−𝛼

𝑑

𝑑𝑡
𝑓(𝑡).                                                   

By differentiating on both sides with respect to 𝑡 implies 
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   𝐷𝑡
𝛼

𝑎
𝐽 𝑓(𝑡) = 𝐼𝑎

𝑅𝐿
𝑡
1−𝛼

𝑑

𝑑𝑡
𝑓(𝑡),                                                                                 

with substitution Eq. (2.12). Then, applying operator 𝐼𝑎
𝑅𝐿

𝑡
𝛼 on both sides yields 

   𝐼𝑎
𝑅𝐿

𝑡
𝛼 𝐷𝑡

𝛼
𝑎
𝐽 𝑓(𝑡) = 𝐼𝑎

𝑅𝐿
𝑡
1

𝑑

𝑑𝑡
𝑓(𝑡),                                                                             

where we have once again used Theorem 2.3. It follows, by Eq. (2.13), that 

   𝐼𝑎
𝑅𝐿

𝑡
𝛼 𝐷𝑡

𝛼
𝑎
𝐽 𝑓(𝑡) = 𝑓(𝑡) − 𝑓(𝑎). ∎                                                                         

Analogous to the 𝛼th Caputo fractional derivative over power function in Lemma 2.2, 

the 𝛼th Jumarie fractional derivative yields a similar result in the following sense. 

Lemma 2.3 Let 𝛼 ∈ ℝ>0 such that 𝛼 ∈ (0, 1), 𝛽 ∈ ℝ>−1 and 𝑡 ∈ [𝑎, 𝑏], we have 

   𝐷𝑡
𝛼

𝑎
𝐽 (𝑡 − 𝑎)𝛽 =

Γ(𝛽 + 1)

Γ(𝛽 − 𝛼 + 1)
(𝑡 − 𝑎)𝛽−𝛼 ,                                                     

and 

   𝐷𝑏
𝛼

𝑡
𝐽 (𝑏 − 𝑡)𝛽 =

Γ(𝛽 + 1)

Γ(𝛽 − 𝛼 + 1)
(𝑏 − 𝑡)𝛽−𝛼 .                                                      

Proof. Analogously as in the proof of Lemma 2.1. ∎ 

Now, we deduce the following theorem by integration by parts involving both 𝐷𝑡
𝛼

𝑎
𝐽  

and 𝐷𝑏
𝛼

𝑡
𝐽  on 𝑡 ∈ [𝑎, 𝑏]. 

Theorem 2.9 Suppose that 𝛼 ∈ (0, 1), 𝑓: [𝑎, 𝑏] → ℝ and 𝑔: [𝑎, 𝑏] → ℝ are continuous 

functions admitting 𝐷𝑎
𝐽

𝑡
𝛼𝑓(𝑡) and 𝐷𝑡

𝐽
𝑏
𝛼𝑔(𝑡) respectively, then it holds 
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   ∫ [𝑓(𝑡) − 𝑓(𝑎)] 𝐷𝑡
𝐽

𝑏
𝛼𝑔(𝑡) 𝑑𝑡

𝑏

𝑎

= ∫ [𝑔(𝑡) − 𝑔(𝑏)] 𝐷𝑎
𝐽

𝑡
𝛼𝑓(𝑡) 𝑑𝑡

𝑏

𝑎

.               

Proof. Recalling the rule of fractional integration by parts Corollary 2.2, let us consider 

𝜙(𝑡) = 𝐷𝑎
𝐽

𝑡
𝛼𝑓(𝑡) and 𝜓(𝑡) = 𝐷𝑡

𝐽
𝑏
𝛼𝑔(𝑡) admitting 𝐼𝑎

𝑅𝐿
𝑡
𝛼𝜙(𝑡)  and 𝐼𝑡

𝑅𝐿
𝑏
𝛼𝜓(𝑡) respectively, 

one has 

   ∫ 𝜙(𝑡) 𝐼𝑡
𝑅𝐿

𝑏
𝛼𝜓(𝑡) 𝑑𝑡

𝑏

𝑎

= ∫ 𝜓(𝑡) 𝐼𝑎
𝑅𝐿

𝑡
𝛼𝜙(𝑡) 𝑑𝑡

𝑏

𝑎

.                                              (2.14) 

It follows, by Theorem 2.8 that 𝐼𝑎
𝑅𝐿

𝑡
𝛼𝜙(𝑡) = 𝑓(𝑡) − 𝑓(𝑎) and 𝐼𝑡

𝑅𝐿
𝑏
𝛼𝜓(𝑡) = 𝑔(𝑡) − 𝑔(𝑏), 

then performing substitution into Eq. (2.14) concludes the proof. ∎ 

Next, we discuss Laplace transform for the 𝛼th Jumarie fractional derivative. For case 

𝛼 ∈ (0, 1), the following theorem states the result consistent with the Laplace transform 

of 𝛼th Caputo fractional derivative in Theorem 2.7. 

Theorem 2.10 If 𝑓: [𝑎, 𝑏] → ℝ exists for 𝛼 ∈ (0, 1), then Laplace transform formulas 

with 𝑠 ∈ ℂ are given by 

   ℒ{ 𝐷𝑎
𝐽

𝑡
𝛼𝑓(𝑡), 𝑡 − 𝑎; 𝑠} = 𝑠𝛼 [ℒ{𝑓(𝑡 + 𝑎), 𝑡; 𝑠} −

𝑓(𝑎)

𝑠
],                                

and 

   ℒ{ 𝐷𝑡
𝐽

𝑏
𝛼𝑓(𝑡), 𝑏 − 𝑡; 𝑠} = 𝑠𝛼 [ℒ{𝑓(𝑏  −  𝑡), 𝑡; 𝑠} −

𝑓(𝑏)

𝑠
].                               

Proof. We will start with Laplace transform formula for 𝐼𝑎
𝑅𝐿

𝑡
1−𝛼[𝑓(𝑡) − 𝑓(𝑎)] in the 

form: 
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   ℒ{ 𝐼𝑎
𝑅𝐿

𝑡
1−α[𝑓(𝑡) − 𝑓(𝑎)], 𝑡 − 𝑎; s}

= ∫ 𝑒−𝑠(𝑡−𝑎)  𝐼𝑎
𝑅𝐿

𝑡
1−α[𝑓(𝑡) − 𝑓(𝑎)] 𝑑𝑡

∞

𝑎

.                                  
 

With the aid of integration by parts and Eq. (2.11), we arrive at the following relation 

   ℒ{ 𝐷𝑎
𝐽

𝑡
α𝑓(𝑡), 𝑡 − 𝑎; s} = 𝑠 ℒ{ 𝐼𝑎

𝑅𝐿
𝑡
1−𝛼[𝑓(𝑡) − 𝑓(𝑎)], 𝑡 − 𝑎; s}.                       

Then, we can derive the result in a similar manner to those in the proof of Theorem 2.5. ∎ 

Remark 2.6 The discussion presented herein is easily adapted to the right-handed case 

and omitted here for brevity. 

As we stated earlier, there are more ways to define fractional derivatives. Thus, we 

describe fractional differential equations in the next section. 

2.4 Fractional differential equations 

A fractional differential equation (FDE) is a differential equation through the 

application of FC. Podlubny (1998) demonstrated that many real-world phenomena could 

be modeled adequately by FDEs instead of traditional integer order differential equations. 

Due to the memory effect of FC, FDEs serve as a tool to describe a hereditary property 

of various processes and materials. They exhibit historical dependence on the process 

involved. Motivated by their emerging applications in related areas, FDEs are gaining 

popularity and importance. For more applications, interested readers may refer to the 

monograph (Sun et al., 2018). We introduce several physical problems here collected 

from open literature that include nonlinear cases. 

Firstly, let's consider famous fractional initial value problems (FIVPs) that have their 

initial states specified. For instance, Bagley-Torvik equation (BTE) and fractional Riccati 

differential equation (FRDE). BTE is a linear FDE for modeling viscoelastic materials, 
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whereas FRDE is a class of nonlinear FDE that arises in optimal control problems. On 

the other hand, we will consider linear fractional boundary value problems (FBVPs) 

associated with BTE that have values assigned to boundaries of the domain. Furthermore, 

nonlinear FBVPs form a fascinating class of problem subject to given boundary 

conditions. Last but not least, we will discuss fractional optimal control problems 

(FOCPs), which have applications in control systems, e.g., aeronautics, robotics, and 

economics. 

2.4.1 Fractional initial value problems 

In the mid-1980s, Bagley and Torvik (1984) formulated FDE for describing immersion 

of rigid plate in a viscous fluid. For the detailed account of formulation, the reader may 

refer to the classic paper (Bagley & Torvik, 1984). Indeed, the generalized Bagley-Torvik 

equation (BTE) is FIVP with 𝛼 ∈ (0, 2] involving two derivatives of the following form 

   𝐴(𝑡) 𝑓(2)(𝑡) + 𝐵(𝑡) 𝑎
𝐶𝐷𝑡

𝛼𝑓(𝑡) + 𝐶(𝑡) 𝑓(𝑡) = 𝑔(𝑡),                                      (2.15) 

coupled with initial conditions 

   𝑓(𝑎) = 𝑓𝑎          and          𝑓(1)(𝑎) = 𝑓𝑎
′,                                                           (2.16) 

where 𝑔: [𝑎, 𝑏] → ℝ  is given function, 𝐴(𝑡) , 𝐵(𝑡) , 𝐶(𝑡)  are arbitrary coefficient 

functions, and 𝑓𝑎 ,  𝑓𝑎
′ ∈ ℝ are constants. 

Over the last two decades, BTE has been studied extensively in the literature. Initially, 

Podlubny (1998) used a numerical method to solve the equation in his book (Podlubny, 

1998). Since then, many researchers have attempted to approximate the solution, such as 

homotopy perturbation method (Zolfaghari et al., 2009), Adomian decomposition method 

(Ray & Bera, 2005b), generalized Taylor collocation method (Çenesiz et al., 2010), 

optimum homotopy analysis method (Fadravi et al., 2011), Laplace transform (Labecca 
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et al., 2015; Pang et al., 2019), etc. Even though there are several analytical or numerical 

methods treating this type of equation, in practice it is hardly evaluated, especially for 

different 𝑔(𝑡)  and it only can be approximated. Furthermore, there has been no 

advancement to increase the accuracy further. 

We now turn our attention to another example of FIVP, which is fractional Riccati 

differential equation (FRDE). In fact, FRDE is a generalization of the classical Riccati 

differential equation (Reid, 1972). In recent years, FRDE has played an important role in 

applied science, for instance, stochastic processes, optimal control, diffusion problems, 

etc. For more scientific applications of FRDE, see (Agheli, 2018). Among a variety of 

fractional derivative definitions, we adopt here Jumarie fractional derivative since it is 

applicable for non-differentiable function. Jumarie fractional calculus had been applied 

successfully to fractional Lagrangian mechanics (Jumarie, 2007), fractional variational 

calculus (Almeida & Torres, 2011), fractional Klein-Gordon (Merdan, 2014), etc. 

Therefore, we consider the following FRDE with 𝐷𝑡
𝛼

𝑎
𝐽  for 𝑡 ≥ 𝑎 (Merdan, 2012) 

   𝐷𝑡
𝛼

𝑎
𝐽 𝑓(𝑡) = 𝐴(𝑡) + 𝐵(𝑡) 𝑓(𝑡) + 𝐶(𝑡) 𝑓2(𝑡),                                                 (2.17) 

along with initial condition 

   𝑓(𝑎) = 𝑓𝑎 ,                                                                                                              (2.18) 

where 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡) denote given functions, and 𝑓𝑎 ∈ ℝ is a constant. 

Although the exact solution for Eq. (2.17) is not easily accessible, there was always a 

possible method that approximates the result. Several methods have attracted attention, 

such as homotopy perturbation method (Odibat & Momani, 2008), homotopy analysis 

method (Cang et al., 2009), Adomian decomposition method (Momani & Shawagfeh, 

2006), variational iteration method (Jafari et al., 2013), differential transform method 
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(Kumar Bansal & Jain, 2015) among many others. However, their convergence regions 

are rather small, and their computations are possibly time-consuming at high order 

approximations. 

2.4.2 Fractional boundary value problems 

Comparatively speaking, numerous articles are devoted to solving FIVPs, whereas 

fractional boundary value problems (FBVPs) have received negligible contribution 

indeed. Recently, FBVPs represent an emerging field that is having a significant impact 

in various disciplines of science, such as control theory, signal processing, biophysics, 

and so on. These have created interest concerning a solution for such problems. Zhang 

(2006) and Abdulla et al. (2016) proved the uniqueness and existence of FBVPs solution. 

Similarly, Zhao et al. (2011) investigated sufficient conditions for FBVPs having a 

solution. Therefore, discovering an efficient method for FBVPs solution to is still a 

significant challenge. Among these methods that have been developed are spline 

collocation method (Li et al., 2010; Pedas & Tamme, 2014), B-spline method (Azizi et 

al., 2012), cubic spline method (Zahra & Elkholy, 2013), homotopy analysis method (El-

Ajou et al., 2013), homotopy perturbation method (Jafari et al., 2014), hybridizable 

discontinuous Galerkin method (Karaaslan et al., 2016), quasi-Newton’s method (Yun 

Tao et al., 2016), variation iteration method (Zhao & An, 2017) and others. 

Since we are dealing with FBVPs, they can be illustrated elegantly with the help of 

well-chosen cases from linear and nonlinear problems. Following such ideas, we firstly 

study linear FBVP associated with BTE (Karaaslan et al., 2016). Our governing equation 

is analogous to Eq. (2.15), except associated boundary conditions are 

   𝑓(𝑎) = 𝑓𝑎           and          𝑓(𝑏) = 𝑓𝑏 ,                                                                (2.19) 
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where 𝑓𝑎 , 𝑓𝑏 ∈ ℝ are taken to be constants appearing on the boundary of domain 𝑡 ∈

[𝑎, 𝑏]. 

Secondly, we study the following nonlinear FBVP to arbitrary order 𝛼 on 𝑡 ∈ [𝑎, 𝑏] in 

abstract form (Pedas & Tamme, 2014) 

   𝐷𝑎
𝐶

𝑡
𝛼𝑓(𝑡) =  𝐹(𝑡,  𝑓(𝑡)),                                                                                      (2.20) 

with boundary value conditions 

   𝑓(𝑎) = 𝑓𝑎           and          𝑓(𝑏) = 𝑓𝑏 ,                                                                (2.21) 

where 𝐹: [𝑎,  𝑏] × ℝ → ℝ is known continuous function, and 𝑓𝑎 ,  𝑓𝑏 ∈ ℝ denote arbitrary 

constants. 

Remarkably, the FBVP solution may either fails to exist or not unique. Hence, finding 

the solution in closed form is a nontrivial task. Although we have the previously 

introduced methods, there is still room for improvement waiting to be carried out. 

2.4.3 Fractional optimal control problems 

As defined in Agrawal (2004, 2008), fractional optimal control problem (FOCP) 

generalizes classical optimal control problem, whose dynamic is described by FDE. 

FOCP requires minimization of functional on both state 𝑥(𝑡) and control 𝑢(𝑡) variables 

subject to the constrained dynamic. The following Figure 2.1 shows the components of 

optimum control configuration. 

 

Figure 2.1: Optimum Control Configuration 
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Over the last two decades, FOCPs have been well investigated by many researchers; 

see (Agrawal, 2004, 2008; Agrawal & Baleanu, 2007; Alizadeh & Effati, 2018; Baleanu 

et al., 2009; Ghomanjani, 2016; Heydari et al., 2016; Khader & Hendy, 2012; Lotfi et al., 

2011; Sweilam & Al-Ajami, 2015; Tang et al., 2015; Tohidi & Nik, 2015) and the 

references cited therein. They were developed mainly for Riemann-Liouville and Caputo 

fractional derivatives. 

In the paper (Kamocki, 2014), FOCP using both 𝐷𝑎
𝐽

𝑡
𝛼  and 𝐷𝑡

𝐽
𝑏
𝛼  on 𝑡 ∈ [𝑎, 𝑏]  has 

proved its uniqueness and existence of a solution. It was shown that the fractional 

derivatives seem to be more appropriate. Here, we will adopt Jumarie’s definition to 

formulate FOCP, as it has the advantage to deal with boundary conditions. 

We begin to demonstrate Hamiltonian formulation for FOCP using Jumarie fractional 

calculus Definition 2.7. Here, we shall restrict our discussion to the following quadratic 

performance index, which is integral of state 𝑥(𝑡) and control 𝑢(𝑡) variables defined in a 

quadratic form on 𝑡 ∈ [𝑎, 𝑏]. The main problem investigated here is determining 𝑥(𝑡) and 

𝑢(𝑡) that make the following performance index minimum 

   𝐽 =
1

2
∫ [𝑄(𝑡) 𝑥2(𝑡) + 𝑅(𝑡) 𝑢2(𝑡)]𝑑𝑡

𝑏

𝑎

,                                                           (2.22) 

whose initial condition is supplemented by 

   𝑥(𝑎) = 𝑥𝑎 ,                                                                                                               

constrained with fractional dynamic 

   𝐷𝑎
𝐽

𝑡
𝛼𝑥(𝑡) = 𝐴(𝑡) 𝑥(𝑡) + 𝐵(𝑡) 𝑢(𝑡),                                                                  (2.23) 

where 𝑄(𝑡), 𝑅(𝑡), 𝐴(𝑡) and 𝐵(𝑡) are arbitrary functions. 

Univ
ers

iti 
Mala

ya



38 

Remark 2.7 Note that Eq. (2.22) may also include necessary terminal conditions, which 

are absent for the sake of simplicity. 

To derive necessary optimality conditions, we combine Eqs. (2.22) – (2.23) via 

Lagrange multiplier technique to introduce augmented performance index as 

   𝐽 ̅ =
1

2
∫ [𝐻(𝑥, 𝑢, 𝜆, 𝑡) − 𝜆(𝑡)  𝐷𝑎

𝐽
𝑡
𝛼𝑥(𝑡)]𝑑𝑡

𝑏

𝑎

,                                                    (2.24) 

where 𝜆(𝑡) denotes costate variable, and we define Hamiltonian 𝐻(𝑥, 𝑢, 𝜆, 𝑡) as 

   𝐻(𝑥, 𝑢, 𝜆, 𝑡) =
1

2
[𝑄(𝑡) 𝑥2(𝑡) + 𝑅(𝑡) 𝑢2(𝑡)]

+ 𝜆(𝑡)[𝐴(𝑡) 𝑥(𝑡) + 𝐵(𝑡) 𝑢(𝑡)].                                                

(2.25) 

Then if 𝑥(𝑡), 𝑢(𝑡) and 𝜆(𝑡) are subject to variations, we obtain 

   𝑥′(𝑡) = 𝑥(𝑡) + 𝛾 𝜑(𝑡),                                                                                       

   𝑢′(𝑡) = 𝑢(𝑡) + 𝛾 𝜙(𝑡),                                                                                       
 

and 

   𝜆′(𝑡) = 𝜆(𝑡) + 𝛾 𝜓(𝑡),                                                                                         

where 𝛾 is scalar, 𝜑(𝑡), 𝜙(𝑡) and 𝜓(𝑡) are arbitrary independent variations of 𝑥(𝑡), 𝑢(𝑡) 

and 𝜆(𝑡), respectively. The condition for Eq. (2.24) takes on an extreme value if 

   
𝜕

𝜕𝛾
∫ [𝐻(𝑥′, 𝑢′, 𝜆′, 𝑡) − 𝜆′(𝑡) 𝐷𝑎

𝐽
𝑡
𝛼𝑥′(𝑡)]𝑑𝑡

𝑏

𝑎

|
𝛾=0

= 0.                                     

At 𝛾 = 0, 
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   ∫ [
𝜕𝐻

𝜕𝑥
𝜑(𝑡) +

𝜕𝐻

𝜕𝑢
𝜙(𝑡) + (

𝜕𝐻

𝜕𝜆
− 𝐷𝑎

𝐽
𝑡
𝛼𝑥(𝑡)) 𝜓(𝑡)

𝑏

𝑎

− 𝜆(𝑡) 𝐷𝑎
𝐽

𝑡
𝛼𝜑(𝑡)] 𝑑𝑡 = 0.                                                           

(2.26) 

Using Theorem 2.9, the last integral in Eq. (2.26) can be expressed by 

   ∫ 𝜆(𝑡) 𝐷𝑎
𝐽

𝑡
𝛼𝜑(𝑡)𝑑𝑡

𝑏

𝑎

= ∫ [(𝜑(𝑡) − 𝜑(𝑎)) 𝐷𝑡
𝐽

𝑏
𝛼𝜆(𝑡) + 𝜆(𝑏) 𝐷𝑎

𝐽
𝑡
𝛼𝜑(𝑡)]𝑑𝑡

𝑏

𝑎

,          

 

and substituting it into Eq. (2.26) yields 

   ∫ [(
𝜕𝐻

𝜕𝑥
− 𝐷𝑡

𝐽
𝑏
𝛼𝜆(𝑡)) 𝜑(𝑡) +

𝜕𝐻

𝜕𝑢
𝜙(𝑡) + (

𝜕𝐻

𝜕𝜆
− 𝐷𝑎

𝐽
𝑡
𝛼𝑥(𝑡)) 𝜓(𝑡)

𝑏

𝑎

+ 𝜑(𝑎) 𝐷𝑡
𝐽

𝑏
𝛼𝜆(𝑡) − 𝜆(𝑏) 𝐷𝑎

𝐽
𝑡
𝛼𝜑(𝑡)] 𝑑𝑡 = 0.                           

 

Consequently, the optimality conditions are given by 

   𝐷𝑎
𝐽

𝑡
𝛼𝑥(𝑡) =

𝜕𝐻

𝜕𝜆
,                                                                                                     (2.27) 

   𝐷𝑡
𝐽

𝑏
𝛼𝜆(𝑡) =

𝜕𝐻

𝜕𝑥
,                                                                                                     

(2.28) 

and 

   
𝜕𝐻

𝜕𝑢
= 0,                                                                                                                   (2.29) 

with boundary conditions 
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   𝑥(𝑎) = 𝑥𝑎          and          𝜆(𝑏) = 0.                                                                 (2.30) 

Remark 2.8. It should be mentioned in the present case 𝜑(𝑎) = 0  since 𝑥(𝑎)  is 

specified. 

The system of FDEs results in a two-point boundary value problem in which both 𝐷𝑡
𝛼

𝑎
𝐽  

and 𝐷𝑏
𝛼

𝑡
𝐽  appear. It is similar to the previous work in (Agrawal & Baleanu, 2007), except 

that fractional derivative definition and appropriate changes must be made to circumvent 

the problem caused by the boundary conditions. Substituting Eq. (2.25) into Eqs. (2.27) 

– (2.29) yield 

   𝐷𝑎
𝐽

𝑡
𝛼𝑥(𝑡) = 𝐴(𝑡) 𝑥(𝑡) −

𝐵2(𝑡)

𝑅(𝑡)
 𝜆(𝑡),                                                               (2.31) 

   𝐷𝑡
𝐽

𝑏
𝛼𝜆(𝑡) = 𝑄(𝑡) 𝑥(𝑡) + 𝐴(𝑡) 𝜆(𝑡),                                                                  (2.32) 

and 

   𝑢(𝑡) = −
𝐵(𝑡)

𝑅(𝑡)
 𝜆(𝑡).                                                                                            (2.33) 

We must emphasize that Eq. (2.31) consists of 𝐷𝑡
𝛼

𝑎
𝐽 , whereas Eq. (2.32) consists of 𝐷𝑏

𝛼
𝑡
𝐽 , 

simultaneously. It indicates that the system requires not only past values for the left-

handed derivative but also future values for the right-handed derivative (Ciesielski & 

Blaszczyk, 2015, 2017). This fact implies that finding solutions 𝑥(𝑡) and 𝜆(𝑡) to the 

FOCP would be difficult. Using the Taylor series proposed in Theorem 2.4, we are trying 

to solve Eqs. (2.31) – (2.32) subject to boundary conditions Eq. (2.30). Besides, it follows 

that 𝑢(𝑡) can be obtained through Eq. (2.33) once 𝜆(𝑡) is known. 
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Having presented the selected cases of FDEs for our research interest, we consider 

FDEs solution in the next section and propose a class of analytical method to enhance its 

accuracy as well as convergence further. 

2.5 Homotopy analysis method 

As a consequence of extensive applications of FDEs, much-related research has 

significantly grown in the last three decades. Unfortunately, most FDEs do not have easily 

found exact solutions. Therefore, approximate solutions via either analytical or numerical 

approaches may be the ideal candidate. Well, generally speaking, unforeseen difficulties 

have arisen in analytical methods, and numeric methods have therefore become a 

preferred approach (Pooseh et al., 2013). Although solving FDE analytically is not a 

trivial task, analytical solutions have certain advantages over numerical solutions. For 

instance, numeric methods use discretization, which has rounding-off errors causing loss 

of accuracy, whereas analytical solutions are free from the errors (Daftardar-Gejji & 

Jafari, 2005). 

Analytical solutions of many applications where FDEs appear cannot be established. 

In the last two decades, many researchers have devoted themselves to search for a robust 

and stable analytical method in solving FDEs. Various methods have been developed, for 

instance, Adomian decomposition method (Daftardar-Gejji & Jafari, 2005; Ray & Bera, 

2005a), variational iteration method (Das, 2009; Odibat & Momani, 2006), homotopy 

perturbation method (Jafari et al., 2014; Odibat & Momani, 2008; Zolfaghari et al., 2009), 

etc. The searching for a new approach to writing down analytical solutions of FDEs is an 

important topic, as it has the potential for much related research. Recently, a semi-

analytical technique based on homotopy in topology, called optimal homotopy analysis 

method (OHAM) has become increasingly popular. This method has been proven 

sufficient for various research problems, such as Kawahara equation (Wang, 2011), 
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nonlinear partial fractional differential equations (Gepreel & Nofal, 2015), linear optimal 

control problems (Jia et al., 2017), and so on. For more details on OHAM, one may 

consult the works presented in (Liao, 2010, 2012). More importantly, OHAM has the 

following advantages over both perturbation and non-perturbation methods (Liao, 2009): 

• Independent of any physical parameter, which is necessary for the perturbation 

technique. 

• Flexibility of auxiliary linear operator. 

2.5.1 Optimal homotopy analysis method 

The layout of OHAM is now well documented in the literature, and interested readers 

may refer to the earlier works of (Liao, 2012) for details. First, we consider the subsequent 

equation in form 

   𝑁[𝑓(𝑡)] = 0,                                                                                                          (2.34) 

where 𝑓(𝑡) is a function to be solved for operator 𝑁 under boundary constraint given in 

𝐵, 

   𝐵[𝑓(𝑡)] = 0.                                                                                                          (2.35) 

To elucidate OHAM initially on Eq. (2.34), it is intended to construct zeroth order 

deformation equation 

   (1 − 𝑞)𝐿[𝜙(𝑡; 𝑞)] = 𝑞 ℎ 𝑁[𝜙(𝑡; 𝑞)],                                                               (2.36) 

where ℎ ≠ 0  is convergence control parameter, 𝑞 ∈ [0, 1]  is homotopy embedding 

parameter, 𝐿  denotes auxiliary linear operator, whose solution 𝜙(𝑡; 𝑞)  varies 

continuously with respect to 𝑞. Moreover, the Maclaurin series of 𝜙(𝑡; 𝑞) about 𝑞 gives 

the following homotopy series 
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   𝜙(𝑡; 𝑞) = ∑ 𝜙𝑘(𝑡) 𝑞𝑘

∞

𝑘=0

,                                                                                      (2.37) 

where 𝑘th homotopy derivative 𝜙𝑘(𝑡) can be represented by 

   𝜙𝑘(𝑡) =
1

𝑘!

𝜕𝑘𝜙(𝑡; 𝑞)

𝜕𝑞𝑘
|

𝑞=0

.                                                                                  

The OHAM provides us freedom on a choice of 𝐿[𝜙(𝑡; 𝑞)], which has a significant 

impact on the base function of 𝜙(𝑡; 𝑞) in series Eq. (2.37). It is obvious from Eq. (2.36) 

that 𝐿[𝜙0(𝑡)] = 0 at 𝑞 = 0 and 𝜙(𝑡; 1) = 𝑓(𝑡) at 𝑞 = 1, respectively. We now go about 

finding expressions for 𝜙𝑘(𝑡) one after other in order 𝑘 = 1, 2, …. Upon 𝑘th successive 

differentiation of Eq. (2.36) with respect to 𝑞, then setting 𝑞 = 0 after dividing by 𝑘! 

yields so-called 𝑘th order deformation equation 

   𝐿[𝜙𝑘(𝑡)] − 𝐿[𝜙𝑘−1(𝑡)] =
ℎ

(𝑘 − 1)!

𝜕𝑘−1

𝜕𝑞𝑘−1
𝑁[𝜙(𝑡; 𝑞)]|

𝑞=0

,                        (2.38) 

where the right-hand side of Eq. (2.38) is dependent only upon known results 𝜙0(𝑡), 

𝜙1(𝑡), … , 𝜙𝑘−1(𝑡). Additionally, it will be helpful to define Eq. (2.38) iteratively in the 

following way: 
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   𝐿[𝜙1(𝑡)] = ℎ 𝑁[𝜙(𝑡; 𝑞)]|𝑞=0,                                                                           

   𝐿[𝜙2(𝑡)] − 𝐿[𝜙1(𝑡)] = ℎ
𝜕

𝜕𝑞
𝑁[𝜙(𝑡; 𝑞)]|

𝑞=0

,                                               

   ⋮                                                                                                                                

   𝐿[𝜙𝑘−1(𝑡)] − 𝐿[𝜙𝑘−2(𝑡)] =
ℎ

(𝑘 − 2)!

𝜕𝑘−2

𝜕𝑞𝑘−2
𝑁[𝜙(𝑡; 𝑞)]|

𝑞=0

,                   

   𝐿[𝜙𝑘(𝑡)] − 𝐿[𝜙𝑘−1(𝑡)] =
ℎ

(𝑘 − 1)!

𝜕𝑘−1

𝜕𝑞𝑘−1
𝑁[𝜙(𝑡; 𝑞)]|

𝑞=0

.                        

(2.39) 

Thus, we can directly derive 𝜙𝑘(𝑡) by solving linear terms in Eq. (2.39) subject to the 

mentioned boundary condition Eq. (2.35). Remarkably, 𝜙𝑘(𝑡) mentioned after Eq. (2.39) 

will depend upon ℎ, which has an impact on the convergence of Eq. (2.37) as proved in 

the following theorem. 

Theorem 2.11 Suppose that series Eq. (2.37) is convergent at 𝑞 = 1 under appropriate 

convergence control parameter ℎ assumption, and thus 𝑓(𝑡) can be expressed in the form 

   𝑓(𝑡) = ∑ 𝜙𝑘(𝑡)

∞

𝑘=0

.                                                                                                 (2.40) 

Proof. According to proof in convergence theorem (Liao, 2003, 2012), if resultant series 

Eq. (2.40) is absolutely convergent, then it represents the solution of Eq. (2.34).∎ 

As illustrated in (Liao, 2010; Turkyilmazoglu, 2016), we can find optimal ℎ  that 

controls the convergence of series Eq. (2.40). Upon the 𝑘th successive iteration, we arrive 

at the subsequent mean squared residual error 

   𝜖 =
1

𝑛
∑ (𝑁 [∑ 𝜙𝑗(𝑡𝑖)

𝑘

𝑗=0

])

2
𝑛

𝑖=1

,                                                                            (2.41) 

Univ
ers

iti 
Mala

ya



45 

for 𝑛 equally spaced 𝑡 values over interval [𝑡0, 𝑡1]. Indeed, by requiring 𝜖 from Eq. (2.41) 

decays toward zero, we can compute the optimal ℎ to preserve the convergence rate of 

Eq. (2.40) in a faster manner. Through software Mathematica 12, we can use the 

command Minimize to compute the optimal ℎ that achieves a global minimum of 𝜖 . 

Nevertheless, it has some drawbacks that arise in the evaluation of 𝜖 as follows: 

• The necessity to solve the accumulation of ℎ from a set of 𝜙𝑘(𝑡),  𝑘 = 1, 2, … 

given in Eq. (2.39) simultaneously leads to an increase in CPU time. 

• In particular, 𝜖 decays toward zero monotonously at higher order approximations 

since then the convergence rate of solution diminishes substantially in value. 

Owing to such shortcomings, we propose a novel approach in the next chapter. 
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CHAPTER 3: METHODOLOGY 

It is well-known that an auxiliary convergence control parameter in OHAM is an 

essential attribute to fine-tune convergence. Despite its many documented successes, the 

approach restricts two convergence control parameters at the most, as suggested in the 

paper (Liao, 2010). A disadvantage of the method is a failure to enhance the quality of 

precision in some cases that require high order approximations. Additionally, it is 

computationally expensive if the number of parameter increase, as shown in (Fan & You, 

2013; Niu & Wang, 2010). 

Contrary to OHAM, a new idea of constructing homotopy is offered. This method is 

called iterative homotopy analysis method (IHAM) by introducing a different 

convergence control parameter at each iteration. In this approach, we can always get 

accurate enough homotopy series at each iteration. Moreover, our proposed IHAM is 

computationally more effective than OHAM, as each control convergence parameter at 

the corresponding iteration can be determined. A background literature search does not 

indicate that such a method is published so far. As far as we know, this is the only research 

that employs new IHAM to solve FDEs. 

3.1 Iterative homotopy analysis method 

To outline our new IHAM, we establish the following zeroth order deformation 

equation with operator 𝑁 , solution 𝜙(𝑡; 𝑞), and homotopy embedding parameter 𝑞 ∈

[0, 1], like those considered in Eq. (2.36) 

   (1 − 𝑞)𝐿[𝜓(𝑡; 𝑞)] = 𝑞 𝑁[𝜙(𝑡; 𝑞)],                                                                  (3.1) 
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except for auxiliary linear operator 𝐿  with solution 𝜓(𝑡; 𝑞)  subject to mentioned 

boundary condition Eq. (2.35). Similarly, the Maclaurin series representation of 𝜓(𝑡; 𝑞) 

becomes 

   𝜓(𝑡; 𝑞) = ∑ 𝜓𝑘(𝑡) 𝑞𝑘

∞

𝑘=0

,                                                                                       

where 𝑘th homotopy derivative 𝜓𝑘(𝑡) can be represented by 

   𝜓𝑘(𝑡) =
1

𝑘!

𝜕𝑘𝜓(𝑡; 𝑞)

𝜕𝑞𝑘
|

𝑞=0

.                                                                                  

In particular, we have 𝐿[𝜓0(𝑡)] = 0 by setting Eq. (3.1) at 𝑞 = 0. In addition to this, Eq. 

(3.1) needs to be differentiated using the same procedure as mentioned in the above 

OHAM to deduce the 𝑘th order deformation equation, namely 

   ℒ[𝜓𝑘(𝑡)] − 𝐿[𝜓𝑘−1(𝑡)] =
1

(𝑘 − 1)!

𝜕𝑘−1

𝜕𝑞𝑘−1
𝒩[𝜙(𝑡; 𝑞)]|

𝑞=0

.                      (3.2) 

Interestingly, 𝜙𝑘(𝑡) is governed by 𝜓𝑘(𝑡) in Eq. (3.2) suggests that there exists a relation 

between them. It gives rise to the following innovative definition concerning 

approximation behavior of 𝜙𝑘(𝑡) relates to 𝜓𝑘(𝑡). 

Definition 3.1 Recalling Theorem 2.11, the convergence of solution will be guaranteed 

fortunately rely on convergence control parameter. Thus both 𝜙𝑘(𝑡)  and 𝜓𝑘(𝑡)  are 

related to each other via 

   𝜙𝑘(𝑡) = ℎ𝑘  𝜓𝑘(𝑡),                                                                                                 
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where ℎ𝑘 ≠ 0 denotes the 𝑘th convergence control parameter that corresponds to the 𝑘th 

order deformation equation. Then, in view of Definition 3.1, we can write Eq. (3.2) in an 

iterative manner as follows: 

   𝐿 [
𝜙1(𝑡)

ℎ1

] = 𝑁[𝜙(𝑡; 𝑞)]|𝑞=0,                                                                             

   𝐿 [
𝜙2(𝑡)

ℎ2

] − 𝐿 [
𝜙1(𝑡)

ℎ1

] =
𝜕

𝜕𝑞
𝑁[𝜙(𝑡; 𝑞)]|

𝑞=0

,                                                

   ⋮                                                                                                                                

   𝐿 [
𝜙𝑘−1(𝑡)

ℎ𝑘−1

] − 𝐿 [
𝜙𝑘−2(𝑡)

ℎ𝑘−2

] =
1

(𝑘 − 2)!

𝜕𝑘−2

𝜕𝑞𝑘−2
𝑁[𝜙(𝑡; 𝑞)]|

𝑞=0

,                 

   𝐿 [
𝜙𝑘(𝑡)

ℎ𝑘

] − 𝐿 [
𝜙𝑘−1(𝑡)

ℎ𝑘−1

] =
1

(𝑘 − 1)!

𝜕𝑘−1

𝜕𝑞𝑘−1
𝑁[𝜙(𝑡; 𝑞)]|

𝑞=0

.                     

(3.3) 

We saw in Eq (2.41) that the optimal convergence control parameter is determined by 

the so-called mean squared residual error 𝜖. Surely, we can apply the same concept to ℎ𝑘, 

𝑘 = 0, 1, … given in Eq (3.3). Contrary to Eq. (2.39), Eq. (3.3) determines each optimal 

ℎ𝑘 at the corresponding 𝑘th iteration independently signifying considerable advantages as 

follows: 

• The present approach avoids heavy accumulation of convergence control 

parameters during the evaluation of 𝜖, resulting in less CPU time. 

• As the approximation level gets higher, the growth rate of solution convergence 

is retained well as a result of rapidly decaying 𝜖. 

In the next chapter, we will verify the adoption of IHAM for some FDE examples. 
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CHAPTER 4: RESULTS AND DISCUSSION 

In this chapter, we shall demonstrate the practical applicability of the above presented 

IHAM. We take into consideration widely used examples from the literature described in 

CHAPTER 2. For each problem, we made a comparison between the previously well-

established OHAM and the new IHAM. Thus, we shall concentrate on the evaluation of 

their convergence criteria within any desired CPU time, which includes computational 

efficiency as well. These examples are selected because their solution exists in the 

literature, therefore serve as validation for IHAM. All computations were performed 

using Mathematica 12 software on a 64-bit PC with 16 GB RAM and 2.8 GHz CPU. 

4.1 Fractional initial value problems 

As a first attempt to solve FDEs, let us begin with fractional initial value problems 

(FIVPs). They are FDEs together with a specified initial condition at starting point.  

In the following, we consider Bagley-Torvik equation (BTE) and fractional Riccati 

differential equation (FRDE). The former being a linear problem, but the latter being a 

nonlinear problem. 

4.1.1 Bagley-Torvik equation 

Our first example is similar to that presented in the book (Podlubny, 1998) for which 

numerical solution is available. Substituting 𝛼 = 1.5, 𝐴(𝑡) = 1, 𝐵(𝑡) = 0.5, 𝐶(𝑡) = 0.5 

and 𝑎 = 0 into Eq. (2.15), we have the following BTE 

   𝑓(2)(𝑡) + 0.5  𝐷0
𝐶

𝑡
1.5𝑓(𝑡) + 0.5 𝑓(𝑡) − 𝑔(𝑡) = 0,                                          (4.1) 

subject to initial conditions Eq. (2.16) 
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   𝑓(0) = 𝑓(1)(0) = 0,                                                                                            (4.2) 

with given function 

   𝑔(𝑡) = 8𝑢(𝑡)  −  8𝑢(𝑡 − 1),                                                                               

in terms of Heaviside unit step function 𝑢(𝑡). In order to make Eq. (4.1) solvable through 

both OHAM and IHAM, we choose 

   𝐿[𝑓(𝑡)] = 𝑓(2)(𝑡) + 0.5 𝑓(𝑡),                                                                             

as auxiliary linear operator subject to Eq. (4.2). Thus, we obtain the following first few 

orders of OHAM and IHAM series: 

𝑓OHAM(𝑡) = 2.202720 × 10−10[𝑡6𝐸2,−1(−0.5 𝑡2)

− 𝑢(𝑡 − 1)(𝑡 − 1)6𝐸2,−1(−0.5 (𝑡 − 1)2)]

− 2.890560 × 10−8[𝑡5.5𝐸2,−0.5(−0.5 𝑡2)

− 𝑢(𝑡 − 1)(𝑡 − 1)5.5𝐸2,−0.5(−0.5 (𝑡 − 1)2)] + ⋯ 

𝑓IHAM(𝑡) = 1.818640 × 10−12[𝑡6𝐸2,−1(−0.5 𝑡2)

− 𝑢(𝑡 − 1)(𝑡 − 1)6𝐸2,−1(−0.5 (𝑡 − 1)2)]

− 8.561400 × 10−10[𝑡5.5𝐸2,−0.5(−0.5 𝑡2)

− 𝑢(𝑡 − 1)(𝑡 − 1)5.5𝐸2,−0.5(−0.5 (𝑡 − 1)2)] + ⋯                                

For the sake of comparison, we have plotted Figure 4.1 that displays the mean residual 

squared error 𝜖 across CPU time introduced by OHAM and IHAM on interval [0, 20]. 

Perhaps, somewhat surprisingly, the 𝜖 decay is slow for IHAM, as opposed to OHAM. 

Like any other method, IHAM has its shortcomings, but it wouldn’t fail to converge at 

higher order approximations, nevertheless. 
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Figure 4.1: Mean squared residual error 𝝐 for BTE. Circle: OHAM; Square: 
IHAM. 

In addition, with the known solution (Podlubny, 1998), we present absolute error 

|∆𝑓(𝑡)| obtained by both methods in Figure 4.2 together with their mean value in Table 

4.1. It turns out that OHAM has better accuracy, which necessitates further improvement 

of IHAM. One possible reason behind this is due to convergence control parameters of 

IHAM diminish in value. 

 

Figure 4.2: Absolute error |∆𝒇(𝒕)| for BTE. Dashed line: OHAM; Solid line: 
IHAM. 
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Table 4.1: Mean absolute error |∆𝒇(𝒕)|̅̅ ̅̅ ̅̅ ̅̅ ̅ obtained by OHAM and IHAM for BTE. 

Mean absolute error OHAM IHAM 
|∆𝑓(𝑡)|̅̅ ̅̅ ̅̅ ̅̅ ̅ 7.932006 × 10−5  2.018109 × 10−2 

 

4.1.2 Fractional Riccati differential equation 

The second example is concerned with the extension of previous work (Cang et al., 

2009) on FRDE. Considering case 𝛼 ∈ (0, 1), 𝐴(𝑡) = 1, 𝐵(𝑡) = 0, 𝐶(𝑡) = −1 and 𝑎 =

0, the corresponding FRDE in Eq. (2.17) becomes 

   𝐷𝑡
𝛼

0
𝐽 𝑓(𝑡) + 𝑓2(𝑡) − 1 = 0,                                                                                 (4.3) 

along with initial condition Eq. (2.18) 

   𝑓(0) = 0.                                                                                                                (4.4) 

When 𝛼 = 1, Eq. (4.3) is an ordinary Riccati differential equation whose exact solution 

(Cang et al., 2009) is 

   𝑓(𝑡) =
𝑒2𝑡 − 1

𝑒2𝑡 + 1
.                                                                                                     (4.5) 

For implementing both OHAM and IHAM to solve Eq. (4.3), we shall pick the following 

auxiliary linear operator 

   𝐿[𝑓(𝑡)] = 𝐷𝑡
𝛼

0
𝐽 𝑓(𝑡),                                                                                              

with Eq. (4.4) remains satisfied. The first few orders of the OHAM and IHAM series in 

case 𝛼 = 0.5 are given by 
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𝑓OHAM(𝑡) = 1.128380 𝑡0.5 − 0.905921 𝑡1.5 + 1.003600 𝑡2.5 − 1.013020 𝑡3.5

+ 0.851830 𝑡4.5 − 0.580941 𝑡5.5 + 0.318759 𝑡6.5 + ⋯ 

𝑓IHAM(𝑡) = 1.128330 𝑡0.5 − 0.953956 𝑡1.5 + 1.243200 𝑡2.5 − 1.616110 𝑡3.5

+ 1.798410 𝑡4.5 − 1.594700 𝑡5.5 + 1.099010 𝑡6.5 + ⋯                     

From Figure 4.3 (a) and Figure 4.3 (b), we observe an interesting pattern in mean 

squared residual error 𝜖 decay behavior of both methods on interval [0, 5] at 𝛼 = 0.5 and 

𝛼 = 1, respectively. Although the 𝜖 decrease for OHAM and IHAM within the desired 

CPU time, the 𝜖 of IHAM decays faster to gain higher order approximations. From these 

figures, it is evident that IHAM consistently improves its convergence. 

 

Figure 4.3: Mean squared residual error 𝝐 for FRDE at (a) 𝜶 = 𝟎. 𝟓 and (b) 𝜶 =
𝟏. Circle: OHAM; Square: IHAM. 

Additionally, we have plotted absolute error |∆𝑓(𝑡)| of both methods using Eq. (4.5) 

at 𝛼 = 1 in Figure 4.4, and their mean value in Table 4.2. Contrary to OHAM, IHAM 

yields better accuracy throughout the interval. 
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Figure 4.4: Absolute error |∆𝒇(𝒕)| for FRDE at 𝜶 = 𝟏. Dashed line: OHAM; 
Solid line: IHAM. 

Table 4.2: Mean absolute error |∆𝒇(𝒕)|̅̅ ̅̅ ̅̅ ̅̅ ̅ obtained by OHAM and IHAM for FRDE 
at 𝜶 = 𝟏. 

Mean absolute error OHAM IHAM 
|∆𝑓(𝑡)|̅̅ ̅̅ ̅̅ ̅̅ ̅ 3.446290 × 10−3  2.854200 × 10−3 

 

This example is solved through IHAM for some values of 𝛼 ∈ (0, 1) until 𝜖 ≤ 10−7 

is satisfied. The obtained results of 𝑘th iteration, mean squared residual error 𝜖, number 

of terms 𝑀, and CPU time are reported in Table 4.3. Interestingly, the computation of 

𝛼 < 1 turns out to be faster, which is proportional to 𝑀. 

Table 4.3: 𝒌th iteration, mean squared residual error 𝝐, number of terms 𝑴 and 
CPU time for FRDE at various 𝜶. 

𝛼 𝑘 𝜖 𝑀 CPU (s) 
0.25 5 3.348544 × 10−7 7 3 
0.50 10 3.769467 × 10−7 12 5 
0.75 17 4.576198 × 10−7 19 9 
1.00 28 7.077217 × 10−7 30 15 
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The 𝑓(𝑡) depicted in Figure 4.5 demonstrates that the IHAM solution indeed agrees 

well with Eq. (4.5) as 𝛼 closes to 1. Meanwhile, the results with 𝛼 < 1 compare well with 

those obtained in the literature (Khader, 2013). 

 

Figure 4.5: Solution for FRDE at various 𝜶. Solid line: Exact solution; Circle: 
𝜶 = 𝟏; Square: 𝜶 = 𝟎. 𝟕𝟓; Diamond: 𝜶 = 𝟎. 𝟓; Triangle: 𝜶 = 𝟎. 𝟐𝟓. 

4.2 Fractional boundary value problems 

In contrast to the FIVPs discussed in Section 4.1, we consider fractional boundary 

value problems (FBVPs) in this section. They have boundary conditions specified at 

interval endpoints. Let us illustrate this kind of problem with the following two examples 

– firstly, linear FBVP is associated with BTE as given by Eq. (2.15), and secondly, 

nonlinear FBVP has the form of Eq. (2.20). 

4.2.1 Linear fractional boundary value problem 

We start by recalling the subsequent linear FBVP considered in (Li et al., 2010) on 

interval [0, 1], 

   𝑓(2)(𝑡) + sin(𝑡) 𝐷0
𝐶

𝑡
0.5𝑓(𝑡) + 𝑡 𝑓(𝑡) − 𝑔(𝑡) = 0,                                         (4.6) 

subject to boundary conditions Eq. (2.19) 
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   𝑓(0) = 𝑓(1) = 0,                                                                                                 (4.7) 

where function 𝑔(𝑡) is given by  

   𝑔(𝑡) = 𝑡9 − 𝑡8 + 56𝑡6 − 42𝑡5 + sin(𝑡) (
Γ(9)

Γ(8.5)
𝑡7.5 −

Γ(8)

Γ(7.5)
𝑡6.5).     (4.8) 

Eqs. (4.6) – (4.8) admit exact solution given by 

   𝑓(𝑡) = 𝑡8 − 𝑡7.                                                                                                     (4.9) 

With a choice of auxiliary linear operator 

   𝐿[𝑓(𝑡)] = 𝑓(2)(𝑡),                                                                                                 

and considering boundary conditions Eq. (4.7) allows us to construct homotopy series via 

both OHAM and IHAM. Therefore, we have the following first few orders of OHAM and 

IHAM series: 

𝑓OHAM(𝑡) = 𝑡8 − 𝑡7 + 5.733990 × 10−12 𝑡 + 1.719750 × 10−11 𝑡3.5

+ 1.111320 × 10−11 𝑡4 − 1.013320 × 10−12 𝑡5.5

− 1.075210 × 10−10 𝑡6 − 1.085980 × 10−10 𝑡6.5 + ⋯ 

𝑓IHAM(𝑡) = 𝑡8 − 𝑡7 − 1.407520 × 10−12 𝑡 + 2.543990 × 10−11 𝑡3.5

+ 1.643950 × 10−11 𝑡4 − 1.498990 × 10−12 𝑡5.5

− 5.203540 × 10−11 𝑡6 − 5.255660 × 10−11 𝑡6.5 + ⋯                      

For comparison purposes, let us examine the mean squared residual error 𝜖 decay 

described by OHAM and IHAM in Figure 4.6. Notice that both methods generate nearly 

the same 𝜖 decrease within the desired CPU time. Hence, both approaches have proven 

successful for this type of problem. 

Univ
ers

iti 
Mala

ya



57 

 

Figure 4.6: Mean squared residual error 𝝐  for linear FBVP. Circle: OHAM; 
Square: IHAM. 

Since the above comparison does not result in a significant difference, one may try 

absolute error |∆𝑓(𝑡)| of both methods with Eq.(4.9) in Figure 4.7 and their mean value 

in Table 4.4. Specifically, a closer look at these results reveals that IHAM gives slightly 

better accuracy compared to OHAM. 

 

Figure 4.7: Absolute error |∆𝒇(𝒕)| for linear FBVP. Dashed line: OHAM; Solid 
line: IHAM. 
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Table 4.4: Mean absolute error |∆𝒇(𝒕)|̅̅ ̅̅ ̅̅ ̅̅ ̅ obtained by OHAM and IHAM for linear 
FBVP. 

Mean absolute error OHAM IHAM 
|∆𝑓(𝑡)|̅̅ ̅̅ ̅̅ ̅̅ ̅ 1.348667 × 10−12  1.081129 × 10−12 

 

4.2.2 Nonlinear fractional boundary value problem 

The next example studied here is the following nonlinear FBVP presented in (Pedas 

& Tamme, 2014; Yun Tao et al., 2016) on interval [0, 1] 

   𝐷0
𝐶

𝑡
1.5𝑓(𝑡) − 𝑓3(𝑡) −

Γ(2.9)

Γ(1.4)
𝑡0.4 + (𝑡1.9 − 1)3 = 0,                                    (4.10) 

with boundary conditions Eq. (2.21) 

   𝑓(0) = −1          and          𝑓(1) = 0.                                                                (4.11) 

The exact solution to this problem is 

   𝑓(𝑡) = 𝑡1.9 − 1.                                                                                                     (4.12) 

To approximate Eq. (4.12) through both OHAM and IHAM, we can employ auxiliary 

linear operator 

   𝐿[𝑓(𝑡)] = 𝐷0
𝐶

𝑡
1.5𝑓(𝑡),                                                                                            

subject to boundary conditions Eq. (4.11). Similarly, the first few orders of the OHAM 

and IHAM series can be produced as follows: 
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𝑓OHAM(𝑡) = 𝑡1.9 − 1 − 3.449720 × 10−5 𝑡 + 1.137230 × 10−4 𝑡1.5

− 6.742330 × 10−4 𝑡2.5 + 1.127710 × 10−3 𝑡3

− 8.176340 × 10−5 𝑡3.4 + 9.231140 × 10−4 𝑡3.5 + ⋯ 

𝑓IHAM(𝑡) = 𝑡1.9 − 1 − 1.576700 × 10−9 𝑡 + 6.633640 × 10−11 𝑡1.5

+ 1.223510 × 10−8 𝑡2.5 − 1.389890 × 10−11 𝑡3

+ 6.917660 × 10−12 𝑡3.4 + 7.869700 × 10−9 𝑡3.5 + ⋯                     

We focus our attention once again on the mean squared residual error 𝜖 decay obtained 

in both methods, as illustrated in Figure 4.8. Remarkably, the 𝜖 of OHAM decays faster 

but restricts to low order approximations and hence limited convergence. On the other 

hand, the 𝜖 of IHAM steadily decreases toward higher order approximations and results 

in better convergence. 

 

Figure 4.8: Mean squared residual error 𝝐 for nonlinear FBVP. Circle: OHAM; 
Square: IHAM. 

Furthermore, using Eq. (4.12), it’s possible to compare absolute error |∆𝑓(𝑡)| of both 

methods, as well as their mean value. To serve this purpose, we present the results in 

Figure 4.9 and Table 4.5. One can see that IHAM has the smaller absolute error at higher 

order approximations, leading to a highly accurate solution. 
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Figure 4.9: Absolute error |∆𝒇(𝒕)| for nonlinear FBVP. Dashed line: OHAM; 
Solid line: IHAM. 

Table 4.5: Mean absolute error |∆𝒇(𝒕)|̅̅ ̅̅ ̅̅ ̅̅ ̅  obtained by OHAM and IHAM for 
nonlinear FBVP. 

Mean absolute error OHAM IHAM 
|∆𝑓(𝑡)|̅̅ ̅̅ ̅̅ ̅̅ ̅ 8.688650 × 10−7  3.523985 × 10−10 

 

4.3 Fractional optimal control problems 

Last but not least, we carry out a similar study for fractional optimal control problems 

(FOCPs), whose dynamic constraint is expressed by FDE. We shall consider the 

following two famous FOCP examples, time invariant and time variant. The exact 

solution to these examples for case 𝛼 = 1 can be found in the literature (Agrawal, 1989, 

2004; Agrawal & Baleanu, 2007) and references therein. 

4.3.1 Time invariant fractional optimal control problem 

At first glance, let us consider the subsequent time invariant FOCP. We aim to 

determine state 𝑥(𝑡) and control 𝑢(𝑡) that minimize quadratic performance index 

   𝐽 =
1

2
∫ [𝑥2(𝑡) + 𝑢2(𝑡)]𝑑𝑡,

1

0

                                                                               (4.13) 
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constrained by dynamic 

   𝐷0
𝐽

𝑡
𝛼𝑥(𝑡) = −𝑥(𝑡) + 𝑢(𝑡),                                                                                   

with initial condition 𝑥(0) = 1. Moreover, it follows from Eqs. (2.22) – (2.23) that 

   𝑄(𝑡) = 𝑅(𝑡) = −𝐴(𝑡) = 𝐵(𝑡) = 1.                                                                  

and thus Eqs. (2.31) – (2.33) lead us to 

   𝐷0
𝐽

𝑡
𝛼𝑥(𝑡) + 𝑥(𝑡) + 𝜆(𝑡) = 0,                                                                              (4.14) 

   𝐷𝑡
𝐽

1
αλ(𝑡) + λ(𝑡) − x(𝑡) = 0,                                                                               (4.15) 

and 

   𝑢(𝑡) = −𝜆(𝑡),                                                                                                        

with boundary conditions Eq. (2.30) as 

   𝑥(0) = 1          and          𝜆(1) = 0.                                                                    (4.16) 

We now have to solve Eqs. (4.14) – (4.15) via both OHAM and IHAM involve the 

subsequent auxiliary linear operators 

   𝐿1[𝑥(𝑡)] = 𝐷0
𝐽

𝑡
α𝑥(𝑡),                                                                                             

   𝐿2[λ(𝑡)] = 𝐷𝑡
𝐽

1
αλ(𝑡),                                                                                              

subject to boundary conditions Eq. (4.16). Consequently, the first few orders of OHAM 

and IHAM series in case 𝛼 = 0.5 are as follows: 

 

Univ
ers

iti 
Mala

ya



62 

𝑥OHAM(𝑡) = 1 − 1.497660 𝑡0.5 + 1.260480 𝑡 − 0.316724 𝑡1.5 + 0.039199 𝑡2

− 0.846082 𝑡2.5 + 0.158191 𝑡3 + 2.659930 𝑡3.5 + ⋯ 

𝑢OHAM(𝑡) = −0.353910 (1 − 𝑡)0.5 + 0.178172 (1 − 𝑡) − 0.039766 (1 − 𝑡)1.5

+ 0.017725 (1 − 𝑡)2 − 0.231917 (1 − 𝑡)2.5 + ⋯ 

𝑥IHAM(𝑡) = 1 − 1.522840 𝑡0.5 + 1.338900 𝑡 − 0.377034 𝑡1.5 + 0.201909 𝑡2

− 1.847590 𝑡2.5 + 0.890184 𝑡3 + 5.642160 𝑡3.5 + ⋯ 

𝑢IHAM(𝑡) = −0.404320 (1 − 𝑡)0.5 + 0.355808 (1 − 𝑡) − 0.209851 (1 − 𝑡)1.5

+ 0.113846 (1 − 𝑡)2 − 0.550836 (1 − 𝑡)2.5 + ⋯                                

Figure 4.10 (a - b) show a comparison between mean squared residual error 𝜖 decay 

of both methods at 𝛼 = 0.5 and 𝛼 = 1. In general, the 𝜖 decrease for OHAM and IHAM 

within the desired CPU time. Nevertheless, IHAM requires less computational effort to 

achieve higher order approximations, which significantly contributes to improving its 

convergence. 

 

Figure 4.10: Mean squared residual error 𝝐 for time invariant FOCP at (a) 𝜶 =
𝟎. 𝟓 and (b) 𝜶 = 𝟏. Circle: OHAM; Square: IHAM. 
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Furthermore, Figure 4.11 (a - b) and Table 4.6 signify better accuracy at 𝛼 = 1, where 

absolute errors (|∆𝑥(𝑡)|, |∆𝑢(𝑡)|) of IHAM, including mean values, are smaller than 

those of OHAM with the exact solution (Agrawal, 2004). 

 

Figure 4.11: Absolute errors |∆𝒙(𝒕)| and |∆𝒖(𝒕)| for time invariant FOCP at 𝜶 =
𝟏. Dashed line: OHAM; Solid line: IHAM. 

Table 4.6: Mean absolute errors |∆𝒙(𝒕)|̅̅ ̅̅ ̅̅ ̅̅ ̅ and |∆𝒖(𝒕)|̅̅ ̅̅ ̅̅ ̅̅ ̅̅  obtained by OHAM and 
IHAM for time invariant FOCP at 𝜶 = 𝟏. 

Mean absolute error OHAM IHAM 
|∆𝑥(𝑡)|̅̅ ̅̅ ̅̅ ̅̅ ̅ 2.226620 × 10−3  1.487842 × 10−5 
|∆𝑢(𝑡)|̅̅ ̅̅ ̅̅ ̅̅ ̅ 1.016442 × 10−3 1.149686 × 10−5 

 

Carrying out IHAM to solve this example for some values of 𝛼 ∈ (0, 1) until 𝜖 ≤

10−11 is satisfied. We have tabulated Table 4.7 that displays their 𝑘th iteration, mean 

squared residual error 𝜖, number of terms 𝑀, and CPU time. As expected from Theorem 

2.4, 𝛼 < 1 essentially requires more CPU time to generate sufficient 𝑀 if the desired 𝜖 is 

pursued. 
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Table 4.7: 𝒌th iteration, mean squared residual error 𝝐, number of terms 𝑴 and 
CPU time for time invariant FOCP at various 𝜶. 

𝛼 𝑘 𝜖 𝑀 CPU (s) 
0.25 10 6.485586 × 10−11  232 190 
0.50 10 8.781502 × 10−11 117 91 
0.75 10 8.214418 × 10−11 207 167 
1.00 8 9.650381 × 10−11 9 3 

 

Figure 4.12 (a) and Figure 4.12 (b) depict 𝑥(𝑡) and 𝑢(𝑡) of IHAM at various values of 

𝛼, including the exact solution (Agrawal, 2004) at 𝛼 = 1, respectively. It indicates that 

the result matches the exact solution when 𝛼 approaches 1, whereas the solutions with 

𝛼 < 1 are similar to those found in the paper (Tang et al., 2015). 

 

Figure 4.12: Solutions for time invariant FOCP at various 𝜶. Solid line: Exact 
solution; Circle: 𝜶 = 𝟏; Square: 𝜶 = 𝟎. 𝟕𝟓; Diamond: 𝜶 = 𝟎. 𝟓; Triangle: 𝜶 =
𝟎. 𝟐𝟓. 

4.3.2 Time variant fractional optimal control problem 

The second example that we shall discuss is the following time variant FOCP with 

identical performance index Eq. (4.13) and boundary conditions Eq. (4.16), like those 

considered in the above first example, except that dynamic constraint is given by 
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   𝐷0
𝐽

𝑡
𝛼𝑥(𝑡) = 𝑡 𝑥(𝑡) + 𝑢(𝑡).                                                                                   

In this case, we have 

   𝑄(𝑡) = 𝑅(𝑡) = 𝐵(𝑡) = 1          and          𝐴(𝑡) = 𝑡,                                        

which follows from Eqs. (2.22) – (2.23). Alternatively, we can solve this example in the 

same manner as the previous one, whereas Eqs. (4.14) – (4.15) in a slightly different form 

as follows 

   𝐷0
𝐽

𝑡
𝛼𝑥(𝑡) − 𝑡 𝑥(𝑡) + 𝜆(𝑡) = 0,                                                                           (4.17) 

   𝐷𝑡
𝐽

1
𝛼𝜆(𝑡) − 𝑡 𝜆(𝑡) − 𝑥(𝑡) = 0,                                                                           (4.18) 

subject to boundary conditions Eq. (4.16). In the same manner, we get the following first 

few orders of the OHAM and IHAM series in the case of 𝛼 = 0.5: 

𝑥OHAM(𝑡) = 1 − 1.102570 𝑡0.5 + 0.768096 𝑡1.5 − 0.271720 𝑡2 − 0.633567 𝑡2.5

+ 0.140092 𝑡3 + 2.4932600 𝑡3.5 + 0.064610 𝑡4 + ⋯ 

𝑢OHAM(𝑡) = −0.780401 (1 − 𝑡)0.5 − 2.991540 (1 − 𝑡) + 5.981590 (1 − 𝑡)1.5

− 1.554350 (1 − 𝑡)2 − 7.825800 (1 − 𝑡)2.5 + ⋯ 

𝑥IHAM(𝑡) = 1 − 1.085050 𝑡0.5 + 1.350160 𝑡1.5 − 0.721304 𝑡2 − 1.790550 𝑡2.5

+ 0.746757 𝑡3 + 5.946000 𝑡3.5 − 0.858870 𝑡4 + ⋯ 

𝑢IHAM(𝑡) = −1.025280 (1 − 𝑡)0.5 − 0.911759 (1 − 𝑡) + 1.362330 (1 − 𝑡)1.5

+ 1.605520 (1 − 𝑡)2 − 3.764110 (1 − 𝑡)2.5 + ⋯                                

Like the previous Example 4.3.1, the same comparison between mean squared residual 

error 𝜖 decay of both methods at 𝛼 = 0.5 and 𝛼 = 1 are presented in Figure 4.13 (a - b). 

Once again, these figures confirmed that the 𝜖 decay of IHAM is much faster within the 

Univ
ers

iti 
Mala

ya



66 

desired CPU time. Moreover, IHAM reaches higher order approximations at an 

accelerated pace and consequently leads to rapid convergence. 

 

Figure 4.13: Mean squared residual error 𝝐 for time variant FOCP at (a) 𝜶 = 𝟎. 𝟓 
and (b) 𝜶 = 𝟏. Circle: OHAM; Square: IHAM. 

Apart from the above comparisons, we are also interested in absolute errors (|∆𝑥(𝑡)|, 

|∆𝑢(𝑡)|) of both methods at 𝛼 = 1 and their mean values, as illustrated in Figure 4.14 (a 

- b) and Table 4.8, respectively. From these figures and table, IHAM has even smaller 

absolute errors with the exact solution (Agrawal & Baleanu, 2007), signifying rapid 

convergence of IHAM is further assured. 
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Figure 4.14: Absolute errors |∆𝒙(𝒕)| and |∆𝒖(𝒕)| for time variant FOCP at 𝜶 =
𝟏. Dashed line: OHAM; Solid line: IHAM. 

Table 4.8: Mean absolute errors |∆𝒙(𝒕)|̅̅ ̅̅ ̅̅ ̅̅ ̅ and |∆𝒖(𝒕)|̅̅ ̅̅ ̅̅ ̅̅ ̅̅  obtained by OHAM and 
IHAM for time variant FOCP at 𝜶 = 𝟏. 

Mean absolute error OHAM IHAM 
|∆𝑥(𝑡)|̅̅ ̅̅ ̅̅ ̅̅ ̅ 2.321960 × 10−3  1.314811 × 10−6 
|∆𝑢(𝑡)|̅̅ ̅̅ ̅̅ ̅̅ ̅ 2.740796 × 10−3 3.127456 × 10−6 

 

As we did in the previous case, this example is solved through IHAM for some values 

of 𝛼 ∈ (0, 1)  until 𝜖 ≤ 10−9  is satisfied. The resulting 𝑘 th iteration, mean squared 

residual error 𝜖, number of terms 𝑀 and CPU time are tabulated in Table 4.9. In view of 

Theorem 2.4, extra computation time is required for 𝛼 < 1  generates nearly the 

equivalent 𝜖 when larger 𝑀 is involved. 

Table 4.9: 𝒌th iteration, mean squared residual error 𝝐, number of terms 𝑴 and 
CPU time for time variant FOCP at various 𝜶. 

𝛼 𝑘 𝜖 𝑀 CPU (s) 
0.25 20 5.280239 × 10−9  333 762 
0.50 10 6.513002 × 10−9 123 99 
0.75 10 5.491473 × 10−9 219 174 
1.00 7 3.018190 × 10−9 14 4 
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Figure 4.15 (a) and Figure 4.15 (b) are clear evidence that the IHAM solution reveals 

excellent agreement with the exact solution (Agrawal & Baleanu, 2007) as 𝛼 closes to 1. 

Additionally, the IHAM solutions at 𝛼 < 1  are comparable to those obtained in the 

literature (Tang et al., 2017). 

 

Figure 4.15: Solutions for time variant FOCP at various 𝜶. Solid line: Exact 
solution; Circle: 𝜶 = 𝟏; Square: 𝜶 = 𝟎. 𝟕𝟓; Diamond: 𝜶 = 𝟎. 𝟓; Triangle: 𝜶 =
𝟎. 𝟐𝟓. 
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CHAPTER 5: CONCLUSION 

This research aimed to identify an effective strategy for solving FDEs analytically. In 

the beginning, we recalled a fundamental knowledge of FC. Then we looked at some 

linear and nonlinear problems connected with FIVPs, FBVPs, and FOCPs. Based on our 

investigation with a survey of existing methods, we can conclude that a low convergence 

rate at necessarily high order approximations still seems not to have been addressed. This 

issue inspires us to consider an opportunity for improving the solution. 

By means of Laplace transform, a calculation involving fractional operator turns out 

to be simpler within less computational time. On the other hand, we further developed 

FOCP by considering 𝛼th Jumarie modified Riemann-Liouville fractional derivative. The 

formulation inherently leads to a system of FDEs consisting of both left-handed and right-

handed 𝛼th fractional derivatives, and the resulting integration is much harder to evaluate. 

An alternative way to ease such difficulty is substituting a function being integrated into 

the integration by its Taylor series. Anyway, the proposed technique greatly benefits a 

relevant application to solve FDEs better. 

Although there exist several approaches to solve FDEs, we consider OHAM discussed 

in this dissertation could be privileged due to its simplicity. Furthermore, we developed 

a novel idea called IHAM to address a gap in OHAM by relaxing the limitation of a 

convergence control parameter. Distinct from OHAM, a different convergence control 

parameter is attached to a homotopy series at each iteration. This approach offers new 

insight into the approximation behavior of the solution. 

Following such an idea, the presented comparisons with six commonly used FDE 

examples clearly illustrate a distinction between OHAM and IHAM. The results indicate 

that IHAM is more robust at further increasing convergence criteria, even though less 
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CPU time is an advantage. More precisely, this improvement may bring a new way of 

solving FDEs at least the presented examples point to this fact. Nevertheless, there are 

some exceptions and room for improvements, such as Example 4.1.1 of BTE. 

Based on the implication of results, a future study could extend IHAM to solve other 

FDEs, for instance, Partial FDEs, Sequential FDEs, etc. This extension is left to 

potentially perceptive readers who can explore these possibilities. Last but not least, 

further research is needed to reveal other underlying properties that could strengthen the 

effectiveness of IHAM. We hope that our proposed approach will be advantageous to the 

development of FC. 
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