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DEVELOPMENT OF VISUAL ODOMETRY BASED MACHINERY MOTION 

ASSESSMENT SYSTEM 

ABSTRACT 

Monitoring the vibrations of a machine's mechanical components is critical to its 
proper operation as for performing preventive maintenance. Recently, a sizable number 
of the study approaches in vibration analysis are based on non-contacting vibration 
measuring equipment that offering various advantages than the conventional sensors. 
New methods for gathering information about the vibration of the machine have evolved 
simultaneously with the constant improvement of the visual odometry (VO) systems due 
to the rapid development of computer vision (CV) field. Digital image analysis, video 
analysis, and other visual inputs are all examples of CV, which is a branch of artificial 
intelligence (AI) that empowers computers or systems to obtain significant information 
from digital images, videos, as well as other visual inputs and to take actions or make 
recommendations based on this information. Research laboratories to actual industrial 
installations were made possible because of their actual effectiveness. The use of 
visualization tools can often be a useful addition to vibration analysis or even a complete 
replacement for more traditional approaches. The non-contacting attributes and the ability 
to simultaneously observe several spots in the defined region are the most important 
factors. Motion magnification (MM), an image processing technique that provides the 
visual observation of vibration processes that are not visible in their native state, is an 
image processing technology. Four types of methodologies involving optical flow (OF), 
motion amplification and MM have been implemented and linear based Eulerian Video 
Magnification (EVM) have been implemented as a benchmark. Method 1 include the 
calculation of OF follow by motion amplification on the video. Method 2 would be the 
same as Method 1 but including the insertion of the cut-off frequency. Method 3 would 
be combining Method 2 with linear based EVM, and Method 4 would be purely linear 
based EVM. These algorithms are implemented in terms of their computational 
complexity and visual quality as well as how they provide the amplified motion of video 
output. Machine diagnostics can be improved by using visual methods that magnify 
motion. Motion amplification aids in the visualization of complex vibration problems that 
are otherwise inaccessible to the human eye. When used in conjunction with other tools, 
this instrument can save time and money in the areas of routine condition monitoring 
programs, troubleshooting, vibration analysis and root cause analysis. In this research, 
the output of the video amplifying and magnifying algorithm have been compared. 
According to the findings, EVM is the most appropriate VO for a machinery motion 
assessment system because it has performed the best magnification work in this project. 
The EVM technique has the best magnification when comparing the data acquired from 
these approaches; nonetheless, the EVM method exhibits superior noise characteristics 
than Method 3. Method 2 outperforms Method 1 in terms of edge distortions, but the 
results are foggy at the end of the system because of the blurring that occurs at the end of 
the system. 

 
Keywords: Vibration, Computer Vision (CV), Visual Odometry (VO), Optical Flow 
(OF), Motion Magnification (MM).  
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IV 

PEMBANGUNAN SISTEM PENILAIAN GERAKAN MESIN BERASASKAN 

ODOMETRI VISUAL 

ABSTRAK 

Memantau getaran komponen mekanikal mesin adalah penting untuk operasi yang 
betul seperti untuk melaksanakan penyelenggaraan pencegahan. Baru-baru ini, sejumlah 
besar pendekatan kajian dalam analisis getaran adalah berdasarkan peralatan pengukur 
getaran tidak bersentuhan yang menawarkan pelbagai kelebihan berbanding penderia 
konvensional. Kaedah baharu untuk mengumpul maklumat tentang getaran mesin telah 
berkembang serentak dengan peningkatan berterusan sistem odometri visual (VO) 
disebabkan perkembangan pesat bidang penglihatan komputer (CV). Penglihatan 
komputer ialah bidang kecerdasan buatan (AI) yang membolehkan komputer dan sistem 
memperoleh maklumat yang bermakna daripada imej digital, video dan input visual lain 
dan mengambil tindakan atau membuat cadangan berdasarkan maklumat tersebut. 
Makmal penyelidikan ke pemasangan industri sebenar telah dibuat kerana keberkesanan 
sebenar mereka. Penggunaan alat visualisasi selalunya boleh menjadi tambahan berguna 
kepada analisis getaran atau malah pengganti lengkap untuk pendekatan yang lebih 
tradisional. Sifat tidak bersentuhan dan keupayaan untuk memerhati beberapa tempat 
secara serentak di rantau yang ditentukan adalah faktor yang paling penting. Pembesaran 
gerakan (MM), teknik pemprosesan imej yang membolehkan pemerhatian visual proses 
getaran yang tidak kelihatan dalam keadaan asalnya, ialah teknologi pemprosesan imej. 
Empat jenis metodologi yang melibatkan aliran optik (OF), penguatan gerakan dan MM 
telah dilaksanakan dan Pembesaran Video Eulerian (EVM) berasaskan linear telah 
dilaksanakan sebagai penanda aras. Kaedah 1 termasuk pengiraan OF diikuti oleh 
penguatan gerakan pada video. Kaedah 2 akan sama dengan Kaedah 1 tetapi termasuk 
sisipan frekuensi potong. Kaedah 3 akan menggabungkan Kaedah 2 dengan EVM 
berasaskan linear, dan Kaedah 4 adalah EVM berasaskan linear semata-mata. Algoritma 
ini dilaksanakan dari segi kerumitan pengiraan dan kualiti visualnya serta cara ia 
menyediakan gerakan diperkuatkan output video. Diagnostik mesin boleh 
dipertingkatkan dengan menggunakan kaedah visual yang membesarkan gerakan. 
Penguatan gerakan membantu dalam visualisasi masalah getaran kompleks yang 
sebaliknya tidak boleh diakses oleh mata manusia. Apabila digunakan bersama alat lain, 
instrumen ini boleh menjimatkan masa dan wang dalam bidang analisis getaran, program 
pemantauan keadaan rutin, penyelesaian masalah dan analisis punca. Dalam penyelidikan 
ini, pengeluaran dari algoritma penguatan dan pembesaran video telah dibandingkan. 
Mengikut penemuan, EVM adalah VO yang paling sesuai untuk sistem penilaian gerakan 
jentera kerana ia telah melakukan kerja pembesaran terbaik dalam projek ini. Teknik 
EVM mempunyai pembesaran terbaik apabila membandingkan data yang diperoleh 
daripada pendekatan ini; namun begitu, kaedah EVM mempamerkan ciri hingar yang 
unggul daripada Kaedah 3. Kaedah 2 mengatasi Kaedah 1 dari segi herotan tepi, tetapi 
hasilnya berkabus pada penghujung sistem kerana kekaburan yang berlaku pada 
penghujung sistem. 

 
Kata Kunci: Getaran, Penglihatan Komputer (CV), odometri visual (VO), aliran optik 
(OF), Pembesaran gerakan (MM) 
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CHAPTER 1: INTRODUCTION 

1.1 Background of Study 

Material or system breakdown is inevitable when a machine is subjected to high levels 

of vibration (Schwarz et al., 2020). The physical parameters of any mechanical system or 

structure, such as mass, stiffness, and damping, are strongly linked to its vibration. In fact, 

its vibration is strongly influenced by changes in its physical properties. If any physical 

property changes, the structure will vibrate in a different way. It is also possible for the 

structure to vibrate in different ways if a boundary condition, such as a loose mounting, 

changes. Structure vibration analysis is extremely important in machinery motion assessment 

system including the evaluation of performance and the detection of faults in structures (Li 

et al., 2015). Traditional vibration analysis methods for the identification of vibration 

characteristics, which were used prior to the usage of vibration video records, were often 

based on one or more sensors. A structure's vibration is normally detected by attaching 

vibration sensors to its surface which known as contacting sensor or by detecting the 

structure's surface motion with a non-contacting sensor such as a laser vibrometer, depending 

on the method used (Li et al., 2016). Surface vibration has also been measured using non-

contacting sensors, such as laser vibrometers, optical sensors, and among others. Every one 

of these ways is more expensive and time demanding than just recording a video, and their 

use may even be prohibitive in some situations when shooting a video is still feasible. Those 

approaches required the use of complex detection systems and have the potential to alter the 

structure's basic dynamic features to a certain extent. Nowadays, visual vibration 

measurement system is becoming increasingly used as a non-contact, wide-range vibration 

measurement approach corresponding to development in camera technology and image 

processing (Yu et al., 2017). A significant amount of the visual measurement outcome is 
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influenced by the camera performance and picture feature extraction, both of which are 

important factors. 

The vision-based system offers several benefits over conventional sensors, including 

remote monitoring, cheap cost, and the ability to measure many points (Zhu et al., 2020). An 

evaluation of computer vision-based systems such as vision-based detection systems, 

deformation measuring methods, and tracking approaches has recently been conducted. (Xu 

and Brown, 2018). Laboratory tests have proven that the vision-based system incorporates a 

cameras and computers for recording and calculating (Fukuda, Feng, & Shinozuka, 2010). 

As a result of its simplicity and cheap resources, camera-based motion estimation has 

acquired a lot of appeal in recent years. When it comes to motion estimation, visual odometry 

(VO) refers to a sort of approaches that utilize visual cues to estimate motion. They may be 

monocular, stereo, RGB-D, or any combination of these three types of sensors, with a variety 

of algorithm frameworks in each case (Poddar et al., 2018). From gaming and virtual reality 

to wearable computing, industrial production, healthcare to underwater and aerial robotics to 

driver assistance systems and agricultural field robots to automotive and pedestrian 

navigation, visual odometry may be used in a broad range of contexts (Scaramuzza and 

Fraundorfer, 2011). For estimating a moving object's speed in space, the optical flow method 

employs the pixels moving speed under the picture grey model. Optical flow analysis relies 

on the Horn-Schunck algorithm and a modified version of it. VO systems using optical flow 

and deep learning have been developed and advocated in several papers. (Muller and Savakis, 

2017). As an input to a convolutional network, optical flow pictures provide rotation and 

displacement values for each pixel in the image. A small-amplitude oscillation that isn't 

visible to the human eye was documented in some of the research (Hyatt and Lee, 2019). 

Using an amplification factor to multiply the optical flow, the researcher warps the video, 
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resulting in a large-amplitude depiction of the original moving. One approach to reduce the 

amount of noise and isolating frequencies in a video is to analyses the video's power spectral 

density (PSD). 

For vibration analysis, the small vibration motion that was previously imperceptible to 

the human eye may now be seen using video motion magnification methods, such as the 

swaying of buildings in the wind or the vibrations of aero plane wings. Understanding the 

structural health of a building (Cha et al., 2013) and taking a person's vital signs 

(Balakrishnan et al., 2013) are both made possible by being able to detect small motions. As 

a result of the magnification, there is a greater chance noise or excessive blurring. Visual 

motion magnification (MM) methods make it possible for humans to observe fast-moving 

objects in detail. MM is a technique for seeing motion that works similarly to a microscope. 

It can enhance small movements in a video sequence, allowing deformations that would 

otherwise be imperceptible to be seen. As the motions are so small, it is impossible to tell 

them apart from background noise. This leads to noisy outcomes and excessive blurring in 

existing video magnification algorithms when the magnification factor is high (Wu et al., 

2012). Filters created by hand are still used to extract representations in current technology. 

Motion magnifying techniques have an important part which is multi-frame temporal filtering, 

which helps separate important motions and reduces the magnifying effect of background 

noise (Oh et al., 2018). A prevalent technique in modern video magnification systems is the 

decomposition of video frames into representations that enable them to magnify motion. 

Hand-designed filters, such the complicated steerable filters (Freeman and Adelson, 1991) 

are often used to decompose them, although this isn't always the best option. 

Techniques for motion magnification fall into two categories: Lagrangian and Eulerian 

methods (Oh et al., 2018). The Lagrangian technique takes the motion field (optical flow) 
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openly and utilizes it to directly move the pixels (Liu et al., 2017). Furthermore, Eulerian 

techniques divide video frames into representations that permit motion manipulation without 

needing explicit tracking (Wu et al., 2012). These approaches are often divided into three 

procedures: deconstructing frames into an alter representation, modifying the representation, 

and rebuilding the altered representation into enlarged frames (Oh et al., 2018). As a result, 

they should be sensitive to noise and typically display significant blurring. In this study, the 

method with the fewest edge distortions and the best noise characteristics will be chosen. 

Distortion can be described as when straight lines appear bent or curvy in photographs and it 

is a form of optical aberration after motion magnification. Multi-frame temporal filtering 

applied to structures is a fundamental component of the best MM techniques, helping to 

isolate significant movements and reduce noise. 

1.2 Problem Statement 

Typically, traditional vibration analysis methods identifying vibration characteristics are 

utilizing on one or more sensors. Surface vibration has also been measured using non-contact 

sensors including optical sensors and laser vibrometers. All these approaches are more 

expensive and time consuming than video recording, and their use may even be prohibitively 

expensive in some circumstances when video recording is still available (Schwarz et al., 

2020). In some buildings, laser displacement meter as non-contacting sensors are employed. 

While laser sensors eliminate the danger and complexity associated with the repairing 

procedure, their limited range and expensive cost restrict their use. Additionally, these non-

contact traditional techniques are only suitable for single-point measurement. In comparison 

to conventional sensors, several benefits have been provided by vision-based system 

including remote monitoring, cheap cost, and multi-point measurement (Zhu et al., 2020). 

As a result, research on cost-effective measurement methods using non-contact sensors such 
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as visual odometry system is gaining momentum. Proximity sensors comparing to optical 

cameras are inexpensive sensors that capture a wealth of useful data. Additionally, they are 

passive; visual localization systems are immune to the interferences that frequently occur 

during utilization of active ultrasonic or laser proximity sensors (Frontoni 2006). Image 

analysis and processing methods of the modern era have expanded the already-existing 

capabilities of vibration monitoring. Vibration measurement, which involves the use of 

sensors and instruments to convert the read-off signal to a form that a researcher can analyze, 

also an indirect approach of monitoring physical processes in action (Śmieja et al., 2021).  

To observe vibration processes that are not apparent in their original state, visual MM 

deforms input pictures in a way that allows for their visual observation. One of the basic 

goals of MM is to solve or overcome the barrier of human perception of changes in the 

viewed objects. Small movements with amplitudes below a threshold are difficult for humans 

to detect. The observation of small dynamic movements is nearly impossible, despite the 

existence of optical devices for seeing small static physical characteristics. MM enables us 

to observe and comprehend crucial biological and physical motions. MM also renders small 

motions in a video sequence such that they can be seen clearly and quantifies the motions so 

that they can be researched. This requires rigorous noise analysis to minimize the 

amplification of spurious signals. Quantitative estimate of the kinematic properties of the 

seen objects may be performed using the established algorithms and their additional features 

(Wadhwa et al., 2017). As depicted by the visualizations in this study, movements that are 

imperceptible to the human eye can be seen. 

1.3 Objective 

1. To develop the visual odometry system as non-contact vibration measurement method for 

machinery motion assessment 
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2. To investigate the suitable visual odometry technique for machinery motion assessment 

system 

3. To investigate the suitable motion magnification algorithms that gives the fewest edge 

distortions and the best noise characteristics 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Maintenance Philosophies and the role of Vibration Analysis 

An industrial machinery maintenance worker must be aware of and correct any problems 

as soon as they arise so that the machinery can operate safely and productively and avoid any 

financial disaster or personal injury or death. The primary goal of maintenance is to reduce 

downtime, improve safety, and increase availability of production equipment. (Senapaty and 

Rao, 2018). Vibration analysis may help prevent costly downtime due to a machine failure 

by allowing planned downtime to be used to fix or replace malfunctioning components.  

(Saied et al., 2015). Because of this, both time and money can be saved. The following are 

some of the most common maintenance philosophies in use by industries (Senapaty and Rao, 

2018).: 

• Preventive maintenance: Time-based or fixed time maintenance are other terms used 

to describe this sort of maintenance. Equipment’s maintenance is performed on a 

predetermined schedule, whether it is based on the calendar, the number of hours the 

equipment is in operation, or the amount of equipment cycles. This maintenance aids 

in the reduction of failures and the planning of work, spare parts, and labor resources. 

It is more expensive and will cause frequent downtimes because of the nature of the 

maintenance, despite its advantages. Therefore, it should only be utilized on machines 

that are showing signs of ageing; otherwise, superfluous parts and components may 

need to be replaced. 

• Reactive maintenance: It is sometimes referred to as On-failure or Break-down 

maintenance when it occurs during a breakdown. This form of maintenance is carried 

out during equipment shutdowns after a failure of the machinery. This ideology is 

characterized by a lack of warning signs of failure, unplanned plant outages and 
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production losses or delays, as well as a high inventory of replacement parts that must 

be kept on hand in case of an emergency. 

• Proactive maintenance: Predictive maintenance, also known as condition-based 

maintenance, is another term for this sort of maintenance. Since machine defects may 

be discovered before failure occurs, this is extremely beneficial to the plant, since it 

eliminates the need for regular planned maintenance. This approach to machine 

maintenance needs constant and continuous inspections of the machine's overall 

health status. Vibration analysis, infrared thermography and ultrasound may be used 

to identify machine health degradation and component issues before they cause the 

plant to be shut down, preventing costly downtime. Typically, this type of thinking is 

applied to critical industrial machinery. In addition, it aids in reducing downtime, 

identifying the underlying cause of the failure, and optimizing the use of resources 

such as spare parts and workers. 

Predictive maintenance philosophy is known as a good approach to manage and sustain 

most of the materials and devices in industry or plant, but only when effectively implemented 

and in the right areas; otherwise, it may be highly costly. It is critical to identify equipment 

problems before they fail so that their failure does not impact the condition of other 

equipment that is working together and causes further harm to the machine. Predictive 

maintenance includes tracking and evaluating machine performance measures to 

spot potential issues before they have a chance to become catastrophic. A significant failure 

can be avoided if worn-out components are replaced in a timely manner. It may reveal the 

presence of contaminants such as moisture, dirt, and oil in systems, allowing the appropriate 

action to be taken (Mobley, 2002). Conditions can be monitored by using many factors as a 

preliminary step. 
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An initial collection of parameters can be utilized to establish the baseline for a condition 

monitoring system. Vibration in rotating machinery, particularly high-speed devices like 

turbines and compressors, is one of these factors. A wide range of industries have learned 

that vibration monitoring provides significant advantages, including cost savings, reduced 

maintenance, and increased equipment reliability (Thomson, 1993). Furthermore, the 

vibration produced by rotating machines is not advantageous. In addition to causing 

excessive wear, cracking, and fastener loosening, it can also produce excessive noise among 

other complications. Severe vibration can cause catastrophic failure in aircrafts, resulting in 

the death of passengers and crew. For detecting vibration patterns that will result in failure 

of machines, vibration monitoring is used. 

Many academics have investigated the monitoring and analysis of vibrations in many 

applications. There are lot of research that target to build a self-adjusting and integrative 

monitoring system that could function that under wide range of working conditions while 

spending the least number of resources.  Hansen and Gao explored the vibrational behavior 

of a deep groove ball bearing with a structurally integrated force sensor (Hansen and Gao, 

2000). Their experimental experiments on a ball bearing were carried out for check and prove 

the numerical and analytical answers. The advancement in condition-based maintenance and 

vibration measurements over the course of seventy years was discussed in a technical essay 

(Mitchell, 2007). Shaft misalignment was examined as a possible cause of centrifugal blower 

vibration. (Alzadjali and Rameshkumar, 2013). Sheng and Veers discovered that for 

condition monitoring of wind turbines in the wind energy generation area, the most efficient 

instrument would be the vibration analysis (Sheng and Veers, 2011). Using a particle filtering 

approach, the researchers built an online lubrication monitoring software for a wind turbine 

to minimize energy costs while increasing the availability and dependability of the turbine 
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(Zuhn et al., 2011). Predictive monitoring using vibration analysis is the focus of this paper, 

which also includes illustrative case studies. 

2.1.1 Vibration Characteristic 

Violating its equilibrium state, a mechanism or a part of a machine is described as 

vibrating. Using the basic harmonic motion theory, one can see how a mass on the end of a 

spring may duplicate this vibratory motion (Inman, 1994). Vibration can be described using 

a wide range of terminology. The vibration's frequency is expressed in cycles per second and 

is commonly expressed in Hertz units. The distance that a vibrating element moves back and 

forth is what we mean by the term "amplitude." When the amplitude increases, so do the 

mechanical problems appears. For determination of amplitude, displacement, acceleration, 

and velocity can be used. A peak-to-peak displacement is used, and it can be expressed as a 

measurement in mils, millimeters, or inches. Velocity peak is the rate of change of the 

displacement against time, measured in millimeters per second (mm/sec) or inches per second 

(inch/sec). In mm/s2 or inch/s2, the peak acceleration represents the rate of change in velocity 

with respect to time. Each of the vibration characteristics exposes a unique aspect of the 

vibration. The following are the reasons why vibration measuring becomes necessary in 

practice (Rao, 2011):  

1. In many situations, the ability of a structure or machine to withstand a given level of 

vibration is a crucial consideration. If the building or machine can carry out the 

intended task even after testing has been completed in the specified vibration 

environment, it is predicted to withstand the circumstances. 

2. Structural engineers use data on earthquake-induced ground vibrations, wind speed 

fluctuations, random variations in ocean wave heights, and road surface roughness to 

design better machines. 
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3. Due to the increasing demands for increased productivity and more cost-effective 

design, higher working speeds of machinery and more efficient use of materials are 

being achieved using lightweight constructions. With these developments, resonance 

circumstances become increasingly common during the operation of machinery, 

hence decreasing the system's dependability, and increasing its vulnerability. To 

guarantee proper safety margins, it becomes necessary to measure the vibration 

characteristics of machinery and structures on a regular basis. Any detected shift in 

the natural frequencies or other vibration characteristics will signal either a 

breakdown of the equipment or the need for repair. 

4. For the sake of simplicity, multidegree-of-freedom systems is continuous system. If 

a system's measured natural frequencies and modes match up with the model's 

computed natural frequencies and modes, the approximation can be accurate. 

5. A machine or structure's theoretically calculated vibration characteristics may differ 

from their real values because of analysis assumptions. 

6. To properly design and operate active vibration-isolation systems, the frequencies of 

vibration and the forces that have been induced must be measured. 

7. To detect a system's mass, stiffness and damping by monitoring the system's input 

and output vibration characteristics is conceivable. 

8. The determination of the natural frequencies from the machine is essential in 

determining the operational speeds of adjacent machinery to avoid resonance 

circumstances. 
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2.2 Vibration Analysis Overview 

It is necessary to do vibration analysis on equipment to determine its mechanical and 

functioning conditions. A significant advantage of vibration analysis is that it can perform 

detection on developing issues before they become severe and create unscheduled downtime. 

Monitoring machine vibrations on a regular or predefined basis may aid in the achievement 

of this purpose.  Mechanical looseness, damaged bearings and broken gears can be detected 

using vibration monitoring when performed on a regular basis (Alsalaet, 2012). Detection of 

misalignment and unbalance condition prior to the shaft or bearing failure can be 

implemented by vibration analysis. Imprecise rotor balancing, inaccurate shaft alignment, 

and false bearing installation are all examples of inadequate maintenance procedures that can 

be identified by trending vibration levels. 

Problems are produced by all rotating machines because of the machine's dynamics, 

which includes factors such as balancing or alignment of the spinning parts. At frequencies, 

vibration measurements may provide important information about the quality of shaft 

alignment and balance, the condition of bearing, and the influence on the machinery produced 

by reverberation from pipes, enclosures, and other structures on the machine. (Alsalaet, 2012). 

A non-intrusive approach of monitoring machine status during start-up, shutdown, and 

normal operation, vibration measuring has proven to be effective and cost-efficient. When it 

comes to rotating equipment, vibration analysis is most employed on motors, pumps, 

compressors, paper machines, rolling mills, machine tools, and gearboxes, among other 

things. Reciprocating machinery, such as large diesel engines and reciprocating compressors, 

may now be studied in a limited capacity due to recent technical breakthroughs. Other 

procedures are also required for these machines to completely monitor their operation. 
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Vibration analysis method in detection mode is typically composed of four fundamental 

components: 

1. A transducer   

2. A signal analyzer   

3. Analysis software  

4. A computer for data analysis and storage 

Three different types of systems can be built using these essential components: 

continuous online systems, periodic analysis systems utilizing portable equipment, and a 

multiplexed system that checks a group of transducers at specified time intervals. Because of 

the extra wiring and multiplexing required, multiplexed, and hardwired systems are more 

costly per point of measurement. The criticality of the equipment and the usefulness of 

continuous or semi-continuous measurement data play a role in determining the most 

practical and suitable design for a specific application. 

In diagnosis mode of vibration analysis, it is not uncommon for workers in factories 

and shops to hear or feel strange noises or vibrations (Vishwakarma et al., 2017). Vibration 

analysis could be used to find out whether there is a significant issue. If a problem is found, 

more spectrum analysis could be implemented to precisely describe the issue and predict the 

machine operation time can run before a catastrophic failure occurs. Low-priority equipment 

can save money and resources by analysis (diagnosis) mode of vibration measurements. 

Someone must be attentive to unexpected noises or vibration levels for the device to be 

effective. In the case of large or sophisticated machinery, particularly in noisy areas of a 

facility, this strategy may not be reliable at all. Furthermore, by the time an issue is discovered, 

it is possible that significant deterioration or damage has already happened. 
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To ensure that a machine repair was completed correctly, vibration analysis can also 

be used as an acceptance test. Bearings and gears can be inspected to verify if they have been 

properly installed or if the alignment and balancing have been conducted within acceptable 

tolerances (Saruhan et al., 2014). Periodic machinery inspections, such as every month or 

quarter, may yield extra information. Based on periodic vibration monitoring and trends in 

vibration levels, it is feasible to anticipate the future condition of a machine's health. If a 

machine failure causes unplanned downtime, repairs can be scheduled to begin when the 

machine is next scheduled to shut down. 

Analyzing vibrations can reveal ineffective methods of maintenance and repair. A 

few examples are rotor imbalance, faulty shaft alignment, and poor bearing installation and 

replacement. Because misalignment and unbalance account for about 80% of all common 

rotating equipment faults, vibration analysis is a crucial technique for reducing or eliminating 

recurrent machine issues (Alsalaet, 2012). Additionally, the specialties in vibration levels 

could be utilized to figure out poor production techniques, including overusing equipment 

(higher temperatures, speeds, or loads). Similar machines from various manufacturers can be 

compared using these patterns to see if any design advantages or flaws are apparent in 

increased or decreased performance. When used in combination with other programmers, 

vibration analysis can help improve equipment performance. There are numerous ways in 

which these improvements can be achieved. These include improved alignments and 

balancing, better installs and maintenance, and reduced average vibration levels in industrial 

equipment. 

When it comes to new mechanical, process, and industrial equipment, vibration 

analysis has known to be a successful approach of comparing actual performance to design 

parameters. It is possible to employ preacceptance tests done at the manufacturer and shortly 
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after installation to verify that functions of new equipment perform the highest possible 

efficiency and at the lowest possible life-cycle cost (Mobley, 2002). Design flaws, including 

the possibility of harm during transport or installation, may be identified, and remedied prior 

to long-term harm and unpredicted expenditures arise.  

2.2.1 Vibration Analysis Profiles 

Equipment in motion produces vibrations, which may be used to determine its present 

working status. Regardless of the machine's speed, whether it's rotating, reciprocating, or 

moving in a straight line, this remains true (Mobley, 2002). All mechanical equipment can 

benefit from vibration analysis, despite the popular but incorrect idea that it is only applicable 

to easy rotating machinery with running velocity more than 600 revolutions per minute (rpm). 

Vibration-profile analysis known as a valuable equipment for a variety of applications, 

including predictive maintenance, diagnostics, and many more. 

Association of predictive maintenance with monitoring the vibration characteristics 

of rotating equipment in order to anticipate emerging problems and avoid catastrophic failure; 

however, the data needed for analyzing electrical tool, condition of lubricating oil did not 

offer by vibration analysis which frequently involved in the maintenance management 

program; therefore, predictive maintenance is not synonymous with vibration analysis. To be 

effective, a comprehensive plant predictive maintenance program must incorporate a variety 

of methodologies, each of which is designed to offer specific knowledge on the equipment. 

2.2.1.1 Theoretical Vibration Profiles 

 New equipment and industrial systems must include vibration data into their design 

and development.  Preliminary designs can be based on information gleaned from similar or 

already existing technology. Evolution of new machinery and systems prototype testing 
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provide the refinement of basic designs and the addition of vibration data to the database of 

design. 

 The term "vibration" refers to a recurring motion or a motion that happens at a 

predetermined interval. Period T represents the length of time between two consecutive 

occurrences of a vibration. Vibrations are illustrated in Figure 2.1 as a graph or profile that 

indicate the period, T, and the maximum amplitude, 𝑋0. The vibration's frequency, f, which 

is the inverse of period 1
𝑇
 is measured in cycles per second (cps) or Hertz and is equal to the 

period's inverse (Hz). Figure 2.2 shows the harmonic function for the modest oscillations of 

a basic pendulum, which is the easiest sort of periodic motion. From its starting point, mass 

moves in a circular motion to the top limit of travel, back via its neutral position to the bottom 

limit of travel, and back to its neutral position. There is enough information in this single 

cycle of motion to precisely quantify the vibration of this system. The mass will simply 

continue to move in the same direction, resulting in the same cycle. Known as periodic and 

harmonic motion, this type of motion can be defined mathematically as a relationship 

between the displacement of the mass and time written in the form of a sinusoidal equation. 

The equation that expresses this relationship is (Alsalaet, 2012): 

𝑋 = 𝑋0 sin(𝜔t)     (Equation 2.1) 

where: 

X = Vibration displacement (thousandths of an inch, or mils) 

𝑋0 = Maximum displacement or amplitude (mils) 

𝜔 = 2𝜋𝑓, Circular frequency (radians per second) 

t = Time (seconds) 
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Figure 2.1: Vibration profile (Alsalaet, 2012).  

 

Figure 2.2: Small oscillations of a simple pendulum, harmonic function (Mobley, 2002). 

2.2.1.2 Actual Vibration Profiles 

It is necessary to collect and interpret complex machine data to do vibration analysis. 

Figures 2.1 and 2.2 represent simple theoretical vibration curves, but the profile of a single 

equipment is much more complicated because generally multiple sorts of vibration to account 

for occurs. To create a composite profile, the individual profiles from each source are 

multiplied together and shown. There are two ways to present these profiles which is time 

and frequency domains. Fault detection and monitoring often make use of time- and 

frequency-domain properties. (Goreczka and Strackeljan). 
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 Two sorts of data analysis which is the time-domain and the frequency-domain 

modalities that can be used. They are widely employed in a variety of industries, including 

electronics, acoustics, telecommunications, and many more (Ambaye, 2020). Table 2.1 

below have shown the frequent use function of time-domain and frequency-domain analysis. 

Table 2.1: Frequent use function of time-domain and frequency-domain analysis 

(Ambaye, 2020). 

Time-Domain Analysis Frequency-Domain Analysis 

Used in conditions where processes such as 

filtering, amplifying, and mixing are 

required. 

This allows predictions and regression 

models for the signal, and it generates the 

behavior of the signal over time.  

Useful in creating desired wave patterns, 

including binary bit ways of a computer. 

Used to understand data sent in such 

bit patterns over time. 

 

2.2.1.2.1 Time-Domain Analysis 

A time-domain data profile is a graph that shows the amplitude of vibration over time. 

(Mobley, 2002). All linear and reciprocating motion machinery usually be plotted using time-

domain graphs. For the general study of machine-trains, they can be quite beneficial, but 

time-domain data can be a problem. As a result of the combined display of all vibration data, 

it is difficult to discern the commitment of any one vibration source while looking at this 

chart. 

Vibration signals are collected using computerized esteems that show closeness, 

speed, or acceleration in the alteration of time graph known as time space. As a component 

of time, it displays or investigates vibration information (Kim et al., 2007). According to the 
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Time Space Flag arrangement, almost no data are lost before the vibration signal can be 

reviewed. Even after standardizing, vitality disposal, and the sifting of time-space 

information, the vibration signals from abnormal machines and normal machines show 

distinct vibration signs (Goreczka and Strackeljan). The instrument's vibration or acoustic 

information can be dissected for fault and disappointment analysis using time-space signals. 

The arbitrary features of a vibrations signal generated by a physical structure are often studied 

using factual methodologies and highlight abstraction. It is possible to determine the crests, 

shapes and unflexible of a period-varying sign using the upper subordinates of the time area 

sign's numerical attributes (Douguer and Strackeljan, 2009). 

Transducers that capture time-domain vibration data from rotating machinery are 

common. Using transducers that measure acceleration, velocity, or proximity, these data 

points are classified across time and reflect the corresponding acceleration, velocity, or 

closeness in relation to each other (Nandi and Ahmed, 2019). It is common for the vibration 

signals to involve a significant collection of feedbacks from various spinning machine 

components and some background noise. This led to difficulty to immediately use the 

obtained vibration signals for fault diagnostics of the machine, whether it is done manually 

or automatically. For a more basic description of vibration signals, it is usual for researchers 

to compute specific characteristics of the raw signal that can be used to describe the signal in 

general. In the area of machine learning, these attributes are referred to as characteristics, 

signatures, or features. Starting with raw vibration data and ending with mature findings, a 

variety of approaches must be employed to identify integrated faults.  For example, vibration 

analysis techniques which can obtain relevant information from raw vibration datasets, which 

may be used for defect diagnosis, are included in this list. Being partial reason that dominate 
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fault diagnosis of time-domain, visual and feature-based inspections of vibration signals can 

be divided as two basic forms of inspection. 

2.2.1.2.1.1 Visual inspection of time-domain 

 Using this method, state of machine could be determined by making comparison of 

the observed vibration signal to a previously measured vibration signal from an unaffected 

or healthy machine. Both signals should be analyzed in the same frequency band in this 

situation. If vibration measures are higher than typical, this indicates an issue with the 

equipment, which causes it to vibrate more. Time domain vibration signals for fresh roller 

bearings may be seen in Figure 2.3a, while Figure 2.3b depicts an inner race (IR) fault state 

for roller bearings (Nandi and Ahmed, 2019). For example, A high measures of amplitude is 

clearly visible in some regions of the vibration signal on the time waveform shown in Figure 

2.3b. However, the amplitude remains lower in other parts of this signal than in the usual 

condition shown in Figure 2.3 a. A problem exists with the machine because of this. An 

oscilloscope or computer-based assistance can be used to gather data and record or display 

information using this technique, which is easy and cost-effective. 

 

Figure 2.3: Roller bearing’s time-domain vibration signal: (a) brand-new condition; (b) 

inner race fault condition (Nandi and Ahmed, 2019). 
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There are four reasons that indicated this form of examination is not dependable when it 

comes to keeping track of rotating equipment' health:  

(i) not all rotating machine time waveform signals are visually distinct (Guo et al., 

2005)  

(ii) There is a lot of background noise in the actual vibration signals that we deal with 

in practice.  

(iii) Low-amplitude signals with noisy backgrounds are occasionally a problem.  

(iv) Because of the need for early failure detection, manual inspection of all gathered 

signals is just not feasible. 

Using Figure 2.4 as an example, it is difficult to determine whether a machine is 

malfunctioning by looking at the time waveform characteristics alone. Figure 2.4a shows two 

typical vibration signals from roller bearings that are both worn but undamaged and Figure 

2.4b shows an outer race (OR) fault condition. 

 

Figure 2.4: Roller bearing’s time-domain vibration signal: (a) worn but undamaged 

condition; (b) outer race fault condition (Nandi and Ahmed, 2019). 
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2.2.1.2.1.2 Feature-Based Inspection 

The raw vibration signal may be used to characterize the signal in its most basic form, 

and some characteristics of it can be computed to estimate the overall health of a machine 

using this sort of examination. It is possible to use these properties to discriminate between 

two comparable vibration signals. Machine learning classifiers may then be used to determine 

the proper condition type from the signal, which can be the raw vibration signal or the 

calculated features of the raw vibration signal in the time domain, depending on the 

application. 

When working in the time-domain field, vibration signal processing can be 

accomplished using features extraction, which can be accomplished using statistical 

functions and other approaches that can offers extraction of features from time-indexed raw 

vibration datasets that accurately show machine health. Acquired vibration signals are often 

gathered from a variety of sources in a spinning machine that exhibits unpredictable behavior. 

A direct mathematical formula cannot be used to characterize these vibration signals because 

of their unpredictability features. Rather, statistical approaches must be used to analyses them 

in the context of time. As a result, it should come as no surprise that past research in this field 

has concentrated on time domain descriptive statistics-based features that may be utilized for 

both manual inspection and automatic monitoring, as well as for automatic monitoring. For 

extraction of features from vibration signals in the time domain based on signal amplitude, 

many various sorts of statistical functions have been employed extensively. The frequently 

used statistical functions covered in feature-based inspections are discussed in further depth 

as below (Kumar and Manjunath, 2017) (Nandi and Ahmed, 2019). 
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1. Peak Amplitude 

This is also known as the peak amplitude 𝑥𝑝.The peak amplitude is the maximum 

positive amplitude of a vibration signal; it can also be defined as half of the difference 

between the maximum and minimum vibration amplitudes, that is, the maximum 

positive peak amplitude and the maximum negative peak amplitude, respectively. 

This can be expressed mathematically in the following way:  

                                           𝑥𝑝 =
1

2
[𝑥max(t)-𝑥𝑚𝑖𝑛(t)]        (Equation 2.2) 

2. Mean Amplitude 

The average of the vibration signal across a sampled interval is the mean amplitude, 

x̅ which may be calculated using Equation 2.3, 

𝑥 =1

𝑇
∫𝑥(𝑡)𝑑𝑡     (Equation 2.3) 

and T is the sampled signal duration and x(t) is the vibration signal. For a discrete 

sampled signal, can be rewritten as: 

 𝑥 = 1

𝑁
∑ 𝑥𝑖
𝑛
𝑖=1      (Equation 2.4) 

where N represent number of sampled points and 𝑥𝑖 is an element of signal x. 

3. Root Mean Square Amplitude 

The variation of the vibration signal magnitude is represented by the root mean square 

(RMS) amplitude, denoted by the symbol 𝑥𝑅𝑀𝑆 According to Equation 2.5, the 

mathematical equation for 𝑥𝑅𝑀𝑆  is  

𝑥𝑅𝑀𝑆 = √
1

𝑇
 |𝑥(𝑡)|2𝑑𝑡    (Equation 2.5) 

T is the duration of the sampled signal, and x(t) is the vibration signal. In the steady-

state operating condition, the RMS amplitude is resistant to false peaks. Equation 

2.6 can be simplified as follows if the vibration signal is discrete: 
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𝑥𝑅𝑀𝑆 = √
1

𝑁
∑ |𝑥𝑖
𝑁
𝑖=1 |2    (Equation 2.6) 

4. Peak-to-Peak Amplitude 

The peak-to-peak amplitude, also known as the range, 𝑥𝑝−𝑝is the difference between 

the maximum positive peak amplitude and the maximum negative peak 

amplitude, 𝑥𝑚𝑎𝑥(𝑡) − 𝑥min(𝑡). 

5. Crest Factor (CF) 

The crest factor (CF), 𝑥𝐶𝐹 , is defined as the ratio of the vibration signal's peak 

amplitude, 𝑥𝑝, to its RMS amplitude,𝑥𝑅𝑀𝑆. This can be calculated using the following 

formula: 

𝑥𝐶𝐹 =
𝑥𝑝

𝑥𝑅𝑀𝑆
      (Equation 2.7) 

6. Skewness 

A measure of the asymmetrical behavior of a vibration signal through its probability 

density function (PDF) is known as skewness, which is also known as the third 

normalized central statistical moment, 𝑥𝑆𝐾. It determines whether the vibration signal 

is skewed to the left or right side of the normal state of the vibration signal distribution, 

respectively. In the case of a signal with N sample points, the value of 𝑥𝑆𝐾 can be 

represented as Eq (2.8), 

𝑥𝑆𝐾 =
∑ (𝑥𝑖−𝑥 )

3𝑁
𝑖=1

𝑁𝜎𝑥3
     (Equation 2.8) 

The value of 𝑥𝑆𝐾 for a normal condition is zero. 

7. Kurtosis   

It is known as the fourth normalized central statistical moment, 𝑥𝐾𝑈𝑅𝑇 , and it is 

measuring the input vibration signal’s peak value. It is calculated using its PDF. It 

determines if the peak of the distribution is higher or lower than the peak of the 
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distribution corresponding to a normal state of the vibration signal, in other words, 

whether the peak is higher or lower. In the case of a signal with N sample points, 

𝑥𝐾𝑈𝑅𝑇  can be expressed in the form shown in Eq (2.9), 

𝑥𝐾𝑈𝑅𝑇 = ∑
(𝑥𝑖−𝑥 )

4

𝑁𝜎𝑥
4

𝑁
𝑖=1      (Equation 2.9) 

8. Impulse Factor 

Vibration signal impulse factor 𝑥𝐼𝐹 is known as the ratio of the peak value to the 

average signal average, it can be computed as Eq (2.10), 

𝑥𝐼𝐹 =
𝑥𝑝𝑒𝑎𝑘

1

𝑁
∑ |𝑥𝑖|
𝑁
𝑖=1

    (Equation 2.10) 

9. Shape Factor 

The RMS value to the average of the absolute value of the vibration signal's form 

factor,  𝑥𝑆𝐹  can be stated as follows: 

𝑥𝑆𝐹 =
𝑥𝑅𝑀𝑆

1

𝑁
∑ |𝑥𝑖|
𝑁
𝑖=1

     (Equation 2.11) 

10. Clearance Factor 

According to the clearance factor 𝑥𝐶𝐿𝐹,the ratio of the maximum value of the input 

vibration signal to its mean square root (the absolute value of the input vibration 

signal) can be stated using Eq 2.12 as follows: 

𝑥𝐶𝐿𝐹 =
𝑥𝑚𝑎𝑥

(
1

𝑁
∑ √|𝑥𝑖|
𝑁
𝑖=1 )2

     (Equation 2.12) 
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2.2.1.2.2 Frequency-Domain Analysis 

 Machine condition monitoring techniques including such frequency analysis, also 

known as spectrum analysis, are one of the frequent used techniques for observing the state 

of machinery. Communications, geology, remote sensing, and image processing are just a 

few of the fields in which frequency-domain analysis is frequently utilized today (Ramirez 

et al., 2017). As a matter of fact, frequency-domain analytic methods may disclose 

information that is difficult to discern in the time domain by analyzing frequency features. 

For example, bearings, shafts, and fans all contributed to the recorded time-domain vibration 

signals by creating a single sine wave with a single frequency and amplitude, which is then 

multiplied by subsequent motions of other components. For better or worse, each component 

of a spinning machine generates only one type of frequency.  Despite this, the sensor's distinct 

frequencies are seldom visible in the measured signal; instead, it sees an addition of the 

signals that were measured by the sensor. The frequency components created from the time 

domain waveforms are represented as a spectrum, which makes it easier to distinguish 

between the many sources of vibration. Based on figure 2.5, the frequency components 

spectrum derived according to time domain waveforms makes it simpler to identify the 

vibration's source (Nandi and Ahmed, 2019). The circular frequencies of the moving parts 

are related to the simple harmonic vibration functions, which are useful from a practical 

perspective. As a result, the frequencies are a amplification of the machine-basic train's 

operating speed, in terms of revolutions per minute (rpm) or cycles per minute (cpm), either 

(cpm). To determine these frequencies is the first and most fundamental procedure in 

determining the functioning state of the machine-train system (Mobley, 2002). 
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Figure 2.5: Frequency-domain components versus Time-domain measurements 

(Brandt, 2011). 

 Frequency-domain analysis is a critical instrument that cannot be overlooked in signal 

processing applications. Frequency-domain analysis, as opposed to time-domain analysis, 

indicates the way of energy of a signal is divided across a large frequency range. As part of 

the frequency representation, each frequency component must be shifted in order to recover 

the original time signal from a composite of all of its individual components in the frequency 

domain.  A signal can be translated between the time and frequency domains using a 

transform, which is a pair of mathematical operations that converts between the two domains. 

Figure 2.6 have shown example of frequency-domain representations. The conversion of 

time-domain data into frequency-domain data is accomplished using a mathematical 

technique known as the Fast Fourier Transform (FFT) (Nandi and Ahmed, 2019). When a 

complicated machine-train spectrum is analyzed using FFT, each vibration component can 

be represented as a discrete frequency peak. Displacement per unit time associated with a 

specific frequency is the frequency-domain amplitude, which is displayed as the Y-axis 

against the frequency as the X-axis in the frequency-domain plotting. The opposite of this is 
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true for time-domain spectrums, which total the velocities of all frequencies and plot that 

sum as the Y-axis versus time as the X-axis to represent the frequency spectrum. 

 

Figure 2.6: An example of frequency-domain representations (Ambaye, 2020) 

 By comparing the obtained data with standard or ordinary state frequency range 

information and comparing it to the obtained information in frequency space attributes of 

vibration analysis, one of the most significant advantages includes unquestionably 

summarizing initial data of fault proliferation and various disputes. This sort of life prediction 

research is very successful as a pattern assessment. With regard to the presentation or analysis 

of vibration information, "frequency space" refers to the frequency at which it occurs. The 

rapid FFT calculation, is typically used to translate the time space vibration flag into the 

frequency area. FFT computes the direct Fourier transform (DFT) and its inverse for a 

stationary time series signal with a significant reduction in complexity. The DFT of a signal 

with length 𝑁 is computed using  𝑁 𝑙𝑜𝑔2𝑁 complex multiplications rather than  𝑁2complex 

multiplications when utilizing FFT (Nandi and Ahmed, 2019). The technique's most 

important advantage is that the gloomy concept of the vibration signal is plainly dislodged as 

tops in the frequency range at the frequency where the reiteration occurs. When investigating 

vibrational information in the frequency domain, it is beneficial to make use of the power 

range as a starting point. Suppose that a discrete time signal x(t) corresponds to an 
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investigated occasional capacity with period T. The Fourier arrangement development of x(t) 

can be obtained from the Fourier integral if it is positive (Kumar and Manjunath, 2017).  

𝑋(𝑓) =
1

𝑇
∫ 𝑋(𝑇)𝑒−|𝑠 |𝑓𝑡𝑑𝑡
𝑇

2
−𝑇

2

    (Equation 2.13) 

In this case, f refers to distinct frequencies with comparable dispersion that are products of 

the complements of the period T. It is possible to characterize the power range P(f) as the 

greatness or power obtained from the Fourier integral, which can be expressed as follows: 

𝑝(𝑓) = 𝐸[𝑋(𝑓)𝑋 ∗ (𝐹)]    (Equation 2.14) 

Where * refers to complex conjugation and E [] refers to the normal value, respectively. For 

vibration information, the FFT provides fast and benefits techniques to calculate the DFT, 

and a window capacity can be used to confine the vibration information to seem occasional, 

so reducing leakage starting with one recurrence segment and progressing to the next. When 

working with stationary arbitrary information, a smooth gauge of energy range can be 

obtained by averaging the range acquired by condition over several windowed information 

records. This is referred to as the Welch approach for control range estimation. One of the 

most important considerations in processing power spectra of vibrating information is to 

identify significant frequency parts that may be established in the range and then utilize these 

segments and their sufficiency for the slanting goals. The spectra analysis would provide 

frequency space amplitude in the context of removal, speed, increasing speed, or stage, 

among other factors. Auto-range or power range estimation is like frequency estimation in 

that the amplitudes are conveyed as the square of their respective sizes. 

 There are also some other frequency-domain vibration analyses that used in different 

research. One of the methods of using frequency-domain analysis is known as spectrogram. 
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To depict the way of spectrum (frequency-domain) differs with time, a spectrogram is created 

by overlapping a sequence of FFT. Spectrograms can be quite useful for performing vibration 

analysis in a dynamic setting since they can show exactly how the spectrum of the vibration 

varies over time (Yan and Gao, 2009).  Another approach of utilizing frequency-domain is 

the Power Spectral Density (PSD). For vibration signals with a finite number of dominant 

frequency components, fast Fourier transforms (FFTs) are excellent tools; nevertheless, PSD 

are employed to characterize random vibration signals. A PSD could be calculated by 

multiplying the frequency bin in an FFT by its complex conjugate, which produce the real 

only spectrum of amplitude in 𝑔2. The fundamental feature of a PSD that makes it more 

benefits for typical vibration analysis than an FFT is that the amplitude value is normalized 

to the frequency bin width, resulting in units of 𝑔2/Hz being obtained (Ahmadi and Salami, 

2010).  

2.2.2 Vibration Measurement Parameters and Vibration Severity Criteria 

 There are a few of measurement parameters of vibration including acceleration, 

velocity, and displacement (Alsalaet, 2012). Referring to Figure 2.1 and 2.2, the velocity at 

the zero position, the oscillating mass's velocity reaches its maximum value, while at the 

lowest and highest points, it reaches its minimum value (zero). Velocity is the most important 

parameters that related to the destructive force of vibration. Typically, the RMS value of 

velocity which measured from 10 to 10000 Hz provide the top sign of vibration severity. As 

it turns out, velocity is a function of displacement, which is: 

𝑣 =
𝑑𝑥

𝑑𝑡
= 𝑋0𝜔 cos𝜔𝑡    (Equation 2.15) 

   For the acceleration, it is different from velocity. It goes from maximum and 

minimum values at the highest and lowest points to the zero point. High frequencies is 
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important to acceleration. The acceleration signal can be converted to velocity or 

displacement. Derivative of velocity is acceleration and can be represented by: 

𝑎 =
𝑑𝑣

𝑑𝑡
= −𝑋0𝜔

2 sin𝜔𝑡    (Equation 2.16) 

When the frequency ω is high, even the displacement is small, both velocity and 

acceleration would be high. The inverse is true when at low frequency. There are two factors 

that would affect the decision on choosing which of three parameters, acceleration, velocity, 

and displacement to measure the vibration. The first factor is to decide based on the purpose 

of taking the measurement depending on vibration analysis, periodic check or balancing. 

Another factor is the rely on the processing speed and sorts of machine element such as anti-

friction bearing, gear etc. The amount of deformation (displacement) that a machine part 

undergoes, and the frequency of deformation, determine the amount of time it takes for a 

machine part to break. To summaries, vibration severity is determined by displacement and 

frequencies. Vibration severity may be directly measured by velocity since it is a function of 

these two quantities. Vibration severity can also be assessed using displacement and 

acceleration, although this requires knowledge of the vibration frequency. Although just a 

few instances, displacement may serve as a benchmark of vibration severity under conditions 

of dynamic stress, where properties like brittleness tend to accelerate failure, or when stress 

(deformation) approaches an established limit. As a result, low-frequency applications 

benefit from displacement measurement. Attenuation, rather than velocity, is typically 

considered to be the best indicator of how severe the vibrations are at higher frequencies, 

such as 1000 Hz (60 kcpm). Velocity is often employed for vibration monitoring and analysis 

because most typical rotating machinery (and their flaws) operate in the 10–1000 Hz range. 

Dynamic forces have a big role in acceleration, and even while the displacement and velocity 

may be tiny, they can nonetheless produce large forces at higher frequencies. For high-
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frequency vibration (above 1000 Hz), acceleration measurement is a good predictor of 

severity (Alsalaet, 2012). 

2.2.3 Vibration Analysis and Measuring Equipment 

 It is possible to detect vibrations in a system using various mechanical or optical 

approaches that are referred to as vibration sensors.  There are numerous sorts of sensors that 

may be used to measure vibrations. Although there are no direct vibration sensors, vibrations 

can be monitored indirectly by extracting values from classical mechanical or optical 

quantities. A few characteristics distinguish these sensors from one another. Among other 

things, they can be separated into two categories: those that measure relative behavior and 

those that measure absolute behavior. Frequency range, signal dynamics, and measurement 

data quality are all further distinguishing characteristics. The sensors listed below were 

originally organized into two groups: contacting and non-contacting, and within these groups, 

into sub-items such as displacement, measurement, velocity measurement, and acceleration 

measurement, among other things (Guo, 2014). 

2.2.3.1 Contacting and Non-contacting Vibration Measurement Method 

A. Contacting vibration Method 

The sensors will be attached to the surface of the mechanical structure to measure its 

vibration. Based on research, some examples of contacting vibration equipment 

through different measurements have shown as below. 

 

I. Displacement Measurement 

• Potentiometric Transmitter 

• Linear Variable Differential Transformer (LVDT) 
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II. Speed Measurement 

• Seismometer 

 

III. Acceleration Measurement 

• Piezoelectric sensor 

• Piezo-resistive sensor 

• Resistive sensor 

• Inductive sensor 

 

B. Non-contacting Vibration Method 

Non-contact measurement methods measure the vibration without contacting the 

surface of the mechanical machine structure. Normally, non-contact method needs 

visual access to the surface of detail.  

i. Path Measurement 

• Capacitive Principle 

• Eddy current sensor 

• Hall sensor 

• Optical sensor 

 

ii. Speed Measurement 

• Laser-Doppler vibrometer (LDV) 
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Depending on the sensor type, each form of processing principle and analyzing stage 

would be distinct from the others. There are two types of sensors: active and passive. Some 

of these sensors detect relative behaviors, while others monitor absolute behaviors. In the 

following table, the characteristics of both the contacting and non-contacting vibration 

measurement methods that covered in the previous section have been summarized. 

Table 2.2: Summarization of contacting and non-contacting vibration measurement 

method equipment 

Sensors Contact/Non-

contact 

Active/Passive Absolute/relative Displacement/Speed/ 

Acceleration 

Potentiometric 

transmitter  

contact passive relative displacement 

LVDT  contact passive relative displacement 

Principle of 

electrodynamics 

contact active relative speed 

Seismometer  contact active/passive absolute speed 

Piezoelectric 

sensor  

contact active absolute acceleration 

Piezo-resistive 

sensor  

contact active absolute acceleration 

Resistive sensor contact active absolute acceleration 

Inductive 

sensor 

contact active absolute acceleration 
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Capacitive 

principle 

non-contact passive relative displacement 

Eddy current 

sensor 

non-contact passive relative displacement 

Hall sensor non-contact active relative Displacement 

Optical sensor non-contact passive relative Displacement 

LDV non-contact passive relative speed 

 

2.2.3.2 Existing vibration measurement and limitations 

 To date, several different methods for measuring vibration in rotating machinery have 

been devised and implemented. For many years, industries have used vibration sensors in 

rotating equipment to detect abnormal vibrations. The accelerometer sensor is the most 

widely used and is regarded to be the simplest of the sensors (Jamal and Rasheed, 2021). By 

using a piezoelectric transducer, accelerometers can measure acceleration forces. To get 

vibration measurements, the accelerometer is the transducer that is most usually utilized. To 

transform mechanical energy into electrical impulses, it employs piezoelectric film 

technology. In most cases, the device consists of a weight that is suspended between two 

piezoelectric film layers. Every time the weight squeezes the piezoelectric films, an electrical 

signal is generated as a result of the vibration (Mobley, 2002). Simple, cheap, precise, and 

responsive represent accelerometers when used at high frequencies. In most cases, it is 

mounted to the machine's casing and the vibration transducer is of the contact type. 

Accelerometers, on the other hand, do not measure the vibration that is immediately acting 

on the spinning shaft and are best suited for describing bearing fatigue and casing resonance. 
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It is somehow constraint on the different of measurements that they could go through (Jamal 

and Rashed, 2021). 

 

Figure 2.7: Basic Accelerometer 

(http://www.intertechnology.com/Kistler/indexAcceleration.htm., 2015) 

 

Figure 2.8: Photo of Accelerometer Sensor 

(http://www.industrialelectronics.com/DAQ/industrial_electronics/input_devices_sens

ors_transducers_transmitters_measurement/Accelerometers.html., 2015） 

 Another well-known type of sensor for measuring vibration in rotating machinery is 

the non-contacting type one that is based on the displacement technique. When a rotating 

element is subjected to a magnetic field, Eddy current sensors being employed to estimate 

the displacement of the element. The internal electronic circuit generates an alternating 

magnetic field that is directed against the object that is being sensed can be demonstrate in 
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figure 2.9. The induced Eddy current on the sensing item opposes the field produced by the 

probe, resulting in the generation of an output voltage on the probe. The voltage produced by 

the signal is proportional to the amount of movement or length between the probe tip as well 

as the surface being measured. This method is used to detect rotors that are misaligned or 

imbalanced (Jamia et al., 2018). The probes are differentiated as non-contacting transducers 

since they do neglect any physical contact with the rotating element. They are modest in size, 

relatively inexpensive, and require little maintenance. Despite this, installation is hard, 

operate at a high frequency, and are extremely sensitive to mechanical and electrical 

disturbance (Jamal and Rashed, 2021). 

 

Figure 2.9: Magnetic field of Proximity Sensor (http://www.lionprecision.com/eddy-

current -sensors/, 2015) 

 

Figure 2.10: Photo of different sizes of proximity sensors 

(http://www.globalspec.com/learnmore/sensors_transducers_detectors/proximity_pres

ence_sensing/eddy_current_proximity_sensors, 2015) 
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 Based on Laser-Doppler (LD) technology, metrology-inspired vibration sensors have 

been created in recent years (Schwenke, 2002). In some ways, the Laser Doppler Vibrometer 

(LDV) and Laser Doppler Velocimeter (LDV) stands out from conventional accelerometers. 

One of the non-invasive sorts of measurement is LDV because they do not require calibration 

and can measure across the entire frequency range (Esposito, 2008). As shown in Figure 2.11, 

LDV employ a laser beam deflection method to determine the angular velocity and 

displacement of a rotating element. The transfer of laser power to the sensor's head is 

accomplished using a fiber optic. Furthermore, the bounced laser signal is converted to an 

electrical signal using a digital decoding technique. LDVs are commonly used in rotating 

machines to measure Torsional Vibration (Xiang et al., 2012). Although they are extremely 

expensive, they still have some limitations such as if the laser spot scans the structure too 

quickly, there is an additional laser speckle noise (Johansmann et al., 2005). 

 

Figure 2.11: Beam Deflection Method for LDV Sensor 

 (http://www-cs.ccny.cuny.edu/~zhu/LDV/FinalReportsHTML/CCNY-LDV-Tech-

Report-html.htm., 2015) Univ
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Figure 2.12: Photo of LDV Sensor 

(http://acoutronic.se/images/vibration/Polytec_picture_RSV-150.png., 2015) 

 Almost every industry seeks sensors with a combination of high accuracy, low cost, 

ease of installation, and rigidity. Accelerometers and proximity probes as the vibration 

sensorsfall into these categories, but they are still having their own set of restrictions and 

drawbacks. While LDVs are a cutting-edge laser beam technology, they are at the beginning 

stages of development and are prohibitively expensive. Experimental data collection is 

inevitably influenced by the characteristics and limitations of the currently available vibration 

analysis technologies. Contact point sensors such as velocity, acceleration or strain sensors 

are used to transfer data to the data acquisition hardware via wired connections in civil 

engineering. When it comes to operational modal analysis (OMA) data acquisition, 

accelerometers with high sensitivity and protected connections are widely used. Wireless 

sensors, can be used to avoid the use of connection cables, given the difficulty and effort 

involved in cabling large structures (Li et al., 2016). To fix the pointwise nature of 

conventional approaches, optical fiber sensors can be used to provide distributed monitoring 

(Bastianini, 2007). Engineers have recently been particularly interested in non-contact 

monitoring technologies (Narasimhan and Wang, 2020).In civil engineering, various 

approaches to vibration testing have been investigated, such as laser LDV(Rothberg et 

al.,2017), microwave radar interferometry (Gentile, 2010), infrasound (Lobo-Aguilar et al., 
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2019), global positioning system (GPS) sensing (Moschas and Stiros, 2011), satellite remote 

sensing (Lazecky  et al., 2016), optical methods based on the moiré effect ( Ri et al.,2012) 

and optical vision based methods using digital imaging (Chen and Chang, 2019). The idea of 

eliminating physical installations of sensors for vibration analysis is particularly enticing of 

structures that may not be conveniently or safely accessible but require rapid assessment of 

their status, such as after major occurrences like large earthquakes, explosions or floods 

(Zona et al., 2020).  

 Traditional non-contact methods, on the other hand, can only be used to measure one 

point at a time. In addition, the use of conventional measuring sensors has additional 

downsides, such as harsh weather circumstances such as high temperatures and high humidity, 

difficulty in mounting the sensor on an item, and the influence of sensor weight on object 

dynamic characteristics (Cakar and Sanliturk, 2005). Using any of these methods is more 

expensive and time consuming than video recording, and it may even be prohibitively 

expensive in some cases even if video recording is still an option (Schwarz et al., 2020). The 

vision-based system has several advantages over conventional sensors, including remote 

monitoring, low cost, and the ability to measure multiple points at once (Zhu et al., 2020). 

Table 2.2 presents an illustrative comparison of the constraints imposed by a classical sensor 

(accelerometer) and a visual-based sensor (camera) in terms of performance (Śmieja et al., 

2021). Even with low-cost consumer-grade instruments, several applications involving items 

ranging from the smallest dimensions to huge buildings have shown remarkable promise (Ye 

et al., 2016) (Spencer et al., 2019) (Dong and Catbas, 2020), so the focus on this research 

project is on vision-based methods among contactless technologies. 
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Table 2.3: Comparison of base constrains of accelerometer and visual motion sensor 

(Śmieja et al., 2021). 

Accelerometer Video Camera 

Contact Contactless 

Sparse discrete pointwise measurements

  

Location of many points at the same time 

(Quasi continuous) 

Impact on the immediate neighborhood in 

the assembly point (sensitivity to 

temperature, chemicals, etc.) 

sensitivity to disturbances in the line of 

sight (Sensitivity to lighting, fog, smoke, 

etc.) 

Measurement of absolute values  Measurement of relative values 

(Relative to camera base) 

Direct acquisition In plane 3D to 2D projection 

(In case of single camera) 

 

2.3 Visual Based Measurement System 

When it comes to structural vibration analysis, identifying vibration parameters is 

critical. Vibration characteristics can be identified using one or more sensors that are 

connected in series, which are commonly used in traditional approaches. Those methods 

necessitate the use of complex detection systems and have the potential to alter the structure's 

inherent dynamic characteristics to a certain extent (Li et al., 2016). Visual vibration 

measurement is becoming increasingly popular as a non-contact, wide-range vibration 

measurement method (Yu et al., 2017). The previously accessible capabilities for vibration 

observation have been greatly expanded by modern picture analysis and processing 
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technologies. In this paper, a triangulation technique and point-tracking strategy for 

observing static and dynamic stresses in a civil structure are discussed in detail (Yang, 2019). 

Structured light, single camera, and multi-view stereo vision are just a few of the 

visual assessment technologies that have undergone substantial study and use (Wang et al., 

2012). In a cantilever beam fitted with micro electromechanical systems (MEMS) and high 

frequency vibration, researchers were able to precisely quantify the in-plane motion 

displacement using a single high-speed CCD camera and microscope imaging system 

(Teyssieux, 2011). Determination of the two-dimensional motion parameters of a special 

mark can use a line-scan camera (Lim and Lim, 2008). About watching the movement of pile 

rebound and penetration, an observation system using a high-speed line-scan camera has been 

suggested. Measurement against composite board in full field based and analytical on the 

features of image using adaptive moment descriptors for getting structural modal have been 

performed. (Wang and Mottershead, 2013). Geometric moment has been used to effectively 

construct an image motion blur information extraction system and an algorithm for 

measuring harmonic vibration based on dynamically blurred picture sequences (Guan, 2005). 

By applying 3D digital image method for predicting in a full-field vibration analysis, the 

geometry and deformation of a mechanical shaker can be detected. When looking at small 

motions in video, Davies and others research developed a method for inferring material 

properties of an object (Davies, 2015). Motion magnification to extract displacements from 

high-speed video have been implemented, and they demonstrated that the algorithm was 

capable of qualitatively identifying the operational deflection shapes of simple structures by 

using motion magnification (Chen et al., 2015). These approaches need a complicated 

algorithm, costly imaging equipment, and perfect tracking of the target feature in order to 
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operate. Consequently, camera and image feature extraction performance have a significant 

impact on the visual measurement result. 

2.3.1 Visual Odometry System 

 Whenever it comes to motion compensation, visual odometry (VO) refers to a set of 

methods are using visual cues to estimate motion. VO utilization is by determining the pose 

of an agent (such as a vehicle, a person, or a robot) that relies solely on a stream of images 

acquired by a single or multiple cameras attached to the agent (Scaramuzza and Fraundorfer 

2011). VO is a combination of a certain camera configuration, the programming model, and 

the hardware device that provides the camera's posture at each time instant. VO algorithm 

can be classified into two categories: stereo and monocular configurations. Several images 

are captured simultaneously from different perspectives in stereo configurations, which use 

a multi-camera array (or a moving camera) to take the different images at the same time from 

different perspectives (Howard, 2008). Detected features can be projected into 3D space and 

tracked over time to estimate vehicle motion if the baseline is known. In comparison to 

monocular VO, stereo VO mimics the human vision system and can instantly predict the 

image scale. Stereo camera systems, on the other hand, require additional calibration effort 

and strict camera synchronization, without which the error propagates over time (Poddar et 

al., 2018). Single-camera configurations, which are essentially bearing-only sensors, are used 

in monocular configurations. Structure-from-motion can be used to estimate the baseline 

(which in this case is comparable to camera translation and rotation) if a series of photos 

taken at various positions is provided. (Tomasi and Zhang, 1995). In monocular vision 

odometry, it is well-known that absolute scale cannot be recovered, a problem that has been 

addressed in (Scaramuzza et al., 2009) of unique case of nonholonomic constraints. An 

affordable and small-form-factor monocular camera is useful when installing two cameras 
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with a defined standard is really not practical, such as a phone or laptop (Poddar et al., 2018). 

Table 2.3 has shown the comparison between the pros and cons of stereo and monocular 

configurations. 

Table 2.4: Comparison of Monocular and Stereo VO configurations (Aqel et al., 2016) 

Types of Configurations Pros Cons 

Monocular •  Cheap and simple to 

set up 

• Light weight: best 

for tiny robotics 

• Easy calibration 

• Suffer from image 

scale uncertainty 

Stereo •  It is simple to get 

information about 

the size and depth of 

an image. 

•  Provide 3D vision 

• More expensive and 

needs more 

calibration effort than 

monocular cameras 

• When the stereo 

baseline is 

substantially less than 

the distances between 

the camera and the 

scene, it degrades to 

monocular viewing. 
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• Problematic interface 

and synchronization 

problems. 

 

A feature-based, appearance-based, or a hybrid approach to VO's geometric design has all 

been distinguished. (Poddar et al., 2018) (Aqel et al., 2016). 

a. Feature-based approach 

A mathematical technique is used to extract visual features like corners, lines, and 

curves from a series of image frames. It is necessary to match or track the 

distinguishing characteristics within the features extraction before predicting the 

motion. This method compares each feature in two photos and calculates the 

Euclidean distance between feature vectors to find the candidate matching features in 

the two images, which is then used to find a match. The displacement is calculated 

by calculating the velocity vector between the pairs of points that have been identified.  

 

b. Appearance-based approach 

It is based on optimizing the photometric error rather than on sparse features and 

estimates motion by optimizing the photometric error. Instead of extracting and 

tracking features, this technique monitors changes in the appearance of acquired 

images as well as the intensity of pixel information contained therein. It focuses on 

the information that can be extracted from pixel intensity measurements. Optical flow 

(OF) as the most famous appearance-based can be used to estimate the motion of the 

camera and the speed of the vehicle. The displacement of brightness patterns from 
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one image frame to another is computed by the OF algorithm, which uses the intensity 

values of neighboring pixels to compute the displacement. The template matching 

method is one of the most used methods in the appearance-based approach.  

 

c. Hybrid of feature-based and appearance-based approach 

In some cases, a hybrid approach, is a addition of feature- and appearance-based 

approaches, is the best solution, and this is the case in some cases. Using the image's 

pixel intensity information as well as tracking key elements over frames is a part of 

the process. Direct (feature-based) and indirect distance and angle calculations can 

be used in hybrid algorithms for VO (appearance-based). When using feature-based 

schemes, reliable data is obtained at the expense of a certain loss of available 

information, whereas appearance-based schemes produce dense reconstructions by 

utilizing all available data but with errors associated with only a few areas. 

Table 2.5: Comparison of feature-based, appearance-based, and hybrid-based VO. 

(Poddar et al., 2018) (Aqel et al., 2016) (Guizilini and Ramos, 2011) 

Feature-based  Appearance-based Hybrid of feature and 

appearance-based 

Suitable for a wide range of 

locations, including harsh 

and urban settings. 

In low-textured 

environments, appearance-

based tracking is reliable 

and more accurate than 

feature tracking. 

Hybrid algorithms employ 

both benefits of direct 

(feature-based) and indirect 

approaches (appearance-

based). 
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Failed to deal with 

environments with no or 

minimal texture. 

Since this method allows for 

the use of a big template in 

the matching process, the 

chance of a successful match 

between two consecutive 

image frames is high when 

using this method. 

The primary goal is to 

incorporate all available 

data and improve motion 

prediction. 

In these low-textured 

situations, the feature-based 

technique is deemed 

ineffective because of the 

restricted number of 

prominent features that can 

be detected and tracked. 

It is possible to estimate 

motion by working with 

intensity values directly and 

matching templates of sub-

images over two frames or 

the optical flow values. 

A hybrid registration 

technique that combines 

feature tracking data and 

optical flow limitations into 

a single framework. 

 

 After making comparison among the different type of VO approach, it can be found 

that appearance-based is the best choice to implement in this research report. Instead of 

relying on sparse features to estimate motion, appearance-based visual odometry predicts 

motion by computing photometric error. Feature-based approaches are deemed noisy when 

applied to smoothly altering landscapes such as a foggy environment or a sandy terrain, and 

the features do not need to be recognizable from their surroundings to be effective. Since 

appearance-based techniques use information from the entire image, they can provide a 

reliable estimate of ego-motion even in low-textured environments. It is faster to integrate 
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entire photos rather than just a few locations since it lowers aliasing issues associated with 

similar-looking locales. It is also less expensive and works with smooth shifting landscapes. 

2.3.1.1 Appearance-based Technique 

 Regional-based matching and optical flow-based matching are the two types of 

appearance-based techniques that are most used. Depending on the situation, region-based 

matching can be achieved through correlation (template matching) or with the assistance of 

global appearance-based descriptors and picture alignment techniques (Poddar et al., 2018). 

For aligning images, correlation-based techniques (also known as template matching) have 

been extensively researched in the past, with global invariant image representations or 

similarity measures being used as the basis for the research. Some of these schemes' 

drawbacks were addressed by employing a locally invariant similarity measure and global 

constraints which allowed them to be more effective. Irani and Anandan proposed an image 

alignment technique that can estimate a parametric 2D motion model for images acquired by 

sensors of various modalities (Irani and Anandan, 1998). It is built on the quadrifocal 

relationship between picture intensities as its foundation and is hence impervious to 

background clutter, inter-frame displacements, and lighting alterations, among other things. 

(Comport et al., 2007). In a later study, an approach that reduces the intensity error across 

the entire image while also overcoming the inter-frame overlap problem associated with 

region-based approaches have been developed. To use one of these region-based schemes, a 

detailed interest area in the image must be defined in the first image, and the two images 

must be sufficiently overlapped for the region-based scheme to work. Furthermore, the image 

registration process necessitates the use of an optimization technique to minimize an 

objective function, which is typically subject to issues such as local minima and divergence 

which are common in optimization techniques (Comport et al., 2010). Optical flow-based 
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VO schemes can avoid typical issues include the use of an inappropriate argument 

minimization criterion and the presence of independently moving objects (Adiv et al., 1985).  

 Optical Flow (OF) is a fundamental concept in object movement that critical for 

predicting the motion of objects based on a sequence of images. OF is a term that refers to 

the velocity field of an image that is produced because of the transformation of one image 

into the next image in orderly (Horn and Schuck, 1981). OF method accurately depicts the 

movement of objects in three-dimensional space and has found widespread application in the 

field of vision and image processing for object segmentation, recognition, tracking, and robot 

navigation, among other applications (Yu et al., 2017). New optical flow algorithms that 

optimized acceleration by finding for an expected position based on the assumption of fixed 

velocity have been developed (Denman, 2007). There is a new optical flow algorithm for the 

detection and tracking of moving objects (Ya et al., 2013). Using optical flow, the researchers 

have developed a method for detecting head movements (Hui et al., 2014). The optical flow 

field adjacent to the robot body was also discovered, paving the way for the construction of 

autonomous robots that can avoid obstacles on their own accord. (Souhila and Karim, 2007). 

To aid in robot navigation, this research looked at the effects of various OF algorithms in 

conjunction with spatiotemporal filters (McCarthy and Barnes, 2014). In the above-

mentioned method, expensive equipment or complicated operations or feature tracking are 

still required. However. Another proposed of using OF method for measuring vibrations in 

out-of-plane vision is of great importance as well (Yu et al., 2017). Based on the research, it 

has shown that when using appearance-based technique, it is more common that various 

vibration analysis can be done based on OF method and this research would be using OF 

method. 
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2.3.1.1.1 Optical Flow Method 

 Using the OF method, which is a technique that employs temporal variation and 

correlation of pixel intensity data from image sequences to detect the movement of pixel 

positions and to produce the three-dimensional motion field, the movement of pixel positions 

can be determined (Song et al., 2011). In general, it is based on three basic assumptions 

(Beauchemin and Barron, 1995):  

1)Between adjacent frames, the object movement is minimal, and the brightness remains 

constant. 

2) Continuous image extraction. 

3) The object movement maintains spatial consistency, meaning that pixels in the same 

sub-image move in unison. 

Given that each image point has two velocity components, it is not feasible to calculate 

optical flow at any given location in an image plane without imposing additional constraints. 

In this case, one restriction is imposed on the image brightness at a particular location in the 

image plane due to motion, while two constraints are applied to the change in image 

brightness at the same position in the image plane due to motion. The optical flow approach 

operates under the assumption that the intensity I of moving points remains constant over a 

period of time in its most fundamental component. The assumption of brightness consistency 

is referred to as the brightness constancy assumption (Siong et al., 2009). Set 𝐼(𝑥, 𝑦, 𝑡) as the 

luminance of an image pixel (𝑥, 𝑦) at time 𝑡 According to the constant brightness of optical 

flow and the assumption of tiny motion, there is (Yu et al., 2017): 

𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡) = 𝐼 (𝑥, 𝑦, 𝑡)   (Equation 2.17) 
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According to the Taylor series, 

𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡 = 𝐼(𝑥, 𝑦, 𝑡) + ∆𝑥
𝜕𝐼

𝜕𝑥
+ ∆𝑦

𝜕𝐼

𝜕𝑦
+ ∆𝑡

𝜕𝐼

𝜕𝑡
+ 𝑒   (Equation 2.18) 

Where 𝑒 is a high-order error term on ∆𝑥, ∆𝑦, ∆𝑡. From Equation 2.17 and 2.18,  

∆𝑥

∆𝑡

𝜕𝐼

𝜕𝑥
+

∆𝑦

∆𝑡

𝜕𝐼

𝜕𝑦
+

𝜕𝐼

𝜕𝑡
= 0    (Equation 2.19) 

That is: 

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0,     (Equation 2.20) 

where 𝐼𝑦 =
𝜕𝐼

𝜕𝑦
, 𝐼𝑡 =

𝜕𝐼

𝜕𝑡
 are the gradient of the image in space and time respectively and: 

𝑢 =
∆𝑥

∆𝑡
, 𝑣 =

∆𝑦

∆𝑡
 

shows the optical flow velocity in 𝑥 and 𝑦 components respectively. It is also possible to see 

how the object is moving by looking at its equations. Based on Equation 

2.20, 𝑢 𝑎𝑛𝑑 𝑣 represent the optical flow vectors and 𝐼𝑥, 𝐼𝑦, 𝐼𝑡  represents the derivative of 

images intensities at coordinate (𝑥, 𝑦, 𝑡). 

Most optical flow approaches are based on the assumptions of brightness constancy 

and spatial smoothness (Black and Anandan, 1993). This assumption assumes that points 

maintain their intensity over the course of a sequence of frames, which is known as the 

brightness constancy assumption. Following the article's assertion, spatial smoothness is 

assumed to exist since neighboring pixels are typically connected with the same surface and 

so move in a comparable manner (Sun et al., 2008). There are different optical flow 

computations method that could categorize to sparse and dense optical flow (Boer and 
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Kalksma, 2015). Lucas-Kanade algorithm is sparse method and Gunnar Farnebӓck is the 

dense method which is a two-frame motion estimation algorithm.  

2.3.1.1.1.1 Lucas-Kanade and Gunnar Farnebӓck algorithm 

 The Lucas-Kanade method describes an image registration technique that searches 

for the best match based on spatial intensity gradient information (Lucas and Kanade, 1981). 

The program accomplishes this by considering additional information about the image. As a 

result, the method can find the best match while requiring significantly fewer computations 

than other techniques that search in a fixed order. The technique takes advantage of the fact 

that, in most circumstances, the two images are already relatively close to one another when 

the algorithm is performed. To solve the registration problem, one must first determine which 

vectors F(x) and G(x) have the smallest distance between them, and then determine which 

vectors F (x + h) and G(x) have the smallest distance between them in a region of interest 

R. For distortions such as image rotation, Lucas-Kanade suggests a generalization that can 

be used to deal with the problem. Lucas-Kanade is a sparse optical flow algorithm since it 

only employs specific pixels of the image to measure the optical flow. The Lucas-Kanade 

method is used to calculate optical flow given a sparse feature set of data (e.g., corners 

detected using Shi-Tomasi algorithm). This approach, developed by Gunnar Farnebӓck, is a 

motion estimate algorithm that makes use of two consecutive frames of data. Gunnar 

Farnebӓck approximates the motion between frames by using quadratic polynomials, which 

he developed himself (Farnebӓck, 2003). Using the polynomial expansion transform, this can 

be accomplished quickly and efficiently. This algorithm computes the optical flow for all the 

points in the frame. VO techniques allow the estimation of motion by taking cues from the 

images. A moving object in space can be approximated by using the pixel motion velocity 

under the image grey model, which is implemented using the image grey model. The 
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machinery vibration or deformation is generally very small and high frequency. The pixel 

motion shall undergo some motion magnification methods to amplify the tiny motions that 

were previously undetectable to the human eye. The magnification results are usually prone 

to noise or excessive blurring. 

2.3.2 Improvement of Visual Odometry (VO) System 

 VO techniques, which use visual cues to estimate motion, allow for the estimation of 

motion to be done in real time. A moving object in space can be estimated by using the pixel 

motion velocity under the image grey model, which is implemented using the image grey 

model. The frequency and size of the machinery's vibration and deformation are generally 

small and high. Various motion magnification and amplification techniques will be applied 

to the pixel movement to amplify the small movements that were previously undetectable by 

the human eye. The results of magnification are typically prone to noise or excessive blurring 

when magnified. Because of this, it is necessary to select the MM method that is most 

appropriate for eliminating noise and overcoming the difficulties associated with the different 

nature of the object's movement and its environmental context. This is also true for the 

monitoring of the condition of technological objects. In this case, it is considerably more 

difficult to establish a clear criterion for evaluating the processing result accomplished as 

well as the methodology that was used. The original goal of video MM approaches is to 

overcome or break the boundary between human perception of changes (displacement) in the 

things observed and their perception of the same objects (Śmieja et al., 2021).  
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2.4 Motion magnification (MM) Technique 

 Using modern picture analysis and processing technologies, the options for vibration 

detection that were previously possible have been greatly expanded. They devised and 

implemented a system for observing static and dynamic strains in a civil structure employing 

triangulation and point-tracking technologies (Yang, 2019). According to the name of this 

approach, multi-point measurement (MM) is a substantial collection of visual techniques that 

provide considerable benefits, including being able to simultaneously capture data on several 

locations as well as operating in a non-contact mode. It is possible to observe physical 

processes indirectly via the use of sensors and equipment that transform read-off signals into 

a form that can be evaluated by researchers. Allows one to go beyond the normal threshold 

of visual perception, which is the point when even slight changes in an observer's field of 

vision may be reflected in consciousness, or "consciously perceived," using this approach. 

Accordingly, when discussing the real geometric quantities that determine an object's 

location, "minimum" does not hold. In this method, the findings are presented in a 

quantitative way, and the visualizations are made utilizing graphs like histograms, charts, and 

phasors. It is possible to express the information contained in the vibrations of an object as 

displacements or mutual displacements of its chosen places (deformations) through time 

using an alternative, direct technique that is descriptive and only to a limited degree reliant 

on the observed real picture. The following are some of the things to keep in mind while 

creating a spatial-temporal data visualization (Wu et al., 2018). Providing that analysis of 

vibrations a upgoing process and that the goal is for gaining information on potential 

consequences or causes for the phenomenon, a direct approach can be far more effective than 

a methodical approach.  
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Various of image processing techniques can be used to quantify motion in video. To 

measure any structural motion more easily, the past research have used edge detection, target 

objects, or light (Patsias and Staszewskiy, 2002). The utilization of computer vision 

techniques, including measurement of OF to find the displacements of structures, in more 

recent methods, which are link to methods described in this paper, has become increasingly 

popular (Caetano, 2011). When using a single camera, only in-plane motion can be measured; 

however, a stereo camera setup is capable of measuring both in-plane and out-of-plane 

motion which is more accurate. Currently, the time-of-flight camera is a more recent method 

of in-plane and out-of-plane measurement with cameras, but it does not yet provide sufficient 

resolution or speed for most vibration measurement applications currently (Kolb et al., 2009). 

Small motions in videos can be magnified using new computer vision techniques, collectively 

known as MM which were introduced recently (Liu et al., 2005). A signal processing 

approach is used by the most recent motion magnification techniques to investigate image 

motions in a manner analogous to that of a Eulerian framework used in fluid flow analysis. 

Using temporal filtering, they are particularly well suited for visualizing mode shapes 

because they can detect small subpixel motions that are present in videos of vibrating 

structures and because they can distinguish between different modal motions. Because of the 

assumption of a non-moving camera and an immobile framework, this works very well in 

this situation. For non-destructive testing (NDT) and structural health monitoring (SHM), it 

is considered that using video cameras for vibration measurement represents a fresh capacity 

that would integrate various measurement and sensor systems that are either presently in use 

or being explored (Chen et al., 2015). 

 While extensive measuring processes are required for many technological things, it 

is far simpler to make conclusions about them using a comprehensible depiction of vibrations 
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rather than complex measurement procedures; this is especially true for mechanical objects. 

As part of the investigation into how to extend visual observation of vibrations while 

considering the extra element between the observer and moving object, a camera, operations 

were carried out to address this issue. These investigations in image analysis and processing 

were supported by a substantial rise in the computing power of widely accessible electronic 

devices.  It is possible to extract information from a raw image sequence recorded on a 

camera sensor, such as the positions of 3D object points projected onto 2D planes at various 

points in time during the duration of the series’ recording. When the original recording is 

reproduced, the observer will not notice any small differences between adjacent images that 

correspond to the object's movement because the differences are too small. There are several 

obvious reasons why it is not possible to change one's natural way of seeing. As a result, 

strategies for modifying a series of images captured by a camera in such a way that significant 

variations between the changing frames of the images that reach the observer are positioned 

above their visual perception threshold have been created in order to produce the intended 

effect. In video sequences, MM are used to shift picture changes that correlate to the motion 

of the item under observation into the field of visual perception. (Wadhwa et al.,2 017) 

 Video motion magnification is a technique for magnifying video motion. MM 

techniques can be divided into two categories (Oh et al., 2018): Lagrangian approaches and 

Eulerian approaches. Lagrangian approaches are the most widely used. When the Lagrangian 

approach is used, the motion field (optical flow) can be explicitly extracted and used to 

directly move the pixels. Instead of explicitly tracking motions, Eulerian approaches break 

down video frames into representations that can be used to manipulate them (Wu et al., 2012). 

These techniques are typically divided into three stages: decomposing frames into an 

alternative representation, manipulating the representation, and reconstructing the 
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manipulated representation to magnified frames if applicable. When it comes to extracting a 

phase-based representation, the researcher makes use of a spatial decomposition that is 

motivated by the first-order Taylor expansion (Wu et al., 2018), and other researcher make 

use of the complex steerable pyramid (Freeman, 1991). Current Eulerian approaches are 

effective at revealing tiny motions, but they are labor-intensive to develop by hand (Wu et 

al., 2018) (Wang et al., 2017) (Wu et al., 2012) and do not consider many issues such as 

occlusion. As a result, they are prone to noise and are frequently plagued by blurring that is 

extreme. The research will belong to the Eulerian approach, decomposition is directly so it 

has fewer edge artifacts and better noise characteristics. 

 Eulerian approach, which are terminology borrowed from fluid mechanics, are the 

most frequently proposed methods in recent years (Wu et al., 2012) (Wadhwa et al., 2013) 

(Wadhwa et al., 2014). Against Lagrangian approaches, Eulerian approaches can amplify 

small displacements or variations that evolve over time without the need for explicit optical 

flow computation (Liu et al., 2005). When it comes to color visual representation of face 

video and small motion magnification, Eulerian video magnification (EVM) has produced 

impressive results (Wu et al., 2012). The linear EVM has the disadvantage of being able to 

support only small magnification factors in regions with high spatial frequencies, which is a 

drawback. Furthermore, when the magnification factor is increased, it has the potential to 

significantly amplify noise. As a result, the phase-based Eulerian motion magnification 

techniques are recommended as an alternative to conventional techniques. Using techniques 

inspired by the Fourier shift theorem, it is possible to establish a connection between phase 

variations and motions in three-dimensional space (Wadhwa et al., 2013) (Wadhwa et al., 

2014). The methods outperform the EVM in terms of noise handling characteristics, and they 

also support higher magnification factors. Unfortunately, when it comes to magnifying 

Univ
ers

iti 
Mala

ya



58 

minute differences in the presence of significant amounts of motion, these strategies are 

useless because of the large quantity of motion involved. A substantial amount of motion will 

result in significant blurring artefacts and will completely overpower the modest temporal 

changes that will be enhanced in video due to the compression. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

Chapter 3 discusses the methodology of this project. The discussions in this 

methodology emphasized clearly about the method, knowledge, and procedures of the visual 

odometry system. The methodology constructed by the project planning, schedule planning, 

designing the experiments and the methods that use to complete this project. It is important 

to construct a flow chart for project planning. Flow chart is a tool that used to visualize and 

illustrate the process sequences from the first step to the end of the project. The description 

of each of the step are clearly arranged and followed the sequences. The flow chart as shown 

as Figure 3.1 is made for clearly understanding the detailed processes and processes 

sequences in this project. From the literature review stage, some discussions and comparisons 

are made to identify the most methods to be selected and implement in this project. For the 

visual odometry system, the video processing algorithm is being planned to amplify or 

magnify the motion of the video. The data will be obtained after the video processing 

algorithm run successfully and end this project. 
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 Figure 3.1: Flow Chart of Project 
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 This research report is to implement motion amplification method on video using optical 

flow. The system is implemented by using the demonstration on how to use VO method to 

have motion amplification in video using optical flow. First, the optical flow between 

adjacent frames of the video footage of objects undergoing low-amplitude oscillations that 

are invisible to the naked eye have been calculated using Gunnar-Farnebӓck algorithm. 

Furthermore, by analyzing the PSD through Welch method, the PSD of the angular and 

magnitude components of the optical flow should be found. The video is warped with a large-

amplitude representation of the original small-amplitude motion by multiplying the optical 

flow by an amplification factor. It is also possible to reduce noise and isolate individual 

modes by looking at the PSD of a video (Hyatt et al., 2019). 

Previously, high-quality motion amplification of video data was accomplished using 

Eulerian techniques and commercially marketed for the purpose of detecting flaws in 

structures and equipment. These methods do not account for optical flow, which can be used 

to achieve arbitrarily large amplifications via image warping. Similarly, optical flow 

calculations are well established, but are almost always applied to large displacements, such 

as those encountered in object tracking. Calculating the optical flow enables us to disentangle 

the observed motion's components such as magnitude and angular. Additionally, it opens the 

possibility that the process could be significantly accelerated using a machine learning model 

capable of extracting optical flow from video data. The system briefly investigated machine 

learning-based optical flow for motion amplification, but without immediate success. This 

could be because, as with conventional optical flow calculators, the available pre-trained 

machine learning models are optimized for large displacements to be used for object tracking 

on motion. In this research, four different types of methods have been used, and the results 
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obtained from each method will be compared in the next chapter. The following sessions 

have covered the theories that have been used to develop these methods. 

3.2 Calculation of Optical Flow (OF) method using Gunnar-Farnebӓck Algorithm 

 Motion detection is implement using optical flow method. Algorithms for estimating 

optical flow are capable of tracking points across two images. These techniques assume of 

brightness constancy and spatial smoothness. It maintains the same intensity between frames 

under the brightness constancy assumption. In the spatial smoothness assumption, adjacent 

pixels are assumed to belong to the same surface and thus have similar motion. OF is the 

distribution of an image's apparent velocities. the velocities of objects in the video are 

determine by estimating optical flow between video frames. To determine the optical flow 

between two images, it is necessary to solve the following OF equation (Wójcik et al., 2014): 

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0     (Equation 3.1) 

Where: 

• 𝐼𝑥, 𝐼𝑦, 𝐼𝑡 are the spatiotemporal image brightness derivatives, 

• 𝑢 is the horizontal optical flow, 

• 𝑣 is the vertical optical flow. 

More details of the formula of OF have been discussed in 2.3.1.1.1 sessions. OF is the 

apparent velocity of pixel intensity in a video, defined by 

(∇𝐼) ∙ 𝑉 = −𝜕𝑡𝐼 .    (Equation 3.2) 

𝐼 (𝑥, 𝑦, 𝑡) is the intensity of a pixel at coordinates (𝑥, 𝑦) and time 𝑡, and V (𝑥, 𝑦, 𝑡) = 𝑉𝑥�̂� +

𝑉𝑦𝑦  is the optical flow. This is an ill-posed problem as there are two unknowns, 𝑉𝑥 and 𝑉𝑦. In 

this research, the optical flow would be using Gunnar-Farnebӓck method. The Gunnar 
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Farnebӓck algorithm was designed to work as dense OF technique results that is on a dense 

grid of points. The first step is to approximate each neighborhood of both frames by quadratic 

polynomials. Gunnar-Farnebӓck approximates the motion between the frames via quadratic 

polynomials, which he developed himself. Using the polynomial expansion transform, this 

may be accomplished quickly and efficiently. According to Gunnar-Farnebӓck the point of 

interest is quadratic polynomials, which provide the local signal model stated in a local 

coordinate system, as shown in Farnebäck (2003): 

𝑓(𝑥) ≈ 𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥𝑐    (Equation 3.3) 

Where A is a symmetric matrix, b is a vector and c are a scalar. 

 Different methods for calculating optical flow make different assumptions to 

constrain the equation, but if using Farnebäck method, it will efficiently compute the optical 

flow over the entire frame. Specifically, the pyramidal implementation 

calcOpticalFlowFarneback in OpenCV software would be use. Rather than only calculating 

the flow once, across the base image pair, it repeatedly downs samples the images, obtains 

the flow at the lowest resolution, and updates it with the residual flow obtained at each 

successively higher resolution. The algorithm outputs the optical flow in the (𝑥, 𝑦)-coordinate 

system, but it is more useful to visualize in the polar (𝑟, 𝜃)-system, where 𝑟 is the magnitude 

and 𝜃 is the direction of the flow. 

3.3 Power Spectral Density (PSD) Analysis 

 The calculated optical flow frequently contains a significant amount of noise in 

addition to any noise that may have been present in the original video, and it may also contain 

multiple distinct motions that must be amplify separately from one another. The PSD of the 

pixel intensity in the original video can be reduced and isolated using Welch's method, which 
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is implemented in SciPy as signal.welch. This method is used to reduce noise and isolate 

specific frequency components. A popular non-parametric method in spectral analysis, the 

Welch PSD method takes advantage of the FFT to produce a spectral analysis result and 

makes the frequency spectrum smoother than raw FFT output (Parhi and Ayinala, 2014). The 

primary advantage of this method is that it reduces the number of computations required as 

well as the amount of core storage required. This procedure includes segmenting a signal, 

obtaining modified periodograms of each section, and averaging the modified periodograms 

obtained from each section (Thomas et al., 2015).  

The complete algorithm can be described as follows (Parhi and Ayinala, 2014): 

• Input signal 𝑥[𝑛] is divided into 𝐿 overlapping segments. 

• Each segment is being applied for the specified window. 

• FFT is applied to the windowed data. 

• Each windowed segment's periodogram is computed, which is referred to as the 

modified periodogram. 

• Modified periodograms are averaged for obtaining the spectral estimate 𝑆(𝑘). 

Welch method can be described in a mathematical form, let  

𝑥1(𝑛) = 𝑥(𝑛 + (𝑙 − 1)𝑀), 𝑛 = 0,… ,𝑁 − 1  𝑙 = 1,… , 𝐿   (Equation 3.4) 

Denote the 𝑙th data segment. (𝑙 − 1)𝑀 is starting point for the 𝑙th sequence of observations. 

In Welch method, value recommended for 𝑀 is 𝑀 = 𝑁/2 , the data segments contain 50% 

overlap between successive segments (Stoica and Moses, 1997). The windowed 

periodogram corresponding to 𝑥1(𝑛) is computed as  

𝐴𝑙(𝑘) = ∑ 𝑥1(𝑛)𝜔(𝑛)𝑒
−𝑗

2𝜋
𝑁
𝑛𝑘

𝑁−1

𝑛=0
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∅𝑙(𝑘) =
1

𝑁𝑃
|𝐴𝑙(𝑘)|

2, 𝑙 = 1,… , 𝐿 

where 𝐴𝑙 is the FFT of windowed segment,∅𝑙 is the periodogram and 𝑃 denotes to power of 

the window (𝜔(𝑛)): 

𝑃 =
1

𝑁
∑ |𝜔(𝑛)|2
𝑁−1

𝑛=0

 

The Welch method estimate PSD is the average of these periodogram: 

𝑆(𝑘) =
1

𝐿
∑∅𝑙𝑘

𝐿

𝑙=1

 

   (Equation 3.5) 

 Welch's method, which is implemented as a signal in SciPy, can be used to reduce 

and isolate the PSD of the pixel intensity in the original video and then isolate it. Using an 

average of all pixels and frames, PSD were created and then vertically scaled to improve 

clarity. An example of PSD graph that contains the pixel intensity, optical flow angular and 

magnitude component of a vibrating phone is as shown in Figure 3.1. The pixel intensity 

PSD is plotted in red, while the angular and magnitude components of optical flow are plotted 

in blue and green, respectively, on the same plotting plane. Gray regions indicate the 

frequency bands that will be amplified. In the intensity PSD, the two peaks that can be 

observe are reproduced in the PSD of the optical flow's angular component, but not in the 

PSD of the magnitude component. In the video, this indicates that the corresponding features 

are moving back and forth across the frame, rather than brightening and darkening, as one 

would expect from a vibrating phone. Rather than brightening and darkening as would be 

expected from a vibrating phone, the corresponding features in the video appear to be moving 
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back and forth across the frame. The angular PSD is dominated by noise at high frequencies, 

which is a negative sign. Band-pass filters will be used to eliminate this problem and separate 

the motion at the peak frequencies. 

 

Figure 3.2: PSD obtained from phone video (Hyatt et al., 2019) 

3.4 Video Warping 

 The OF is multiplied by an amplification factor and then use that vector field to warp 

the original video using the OpenCV function remap to create a distorted version of the 

original. The calculated optical flow approximates the motion observed between two frames 

of video, whereas the amplification factor exaggerates this motion to the point where it can 

be seen with the naked eye between the frames of video. This must be determined on a case-

by-case basis; if the amplification factor is too small, motion is not sufficiently amplified; if 

it is too large, the video is warped beyond recognition of its original objects. In addition, the 

amplification factor must account for the reduction in optical flow magnitude caused by the 

frequency filtering operation. 
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3.5 Eulerian Video Magnification (EVM) 

 Video analysis software such as EVM can detect and exaggerate even the tiniest 

movements and changes in a video recording. Because the purpose is to amplify the pyramid 

levels that contain movement frequencies, EVM is applied to every level within a pyramid 

rather than over the original images, as is the case with other types of image augmentation 

techniques. The desired frequencies are multiplied by a quantity known as the magnification 

factor, which is specified by the user once the desired frequencies have been determined. 

Because EVM enhances the real motion, it is possible to see movements that would otherwise 

be invisible to the naked eye with EVM. It is necessary to add back the magnified values of 

the desired frequency to the non-magnified values of the same level to create the final movie 

with exaggerated motion, which is presented on the screen. 

 The EVM approach can be separated into two categories: linear-based EVM and 

phase-based EVM. The linear-based EVM technique is the more common of the two. In 

linear techniques, the variation in intensity over a first-order extension of the Taylor series is 

linearly proportional to the variation in motion in video, and the reverse is true. A video 

sequence is taken into consideration as input, after which spatial decomposition is used, and 

frames are filtered by a temporal filter before being produced in the final product. Increasing 

the amplitude of the created temporal region allows for the discovery of previously unseen 

information (Shahadi et al., 2020). This approach is basic and capable of detecting small 

motion fluctuations in a short amount of time; but, when the magnification factor is increased 

sufficiently, the Taylor approximation becomes imprecise, and the procedure is liable to 

failure. For this reason, phase-based magnification (PVM) is used to address the difficulty. 

It replaces the linear approximation with a Fourier decomposition by a complex steerable 

pyramid, which is a Fourier decomposition by a complex steerable pyramid (Wadhwa et al., 
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2013). Pyramid coefficients move in a manner proportionate to the motion of the pyramid 

coefficients in different video frames over time, and this is demonstrated by the fluctuations 

in phase over time.  

 It is possible to analyses these fluctuations in real time and then amplify them to create 

a visual depiction of the motion. If we compare it with the linear-based technique, the phase-

based method has a higher level of complexity and needs a longer amount of processing time, 

but it can accommodate higher levels of movement augmentation. Visualizations enlarged 

using Eulerian linear and phase-based algorithms are both faster and produce less noise than 

visualizations amplified using Lagrangian-based video magnification techniques (Shahadi et 

al., 2020). It is possible to achieve small motion amplification through EVM. The first-order 

Taylor series expansions can be used to produce motion magnification in optical flow by 

using temporal processing in conjunction with the optical flow (Horn and Schunck, 1981). 

Aiming to process the time series of colour values for each pixel in the spatial domain 

independently by applying a standard 1D temporal signal processing to each time series to 

amplify a specific band of interest temporal frequencies in each time series is the goal of 

EVM's targeting process. The input video frame is dissected into various spatial frequency 

bands using a full Laplacian pyramid, which decomposes the frame into distinct spatial 

frequency bands. (Wu et al., 2012). which is composed of three layers. When an image is 

down sampled at successively sparser densities until no further down sampling is possible, 

the Laplacian pyramid is used as a data structure. It is necessary to have a video analysis 

pyramid that is based on a Gaussian pyramid for the Laplacian pyramid to work (Sahadi et 

al., 2020). It is becoming less popular to use the Laplacian pyramid method for analyzing 

video processing time than it was previously. In fact, as the magnification factor increases, 

this method becomes increasingly ineffective because when noises increase, magnification 
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factor also increased (Wu et al., 2012). If small magnification factor is utilized, the approach 

would be suitable for magnifying colors. Figure 3.3 depicts a functional LVM mechanism 

acquired from the research. 

 

Figure 3.3: Overall structure of the linear-based-EVM (Wu et al., 2012) 

3.5.1 Spatial-Temporal Information Processing 

When it comes to motion estimation, spatial temporal processing is one of the most 

promising approaches. Motion selectivity can be achieved using spatial-temporal filtering 

based on the continuous wavelet transform (CWT) (Rui et al., 2011). Temporal processing 

is utilized at the past to extract signals that were not visible to the human eye. Temporal filters 

have been shown to reduce the occurrence of temporal aliasing of motions in videos (Fuchs 

et al., 2010). The Eulerian method, which makes use of spatial temporal filtering, can be used 

to extract small and subtle motions from video (Wu et al., 2012). As illustrated in Figure 3.3, 

spatial processing is the first step in the Eulerian motion magnification process. Using a 

pyramid structure, a video sequence is decomposed into different spatial frequency bands. 

Depending on the signal-to-noise ratio (SNR), these frequency bands may contain a variety 

of different spatial frequencies. Low pass filtering is used to suppress artefacts in these bands 

later in the recording process. Afterwards, frames of the video are down sampled to improve 
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the computational efficiency. To detect motion, these selective pixel bands are used in 

conjunction with temporal filtering. 

 

Figure 3.4: Eulerian Motion Magnification Process Flow. 

3.5.2 Relation between Temporal Filtering and Magnification 

A video is subjected to temporal processing after it has been spatially processed, as 

depicted by the diagram in Figure 3.4. It is possible to demonstrate the relationship between 

temporal filtering and motion magnification using the Taylor series expansion in equations 

Equation 2.17 and 2.18. Taylor series expansion for 1D images can also be derived, and this 

can then be applied to 2D images to achieve the desired result (Wu et al., 2012).  

Let 𝐼(𝑥, 𝑡) denote the image intensity at position 𝑥 and time 𝑡. The image undergoes 

translation motion, the observed intensities can be express respect to a displacement function 

𝛿(𝑡), such that 𝐼(𝑥, 𝑡) = 𝑓(𝑥 + 𝛿(𝑡)) and 𝐼(𝑥, 0) = 𝑓(𝑥). The aim of motion magnification 

is to synthesize the signal  

𝐼(𝑥, 𝑡) = 𝑓(𝑥 + (1 + 𝛼)𝛿(𝑡))    (Equation 3.3) 

for some amplification factor 𝛼. 

Assuming the image can be approximated by a first-order Taylor series expansion, the image 

at time t, 𝑓(𝑥 + 𝛿(𝑡)) in a first-order Taylor expansion about 𝑥 can be written as 

𝐼(𝑥, 𝑡) ≈ 𝑓(𝑥) + 𝛿𝑡 
𝜕𝑓(𝑥)

𝜕𝑥
     (Equation 3.4) 

Input 
Video

Spatial 
Processing

Temporal 
Processing

Motion 
Exaggerati
-on

Output 
Video
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Let the result of applying a broadband temporal bandpass filter to 𝐼(𝑥, 𝑡) at every position 𝑥 

to be 𝐵(𝑥, 𝑡). A temporal band pass filter is considering with assumption that motion signal 

𝛿𝑡 is within the band pass. 

𝐵(𝑥, 𝑡) = 𝛿𝑡 
𝜕𝑓(𝑥)

𝜕𝑥
    (Equation 3.5) 

The band pass signal is amplifying by exaggeration or amplification factor 𝛼 and adding 

back to 𝐼(𝑥, 𝑡) gives the processed signal 

𝐼(𝑥, 𝑡) = 𝐼(𝑥, 𝑡) + 𝛼 𝐵(𝑥, 𝑡)    (Equation 3.6) 

By combining Equation 3.4,3.5 and 3.6 it can be get that  

𝐼(𝑥, 𝑡) ≈ 𝑓(𝑥 + (1 + 𝛼)𝛿(𝑡)
𝜕𝑓(𝑥)

𝜕𝑥
    (Equation 3.7) 

Given that the first-order Taylor expansion applies to the amplified larger perturbation, 

(1 + 𝛼)𝛿(𝑡), the amplification of the temporally bandpassed signal can relate to motion 

magnification. The process output is  

𝐼 ≈ 𝑓(𝑥 + (1 + 𝛼)𝛿(𝑡))    (Equation 3.8) 

This shows that spatial displacement𝛿(𝑡) of the local image 𝑓(𝑥)  at time 𝑡,has been 

amplified to a magnitude of (1 + 𝛼). In figure below, the process is illustrated. 

 

Figure 3.5: Spatial translation can be approximated using temporal filtering. 
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Based on Figure 3.5, this effect is shown here on a 1D signal, but it is applicable to 

2D signals as well. The input signal is shown at two different time instants: 𝐼(𝑥, 𝑡) = 𝑓(𝑥) 

at time 𝑡 and 𝐼(𝑥, 𝑡) = 𝑓(𝑥 + 𝛿) at time 𝑡 + 1. When 𝐼(𝑥, 𝑡 + 1) is expanded about x, the 

first order Taylor series expansion approximates the translated signal very well. The temporal 

bandpass is amplified and combined with the original signal to generate a larger translational 

range. In this example, = 1, which magnifies the motion by 100% and the temporal filter is a 

finite difference filter, which subtracts the two curves. 

 For a low frequency cosine wave and a relatively small displacement, 𝛿(𝑡), the first-

order Taylor series expansion serves as a good approximation for the translated signal at time 

𝑡 + 1.When boosting the temporal signal by 𝛼  and adding it back to 𝐼(𝑥, 𝑡),  the wave 

translated by (1 + 𝛼)𝛿.  If for more general case where 𝛿(𝑡)  is not entirely within the 

passband for temporal filter, let 𝛿𝑘(𝑡), indexed by k, represent the different temporal spectral 

components of 𝛿(𝑡). Every 𝛿𝑘(𝑡) will be attenuated by temporal filtering by a factor 𝛾𝑘. 

Bandpassed signal results in 

𝐵(𝑥, 𝑡) = ∑ 𝛾𝑘𝛿𝑘(𝑡)
𝜕𝑓(𝑥)

𝜕𝑥𝑘      (Equation 3.9) 

As reason of multiplication in Equation 3.6, the temporal frequency dependent attenuation 

can equivalently be interpreted as a frequency-dependent motion magnification factor,𝛼𝑘 =

𝛾𝑘𝛼, resulting in a motion magnified output, 

𝐼  (𝑥, 𝑡) ≈ 𝑓(𝑥 + ∑ (1 + 𝛼𝑘)𝛿𝑘(𝑡))𝑘    (Equation 3.10) 

The result is the predicted for a linear analysis where the modulation of spectral 

components of the motion signal becomes modulation factor in motion amplification 

factor,𝛼𝑘,for each temporal sub band, 𝛿𝑘 of motion signal. 
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3.5.3 Temporal Filter 

 The goal of this procedure is to isolate motions occurring at specific temporal 

frequencies so that they can be magnified. While building the pyramid, the phases on each 

spatial scale and orientation are isolated from one another. Once the differences between 

them have been determined, the process of temporal bandpass filtering is carried out on the 

data. Enhancing either color alterations or local phase variations is essential for improving 

filter performance, and this might be accomplished by increasing the signal-to-noise ratio of 

the temporal variations. Temporal and spatial filtering are applied to the variations, allowing 

for the elimination of noise-related components and the preservation of signal-related 

components, thereby improving the signal to noise ratios. As a result of the fact that different 

motions occur at different temporal frequencies, temporal filtering can be used to isolate a 

signal of interest Using a spatial pyramid construction, a temporal filtering process is applied 

to a series of temporal pixels within each spatial band to extract the frequency bands that are 

of interest. To extract motions or signals that are intended to be amplified, a temporal 

bandpass filter is used in conjunction with an amplifier. Users should be able to control the 

frequency bands of interest, according to the application that was used in the algorithm. 

Certain cases, however, allow for the selection of a frequency band to be automated. The 

type of application being used has an impact on the selection of filters as well as other factors. 

Consider the following examples: a wide pass band filter is frequently used for motion 

magnification, while narrow pass band filters are frequently used for color enhancement, 

such as blood flow, because the latter produces less noise distortion (Shahadi et al., 2020). 

In this research, the bandpass filter is used for motion magnification of videos. 
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3.5.4 Pyramid Decomposition  

The process of breaking down images into different spatial scales is known as a 

pyramiding process. In the field of pyramid decomposition, the Gaussian and Laplacian 

approaches are the two most widely used methods. It is possible to create a Gaussian pyramid 

by first smoothing the original image with a Gaussian filter and then scaling it down to the 

appropriate size. A Gaussian pyramid is a series of lowpass, down sampled images that are 

stacked on top of each other. The Gaussian pyramid technique is a type of image processing 

technique that is used to enhance contrast in images (Yamana et al., 2000). This is like the 

Laplacian pyramid in that at a certain level of each picture of the Laplacian pyramid, the 

distance between different corresponding nearby levels of the Gaussian pyramid is equal to 

the difference between two input surrounding levels of the Laplacian pyramid. The tiniest 

level is maintained. Therefore, the difference images can be used in conjunction with the 

original image to reconstruct the original image. A sequence of bandpass-down sampled 

images can be assumed to be the Laplacian pyramid (Burt and Adelson, 1983).  

3.6 Different Methods Implemented for Video Processing  

 Different methods have been implemented and tested in this research project for 

different videos to develop the visual odometry system for the demonstration of a non-

contacting vibration analysis method. Three videos have been tested in this research report 

for the purpose of better illustration and comparison of the motion amplification from the 

result that could be obtained from different type of methods. The screenshots from the videos, 

which include a sleeping baby, a vibrating guitar string, and a vibrating phone, are depicted 

in the figures below. The baby and guitars video are extracted from others research and have 

been magnified for visualizing the vibration motion (Wadha et al., 2017). The vibrating 

phone which is the model of Huawei Nova 3i is taken by the phone Redmi Note 9 Pro. 
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Figure 3.6: Sleeping baby 

 

Figure 3.7: Guitar 

 

 

Figure 3.8: Vibrating Phone 
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The different properties of videos have been shown in the table below. 

Table 3.1: Video Properties. 

Video Length 

(s) 

Frame width Frame height Frame rate 

(frames/second) 

Sleeping Baby 10 960 544 30 

Guitar 10 432 192 600 

Vibrating Phone 10 1920 1080 30 

 

  There are three proposed methods implemented in this research to develop the visual 

odometry based for motion assessment system which is Method 1,2,3 and 4. Figures below 

have shown the different flow charts for each method. For the first and second method which 

OF would be the first step implemented to estimate the motion between frames of the video. 

Then the next step would be getting the PSD intensity graph from the original video and 

getting PSD angular and magnitude component from the optical flow, then multiply the OF 

by an amplification factor and use that vector field to warp the original video with the 

OpenCV function remap. The calculated OF approximates the motion observed between two 

frames of video, while the amplification factor exaggerates this motion so that it is visible to 

the naked eye. The major difference of method 1 and method 2 is in method 2 bandpass filter 

have been applied to obtain a better output of amplified video. For method 3, it is proposed 

to use EVM method to obtain motion magnification video output. Method 4 is purely linear 

based EVM method that reproduce from the article by Wu et al. to act as a benchmark (Wu 

et al., 2012). 
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Method 1 algorithm is as follows: 

1) Create a mask for the parts of the video where no motion occurs. 

2) Obtain the OF between frames of the video. 

3) Plotted the PSD of pixel intensity from the original video. 

4) Plotted the PSD of angular and magnitude component of original video. 

5) Magnify the amplitude by multiply the amplification factor to OF video and warping. 

 

Figure 3.9: Process Flow Chart for Method 1. 

 

Load video into input 

Mask Creation

Obtain OF between frames of original 
video

Obtain PSD of pixel intensity

Obtain PSD angular and magnitude 
component of OF

Multiply the OF by an 
amplification factor

Warp the video

Univ
ers

iti 
Mala

ya



78 

Method 2 algorithm is as follows: 

1) Create a mask for the parts of the video where no motion occurs. 

2) Obtain the OF between frames of the video. 

3) Plotted the PSD of pixel intensity from the original video. 

4) Plotted the PSD of angular and magnitude component of original video. 

5) Filter the cut-off frequency. 

6) Magnify the amplitude by multiply the amplification factor to OF video and warping. 

 

Figure 3.10: Process Flow Chart for Method 2. 
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Method 3 algorithm is as follows: 

1) Create a mask for the parts of the video where no motion occurs. 

2) Obtain the OF between frames of the video. 

3) Plotted the PSD of pixel intensity from the OF filtered video. 

4) Plotted the PSD of angular and magnitude component of OF filtered video. 

5) Magnify the OF filtered video by EVM. 

 

Figure 3.11: Process Flow chart for Method 3. 
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For method 4, processing an input video using EVM, have four procedures as below:  

(1) Select a temporal bandpass filter.  

(2) Select an amplification factor, α. 

(3) Select a spatial frequency cutoff (specified by spatial wavelength, λc) beyond which an 

attenuated version of α is used. 

(4) Select the form of the attenuation for αeither force α to zero for all λ < λc, or linearly scale 

α down to zero. The frequency band of interest can indeed be chosen automatically in some 

circumstances, but it is typically vital for users to be able to control the frequency band 

matching to their application. The user has complete control over the amplification and cutoff 

frequencies in real-time program. 

3.7 Implementation of Software and Programming Code 

For developing the visual odometry system, software to process the video and 

produce the output for further motion magnification is essential for video processing. For this 

project, the software using for video processing is OpenCV and the coding language for 

implementation of pseudocode is Python Language. To complete the visual odometry system 

for amplification and magnification of the vibration amplitude of the videos, OpenCV-

Python which is a library of Python bindings is designed and use in this project to solve the 

computer vision problems. There are different syntaxes that written in the video processing 

code to develop various processing function through OpenCV-Python library. 
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3.7.1 OpenCV Software 

OpenCV is the video processing software is chosen to use for this project. OpenCV is an 

acronym for the Open-Source Computer Vision Center. Comparing to others available 

software, OpenCV is the software that most suitable to use in this project because it is free 

of charge to utilize. Intel was originally designed to provide access to the image processing 

technology needed to create computer vision applications. It is a collection with numerous 

built-in functions that are mostly designed to work in real time. As the software is open source, 

the features are invented and modified constantly. The built-in library features require multi-

core computing to be utilized. It is free of charge for industrial as well as non-commercial 

use (Oza and Joshi, 2017). 

OpenCV has four main elements, four of which appear in the following figure. The 

CV portion contains the critical image treatment and computer vision algorithms at the higher 

levels; ML is the machine learning library that consists of several statistical classification and 

clustering tools. The HighGUI provides I / O routines and features to store and load video 

and images, and CXCore comprises the basic data and content structures. 

 

 

 

 

 

Figure 3.12: Four Main Components of OpenCV (Neelima & Saravanan, 2014). 
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The OpenCV feature that allows the user to communicate with the operating system, 

file system, and devices, such as cameras, is contained in a library called HighGUI ("high-

level graphical user interface"). HighGUI offers users with the probability of opening 

windows, viewing images, reading, and writing files related to graphical images and videos, 

and managing basic mouse, cursor, and keyboard events. The OpenCV HighGUI library can 

be split into three parts: the hardware portion, the device component, and the GUI component. 

The hardware component focuses on the activity of cameras mainly. Interacting with a 

camera is a boring and frustrating job in most operating systems. However, HighGUI can be 

easily accessed. 

OpenCV is an open-source library which provides us with the tools to perform almost 

any kind of image and video processing. OpenCV video processing algorithms are 

constructed by writing programming script files. The quality of video should be tested after 

the algorithms have been used. This results in visual and statistical analyses to test the 

accuracy of the images processed. In this, video processing algorithms are used and the 

results of OpenCV are evaluated. OpenCV video processing algorithms have been developed 

to detect performance of the built algorithms with analyzed statistical parameters. For 

creation of image and video processing algorithms, OpenCV's computer vision library is used. 

The proposed methodology of image and video processing algorithms using OpenCV is show 

in figure below. 
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Figure 3.13: Processing Algorithm Using OpenCV (Neelima & Saravanan, 2014). 

3.7.2 Python Language 

The first language for beginner programmers is Python programming language, 

because it has powerful tools which represent people's way of thinking and implementation 

of the code. This also restricts the need to write syntactically appropriate programs to 

additional keywords. It seems more successful than teaching a lot of C++ or Java languages 

terms and elements related to language details instead of an algorithm success 

(Bogdanchikov et al., 2013). It is common practice to build a Python interpreter, which is 

useful for quick testing and experimentation. Python code also has a wide standard library. 

Just to select a few random instances, Python ships with a range of XML parsers, csv & zip 

file readers & authors, libraries that use almost any internet protocol and data form, etc. 

Python coding also has great support for creating web apps. The language interpreted is 

Python, so it is easily verifying how the operators or functions operate by using the command-
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line interpreter. Python interpreter has an integrated support module that can enhance the 

comprehension of various language aspects. 

 

 

 

Figure 3.14: Logo of Python Language. 
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CHAPTER 4: RESULTS AND DISCUSSION  

This chapter describes the results achieved after applying various methods. In this 

section, the screenshot of the output that involving various motion amplification processing 

algorithms from Method 1,2,3 and 4 for three different types of videos have been recorded.  

4.1 Results of Sleeping Baby Video 

The findings of various studies have demonstrated that it is possible to enhance the 

subtle movements around the chest of a breathing baby using a variety of methods. When 

watching the original video, it is difficult to visualize the chest movement caused by the 

baby's breathing with the naked eye. However, by utilizing VO and MM systems, it is simple 

to visualize the motion with amplified amplitude and frequency response. The PSDs of the 

pixel intensity, magnitude, and angular components of the original sleeping baby video are 

depicted in the figures below, respectively. 

4.1.1 Results of Method 1 

After creation of mask where no motion occurs in the video, the OF video is filtered 

with amplification factor of 10 and 100. The figures below have shown the output achieved 

by multiplying the OF with factor of 10. Based on the output video, there is small 

amplification movement can be seen due to breathing of baby chest using factor of 10. But 

when using amplification factor of 100, the amplification of the breathing chest for the output 

video of the sleeping baby is more significant and it is free from noise. To ensure that the 

amplification of motion works for magnifying the motion, it is important to make sure to trial 

and error on the amplification factor to obtain high quality amplified result. However, high 

amplification factor caused the output video of magnified motion to be blurry. 
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Figure 4.1: The filtered OF baby video screenshot. 

          

(a)                                                                 (b) 

Figure 4.2: Motion amplification of the OF baby video. Amplification factor of (a) 10 

and (b) 100. 

4.1.2 Results of Method 2 

Based on the paper by Wu et al. (2012), the PSD analysis is implemented in method 

2 to obtain the cut-off frequencies of 0.4 Hz and 3 Hz, which are used in the design of this 

technique. Because of this, when using the cut-off frequency with an amplification factor of 

10, the output video chest vibration that is seen appears to be less exaggerated than when 

using an amplification factor of 100. While comparing Method 2 to Method 1, it is evident 

that this method amplifies the vibration more effectively, and the movement of the chest is 

visible when viewing the resulting video. 
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Figure 4.3: PSD of pixel intensity of original baby video. 

 

Figure 4.4: PSD of pixel intensity, magnitude, and angular component of 

original baby video. 
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(a)                                                                         (b) 

Figure 4.5: Screenshot of output baby video for Method 2 using amplification factor of 

(a)10 (b)100 

4.1.3 Results of Method 3 

 In method 3, based on the value from article Wu et al., 2012, the amplification factor 

that used in this method is 20 and the cut-of frequency is equal to 0.4 Hz and 3Hz. Based on 

the video output obtained from Method 3, the video output motion magnification shows a 

good magnification comparing to Method 1 and 2 which can easily visualize the 

amplification with bright intensity. However, this method result suffer from some of the 

noises and artifacts affects around the motion videos. 

 

Figure 4.6: Screenshot of output baby video for Method 3. 
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4.1.4 Results for Method 4 

 

Figure 4.7: Screenshot of Output Baby Video for Method 4 

As evidenced by the bright pixels, Method 4 has shown the motion of the chest, 

amplifies both signal and noise, and produces artefacts for higher spatial frequencies and 

bigger motions, which are indicative of this. When compared to the previous Method 3, the 

magnification result of Method 4 has demonstrated that it is the most effective magnification 

for visualizing motion. 

4.2 Results of Vibrating Guitar String Video 

 When viewing the original video of the vibrating guitar string, it is possible to see 

that the first and second strings of the guitar are vibrating with a small amplitude. To obtain 

a more accurate study of the guitar string's vibration, however, the video amplitude must be 

magnified using VO and MM systems. The guitar string can be amplified based on its cut-

off frequency to magnify the various strings. 

4.2.1 Results of Method 1 

 From the results of Method 1, it can be shown that when using amplification factor 

of 100, the output videos will show more magnified amplification of guitar string as 

comparing to using the amplification factor of 50. Each results output is free from noise and 

artifacts. However, the amplification output of the method using factor of 100 shows blurry 

on the video. 

Univ
ers

iti 
Mala

ya



90 

          

Figure 4.8: The filtered OF guitar video screenshot. 

                        

(a)                                                                 (b) 

Figure 4.9: Motion amplification of the OF guitar video using amplification factor of 

(a) 50 and (b) 100. 

4.2.2 Results of Method 2 

In Method 2, PSD analysis have been made to visualize the cut-off frequency. This 

method has been implemented on different cut-off frequencies including 72Hz,92Hz which 

is the cut-off frequency of guitar first string, string E and 100Hz-120Hz which is the cut-off 

frequency of guitar second string, string A. The methods are being implemented by using 

amplification factor of 10 in this method. The results obtained for both outputs have amplified 

the motion, but the visible result is blurry. Univ
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Figure 4.10: PSD of pixel intensity of original guitar video. 

 

Figure 4.11: PSD of pixel intensity, magnitude, and angular component of 

original guitar video. 
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(a)                                                      (b) 

Figure 4.12: Screenshot of output guitar video for Method 3.  

(a) amplification factor =50, cut-off frequency= 72Hz, 92 Hz and (b)amplification 

factor=100, cut-off frequency =100,120. 

4.2.3 Results of Method 3 

 For the visualization of video output using method 3, it has successfully amplified the 

motion of vibrating guitar with clear and bright intensities. For Figure 4.13 (a), is it filtering 

to amplify the first string, string E and significant vibration have been shown in the output. 

For Figure 4.13(b), the motion has been amplified mainly around the second string, and the 

results for both outputs have successfully magnified the vibration of string. However, the 

results produced have more noises compare to previous Method 4. Comparing to Method 1 

and 2, it does not produce blurry appearance. 
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(a)                                                      (b) 

Figure 4.13: Screenshot of output guitar video for Method 3.  

(a) amplification factor =50, cut-off frequency= 72Hz,92 Hz and (b)amplification 

factor=100, cut-off frequency =100,120. 

4.2.4 Results of Method 4 

 When compared to other methods, the results produced using this method 

demonstrate that it is carried out with the correct filter, which magnifies the motion and has 

the best magnifications for visualization. 

   

(a)                                                      (b)     

Figure 4.13: Screenshot of output guitar video for Method 4. (a) amplification 

factor=50, cut-off frequency= 72Hz,92 Hz and (b)amplification factor=100, cut-off 

frequency =100Hz, 120Hz 
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4.3 Results of Vibrating Phone Video 

An experiment involving a vibrating phone video has been designed specifically for 

this study to serve as a motion assessment system for the machinery. In the case of vibrating 

phones, it is difficult for a human being to visualize the motion of any vibrating motion 

presence when looking at the phones or the original video of the vibrating phone. This testing 

experiment is intended to serve as a demonstration of how to analyses the vibration of 

machines that are used in factories as part of preventive maintenance program.  

4.3.1 Results of Method 1 

 By using amplification factor of 100, it can be shown that the magnified motion of 

vibrating phone has been successfully. The video output of the result has shown the motion 

of the vibrating phone have been amplified without noises whereas when utilizing the 

amplification factor of 10, the result of vibration is not significant. The results produced is 

very blurry and showing edge distortions. 

           

Figure 4.14: The filtered OF phone video screenshot. 

              
(a)                                                      (b) 

Figure 4.15: Motion amplification of the OF Phone Video. Amplification factor of  
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 (a) 20 and (b) 100. 

4.3.2 Results of Method 2  

In Method 2, the PSD analysis is used to determine the cut-off frequency, which is 

not being used in method 1. In contrast, the result of the PSD analysis shows that the line is 

rather flat, which makes it impossible to select a specific cut-off frequency. Instead, a 

frequency cut-off in the range of 1Hz to 12Hz is employed as the cut-off frequency. By 

experimenting with an amplification factor of 20 and a cut-off frequency ranging from 1 Hz 

to 12 Hz, it was discovered that the output video of the vibrating phone had substantially 

more motion enhanced in it than before. By comparing Method 2 to Method 1, when utilizing 

an amplification factor of 20, Method 2 exhibits better amplified motion and produces less 

edge distortions than Method 1. The phones are vibrating and moving back and forth across 

the frame, which is to be expected from a vibrating phone, as shown in the video. 

 

Figure 4.16: PSD of pixel intensity of original phone video. 
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Figure 4.17: PSD of pixel intensity, magnitude, and angular component of 

original phone video. 

 

Figure 4.18: Screenshot of output phone video for Method 2. 

4.3.3 Results of Method 3 

The video output has successfully formed artifacts at the boundaries of the phone, 

which can be visualized clearly when using Method 3. However, the video output has a lot 

of noise when comparing to other methods. When utilizing an amplification factor of 20 and 

magnifying with 1Hz and 12Hz frequencies, the motion magnification is more noticeable 

comparing to Method 1 and 2. 
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Figure 4.19: Screenshot of output phone video for Method 3. 

4.3.4 Results of Method 4 

 

Figure 4.20: Screenshot of output phone video for Method 4. 

 The output of the result of method 4 for have shown the vibration of phone is being 

magnified but it is mainly fill with noise and artifacts. To have better result of motion 

magnified output that can reduces noise, phased-based EVM could be implemented to solve 

the noises and artifacts issues with complex steerable pyramid. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

The use of a VO system to detect motion or vibration in a machine is one of the most 

effective non-contacting methods available for performing vibration analysis on a variety of 

machines as part of predictive maintenance. The VO system and MM methods have been 

developed to aid in the amplification of the amplitude of motion, allowing humans to see 

motion that is otherwise invisible to the naked eye as a non-contact vibration measurement 

method for machinery motion assessment. The implementation of the video processing 

framework, which includes OF, PSD, amplification, filtering, and warping, has been 

completed as non-contacting vibration measurement. The suitable visual odometry technique 

have been investigated and successfully applied in this project. Four different types of 

methods of motion amplification algorithms have been implemented in this project, all of 

which make use of the VO system, which helps to amplify the motion of videos including 

magnifying the breathing of a sleeping baby, the vibrating guitar string, and the vibrating 

phone. Based on comparison on the result and data obtained, the most suitable VO for 

machinery motion assessment system is Method 4 which have perform the best magnification 

work in this project. For comparing the results obtained from these methods, the EVM 

method shows the noise characteristics, but it has the better noise characteristics than Method 

3. Method 2 is better than method 1 in term on edge distortions, but they cause blurry 

outcomes at the end of the system. 

However, each stage of the process must be carried out with caution and great care to 

ensure that the progression from loading the input of the video path to the final phase of 

amplifying and warping would result in producing good, magnified video output. When 

adjusting the amplification factor and cut off frequency, it is critical to ensure that the value 
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inserted for each video is appropriate and produces the highest quality of amplified and 

magnified video output for better illustration purposes. Different codes and functions are 

checked and corrected repeatedly to achieve the best results for motion magnification in 

videos when developing the algorithm for video processing. 

5.2 Future Recommendations 

On behalf of successfully implemented this project, there is still some limitation and 

recommendations that can be implemented after getting the motion amplified and magnified 

video outputs. Apart from getting comparison with the visualizing output of the methods, 

quantitative approaches should be implemented to compare the various methods. It is the 

capability to recognize sub-pixel motion at large magnification factors while remaining noise 

resistant that distinguishes motion magnification techniques from other types of imaging. 

The method could be quantitatively analyzing and compare it to the different method based 

on many parameters to quantify their strengths and understand their limitations.  Sub-pixel 

performance and noise performance with small and large input motion is some of the 

parameters that can be used to do quantitative comparison on motion magnified videos to let 

us choose for the best approach for motion magnified algorithm (Oh et al., 2018). On the 

other hand, physical accuracy test for verification of results can be carried out for justification 

on the result. It can be obtained by implementing the hammer sequence from the other 

researchers who work on the same video with this research, where accelerometer 

measurement is available. It can be integrated twice the accelerometer signal and used a zero-

phase high-pass filter to remove drifts. The resulting signal of proposed methods should 

match up well with the other researchers result, that would suggest the methods implemented 

is physically accurate. 
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Furthermore, detection of the presence of large motions in an video or image,  is not 

the only potential problem that could affect the final affect’s quality of MM. Natural 

phenomena that occur in conjunction with the recording of an image from a light source or 

the performance of a sensor may have the effect of causing the appearance of changes that 

are likely to changes that are important in terms of the condition or behavior of the object 

under observation in terms of their real information. It is the mixing of meaningful and non-

meaningful minor changes that results in the appearance of considerable noise in the 

magnified image. A method based that known as factional anisotropy (FA) was proposed in 

addition to the well-known techniques for reducing this effect, which are related to manual 

intervention into the processing process (Takeda et al., 2019). This type of filter, which is 

commonly used in neuroscience, was used in the cited study to design a filter that eliminated 

non-meaningful differences. On the observation of temporal distribution of changes, it is 

hypothesized that FA can be used to show an anisotropic nature of diffusion for meaningful 

changes, whereas FA cannot be used for non-meaningful changes. 

5.3 Sustainability 

 Using motion amplification, it is possible to see complicated vibration problems that 

are otherwise inaccessible to the naked eye. When used in conjunction with other tools, this 

instrument can save time and money in the areas of vibration analysis, routine condition 

monitoring program troubleshooting, and root cause analysis. Precision maintenance has a 

significant impact on the environmental sustainability of an organization, primarily through 

the improvement in product quality, which allows for a reduction in the consumption of raw 

materials. Predictive maintenance has a significant impact on the environmental 

sustainability of an organization. When it comes to reciprocating and rotary machines, 

vibration analysis is a predictive technique that is particularly well adapted to the task. In this 
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technique, the vibration level of the machine is recorded on a periodic basis; the amount of 

vibration increases when abnormalities such as misalignment, unbalance, and so on are 

present; this technique is particularly well-suited for reciprocating and rotary machines. 

When it comes to the manufacture of bearings for vehicles, one of the quality parameters that 

is evaluated is the final vibration of the assembled bearing. This is done to ensure that the 

bearings have the desired quality. Vibrations appear during external grinding processes that 

are caused by the process itself rather than by flaws in the machine tool. These vibrations 

have the potential to cause defects that lower the overall quality of the workpieces produced. 

Despite this, the analysis of process-induced vibrations has received little attention in the 

scientific literature. Vibration spectra are used to distinguish between vibration frequencies 

that are problematic and those that are not problematic. In this case, intercomparisons of 

spectra between similar machines, as well as studies of the change in spectra over time, such 

as waterfall plots, are used. When designing components, this method takes into 

consideration the possibility of establishing separate vibration limits to ensure the quality of 

the finished product after it is assembled. By increasing the efficiency with which resources 

are used, the methodology presented can help to improve the environmental sustainability of 

an industrial organization's operations. Consequently, the machine's lifespan and efficiency 

are both improved. Reduced breakdown frequency and averted large-scale equipment rework 

can be achieved through the replacement of small parts. 

5.4 Complexity 

After completed this project, there were few complexities found when carried out the 

project from start to the end. To ensure that the VO system and MM systems runs smoothly, 

the theoretical knowledge and functions of each flow of process must be thoroughly 

understood before the project can be implemented. When implementing the video processing 

algorithm, there are several coding and functions that must be applied. Connecting code for 
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each type of video processing flow was different. There were no specific instructions in 

previous research on how to construct the coding for connecting the OF with MM methods, 

so a self-learning practice is required to create the code and run it without error. For the 

output to be accurate and correct, the coding of each set of video processing must be written 

in the appropriate values and commands. 

5.5 Lifelong learning  

 This project may serve as a VO system and MM method on machinery motion 

assessment system in the sense of lifelong learning in this project, which as an important 

milestone in performing the vibration analysis as the preventive maintenance in industry field. 

The development of non-contacting method vibration analysis will minimize the cost utilities 

of the company, increase production efficiencies, and increase the safety of the employees. 

The successful management of a facility relies heavily on a preventive maintenance strategy. 

Having a preventive maintenance program in working place minimizes the machine 

downtime. As an engineer, it is important for us to know if the facility at the company do not 

operating at optimal levels is a loss to the company because it is impossible to predict when 

equipment may break, reactive maintenance results in unplanned downtime, which results in 

idle personnel, a stoppage in manufacturing, and production delays. These unanticipated 

problems will almost always need paying a technician overtime and overnighting 

replacement components in order to get the firm back up and operating as quickly as feasible. 

To minimize the impact on day-to-day production, time and money can be saved in the long 

run if take proper care of the equipment and keep it running at peak efficiency. Every piece 

of equipment eventually wears out. Additionally, performing routine preventative 

maintenance can help to extend the life of your machines. Routine maintenance, such as the 

replacement of parts, the replacement of fluids and oils, and the performance of quality 

checks, should not be neglected. 
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