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[GENERATING AN ADAPTIVE AND ROBUST WALKING PATTERN FOR 
PROSTHETIC ANKLE-FOOT UTILIZING A NONLINEAR AUTOREGRESSIVE 

NETWORK WITH EXOGENOUS INPUTS] 

Abstract 

Many challenges are associated with the development of powered lower limb prostheses, 

ranging from their mechanical design to their control system. Many studies on the use of 

control algorithms in the field of rehabilitation robotics have attempted to mimic the behavior 

of an intact lower limb with different walking speeds over diverse terrains and used different 

control structures and logic to achieve this overarching goal. Recently, most of these studies 

tend to use a hierarchical control structure with three control levels. This three-level control 

structure has at least one element of discrete transition properties that requires many sensors 

to improve classification accuracy. However, these sensors also lead to higher computational 

load and costs. In this study, a developed artificial neural network capable of generating 

dynamic control signals of the missing foot, user-independent and free-mode method using 

minimum sensory feedback signals was proposed to eliminate the need to switch among 

different controllers. A database was constructed using four OPAL wearable devices 

(Mobility Lab, APDM Inc., USA) for seven able-bodied subjects. The gait of each subject at 

three ambulation speeds during ground-level walking was recorded to train a non-linear 

autoregressive network with an exogenous input recurrent neural network (NARX RNN) for 

estimating foot orientation (angular position) in the sagittal plane using shank angular 

velocity as external input. The trained NARX RNN estimated the foot orientation of all 

subjects at different walking speeds over a flat terrain with an average root mean square error 

of 2.1°±1.7°. The minimum correlation between the estimated and measured values was 86% 

which indicated the high similarity between the estimated and measured foot trajectories. 

Moreover, results of the t-test show that the error is normally distributed with a high certainty 

level (0.88 minimum p-value). In addition, the extreme value distribution of the measured 
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and estimated data of all subjects were quite identical which indicates probabilistic 

consistency of the model. NARX RNN capability to generate the dynamic control signals for 

different walking cadences will reduce the risk of amputees falling or stumbling when a 

wrong classification occurs using the conventional three-level controllers.  

Keywords: Powered Ankle-Foot; High-Level Control System; Pattern Generator; NARX 

Network; ANN; Hierarchical Control System. 
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[MENJANA CORAK PERJALANAN YANG ADAPTIF DAN TEGUH UNTUK 
MANFAAT BUKU LALI-KAKI PROSTETIK MENGGUNAKAN RANGKAIAN 

AUTOREGRESIF BUKAN LINEAR DENGAN INPUT EKSOGEN] 

Abstrak 

Banyak cabaran dikaitkan dengan pembangunan prostesis anggota bawah berkuasa, dari reka 

bentuk mekanikalnya hingga ke sistem kawalannya. Banyak kajian tentang penggunaan 

algoritma kawalan dalam bidang robotik pemulihan telah cuba meniru tingkah laku anggota 

bawah yang utuh dengan kelajuan berjalan yang berbeza di pelbagai rupa bumi dan 

menggunakan struktur kawalan dan logik yang berbeza untuk mencapai matlamat 

menyeluruh ini. Baru-baru ini, kebanyakan kajian ini cenderung menggunakan struktur 

kawalan hierarki dengan tiga tahap kawalan. Struktur kawalan tiga peringkat ini mempunyai 

sekurang-kurangnya satu elemen sifat peralihan diskret yang memerlukan banyak penderia 

untuk meningkatkan ketepatan pengelasan. Walau bagaimanapun, sensor ini juga membawa 

kepada beban pengiraan dan kos yang lebih tinggi. Dalam kajian ini, rangkaian neuron tiruan 

yang dibangunkan mampu menjana isyarat kawalan dinamik bagi kaki yang hilang, kaedah 

bebas pengguna dan mod bebas menggunakan isyarat maklum balas sensor minimum telah 

dicadangkan untuk menghapuskan keperluan menukar antara pengawal yang berbeza. 

Pangkalan data telah dibina menggunakan empat peranti boleh dipakai OPAL (Mobility Lab, 

APDM Inc., USA) untuk tujuh subjek yang mampu. Gaya berjalan setiap subjek pada tiga 

kelajuan ambulasi semasa berjalan di aras tanah telah direkodkan untuk melatih rangkaian 

autoregresif bukan linear dengan rangkaian saraf berulang input eksogen (NARX RNN) 

untuk menganggar orientasi kaki (kedudukan sudut) dalam satah sagittal menggunakan sudut 

shank halaju sebagai input luaran. NARX RNN yang terlatih menganggarkan orientasi kaki 

semua subjek pada kelajuan berjalan yang berbeza di atas rupa bumi rata dengan purata punca 

ralat min kuasa dua sebanyak 2.1°±1.7°. Korelasi minimum antara nilai anggaran dan diukur 

ialah 86% yang menunjukkan persamaan yang tinggi antara trajektori kaki yang dianggarkan 
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dan diukur. Selain itu, keputusan ujian-t menunjukkan bahawa ralat adalah taburan normal 

dengan tahap kepastian yang tinggi (0.88 nilai p minimum). Sebagai tambahan, taburan nilai 

melampau bagi data yang diukur dan dianggarkan bagi semua subjek adalah agak sama yang 

menunjukkan konsistensi kebarangkalian model. Keupayaan NARX RNN untuk menjana 

isyarat kawalan dinamik untuk irama berjalan yang berbeza akan mengurangkan risiko 

amputasi jatuh atau tersandung apabila klasifikasi yang salah berlaku menggunakan 

pengawal tiga peringkat konvensional. 

Kata kunci: Powered Ankle-Foot; Sistem Kawalan Tahap Tinggi; Penjana Corak; Rangkaian 

NARX; ANN; Sistem Kawalan Hierarki. 
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CHAPTER 1 INTRODUCTION 

1.1 General introduction:  
 

The number of lower extremity amputation procedures has significantly increased over the 

past 10 to 15 years due to many factors. The majority of the major amputation procedures for 

lower extremities are performed at the transtibial level, followed by the transfemoral level 

(McLaughlin, 2018). The number of lower extremity major amputations in the world ranges 

between 3.6 to 68.4 per 105 population (Moxey et al., 2011). In the US alone, approximately 

185,000 amputations are being performed each year (Marzen-Groller et al., 2005). These 

huge numbers only highlight the importance of rehabilitation intervention.  

Depression or depressive symptoms have also been reported by some patients as a 

driver of their poor mobility and reduced use of prostheses shortly after amputation. Patients 

who underwent long-term amputations also attributed their depression to activity restrictions, 

overwhelming feelings of vulnerability, and poor self-rated health (Behel et al., 2002; Horgan 

et al., 2004; Jones et al., 1993). 

Over the past few decades, the use of powered prosthetic devices has increased due 

to their contributions in improving the mobility and quality of life of amputees (Jimenez-

Fabian et al., 2012). These prostheses mimic a robust walking pattern comparable to a normal 

gait cycle. Meanwhile, passive and semi-active prostheses lead to asymmetric gait patterns, 

have low shock absorption, and increase the metabolic cost (Goldfarb et al., 2013; Waters et 

al., 1976). Passive prostheses also contribute to joint disorders, chronic residual limb pain, 

and back pain (Ephraim et al., 2005) and increase the risk of developing osteoarthritis (Burke 

et al., 1978; Lemaire et al., 1994). 
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Powered prosthetic devices mostly depend on intermittent non-dynamic control strategies as 

will be discussed in the literature review. Using these devices exposes amputees to the risk 

of falling if any wrong classification occurs during ambulation. In addition, these controllers 

lead to a high computational load, increasing the weight and price of powered prosthetic 

devices and reduce the comfort of amputees due to the large number of sensors required for 

reducing classification errors. Furthermore, some of these controllers rely on 

electromyographic (EMG) signals for intent recognition, some rely on mechanical sensors 

attached to the prostheses or the bodies of amputees, and others rely on hybrid feedback 

signals from both types of sensors. Gradual changes in EMG bursts and motor patterns occur 

with different inclinations of slopes (Prentice et al., 2004). Therefore, more predetermined 

patterns need to be defined to cover all terrains faced by amputees in their daily use of 

prostheses, which would require the use of a complex control structure and a highly 

sophisticated intent recognizer.  

  (Grasso et al., 2004) found that the recovery of patients with spinal cord injuries 

mainly depends on the reactivation of a neuro-mechanical circuit response to generate motor 

patterns. For prosthetic ankles, generating a human-like non-linear oscillatory signal 

represents an initial step toward restoring the normal walking gait of amputees. 

The relationship between tibia kinematics and the desired foot orientation throughout 

ambulation has been supported by evidence (Holgate et al., 2008; Holgate et al., 2009). 

Therefore, the foot angular position was estimate based on the angular velocity of the tibia 

by training a NARX recurrent neural network. NARX is suitable for generating non-linear 

oscillations associated with locomotion and is more convenient than conventional neural 

networks in terms of the long term-dependencies in the data (Lin et al., 1996).  
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1.2 Problem statement: 
 

Passive prostheses are the most commercially available prosthetic devices, due to the 

hefty price of powered prostheses. The conventional three-level controllers have a non-

dynamic intermittent control structure. Where the misclassification exposes the amputees 

to falling risks. The non-dynamic switching rules of the conventional controllers are 

limited to certain walking terrains which the intent recognizer is trained to recognize. The 

conventional controllers require an extensive number of sensors to classify the walking 

mode and speed which increases the computation load and the cost of the prosthetic 

device. Most of the conventional controllers are user-dependent, which means special 

training for the control system is required based on each patient’s data before the usage 

of the powered prosthesis. The alternative methods of the conventional controllers are 

weather user-dependent, unable to produce different walking cadences, or require a high 

number of sensors. 

1.3 Research objectives:  
 

1. to develop an artificial neuromechanical circuit to generate human-like non-linear 

oscillatory signals that will replace missing biological signals and restore the normal gait 

of amputees by using powered ankle-foot prostheses; and 

2. to make this artificial neuromechanical circuit user-independent able to generate the 

desired patterns with minimal tuning before usage by any amputee and make it adaptive 

to different walking cadences.  
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1.4 Dissertation outline:  
 

The rest of this dissertation is organized as follows. Chapter 2 reviews the literature.  

Chapter 3 describes the methodology. Chapters 4 and 5 presents the results and the related 

discussion, respectively.  Chapter 6 concludes the dissertation and proposes directions for 

future work. 
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CHAPTER 2 LITERATURE REVIEW 
 

Emulating an intact lower limb behavior across different speeds and terrains has been an 

overarching goal of many studies on rehabilitation robots. Therefore, prostheses control 

systems are mainly categorized based on the motion intention detection techniques of 

amputees and the inputs utilized in such techniques (J. Martin et al., 2010).  

The motion intention of amputees can be recognized using various sensory feedback 

signals (e.g., neuromuscular activates, locomotive state, or physical interactions with the 

environment or the prosthesis) that may be fully embedded onto highly invasive sensors (e.g., 

surgically implanting electrode arrays). Accurately classifying motion intention is critical in 

preventing injuries related to falls and unstable walking. Therefore, maximizing the richness 

of information and minimizing the number of invasive sensors are crucial (Tucker et al., 

2015), and further research must be performed to accurately and intuitively recognize the 

motion intention of amputees. In this chapter a thorough review of the control systems used 

in the literature is made. First, it starts with the two-level controllers, more specifically the 

echo controller as it is the first published control system developed for powered prostheses 

in 1977. Then, the FSM two-level controllers, these controllers are initial for the 

understanding of the conventional three-level controllers. Second, the review covers the 

three-level conventional controllers comprehensively. Where, the classification algorithms 

and the sensors used for intent recognition were described, starting with biomechanical-based 

intent recognizers, to the EMG-based intent recognizers and capacitive modulation-based 

intent recognizers, ending with neuromuscular-mechanical fusion-based intent recognizers. 

Third, many alternative methods were presented. First, the inverse dynamic control 

strategies. Second, biological-signals-inspired controllers. Two methods were introduced in 
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the literature. One is the central pattern generator-based controller. Second, the LSTM RNN 

based control strategies.  

2.1 Two levels control strategies  
 

The echo control strategy is among the first approaches used in powered transfemoral 

prostheses (Flowers et al., 1977; Grimes et al., 1977). In this method, prosthesis simply 

duplicates the motion patterns of the sound leg. Mechanical sensors are mounted on 

prostheses to provide feedback signals as variables for timing function switches between 

controlling modes. However, this strategy does not observe various walking terrains and is 

not accurate enough in phase detection.  

A more efficient approach that applies a two-level control system was developed for 

both transtibial and transfemoral prostheses to regulate ambulation over ground-level 

terrains. This approach achieves a faster information flow and less switching delays 

compared with the echo control strategy. In this approach, the prerecorded kinematics or 

kinetics (or both) of an able-bodied human during normal ambulation are used as reference 

inputs to adjust foot orientation. Signals are executed by a finite state machine at the high 

level depending on the phase-state of the prostheses, and then the corresponding low-level 

controller is used to imitate the behavior of biomechanical limbs throughout the gait cycle.  

(Sup et al., 2007) introduced a prosthetic transfemoral device driven by two pneumatic 

actuators. FSM regulates the parameters of impedance control throughout ambulation based 

on different phase walking modes (Stance 1, Stance 2, Swing 1, and Swing 2). In addition to 

a three-axis socket load cell, position and torque sensors are used in phase detection and for 

tracking foot trajectory. (Gao et al., 2019) proposed a similar control strategy for controlling 

a non-linear parallel elastic actuator (PEA) that drives transtibial prostheses. Such prosthetic 
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device can work in both passive and active modes. In the active mode, the driving circuit 

controls the motor to drive the prosthetic device and provide a positive mechanical power to 

the user. When the battery is drained, the circuit works in the passive mode, makes the motor 

function as a generator, and produces a damping force to avoid foot drop. In the passive 

mode, a driving circuit is used. Unlike other studies where the state is instantly changed after 

reaching a fixed condition, (Gao et al., 2019) proposed a threshold technique where the state 

changes depending on the motion of the user. 

 (S. K. Au et al., 2007) examined the design and control requirements of transtibial 

powered prostheses. In accordance with the design requirements derived from intact ankle 

behavior throughout level-ground walking, they integrated five mechanical elements into 

their prosthetic prototype, namely, a brushed DC motor, transmission mechanism, series 

spring, unidirectional parallel spring, and carbon composite leaf spring prosthetic foot. The 

components are combined to form a controllable series-elastic actuator (SEA), which 

modulates stiffness through the stance phase and provides a constant torque during plantar 

flexion. To control SEA through ground-level ambulation, the authors used an FSM control 

strategy, which has six states representing the ankle joint behavior during ground-level 

walking. These states include controlled plantar flexion (CP), controlled dorsiflexion (CD), 

and powered plantar flexion (PP) during the stance phase and SW1, SW2, and SW3 during 

the swing phase. Three low-level controllers were activated based on the walking state to 

control the actuator. First, the torque controller was used in PP to generate an offset force. 

Second, an impedance controller was used in CP and CD to modulate joint stiffness. Third, 

a position controller was used in the swing phase to control ankle orientation. Three sensors 

were used to switch between states, namely, foot switches to measure heel/toe contact, an 

ankle joint encoder to measure ankle angle, and a linear spring potentiometer to measure joint 
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torque. The authors found that the powered ankle prosthesis can mimic the torque-ankle 

behavior of an intact human ankle joint. By measuring the oxygen consumption of three 

amputees, they found that the powered ankle prosthesis reduced their metabolic rate by 7% 

up to 20% compared with conventional passive prostheses.         

 (Sun et al., 2014) designed a transtibial prosthesis based on the four-bar mechanism 

driven by a brushed DC motor and torsional spring. They applied the high-level FSM 

approach to determine if the prosthesis was in either the stance or swing phase based on its 

contact with the ground or the ground reaction force measured by a force sensing resistor. If 

the prosthesis in the stance phase, then the low-level controller is working under the moment 

control mode. Otherwise, the controller is working under the position control mode during 

the swing phase. They divided the stance phase into three subphases, namely, loading 

response, mid- and terminal stance, and pre-swing. The predetermined moment/position 

profile of an able-bodied person was used as the reference input of the PI/PID low-level 

controllers. Sensors were used to provide the required sensory feedback to the low-level 

controllers, an incremental encoder was used to provide the position and angular velocity 

data to the PID position controller during the swing phase, and a current sensor was used to 

provide feedback signals to the PI moment controller during the stance phase. 

  (Cherelle et al., 2014) designed another four-bar-based transtibial prosthesis 

comprising a brushed DC motor, a ballscrew connected to a lever arm with two tension 

springs (push-off springs (PO)), and a plantar flexion spring (PF) located between the lever 

arm and foot. In addition to the current sensor, the load cell force, linear potentiometer, force 

sensing resistors (FSR), and two magnetic encoders were used to provide the control system 

sufficient feedback signals. The mechanical design of the prosthesis and the locking 

mechanism of the lever arm both greatly influenced the control strategy and energy 
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consumption of the system. The control strategy also involved the application of FSM at the 

high level, and the PI moment controller worked along with the PID position controller at the 

low level.  

  (Wang et al., 2014) designed a transtibial prosthesis driven by a brushed DC motor. 

A load cell, angle sensor, and two inertial measurement units (IMU) were mounted on the 

prosthesis to provide the required feedback signals for both the high-level FSM controller 

and low-level controllers (including the damping, torque, and angle controllers). They 

combined CP and CD into controlled flexion (CF) and then divided the controlled gait cycle 

into three phases, namely, CF, PP, and SW. The low-level controller worked under the 

damping control mode in CF, under the torque control mode in PP, and as a position 

controller in SW. 

 (Ficanha et al., 2015) built a prosthesis with two degrees of freedom (DoF) that was 

driven by two brushed DC motors and can function in both frontal and sagittal planes. They 

used strain gauges to estimate the ground reaction torques and designed two encoders for 

each motor to measure foot orientation in two dimensions. They applied the FSM approach 

to monitor the development of admittance and impedance controllers for the ankle-foot 

prosthesis based on position and torque feedback. However, this prosthesis was difficult to 

control because the control system must track the movement and determine the phase-state 

in two planes to switch between low-level controllers in both dimensions. Moreover, 

developing intent recognition and working over different terrains require the use of highly 

sophisticated controlling algorithms and an advanced micro controller for data processing. 

To the best of my knowledge, all controlling techniques based on the two-level control 

strategy are only capable of controlling prostheses over a single walking terrain. However, 
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the FSM-based two-level controlling strategy is critical given its role as the core of the 

hierarchy three-level control strategy, which is the most commonly applied approach in the 

literature.     

2.2 Three-levels control strategies  

In three-level control strategies, an intent recognizer acts as a high-level supervisory 

controller that switches among different tasks, including ground-level walking (GL), 

ascend/descend ramps (AR/DR), or ascend/descend stairs (AS/DS), etc. Each task is 

performed using FSM in the mid-level control, in which the prosthesis state is observed and 

the desired command is transmitted to the proper low-level controller(s) (Tucker et al., 2015). 

The three-level control strategies adopted in the powered prostheses literature differ in their 

use of high-level control as an intent recognition technique and their chosen sensory feedback 

for intent recognition (i.e., EMG, mechanical sensors, or capacitors). This section categorizes 

the controllers based on their utilized intent recognition techniques (i.e., the classification 

algorithm and the feedback signals used for intent recognition). Figure 2.1 illustrates the 

general three-level control structure used in these studies. 

 

Figure 2.1: Block diagram depicts the hierarchical three-levels control strategy used to control most of 
powered prosthetic devices.  

2.2.1  Intent recognition based on biomechanical feedback:  

In this method, mechanical sensors are attached to prostheses to recognize the intention and 

identify the walking modes of amputees. Controlling algorithms relying on biomechanical 
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feedback have low costs and computational loads given the small number of sensory 

feedback signals that need to be processed and their properties (i.e., high amplitude, noise 

resistance, and continuous feedback signals). Moreover, the sensors used to collect these 

signals are non-invasive, do not affect the comfort of amputees, and do not require the 

wearing of additional instruments apart from prostheses. However, this method has a higher 

classification error and longer transition delay between two tasks compared with other 

methods. 

Over the past two decades, the Vanderbilt University published many studies on the 

development of ambulation mode intent recognition based on mechanical sensory feedback 

for both transfemoral and transtibial prostheses. For instance, (Sup et al., 2009) designed a 

transfemoral prosthetic device driven by two brushless DC motors and relies on five strain 

gages, two potentiometers, ankle and knee current sensors, and a three-axis accelerometer to 

observe the states and their interaction with the environment and the residual limb and to 

provide the three-levels control system with sufficient feedback signals. They tested their 

prosthesis on ground-level walking with three different speeds and standing still and used the 

same Gaussian mixture models (GMM) supervisory controller as in their former pneumatic 

prototype (Varol et al., 2008). A total of 100 samples-long frames were generated from 7 

sensor signals, the mean values and standard deviation were computed, and a 3D principal 

component analysis (PCA) algorithm was used to reduce the dimension of the collected data 

to be analyzed by the 7-mixture GMM classifier. A voting vector length of 38 was then used 

to minimize delay in gait mode intent recognition (Figure 2.2). A transition period of 0.4 to 

0.5 seconds was observed between two modes, which is convenient for real-time 

implementation. Unlike in previous studies, (Varol et al., 2009) used 3D linear discriminant 

analysis (LDA) for dimension reduction. LDA outperformed PCA in the standing, sitting, 
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and walking cases. They also used GMM with 6 mixtures and a voting vector length of 45 to 

recognize user intent. Some classification errors were observed during the experiment, which 

the authors argued was not problematic and not perceivable by the user. The execution time 

of their identification method was slightly longer than those of other methods given that more 

classes need to be identified. 

 

Figure 2.2: A flowchart emphasizes the procedure of intent recognition  

 (Sup et al., 2010) developed a control system that allows their designed transfemoral 

prosthesis to walk up  slopes and then compered their results with the native trajectories of 

able-bodied subjects and passive prosthesis trajectories. In contrast to previous studies that 

distinguish walking from standing, (Sup et al., 2010) did not use any classification, dimension 

reduction, or voting vector methods to identify the intent of their subjects to walk up slopes. 

Instead, they used a basic threshold algorithm based on gravity orientation that utilizes a 

three-axis accelerometer. The controller only determined 5° and 10° slopes, and the authors 

claimed that the ± 2.5° variation of slopes does not require the alteration of prosthesis 

behavior and that the building codes in the US limit the maximum incline of a ramp to 

approximately 5°. Using second-generation transfemoral prosthesis, the authors implemented 

their developed controller for stairs ascent and descent as described in (Lawson et al., 2012). 

However, they only described their FSM strategy for stairs ascent and descent and compared 

their results with those for passive prosthesis and healthy subjects without mentioning the 

identification techniques they used to switch between activity modes. 

 (Shultz et al., 2015) proposed an algorithm for controlling their designed transtibial 

powered prosthesis, which is similar to their former method for controlling transfemoral 
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prosthesis. However, their high-level controller was simple and able to identify the activity 

modes through a predetermined offset angular position, the velocity of the ankle as provided 

by the encoder, and the angular position and velocity of the shank as observed by the IMU 

unlike previous studies that rely on ground reaction force (GRF)  observations and the 

positions of ankle and knee joints, which are fed to a GMM-based classifier to recognize user 

intent and initiate the proper pattern. To switch between different walking speeds, the time 

between each heel strike was recorded, and the high-level controller would switch to the 

control parameters that correspond to the walking speed of the subject with a 2 step/min 

hysteresis in order to mitigate chatter between sets of control parameters. Meanwhile, to 

switch between activity modes (i.e., walking or standing), the high-level would switch from 

standing to walking mode when the ankle prosthesis reaches a predetermined angle offset 

through dorsiflexion. Therefore, a transition from standing to walking mode can only occur 

between the support state of standing and the late stance phase of walking. Meanwhile, 

switching from walking to standing mode is only possible between the middle stance phase 

(walking) and the support phase (standing) when the absolute angular velocity of the shank 

is near 0 for 0.5s.  

(Young et al., 2015; A. J. Young et al., 2014; Young et al., 2013) estimated 

ambulation mode intent by using 13 mechanical sensors embedded on a powered 

transfemoral prosthesis that includes potentiometers and encoders at the knee and ankle, an 

axial load cell, and a six-axis IMU on the shank (same prototype introduced in (Lawson et 

al., 2012) built by Vanderbilt University). Data of six unilateral transfemoral amputees were 

collected during 20 repetitions of a circuit. These data included walking on level ground and 

on a ramp with a 10°  slope and ascending and descending a four-step staircase using 

reciprocal gait (Young et al., 2013). These data were divided into eight points during the gait 
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cycle, and the data before each toe off and heel contact events were segmented into variable 

window sizes to test the performance of the intent recognition system for each window size. 

Four features, namely, mean, standard deviation, maximum, and minimum, were calculated 

within each window for all signals from those feedback signals that form a feature vector 

size 52. Afterward, an LDA algorithm was used for dimension reduction (Varol et al., 2009).  

The authors also evaluated the effect of training the intent recognizer with one to multiple 

analysis windows (majority vote strategy (MV)) and assessed the classification performance 

during both transition and steady states by calculating the percentage of misclassifications 

recorded during the transitions and the steady state. In their statistical analysis, the authors 

found that a single analysis window at heel contact and toe off with 250 ms length generates 

the most accurate outcomes. Moreover, training the intent recognizer using the data obtained 

during the transitions can lead to significantly more accurate results than training the intent 

recognizer using steady state data. (A. J. Young et al., 2014) extended their previous work 

by introducing  a time history with dynamic Bayesian network (DBN) strategy for walking 

mode recognition. The technique using DBN obtained a lower classification error compared 

with MV- and maximum-likelihood-based techniques, whereas the MV-based technique 

demonstrated the worst performance. Data from eight unilateral transfemoral amputees were 

then used to develop a user-independent intent recognizer (Young et al., 2015), where the 

data of seven subjects were used to train the pattern recognition system, and the data for the 

eighth subject were used to test classification performance. Results were then validated 

across all subjects. The data were segmented into 8 windows with 300 ms width, and  the 

extracted features from each window were expanded into 6 features by adding the starting 

and ending signal values to the 4 features used in their previous study. They also introduced 

two other classification strategies, the first of which is mode-specific configuration, in which 

a separate LDA classifier is used for each locomotion mode without any time history 
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information. Figure 2.3 shows the block diagram of this strategy. The other strategy is the 

mode-specific + time history configuration, which combines the mode-specific and DBN 

time history strategies. The same eight windows are used in the analysis for prior probability 

propagation. However, separate DBN classifiers are used based on the previous locomotion 

mode. Both the mode-specific and mode-specific + time-history classifier configurations 

obtained significantly less transitional errors than the baseline and time-history classifiers. 

However, in terms of steady-state classification error, the time history DBN-based classier 

and the mode-specific + time history classifier significantly outperformed the mode-specific 

and baseline classifiers. Meanwhile, the user-dependent classifiers outperformed user-

independent classifiers in terms of transition steps and user-independent steps. However, the 

classification error of the user-independent classifier decreased when the combined data for 

training increased from one to seven subjects. The authors argued that including more 

subjects to the combined training data may enhance the classifier performance. Developing 

a user-independent classifier or controller for prosthetic devices is considered a critical 

approach that can reduce training time and satisfy the demands of both patients and clinicians.     
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Figure 2.3: Block diagram illustrates Mode-Specific Configuration strategy for locomotion mode 
classification. 

 (Yuan et al., 2014) proposed a real-time fuzzy-logic-based intent recognizer to 

identify the walking mode for a transtibial prosthesis. They used two three-axis gyroscopes, 

two three-axis accelerometers, two force-sensitive resistors, and a timer to measure the 

prosthesis state and its interaction with the environment to obtain the required features (i.e., 

foot inclination angle at first strike, shank inclination angle at first strike, foot strike sequence, 

foot inclination angle at mid-stance, and shank inclination angle at toe-off) that would allow 

the fuzzy-logic system identify the walking mode. Three membership functions were used, 

namely, two hyperbolic tangent functions and one Gaussian function. Two of these functions 

were used for every feature with different parameters. This fuzzy-logic-based intent 

recognition algorithm was able to identify five different terrains, namely, LG, RA, RD, SA, 

and SD, after testing on six able-bodied subjects and three transtibial amputees. The 

algorithm obtained an average identification accuracy of 98.74%±0.32% (mean±standard 

deviation) during steady state locomotion, and the average transition delay between 2 

walking modes for the 8 transition cases was 9.06%±3.46% for one gait cycle with a 

Transiti
on to
 LM2

Previous Mode

Locomotion 
mode 1 
(LM1)

Locomotion 
mode 2 
(LM2)

Locomotion 
mode n 
(LMn)

Classifier LM1 Classifier LM2 Classifier LMn

Stay 
in 

LM1

Stay 
in 

LM2

Stay 
in 

LMn

Transiti
on to
 LMn

Transiti
on to
 LM1

Transiti
on to
 LMn

Transiti
on to
 LM1

Transiti
on to
 LM2

LM1 LM2

LMnLM1

LM1

LM2

LM1

LMn LM1

LM2 LM2

LM2 LM2

LMn LMn LMn

LMn LM1

Univ
ers

iti 
Mala

ya



17 
 

0.79±0.02 ms execution time. (Yuan et al., 2014) also studied the influence of stair height 

and ramp inclination angle on identification accuracy and found that the recognition 

performance decreases along with stair height, whereas the variation in ramp inclination 

angle has a negligible effect on identification accuracy. The transition delay between two 

walking tasks was almost the same for all transitions, except for that between level ground 

walking and ramp descent with a low inclination angle, which was significantly longer due 

to misidentification. Although its accuracy decreases along with varying stair height and 

ramp inclination angle without taking variations in speed into consideration, this 

identification algorithm remains applicable in real-time prosthesis control given its ability to 

identify most of the common terrains faced by the amputees with higher accuracy and shorter 

transition delays compared with other methods. 

 (Stolyarov et al., 2017) developed a method that predicts locomotion mode by using 

the translational motion derived from IMU data. They collected their data using a six-axis 

IMU and a 12-camera Vicon 8i motion capture system from 6 transtibial amputees while 

preforming five walking tasks (LG, RA, RD, SA, and SD). Three separate features sets were 

extracted from the collected IMU data, including the raw sensed data, knee and ankle 

translational motion signals derived from the sensed data, and expanded features comprising 

both sensed data and translational motion.  Each feature set includes the maxima, minima, 

means, and standard deviations extracted from associated signals in the analysis window. 

The authors then compared the performance of the LDA-based intent recognizer using three 

sets of features and found that the translational motion features set significantly outperformed 

the sensed and expanded features sets with a high prediction accuracy (composite error of 

4.7%). Using translational data for intent recognition is also computationally feasible for real-
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time implementation. The proposed method can also predict walking tasks independent of 

walking speed, prosthesis, and subject. 

2.2.2 Intent recognition based on electromyography feedback: 

Previous studies have commonly used EMG signals measured from the residual limb as 

feedback signals for the controllers of powered lower limb prostheses. For instance, (S. K. 

Au et al., 2005) estimated ankle movement intent from EMG signals by using two techniques, 

the first of which is the biomimetic technique based on the simulated dynamic of the missing 

limb and the second of which is a technique that uses a standard multilayer neural network. 

In their analysis and comparison, they found that both controlling techniques can 

qualitatively estimate the desired ankle movement patterns. However, the biomimetic EMG 

controller demonstrates a smoother and more natural movement pattern compared with the 

neural-network-based technique. Meanwhile, (S. Au et al., 2008) used a feed-forward neural 

network with a single hidden layer to manage the switching between two FSMs in the mid-

level, which represent level-ground and stair descent walking patterns. They divided the 

swing phase into three and two subphases for level-ground walk and stairs descent, 

respectively. In the second swing subphase (SW2), in both walking modes, the amputee was 

allowed to voluntarily control the equilibrium position of his/her foot based on residual limb 

muscular activities. The EMG signals collected by three pairs of surface electrodes were 

filtered and amplified to generate the input signals of the neural network, which has a binary 

output (if y = -1, then θEMG = −0.35 rad, else y = 1 θEMG = 0 rad). After estimating the motion 

intention by using the neural network based on the flexion of appropriate muscles, the new 

motor state persists until another muscle flexion occurs, which represents the intent of the 

user to switch to the other walking mode.  
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 (Huang et al., 2008) used a phase-dependent EMG intent recognizer (where a specific 

classifier is used for each phase; Figure 2.4) to identify 7 locomotion modes, namely, level-

ground walking, stepping over an obstacle, ascending stairs, descending stairs, ipsilateral 

turning, contralateral turning, and standing still. A total of 4 analysis windows with 140 ms 

length and 30 ms window increments were derived from the gait cycle and aligned with two 

gait events (i.e., heel strike and toe off). An independent classifier was used for each phase 

window, and a phase detection module detects the gait events and switches on the associated 

classifier. They also analyzed different classifier types, EMG features, subsets of EMG 

channels, length and increment size of the analysis window, and their influence on 

classification error and response time. 

 

Figure 2.4: Block diagram depict the structure of phase-dependent EMG pattern classifier. 

They found that the LDA classification strategy slightly outperforms and is more 

computationally efficient than the ANN classification strategy for all analysis windows. 

However, both classifiers fail to accurately classify the walking mode when using the EMG 

signals of the entire stride cycle. (Huang et al., 2008) also found that analysis window length 

significantly affects the classification error yet has a negligible influence on the compared 

EMG features (time domain TD, three-order autoregression coefficients ARc, and their 

combination TDAR). When using only the EMG signals from muscles in the residual limb 

(gluteal and thigh muscles), the overall errors in the four phases (Post-HC, Pre-TO, Post-TO, 
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and Pre-HC) were 19.0%, 19.0%, 8.6%, and 6.7% for the first patient and 22.9%,17.1%, 

8.5%, and 12.9% for the second patient, respectively. The lowest classification accuracy was 

reported in the Post-HC phase for level-ground walking, stepping over an obstacle, and 

turning. Meanwhile, stair ascent and descent were the most robustly recognized locomotion 

modes in all phases. However, the transition accuracies of the intent recognizer were not 

examined.  

Although EMG signals appear prior to motion (Yuan et al., 2014) and contain rich 

information about the state of the amputee (Hargrove et al., 2009), EMG-based motion 

recognition has some major drawbacks. For instance, low-amplitude signals can be easily 

affected by external noise, are difficult to measure (Chen et al., 2013), and have non-linear 

and non-stationary characteristics (S. K. Au et al., 2005; Farry et al., 1996). In addition, 

sweaty skin and misplacement due to don and doff can negatively impact the signals (Spanias 

et al., 2018). 

2.2.3 Intent recognition based on capacitive modulation 

(Chen et al., 2013) developed a new intent recognition strategy that uses capacitive sensory 

feedback as an alternative model for EMG-based intent recognition. This strategy was later 

improved by (Zheng et al., 2014) by adding non-contact capacitors. These strategies have 

addressed many problems associated with classification techniques that use EMG signals, 

such as their low amplitude and physiological effects. However, the different shapes of 

amputees’ residual limbs may affect the placement of capacitors and require a special training 

of the classifier for each individual, which is inconvenient for prosthetic technicians. 

Moreover, the authors ignored the real-time transitions between the walking modes of the 

classifier. Specifically, (Chen et al., 2013) used 10 channels of the sensing band mounted on 
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the thigh of the amputated leg to identify 6 locomotion modes (i.e., ground-level walking, 

ascending/descending stairs, ascending/descending slopes, and avoiding obstacles). They 

used a phase-dependent classification algorithm with the MV technique, where the phase 

size, window size, and window increment were set to 190, 150, and 20 ms, respectively. 

Afterward, they compared the performance of three classification techniques (LDA, logistic 

regression (LR), and quadratic discriminant analysis (QDA)) and found that LDA slightly 

outperformed LR, whereas QDA demonstrated the worst performance. The feature set 

derived from the analysis window for the LDA classifier included mean, maximum, 

minimum, and root mean square error (RMSE) values. The overall classification accuracies 

for the five amputee subjects were 94.4±1.5%, 94.0±1.4%, 92.1±0.8%, and 93.3±0.8% for 

pre-foot contact, post-foot contact, pre-foot off, and post-foot off, respectively. Meanwhile, 

(Zheng et al., 2014) tested and evaluated their non-contact capacitive sensing system for 

locomotion intent recognition on six transtibial amputees and used six sensing channels to 

create the classification features set for identifying six locomotion modes (i.e., ground-level 

walking, ascending/descending stairs, ascending/descending slopes, and standing). These 

features were derived from an analysis window with 250 ms length and 10 ms increment 

along two walking phases (swing and stance). They also compared three classification 

techniques (LDA, QDA, and two-mixture GMM) to identify the most suitable technique. 

They found that QDA and two-mixture GMM almost demonstrated the same performance, 

whereas LDA obtained the lowest classification accuracy. They eventually used QDA 

because of its lower computational load relative to two-mixture GMM. The average 

recognition accuracies obtained from six time-domain features were 96.3% and 94.8% for 

the swing and stance phases, respectively. Although the proposed technique addresses many 

sensing band problems, such as the negative effects of sweating and dressing/undressing of 

the band, the non-contact version deals with significantly lower capacitance amplitudes (with 
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average peak-to-peak capacitance ranging from 10 pF to 20 pF). This technique is also 

affected by residual limb shape and requires the application of three filters in series to 

regulate the capacitance signals. 

2.2.4 Intent recognition based on neuromuscular-mechanical fusion sensory 
feedback 

(F. Zhang, DiSanto, et al., 2011) developed the first intent recognizer, which relies on 

neuromuscular-mechanical fusion sensory feedback. This recognizer identifies three 

locomotion modes, namely, level-ground walking and ascending/descending stairs. A total 

of 11 surface EMG electrodes were fixed on the residual thigh of the user to measure EMG 

signals, whereas 6 DOF load cells were mounted on the prosthetic pylon to measure 

mechanical forces/moments. The measured data were segmented by sliding analysis 

windows with 150 ms length and 20 ms increment. Sets of features were derived from each 

analysis window. The authors then evaluated the performance of two classification 

techniques, one of which uses the EMG time-domain features (e.g., mean absolute value, 

number of zero crossings, number of slope sign changes, and waveform length) and time-

domain features extracted from the measured mechanical sensors (the mean, minimum, and 

maximum values). Meanwhile, the other technique uses EMG time-frequency-domain 

features (extracted by wavelet packet decomposition, with the number of features depending 

on its depth) and the time-domain features of the mechanical sensors. Although the first 

technique outperforms the other, the authors stated that the latter may outperform the former 

when more walking tasks are considered. The derived features were reduced by PCA before 

being fed into a phase dependent LDA classifier. Results show that the neuromuscular-

mechanical fusion technique has better classification accuracy (99.73% during steady-state) 

than the other classification techniques that only rely on mechanical or neuromuscular 

feedback.  (F. Zhang, Dou, et al., 2011) expanded their study to include two additional tasks 
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for the intent recognizer to identify (i.e., standing and sitting). They reduced the number of 

EMG channels to 10 and increased the window increment length to 50 ms. They also replaced 

the LDA classifier with a support vector machine (SVM), a non-linear kernel classification 

algorithm, but used the same features set. They tested their recognition system on a 

transfemoral amputee and reported an average steady state classification accuracy of 98.36% 

for all tasks. The intent recognizer also detected all transitions between the tasks before the 

critical timing for switching the control of prosthesis.  

 (Huang et al., 2011) trained and tested their recognition system on five transfemoral 

amputees across six locomotion modes (i.e., ground-level walking, ascending/descending 

stairs, ascending/descending slopes, and stepping over an obstacle). They used the same 

phase-dependent SVM classifiers and classification features sets in their previous studies. 

However, they increased the number of EMG channels to 16 and reduced the window 

increment length to 12 ms. The steady-state classification accuracies in the stance and swing 

phases exceeded 99% and 95%, respectively. All types of transitions were accurately 

identified within the defined prediction time of stable mode transitions. 

  (A. Young et al., 2014) used the dynamic Bayesian network DBN strategy for intent 

recognition for five locomotion modes (i.e., level-ground walking, ascending/descending 

stairs, and ascending/descending slopes). They collected their training and testing data from 

six subjects with unilateral transfemoral amputations and two subjects with knee 

disarticulation amputations. Data from 13 mechanical sensors (with the IMU, load cells, and 

kinematic sensors determining the positions and velocities of the knee and ankle) and 9 

surface EMG electrodes were segmented by analysis windows with 300 ms length prior to 8 

walking events along the walking gait. They also derived the same time-domain classification 

feature sets from each analysis window as in previous studies. The results obtained by this 
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classification technique outperformed those obtained by other techniques. The authors also 

statistically demonstrated how the data derived from mechanical and neuromuscular sensory 

feedback can lead to a more accurate mode classification. The average classification 

accuracies of the developed intent recognizer were 99% and 87.7% during steady state and 

transitions, respectively.   

 (Liu et al., 2015) developed and tested an environment-aware locomotion mode 

recognizer. They used IMU data and laser distance meter sensors mounted on the waist of 

the subject to recognize the upcoming terrain. Such information was employed in the 

neuromuscular-mechanical fusion recognition system presented in (Huang et al., 2011; F. 

Zhang, Dou, et al., 2011) to accurately identify the walking mode. The authors also used a 

decision tree algorithm to detect the terrain change in front of the wearer. This strategy 

determines the terrain change before the execution of locomotion mode transitions with more 

than half second. The environmental information was modeled as a supplementary source for 

the locomotion mode recognizer in order not to dominate the decision making in locomotion 

mode classifiers. In this way, no classification errors will be observed when the terrain 

recognizer misidentifies the next walking mode unless both the locomotion mode and terrain 

recognizers encounter the same error. Results of this strategy highlighted significant 

improvements in classification accuracy for both coarse (3.4% to 6.2%) and refined (4.8% to 

8.0%) terrain recognition. The authors did not report any missed transition when using the 

locomotion mode recognition system integrated with the coarse or refined output of the 

terrain recognition module throughout the 196 transitions during their experiment. This intent 

recognition strategy outperformed all former neuromuscular-mechanical fusion strategies 

with a negligible increase in computation burden. 
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Similar to (A. Young et al., 2014), (Spanias et al., 2018) used the DBN technique for 

intent recognition and developed an adaptive forward prediction algorithm to overcome the 

problem where EMG signals change during daily prosthesis use. Eight unilateral 

transfemoral amputees were asked to perform six locomotion modes (i.e., standing, level-

ground walking, ascending/descending stairs, and ascending/descending slopes), and their 

collected data were used for training and testing the developed intent recognition system. 

Eight EMG electrodes were used to collect the reaction of residual limb muscles during 

ambulation for each subject, and 22 mechanical sensors were embedded to measure the 

kinetic, kinematic, and inertial signals. The same time-domain feature sets were derived from 

the measured data as in the previously mentioned studies. However, the authors used the 

uncorrelated linear discriminant analysis (ULDA) technique to reduce the dimension of the 

feature set from 132 to 13. The mechanical and EMG feature sets were treated independently 

to identify the adaptation procedure for the EMG data. Unlike in previous studies, the intent 

recognizer was tested over multiple days to determine whether the adaptive algorithm can 

identify when EMG should be incorporated into its forward predictions. Results showed that 

the adaptive algorithm can learn how to reincorporate EMG signals into the intent predictions 

of the recognizer, but interestingly, the benefits of including EMG were negligible given the 

improvements already made to the control system (a 0.01% increase for steady state error, 

and a 0.10% increase for transitional error). Accordingly, the authors suggested that EMG 

signals may not be necessary for intent recognition in powered lower limb prostheses, and 

other approaches, such as improving the classifier architecture, the selection of mechanical 

sensors, or the timing of mode transitions, can provide similar benefits to EMG signals. 

In sum, although neuromuscular-mechanical fusion intent recognizers may improve 

classification performance, they require the installation of many electrodes on the residual 
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limb and some mechanical sensors, such as load cells, IMU, or laser distance meters, which 

may affect their acceptance by users and increase computational load. Moreover, similar to 

other intermittent control systems, amputees are placed at risk of falling when the upcoming 

terrain is not accurately predicted. 

2.3 Inverse dynamic control strategies   

The aforementioned control systems share the same problem of intermittent, non-dynamic 

switching rules between tasks and phases, which place the amputees at risk of falling in case 

of any wrong recognition arises due to perturbation Moreover, tuning the parameters of these 

control systems spends many hours providing the controllers with the appropriate parameters 

for each individual (Simon et al., 2014). Many studies have attempted to develop alternative 

control systems to overcome these drawbacks, one of which is the hybrid zero dynamics 

(HZD) controller (Gregg et al., 2014; A. E. Martin et al., 2017; Quintero et al., 2017) , which 

is commonly used in bipedal and humanoid robots and has been demonstrated to generate 

stable walking patterns (Chevallereau et al., 2010; Chevallereau et al., 2005; A. E. Martin et 

al., 2014; Ramezani et al., 2014; Tlalolini et al., 2010; Westervelt et al., 2018). However, 

HZD-based controllers with the formulation presented in bipedal robots are not applicable to 

prosthetic systems where the sensors embedded to the prosthetic device only provide 

information about the state of the device. In addition, the two dynamic systems (the bipedal, 

and human-prosthesis systems) are incompatible ,where the human-prosthesis system is a 

coupled non-linear dynamic system, whereas bipedal robots, unlike prosthetic systems, 

accumulate feedback about the full bipedal state and follow a constant periodic trajectory in 

contrast to the normal human body gait. To implement HZD in powered prostheses, an input-

output linearizing controller must be developed for the coupled periodic mechanical (human-

prosthesis) system. Moreover, the control system must be robust to human-like kinematic 
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variations. This strategy relies on the inverse dynamics of the human-prosthesis system, and 

the interaction force between the human body and the prosthesis, which represents the effects 

of one subsystem on another, can be used in the prosthesis controller to account for human 

dynamics. (Gregg et al., 2014; A. E. Martin et al., 2015, 2017; Quintero et al., 2017) 

developed a mathematical dynamic model of above-knee amputees including their prosthetic 

device, which is represented by seven leg segments and a point mass at the hip. They derived 

the interaction force between subsystems from the dynamic model for the simulation. 

Nonetheless, the interaction force can be measured directly from the socket during the 

practical implementation of the controller. An algebraic mapping was used to model the two 

impact periods during the transition of the contralateral or prosthetic leg to the stance phase. 

To apply the input-output linearizing controller, the output functions should characterize the 

desired kinematics of the actuated joints. To this end, four output functions were used to 

represent each leg for different stance periods. For each function, the authors supplemented 

a phase variable to represent the progression through the step and captured the motion of the 

unactuated DoF. They used Bézier polynomials in their first studies to parametrize the output 

functions (i.e., the virtual constrict or desired trajectory), whereas in their latest study 

(Quintero et al., 2017), they converted these polynomials by the 10th-order unified discrete 

Fourier transform (DFT), thereby eliminating the four output functions and the algebraic 

mapping during the impact. The periodic DFT generates the knee and ankle trajectory in a 

continuous form along the gait cycle unlike the Bézier polynomials, which immediately 

diverge to unbounded values and require an accurate phase detection. Moreover, the unified 

DFT controller had more rustiness than the piecewise HZD controller to speed perturbations. 

Despite providing a dynamic and continuous control of the prothesis and taking the human 

gait variability within one walking mode into account, this approach ignored the variations 

in the inertia of the human limbs and the difference between the dynamics of walking tasks 
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(e.g., running involves a flying phase in contrast to other tasks (Chevallereau et al., 2005). 

Therefore, further developing this controller in the future may pose a huge burden when such 

device is supposed to work for different walking tasks and individuals.    

2.4  Biological-signals-inspired controllers  

Biological-signals-inspired controllers emulate non-linear central biological signals. Similar 

to inverse-dynamic-based controllers, these controllers aim to overcome the problems 

associated with the prevalent hierarchical controllers. For above-knee prostheses, (Nandi et 

al., 2008) implemented an artificial recurrent neural network called central pattern generator 

(CPG), which has been widely used in bipedal robots (Di Canio et al., 2016; Inada et al., 

2003; Morantes et al., 2016; Taga et al., 1991; Yakovenko et al., 2018). However, a suitable 

CPG neural network needs to be designed based on the height, weight, and age of each 

amputee. CPG also has a sophisticated parameter calibration process, which poses additional 

challenges given that the human gait is not completely periodic, has a highly coupled 

dynamic and chaotic nature, and has no fixed patterns. The human gait also varies between 

walking tasks, thereby requiring the development of a specific CPG neural network for each 

task or training this network to be adaptive to different candace and walking patterns. 

Therefore, a more complex and sophisticated learning algorithm is required. 

 (Rai & Rombokas, 2019; Rai, Sharma, et al., 2019) designed a recurrent long 

short-term memory neural network (LSTM RNN) to estimate the ankle angle of the 

amputated leg based on the kinematics of the intact and residual limbs. However, in this 

strategy, the number of sensors (6 to 17 sensors attached to the body of the subject in addition 

to the sensors embedded in the prosthesis) and neurons (244) in the RNN increases the cost 

of the device, leads to greater time and power consumption, and reduces the comfort of 

subjects. 
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CHAPTER 3 METHODOLOGY 

The control system (pattern generator) can be divided into experimental settings, data 

analysis, and artificial neural network (ANN) design. Meanwhile, the ANN development 

involves topology selection, training, and performance assessment. Figure 3.1 is the 

flowchart of the method in this study.  

 

Figure 3.1: flowchart depicts the flow of the artificial neural network development in this study. 

Start

Data collection of 7 
subjects

Alignment with gravity 
and normalizing the data

NO

Yes

Test the ANN performance 
for all subjects

Data analysis & 
ANN design

Training the ANN using two 
different training algorithms

Training error < 1 e-3

Random selection of 5 s window (650 
samples) of one subject s data for training

Statistical test for the ANN output for all 
subjects at different walking speeds

stop

ANN has good 
generalization 

Yes
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3.1  Experiment design and conduct 

Seven healthy subjects participated in the experiment, one female (the sixth subject) and six 

males. Four OPAL wearable devices were attached to the lower limbs of each subject. OPAL 

is a miniature wearable and wireless IMU that can log and stream kinematic data in real time. 

The sensors were placed on the tibia and cuneiform bones in both right and left legs as shown 

in Figure 3.2. Each subject was instructed to walk on a treadmill for 12 min (To acquire huge 

data sets to test the efficiency of the neural network) at their own pace. Each subject walked 

the same trail again at two different speeds (±2% of the self-selected speed). The weight, 

height, self-selected speed, and experiment sequences are listed in Table 3.1. This study was 

approved by the Medical Research and Ethics Committee [reference number: 

KKM/NIHSEC/P19-2206(11)]. The sensor sample rate was 130 Hz. The data were 

transmitted in real time to a host computer where the raw data collected by the sensors were 

saved. Each subject performed three trials in one day. These trials were separated by an 

alignment procedure and recovery period as depicted in the pseudo code. Only the raw data 

of the three-axis accelerometer and the three-axis gyroscope of each OPAL sensor were used 

in this study. 
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Figure 3.2: A picture of the second subject shows the OPALs sensors placed on the tibia and cuneiform 

bones in both right and left legs. 

 
Table 3.1: Information about the subjects and experiment sequences. 

subjects Weight 
(kg) 

Height 
(cm) 

Self-
selected 
speed 

(normal) 
km/h 

Sequence 

S1 67 177 4.0 Day1 
(Morning) 

S2 80 167 4.0 Day1 
(Afternoon) 

S3 65 165 2.0 Day1 
(Afternoon) 

S4 84 180 2.0 Day2 
(Morning) 

S5 51 175 2.6 Day2 
(Afternoon) 

S6 48 166 3.5 Day2 
(Afternoon) 

S7 74 174 4.0 Day3 
(Afternoon) 

Average 67 172   
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Pseudo code for normalization and alignment with gravity 

#BEGIN 

Load  Accelerometer Calibration Data   // subjects were asked to stand still for ten 

second for alignments  

/* calculate the mean values of accelerometer data for three axes */ 

Mx = Mean (accelerometer data of the X axis)  

My = Mean (accelerometer data of the Y axis)  

Mz = Mean (accelerometer data of the Z axis)  

/* data normalization */ 

M= [Mx   My  Mz] 

Data = Data / norm (M) 

/* calculate the rotation matrix*/  

a= arctan (My / Mz) 

b= arctan (-Mx / √My2 + Mz2) 

c = arctan (√Mx2 + My2/ Mz) 

Rotation Matrix = 

[

cos(b ) ∗ cos (c ) −cos(b ) ∗ sin (c ) sin (𝑏)
𝑠𝑖𝑛(𝑎) ∗ 𝑠𝑖𝑛(𝑏) ∗ 𝑐𝑜𝑠(𝑐) + 𝑐𝑜𝑠(𝑎) ∗ 𝑠𝑖𝑛(𝑐) −𝑠𝑖𝑛(𝑎) ∗ 𝑠𝑖𝑛(𝑏) ∗ 𝑠𝑖𝑛(𝑐) + 𝑐𝑜𝑠(𝑎) ∗ 𝑐𝑜𝑠(𝑐) −𝑠𝑖𝑛(𝑎) ∗ 𝑐𝑜𝑠(𝑏)

−𝑐𝑜𝑠(𝑎) ∗ 𝑠𝑖𝑛(𝑏) ∗ 𝑐𝑜𝑠(𝑐) + 𝑠𝑖𝑛(𝑎) ∗ 𝑠𝑖𝑛(𝑐) 𝑐𝑜𝑠(𝑎) ∗ 𝑠𝑖𝑛(𝑏) ∗ 𝑠𝑖𝑛(𝑐) + 𝑠𝑖𝑛(𝑎) ∗ 𝑐𝑜𝑠(𝑐) 𝑐𝑜𝑠(𝑎) ∗ 𝑐𝑜𝑠(𝑏)
] 

/* calculate the aligned data*/  

Aligned Gyroscope Data = Rotation MatrixT  * Gyroscope Data 

Aligned Accelerometer Data = Rotation MatrixT  * Accelerometer Data  

#STOP 
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3.2  Data analysis & ANN design 

Increasing evidence highlights a relationship between tibia kinematics and foot orientation 

during ambulation (Holgate et al., 2008; Holgate et al., 2009). Therefore, an ANN was 

developed based on this relationship to achieve the desired orientation of the prosthetic foot 

during ambulation with varying walking speeds. Embedding a 3-DOF gyroscope (or a 6-

DOF IMU) to any robotic prosthesis is an easy task that does not affect the size or weight of 

the system (Li et al., 2013). Therefore, an IMU sensor can be mounted on a prosthetic leg to 

provide the angular velocity of the tibia as input to NARX RNN to generate a nonlinear foot 

pattern. 

3.2.1 ANN input, output and structure 

Human ambulation is complex and has highly coupled dynamics whose chaotic nature has 

been discussed in detail in many studies (Miller et al., 2006; Scafetta et al., 2009; West et al., 

2003). (A. E. Martin et al., 2016)  argued that the ankle joint has the largest variability 

oscillation among all joints in both swing and stance phases. Figure 3.3 (a) shows the 

quasiperiodic behavior between foot orientation and shank angular speed, whereas Figure 3.3 

(b) illustrates the projection on the limit torus as defined by walking range of motion. An 

augmented Dickey–Fuller (ADF) t-statistic test was performed on the angular velocity of the 

tibia (used as input in the neural network), and results showed that such data are non-

stationary time series with a unit root and a large p-value. Table 3.2 shows the p-values of 

the input signal of all subjects at different walking speeds. Furthermore, given that ankle 

control has a significant feedback loop (A. E. Martin et al., 2016), RNNs have a highly 

convenient structure for estimating foot orientation because of their superior non-stationary 

inputs (Galushkin, 2007). 
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The NARX neural network is among the most robust and commonly used techniques 

in predicting complex non-linear time series (Diaconescu, 2008; Menezes Jr et al., 2008).  

 

(a) 

 

(b) 

Figure 3.3: (a) The relation between shank angular speed and foot angular position in three different 
walking speeds. (b) The projection of angular speed and position on the limit torus. Where 
low, self-selected, and high speed are shown in blue, green, and red, respectively.   
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 (Menezes Jr et al., 2008) found that NARX outperforms the topologies of other neural 

networks in estimating chaotic time series. NARX RNN is also suitable for generating non-

linear oscillations associated with locomotion and  is more convenient with long-term 

dependencies than conventional RNNs, where the embedded memory of the neural network 

helps accelerate the propagation of gradient information, thereby reducing the effect of 

vanishing gradient  (Lin et al., 1996). NARX RNN also reduces the correlation among the 

input variables, which may degrade forecasting accuracy by interacting with one another and 

with other elements and producing a biased effect (Diaconescu, 2008; G. P. Zhang, 2004). 

Table 3.2: The p-values resulted from Augmented Dickey–Fuller (ADF) t-statistic test of the tibia’s 
angular velocity at different walking speeds (neural network input). 

subjects Walking speeds p-values of the tibia’s angular velocity 

1 
slow 0.3199 

normal 0.2860 
high 0.2657 

2 
slow 0.2665 

normal 0.2542 
high 0.1998 

3 
slow 0.5475 

normal 0.6443 
high 0.4215 

4 
slow 0.6135 

normal 0.7770 
high 0.4818 

5 
slow 0.3515 

normal 0.3029 
high 0.4113 

6 
slow 0.3281 

normal 0.3209 
high 0.4230 

7 
slow 0.1418 

normal 0.4799 
high 0.2124 

 

One task of NARX is to filter the gyroscope low-frequency noise and integrate the 

input signal, which can be represented in the discrete time domain as shown in equation (1). 
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Following equation (1), the number of delays for the input and recurrent signal was set to 1 

and 2, respectively. 

𝑦[𝑘] =
(2 + 𝜔𝑛 ⋅ 𝑇𝑠) ⋅ 𝑦[𝑘 − 1]

1 + 𝜔𝑛 ⋅ 𝑇𝑠
−

𝑦[𝑘 − 2]

1 + 𝜔𝑛 ⋅ 𝑇𝑠
+

𝑇𝑠 ⋅ (𝑢[𝑘] − 𝑢[𝑘 − 1])

1 + 𝜔𝑛 ⋅ 𝑇𝑠
 (1)  

 

where y[k] is the normalized output of the neural network, u[k] is the angular speed of the 

tibia, and ωn and Ts are the cut-off frequency and sample time of the filter, respectively. 

The input signal (angular velocity of the shank) comprised five harmonics in the 

frequency domain as depicted in the single-sided amplitude spectrum of the fifth subject in 

Figure 3.4. The single-sided amplitude spectrum of the data for all participants are illustrated 

in Appendix A. Accordingly, the input feature space should be divided by five hypersurfaces 

(Galushkin, 2007). Five neurons in the first layer of the NARX RNN were initially chosen. 

After training the network, reducing the neurons in the first layer into four neurons had no 

effects on the training error. Meanwhile, in (Chinimilli, 2018) , only three harmonics were 

considered in the extraction of novel features for terrain and speed identification. However, 

further investigation is needed for slower speeds, where the fourth and fifth harmonics are 

more dominant. 

The second layer task was to select the correct combination of regions. The maximum 

number of regions can be calculated using equation (2) (van den Berg, 2016), where r(n,k), 

k, and n denote the maximum number of regions, number of inputs, and number of neurons 

of the first layer, respectively. The maximum number of regions for the initial design was 16 

(∑ (5
𝑖
)2

𝑖=0 ), which was reduced to 11 (∑ (4
𝑖
)2

𝑖=0 ) after decreasing the number of neurons of the 

first layer. 
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𝑟(𝑛, 𝑘) = ∑ (
𝑛

𝑖
)

𝑘

𝑖=0

 (2)  

 

 
Figure 3.4: Single-sided amplitude spectrum of tibia angular speeds of the fifth subject. 

The foot orientation as a function of tibia orientation (using a Fourier series) is given in 

equation (3). A total of 15 components are required from the series given in equation (3) to 

estimate foot orientation accurately. In equation (3), θfoot, θtibia, a0, an, and bn represent the 

foot and shank orientations and the constant coefficients of the functions, respectively. 

Therefore, 15 neurons were selected for the second layer. Figure 3.5 shows the measured foot 

orientation and the foot orientation as a function of tibia orientation. The coefficients were 

calculated by fitting the non-linear least-squares curve.  

𝜃𝑓𝑜𝑜𝑡 = 𝑓(𝜃𝑡𝑖𝑏𝑖𝑎) ≅
𝑎0

2
+ ∑𝑎𝑛 ⋅ cos(𝑛 ⋅ 𝜃𝑡𝑖𝑏𝑖𝑎) + ∑𝑏𝑛 ⋅ sin(𝑛 ⋅ 𝜃𝑡𝑖𝑏𝑖𝑎) (3)  
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Figure 3.5: Foot orientation as a function of tibia orientation. Function and measured values are 

illustrated in solid red and black, respectively. 

The proposed NARX network is shown in Figure 3.6, and the number of delays was chosen 

as previously discussed. After establishing the structure, the NARX RNN was ready for 

training. 

 

Figure 3.6: Block diagram of the proposed structure of the NARX network. The input data were filtered 
by low-pass filter, normalized, and aligned with gravity and local coordinate axis. The NARX 
RNN consist of two hidden layers. The first layer composed of four neurons and the second 
layer composed of fifteen neurons, each neuron has a hyperbolic tangent activation function. 
The activation function of the output layer is a pure line. 

3.2.2  NARX training  

The data of the third subject were randomly selected for the training procedure. A random 

selection was performed in line with the hypothesis of this work, that is, to design a user-

independent pattern generator by having the NARX network learn the underlying 

relationship between the shank and foot. Moreover, as shown in section A of the 

Supplementary Material, all input data had a similar frequency spectrum. Therefore, a 
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combined training batch was not necessary. The output of the complementary filter (foot 

orientation in the sagittal plane) was selected as the target data, whereas the angular velocity 

of the shank was treated as the input data (Figure 3.7 shows the structure of the 

complementary filter). Only a 5 s window (650 samples) was selected for the training to 

avoid poor generalization, prevent degradation in accuracy, and achieve a faster empirical 

convergence (Kandel et al., 2020; Shallue et al., 2018; Yao et al., 2018). The training process 

was divided into two stages, namely, an open loop training where the target was fed instead 

of the recurrent signal and a close loop training where the recurrent signal was restored. Two 

training algorithms, namely, the Levenberg–Marquardt (LM) and Bayesian regularization 

(BR) backpropagations, were selected to train the NARX network. The LM algorithm is the 

fastest approach for training a mid-size feedforward ANN(Arora et al., 2016), whereas the 

BR method is highly robust against overfitting (Foresee et al., 1997). 

 

Figure 3.7: Block diagram of the used complementary 

In line with (Foresee et al., 1997; Kayri, 2016), BR backpropagation outperformed 

LM with a training error of 1.1 e-08. After the training, NARX was assessed by using the 

data of all subjects at different walking speeds. The NARX RNN hyperparameters for the 

training algorithms are shown in Table 3.3.    

 

 

0.02

0.98

+

GYROy

ACCz

ACCy

Univ
ers

iti 
Mala

ya



40 
 

Table 3.3: Training hyperparameters for LM and BR algorithms  
Parameters Value 

LM algorithm 
Maximum number of 
epochs to train 75000 

Performance goal 0 
Marquardt adjustment 
parameter 0.005 

Decrease factor for mu 0.1 
Increase factor for mu 10 
Maximum value for mu 1e10 
Maximum validation 
failures 6 

Minimum performance 
gradient 1e-18 

BR algorithm 
Maximum number of 
epochs to train 75000 

Performance goal 0 
Marquardt adjustment 
parameter 0.005 

Decrease factor for mu 0.4 
Increase factor for mu 10 
Maximum value for mu 1e10 
Maximum validation 
failures inf 

Minimum performance 
gradient 1e-18 

 

3.2.3  NARX testing 

Several statistical tests were performed to evaluate estimation performance, and the estimated 

foot orientation was compared with the measured orientation. By using OPAL raw data, the 

orientation can be calculated based on a widely established method (complementary filter)  

(Oliveira et al., 1998; Tian et al., 2012). Precision and accuracy were evaluated using RMSE 

and mean absolute error (MAE), respectively. To check the ability of NARX to cancel the 

drift in gyroscope signals, the error signal (measured - estimation) was investigated by 

performing Student’s t-test with a 5% significance level. If NARX can cancel the gyroscope 

drift, then the null hypothesis is supported (h=0). Furthermore, the cross-correlation was used 
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to illustrate the similarity between the estimations and measurements. The probabilistic 

consistency of the model and the histogram distribution of the measured and estimated 

signals were analyzed based on the extreme value distribution.  
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CHAPTER 4 RESULTS 

The NARX network was built in MATLAB/Simulink (Figure 3.5), and the simulation model 

was run using the Euler fixed-step solver with a sampling rate of 130 Hz (sensor sampling 

rate). The data of all subjects were processed, and the estimated foot orientation was 

compared with the measured value. The overall size of the data was 7 × 700 × 3 (denoting 

subjects, seconds, and speeds, respectively). All the data collected during the experiment 

were statistically analyzed.  

4.1 Static and dynamic performance of the neural network  
 

The mean values and standard deviations (SDs) of foot orientation (measured and estimated) 

in 100 consequent strides were compared for all subjects at different walking speeds (Figure 

4.1). A new stride was detected through high-frequency noise, which occurs during a heel 

strike event. An adaptive window was constructed between every two heel strikes to 

determine the gait cycle. This procedure was terminated after covering 100 strides. The foot 

orientation of the fifth subject was selected for illustration. The results of the other subjects 

are listed in Appendix B. 

Standard deviations show that the dynamic performance of NARX was comparable 

to that of the measured foot performance [Figures 4.1 (a), (b), and (c)]. The network 

encountered a problem with low-frequency changes, which appeared as static errors during 

the stance phase. The average RMSE for all subjects with different walking speeds was 

2.1±1.7°. No explicit evidence indicates whether this range of error was within an acceptable 

threshold for practical implementation (Rai, Sharma, et al., 2019). Nonetheless, a low-level 

controller could be tuned to tolerate such static error.  
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(a)  

 
(b)  
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(c)  

Figure 4.1:  Foot orientations at three different speeds of the fifth subject. The mean value of the 
estimated and measured orientation for 100 strides are presented in solid red and black, 
respectively. The standard deviations of the signals are illustrated in pink (estimated) and 
grey (measured). 

 

4.2 Probabilistic consistency of the model 
 

The self-selected walking speed histogram and extreme value distribution (EVD) are 

illustrated in Figure 4.2. The EVDs of the measured and estimated signals were almost 

identical with a slight shift to the right (higher amplitude) for the distribution of the estimated 

value. This shift could be attributed to the static error in Figure 4 (a). The histograms and 

EVDs of all participants are shown in Appendix C. 
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Figure 4.2: Foot orientation histogram and extreme value distribution. The distribution of estimated 

and measured values is shown in solid red and black, respectively. The histogram of the 
signals is shown in pink (estimated) and grey (measured).  

  

4.3  Error range and distribution and the correlation between measured and 
estimated data 

 

A statistical analysis of the network performance of all subjects in three different ambulation 

speeds was performed, and results are summarized in Table 4.1. The cross-correlation (r) 

value, RMSE, MAE, and t-test results for the error signals with all the critical values are 

shown in red.  

The r values indicated similarities between the estimated and measured values. The 

minimum correlation was 86%, which was obtained at low-speed ambulation by the fourth 

subject. By contrast, all other r values exceeded 92%. t-test results showed that the error 

signals were normally distributed (central limit theorem) with a high certainty level (0.88 

minimum p-value). The maximum RMSE and MAE in all trials were approximately 5° and 

6°, respectively. 
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Table 4.1: Results of statistical analysis. 

 Low speed Normal speed High speed 

S1 

r 0.96509 0.95098 0.96521 
RMSE 0.00905 0.00551 0.02182 
MAE 0.06350 0.09404 0.07685 
t-test1 me =-0.0091 

p=1, h=0 
me =-0.00551 
p=0.9715, h=0 

me =-0.0218 
p=0.9310, h=0 

S2 

r 0.92214 0.94461 0.94661 
RMSE 0.01177 0.01370 0.00156 
MAE 0.10211 0.11533 0.10974 
t-test me =0.0118 

p=1, h=0 
me =-0.0137 

p=0.9987, h=0 
me =0.0016 

p=0.9425, h=0 

S3 

r 0.97997 0.98828 0.97734 
RMSE 0.02439 7.026e-04 0.00542 
MAE 0.06558 0.05251 0.05223 
t-test me =-0.0244 

p=1, h=0 
me =-7.026e-04 

p=1, h=0 
me =-0.00542 

p=1, h=0 

S4 

r 0.86499 0.92352 0.95316 
RMSE 0.09439 0.05965 0.03222 
MAE 0.10851 0.10339 0.09395 
t-test me =-0.0944 

p=0.9804, h=0 
me =-0.0535 

p=0.8964, h=0 
me =-0.0322 

p=0.9551, h=0 

S5 

r 0.96540 0.98037 0.97643 
RMSE 0.04733 0.02961 0.07488 
MAE 0.09294 0.08468 0.11540 
t-test me =-0.0473 

p=0.9243, h=0 
me =-0.0296 

p=0.9763, h=0 
me =-0.0749 

p=0.9731, h=0 

S6 

r 0.94919 0.94226 0.95069 
RMSE 0.07263 0.07263 0.07445 
MAE 0.07042 0.08619 0.08941 
t-test me =-0.0582 

p=0.9354, h=0 
me =-0.0726 
p=0.8807, h=0 

me =-0.0745 
p=0.9988, h=0 

S7 

r 0.96242 0.96482 0.95096 
RMSE 0.04775 0.00978 0.07416 
MAE 0.08149 0.06528 0.09612 

t-test me =-0.0478 
p=0.8777, h=0 

me =0.0098 
p=0.9515, h=0 

me =-0.0742 
p=0.8883, h=0 

 

 
1 T-test for the error vector (91001 samples) 
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CHAPTER 5 DISCUSSION 

5.1 General discussion and research outline 
 

This study aims to develop an adaptive and user-independent pattern generator toward 

constructing a unified controller for powered ankle prostheses. The proposed technique is 

inspired by the biological rhythmic signals generated by neural circuits distributed 

throughout the lower thoracic and lumbar regions of the spinal cord (Kiehn et al., 2003). To 

design and develop the neural network to achieve the required output signals and replace 

missing biological signals, three obligatory rules must be fulfilled to ensure the efficiency of 

a neural network and to estimate the desired output. These rules can also help overcome some 

problems associated with the training of neural networks, such as overfitting, poor 

generalization, and slow convergence (Wilamowski, 2009). These rules can be outlined as 

follows: 1) Choose a proper ANN architecture that fits the application. 2) Set the ANN size 

(number of layers and neurons at each layer). 3) Select the training algorithm that suits the 

neural network architecture and the data size and type. 

First, for neural network selection, NARX RNN was used to generate the walking 

patterns. As described in Chapter 3, NARX was selected given its superior ability in 

predicting complex non-linear time series, its simple structure, and easy tuning. Moreover, 

given that the input data are non-stationary, an RNN structure is required considering its 

superiority over feedforward neural networks for a non-stationary input. NARX is also 

suitable for generating non-linear oscillations associated with locomotion and is more 

convenient for long-term dependencies than conventional RNNs.  

Second, the NARX tasks were analyzed to set the NARX size, input, and delays of 

feedback signals. Following equation (1), the number of delays for the input and recurrent 
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signals was set to 1 and 2, respectively. The first layer comprised five neurons as defined by 

the results of a Fourier analysis of input signals comprising five harmonics. Reducing the 

number of neurons to four did not affect the training error. Using equation (3), the number 

of neurons for the second layer was set to 15. Selecting a proper size of the neural network 

(as minimal as possible) will facilitate the training procedure, reduce the overfitting 

possibilities, and improve generalization ability (Hunter et al., 2012). 

Third, choosing the optimum training algorithm is more challenging and 

sophisticated than choosing the neural network architecture and its size. Given the countless 

training algorithms available in the literature and the lack of an optimum training method that 

suits all neural networks, the best training algorithm is subjective to the topology and size of 

the neural network and to the type and size of the training data (training samples). Tables 5.1 

and 5.2 show the most commonly used first- and second-order training algorithms, 

respectively. Further details on these training algorithms can be found in (Ruder, 2016; Tan 

et al., 2019). Given the simple architecture of NARX RNN (which is neither a bridged 

multilayer perceptron BMLP nor a fully connected cascade FCC), the medium size of the 

designed neural network (i.e., 20 neurons), the small training data set, and the lack of any 

spare data, the LM and BR algorithms were chosen for training the neural networks. As 

depicted in Chapter 4, the BR algorithm outperformed LM with its lower training error and 

better generalization (check Table 3.3).  

The resulting control system can respond to any user in a variety of walking speeds. 

The average RMSE for all subjects at different walking speeds was 2.1±1.7°. No explicit 

evidence suggests whether this range of error is within an acceptable threshold for practical 

implementation (Rai, Sharma, et al., 2019). However, (Yuan et al., 2014) set the threshold of 

foot inclination angle at mid-stance for slopes detection to ±5°, whereas (Sup et al., 2010) set 
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their threshold to ±2.5°. Therefore, the range of error of the pattern generator may not be 

noticed by users during its implementation. Nonetheless, such static error can be reduced by 

tuning the low-level controller of the overall control system. The standard deviations of the 

measured and the estimated data shows the accurate dynamic performance of the neural 

network. Also, statistical tests and the extreme values distribution of the data prove that the 

neural network’s output has high similarity with the measured data and probabilistic 

consistency.  

5.2 Comparison with the three-level conventional controllers  
 

Similar to other methods inspired by neural circuits (Nandi et al., 2008; Rai & Rombokas, 

2019; Rai, Sharma, et al., 2019), the proposed method aims to overcome the disadvantages 

of conventional three-level controllers. While these controllers are known for their non-

dynamic switching rules, they are limited to few walking modes and cadences and cannot 

cover all types of slopes (i.e., different incline angles), stairs (i.e., variant heights and depths), 

and walking speeds.  

The proposed algorithm can reduce the high computational load required for accurate 

mode recognition and processing multiple feedback signals. NARX RNN was deployed on 

TI's TMS320F28377S microcontroller and ran for 97.3 μs, thereby suggesting that this 

technique is implementable in real time.  

Given that unilateral lower-limb amputees have average daily walking steps of 

3063±1893 (Stepien et al., 2007), even a proportionally low classification error ranging from 

1% to 2% can make the intermittent conventional controller misclassify 30 to 60 walking 

steps daily, hence exposing amputees to a high risk of falling. Moreover, although some 

errors may not directly expose amputees to falling risks, they can reduce their confidence in 
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using powered prosthetic devices (F. Zhang et al., 2012, 2014). Using the developed NARX 

dynamic pattern generator will eliminate the risks associated with classification errors. 

5.3 Comparison with biological-signals-inspired controllers 
 

The proposed method differs from other methods that are inspired by neuro-mechanical 

circuits. First, unlike the CPG-based method of (Nandi et al., 2008), the proposed method is 

user independent and does not require a specific design of the neural network for each user 

based on his/her height, weight, and age. This method can also be easily trained by a simple 

optimization algorithm. Second, in contrast to LSTM (Rai & Rombokas, 2019; Rai, Sharma, 

et al., 2019) the proposed method requires minimal sensory feedback, thereby increasing its 

acceptance among amputees, reducing the computational load, and minimizing the cost of 

prostheses. One 3-DOF gyroscope (or 6-DOF IMU) is enough to provide the neural network 

with the angular speed of the tibia to generate the missing foot trajectory throughout the 

ambulation. Moreover, the RMSE of the predicted ankle angle during ground-level walk was 

4.4° and 4.23° in (Rai & Rombokas, 2019; Rai, Sharma, et al., 2019), respectively. 

 

 

 

 

 

 

Univ
ers

iti 
Mala

ya



51 
 

 

Table 5.1: First-order training algorithms. 

Training 

algorithms 
Update rules Comments 

Batch 

Gradient 

Descent 

(Curry, 1944) 

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 +  𝜂
𝜕𝐶

𝜕𝑤
 

Where: 

W: weights vector or neural network 

parameters, some references use θ to refer to 

the network parameters. 

𝜂 : the learning rate, a constant value 0 ≤ 𝜂 ≤ 

1. 

C: the cost function or the loss function or 

objective function based on the reference. 

There are many types of cost functions, but 

the most common and efficient cost function 

is the quadratic cost function, 

𝐶 =
1

2
∑(𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2

𝑗

 

 

This method can be 

extremely slow, and it 

cannot update the system 

online. As the weights 

update happens only after 

a full epoch (training set), 

which causes this slow 

convergence. 

Stochastic 

Gradient 

Descent 

(SGD) 

𝑊𝑡+1 = 𝑊𝑡 +  𝜂
𝜕𝐶

𝜕𝑤
 

𝐶 =
1

2
(𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2 

In this method, the cost 

function is computed at 

each iteration (training 

sample) and the same for 

weights update. Unlike 
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(Kiefer et al., 

1952). 

Batch gradient Descent, 

where the cost function is 

based on the complete 

training set. This method 

is called stochastic, 

because the path towards 

the global cost minimum 

is not direct, but like 

zigzag if the cost surface 

is visualized in two-

dimension. There are 

many types and updates 

to the SGD algorithm, 

and they vary with 

shuffling the samples 

before the training 

procedure. 

Mini-Batch 

Gradient 

Descent 

(MB-GD) 

(Bottou et al., 

2018; 

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 +  𝜂
𝜕𝐶

𝜕𝑤
 

𝐶 =
1

2
∑(𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2

𝑘

 

MB-GD is a compromise 

method between Batch 

gradient descent and SGD 

methods. Where, the 

weights will be updated 

every small batch or 

window of samples, 
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Robbins et 

al., 1951) 

unlike SGD that updates 

the weights for every 

single sample or Batch 

gradient descent after full 

epoch. 

SGD with 

momentum  

(Qian, 1999) 

∆𝑤𝑡 = 𝛾∆𝑤𝑡−1 + 𝜂𝑡

𝜕𝐶

𝜕𝑤
 

𝑊𝑡+1 = 𝑊𝑡 − ∆𝑤𝑡 

Where:  

𝜂𝑡: an adaptive learning rate, also in this 

method a constant learning rate can be used.  

𝛾: momentum term, usually set to 0.9. 

∆𝑤𝑡: weights update vector. 

The momentum will help 

to accelerate SGD 

towards the global 

minimal (faster 

convergence) and 

dampens the oscillations 

by the added fraction of 

the past update vector ( 

𝛾∆𝑤𝑡). 

The adaptive learning rate 

varies between studies, 

where there are plenty of 

updating rules for the 

learning rate in the 

literature.   

Nesterov 

Accelerated 

Gradient 

(NAG) 

𝑊�̂� = 𝑊𝑡 − 𝛾∆𝑤𝑡−1  

∆𝑤𝑡 = 𝛾∆𝑤𝑡−1 + 𝜂𝑡

𝜕𝐶

𝜕𝑊�̂�

 

𝑊𝑡+1 = 𝑊𝑡 − ∆𝑤𝑡 

NAG method is an 

extension of momentum, 

instead of calculating the 

decaying moving average 
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(Nesterov, 

1983) 

 of the actual gradients 𝜕𝐶

𝜕𝑤
 

it will calculate the 

decaying moving average 

of the projected positions 

(an approximation of the 

next position) of network 

weights 𝑊�̂�. This 

technique can overcome 

some of the problems that 

could occur using SGD 

with momentum, such as 

missing or overshoot the 

minimal at the bottom of 

the basins. Also, it is 

faster.  

Adaptive 

Gradient 

Algorithm 

(Adagrad) 

(Duchi et al., 

2011) 

𝑔𝑡,𝑖 =
𝜕𝐶𝑡,𝑖

𝜕𝑤𝑡,𝑖
 

𝑊𝑡+1,𝑖 = 𝑊𝑡,𝑖 −
𝜂𝑡

√𝐺𝑡,𝑖𝑖 + 𝜖
. 𝑔𝑡,𝑖 

Where: 

𝑔𝑡,𝑖 : is the partial derivative of the cost 

function with respect to the weight 𝑤𝑡,𝑖, the 

gradient at time step t.  

In Adagrad the adaptive 

learning will update each 

weight independently, 

where the weights 

associated with frequent 

occurring features will 

have smaller updates. 

While for the weights 

associated with 
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𝐺𝑡,𝑖𝑖: is a diagonal matrix, where each 

diagonal element ii is the sum of the squared 

gradients. 

𝜖: is a smoothing term to avoid the division 

by zero, usually 𝜖 = 1𝑒−8.  

 

 

infrequent occurring 

features will larger 

updates. Adagrad has 

significantly improved 

the SGD performance and 

eliminates the need to 

tune the value of the 

learning rate manually (it 

set mostly while using 

Adagrad at 0.1). 

However, this method 

accumulates the squared 

gradients in the 

denominator. Which will 

keep growing during the 

training procedure, thus 

the update vector will 

keep shrinking until it 

becomes infinitesimal. 

Consequently, the 

algorithm will be no 

longer able to update the 

weights.  
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Adadelta 

(Zeiler, 2012) 

𝐸|𝑔𝑡
2|𝑡 = 𝜌𝐸|𝑔𝑡

2|𝑡−1 + (1 − 𝜌)𝑔𝑡
2 

𝑅𝑀𝑆[𝑔]𝑡 = √𝐸|𝑔𝑡
2|𝑡 + 𝜖 

∆𝑤𝑡 = −
𝜂

𝑅𝑀𝑆[𝑔]𝑡
𝑔𝑡 

𝑊𝑡+1 = 𝑊𝑡 + ∆𝑤𝑡 

Also, authors suggested a replacement of 

𝜂 with 𝑅𝑀𝑆[∆𝑤]𝑡−1. 

𝑅𝑀𝑆[∆𝑤]𝑡−1 = √𝐸|∆𝑤𝑡−1
2|

𝑡
+ 𝜖 

𝐸|∆𝑤𝑡−1
2|

𝑡
= 𝜌𝐸|∆𝑤𝑡−1

2|
𝑡−1

+ (1 − 𝜌)∆𝑤𝑡−1
2  

 

This method is an 

extension of the Adagrad 

method. In Adadelta the 

accumulation of the 

squared gradients is 

exponentially decaying 

average, which makes 

Adadelta overcomes the 

continuous decaying of 

the update vector 

associated with the 

Adagrad method.   

Adaptive 

Moment 

Estimation 

(Adam) 

(Kingma et 

al., 2014) 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

𝛽1, 𝛽2:  constants set close to 1. 

𝑚�̂� =
𝑚𝑡

(1 − 𝛽1
𝑡)

 

𝑣�̂� =
𝑣𝑡

(1 − 𝛽2
𝑡)

 

∆𝑤𝑡 = −
𝜂

√𝑣�̂� + 𝜖
𝑚�̂� 

𝑊𝑡+1 = 𝑊𝑡 + ∆𝑤𝑡 

Also, authors suggested an alternative to 𝜂 :  

𝛼𝑡 = 𝛼.
√1 − 𝛽2

𝑡

(1 − 𝛽1
𝑡)

 

This method was 

developed to combine the 

advantages of both 

Adagrad and RMSProp 

(can be seen as a special 

case of Adadelta). Adam 

works grate with spare 

gradients like Adagrad 

and works well online and 

with non-stationary data.  
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AdaMax 

(Kingma et 

al., 2014) 

 

𝑢𝑡 = max (𝛽2𝑢𝑡−1, |𝑔𝑡|) 

∆𝑤𝑡 = −
𝜂

𝑢𝑡
𝑚�̂� 

Or 

∆𝑤𝑡 = −
𝛼

1 − 𝛽1
𝑡 .

𝑚�̂�

𝑢𝑡
 

𝑊𝑡+1 = 𝑊𝑡 + ∆𝑤𝑡 

 

This method is developed 

at the same paper with 

Adam. Instead of scaling 

the gradients by the 

squared norm L2 during 

the current and past 

training step, authors used 

the infinite norm L∞. 

Using the infinite norm, 

𝑣𝑡 converges to the more 

stable value.  

Nesterov 

Accelerated 

Adaptive 

Moment 

Estimation 

(Nadam) 

(Dozat, 2016) 

 

∆𝑤𝑡 = −
𝜂

√𝑣�̂� + 𝜖
(𝛽1𝑚�̂� +

(1 − 𝛽1)𝑔𝑡

1 − 𝛽1
𝑡  

𝑊𝑡+1 = 𝑊𝑡 + ∆𝑤𝑡 

 

 

 

 

Authors stated that the 

suggested method 

improves the speed of 

convergence and the 

quality of the learned 

models. 

AdamW 

(Loshchilov 

et al., 2017) 

∆𝑤𝑡 = −𝜂(
𝑚�̂�

√𝑣�̂� + 𝜖
+ 𝛾𝑤𝑡) 

𝑊𝑡+1 = 𝑊𝑡 + ∆𝑤𝑡 

In this method, the weight 

decay technique is 

implemented. But the 
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 implementation was on 

the update vector rather 

than weights gradients.  

This method shows better 

generalization in practice. 

AMSGRAD 

(Reddi et al., 

2019) 

𝑣�̂� = max (𝑣𝑡−1̂, 𝑣𝑡) 

∆𝑤𝑡 =  −
𝜂

√𝑣�̂� + 𝜖
𝑚𝑡 

𝑊𝑡+1 = 𝑊𝑡 + ∆𝑤𝑡 

 

In some cases, the 

adaptive learning 

algorithms (Adadelta, 

Adam, Adamax, Nadam) 

are outperformed by 

SGD. Authors stated that 

the problem of the poor 

generalization is due to 

the exponential moving 

average of past squared 

gradients. Therefore, they 

proposed their method to 

overcome this problem. 

authors observed improve 

performance with small 

datasets. However, the 

method showed similar or 

worse performance in 

other experiments.  
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Quasi-

Hyperbolic 

Adam 

(QHAdam) 

(Ma et al., 

2018) 

 

∆𝑤𝑡 = −𝜂 [
(1 − 𝑣1)𝑔𝑡 + 𝑣1𝑚�̂�

√(1 − 𝑣2)𝑔𝑡
2 + 𝑣2𝑣�̂� + 𝜖

] 

𝑣1, 𝑣2: are immediate discount factors. 

𝑊𝑡+1 = 𝑊𝑡 + ∆𝑤𝑡 

 

 

This algorithm leads to 

significantly improved 

training in a variety of 

settings. Also, it can be 

seen as a general formula 

of Adam and Nadam 

algorithms, where the 

quasi-hyperbolic 

formulation is capable of 

recovering Adam and 

NAdam. 

Aggregated 

Momentum 

(AggMo) 

(Lucas et al., 

2018)  

𝑉𝑡
(𝑖)

= 𝛽(𝑖). 𝑉𝑡−1
(𝑖)

+ 𝑔𝑡 

𝑊𝑡 = 𝑊𝑡−1 − 𝜂𝑡 [
1

𝑘
∑ 𝑉𝑡

(𝑖)

𝑘

𝑖=1

] 

𝛽 = 1 − 𝛼𝑖−1 

Authors suggested k=3, and α= 0.1 as good 

default choice. 

This method is one of 

gradient momentum 

methods, which combines 

multiple velocity vectors 

with different scaling 

parameters. AggMo is 

easy to implement, and it 

significantly dampens 

oscillations, which makes 

it stable even with a high 

𝛽 value. This method can 
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be seen as a general 

formula of Nesterov.  

 

 

Table 5.2: Second-order training algorithms. 

Training algorithms Update rules Comments 

Newton’s method 

(Nocedal et al., 2006) 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂(𝐻𝑡
−1. 𝑔𝑡)  

𝑔𝑡: is the gradient vector, the 

first order derivatives of the 

cost function (loss function) 

with respect to the weight 𝑤𝑡,𝑖.   

𝑔𝑡,𝑖 =
𝜕𝐶𝑡

𝜕𝑤𝑡,𝑖
  

𝐻𝑡: is the Hessian matrix, the 

second order derivatives of the 

loss function with respect to the 

weights 𝑤𝑡,𝑖,  𝑤𝑡,𝑗 .   

𝐻𝑡,𝑖,𝑗 =
𝜕2𝐶𝑡

𝜕𝑤𝑡,𝑖𝜕𝑤𝑡,𝑗
 

Although Newton’s 

method requires fewer 

steps to converge 

compared with first-

order methods, it is 

highly 

computationally 

expensive. Where, it 

needs to compute the 

Hessian matrix and its 

inverse.   

Conjugate gradient method 

(Møller, 1993) 

𝑑0 = 𝑔0 

𝑑𝑡+1 = 𝑔𝑡+1 + 𝛾𝑡𝑑𝑡 

𝑊𝑡+1 = 𝑊𝑡 + 𝜂𝑡𝑑𝑡 

𝛾𝑡: is the conjugate parameter, 

there are different ways to 

calculate it. Two of the most used 

This method can be 

regarded as something 

intermediate between 

gradient descent and 

Newton’s method. It is 

so similar to SGD with 
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are by Fletcher and Reeves 

(Fletcher et al., 1964) and Polak 

and Ribiere (Polak et al., 1969). 

momentum or any 

adaptive first order 

method. 

Quasi-Newton method 

(Robitaille et al., 1970) 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂(𝐺𝑡. 𝑔𝑡) 

Where: 𝐺𝑡 using DFP formula is 

given by the following equation. 

𝐺𝑡 = 𝐺𝑡−1 −
𝐺𝑡𝑦𝑡𝑦𝑡

𝑇𝐺𝑡

𝑦𝑡
𝑇𝐺𝑡𝑦𝑡

+
𝑠𝑡𝑠𝑡

𝑇

𝑠𝑡
𝑇𝑦𝑡

Or using BFGS formula. 

𝐺𝑡 = 𝐺𝑡−1 +
(𝑠𝑡𝑦𝑡+𝑦𝑡

𝑇𝐺𝑡𝑦𝑡)𝑠𝑡𝑠𝑡
𝑇

(𝑠𝑡
𝑇𝑦𝑡)2

−
𝐺𝑡𝑦𝑡𝑠𝑡

𝑇 + 𝑠𝑡𝑦𝑡
𝑇𝐺𝑡

𝑠𝑡
𝑇𝑦𝑡

𝑠𝑡 = 𝑊𝑡 − 𝑊𝑡−1 

𝑦𝑡 = 𝑔𝑡 − 𝑔𝑡−1 

This method uses 

inverse Hessian 

estimation to compute 

each update iteration. 

There are two famous 

methods to compute 

the estimated Hessian. 

First, Davidon-

Fletcher-Powell (DFP) 

method. Second, 

Broyden-Fletcher-

Goldfard-Shanno 

method (BFGS). This 

method is fasted than 

Newton’s method and 

it is not 

computationally 

expensive. 

Levenberg-Marquardt 

(LM) method 

(Roweis, 1996) 

𝐽𝑡 =
𝜕𝑒𝑡

𝜕𝑤𝑗,𝑖

𝐻 = 𝐽𝑡
𝑇 . 𝐽𝑡 + 𝜇𝐼

This method is 

extremely fast, easy to 

implement, and it is 
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𝑊𝑡+1 = 𝑊𝑡 − (𝐽𝑡
𝑇 . 𝐽𝑡 + 𝜇𝐼)

−1
𝐽𝑡𝑒𝑡 

𝐽𝑡: Jacobian matrix 

𝑒𝑡: is the error 

μ: is the combination coefficient 

I: is the identity matrix 

inexpensive. Those 

properties make this 

method one of the 

most used training 

algorithms in the 

literature. However, 

this algorithm has 

some drawbacks. The 

first one is that it 

cannot be applied to 

functions such as the 

root mean squared 

error or the cross-

entropy error. Also, for 

big data sets and neural 

networks, the Jacobian 

matrix becomes 

enormous, and 

therefore it requires 

much memory. 

Therefore, the 

Levenberg-Marquardt 

algorithm is not 

recommended when it 
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is required to train a 

big neural networks or 

have huge data sets.   

Neuron By Neuron (NBN) 

method 

(Wilamowski et al., 2018) 

To compute the Jacobian matrix, 

the following three steps must be 

proceeded:  

1.  Forward computation: the 

selected computing sequence has 

to follow  

the concept of feedforward signal 

propagation, the following two 

temporary vectors are stored: the 

first vector y with the values of the 

signals on the neuron output nodes 

and the second vector s with the 

values of the slopes of the neuron 

activation functions, which are 

signal-dependent. 

2.  Backward computation:  

the selected computing sequence 

has to follow  

the concept of backpropagation. 

The vector δ will be stored, which 

represents signal propagation from 

The NBN algorithm is 

developed for training 

arbitrarily connected 

neural networks 

(bridged multilayer 

perceptron BMLP, and 

fully connected 

cascade FCC). NBN 

algorithm only differ 

from LM algorithm by 

Jacobian matrix 

calculation.  Univ
ers
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Mala

ya



64 
 

a network output to the inputs of all 

other neurons. The size of this 

vector is equal to the number of 

neurons. 

3.  Jacobian element computation:  

𝐽𝑡 =
𝜕𝑒𝑡

𝜕𝑤𝑗,𝑖
= 𝑦𝑗,𝑖. 𝛿𝑡,𝑗 

𝐻 = 𝐽𝑡
𝑇 . 𝐽𝑡 + 𝜇𝐼 

𝑊𝑡+1 = 𝑊𝑡 − (𝐽𝑡
𝑇 . 𝐽𝑡 + 𝜇𝐼)

−1
𝐽𝑡𝑒𝑡 

Bayesian regularization 

(BR) method 

(Foresee et al., 1997) 

𝐹 = 𝛽𝑡𝐸𝐷 + 𝛼𝑡𝐸𝑤 

Where: 

𝐸𝐷: is the sum of network errors. 

𝐸𝑤: is the sum of the squared 

network weights. 

𝛼𝑡, 𝛽𝑡: the objective function (loss 

or cost function) parameters.  

𝛼𝑡 =
𝛾

2𝐸𝑤
, 𝛽𝑡 =

𝑛−𝛾

2𝐸𝐷
  

𝛾: is the effective number of 

parameters.  

𝛾 = 𝑁 − 2𝛼𝑡−1. 𝑡𝑟(𝐻−1) 

N: is the total number of weights.  

𝐻 = 𝐽𝑡
𝑇 . 𝐽𝑡 + 𝜇𝐼 

𝑊𝑡+1 = 𝑊𝑡 − (𝐽𝑡
𝑇 . 𝐽𝑡 + 𝜇𝐼)

−1
𝐽𝑡𝑒𝑡 

Bayesian 

regularization differs 

from LM algorithm by 

the cost function, 

where the optimum 

𝛼𝑡, 𝛽𝑡 will lead to 

better generalization 

and avoid overfitting. 
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CHAPTER 6 CONCLUSION 

One challenge that must be addressed in developing powered prosthetic devices is their 

ability to generate human-like walking trajectories over different and irregular terrains. In 

this study, a NARX RNN was developed to estimate foot orientation from the angular 

velocity of the tibia as measured by IMU. To achieve the first objective the NARX RNN was 

constructed based on mathematical and statistical approaches. Moreover, to verify the 

fulfillment of the second objective, the experimental results were analysed statistically to 

ascertain the NARX RNN ability to generalize the results of all subjects at different walking 

speeds. The NARX RNN was able to generate foot trajectories for 7 subjects at different 

walking speeds over flat terrains with an average RMSE of 2.1±1.7°. Consequently, it can 

perform similar to the neuro-mechanical circuit and give the right command (walking 

patterns) to lower-level controllers to control the prosthetic foot and makes it act similar to 

the biological foot.  

6.1 Study limitation 
 

1. The developed neural network has not been tested over variant terrains.  

2. The neural network must be combined with low level controllers to imitate the intact 

foot behavior throughout the walking phases.  

6.2 Future work  
 

The human locomotion control strategy, which controls human locomotion, is not a form 

of a classic position controller. Consequently, it does not drive the body joints just to reach 

predetermined kinematics (Ahn et al., 2012). Moreover, the environment has inertias and 

kinematic constraints that are described as admittance. Therefore, prosthetic devices should 

behave as spring-damper systems with adaptive impedance, which should be modulated 
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along the gait cycle to regulate the dynamic interaction between the environment and 

prostheses and to generate a disturbance response for ensuring physical compatibility 

(Hogan, 1985). Thus, in future work, the output of the neural network should be transmitted 

to a mid-level controller that determines the ankle prosthesis control behavior during walking 

phases (Al Kouzbary et al., 2020). Moreover, the hierarchical three-level controller should 

be tested over different walking terrains (Figure 6 shows the complete control structure of 

the powered ankle prostheses). 

6.3 Novelty of the study  
 

1. The proposed pattern generator can provide continuous and dynamic control signals 

to the mid-level control system of prostheses in contrast to conventional three-level 

strategies in which the trajectory is predetermined.  

2. The proposed technique does not require retraining for each user (i.e., user 

independent) and can generate the appropriate foot trajectory for different walking 

speeds (adaptive to varying cadences).  

3. In contrast to existing controllers inspired by central biological signals, the proposed 

technique requires minimal feedback signals. 

 

Figure 6.1: Continuous hierarchical control system. 
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