CHAPTER 4

STOCK RETURN AND TRADING VOLUME

RELATIONSHIP

4.1 Introduction

From Chapter 3, the results show that there are variations in the return and trading volume for the time-of-the-day and day-of-the-week. Therefore, it is interesting to examine the basic characteristics of the return-volume relationship. In this chapter, we examine the contemporaneous relationship and the causality between stock return and trading volume in the Malaysian securities market.

4.2 Contemporaneous Relationship Between Return and

Volume

There are two different sets of trading data in the previous chapter; one starts from 1000 hour till 1600 hour and the other from 0930 hour till 1700 hour which arises from the extended trading hours. To provide data consistency in the analysis, the earlier set of data which covered period before extended trading hours is dropped. Thus, the analysis concentrates on the period after extended trading hours which consists of 3740 intraday observations, made up of 170 trading days of 22 intraday sessions (15-minute interval). The return and volume series used in this section refer to the index return and volume ratio, respectively.

In examining the contemporaneous relationship between the intraday return and volume, the model used by Jain and Joh (1988) and Ho et al (1993) is adopted. The model is as follows:

$$\begin{aligned} V_t &= a + b \left| R_t \right| + c \left[D_t \left| R_t \right| \right] \\ &+ \sum_{k=1}^n e_k DD_{kt} + \sum_{k=1}^n f_k \left[DD_{kt} \left| R_t \right| \right] \\ &+ \sum_{k=1}^n g_k \left[DD_{kt} \left| R_t \right| D_t \right] + \mu_t \end{aligned}$$

where V_t is the volume ratio used in earlier chapter; R_t denotes returns for period t; $D_t = 0$ if the period t return is positive and 1 otherwise; DD_{kt} is a vector of dummy variables, k=1,2,...n; n is 25 which includes 4 dummy variables for days of the week and 21 for times of the day; U, is a random error term.

The three specifications are described as below:

- (a) DD_{kt} variables are omitted, i.e. $e_k=f_k=g_k=0$;
- (b) The seasonal variables affect only the intercept but not the slope of the regression, i.e. f₁=g₁=0;
- (c) Full model as in the above equation.

The regression results are presented in Table 4.1. It is found that all the three coefficients are highly significant in the first specification. The positive coefficient (0.0263) for the absolute return indicates positive relationship between absolute return and the volume; in other words, volume tends to move in the same direction as absolute return. When R, is positive, the slope of the regression is b; while when R_t is nonpositive, i.e. D_t is 1, the slope is the sum of **b** and **c**, that is, 0.0108 (0.0263 - 0.0155). Hence, it is obvious that the slope for the positive return is greater than the value when the returns are nonpositive. The results here are consistent with the asymmetric price-volume hypothesis proposed by Karpoff (1987) and the empirical evidence found by Jain and Joh (1988) in the US market and Ho et al (1993) in the Hong Kong market. The highly statistically significant coefficient of |R.|D, implies that the asymmetrical response is stronger than the Hong Kong market but not as strong as the US market.

To allow the influence of the day-of-the-week and time-of-the-day

Table 4.1 Regression Results on Specification 1

LS // Dependent variable is V Included observations: 3740				
Variable	Coefficient	Std. Error	T-Statistic	Prob.
a	0.004422	9.92E-05	44.60143	0.000000
R	0.026321	0.002271	11.59024	0.000000
D R	-0.015457	0.003067	-5.040149	0.000000
R-squared	0.034811	Mean dependent var		0.005032
Adjusted R-squared	0.034294	S.D. dependent var		0.004616
S.E. of regression	0.004536	Akaike info criterion		-10.790490
Sum squared resid	0.076899	Schwartz criterion	-10.785500	
Log likelihood	14874.39	F-statistic		67.389630
Durbin-Watson stat	0.720624	Prob(F-statistic)		0.000000

Note:

1. D=0 if R greater than 0 and D=1 if R less than or equal to 0

2. R is the average return for the Composite Index.

effects, additional dummy variables are included in the second specification. The results are presented in Table 4.2. It is found that the adjusted R² increases significantly from 3.43 per cent to 9.27 per cent. Most of the coefficients for dummy variables are statistically significant either at 1, 5 or 10 per cent level except the ones for Tuesday and Wednesday. Such findings are, however, different from those obtained by Ho et al (1993) and Jain and Joh (1988). Generally, this specification suggests that the seasonal effects affect only the intercept but not the slope of the equation. The analysis reveals that the time-of-the-day effect has greater influence on the intercept of the equation as compared to the dayof-the-week effect.

Table 4.3 presents the results of the full model as stated in the third specification. The specification allows intercepts and slopes to differ across the weekday and the 15-minute trading interval. The results show that the adjusted R² increases further to 10.18 per cent. There are more significant coefficients for the time-of the-day effect than the day-of-the-week. In fact, most of the coefficients (11 out of 12) for the dummy variables for the day-of-the-week are not significant. This seems to imply that time-of-the-day has greater influence on the intercept and slope coefficients as compared to the day-of-the-week.

Table 4.2 Regression Results on Specification 2

Variable	Coefficient	Std. Error	T-Statistic	Prob.
a	0.009242	0.000394	23.475160	0.000000
R	0.016793	0.002332	7.200962	0.000000
D R	-0.007534	0.003057	-2.464736	0.013800
D(MON)	0.000603	0.000236	2.549789	0.010800
D(TUE)	0.000237	0.000228	1.039348	0.298700
D(WED)	0.000270	0.000228	1.186675	0.235400
D(THU)	0.000421	0.000229	1.834461	0.066700
D(0945)	-0.004405	0.000477	-9.227089	0.000000
D(1000)	-0.004745	0.000483	-9.821652	0.000000
D(1015)	-0.004931	0.000485	-10.165030	0.000000
D(1030)	-0.005390	0.000485	-11.103270	0.000000
D(1045)	-0.005361	0.000486	-11.020060	0.000000
D(1100)	-0.005177	0.000487	-10.623720	0.000000
D(1115)	-0.005441	0.000487	-11.184240	0.000000
D(1130)	-0.005844	0.000487	-11.990780	0.000000
D(1145)	-0.005677	0.000487	-11.658720	0.000000
D(1200)	0.005737	0.000487	-11.785480	0.000000
D(1215)	-0.005667	0.000486	-11.655590	0.000000
D(1230)	-0.005757	0.000487	-11.820500	0.000000
D(1445)	-0.003732	0.000486	-7.684780	0.000000
D(1500)	-0.004707	0.000486	-9.685560	0.000000
D(1515)	-0.004973	0.000487	-10.218840	0.000000
D(1530)	-0.005390	0.000486	-11.097160	0.000000
D(1545)	-0.005514	0.000487	-11.332310	0.000000
D(1600)	-0.005285	0.000486	-10.881290	0.000000
D(1615)	-0.005252	0.000486	-10.805250	0.000000
D(1630)	-0.005416	0.000485	-11.162450	0.000000
D(1645)	-0.004281	0.000485	-8.826298	0.000000
-squared	0.099206	Mean depende	nt var	0.005032
djusted R-squared		S.D. dependent		0.004616
E. of regression		Akaike info cri		-10.846170
um squared resid		Schwartz criter		-10.799550
og likelihood		F-statistic		15.141040
urbin-Watson stat		Prob(F-statistic	2)	0.000000

Note:

- D(Mon)=1 for Monday and 0 otherwise; D(Tue)=1 for Tuesday and 0 otherwise; other weekdays are defined similarly.
- D(0945)=1 for 0930-0945 interval and 0 otherwise; D(1000)=1 for 0945-1000 interval and 0 otherwise; other 15-minute intervals are defined similarly.

<pre>// Dependent variab luded observations:</pre>				
Variable	Coefficient	Std. Error	T-Statistic	Prob.
a	0.007636	0.000592	12.904120	0.000000
R	0.033365	0.008022	4.159108	0.000000
D R	0.055428	0.017099	3.241541	0.001200
D(MON)	0.000668	0.000320	2.084424	0.037200
D(TUE)	0.000213	0.000306	0.696129	0.486400
D(WED)	0.000489	0.000305	1.606147	0.108300
D(THU)	0.000163	0.000314	0.516953	0.605200
D(0945)	-0.003076	0.000718	-4.285939	0.000000
D(1000)	-0.003219	0.000750	-4.290300	0.000000
D(1015)	-0.002476	0.000735	-3.367152	0.000800
D(1030)	-0.002971	0.000733	-4.053379	0.000100
D(1045)	-0.003925	0.000736	-5.330838	0.000000
D(1100)	-0.003768	0.000752	-5.012964	0.000000
D(1115)	-0.003740	0.000743	-5.033342	0.000000
D(1130)	-0.003977	0.000740	-5.375108	0.000000
D(1145)	-0.003626	0.000733	-4.948319	0.000000
D(1200)	-0.003749	0.000717	-5.227439	0.000000
D(1215)	-0.004372	0.000748	-5.846230	0.000000
D(1230)	-0.004101	0.000722	-5.678491	0.000000
D(1445)	-0.002175	0.000722	-3.014358	0.002600
D(1500)	-0.002532	0.000726	-3.488126	0.000500
D(1515)	-0.003270	0.000719	-4.549136	0.000000
D(1530)	-0.003870	0.000743	-5.206477	0.000000
D(1545)	-0.003973	0.000733	-5.418759	0.000000
D(1600)	-0.004027	0.000716	-5.622652	0.000000
D(1615)	-0.004258	0.000727	-5.854262	0.000000
D(1630)	-0.004035	0.000730	-5.526450	0.000000
D(1645)	-0.002925	0.000749	-3.907401	0.000100
D(MON) R	0.001047	0.007648	0.136851	0.891200
D(TUE) R	0.003329	0.008169	0.407508	0.683700
D(WED) R	-0.005239	0.006657	-0.786862	0.431400
D(THU) R	0.007514	0.007548	0.995572	0.319500
D(0945) R	-0.011362	0.008499	-1.336914	0.181300
D(1000) R	-0.012026	0.012111	-0.992990	0.320800
D(1015) R	-0.037409	0.014286	-2.618619	0.008900
D(1030) R	-0.040020	0.013846	-2.890290	0.003900
D(1045) R	-0.005982	0.015018	-0.398324	0.690400
D(1100) R	0.016549	0.022394	0.738993	0.460000
D(1115) R	-0.010263	0.017921	-0.572699	0.566900
D(1130) R	-0.036109	0.017309	-2.086153	0.037000
D(1145) R	-0.023003	0.017802	-1.292148	0.196400
D(1200) R	-0.023876	0.017848	-1.337762	0.181100
D(1215) R	0.007709	0.018076	0.426464	0.669800

Table 4.3 (Continuation) Regression Results on Specification 3

LS // Dependent variable Included observations: 3					
era orozaniko na ma					
D(1230) R	-0.012891	0.018992	-0.678773	0.497300	
D(1445) R	-0.005551	0.015719	-0.353152	0.724000	
D(1500) R	-0.037764	0.014106	-2.677136	0.007500	
D(1515) R	-0.023366	0.013799	-1.693327	0.090500	
D(1530) R	-0.028873	0.013482	-2.141665	0.032300	
D(1545) R	-0.031950	0.017703	-1.804734	0.071200	
D(1600) R	-0.014221	0.014350	-0.991064	0.321700	
D(1615) R	-0.013637	0.015525	-0.878391	0.379800	
D(1630) R	-0.027851	0.014563	-1.912424	0.055900	
D(1645) R	-0.016743	0.015863	-1.055433	0.291300	
D(MON) R D	-0.005779	0.009653	-0.598654	0.549400	
D(TUE) R D	-0.006013	0.009948	-0.604416	0.545600	
D(WED) R D	-0.003530	0.009507	-0.371362	0.710400	
D(THU) R D	0.000173	0.009813	0.017642	0.985900	
D(0945) R D	-0.064209	0.019004	-3.378782	0.000700	
D(1000) R D	-0.067102	0.019617	-3.420538	0.000600	
D(1015) R D	-0.069110	0.021077	-3.279004	0.001100	
D(1030) R D	-0.066732	0.021634	-3.084542	0.002100	
D(1045) R D	-0.070856	0.021700	-3.265332	0.001100	
D(1100) R D	-0.103514	0.026059	-3.972357	0.000100	
D(1115) R D	-0.082482	0.024864	-3.317295	0.000900	
D(1130) R D	-0.046045	0.025384	-1.813906	0.069800	
D(1145) R D	-0.085968	0.025405	-3.383907	0.000700	
D(1200) R D	-0.080279	0.024282	-3.306164	0.001000	
D(1215) R D	-0.086759	0.024630	-3.522548	0.000400	
D(1230) R D	-0.074888	0.025585		0.003400	
D(1445) R D	-0.083305	0.023167	-3.595824	0.000300	
D(1500) R D	-0.053107	0.020682	-2.567768	0.010300	
D(1515) R D	-0.054952	0.020986	-2.618464	0.008900	
D(1515) R D	-0.037615	0.020908	-1.799057	0.072100	
D(1530) R D D(1545) R D	-0.037013	0.020908	-1.334200	0.182200	
D(1545) R D D(1600) R D	-0.031438	0.023363	-2.105950	0.035300	
D(1600) R D D(1615) R D	-0.043498	0.022086	-1.438149	0.150500	
D(1613) R D	-0.031783	0.022080	-0.801848	0.422700	
D(1630) R D	-0.018872	0.023333	-2.152296	0.031400	
D(1045) K D	-0.047303	0.021979	-2.152290	0.001400	
Resquared	0.120339	Mean depender	nt var	0.005032	
Adjusted R-squared		S.D. dependent		0.004616	
S.E. of regression	0.004375	Akaike info crit	terion	-10.843170	
Sum squared resid	0.070085	Schwartz criter	ion	-10.713310	
Log likelihood	15047.91	F-statistic		6.506053	
Durbin-Watson stat		Prob(F-statistic)	0.000000	

4.3 Causality Test

Apart from the contemporaneous relationship between return and volume, it would also be interesting to examine the causal relation or the lead-lag structure of these two variables. Ho et al (1993) gave two reasons why the causal relation should be examined : firstly, the specification given in the contemporaneous equation implicitly assumes return causes volume; if this assumption is not true, specification error would be incurred in the estimation of the relationship; secondly, technical analysts usually take an opposite view as they look at the volume to predict or to confirm future price movements. Thus, in this section, Grange-causality test is used to investigate whether the return and volume are causally related. The causality test here involves 3740 intraday data set (made up of 170 trading days of 22 intraday 15minute sessions) of return and volume which covers from 22 July 1992 till 15 April 1993.

Consider the following unrestricted model for return (R) and volume (V):

where m, n, p and q are the lag lengths for the respective series. μ_{1t} and μ_{tt} are the error terms in equations 1 and 2, and it is assumed that they are not correlated.

The Granger-causality test examines the dynamic relationship between the market return and the trading volume. Before the causality test is performed, the unit root test is used to determine the stationarity of both return and volume series. The return and volume series here refer to the average return for the KLSE CI and the volume ratio, respectively. As presented in Tables 4.4 and 4.5, the Augmented Dicky-Fuller (ADF) statistics for both return and volume series are, in absolute term, greater than the critical value provided by Mckinnon. This suggests that unit roots do not exist in both series and that they are stationary at level.

Both series are also tested for white noise by using Ljung-Box Q-statistics. Up to 30 lags are used. The results are presented in

Table 4.4 Augmented Dickey-Fuller Unit Root Test on R

ADF Test Statistic	-25.58806		cal Value cal Value cal Value	-2.5663 -1.9394 -1.6156
*MacKinnon critical value	s for rejection of h	ypothesis of a unit root		
Augmented Dickey-Fuller LS // Dependent variable is Included observations: 374	s D(R)			
Variable	Coefficient	Std. Error	T-Statistic	Prob
R(- 1)	-0.789854	0.030868	-25.58806	0.000000
D(R(- I))	-0.086099	0.028284	-3.044074	0.002400
D(R(-2))	-0.004671			
D((((-2)))	-0.004671	0.025373	-0.184076	0.854000
D(R(-3))	0.017547	0.021785	0.805465	0.420600
D(R(-3))	0.017547 0.004626	0.021785	0.805465	0.420600
D(R(-3)) D(R(-4))	0.017547 0.004626 0.436043	0.021785 0.016388	0.805465	0.420600 0.777800
D(R(-3)) D(R(-4)) R-squared	0.017547 0.004626 0.436043 0.435439	0.021785 0.016388 Mean dependent var	0.805465	0.420600 0.777800 4.49E-05
D(R(-3)) D(R(-4)) R-squared Adjusted R-squared	0.017547 0.004626 0.436043 0.435439 0.048893	0.021785 0.016388 Mean dependent var S.D. dependent var	0.805465	0.420600 0.777800 4.49E-05 0.065072
D(R(-3)) D(R(-4)) R-squared Adjusted R-squared S.E. of regression	0.017547 0.004626 0.436043 0.435439 0.048893 8.928743	0.021785 0.016388 Mean dependent var S.D. dependent var Akaike info criterion	0.805465	0.420600 0.777800 4.49E-05 0.065072 -6.034891

Table 4.5 Augmented Dickey-Fuller Unit Root Test on V

ADF Test Statistic	-6.677887	5% Crit	ical Value ical Value ical Value	-2.5663 -1.9394 -1.6156
*MacKinnon critical value	s for rejection of h	ypothesis of a unit roc	ət.	
Augmented Dickey-Fuller LS // Dependent variable is Included observations: 374	D(V)			
Variable	Coefficient	Std. Error	T-Statistic	Prob
V(- 1)	-0.056402	0.008446	-6.677887	0.000000
D(V(- I))	-0.561935	0.017352	-32.384920	0.000000
D(V(-2))	-0.349114	0.019064	-18.312920	0.000000
D(V(-3))	-0.243955	0.018759	-13.004580	0.000000
D(V(-4))	-0.127440	0.016272	-7.832055	0.000000
R-squared	0.282239	Mean dependent var		-2.07E-06
Adjusted R-squared	0.281471	S.D. dependent var		0.003850
S.E. of regression	0.003264			-11.448560
Sum squared resid	0.039780	Schwartz criterion		-11.440230
Log likelihood		F-statistic		367.17130
Durbin-Watson stat	0.000044	Prob(F-statistic)		0.000000

Tables 4.6 and 4.7. It is found that the null hypotheses of all the autocorrelations are zero have to be rejected for both return and volume series. This suggests that the series are not white noise. The first order autocorrelation of 0.652 implies that about 43 per cent of the intraday volume variation is predictable by using the preceding intraday volume. For the return series, the first order autocorrelation of 0.137 shows that only 2 per cent in return figures can be predicted by the previous intraday return. Both figures of return and volume are much smaller than those observed in Finnish stock market where Martikainen et al (1994) obtained figures of 10 per cent and 87 per cent in the return and volume series, respectively.

The determination of the number of lags for the variables which are to be included in the model is based on the Akaike Information Criterion (AIC). Up to 30 lags have been tested on both return and volume series. In equation 1, The lowest AIC value is recorded at lag 25 for both return and volume series. In equation 2, the minimum AIC value is achieved at lag 25 for return series and at lag 2 for volume series.

 Table 4.8 shows the Granger-causality results. The highly
 significant F-statistic suggests that both the null hypotheses of

Table 4.6 Correlogram of R

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
39	E	1	0.137	0.137		0.000
5		2	0.100	0.082		
	1	3	0.044	0.021	115.20	0.000
	Ī	4		-0.014		0.000
	Ī	5	-0.000			0.000
	1	6	0.011	0.012	115.63	0.000
		7	0.014	0.012	116.34	0.000
	1	8	0.036	0.032	121.25	0.000
		9	0.059	0.049	134.16	0.000
2	1	10	0.037	0.018	139.43	0.000
5	1	11	0.072	0.056	159.09	0.000
	1	12	0.048	0.025	167.59	0.000
1 1	2	13	0.039	0.019	173.25	0.000
II			-0.009		173.53	0.000
II		15	0.003	0.000	173.56	0.000
	1	16	0.015	0.015	174.38	0.000
1	9	17	0.029	0.024	177.57	0.000
1	. 1	18	0.018	0.004	178.75	0.000
	ť	19	0.010 -	-0.005	179.11	0.000
	1	20	0.048	0.037	187.79	0.000
	2	21		0.053	205.29	0.000
	1	22		0.074	241.86	0.000
		23		0.026	255.92	0.000
1 1	1		0.005 -		256.02	0.000
1	۲ ۲		0.031 -		259.61	0.000
1	9			0.012	259.69	0.000
1			0.028 -		262.61	0.000
I I			0.024 -	0.026	264.83	0.000
I				0.005	265.07	0.000
1 I	4	30	0.015	0.007		0.000

Table 4.7 Correlogram of V

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.652	0.652	1590.4	0.000
State Case	1253	2	0.606	0.314	2963.7	0.000
12 - 2	- Mai	3	0.561	0.165	4143.7	0.000
104022	- 13	4	0.544	0.137	5252.7	0.000
100.00	- 13	5	0.527	0.104	6293.6	0.000
36035		6	0.523	0.103	7319.6	0.000
1. Car - and	-	7	0.506	0.065	8280.6	0.000
1.05.4196	ų.	8	0.501	0.068	9222.7	0.000
12510(542)	i)	9	0.494	0.058	10137.	0.000
12561372	ų –	10	0.490	0.057	11040.	0.000
1466 162	4	11	0.477	0.033	11895.	0.000
1950,75g	4	12	0.466	0.025	12712.	0.000
	2	13	0.494	0.100	13626.	0.000
10000	n)	14	0.470	0.016	14456.	0.000
	4	15	0.438	-0.035	15176.	0.000
120/45		16	0.449	0.041	15932.	0.000
	•	17	0.433	0.006	16637.	0.000
	4	18	0.434	0.024	17345.	0.000
12000	•	19	0.433	0.026	18051.	0.000
	10	20	0.451	0.068	18818.	0.000
	ja	21	0.481	0.109	19688.	0.000
	1	22	0.523	0.148	20717.	0.000
1204-120	5	23	0.453	-0.073	21490.	0.000
	5	24	0.411	-0.096	22126.	0.000
10000	\$	25	0.384	-0.066	22681.	0.000
12553	+	26	0.388	-0.013	23249.	0.000
122200	• 1	27	0.379	-0.016	23791.	0.000
1 Marcal	•	28	0.370	-0.013	24307.	0.000
120220	¢	29	0.359	-0.018	24793.	0.000
1245E	4	30	0.371	0.032	25313.	0.000

Table 4.8 Granger-Causality Test

	Hypothesis	Wald F-statistic
Equation 1	$\sum_{i=1}^{m} \alpha_i = 0$	29.25*
	$\sum_{j=1}^{n} \beta_{j} = 0$	35.74*
	$\sum_{i=1}^{m} \alpha_i = 0, \sum_{j=1}^{n} \beta_j = 0$	37.38*
Equation 2	$\sum_{i=1}^{p} \lambda_i = 0$	299.39*
	$\sum_{j=1}^{q} \delta_{j} = 0$	6.86*
	$\sum\limits_{i=1}^{p} \lambda_i{=}0$, $\sum\limits_{j=1}^{q} \delta_j{=}0$	162.22*

Note:

m=25, n=25, p=25, q=2 * Significant at 1 per cent level volume does not Granger cause return and return does not Granger cause volume have to be rejected. This may indicate that feedback or bilateral causality exists in the KLSE over the study period. Such phenomenon is consistent with Martikainen et al (1994) and Smirlock and Starks (1988). The finding is, however, different from what was found by Ho et al (1993) in the Hong Kong Stock Exchange and Jain and Joh (1988) in the New York Stock Exchange where the relation was unidirectional in that only volume causes return in the respective markets.

The two different sets of results would probably suggest that feedback tends to exist in smaller markets like Finland and Malaysia while the more developed markets such as New York and Hong Kong tend to exhibit unidirectional causality.

The lag lengths for return and volume series which are generally greater than the 24-daily-intraday-sessions show that the memory or historical information of the KLSE cannot be absorbed within a day. However, in the KLSE, volume seems to contain useful information for forecasting return and vice versa.