CARBON DIOXIDE (CO₂) ABSORPTION IN BLENDS OF AQUEOUS SOLUTIONS OF MONOETHANOLAMINE (MEA) AND L-SERINE

MISHALNY NAIR RAGHAVAN

FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR

2022

CARBON DIOXIDE (CO₂) ABSORPTION IN BLENDS OF AQUEOUS SOLUTIONS OF MONOETHANOLAMINE (MEA) AND L-SERINE

MISHALNY NAIR RAGHAVAN

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SAFETY, HEALTH & ENVIRONMENTAL ENGINEERING

FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR

2022

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Mishalny Nair Raghavan

Matric No: 17202687/ KQD190018

Name of Degree: Master of Safety, Health & Environmental Engineering

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"): Carbon

Dioxide (CO₂) Absorption in Blends of Aqueous Solutions of Monoethanolamine (MEA)

and L-Serine

Field of Study: Carbon Dioxide Absorption

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every right in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work, I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date: 28/02/2022

Subscribed and solemnly declared before,

Witness's Signature

Date:28/02/2022

Name:Dr. Fathiah Binti Mohamed Zuki Designation: Senior Lecturer

CARBON DIXOIDE (CO2) ABSORPTION IN BLENDS OF AQUEOUS SOLUTIONS OF MONOETHANOLAMINE (MEA) AND L-SERINE ABSTRACT

Expansion in carbon dioxide discharges in the climate is a widespread matter that needs a conclusive determination in order to direct the creating hazard of environment change. Various examinations have been led over the end to settle this issue. The principal investigation of this study is to investigate the solubility of CO₂ in aqueous MEA + L-Ser solution. This is done by exploring the effect of various elements on the absorption process, for example, concentration, temperature and CO₂ loading. In this work, CO₂ solubility is estimated in the aqueous solution of monoethanolamine (MEA) + Serine (L-Ser) using a high-pressure CO₂ absorption reactor. The analysis was done at various pressure (50-200 psi) and under four distinct temperatures (303.15 K-333.15 K). The composition of aqueous solutions was used as 2.0 M MEA, 1.5 M MEA + 0.5 M L-SER and 1.0 M MEA + 1.0 M L-SER. It was seen that at a similar pressure; the CO₂ loading decreases with an increase in temperature. For sure, at a consistent temperature, the solution loading increases as the pressure builds, which shows that the response is exothermic response. It is prescribed to investigate more on the solubility of CO₂ absorption using original form of amino acids with various solvents like MDEA, DEA, DIPA and so forth.

Keywords: absorption, carbon dioxide, solubility, CO2 loading, serine, MEA

PENYERAPAN KARBON DIOKSIDA DALAM CAMPURAN AKUEUS

MONOETHANOLAMINE (MEA) AND L-SERINE

ABSTRAK

Memperluas pelepasan karbon dioksida dalam iklim adalah masalah yang meluas yang memerlukan penentuan konklusif untuk mengarahkan bahaya perubahan persekitaran. Pelbagai peperiksaan telah dipimpin pada akhirnya tidak banyak masa untuk menyelesaikan masalah ini. Penyiasatan utama tinjauan ini adalah untuk menentukan kelarutan CO₂ dalam larutan MEA + L-Ser berair dengan meneroka kesan pelbagai elemen pada proses penyerapan, misalnya, kepekatan, suhu dan pemuatan CO₂. Dalam karya ini, kebolehpasaran CO₂ dianggarkan dalam larutan berair monoethanolamine (MEA) + Serine (L-Ser) yang menggunakan reaktor penyerapan CO₂ tekanan tinggi. Analisis dilakukan pada pelbagai tekanan (50 - 200 psi) dan di bawah empat suhu yang berbeza (303.15 K - 333.15 K). Komposisi larutan berair digunakan sebagai 2.0 M MEA, 1.5 M MEA + 0.5 M L-SER dan 1.0 M MEA + 1.0 M L-SER. Telah dilihat bahwa pada tekanan yang sama, solusi berkurang dengan suhu yang mengembang. Yang pasti, pada suhu yang konsisten, pemuatan larutan berkembang ketika tekanan meningkat yang menunjukkan bahawa tindak balas adalah tindak balas eksotermik. Ia diresepkan untuk menyiasat lebih lanjut mengenai kebolehpecahan penyerapan CO₂ yang menggunakan bentuk asid amino asli dengan pelbagai pelarut seperti MDEA, DEA, DIPA dan sebagainya

Keywords: penyerapan, karbon dioksida, kelarutan, pemuatan CO₂, serine, MEA

ACKNOWLEDGEMENTS

In preparing this research report, I was in contact with many people, researchers, academicians and practitioners. They have contributed towards m understanding and thoughts. In particular, I wish to express my sincere appreciation to my Research Supervisor, Dr, Fathiah Binti Mohamed Zuki, a Senior Lecturer at University of Malaya. Other than that, my co – supervisor, Professor Mohamed Kheireddine Aroua has helped me throughout my research. He's the Associate Dean and Head of the Center for Carbon Dioxide Capture and Utilization at Sunway University. Without both of their support and interest, this report would not have been the same as presented here. They have been there when I needed them, providing ideas and guidance throughout the research and experiments.

I'm also grateful to all my classmates at University of Malaya for all their help for my project. They provide me guidance in terms of formatting and submitting the report. I would also like to sincerely thank Dr. Mohd Azlan Kassim, Research Fellow in Research Centre for Carbon Dioxide Capture and Utilization (CCDCU) at Sunway University. He guided me on how to operate the reactor used in my research and always make sure that he's available in the lab if I need him despite his busy schedule.

Finally, I would like to thank my parents who instilled in me love for learning and appreciation. Their love and support have always provided a strong platform from which I pursued my dreams.

TABLE OF CONTENTS

Abstract	iii
Abstrak	iv
Acknowledgements	v
Table of Contents	vi
List of Figures	ix
List of Tables	x
List of Symbols and Abbreviations	xii
List of Appendices	xv

CHA	APTER 1: INTRODUCTION	.1
1.1	Background	1
1.2	Problem Statement	4
1.3	Research Objectives	.5
1.4	Scope of the Research	.5
1.5	Outline of the Thesis	.6
		_

CHA	APTER	2: LITEF	RATURE REVIEW	.7
2.1	Introdu	iction		.7
2.2	CO ₂ E	missions S	Sources	.7
	2.2.1	Sources	from People	.7
		2.2.1.1	Combustion of Fossil Fuels/ Use	.7
		2.2.1.2	Sector of Electricity/ Heating	.8
		2.2.1.3	Transportation Industry	.8
		2.2.1.4	Manufacturing Industry	.8
		2.2.1.5	Changes in Land Use	8

		2.2.1.6 Industrial Methods	9
	2.2.2	Sources from Nature	9
2.3	Carbon	Capture Technologies	9
	2.3.1	Carbon Capture with Separation	9
		2.3.1.1 Precombustion Carbon Capture	10
		2.3.1.2 Post Combustion Carbon Capture	13
		2.3.1.3 CO ₂ Separation Technology	15
	2.3.2	Carbon Capture by Water Condensation	22
		2.3.2.1 Oxy-Combustion Carbon Capture	23
	2.3.3	Correlation of Different Combustion Technologies for CO ₂ Capture	25
2.4	Solven	ts for Carbon Dioxide Absorption	26
	2.4.1	Chemical Absorption Solvents	26
		2.4.1.1 Conventional Amine Based Solvents	26
		2.4.1.2 Sterically Hindered Amine Solvents	27
		2.4.1.3 Non-Amine Based Solvents	27
		2.4.1.4 Solvents Blends	28
		2.4.1.5 Ionic Liquids	28
		2.4.1.6 New Generation Solvents	29
	2.4.2	Physical Absorption Solvents	30
		2.4.2.1 Sulfinol	30
2.5	Amino	Acids for CO ₂ Absorption	30
	2.5.1	Inorganic Amino Acids with Ammonia	30
	2.5.2	Organic and Inorganic Salts of Amino Acids	30
	2.5.3	Amino Acids Based Ionic Liquids	31
	2.5.4	Amino Acids with Carbonate Salts	32
	2.5.5	Inorganic Amino Acids Salts with Alkanol Amines	32

CHA	APTER 3	3: RESEERCH METHODOLOGY	.33
3.1	Chemio	cals	.33
3.2	Appara	tus	.33
3.3	Prepara	tion of Aqueous Solutions	.33
	3.3.1	Preparation of MEA + L-Serine	.34
3.4	CO ₂ Al	osorption Experiment	.34
	3.4.1	Experimental Procedure	.34
	3.4.2	Experimental Procedure	.35
3.5	Calcula	ation for CO ₂ loading	.35

CHAPTER 4: RESULTS AND DISCUSSION .	

CHAPTER 5: CONCLUSION	
References	45
Appendix A	64
Appendix B	67
Appendix C	71

LIST OF FIGURES

Figure 1.1: Different Types of Carbon Capture
Figure 2.1: Pre-Combustion Carbon Capture10
Figure 2.2: Post Combustion Carbon Capture
Figure 2.3: Types of Absorption Process for CO ₂ Capture
Figure 2.4: CO ₂ Absorption Plant
Figure 2.5: Oxy Combustion Carbon Capture
Figure 2.6: Different Amino Acids with K ₂ CO ₃ Solution (Hu et al., 2016; Sanchez-Fernandez, Heffernan, van der Ham, Linders, Goetheer, et al., 2014; Shen, Feng, Zhao, et al., 2013; Thee et al., 2014)
Figure 3.1: High Pressure CO ₂ Absorption Reactor Set - Up
Figure 4.1: Quantity of Consumed Moles of CO ₂ at 303.15 K
Figure 4.2: Quantity of Consumed Moles of CO ₂ at 313.15 K40
Figure 4.3: Quantity of Consumed Moles of CO ₂ at 323.15 K40
Figure 4.4: Quantity of Consumed Moles of CO ₂ at 333.15 K41
Figure 4.5: Impact of Temperature on CO ₂ Loading for 2.0 M MEA
Figure 4.6: Impact of Temperature on CO ₂ for 1.5 M MEA + 0.5 M L-SER42
Figure 4.7: Impact of Temperature on CO ₂ for 1.0 M MEA + 1.0 M L-SER43

LIST OF TABLES

Table 2.1: Studies on Pre-Combustion Carbon Capture 11
Table 2.2: Studies on Pre-Combustion Carbon Capture (continued)12
Table 2.3: Studies on Post Combustion Carbon Capture 14
Table 2.4: Studies on Post Combustion Carbon Capture (continued) 15
Table 2.5: Benefits and Drawbacks of Various Absorption Technology for Physical Absorption
Table 2.6: Benefits and Drawbacks of Various Absorption Technology for Chemical Absorption
Table 2.7: Studies on Oxy-Combustion Carbon Capture
Table 2.8: Studies on Oxy-Combustion Carbon Capture (continued)
Table 2.9: Benefits and Drawbacks of the Different CO ₂ Capture Technologies25
Table 3.1: Amount of MEA and L-Ser for Each Sample
Table 4.1: Solubility Data for CO2 Absorption at 303.15 K 38
Table 4.2: Solubility Data for CO2 Absorption at 313.15 K 38
Table 4.3: Solubility Data for CO2 Absorption at 323.15 K 39
Table 4.4: Solubility Data for CO2 Absorption at 333.15 K 39

Table 2.1: Studies on Pre-Combustion Carbon Capture 11
Table 2.2: Studies on Pre-Combustion Carbon Capture (continued)12
Table 2.3: Studies on Post Combustion Carbon Capture 14
Table 2.4: Studies on Post Combustion Carbon Capture (continued) 15
Table 2.5: Benefits and Drawbacks of Various Absorption Technology for Physical Absorption 18
Table 2.6: Benefits and Drawbacks of Various Absorption Technology for Chemical Absorption
Table 2.7: Studies on Oxy-Combustion Carbon Capture
Table 2.8: Studies on Oxy-Combustion Carbon Capture (continued) 25
Table 2.9: Benefits and Drawbacks of the Different CO ₂ Capture Technologies25
Table 3.1: Amount of MEA and L-Ser for Each Sample
Table 4.1: Solubility Data for CO2 Absorption at 303.15 K 38
Table 4.2: Solubility Data for CO2 Absorption at 313.15 K 38
Table 4.3: Solubility Data for CO2 Absorption at 323.15 K 39
Table 4.4: Solubility Data for CO2 Absorption at 333.15 K 39

LIST OF SYMBOLS AND ABBREVIATIONS

%	:	Percentage
[Apaeim]	:	1-(3-aminopropyl)-3-2-aminoethyl) imidazolium
[Cho][Lys]	:	Cholinium Lysinate
°C	:	Degree Celsius
AAILs	:	Amino Acid Ionic Liquids
AAS	:	Amino Acid Salt
Al	:	Aluminium
AMP	:	2-Amino-2-Methyl-1-Propanol
ASV	:	Air Separation Unit
BZA	:	Benzylamine
Ca	:	Calcium
CaCO ₃	:	Calcium Carbonate
CaO	:	Calcium Oxide
CCS	:	Carbon, Capture and Storage
CCU	:	Carbon, Capture and Utilization
CFB	:	Circulating Fluidized Bed
CH4	÷	Methane
CO ₂	:	Carbon Dioxide
Conc.	:	Concentration
DEA	:	Diethanolamine
DIPA	:	Diisopropanolamine
DMF	:	N,N-Dimethylformamide
EGR	:	Enhance Gas Recovery
EOR	:	Enhance Oil Recovery

ESA	:	Electrical Swing Adsorption
GHG	:	Greenhouse Gases
H_2	:	Hydrogen
H_2S	:	Hydrogen Sulphide
HCO_3^-	:	Hydrogen Carbonate
IGCC	:	Integrated Gasification Combined Cycle
ILs	:	Ionic Liquids
К	:	Kelvin
K ₂ CO ₃	:	Potassium Carbonate
КОН	:	Potassium Hydroxide
MAPA	:	N-Methyl-1,3-diaminopropane
MDEA	:	Methyl Diethanolamine
MEA	:	Monoethanolamine
Mg (OH) ₂	:	Magnesium Hydroxide
Mg (OH) ₂ Mg	:	Magnesium Hydroxide Magnesium
Mg (OH)2 Mg MGA	: : :	Magnesium Hydroxide Magnesium Membrane Gas Adsorption
Mg (OH)2 Mg MGA MOFs	: : :	Magnesium Hydroxide Magnesium Membrane Gas Adsorption Metal Organic Frameworks
Mg (OH)2 Mg MGA MOFs mol%		Magnesium Hydroxide Magnesium Membrane Gas Adsorption Metal Organic Frameworks Mole Percentage
Mg (OH)2 Mg MGA MOFs mol% mol/L		Magnesium Hydroxide Magnesium Membrane Gas Adsorption Metal Organic Frameworks Mole Percentage Moles per liter
Mg (OH)2 Mg MGA MOFs mol% mol/L MPa		Magnesium Hydroxide Magnesium Membrane Gas Adsorption Metal Organic Frameworks Mole Percentage Moles per liter Megapascal
Mg (OH)2 Mg MGA MOFs mol% mol/L MPa N2		Magnesium Hydroxide Magnesium Membrane Gas Adsorption Metal Organic Frameworks Mole Percentage Moles per liter Megapascal Nitrogen
Mg (OH)2 Mg MGA MOFs mol% mol/L MPa N2 Na		Magnesium HydroxideMagnesiumMembrane Gas AdsorptionMetal Organic FrameworksMole PercentageMoles per literMegapascalNitrogenSodium
Mg (OH)2 Mg MGA MOFs mol% mol/L MPa N2 Na Na		Magnesium HydroxideMagnesiumMembrane Gas AdsorptionMetal Organic FrameworksMole PercentageMoles per literMegapascalNitrogenSodium Carbonate
Mg (OH)2 Mg MGA MOFs mol% mol/L MPa N2 Na Na2 Na2 Na2 Na2 Na2 NaOH		Magnesium HydroxideMagnesiumMembrane Gas AdsorptionMetal Organic FrameworksMole PercentageMoles per literMegapascalNitrogenSodiumSodium CarbonateSodium Hydroxide
Mg (OH)2 Mg MGA MOFs mol% mol/L MPa N2 Na Na2 Na Na2 Na2 Na Na2 Na2 NaOH NET		Magnesium HydroxideMagnesiumMembrane Gas AdsorptionMetal Organic FrameworksMole PercentageMoles per literMegapascalNitrogenSodiumSodium CarbonateSodium HydroxideNegative-Emissions Technology

Ni	:	Nickel
NO	:	Nitric Oxide
NO _x	:	Nitric Oxides
0	:	Oxygen
ppm	:	Parts per million
psi	:	Pounds per square inch
PSA	:	Pressure Swing Adsorption
PZ	:	Piperazine
Ser	:	Serine
SEWGS	:	Sorption Enhanced Water Gas Shift
Si	:	Silicon
SO_2	:	Sulphur Dioxide
TBAB	:	Sulphur Oxides
TBAF	:	Tetrabutylammonium Bromide
TBF	:	Tetrabutylammonium Fluoride
TEA	:	Triethylamine
TETA	:	Triethylenetetramine
THF	÷	Tetrahydrofuran
TiO ₂	÷	Titanium Dioxide
TSA	:	Temperature Swing Adsorption
VSA	:	Vacuum Swing Adsorption

LIST OF APPENDICES

Appendix A: Calculation on the amount of MEA + L-

Ser.....

Appendix B: Data Collected from the CO₂ Absorption Experiment.....

Appendix C: Calculation on CO₂ Absorption Loading

7

CHAPTER 1: INTRODUCTION

1.1 Background

Following the start of the industrial revolution, worldwide energy consumption is on the rise. Around 80% of global energy demand is met by power plants that burn fossil fuels to create electricity (Agency, 2012). Subsequently, a lot of GHG being delivered into the air, causing environmental change, an overall ecological catastrophe (Yang et al., 2008). The most important GHG that causes global warming is CO₂. Our current CO₂ content in the atmosphere is 415.77 ppm, which is more above the acceptable level (350 ppm). Currently, fossil fuels account for approximately 80% of our energy supply, while renewables account for barely 10%. According to forecasts, fossil fuels, which contribute to CO₂ emissions, will continue to be the front-runner in meeting our rising energy demands in the near future. As a result, we must develop technology for large-scale carbon collection, use, and storage in order to preserve a synergy between energy equivalence and environmental growth.

To diminish CO_2 emissions into the climate, two principal innovations are used: carbon capture and storage (CCS) and carbon catch and use (CCU) (Figure 1). CO_2 is caught and transported to a chosen storage location in CCS, whereas captured CO_2 is transformed into value goods in CCU. CO_2 is used as a feedstock in CCU for the production of fuels, carbonates, polymers, and chemicals. CO_2 may conceivably be used for further developed oil and gas recuperation (EOR, EGR) and the assembling of an assortment of mineral carbonates. CCU technology is quickly developing and has entered the demonstration phase. However, given the vast magnitude of CO_2 emissions, CCS remains the dominant CO_2 capture option in the industrial sector. Post-combustion CO_2 collection is the most widely used CCS system in the industrial sector because it can be simply adapted to existing CO₂ sources.

Figure 1.1: Different Types of Carbon Capture

Many climate projection models predict that in future, the average global temperature will have risen because of the increasing CO₂ levels in the atmosphere (Williams, 2002). As a result, reducing CO₂ emissions by using efficient technology has become a global problem (Rhodes, 2007). A great deal of study has been done on a global scale. As a result, many technologies have been developed (Dawodu & Meisen, 1996; Fawzy et al., 2018; Jamal & Meisen, 2001). Chemical solvent absorption is the most often used approach because of the significant research done on solvents and their significance (Akbar & Murugesan, 2012; Kumar et al., 2001).

Amine-based solvents like MEA, DEA, DIPA, TEA, and MDEA are regularly used for CO₂ absorption (Falkenstein-Smith et al., 2017; Kang et al., 2020; Raksajati et al., 2016). Although these solvents have been widely used for CO₂ absorption, following comprehensive research among these popular chemicals in commercial applications, several limitations have been found and documented. These solvents have been more susceptible to oxidative & thermal deterioration, resulting in a smaller service life. With amine-based solvents, consumption of hardware and stream lines, dissolvable exhaustion because of the expanded unpredictability, higher recovery energy, and poisonousness are largely issues (Alivand et al., 2019; Conway et al., 2014; Sun et al., 2005; Zhang et al., 2014).

Aqueous solution of MEA as a fundamental amine is the most sensible substance dissolvable and has been used as a modern retentive for CO₂ capture because of its high sorption limit, modest, high temperature obstruction corruption, low permeability of hydrocarbons, and low nuclear weight. A few weaknesses incorporate low CO₂ absorption rate, high energy needs for recovery, vaporization misfortunes inferable from high fume pressure, high consistency, crumbling by means of amine oxidation, and functional issues like erosion, frothing, and fouling (Alivand et al., 2019; Brúder et al., 2011). Amine-based solvents have limitations that limit their usage in practical applications. As a result, scientists and researchers must now investigate novel solvent systems that may compensate for the shortcomings of present ones.

Ionic liquids (ILs) were recognized as revolutionary CO₂ absorbents throughout the last two decades. Because they all have low vapor pressures and stay liquid at extremely high temperatures, they do not harm the environment and offer less dangers to workers than commercial solvents. However, using ILs as carbon dioxide absorbents has significant disadvantages. The primary downsides incorporate high thickness, costly interest, poor CO₂ absorption capacity, and poor soundness to vent gas contaminations (Aftab et al., 2018; Cheng et al., 2017). As of late, there has been a ton of interest in an innovative pattern of ionic fluids produced using regular crude fixings like amino acids. AAILs are a choice rather than standard ionic fluids subject to petrochemical normal materials. Truly, AAIL refers to an ionic liquid whose anion has an amino functional group attached to it. This amino group can react with CO₂. Although that they can be great CO₂ capture solvents, they have a few inconveniences, including a weighty cost and an impressively enormous consistency when contrasted with alkanolamine solvents (Guo et al., 2019; Hamzehie & Najibi, 2016b; Ma'mun, 2014).

AAS solutions are being researched like as a substitute as alkanolamines. Despite their higher cost, these have low vapor pressures (owing to their ionic composition), great oxidative stability, minimal viscosity values, low binding strength, and strong chemical bonding with CO₂ (Ansaloni et al., 2017; Knuutila et al., 2011). Because amino acids have a greater surface tension over alkanolamines, they can be used in the membrane gas absorption (MGA) module (Ling et al., 2019; Mahmud et al., 2017). Precipitation of reaction products may occur when CO₂ is absorbed with salt solutions of amino acids. The existence of solids provides numerous intriguing advantages.

One of most major benefit is that precipitation of reactions decreases their fixation in the liquid phase, driving responses to shift toward the arrangement of new items and in this manner expanding CO₂ solubility (Portugal et al., 2007; Posch & Haider, 2013; Ramazani et al., 2015). Strong particles of the reaction products may increase uptake at the gas–liquid interphase owing to favorable associations in the middle of little particles just as the submerged gas. They can, then again, enhance viscosity and hence reduce the gas's diffusivity in the liquid phase (Martins et al., 2021).

1.2 Problem Statement

MEA is widely used in various processes due to its fast reaction kinetics with CO₂, low solvent cost, low hydrocarbon solubility, and other advantageous characteristics. However, MEA introduces the disadvantages of O₂- and SO₂- induced degradation, metal-corrosion, high vapor loss, and high absorbent regeneration energy. Amino acid, due to their physical and chemical properties, have been mentioned as attractive alternatives to alkanolamines as solvents for carbon dioxide absorption. Because most amino acids have no toxicity problems and are safe, amino acid-based solvent systems are becoming popular. Amino acids have the additional benefit of being able to contribute a salt effect. To get the proper salts of the amino acids, the carboxylate gathering can likewise be killed with potassium and lithium hydroxide (Suleman, Maulud, Syalsabila, & Shahid, 2020). The salt feature means that the substance is non-volatile, which is useful when working in stripping environments. A third advantage is the strong surface tension on aqueous solutions of amino acid ions, which consider it desirable to gas–liquid industrial application (Agency, 2012).

The goal of this study is to absorb carbon dioxide so that global warming can be reduced. Carbon dioxide (CO₂) emissions in the atmosphere must be reduced since they have a negative impact on living organisms. Monoethanolamine (MEA) and serine blends will be employed in this study. Most of the investigations used the salt form of serine rather than the natural state (Suleman, Maulud, Syalsabila, & Shahid, 2020). For this study, the original form of serine will be employed instead of its salt form in this study. The stirred cell reactor will be employed throughout this research since no liquid analysis is required (Ling et al., 2019).

1.3 Research Objectives

The aim of this research would be to investigate CO_2 absorption in MEA + Serine solution with the use of high-pressure CO_2 absorption reactor. In order to achieve the research's purpose, certain objectives must be met

- To determine the solubility of CO₂ in aqueous MEA + Serine (Ser) solution.
- To investigate the impact of different factors on the absorption process (concentration, temperature and CO₂ loading).
- To study the mechanisms of CO₂ absorption into aqueous solutions

1.4 Scope of the Research

Three separate sets of kinetic studies will be carried out with aqueous solution (MEA + serine: (1) Absorption studies at such a constant temperature both with varied

concentrations of aqueous solution as absorption liquid (0.5 mol/L–2.0 mol/L) will be performed to determine the influence of aqueous solution concentration as absorption liquid upon that kinetics of the process. (2) The influence of the aqueous solution's degree of CO_2 loading on reaction kinetics will be examined. To accomplish these objectives, an aqueous solution (MEA + serine) will be loaded with CO_2 , and the reaction rate constant for CO_2 absorption in this loaded solution at a given temperature will be computed. Titration will find out the precise loading of the solution.

1.5 Outline of the Thesis

The first chapter of this thesis discusses the notion of carbon capture and sequestration and argues for a more in-depth investigation of CO_2 capture. In Chapter 2, there is a discussion of the literature review on other researchers' investigations based on solvents, amino acids, and carbon capture technologies. The chemical, apparatus, equipment, and experimental technique used in this research study are presented and described in Chapter 3. The fourth chapter reviews the findings and expands on the reasons. Finally, Chapter 5 concludes with a proposal for future research.

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

Anthropogenic CO₂ is the most significant source of greenhouse gas globally. Carbon dioxide absorption has been discovered to be the most cost-effective method for reducing CO₂ emissions on an industrial scale. Carbon catch and capacity (CCS) is one way to reduce CO₂ emissions into the atmosphere. Researchers are investigating new solvent formations in order to make CO₂ a viable CCS option. This chapter covered the sources of carbon dioxide emissions and traditional solvents, as well as research findings on CO₂ absorption processes based on chemical and physical absorption (Rabensteiner et al., 2014). Aside from that, this chapter goes through the CCS methodologies in depth, as well as the research that has been done with them. In addition, this paper describes the usage of amino acids in the absorption process, comparing their effectiveness to that of other solvents. Finally, the effectiveness of the CO₂ absorption method is evaluated and contrasted.

2.2 CO₂ Emissions Sources

2.2.1 Sources from People

2.2.1.1 Combustion of Fossil Fuels/ Use

CO₂ emissions are primarily caused by the combustion of fossil fuels, which accounts for 87% of total emissions. The energy created by burning is utilized to generate electricity or power for transportation. It is also used in the industrial sector, power plants, airlines, and automobiles, besides these two uses (Borhani et al., 2015). However, CO_2 is produced as a byproduct of burning.

2.2.1.2 Sector of Electricity/ Heating

Coal, a carbon-intensive fossil fuel, is used heavily in the electricity and heating sectors. As a result, they emit a lot of carbon emissions. They handle 41% of CO₂ emissions. This industry handles most man-made CO₂ emissions (Shaikh et al., 2014).

2.2.1.3 Transportation Industry

Transportation emits 22% of CO₂, making the kit energy-intensive. Light-duty trucks, freight, and vehicles are the primary sources of pollutants. Other sources of emissions include marine transport and worldwide aviation (Zheng et al., 2014).

2.2.1.4 Manufacturing Industry

The industrial sector emits 20% of CO_2 , making it the third largest emitter after transportation. Manufacturing, agriculture, mining, and construction are all examples of industries found in these sectors (Yu et al., 2017). Manufacturing emits a large quantity of CO_2 as greenhouse gases. This is because of the immediate utilization of petroleum products for the generation of heat and steam at various phases of manufacturing.

2.2.1.5 Changes in Land Use

Changes in land use create 9% of CO_2 , with deforestation creating a massive contribution. CO_2 levels rise as forest area is removed because of deforestation. It also induced soil disturbance and increased the rate of decomposition, resulting in increased CO_2 emissions (Usman et al., 2018).

2.2.1.6 Industrial Methods

There are four significant modern cycles emitting CO_2 . The first is concrete manufacture, which produces CO_2 as a side-effect of the heating of limestone. The following step is steel production. When oxygen is combined with carbon in iron to reduce its carbon content, carbon dioxide is generated. Fossil fuels are employed in chemical and petrochemical goods, which release CO_2 . Finally, ammonia (NH₃) and hydrogen are produced (H₂). They employ natural gas or other fuels as the starting point for this process (Thompson et al., 2017).

2.2.2 Sources from Nature

Natural sources, besides human sources, release CO_2 into the atmosphere. The oceanatmosphere system is changing, releasing 42.84% of CO_2 . Plant and animal respiration is next, accounting for 28.56%, together with soil respiration and decay. Volcanic emissions produce just 0.03% of CO_2 , which is a negligible amount (Tans, 2011).

2.3 Carbon Capture Technologies

2.3.1 Carbon Capture with Separation

This method necessitates the utilization of innovation to isolate CO_2 from a combination of gases. The gas stream might develop either before or after burning. A precombustion carbon capture technique occurs when a gas stream containing carbon dioxide is generated prior to combustion (Vaidya & Mahajani, 2005). In this scenario, the primary elements of the gas stream are CO_2 and H_2 ; alternatively, it is known as post ignition carbon capture, and the principal constituents of the gas stream are CO_2 and N_2 . A few CO_2 separation methods are currently being used or improvement for the division

of CO₂ from gas mixtures. Practically all detachment procedures are applicable to both processes.

2.3.1.1 Precombustion Carbon Capture

This technology offers the possibility of directly combusting fuel in a combustor. Fuel is initially transformed to a flammable gas. This gas is used to generate electricity. CO₂ is presented and sequestered from the gas produced by fossil fuels prior to combustion (Xie et al., 2019). Figure 2.1 depicts a schematic representation of the procedure.

Figure 2.1: Pre-Combustion Carbon Capture

Initially, synthesis gas (syngas) is created from a fossil fuel. Syngas is a combination of mostly H₂ and CO₂ with a hint of CO₂. It is possible to do so by combining steam with a petroleum derivative. This is referred to as steam reforming. One more strategy of producing syngas is to deliver pure oxygen separated from air to a fossil fuel used to generate electricity (Zanone et al., 2018). When applied to liquid or gaseous fuels, this cycle is known as halfway oxidation. When used for solid fuels, it is referred to as gasification. This syngas is subsequently transformed to CO₂ from CO through a watergas shift process.

The results of the water shift gas reaction stay at high strain, making CO_2 emission simpler. It is taken out at room temperature. The rest of the gas is mostly hydrogen with a few contaminants. In a combined cycle power plant, this gas is used to create electricity (Zheng et al., 2017). High pressure (usually 2–7 MPa) and high CO₂ solubility (15–60% by volume) prior to CO₂/H₂ separation need less energy for CO₂ absorption and pressure than post burning carbon capture. The energy consumption in this interaction, however, is generous because of the air detachment and improving or gasification processes (Yu et al., 2012).

Using SEWGS technology to lessen the energy penalty is one option. This strategy takes into consideration the mix of water gas shift response with CO₂ absorption (Wei et al., 2014). By eliminating CO₂ from the result of the water gas shift reaction, SEWGS enhances the rate of CO conversion. As a consequence, CO₂ emissions are reduced even further. The interaction is almost same for any non-renewable energy source, but in case a fuel other than gaseous petrol is used, additional refining steps need be incorporated because of the greater pollutions produced (Thompson et al., 2017).

Author	Year	Findings
(Conway et	2010	The collection of CO _{2s} utilizing methyl
al.)	al.) diethanol amine solution was contraste	
		different techniques. It is advocated for keeping
		away from more moderate suppositions to
		improve efficiency.
(Martín et	2011	The CO ₂ adsorption capability of hyper
al.)		crosslinked polymers was investigated. These
		polymers outperformed zeolite-based materials
		and commercial activated carbon in terms of CO ₂
		uptake. They also demonstrated high selectivity
		for CO_2 and a low heat of adsorption.
(Dash et al.)	2012	3 distinct Metal Organic Framework materials
		were evaluated as adsorption materials. When
		contrasted to commercial activated carbon, the
		USO-2-Ni Metal natural structure yielded good
		results.
(García et	2012	When activated carbon was utilized for
al.)		adsorption, the partial pressure of CO ₂ was shown
		to be the most influential. It was directly related to
		carbon capture capacity and conversely relative to
		temperature.

 Table 2.1: Studies on Pre-Combustion Carbon Capture

A 41	X 7 -	T ² 1 ²	
Author	<u>Year</u>	Findings	
(Haghtalab	2013	The PSA technique for precombustion carbon	
& Gholami)		capture was the subject of a parametric analysis	
		research. For improved separation performance,	
		they tested several process setups and	
		circumstances. The separation improved when the	
		operating temperature and desorption pressure	
		were reduced. The separation was unaffected by	
/ \ F \ \	2014	adsorption pressure.	
(Moioli et	2014	Instead of using oxygen-blown gasification,	
al.)		they employed air-blown gasification. Air-blow	
		gasification was competitive in terms of efficiency	
(**	a a a a	penalty and carbon capture.	
(Jiang et al.)	2015	As a sorbent, they employed a mesoporous	
		amine- $11O_2$. This low-cost sorbent was stable and	
		easy to renew without losing its capacity or	
	2015	selectivity.	
(Park et al.)	2015	Three physical absorbents were used to design	
		a two-stage precombustion CO ₂ collecting	
		technique. In terms of energy usage, Selexol was	
		discovered to be the most efficient precombustion	
(D - : 0	2016	carbon capture technique.	
(Dal &	2016	At high pressure and temperature, the partition	
Deng)		execution of an ionic-liquid based film contactor	
		was investigated. The membrane contactor grew	
		The temperature has little impact on the	
		rie temperature has little impact on the	
(Robu of al.)	2016	Tetrahydrofuran was shown to be superior to	
(Dabu et al.)	2010	other semiclathrate hydrate formers. At 282.2 K	
		and 6 MPa, the most extreme convergence of THE	
		was 5 56 mol%	
(Yang et al)	2016	The combination of 5% TRF + 10% TRAR	
(I ung et alt)	2010	was found to be the best suited for hydrate-based	
		CO ₂ collection.	
(Mitchell et	2017	The CO ₂ -H ₂ -TBAF semiclathrate hydrate	
al.)	_ • • •	procedure that has been proposed. Except for	
		THF, CO_2 has the highest gas uptake when	
		employed as a promoter. Furthermore, the	
		procedure is carried out at room temperature.	
(Usman et	2017	Carbon capture utilizing a layer contactor and	
al.)		PSA proved too expensive to be industrially	
,		viable.	
(Zhai &	2019	It demonstrated that carbon absorption utilizing	
Rubin)		an IL is comparable to the selexol procedure.	

Table 2.2: Studies on Pre-Combustion Carbon Capture (continued)

2.3.1.2 Post Combustion Carbon Capture

This technology is employed in existing power plants without requiring large plant modifications. As a result, when compared to other CCS methods, it has the benefit of being easier to retrofit. It is the most basic method of CO_2 collection. CO_2 is removed from power plant exhaust flue gases using this technology (Vasantha et al., 2012). Flue gases normally escape at ambient pressure. The CO_2 content in these gases is extremely low. The driving force is insufficient to extract CO_2 from the pipe gas due to the low convergence of CO_2 . Figure 2.2 depicts a schematic representation of post combustion carbon capture.

Figure 2.2: Post Combustion Carbon Capture

To manage a large volume of flue gases, large-scale equipment with a significant capital cost is necessary. As a result, a cost-effective method for capturing CO_2 from exhaust gas must be found. In addition, the flue gas contains a variety of pollutants, including SO_x , NO_x , fly ash, and others. With current technology, they make the separation process more expensive. For a variety of reasons, separating CO_2 from flue gas is difficult (Shariff et al., 2016). The high temperature of the flue gas causes special equipment design. Before separating CO_2 , the gas must be cleansed.

A 41	Var	F! !!
Author	rear	Findings
(Guo et al.)	2010	They made and tried high-permeance layers and
		utilized an extraordinary method that pre-owned
		approaching burning air as a range gas. More
		spotlight was put on film permeance rather than
		selectivity.
(Houghton)	2010	A unique PSA superstructure was presented in
		order to construct and assess the best Cycle
		configuration for CO ₂ collection techniques. PSA
		cycles with a purity of 98% may be predicted using
		the superstructure.
(Feng et	2010	Distinctive pure and diluted ionic liquids were
al.)		examined as prospective solvents and contrasted to
		MEA and water, which are currently the most used
		solvents. The energy requirement of one of the ionic
		liquids was lower than that of the reference
		dissolvable.
(Du Preez	2011	Two MOFs were thoroughly investigated for their
et al.)		potential application as adsorbents in temperature
		swing adsorption for post-combustion carbon capture.
		In each case, Mg_2 (dobdc) produced a superior
		outcome. They came to the conclusion that a MOF
		must have a robust CO ₂ adsorption site in order to be
		beneficial in post-combustion carbon collection via
		temperature swing adsorption.
(Noorani &	2011	Carbonic anhydrase generated from thermophiles
Mehrdad)		was shown to have the ability to speed up the post-
		combustion capture process.
(Lee et al.)	2012	Because of their high surface area and
		customizable qualities and characteristics, they
		recommended using nanoparticles as absorbents. The
		only issue was the high cost of manufacture and the
		lengthy synthesis procedure.
(Portugal	2013	Proposed changes to three-layer stages and
et al.)		cryogenic partition to improve post-combustion
		carbon capture efficiency. The suggested process'
		capture cost remained equivalent to current
	0.010	innovations.
(Ramazani	2013	They tried an assortment of zeolite materials for
et al.)		use as adsorbents in carbon catch after burning.
		Among the zeolites, Ca-A (Na _{0.28} Ca _{0.36} AlSiO ₄) has
	2014	the greatest CO_2 uptake among the zeolites.
(Said et al.)	2014	I o examine the influence of membrane
		characteristics on CO_2 absorption, a numerical model
		was proposed. CO_2 collection was shown to be
		improved by increasing membrane length and number
		of fibers. The removal of CO_2 was enhanced with a
		diminishing in layer thickness, inward fiber range,
		while absorption was lowered.

Table 2.3: Studies on Post Combustion Carbon Capture

Author	Year	Findings
(Shakerian et al.)	2014	A correlation of an aqueous amine solution and alkali as a solvent was revealed. The absorption and
		loading capacity of aqueous ammonia were found to
		be higher while needing less energy for recovery.
		However, retention should be done absorption at a
		lower temperature by chilling the pipe gas.
(Shariff et	2016	Thirty alternative aqueous amine solutions were
al.)		tested for improved performance, and six of them
		outperformed the reference MEA. The finest among
		them was 2-ethylaminoethanol, which had strong CO_2
		retention, low absorption heat, and a high motor
	2016	reaction with CO ₂ elimination.
(Zhang)	2016	A numerical model was proposed to determine the
		best working parameters for corrosive gas assimilation
		in the empty fiber layer module. Compound solvents
		absorbed CO_2 significantly better than physical
		solvents. Among single solvents, piperazine
		performed the best. CO ₂ removal efficiency was 20%
(Thompson	2017	The amine sheath or was subjected to two stores
(Inompson of al)	2017	atting in order to reduce costs and improve
et al.)		suppling in order to reduce costs and improve
		amployed in the secondary stripper. Different
		chemicals' emissions were compared. The overall
		amine ammonia and aldehyde emission levels were
		comparable to earlier reported studies
(Scholes et	2018	A 2D model for a CO ₂ -niperazine film retention
(Senores et	2010	framework was proposed. They recommended the
		ideal gas speed, permeable speed, CO ₂ conc. and
		dissolvable for the best results.

Table 2.4: Studies on Post Combustion Carbon Capture (continued)

2.3.1.3 CO₂ Separation Technology

For removing CO₂ from gas mixtures, a variety of separation processes are available. The major technologies may be divided into five categories. Retention, adsorption, the clathrate hydrate process, film innovation, and calcium circling carbon capture are the technologies involved. The invention and performance enhancement of various solvents is the major focus of research in the absorption process. The focus of adsorption technology is on novel and modified materials (Rubin et al., 2012). For better execution, the clathrate hydration division strategy is being tried with different thermodynamic advertisers. For further developed execution, film-based examination uses layers made of different materials, including composite and crossover layers (Ramezani, Mazinani, Di Felice, Darvishmanesh, et al., 2017).

(a) Absorption

The method involved with retaining CO_2 in a dissolvable to eliminate it from a gas stream has been used on a modern scale for over 50 years, but in modern applications, the fractional tension of the gas streams is a lot more prominent. This cycle might be partitioned into two kinds: actual ingestion and substance assimilation (Rochelle Gary, 2009). The realistic underneath portrays an exhaustive order of the retention-based CO_2 gathering innovation.

Figure 2.3: Types of Absorption Process for CO₂ Capture

Chemical absorption is a process in which a solvent combines with CO_2 to generate chemical compounds. Later on, CO_2 is eliminated from the chemical components. If the solvent is chemically inert, however, it does not react with CO_2 . It physically absorbs CO_2 (Ramezani, Mazinani, Di Felice, & Van der Bruggen, 2017). Physical absorption is the term for this procedure. CO_2 is absorbed in two steps, chemically and physically. In a counterflow, the treated gas is at first carried into contact with the dissolvable stream. The dissolvable retains CO_2 from the gas stream at this progression. At the point when this dissolvable is warmed to desorb CO_2 in a stripping segment, it is recovered. From the highest point of the segment, pure CO_2 is collected. After that, it's compressed and saved. The CO₂ lean solvent that has been regenerated is returned to the absorber (Qiang et al., 2020). The procedure is depicted in the diagram below.

Figure 2.4: CO₂ Absorption Plant

The initial step of the interaction works best at high tensions and low temperatures, though the subsequent stage works best at high tensions and low temperatures. At low tensions, synthetic ingestion is more favorable for CO_2 capture (Allam et al., 2013). This is favorable for the post burning cycle when amine or carbonate arrangements are used as solvents. Actual solvents, either natural or inorganic, are used in case of actual assimilation. CO_2 has no substance response with them. Henry's law of fume fluid blend balance is utilized in this cycle (Portugal et al., 2007).

The measure of gas disintegrated in a unit volume of a dissolvable is corresponding to the halfway strain of the gas in balance with the dissolvable at any temperature, as shown by this law. Since the actual retention process is pressure subordinate, it performs better compared to synthetic ingestion at higher CO₂ pressure, for example, in an IGCC (Raksajati et al., 2016). Because of the more noteworthy halfway strain of CO₂ in syngas, which makes it more fitting for precombustion carbon capture, an actual retention strategy is proposed for utilization in IGCC. One more benefit of actual solvents is that they need less energy to recover (Lepaumier et al., 2011). The disadvantage of this method is that solvent capacity is highest at low temperatures. As a result, the gas stream should be cooled before the retention interaction can start. This outcomes in a decline in productivity (Mouhoubi et al., 2020). Selexol, Rectisol, and Purisol are some of the commercially available physical absorption techniques. Selexol was discovered to be more energy efficient than other examined solvents for absorbing CO_2 . The rationale for this was the lower energy consumption required to replenish the solvent, as well as the simplicity of the process architecture (Ling et al., 2019). In the post-burning carbon capture process, the incomplete pressure of CO_2 in the vent gas stream is extremely low. Accordingly, the aim of this strategy' study is to recognize a reasonable dissolvable.

Absorption technology	Benefits	Drawbacks
Fluor process (Propylene Carbonate)	Technology that has been demonstrated to work. Solvent that isn't corrosive. CO ₂ selectivity is high.	In the input gas stream, there is a low tolerance for H ₂ S. Due to its high-water solubility, feed gas must be dried.
Rectisol Process (Chilled Methanol)	Low-cost solvent. In a single procedure, it is possible to eliminate a large number of impurities. CO_2 and H_2S have a high selectivity.	High energy costs for refrigeration. H ₂ S has a higher selectivity than CO ₂ . Due to its high-water solubility, feed gas must be dried.
Selexol Process (DMEPG)	Not susceptible to deterioration. Vapor pressure is quite low. CO ₂ and H ₂ S may be captured from syngas using a two-stage procedure.	CO ₂ partial pressure must be high. Viscosity of the solvent is high. Expensive solvents.

Table 2.5: Benefits and Drawbacks of Various Absorption Technology forPhysical Absorption

Absorption Technology	Benefits	Drawbacks
Amine systems (MEA, DMEA etc.)	Technology that has been demonstrated to work. Low initial investment. Other solvent systems can use this as a benchmark.	Loading capacity is limited. Sorbent regeneration needs a lot of energy. Degradation of items that is hazardous. Mist formation causes a loss of solvent. Resilience to NO _x , SO ₂ , and O ₂ is low.
Bi-phasic liquid solvents	Energy utilization is diminished. Destructiveness is diminished.	Higher tension drops.
Potassium carbonate system	Higher limit with respect to dissolvable stacking. Recovery energy prerequisites are decreased. Minimal expense dissolvable. Destructiveness is diminished.	Response time is slow. Additives are expensive. Fouling of the system.
Aqueous Ammonia	Regeneration energy requirements are reduced. Low-cost solvent.	Solvent loss is high. Lowering the operating temperature.
Chilled Ammonia	Regeneration energy requirements are reduced. There is no deterioration of the solvent. Low-cost solvent. By-product that can be sold.	Operating temperatures are below freezing. Possibility of fouling.
Task specific and Reversible Ionic Liquids	Low dissolvable misfortune and unpredictability. Solidness is fantastic. Ingestion heat is very low. Dual-mode, high- capacity loading.	Cost of manufacture is high. With the presence of water, absorption efficiency is reduced. The rate of absorption is slowed by high viscosity.
Sodium Hydroxide	Chemicals are inexpensive and plentiful. Other sectors have benefited from proven technology.	A lot of energy is required. Water and solvent loss are both high.

Table 2.6: Benefits and Drawbacks of Various Absorption Technology forChemical Absorption

(b) Adsorption

Utilizing a strong surface, this is the procedure of separating a part from a combination. Between the strong stage adsorbent surface and CO₂, dissimilar to retention processes, physical or synthetic linkages are shaped. The main impetus for adsorption is the intermolecular communications between strong surfaces and gases. In view of the adsorbent pore size, temperature, tension, and surface power, single or various layers of the gas can be ingested (Kim et al., 2021).

The adsorbent is first filled a segment. The CO₂-bearing gas stream is then directed through this section. During the stream to immersion of the adsorbent, CO₂ appends to the strong surface of the permeable (Hu et al., 2016). At the point when the CO₂ adsorption surface gets soaked, it is eliminated and desorbed in a progression of cycles. For single bed CO₂ adsorption, four separate recovery cycles are regularly used. Pressure swing adsorption (PSA), temperature swing adsorption (TSA), electrical swing adsorption (ESA), and vacuum swing adsorption (VSA) are the four regeneration cycles (Falkenstein-Smith et al., 2017).

(c) Membrane Technology

Layers are semi-penetrable boundaries made of assorted materials that, through different techniques, may isolate unmistakable parts from a blend. Natural or inorganic materials can make films. In non-worked with layers, the arrangement dissemination process happens. In the wake of being broken down in the layer, the saturate diffuses through it (Feng et al., 2013). The halfway strain of CO₂ is identified with the amount of CO₂ broke down per unit volume. The incomplete strain of CO₂ remains fairly high on account of precombustion capture. In this situation, non-worked with film division method is more valuable.

Spiral wound, level sheet, and empty fiber modules would all be able to profit from layers. For a given acidic gas, they may be particular or non-specific. For carbon capture, film innovation might be partitioned into two classes: gas detachment layers and gas retention layers (Dai & Deng, 2016). This technique has the advantage of not causing sobbing, entrainment, frothing, or flooding, which are regular issues when using a pressed segment. They likewise highlight a bigger surface region and worked on fluid and gas
stream rate control. The crucial downside of layers is that they are less effective at lower CO_2 solubility. At the point when the CO_2 focus in the gas stream falls underneath 20%, the layer loses its adaptability and becomes unusable (Choi et al., 2012). Subsequently, it is inadmissible for use in the post-ignition catch method.

(d) Clathrate Hydrate Process

Water molecules plus a variety of other chemicals, such as CO₂, N₂, H₂, and O₂, combine to produce gas hydrates or clathrate hydrates, which are ice-like crystal formations (Shaikh et al., 2014). Small gas molecules become trapped within water molecule holes. Different gases have different concentrations in the crystals than they do in the original gas mixture. The fundamental thought behind CO₂ detachment is to specifically segment CO₂ from a gas blend between the strong hydrate gem stage and the vaporous stage by producing a hydrate gem (Ling et al., 2019).

At a temperature of 273.9 K, the most reduced tension needed to make hydrate is 5.56 MPa. Syngas pressure following the water gas shift response is commonly 2–7 MPa, yet post-ignition pipe gas pressure is practically at environmental tension (Suleman, Maulud, Syalsabila, Shahid, et al., 2020). Thus, pressure of the gas stream is needed to speed up the creation of hydrates.

(e) Calcium Looping Technology

To extract CO_2 from a gas stream, the calcium looping carbon capture system employs a different approach. An immediate connection among CO_2 and CaO happens in this methodology (Zhang et al., 2018). This response makes strong calcium carbonate, which can be isolated from different gases effortlessly. This method' key reversible reaction is as follows:

$$CaO + CO_2 \rightleftharpoons CaCO_3$$

Exothermic is the forward response, regularly known as the carbonation response. The converse response is called calcination response, which is endothermic. The underlying speed of a carbonation response is truly fast, yet eventually, it dials back drastically (Shuaib et al., 2014). The calcination reactor requires an enormous amount of hotness to be conveyed at a high temperature because of the endothermic response. Inside the calcination reactor, this hotness is often given by oxy ignition of coal or petroleum gas. CO₂ is compacted and put away when it is recuperated from the calcination reactor. This strategy might capture carbon both previously, then after the fact consuming. In a precombustion carbon catch gasifier, the accompanying response is the planned key response (Mitchell et al., 2019).

$$CO + H_2O + CaO \rightleftharpoons CaCO_3 + H_2$$

The calcium looping technique has certain benefits for precombustion carbon collection. At the point when hydrogen is used as a fuel, $CaCO_3$ and CaO improve the pace of tar breakdown, which is muddled. The pace of change from CH_4 and CO to H_2 is similarly expanded when CO_2 is taken out from the gas blend. This method is most commonly used in post-combustion carbon capture (Denman, 2007).

2.3.2 Carbon Capture by Water Condensation

In terms of electricity generation, this approach is relatively new. Rather than giving air to the ignition chamber, unadulterated oxygen is used. Most of the burning items are CO₂ and steam. Consolidating steam captures the CO₂ convergence of the combination (Agarwal et al., 2010). None of the CO₂ division advances laid out in the past segment are required. This strategy is all the more monetarily practical. The strategy is known as oxy-combustion carbon capture on the off chance that the oxygen is made utilizing an Air Separation Unit (ASU). One more technique for conveying oxygen is to use a metal oxide and a substance circling process called compound circling burning (Hu et al., 2016).

2.3.2.1 Oxy-Combustion Carbon Capture

Fuel is burned in practically pure oxygen rather than air in this manner. This strategy delivers a blend of water and carbon dioxide as pipe gas. Fuel is combusted in air in a customary power plant, and the nitrogen noticeable all-around capacities as a temperature controller. The fire temperature ascends unnecessarily high because no N_2 is available in the combustor of oxy fuel burning (Feng et al., 2013). To keep up with the temperature taken care of, recovered CO₂ is blended in with unadulterated oxygen and took care of into the combustor. Infusing steam into the burning chamber is one more way to deal with keep the fire temperature inside the predefined range. Build-up eliminates water from the item subsequent to consuming. The CO₂ is cleaned and compressed to supercritical pressure before being transported or reused in the cycle.

Figure 2.5: Oxy Combustion Carbon Capture

Because CO₂ and N₂ have distinct properties, the chemical pathway and combustion parameters of oxy combustion differ from those of normal air-fuel combustion (Huang et al., 2014). These irregularities in combustion properties necessitate more investigation in order to fully comprehend and apply this technology. When compared to ordinary combustion, oxygen fuel combustion provides several advantages. In a traditional air firing system, there is still a significant quantity of N₂. Nitrogen requires a lot of heat before it can be released into the atmosphere, however with oxy combustion, this mass N_2 isn't there (Li et al., 2019).

There is no or very little NO_x creation in this process due to the lack of nitrogen. The combustion products include no other important contaminants. As a result, the oxy fuel combustion process is less costly than the carbon capture systems previously addressed. The high operating expense of creating O_2 and pressurizing CO_2 after burning is the method's principal downside. One of the most difficult aspects of this technology is producing high-purity oxygen at a reasonable cost (Noorani & Mehrdad, 2021).

Author	Year	Work
(Riaza et al.)	2011	The joining of an oxyfuel burning interaction with a CO ₂ assortment technique utilizing Mg
		$(OH)_2$ was shown.
(Stanger &	2011	The impact of Sulphur on CO ₂ catch during oxy
Wall)		burning was illustrated.
(Said et al.)	2012	In an oxy fuel climate, NO outflow, start
		temperature, and burnout with coal and biomass
		were explored. When N_2 was substituted with CO_2 ,
		the ignition temperature rose. As a result of the
		addition of biomass, the temperature dropped.
(Allam et al.)	2013	The Allam power cycle, a CO ₂ -put together
		cycle based with respect to oxy ignition with
		almost zero emanations, was proposed.
(Leckner &	2014	For oxy ignition, a prepared to-change over air
Gómez-Barea)		terminated CFB heater was contrasted with a
		recently fabricated oxy fuel CFB evaporator. It
		was more helpful with the new plan.
(Vellini &	2015	The examination looked on a further developed
Gambini)		supercritical steam cycle power plant with CO ₂
		catch dependent on oxy fuel ignition. For a high
		oxygen age rate, an oxygen transport layer was
		used.
(Scaccabarozzi	2016	The enhancement of a NET power oxy burning
et al.)		cycle was concentrated mathematically.
(Hamzehie &	2016	A ceramic membrane catalytic reactor was used
Najibi)		to assess CO ₂ selectivity and O ₂ permeability
(Climent Barba	2016	For improved performance, several oxy turbine
et al.)		power cycles with total carbon capture were
		analyzed.

Table 2.7: Studies on Oxy-Combustion Carbon Capture

Author	Year	Works
(El Hadri et al.)	2017	The impact of recuperator execution on a semi-
		shut oxy burning blended cycle was explored.
(Lucquiaud &	2017	Diverse incredibly basic CO ₂ cycles for power
Gibbins)		age were examined.

Table 2.8: Studies on Oxy-Combustion Carbon Capture (continued)

2.3.3 Correlation of Different Combustion Technologies for CO₂ Capture

The three CO₂ absorption frameworks talked about above are analyzed in Table 5. Preignition is frequently used in coal-gasification offices, albeit post-burning and oxyfuel combustion can be used in coal and gas-terminated plants. The most advanced CO₂ collecting technology is currently post-combustion technologies (Portugal et al., 2009).

Capture Process	Benefits	Drawbacks
Post- combustion	Innovation is more developed than different choices, and it tends to be retrofitted into existing offices effortlessly.	Low CO ₂ conc. affects capture effectiveness.
Pre- combustion	High CO ₂ focuses further develop sorption productivity; completely settled innovation that has been monetarily conveyed at the imperative scale in a few modern areas; retrofit potential for existing plants.	High parasitic power need for sorbent recovery; temperature- related hotness moves trouble and effectiveness corruption challenges connected with the use of hydrogen-rich gas turbine fuel; Due to the limited number of gasification facilities now functioning on the market, there is a lack of experience; existing sorption systems have significant capital and operational expenses.
Oxyfuel combustion	High CO ₂ conc., which further develops assimilation proficiency; mature air partition innovation; less measure of gas to be dealt with, requiring a more modest heater and other hardware.	High effectiveness endures because of the energy punishment; cryogenic O ₂ age is costly; and erosion issues might arise.
Chemical looping combustion	The central burning item, CO ₂ , stays unmixed with N ₂ , wiping out the energy- concentrated air division process.	The interaction is as yet being developed, and there isn't sufficient skill with enormous scope tasks.

Table 2.9: Benefits and Drawbacks of the Different CO₂ Capture Technologies

2.4 Solvents for Carbon Dioxide Absorption

2.4.1 Chemical Absorption Solvents

2.4.1.1 Conventional Amine Based Solvents

For carbon dioxide (CO₂) and hydrogen sulphide (H₂S), amine-based solvents have been used in gas-treatment systems. It is seen as a potentially useful technique for reducing CO₂ emissions. Power plants, cement manufacture, and iron and steel production are all examples of industrial operations that use amine-based solvents. In a publication, Alivand et al. (2019) stated that aqueous monoethanolamine (MEA) is efficient and inexpensive for most industrial uses. It does, however, have significant drawbacks that must be overlooked. MEA uses a lot of energy during the regeneration process, and this, along with its high volatility, leads to equipment corrosion and toxicity, as well as limited thermal stability and solvent deterioration. A researcher investigates and debates the most efficient methods for reducing solvent deterioration. Chi and Rochelle (2002) conducted an experiment using the carbamate polymerization process, claiming that thermal degradation of MEA occurs at high temperatures, whereas oxidative degradation happens near the bottom of the absorber in the presence of oxygen.

Organic carboxylic acids react with amine during solvent degradation to generate heatstable salts, according to Lepaumier et al. (2011). According to D. Jouravleva (2000), salt builds up, making it difficult to regenerate and absorb CO₂. When a result, as the amount of heat-stable salt grows, the maintenance and operational costs rise. Using an aqueous MEA solution, Ling et al. (2019) explored how different factors affect the carboxylic acid. When carboxylic acid is introduced to MEA solution, they discovered that the equilibrium stability and pH values drop. This means that any acidic breakdown products should be avoided in MEA solutions in order to improve absorption and reduce energy consumption.

2.4.1.2 Sterically Hindered Amine Solvents

This kind of amine enhances CO₂ absorption rate when compared to primary and secondary amines. It also cuts down on energy usage (Hüser et al., 2017). In a research, Choi et al. (2012) employed 2MPD as a promoter to improve the reaction rate of sterically hindered amines (AMP) and tertiary amines (TEA and MDEA). When compared to MEA, this is owing to their poor mass transfer rate. The mas transmission rate of mixed aqueous solutions was investigated in this work. When 2MPD is added to the combined solvents, the reaction rate significantly rises. This shows that mixed solvents outperform MEA in terms of absorption and may replace MEA in industrial processes without requiring innovation.

2.4.1.3 Non-Amine Based Solvents

Non-amine-based solvents have been recommended as a potential substitute for aminebased solvents. Sodium carbonate (Na₂CO₃) and potassium carbonate (K₂CO₃) are two instances of these solvents. Na₂CO₃ performs well in the assimilation of carbon dioxide from vent gas and is an obviously better choice than MEA. Using Na₂CO₃, it has a high CO₂ loading limit and can eliminate CO₂ when foreign substances are available and at a low pace of solubility (Knuutila et al., 2009).

Aside from sodium carbonate, K_2CO_3 is one more regular advertiser for CO_2 ingestion (Sartori et al., 1987). Borhani et al. (2015) observed that K_2CO_3 is a productive CO_2 capture dissolvable, however that the response rate is unstable, bringing about restricted mass exchange. He prescribed that an advertiser be added to support the speed of ingestion reaction. Using his thought, Ahmed and Wiheeb (2020) did an examination to perceive how adding six distinct kinds of amino corrosive salts impacted CO₂ solubility experiment. Not set in stone at the finish of his examination that adding amino corrosive salts upgrades carbon dioxide loading and effective recovery rate, bringing down working expenses. Kim et al. (2012) accomplished one more work utilizing 2-methylpiperazine and piperazine, added to a non-watery arrangement of K₂CO₃, which essentially upgrades CO₂ capture limit over MEA.

2.4.1.4 Solvents Blends

The utilization of amine solvents for CO₂ solubility builds recovery energy and adds to dissolvable decay. This issue can be settled by using amine blends, which have a considerably higher CO₂ solubility rate (Chi & Rochelle, 2002). Brúder et al. (2011) used piperazine (PZ) enacted 2-amino-2-methyl-1-propanol (AMP) to lead a CO₂ retention try. He found that, when amine blends are used rather than MEA, the cycle limit is more prominent.

Derks (2006) checked out the energy of carbon dioxide solubility in PZ arrangements while Sun et al. (2005) checked out the subsequent response model in a similar dissolvable. At the point when a little amount of PZ is added, the pace of CO₂ solubility ascends, as per their discoveries. Choi et al. (2012) led research that approved their thought, expressing that merging two amines lessens the dissolvable recovery energy and has a high response rate. Conway et al. (2014) utilized watery dissolvable mixes (BZA, MEA, sterically hindered and tertiary amines) to research carbon dioxide mass exchange and cyclic limit, which seems to be a reasonable dissolvable for carbon capture.

2.4.1.5 Ionic Liquids

This is a different type of solvent that may be used to absorb CO₂. Ionic liquids (ILs) have a low vapor pressure and high boiling point, allowing them to selectively absorb

 CO_2 . As a result, the energy required for regeneration was reduced. Because of their characteristics, using ILs as a solvent looks to be a potential CCS method (Rubin et al., 2012). ILs, on the other hand, have a low mass transfer capacity and a high viscosity. The rate of CO_2 reaction in MDEA is considerably improved by increasing ionic liquid concentrations.

Kang et al. (2020) made amino gathering functionalized imidazolium-based AAILs utilizing amino corrosive anions, tracking down that 1-(3-aminopropyl)- 3-(2-aminoethyl) imidazolium ([Apaeim]) had a higher solubility limit than MEA. According to the findings, altering the quantity of amino groups in the IL will be a potential strategy to modulate carbon dioxide absorption capability. Li et al. (2019) developed choline-based AAILs and tested their CO₂ solubility. When compared to other proteins, [Cho] [Lys] contributes a better absorption capacity.

2.4.1.6 New Generation Solvents

New generation solvents are being used to cut down on energy use and make CO₂ absorption a cost-effective method. Zheng et al. (2014) examined the stage change conduct of triethylenetetramine (TETA) in ethanol (TETA/ethanol) during CO₂ elimination. As shown by him, strong precipitation happens in the TETA/ethanol dissolvable yet not in the TETA/water dissolvable. Cheng et al. (2017) found that when N-methyl-1,3-diaminopropane (MAPA) and N, N-dimethylformamide (DMF) are joined, a strong encourage is created when CO₂ is captured.

2.4.2.1 Sulfinol

Sulfinol is essentially used to eliminate hydrogen sulfide, carbon dioxide, and an assortment of different foreign substances from normal and manufactured gas. The utilization of this dissolvable lifts CO₂ absorption limit while bringing down recovery energy (Huang et al., 2014). As indicated by Dash and Bandyopadhyay (2016), joining alkanol amines with sulfolane brings down the dissolvable recovery energy. Because of the great mass organization of sulfolane, consolidating MDEA, sulfolane, and water for CO₂ absorption brings down carbon dioxide dissolvability.

2.5 Amino Acids for CO₂ Absorption

2.5.1 Inorganic Amino Acids with Ammonia

Yang et al. (2014) performed research in which amino acids were introduced to ammonia and the vapor loss was measured. He experimented with a variety of amino acids, demonstrating that taurine is one of the most effective. The effect on vapor loss is improved by adding NH₃ solvent. Another researcher discovered that combining ammonia and sodium sarcosinate improves CO₂ loading. Supplementing this amino acid increases the ammonia absorption mechanism (Yu et al., 2012).

2.5.2 Organic and Inorganic Salts of Amino Acids

Albeit amino acids are believed to be a compelling substitute for amine in CO₂ solubility, they have a slower pace of absorption and less CO₂ loading at pH 7. Because of this issue, bases like KOH, NaOH, and LiOH are used to degrade amino acids and increment their importance. MEA and MAPA can likewise be used to further develop

CO₂ capture. At the point when Ciftja et al. (2013) researched the deprotonation stage between amino acids and MEA, he found that balance didn't happen completely. Moreover, Aronu et al. (2010) concentrated on the exhibition of MAPA in blend with amino acids, and found that amino corrosive salts are impressively steadier than MEA. Be that as it may, he used KOH as the base in his trial, and amine-amino corrosive salts were displayed to work better compared to KOH.

Beside the kind of solvents and bases used, there are distinct different elements that may impact carbon dioxide's absorption. Increasing CO₂ partial pressure, according to Kumar et al. (2003), will enhance loading capacity. Because of its exothermic nature, increasing the temperature of the solution reduces chemical absorption. With different types of amino acids, Yuan et al. (2017) examined the cyclic capacity of MEA and PZ. The desorption rate increases as the initial rate of absorption drops, according to the findings. This is because amino acids have a bigger substituted side group and carboxyl group due to their structure.

2.5.3 Amino Acids Based Ionic Liquids

Notwithstanding how ionic fluid lifts CO₂ loading limit, is cheap, non-harmful, and easy to get, it has a high thickness. Subsequently, amino corrosive based ionic fluids have been used to expand CO₂ solubility. Not every amino corrosive might be joined with ionic fluids (Vasantha et al., 2012). Many analysts made novel types of amino-based ionic acids to perceive how they responded to carbon dioxide ingestion. Lu et al. (2017) used a cell reactor to direct an investigation and found that, at an immersion point, the response rate diminishes with time. Nonetheless, the dissolvable seems to be steady, with less energy degradation (Xue et al., 2011).

2.5.4 Amino Acids with Carbonate Salts

Carbonate salts have been used in several studies for CO₂ absorption. This is because it is inexpensive and available in a variety of locations (Hu et al., 2016). However, the reaction rate is minimal, and the absorption kinetics diminishes as temperature and partial pressure rise. Several promoters have been used to improve the response rate as a result of this problem (Borhani et al., 2015).

Amino acids	K ₂ CO ₃ concentration	Amino acid concentration (M)	T(K)	Absorption rate
Arginine	35	0.077	322	0.44
Arginine	35	0.387	322	1.35
Histidine	35	0.104	322	1.54
Glycine	30	1	333	22
Sarcosine	30	1	333	45
Proline	30	1	333	14

Figure 2.6: Different Amino Acids with K₂CO₃ Solution (Hu et al., 2016; Sanchez-Fernandez, Heffernan, van der Ham, Linders, Goetheer, et al., 2014; Shen, Feng, Zhao, et al., 2013; Thee et al., 2014)

As observed from the table, raising the temperature and amino acid content in K_2CO_3 solution boosts CO_2 absorption rate. In comparison to other amino acids, sarcosine performs well in potassium carbonate solution.

2.5.5 Inorganic Amino Acids Salts with Alkanol Amines

At the point when PZ is added to amino acids, layer contactors gain a critical benefit in the ingestion cycle. It brings down the surface pressure of the used arrangement (Song et al., 2012). PZ enhances the reaction rate and absorption capacity when used as a solvent with amino acids. Ramezani, Mazinani, Di Felice and Van der Bruggen (2017) carried out a successful experiment in which potassium lycinate was combined with MEA to boost its performance. The concentration of amino acids in the solution rises, increasing the rate of corrosion. However, raising the temperature of the solution improves density, viscosity, and CO₂ loading.

CHAPTER 3: RESEERCH METHODOLOGY

In this study, the CO₂ absorption in blends aqueous solution of MEA + L-Serine were experimentally measured at three (3) different concentration of each of the solutions. The absorption experiment was conducted at four (4) different temperatures (303.15 K, 313.15 K, 323.15 K & 333.15 K) over CO₂ partial pressures ranging from 50 psi–200 psi (344.75 kPa–1379 kPa).

3.1 Chemicals

Monoethanolamine (MEA), L-Serine, Distilled Water, Carbon Dioxide (CO2) gas

3.2 Apparatus

Electronic Balance, Beaker, Pipette, Hot Plate, High Pressure CO₂ Absorption Reactor, Magnetic Stirrer, 50 mL Volumetric Flask, 30 mL Clear Refillable Glass Bottle, Parafilm, Weighting Dish

3.3 Preparation of Aqueous Solutions

Three (3) different concentrations of L–Ser and MEA were prepared separately ranging from 0.5 M–2.0 M. different concentrations of blended MEA and L–Ser later were prepared. Table 3.1 shows the amount of each chemical used in order to achieve the desired concentrations for both MEA and L-Ser.

Solution	Amount of MEA (g)	Amount of L-Ser (g)
2.0 M MEA	3.1	-
1.5 M MEA + 0.5 M L - Serine	2.3	1.3
1.0 M MEA + 1.0 M L - Serine	1.5	2.7

Table 3.1: Amount	t of MEA and	L-Ser for	Each Sample
-------------------	--------------	-----------	-------------

3.3.1 Preparation of MEA + L-Serine

A specific amount of MEA was transferred to a beaker to be measured by electronic balance. Serine was collected in a weighing dish while being measured by electronic balance. The sample is later mixed with 10 mL of distilled water in a beaker. It is placed on a hot plate together with a magnetic stirrer to dissolve the serine completely. The dissolved serine solution and MEA solution is transferred into a 25 mL volumetric flask. Distilled water was then added to the etched line on the neck of the flask and mixed thoroughly.

3.4 CO₂ Absorption Experiment

3.4.1 Experimental Procedure

High pressure CO₂ absorption reactor was equipped with a thermocouple, a stirring impeller, which is linked to a data acquisition system (PC). Glass insert was provided together with reactor clamp and clamp belt to hold the sample securely. Type J thermocouple were used to measure the temperature in the reactor and water bath. Water bath is provided to heat the reactor to desired temperature set point.

Figure 3.1: High Pressure CO₂ Absorption Reactor Set - Up

3.4.2 Experimental Procedure

Before beginning the experiment, the main and bench valves of CO_2 and Compressed Air were opened. The reactor controller and PC were turned on. Gas tank outlet valve was closed while the inlet valve was opened to pressurize the gas tank to desired set point pressure. Gas tank and water bath temperature are heated to desired temperature. Both the pressure and temperature were allowed to stabilize.

20 mL of aqueous solution of MEA + L - Serine was placed in glass insert and into the lower part of the reactor before securing it with reactor clamp and clamp belt. After securely placing the sample, the reactor was lowered into the water bath. The temperature may stabilize to the desired temperature before beginning the experiment.

Once all the pressure and temperature of the gas tank and water bath were stabilized, the stirrer were turned on at a speed of 200–300 RPM. To begin the experiment, the gas tank outlet valve and reactor inlet valve were opened to introduce the gas into the reactor cell. Pressure drop will be observed and the gas tank pressure were allowed to be stable. Once the pressure was maintained for more than 30 minutes, the initial and final pressure of the gas tank was recorded. The procedure is repeated for all the different samples, pressures and temperatures.

3.5 Calculation for CO₂ loading

The CO₂ loading experiments for blend solution of MEA + L – Ser were conducted at different concentrations of each of the solutions, at different temperatures (303.15 K, 313.15 K, 323.15 K & 333.15) and four different pressures (50–200 psia). The pressure drops over time in the reactor because of CO₂ absorption in solution until the gas–liquid equilibrium state was continually monitored by the pressure transmitter every minute. The equilibrium state was determined when there was no change in the pressure of the reactor for at least 30 minutes.

$$PV = nRT$$
$$n = \frac{PV}{RT}$$

Where,

P = Pressure (Pa)

 $V = Volume (m^3)$

R = Gas Constant

- $= 8.3145 \text{ m}^{3}\text{Pa/mol. K}$
- T = Temperature (K)

 $\Delta n = n(CO_2) = no. of moles of CO_2 absorbed by samples$

$$\Delta n_{50} = \frac{P_1 V_1}{RT} - \frac{P_2 V_2}{RT} (1)$$

 $\frac{P_1V_1}{RT} = Initial \ n(CO_2) \ at \ Gas \ Tank \ (GT) \ at \ 50 \ psi$ $\frac{P_2V_2}{RT} = Final \ n(CO_2) \ in \ system \ except \ reactor \ at \ 50 \ psi$

$$\Delta n_{100} = \Delta n_{50} + \left[\left(\frac{P_1 V_1}{RT} + \frac{P_3 V_3}{RT} \right) - \frac{P_2 V_2}{RT} \right] (2)$$

$$\frac{P_1V_1}{RT} = Initial \ n(CO_2) \ at \ Gas \ Tank \ (GT) \ at \ 100 \ psi$$
$$\frac{P_2V_2}{RT} = Final \ n(CO_2) \ in \ system \ except \ reactor \ at \ 100 \ psi$$
$$\frac{P_3V_3}{RT} = n(CO_2) \ in \ pipe$$

$$\Delta n_{150} = \Delta n_{100} + \left[\left(\frac{P_1 V_1}{RT} + \frac{P_3 V_3}{RT} \right) - \frac{P_2 V_2}{RT} \right] (3)$$

$$\frac{P_1V_1}{RT} = Initial \ n(CO_2) \ at \ Gas \ Tank \ (GT) \ at \ 150 \ psi$$
$$\frac{P_2V_2}{RT} = Final \ n(CO_2) \ in \ system \ except \ reactor \ at \ 150 \ psi$$

$$\frac{P_3 V_3}{RT} = n(CO_2) \text{ in pipe}$$

$$\Delta n_{200} = \Delta n_{150} + \left[\left(\frac{P_1 V_1}{RT} + \frac{P_3 V_3}{RT} \right) - \frac{P_2 V_2}{RT} \right] (4)$$

$$\frac{P_1V_1}{RT} = Initial \ n(CO_2) \ at \ Gas \ Tank \ (GT) \ at \ 200 \ psi$$
$$\frac{P_2V_2}{RT} = Final \ n(CO_2) \ in \ system \ except \ reactor \ at \ 200 \ psi$$
$$\frac{P_3V_3}{RT} = n(CO_2) \ in \ pipe$$

$$V_{Total} = V_{GR} - V_P - V_R$$

$$V_{Total} = 0.00109666 \, m^3$$

$$V_1 = 0.001 m^3$$

 $V_2 = 0.00109666 m^3 - 0.00002 m^3$ $V_2 = 0.00107666 m^3$

$$V_3 = V_2 - V_1$$

 $V_3 = 0.00107666 m^3 - 0.001 m^3$
 $V_3 = 0.00007666 m^3$

 $CO_2 Loading Capacity (\alpha) = \frac{\Delta n}{n_{solvent}}$

 $n_{solvent} = n_{MEA} + n_{L-Serine}$

CHAPTER 4: RESULTS AND DISCUSSION

The CO₂ absorption experiment was conducted at 50 - 200 psi for each sample in a high-pressure CO₂ absorption reactor. It is done in a continuous flow for each sample. The reactor is equipped with a water bath to heat the samples in the reactor. The temperature of the water bath was set up 2–5°C more than the desired temperature. The experiment is conducted for four (4) different temperatures (303.15 K–333.15 K) for three (3) samples (2.0 M MEA; 1.5 M MEA + 0.5 M L-SER; 1.0 M MEA + 1.0 M L-SER). Table 4.1–4.4 contains the experimental CO₂ solubility data measured at 303.15 K–333.15 K.

Samples	CO ₂ Loading (α)
2.0 M MEA	0.68
	0.7625
	0.8075
	0.845
1.5 M MEA + 0.5 M L-SER	0.525
	0.59
	0.6725
	0.7
1.0 M MEA + 1.0 M L-SER	0.37
	0.415
	0.4425
	0.485

Table 4.1: Solubility Data for CO₂ Absorption at 303.15 K

Table 4.2: Solubility Data for CO2 Absorption at 313.15 K

Samples	CO ₂ Loading (α)
2.0 M MEA	0.6525
	0.7825
	0.845
	0.8875
1.5 M MEA + 0.5 M L-SER	0.495
	0.56
	0.6125
	0.715
1.0 M MEA + 1.0 M L-SER	0.29
	0.335
	0.3925
	0.425

Samples	CO ₂ Loading (α)
2.0 M MEA	0.6725
—	0.7575
	0.8975
	0.845
1.5 M MEA + 0.5 M L-SER	0.415
	0.4875
	0.5325
	0.7075
1.0 M MEA + 1.0 M L-SER	0.2625
	0.42
—	0.4675
	0.515

Table 4.3: Solubility Data for CO₂ Absorption at 323.15 K

Table 4.4: Solubility Data for CO₂ Absorption at 333.15 K

Samples	CO ₂ Loading (α)
2.0 M MEA	0.565
	0.6525
	0.6875
	0.735
1.5 M MEA + 0.5 M L-SER	0.51
	0.5425
	0.72
	0.7525
1.0 M MEA + 1.0 M L-SER	0.23
	0.285
	0.45
	0.5475

Figure 4.1: Quantity of Consumed Moles of CO2 at 303.15 K

Figure 4.2: Quantity of Consumed Moles of CO2 at 313.15 K

Figure 4.4: Quantity of Consumed Moles of CO2 at 333.15 K

The CO₂ loading into the blends of MEA + L-SER at various concentrations at the temperature of 303.15 K, 313.15 K, 323.15 K and 333.15 K are displayed in Figure 4.1–4.4. These figures show that at a temperature and pressure, the number of absorbed moles of CO₂ increases with the increasing the concentration of monoethanolamine (MEA) in the solutions. The reaction between MEA +L-Ser and CO₂ changed as the CO₂ loading increases. At low CO₂ loading, CO₂ absorption into MEA was an exothermic response, and the response was quick. At high CO₂ loading, the response became unstable and would be decomposed easily. In this period, some of MEA reacts with CO₂ to form carbamate, and some of MEA additionally could reacts with HCO₃ to form carbamate.

Besides, at given pressure and temperature, the solubility didn't monotonically increase with an increase in the equilibrium pressure. As should be visible in Figure 4.1 – 4.4, these curves have greatest points and when arriving at these most extreme points, have reverse proportionality with pressure. This should be visible on Figure 4.1 at the temperature of 323.15 K, the CO₂ loading for 2.0 M MEA decreases from 0.8975 to 0.845. This shows that 150 psi is the most extreme point for 2.0 M MEA. Other than that, it can likewise be seen that at 333.15 K for 2.0 M MEA, the quantity of CO₂ loading is lower compared with different temperatures. Comparing as far as the concentration of serine in

the mix, the quantity of consumed moles of CO_2 decreases as the concentration of serine increases in the solutions.

Figure 4.5: Impact of Temperature on CO2 Loading for 2.0 M MEA

Figure 4.6: Impact of Temperature on CO₂ for 1.5 M MEA + 0.5 M L-SER

Figure 4.7: Impact of Temperature on CO₂ for 1.0 M MEA + 1.0 M L-SER

The impact of temperature on CO_2 capture efficiency is displayed in Figure 4.5–4.7. It very well may be seen that CO_2 capture efficiency increases by increasing the temperature. Increasing temperature will influence reaction process and gas – fluid balance. Then again, raising temperature can increase the response rate with CO_2 and lower the thickness of solutions, subsequently further developing the fluid stage mass transfer process and the solubility of CO_2 . Then again, increasing temperature will prompt the decrease of CO_2 solubility in the aqueous solution, which is unbeneficial to absorption process. In this work, it is observed that increasing temperature somewhat further develop the CO_2 capture efficiency, which implies the previously mentioned beneficial outcomes for response are more compelling. The efficiency of CO_2 solubility with an increase in temperature shows that it is likely brought about by exothermic nature of absorption reaction between the CO_2 and amine groups.

CHAPTER 5: CONCLUSION

Alkanolamines such as MEA are one of the best chemical solvents to reduce the CO_2 emissions because its low cost, high resistance to thermal degradation, and high absorption rate, even though it has disadvantages. The aim of this research was to study CO_2 solubility in MEA + L-Ser solution with the utilization of high-pressure CO_2 absorption reactor. In this investigation, the solubility of CO_2 in blends of MEA + L-Ser solution was inspected at various temperatures, pressures, and concentrations. The experiment solution loading data showed that at a similar pressure, the solution decreases with increasing temperature. For sure, at a steady temperature, the solution loading increases, as the pressure builds, which shows that the response is exothermic response.

In this study, there is no studies of kinetics discussed. This was because the experiment is conducted in a continuous flow. For future recommendation, kinetic study can be studied. There have been many researches on the various solvents together with many absorbents as a promoter. However, researchers mainly used amino acids salt formation. There is no research on CO₂ absorption using amino acid original forms. For future recommendation, more research on CO₂ absorption using the original form of different amino acids with various solvents such as MDEA, DEA, DIPA and etc.

REFERENCES

- Abu-Zahra, M. R. M., Schneiders, L. H. J., Niederer, J. P. M., Feron, P. H. M., & Versteeg, G. F. (2007). CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine. *International Journal* of Greenhouse Gas Control, 1(1), 37-46. <u>https://doi.org/https://doi.org/10.1016/S1750-5836(06)00007-7</u>
- Aftab, A., M. Shariff, A., Garg, S., Lal, B., Shaikh, M. S., & Faiqa, N. (2018). Solubility of CO2 in aqueous sodium β-alaninate: Experimental study and modeling using Kent Eisenberg model. *Chemical Engineering Research and Design*, 131, 385-392. <u>https://doi.org/https://doi.org/10.1016/j.cherd.2017.10.023</u>
- Agarwal, A., Biegler, L. T., & Zitney, S. E. (2010). A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture [<u>https://doi.org/10.1002/aic.12107</u>]. AIChE Journal, 56(7), 1813-1828. https://doi.org/https://doi.org/10.1002/aic.12107
- Agency, I. E. (2012). CO2 Emissions from Fuel Combustion 2012. https://doi.org/doi:https://doi.org/10.1787/co2_fuel-2012-en
- Ahmed, R. E., & Wiheeb, A. D. (2020). Enhancement of carbon dioxide absorption into aqueous potassium carbonate by adding amino acid salts. *Materials Today: Proceedings*, 20, 611-616. https://doi.org/10.1016/j.matpr.2019.09.198
- Akbar, M. M., & Murugesan, T. (2012). Thermophysical properties for the binary mixtures of 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [hmim][Tf2N]+ N-methyldiethanolamine (MDEA) at temperatures (303.15 to 323.15) K. Journal of Molecular Liquids, 169, 95-101.
- Alivand, M. S., Mazaheri, O., Wu, Y., Stevens, G. W., Scholes, C. A., & Mumford, K. A. (2019). Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent. *Applied Energy*, 256, 113911. <u>https://doi.org/https://doi.org/10.1016/j.apenergy.2019.113911</u>
- Allam, R. J., Palmer, M. R., Brown, G. W., Fetvedt, J., Freed, D., Nomoto, H., Itoh, M., Okita, N., & Jones, C. (2013). High Efficiency and Low Cost of Electricity Generation from Fossil Fuels While Eliminating Atmospheric Emissions, Including Carbon Dioxide. *Energy Procedia*, 37, 1135-1149. https://doi.org/https://doi.org/10.1016/j.egypro.2013.05.211
- Ansaloni, L., Rennemo, R., Knuutila, H. K., & Deng, L. (2017). Development of membrane contactors using volatile amine-based absorbents for CO2 capture: Amine permeation through the membrane. *Journal of Membrane Science*, 537, 272-282. <u>https://doi.org/https://doi.org/10.1016/j.memsci.2017.05.016</u>
- Aronu, U. E., Hartono, A., & Svendsen, H. F. (2011). Kinetics of carbon dioxide absorption into aqueous amine amino acid salt: 3-(methylamino)propylamine/sarcosine solution. *Chemical Engineering Science*, 66(23), 6109-6119. <u>https://doi.org/https://doi.org/10.1016/j.ces.2011.08.036</u>

- Aronu, U. E., Svendsen, H. F., & Hoff, K. A. (2010). Investigation of amine amino acid salts for carbon dioxide absorption. *International Journal of Greenhouse Gas Control*, 4(5), 771-775. https://doi.org/10.1016/j.ijggc.2010.04.003
- Aronu, U. E., Svendsen,H.F.,Hoff,K.A.,Knuutila,H.,Kim,I.,Jonassen. (2009). Amine amino acid salt for carbon dioxide absorption. *The Fifth Trondheim Conference* on CO2 Capture, Transport and Storage.
- Aroua, M. K., Benamor, A., & Haji-Sulaiman, M. Z. (1999). Equilibrium Constant for Carbamate Formation from Monoethanolamine and Its Relationship with Temperature. *Journal of Chemical & Engineering Data*, 44(5), 887-891. https://doi.org/10.1021/je980290n
- Asadi, E., Haghtalab, A., & Shirazizadeh, H. A. (2020). High-pressure measurement and thermodynamic modeling of the carbon dioxide solubility in the aqueous 2-((2aminoethyl)-amino)-ethanol + sulfolane system at different temperatures. *Journal* of Molecular Liquids, 314, 113650. <u>https://doi.org/https://doi.org/10.1016/j.molliq.2020.113650</u>
- Association, W. S. (2011). Steel's contribution to a low carbon future: Worldsteel position paper. . *World Steel Association*.
- Ba-Shammak, M., Hernane Caruso, Ali Elkamel, Eric Croiset, and Peter L. Douglas. (2008). Analysis and Optimization of Carbon Dioxide Emission Mitigation Options in the Cement Industry. *American Journal of Environmental Sciences*, 4(no. 5), 482-490.
- Babu, P., Ong, H. W. N., & Linga, P. (2016). A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide. *Energy*, 94, 431-442. https://doi.org/https://doi.org/10.1016/j.energy.2015.11.009
- Bae, T.-H., Hudson, M. R., Mason, J. A., Queen, W. L., Dutton, J. J., Sumida, K., Micklash, K. J., Kaye, S. S., Brown, C. M., & Long, J. R. (2013). Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture [10.1039/C2EE23337A]. *Energy & Environmental Science*, 6(1), 128-138. <u>https://doi.org/10.1039/C2EE23337A</u>
- Bohloul, M. R., Peyghambarzadeh, S. M., Lee, A., & Vatani, A. (2014). Experimental and analytical study of solubility of carbon dioxide in aqueous solutions of potassium carbonate. *International Journal of Greenhouse Gas Control*, 29, 169-175. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2014.08.009</u>
- Borhani, T. N. G., Azarpour, A., Akbari, V., Wan Alwi, S. R., & Manan, Z. A. (2015). CO2 capture with potassium carbonate solutions: A state-of-the-art review. *International Journal of Greenhouse Gas Control*, 41, 142-162. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2015.06.026</u>
- Brúder, P., Grimstvedt, A., Mejdell, T., & Svendsen, H. F. (2011). CO2 capture into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol.

Chemical Engineering Science, *66*(23), 6193-6198. https://doi.org/https://doi.org/10.1016/j.ces.2011.08.051

- Casas, N., Schell, J., Joss, L., & Mazzotti, M. (2013). A parametric study of a PSA process for pre-combustion CO2 capture. *Separation and Purification Technology*, 104, 183-192. <u>https://doi.org/https://doi.org/10.1016/j.seppur.2012.11.018</u>
- Chang, Y.-T., Leron, R. B., & Li, M.-H. (2015). Carbon dioxide solubility in aqueous potassium salt solutions of l-proline and dl-α-aminobutyric acid at high pressures. *The Journal of Chemical Thermodynamics*, 83, 110-116. https://doi.org/https://doi.org/10.1016/j.jct.2014.12.010
- Chen, Y., Li, B., Wu, J., Yang, Z., Lu, X., & Ji, X. (2021). Kinetics study and performance comparison of CO2 separation using aqueous choline-amino acid solutions. *Separation and Purification Technology*, 261, 118284. <u>https://doi.org/https://doi.org/10.1016/j.seppur.2020.118284</u>
- Chen, Z.-W., Leron, R. B., & Li, M.-H. (2015). Equilibrium solubility of carbon dioxide in aqueous potassium l-asparaginate and potassium l-glutaminate solutions. *Fluid Phase* Equilibria, 400, 20-26. <u>https://doi.org/https://doi.org/10.1016/j.fluid.2015.04.023</u>
- Cheng, J., Li, Y., Hu, L., Liu, J., Zhou, J., & Cen, K. (2017). Characterization of CO2 Absorption and Carbamate Precipitate in Phase-Change N-Methyl-1,3diaminopropane/N,N-Dimethylformamide Solvent. *Energy & Fuels*, 31(12), 13972-13978. <u>https://doi.org/10.1021/acs.energyfuels.7b02627</u>
- Chi, S., & Rochelle, G. T. (2002). Oxidative Degradation of Monoethanolamine. Industrial & Engineering Chemistry Research, 41(17), 4178-4186. https://doi.org/10.1021/ie010697c
- Choi, J. H., Oh, S. G., Jo, M., Yoon, Y. I., Jeong, S. K., & Nam, S. C. (2012). Absorption of carbon dioxide by the mixed aqueous absorbents using 2-methylpiperidine as a promoter. *Chemical Engineering Science*, 72, 87-93. <u>https://doi.org/https://doi.org/10.1016/j.ces.2012.01.001</u>
- Ciftja, A. F., Hartono, A., & Svendsen, H. F. (2013). Selection of Amine Amino Acids Salt Systems for CO2 Capture. *Energy Procedia*, 37, 1597-1604. https://doi.org/https://doi.org/10.1016/j.egypro.2013.06.035
- Climent Barba, F., Martínez-Denegri Sánchez, G., Soler Seguí, B., Gohari Darabkhani, H., & Anthony, E. J. (2016). A technical evaluation, performance analysis and risk assessment of multiple novel oxy-turbine power cycles with complete CO2 capture. *Journal of Cleaner Production*, 133, 971-985. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.05.189
- Conway, W., Beyad, Y., Feron, P., Richner, G., & Puxty, G. (2014). CO2 Absorption into Aqueous Amine Blends containing Benzylamine (BZA), Monoethanolamine (MEA), and Sterically Hindered/Tertiary Amines. *Energy Procedia*, 63, 1835-1841. <u>https://doi.org/https://doi.org/10.1016/j.egypro.2014.11.191</u>

- D. Jouravleva, P. D., M. Sheedy. (2000). Impact of continuous removal of heat stable salts on amine plant operation. *Proceedings of the Laurance Reid Gas Conditioning Conference*, 281-298.
- Dai, Z., & Deng, L. (2016). Membrane absorption using ionic liquid for pre-combustion CO2 capture at elevated pressure and temperature. *International Journal of Greenhouse Gas Control*, *54*, 59-69. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2016.09.001</u>
- Dash, S., & Bandyopadhyay, S. (2016). Studies on the effect of addition of piperazine and sulfolane into aqueous solution of N-methyldiethanolamine for CO2 capture and VLE modelling using eNRTL equation. *International Journal of Greenhouse Gas Control*, 44, 227-237. <u>https://doi.org/10.1016/j.ijggc.2015.11.007</u>
- Dash, S. K., Samanta, A., Nath Samanta, A., & Bandyopadhyay, S. S. (2011). Absorption of carbon dioxide in piperazine activated concentrated aqueous 2-amino-2methyl-1-propanol solvent. *Chemical Engineering Science*, 66(14), 3223-3233. https://doi.org/https://doi.org/10.1016/j.ces.2011.02.028
- Dawodu, O. F., & Meisen, A. (1996). Degradation Alkanolamine Blends by Carbon-Dioxide. Canadian Journal of Chemical Engineering, 74(6), 960-966. https://doi.org/10.1002/cjce.5450740620
- Denman, K. L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S Ramachandran, P.L. da Silva Dias, S.C. Wofsy and X. Zhang. (2007). Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. .
- Derks, P. W. J., Kleingeld, T., van Aken, C., Hogendoorn, J. A., & Versteeg, G. F. . (2006). Kinetics of absorption of carbon dioxide in aqueous piperazine solutions. *Chemical Engineering Science*, 61(20), 6837-6854. <u>https://doi.org/https://doi.org/10.1016/j.ces.2006.07.009</u>
- Dharmalingam, S., Park, K. T., Lee, J.-Y., Park, I.-G., & Jeong, S. K. (2018). Catalytic effect of metal oxides on CO2 absorption in an aqueous potassium salt of lysine. *Journal of Industrial and Engineering Chemistry*, 68, 335-341. <u>https://doi.org/https://doi.org/10.1016/j.jiec.2018.08.004</u>
- Diamantonis, N. I., Boulougouris, G. C., Tsangaris, D. M., Kadi, M. J. E., Saadawi, H., Negahban, S., & Economou, I. G. (2013). Thermodynamic and transport property models for carbon capture and sequestration (CCS) processes with emphasis on CO2 transport. *Chemical Engineering Research and Design*, 91(10), 1793-1806. https://doi.org/https://doi.org/10.1016/j.cherd.2013.06.017
- Du Preez, L. J., Motang, N., Callanan, L. H., & Burger, A. J. (2019). Determining the Liquid Phase Equilibrium Speciation of the CO2–MEA–H2O System Using a Simplified in Situ Fourier Transform Infrared Method. *Industrial & Engineering Chemistry Research*, 58(1), 469-478. <u>https://doi.org/10.1021/acs.iecr.8b04437</u>

- El Hadri, N., Quang, D. V., Goetheer, E. L. V., & Abu Zahra, M. R. M. (2017). Aqueous amine solution characterization for post-combustion CO2 capture process. *Applied Energy*, 185, 1433-1449. <u>https://doi.org/https://doi.org/10.1016/j.apenergy.2016.03.043</u>
- Falkenstein-Smith, R., Zeng, P., & Ahn, J. (2017). Investigation of oxygen transport membrane reactors for oxy-fuel combustion and carbon capture purposes. *Proceedings of the Combustion Institute*, 36(3), 3969-3976. <u>https://doi.org/https://doi.org/10.1016/j.proci.2016.09.005</u>
- Fang, M., Zhou, X., Xiang, Q., Cai, D., & Luo, Z. (2015). Kinetics of CO2 Absorption in Aqueous Potassium L-prolinate Solutions at Elevated Total Pressure. *Energy Procedia*, 75, 2293-2298. <u>https://doi.org/https://doi.org/10.1016/j.egypro.2015.07.420</u>
- Fawzy, A., Abdallah, M., Zaafarany, I. A., Ahmed, S. A., & Althagafi, I. I. (2018). Thermodynamic, kinetic and mechanistic approach to the corrosion inhibition of carbon steel by new synthesized amino acids-based surfactants as green inhibitors in neutral and alkaline aqueous media. *Journal of Molecular Liquids*, 265, 276-291. <u>https://doi.org/https://doi.org/10.1016/j.molliq.2018.05.140</u>
- Feng, Z., Jing-Wen, M., Zheng, Z., You-Ting, W., & Zhi-Bing, Z. (2012). Study on the absorption of carbon dioxide in high concentrated MDEA and ILs solutions. *Chemical Engineering Journal*, 181-182, 222-228. <u>https://doi.org/https://doi.org/10.1016/j.cej.2011.11.066</u>
- Feng, Z., Yuan, G., Xian-Kun, W., Jing-Wen, M., You-Ting, W., & Zhi-Bing, Z. (2013). Regeneration performance of amino acid ionic liquid (AAIL) activated MDEA solutions for CO2 capture. *Chemical Engineering Journal*, 223, 371-378. <u>https://doi.org/https://doi.org/10.1016/j.cej.2013.03.005</u>
- Forum, I. T. (2010). Reducing Transport Greenhouse Gas Emissions: Trends and Data 2010. Organisation for Economic Co-operation and Development.
- García, S., Gil, M. V., Martín, C. F., Pis, J. J., Rubiera, F., & Pevida, C. (2011). Breakthrough adsorption study of a commercial activated carbon for precombustion CO2 capture. *Chemical Engineering Journal*, 171(2), 549-556. <u>https://doi.org/https://doi.org/10.1016/j.cej.2011.04.027</u>
- Garg, S., Shariff, A. M., Shaikh, M. S., Lal, B., Aftab, A., & Faiqa, N. (2016). VLE of CO2 in aqueous potassium salt of L-phenylalanine: Experimental data and modeling using modified Kent-Eisenberg model. *Journal of Natural Gas Science and Engineering*, 34, 864-872. https://doi.org/https://doi.org/10.1016/j.jngse.2016.07.047
- Garg, S., Shariff, A. M., Shaikh, M. S., Lal, B., Suleman, H., & Faiqa, N. (2017). Experimental data, thermodynamic and neural network modeling of CO2 solubility in aqueous sodium salt of l-phenylalanine. *Journal of CO2 Utilization*, 19, 146-156. <u>https://doi.org/https://doi.org/10.1016/j.jcou.2017.03.011</u>

- Guo, H., Zhou, Z., & Jing, G. (2013). Kinetics of carbon dioxide absorption into aqueous [Hmim][Gly] solution. International Journal of Greenhouse Gas Control, 16, 197-205. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2013.03.024</u>
- Guo, R., Zhu, C., Yin, Y., Fu, T., & Ma, Y. (2019). Mass transfer characteristics of CO2 absorption into 2-amino-2-methyl-1-propanol non-aqueous solution in a microchannel. *Journal of Industrial and Engineering Chemistry*, 75, 194-201. <u>https://doi.org/https://doi.org/10.1016/j.jiec.2019.03.024</u>
- Haghtalab, A., & Gholami, V. (2019). Carbon dioxide solubility in the aqueous mixtures of diisopropanolamine +1-arginine and diethanolamine +1-arginine at high pressures. *Journal of Molecular Liquids*, 288, 111064. <u>https://doi.org/https://doi.org/10.1016/j.molliq.2019.111064</u>
- Haghtalab, A., & Shirazizadeh, H. A. (2019). An electrolyte segmental wilsonnonrandom excess Gibbs energy model and measurement of carbon dioxide solubility into sulfolane +water and N-methyldiethanolamine+sulfolane+water systems. *Journal of Molecular Liquids*, 296, 111786. <u>https://doi.org/https://doi.org/10.1016/j.molliq.2019.111786</u>
- Haji-Sulaiman, M. Z., Aroua, M. K., & Pervez, M. I. (1996). Equilibrium concentration profiles of species in CO2—alkanolamine—water systems. Gas Separation & Purification, 10(1), 13-18. <u>https://doi.org/https://doi.org/10.1016/0950-4214(95)00021-6</u>
- Hamzehie, M. E., & Najibi, H. (2016a). Carbon dioxide loading capacity in aqueous solution of Potassium salt of Proline blended with Piperazine as new absorbents. *Thermochimica* Acta, 639, 66-75. https://doi.org/10.1016/j.tca.2016.07.019
- Hamzehie, M. E., & Najibi, H. (2016b). Experimental and theoretical study of carbon dioxide solubility in aqueous solution of potassium glycinate blended with piperazine as new absorbents. *Journal of CO2 Utilization*, 16, 64-77. <u>https://doi.org/https://doi.org/10.1016/j.jcou.2016.06.003</u>
- Hoff, K., Juliussen, O., Falk-Pedersen, O., & Svendsen, H. (2004). Modeling and Experimental Study of Carbon Dioxide Absorption in Aqueous Alkanolamine Solutions Using a Membrane Contactor. *Industrial & Engineering Chemistry Research - IND ENG CHEM RES*, 43. https://doi.org/10.1021/ie034325a
- Holst, J. v., Versteeg, G. F., Brilman, D. W. F., & Hogendoorn, J. A. (2009). Kinetic study of CO2 with various amino acid salts in aqueous solution. *Chemical Engineering Science*, 64(1), 59-68. <u>https://doi.org/https://doi.org/10.1016/j.ces.2008.09.015</u>
- Houghton, R. A. (2010). How well do we know the flux of CO2 from land-use change? *Tellus B: Chemical and Physical Meteorology*, 62(5), 337-351. <u>https://doi.org/10.1111/j.1600-0889.2010.00473.x</u>
- Hu, G., Nicholas, N. J., Smith, K. H., Mumford, K. A., Kentish, S. E., & Stevens, G. W. (2016). Carbon dioxide absorption into promoted potassium carbonate solutions:

A review. International Journal of Greenhouse Gas Control, 53, 28-40. https://doi.org/https://doi.org/10.1016/j.ijggc.2016.07.020

- Hu, G., Smith, K. H., Wu, Y., Mumford, K. A., Kentish, S. E., & Stevens, G. W. (2018). Carbon dioxide capture by solvent absorption using amino acids: A review. *Chinese Journal of Chemical Engineering*, 26(11), 2229-2237. <u>https://doi.org/https://doi.org/10.1016/j.cjche.2018.08.003</u>
- Hu, S., Jiang, T., Zhang, Z., Zhu, A., Han, B., Song, J., Xie, Y., & Li, W. (2007). Functional ionic liquid from biorenewable materials: synthesis and application as a catalyst in direct aldol reactions. *Tetrahedron Letters*, 48(32), 5613-5617. <u>https://doi.org/https://doi.org/10.1016/j.tetlet.2007.06.051</u>
- Huang, Q., Thompson, J., Lampe, L. M., Selegue, J. P., & Liu, K. (2014). Thermal Degradation Comparison of Amino Acid Salts, Alkanolamines and Diamines in CO2 Capture. *Energy Procedia*, 63, 1882-1889. https://doi.org/https://doi.org/10.1016/j.egypro.2014.11.197
- Hüser, N., Schmitz, O., & Kenig, E. Y. (2017). A comparative study of different aminebased solvents for CO2-capture using the rate-based approach. *Chemical Engineering Science*, *157*, 221-231. <u>https://doi.org/https://doi.org/10.1016/j.ces.2016.06.027</u>
- Jamal, A., & Meisen, A. (2001). Kinetics of CO induced degradation of aqueous diethanolamine. *Chemical Engineering Science*, 56, 6743-6760.
- Jiang, B., Wang, X., Gray, M. L., Duan, Y., Luebke, D., & Li, B. (2013). Development of amino acid and amino acid-complex based solid sorbents for CO2 capture. *Applied Energy*, 109, 112-118. <u>https://doi.org/https://doi.org/10.1016/j.apenergy.2013.03.070</u>
- Jiang, G., Huang, Q., Kenarsari, S. D., Hu, X., Russell, A. G., Fan, M., & Shen, X. (2015). A new mesoporous amine-TiO2 based pre-combustion CO2 capture technology. *Applied Energy*, *147*, 214-223. <u>https://doi.org/https://doi.org/10.1016/j.apenergy.2015.01.081</u>
- Kang, D., Park, S., Jo, H., Min, J., & Park, J.-W. (2013). Solubility of CO2 in Amino-Acid-Based Solutions of (Potassium Sarcosinate), (Potassium Alaninate + Piperazine), and (Potassium Serinate + Piperazine). *Journal of Chemical & Engineering Data*, 58, 1787-1791.
- Kang, S., Chung, Y. G., Kang, J. H., & Song, H. (2020). CO2 absorption characteristics of amino group functionalized imidazolium-based amino acid ionic liquids. *Journal of Molecular Liquids*, 297, 111825. https://doi.org/https://doi.org/10.1016/j.molliq.2019.111825
- Karlsson, H. K., Makhool, H., Karlsson, M., & Svensson, H. (2021). Chemical absorption of carbon dioxide in non-aqueous systems using the amine 2-amino-2-methyl-1propanol in dimethyl sulfoxide and N-methyl-2-pyrrolidone. Separation and Purification Technology, 256, 117789. <u>https://doi.org/https://doi.org/10.1016/j.seppur.2020.117789</u>

- Kenarsari, S. D., Yang, D., Jiang, G., Zhang, S., Wang, J., Russell, A. G., Wei, Q., & Fan, M. (2013). Review of recent advances in carbon dioxide separation and capture [10.1039/C3RA43965H]. RSC Advances, 3(45), 22739-22773. https://doi.org/10.1039/C3RA43965H
- Khalilzadeh, A., & Baghban, A. (2018). Modeling of CO2 absorbtion by amino acid salts blended with amine solutions. *Petroleum Science and Technology*, 36(12), 843-849. https://doi.org/10.1080/10916466.2018.1447956
- Khan, F., Krishnamoorthi, V., & Mahmud, T. (2011). Modelling reactive absorption of CO 2 in packed columns for post-combustion carbon capture applications. *Chemical Engineering Research & Design - CHEM ENG RES DES*, 89, 1600-1608. <u>https://doi.org/10.1016/j.cherd.2010.09.020</u>
- Kim, M., Song, H.-J., Lee, M.-G., Jo, H.-Y., & Park, J.-W. (2012). Kinetics and Steric Hindrance Effects of Carbon Dioxide Absorption into Aqueous Potassium Alaninate Solutions. *Industrial & Engineering Chemistry Research*, 51, 2570– 2577. <u>https://doi.org/10.1021/ie201609b</u>
- Kim, S., Scholes, C. A., Heath, D. E., & Kentish, S. E. (2021). Gas-liquid membrane contactors for carbon dioxide separation: A review. *Chemical Engineering Journal*, 411, 128468. <u>https://doi.org/https://doi.org/10.1016/j.cej.2021.128468</u>
- Knuutila, H., Aronu, U. E., Kvamsdal, H. M., & Chikukwa, A. (2011). Post combustion CO2 capture with an amino acid salt. *Energy Procedia*, 4, 1550-1557. <u>https://doi.org/https://doi.org/10.1016/j.egypro.2011.02.024</u>
- Knuutila, H., Svendsen, H. F., & Juliussen, O. (2009). Kinetics of carbonate based CO2 capture systems. *Energy Procedia*, 1(1), 1011-1018. <u>https://doi.org/https://doi.org/10.1016/j.egypro.2009.01.134</u>
- Kohl, A. L., & Nielsen, R. (1997). Gas purification. Elsevier.
- Kumar, P. S., Hogendoorn, J., Feron, P., & Versteeg, G. (2001). Density, viscosity, solubility, and diffusivity of N2O in aqueous amino acid salt solutions. *Journal of Chemical & Engineering Data*, 46(6), 1357-1361.
- Kumar, P. S., Hogendoorn, J. A., Timmer, S. J., Feron, P. H. M., & Versteeg, G. F. (2003).
 Equilibrium Solubility of CO2 in Aqueous Potassium Taurate Solutions: Part 2.
 Experimental VLE Data and Model. *Industrial & Engineering Chemistry Research*, 42(12), 2841-2852. https://doi.org/10.1021/ie020601u
- Laumb, J. D., Holmes, M. J., Stanislowski, J. J., Lu, X., Forrest, B., & McGroddy, M. (2017). Supercritical CO2 Cycles for Power Production. *Energy Procedia*, 114, 573-580. <u>https://doi.org/https://doi.org/10.1016/j.egypro.2017.03.1199</u>
- Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I., Marland, G., Peters, G. P., van der Werf, G. R., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G., Ciais, P., Doney, S. C., Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K., ... Zeng, N. (2013). The global carbon budget 1959– 2011. Earth Syst. Sci. Data, 5(1), 165-185. <u>https://doi.org/10.5194/essd-5-165-2013</u>

- Leckner, B., & Gómez-Barea, A. (2014). Oxy-fuel combustion in circulating fluidized bed boilers. *Applied Energy*, 125, 308-318. https://doi.org/https://doi.org/10.1016/j.apenergy.2014.03.050
- Lee, Z. H., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2012). Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials. *Renewable and Sustainable Energy Reviews*, *16*(5), 2599-2609. <u>https://doi.org/https://doi.org/10.1016/j.rser.2012.01.077</u>
- Lepaumier, H., da Silva, E. F., Einbu, A., Grimstvedt, A., Knudsen, J. N., Zahlsen, K., & Svendsen, H. F. (2011). Comparison of MEA degradation in pilot-scale with labscale experiments. *Energy Procedia*, 4, 1652-1659. <u>https://doi.org/https://doi.org/10.1016/j.egypro.2011.02.037</u>
- Lepaumier, H., Picq, D., & Carrette, P.-L. (2009). New Amines for CO2 Capture. II. Oxidative Degradation Mechanisms. *Industrial & Engineering Chemistry Research*, 48(20), 9068-9075. <u>https://doi.org/10.1021/ie9004749</u>
- Li, M.-H., & Chang, B.-C. (1994). Solubilities of Carbon Dioxide in Water + Monoethanolamine + 2-Amino-2-methyl-1-propanol. *Journal of Chemical & Engineering Data*, 39(3), 448-452. <u>https://doi.org/10.1021/je00015a010</u>
- Li, Y., Duan, X., Song, W., Ma, L., & Jow, J. (2021). Reaction mechanisms of carbon dioxide capture by amino acid salt and desorption by heat or mineralization. *Chemical Engineering Journal*, 405, 126938. https://doi.org/https://doi.org/10.1016/j.cej.2020.126938
- Li, Y., Wang, L. a., Tan, Z., Zhang, Z., & Hu, X. (2019). Experimental studies on carbon dioxide absorption using potassium carbonate solutions with amino acid salts. *Separation and Purification Technology*, 219, 47-54. <u>https://doi.org/https://doi.org/10.1016/j.seppur.2019.03.010</u>
- Ling, H., Liu, S., Gao, H., & Liang, Z. (2019). Effect of heat-stable salts on absorption/desorption performance of aqueous monoethanolamine (MEA) solution during carbon dioxide capture process. *Separation and Purification Technology*, 212, 822-833. <u>https://doi.org/https://doi.org/10.1016/j.seppur.2018.12.001</u>
- Liu, S., Li, H., Chen, Y., Yang, Z., Wang, H., Ji, X., & Lu, X. (2019). Improved CO2 separation performance of aqueous choline-glycine solution by partially replacing water with polyethylene glycol. *Fluid Phase Equilibria*, 495, 12-20. https://doi.org/https://doi.org/10.1016/j.fluid.2019.05.006
- Lu, J.-G., Ge, H., Chen, Y., Ren, R.-T., Xu, Y., Zhao, Y.-X., Zhao, X., & Qian, H. (2017).
 CO2 capture using a functional protic ionic liquid by membrane absorption.
 Journal of the Energy Institute, 90(6), 933-940.
 https://doi.org/10.1016/j.joei.2016.08.001
- Lucquiaud, M., & Gibbins, J. (2011). On the integration of CO 2 capture with coal-fired power plants: A methodology to assess and optimise solvent-based postcombustion capture systems. *Chemical Engineering Research & Design - CHEM ENG RES DES*, 89, 1553-1571. <u>https://doi.org/10.1016/j.cherd.2011.03.003</u>

- Lv, B., Guo, B.-S., Zhou, Z., & Jing, G.-H. (2015). Mechanisms of CO2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes. *Environmental science & technology*, 49. <u>https://doi.org/10.1021/acs.est.5b02356</u>
- Ma'mun, S., Nilsen, R., Svendsen, H. F., & Juliussen, O. (2005). Solubility of Carbon Dioxide in 30 mass % Monoethanolamine and 50 mass % Methyldiethanolamine Solutions. *Journal of Chemical & Engineering Data*, 50(2), 630-634. <u>https://doi.org/10.1021/je0496490</u>
- Ma'mun, S. (2014). Solubility of Carbon Dioxide in Aqueous Solution of Potassium Sarcosine from 353 to 393K. *Energy Procedia*, 51, 191-196. <u>https://doi.org/https://doi.org/10.1016/j.egypro.2014.07.022</u>
- Mahmud, N., Benamor, A., Nasser, M. S., Al-Marri, M. J., Qiblawey, H., & Tontiwachwuthikul, P. (2017). Reaction kinetics of carbon dioxide with aqueous solutions of l-Arginine, Glycine & Sarcosine using the stopped flow technique. *International Journal of Greenhouse Gas Control*, 63, 47-58. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2017.05.012</u>
- Majchrowicz, M. E., & Brilman, D. W. F. (2012). Solubility of CO2 in aqueous potassium l-prolinate solutions—absorber conditions. *Chemical Engineering Science*, 72, 35-44. <u>https://doi.org/10.1016/j.ces.2011.12.014</u>
- Mansourizadeh, A., & Ismail, A. F. (2011). CO2 stripping from water through porous PVDF hollow fiber membrane contactor. *Desalination*, 273(2), 386-390. <u>https://doi.org/https://doi.org/10.1016/j.desal.2011.01.055</u>
- Martín, C. F., Stöckel, E., Clowes, R., Adams, D. J., Cooper, A. I., Pis, J. J., Rubiera, F., & Pevida, C. (2011). Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture [10.1039/C0JM03534C]. *Journal of Materials Chemistry*, 21(14), 5475-5483. <u>https://doi.org/10.1039/C0JM03534C</u>
- Martins, C. F., Neves, L. A., Chagas, R., Ferreira, L. M., Afonso, C. A. M., Coelhoso, I. M., Crespo, J. G., & Mota, J. P. (2021). Modelling CO2 absorption in aqueous solutions of cholinium lysinate ionic liquid. *Chemical Engineering Journal*, 421, 127875. <u>https://doi.org/https://doi.org/10.1016/j.cej.2020.127875</u>
- Mason, J. A., Sumida, K., Herm, Z. R., Krishna, R., & Long, J. R. (2011). Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption [10.1039/C1EE01720A]. *Energy & Environmental Science*, 4(8), 3030-3040. <u>https://doi.org/10.1039/C1EE01720A</u>
- Masoumi, S., Rahimpour, M. R., & Mehdipour, M. (2016). Removal of carbon dioxide by aqueous amino acid salts using hollow fiber membrane contactors. *Journal of CO2 Utilization*, 16, 42-49. https://doi.org/https://doi.org/10.1016/j.jcou.2016.05.008
- Matin, N. S., Remias, J. E., Neathery, J. K., & Liu, K. (2012). Facile Method for Determination of Amine Speciation in CO2 Capture Solutions. Industrial & Engineering Chemistry Research, 51(19), 6613-6618. <u>https://doi.org/10.1021/ie300230k</u>

- Mazinani, S., Ramazani, R., Samsami, A., Jahanmiri, A., Van der Bruggen, B., & Darvishmanesh, S. (2015). Equilibrium solubility, density, viscosity and corrosion rate of carbon dioxide in potassium lysinate solution. *Fluid Phase Equilibria*, 396, 28-34. <u>https://doi.org/https://doi.org/10.1016/j.fluid.2015.03.031</u>
- Mehrabi, K., Javanmardi, J., Rasoolzadeh, A., & Mohammadi, A. H. (2020). Thermodynamic modeling of clathrate hydrate stability conditions in the presence of amino acid aqueous solution. *Journal of Molecular Liquids*, 313, 113488. <u>https://doi.org/https://doi.org/10.1016/j.molliq.2020.113488</u>
- Merkel, T. C., Lin, H., Wei, X., & Baker, R. (2010). Power plant post-combustion carbon dioxide capture: An opportunity for membranes. *Journal of Membrane Science*, 359(1), 126-139. <u>https://doi.org/https://doi.org/10.1016/j.memsci.2009.10.041</u>
- Mitchell, C., Avagyan, V., Chalmers, H., & Lucquiaud, M. (2019). An initial assessment of the value of Allam Cycle power plants with liquid oxygen storage in future GB electricity system. *International Journal of Greenhouse Gas Control*, 87, 1-18. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2019.04.020</u>
- Mohsin, Mohd Shariff. A., & Johari, Κ. (2019). 3-Mohamed Н., Dimethylaminopropylamine (DMAPA) mixed with glycine (GLY) as an absorbent for carbon dioxide capture and subsequent utilization. Separation and Purification Technology, 297-308. 222. https://doi.org/https://doi.org/10.1016/j.seppur.2019.04.029
- Moioli, S., Giuffrida, A., Gamba, S., Romano, M. C., Pellegrini, L., & Lozza, G. (2014).
 Pre-combustion CO2 capture by MDEA process in IGCC based on air-blown gasification. *Energy Procedia*, 63, 2045-2053.
 <u>https://doi.org/https://doi.org/10.1016/j.egypro.2014.11.220</u>
- Moioli, S., Ho, M. T., Wiley, D. E., & Pellegrini, L. A. (2019). Assessment of carbon dioxide capture by precipitating potassium taurate solvent. *International Journal of Greenhouse Gas Control*, 87, 159-169. https://doi.org/10.1016/j.ijggc.2019.05.013
- Moioli, S., & Pellegrini, L. (2013). Regeneration Section of CO2 Capture Plant by MEA Scrubbing with a Rate-Based Model. In (pp. 231-240). <u>https://doi.org/10.3303/ACOS1311024</u>
- Moioli, S., & Pellegrini, L. A. (2015). Physical properties of PZ solution used as a solvent for CO2 removal. *Chemical Engineering Research and Design*, *93*, 720-726. <u>https://doi.org/https://doi.org/10.1016/j.cherd.2014.06.016</u>
- Mores, P., Scenna, N., & Mussati, S. (2011). Post-combustion CO2 capture process: Equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution. *Chemical Engineering Research* and Design, 89(9), 1587-1599. <u>https://doi.org/https://doi.org/10.1016/j.cherd.2010.10.012</u>
- Mouhoubi, S., Dubois, L., Loldrup Fosbøl, P., De Weireld, G., & Thomas, D. (2020). Thermodynamic modeling of CO2 absorption in aqueous solutions of N,Ndiethylethanolamine (DEEA) and N-methyl-1,3-propanediamine (MAPA) and

their mixtures for carbon capture process simulation. *Chemical Engineering Research* and Design, 158, 46-63. https://doi.org/https://doi.org/10.1016/j.cherd.2020.02.029

- Noorani, N., & Mehrdad, A. (2021). Experimental and theoretical study of CO2 sorption in biocompatible and biodegradable cholinium-based ionic liquids. *Separation and Purification Technology*, 254, 117609. <u>https://doi.org/https://doi.org/10.1016/j.seppur.2020.117609</u>
- Park, S. H., Lee, S. J., Lee, J. W., Chun, S. N., & Lee, J. B. (2015). The quantitative evaluation of two-stage pre-combustion CO2 capture processes using the physical solvents with various design parameters. *Energy*, 81, 47-55. <u>https://doi.org/https://doi.org/10.1016/j.energy.2014.10.055</u>
- Paul, S., & Thomsen, K. (2012). Kinetics of absorption of carbon dioxide into aqueous potassium salt of proline. *International Journal of Greenhouse Gas Control*, 8, 169-179. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2012.02.013</u>
- Portugal, A. F., Derks, P. W. J., Versteeg, G. F., Magalhães, F. D., & Mendes, A. (2007). Characterization of potassium glycinate for carbon dioxide absorption purposes. *Chemical Engineering Science*, 62(23), 6534-6547. <u>https://doi.org/https://doi.org/10.1016/j.ces.2007.07.068</u>
- Portugal, A. F., Magalhães, F. D., & Mendes, A. (2008). Carbon dioxide absorption kinetics in potassium threonate. *Chemical Engineering Science*, 63(13), 3493-3503. <u>https://doi.org/https://doi.org/10.1016/j.ces.2008.04.017</u>
- Portugal, A. F., Sousa, J. M., Magalhães, F. D., & Mendes, A. (2009). Solubility of carbon dioxide in aqueous solutions of amino acid salts. *Chemical Engineering Science*, 64(9), 1993-2002. <u>https://doi.org/https://doi.org/10.1016/j.ces.2009.01.036</u>
- Posch, S., & Haider, M. (2013). Dynamic modeling of CO2 absorption from coal-fired power plants into an aqueous monoethanolamine solution. *Chemical Engineering Research and Design*, 91(6), 977-987. <u>https://doi.org/https://doi.org/10.1016/j.cherd.2012.09.016</u>
- Qiang, L., Gao, H., Liu, S., Juan, L., & Liang, Z. (2020). Novel Thermodynamic Model for Vapor-Liquid Equilibrium of CO2 in aqueous solution of 4-(ethyl-methylamino)-2-butanol with designed structures. *Chemical Engineering Science*, 218, 115557. <u>https://doi.org/10.1016/j.ces.2020.115557</u>
- Rabensteiner, M., Kinger, G., Koller, M., Gronald, G., Unterberger, S., & Hochenauer, C. (2014). Investigation of the suitability of aqueous sodium glycinate as a solvent for post combustion carbon dioxide capture on the basis of pilot plant studies and screening methods. *International Journal of Greenhouse Gas Control*, 29, 1-15. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2014.07.011</u>
- Raksajati, A., Ho, M., & Wiley, D. (2016). Understanding the Impact of Process Design on the Cost of CO 2 Capture for Precipitating Solvent Absorption. *Industrial & Engineering Chemistry Research*, 55. <u>https://doi.org/10.1021/acs.iecr.5b03633</u>
- Ramazani, R., Mazinani, S., Hafizi, A., & Jahanmiri, A. (2015). Equilibrium solubility of carbon dioxide in aqueous blend of monoethanolamine (MEA) and 2-1piperazinyl-ethylamine (PZEA) solutions: Experimental and optimization study. *Process Safety and Environmental Protection*, 98, 325-332. <u>https://doi.org/https://doi.org/10.1016/j.psep.2015.09.003</u>
- Ramazani, R., Samsami, A., Jahanmiri, A., Bruggen, B. V. d., & Mazinani, S. (2016). Characterization of monoethanolamine+potassium lysinate blend solution as a new chemical absorbent for CO2 capture. *International Journal of Greenhouse Gas Control*, *51*, 29-35. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2016.05.005</u>
- Ramezani, R., Mazinani, S., & Di Felice, R. (2019). A comprehensive kinetic and thermodynamic study of CO2 absorption in blends of monoethanolamine and potassium lysinate: Experimental and modeling. *Chemical Engineering Science*, 206, 187-202. <u>https://doi.org/https://doi.org/10.1016/j.ces.2019.05.039</u>
- Ramezani, R., Mazinani, S., Di Felice, R., Darvishmanesh, S., & Van der Bruggen, B. (2017). Selection of blended absorbents for CO2 capture from flue gas: CO2 solubility, corrosion and absorption rate. *International Journal of Greenhouse Gas* Control, 62, 61-68. https://doi.org/https://doi.org/10.1016/j.ijggc.2017.04.012
- Ramezani, R., Mazinani, S., Di Felice, R., & Van der Bruggen, B. (2017). Experimental and correlation study of corrosion rate, absorption rate and CO2 loading capacity in five blend solutions as new absorbents for CO2 capture. *Journal of Natural Gas Science* and *Engineering*, 45, 599-608. <u>https://doi.org/https://doi.org/10.1016/j.jngse.2017.06.028</u>
- Rao, A. B., & Rubin, E. S. (2002). A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control. *Environmental science & technology*, 36(20), 4467-4475. <u>https://doi.org/10.1021/es0158861</u>
- Rejl, F. J., Haidl, J., Valenz, L., Moucha, T., & Schultes, M. (2016). Analogy of absorption and distillation processes. Wetted-wall column study. *Chemical Engineering* Science, 153, 146-154. <u>https://doi.org/https://doi.org/10.1016/j.ces.2016.07.021</u>

Rhodes, M. (2007). IPCC report. TCE(790), 70-70.

- Riaza, J., Gil, M. V., Álvarez, L., Pevida, C., Pis, J. J., & Rubiera, F. (2012). Oxy-fuel combustion of coal and biomass blends. *Energy*, 41(1), 429-435. <u>https://doi.org/https://doi.org/10.1016/j.energy.2012.02.057</u>
- Rochelle Gary, T. (2009). Amine Scrubbing for CO2 Capture. *Science*, *325*(5948), 1652-1654. <u>https://doi.org/10.1126/science.1176731</u>
- Romano, M. C., Chiesa, P., & Lozza, G. (2010). Pre-combustion CO2 capture from natural gas power plants, with ATR and MDEA processes. *International Journal* of Greenhouse Gas Control, 4(5), 785-797. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2010.04.015</u>

- Rubin, E. S., Mantripragada, H., Marks, A., Versteeg, P., & Kitchin, J. (2012). The outlook for improved carbon capture technology. *Progress in Energy and Combustion Science*, 38(5), 630-671. https://doi.org/https://doi.org/10.1016/j.pecs.2012.03.003
- Sadeghpour, M., Yusoff, R., Aroua, M., & Tabandeh, M. (2017). Modification of polyethylene glycol with choline chloride and evaluation of the CO 2 absorption capacity of their aqueous solutions: Original Research Articles: Modification of polyethylene glycol with choline chloride. *Greenhouse Gases: Science and Technology*, 8. <u>https://doi.org/10.1002/ghg.1741</u>
- Said, A., Eloneva, S., Fogelholm, C.-J., Fagerlund, J., Nduagu, E., & Zevenhoven, R. (2011). Integrated carbon capture and storage for an oxyfuel combustion process by using carbonation of Mg(OH)2 produced from serpentinite rock. *Energy Procedia*, 4, 2839-2846. https://doi.org/https://doi.org/10.1016/j.egypro.2011.02.189
- Sanchez-Fernandez, E., Heffernan, K., van der Ham, L., Linders, M. J. G., Brilman, D. W. F., Goetheer, E. L. V., & Vlugt, T. J. H. (2014). Analysis of Process Configurations for CO2 Capture by Precipitating Amino Acid Solvents. *Industrial & Engineering Chemistry Research*, 53(6), 2348-2361. https://doi.org/10.1021/ie402323r
- Sanchez-Fernandez, E., Heffernan, K., van der Ham, L., Linders, M. J. G., Goetheer, E. L. V., & Vlugt, T. J. H. (2014). Precipitating Amino Acid Solvents for CO2 Capture. Opportunities to Reduce Costs in Post Combustion Capture. *Energy Procedia*, 63, 727-738. <u>https://doi.org/https://doi.org/10.1016/j.egypro.2014.11.080</u>
- Sanchez-Fernandez, E., Mercader, F. d. M., Misiak, K., van der Ham, L., Linders, M., & Goetheer, E. (2013). New Process Concepts for CO2 Capture based on Precipitating Amino Acids. *Energy Procedia*, 37, 1160-1171. <u>https://doi.org/https://doi.org/10.1016/j.egypro.2013.05.213</u>
- Sang Sefidi, V., & Luis, P. (2019). Advanced Amino Acid-Based Technologies for CO2 Capture: A Review. Industrial & Engineering Chemistry Research, 58(44), 20181-20194. <u>https://doi.org/10.1021/acs.iecr.9b01793</u>
- Sartori, G., Ho, W. S., Savage, D. W., Chludzinski, G. R., & Wlechert, S. (1987). Sterically-Hindered Amines for Acid-Gas Absorption. Separation and Purification Methods, 16(2), 171-200. https://doi.org/10.1080/03602548708058543
- Savile, C. K., & Lalonde, J. J. (2011). Biotechnology for the acceleration of carbon dioxide capture and sequestration. *Curr Opin Biotechnol*, 22(6), 818-823. <u>https://doi.org/10.1016/j.copbio.2011.06.006</u>
- Scaccabarozzi, R., Gatti, M., & Martelli, E. (2017). Thermodynamic Optimization and Part-load Analysis of the NET Power Cycle. *Energy Procedia*, 114, 551-560. <u>https://doi.org/https://doi.org/10.1016/j.egypro.2017.03.1197</u>

- Scholes, C. A., Ho, M. T., Wiley, D. E., Stevens, G. W., & Kentish, S. E. (2013). Cost competitive membrane—cryogenic post-combustion carbon capture. *International Journal of Greenhouse Gas Control*, 17, 341-348. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2013.05.017</u>
- Shaikh, M. S., Shariff, A. M., Bustam, M. A., & Murshid, G. (2013). Physical Properties of Aqueous Blends of Sodium Glycinate (SG) and Piperazine (PZ) as a Solvent for CO2 Capture. *Journal of Chemical & Engineering Data*, 58(3), 634-638. <u>https://doi.org/10.1021/je301091z</u>
- Shaikh, M. S., Shariff, A. M., Bustam, M. A., & Murshid, G. (2014). Physicochemical Properties of Aqueous Solutions of Sodium l-Prolinate as an Absorbent for CO2 Removal. *Journal of Chemical & Engineering Data*, 59(2), 362-368. <u>https://doi.org/10.1021/je400830w</u>
- Shaikh, M. S., Shariff, A. M., Bustam, M. A., & Murshid, G. (2015). Measurement and prediction of physical properties of aqueous sodium l-prolinate and piperazine as a solvent blend for CO2 removal. *Chemical Engineering Research and Design*, 102, 378-388. <u>https://doi.org/https://doi.org/10.1016/j.cherd.2015.07.003</u>
- Shakerian, F., Kim, K.-H., Szulejko, J. E., & Park, J.-W. (2015). A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture. *Applied Energy*, 148, 10-22. <u>https://doi.org/https://doi.org/10.1016/j.apenergy.2015.03.026</u>
- Shariff, A. M., Shaikh, M. S., Bustam, M. A., Garg, S., Faiqa, N., & Aftab, A. (2016). High-pressure Solubility of Carbon Dioxide in Aqueous Sodium L- Prolinate Solution. *Procedia Engineering*, 148, 580-587. <u>https://doi.org/https://doi.org/10.1016/j.proeng.2016.06.516</u>
- Shen, S., Feng, X., & Ren, S. (2013). Effect of Arginine on Carbon Dioxide Capture by Potassium Carbonate Solution. *Energy & Fuels*, 27(10), 6010-6016. <u>https://doi.org/10.1021/ef4014289</u>
- Shen, S., Feng, X., Zhao, R., Ghosh, U. K., & Chen, A. (2013). Kinetic study of carbon dioxide absorption with aqueous potassium carbonate promoted by arginine. *Chemical Engineering Journal*, 222, 478-487. <u>https://doi.org/https://doi.org/10.1016/j.cej.2013.02.093</u>
- Shen, S., Yang, Y.-n., Wang, Y., Ren, S., Han, J., & Chen, A. (2015). CO2 absorption into aqueous potassium salts of lysine and proline: Density, viscosity and solubility of CO2. *Fluid Phase Equilibria*, 399, 40-49. <u>https://doi.org/https://doi.org/10.1016/j.fluid.2015.04.021</u>
- Shen, S., Yang, Y.-n., Zhao, Y., & Bian, Y. (2016). Reaction kinetics of carbon dioxide absorption into aqueous potassium salt of histidine. *Chemical Engineering Science*, 146, 76-87. <u>https://doi.org/https://doi.org/10.1016/j.ces.2016.02.026</u>
- Shen, S., Zhao, Y., Bian, Y., Wang, Y., Guo, H., & Li, H. (2017). CO2 absorption using aqueous potassium lysinate solutions: Vapor – liquid equilibrium data and modelling. *The Journal of Chemical Thermodynamics*, 115, 209-220. <u>https://doi.org/https://doi.org/10.1016/j.jct.2017.07.041</u>

- Shuaib, S. M., Shariff, A. M., Bustam, M. A., & Murshid, G. (2014). Physical properties of aqueous solutions of potassium carbonate+ glycine as a solvent for carbon dioxide removal. *Journal of the Serbian Chemical Society*, 79(6), 719-727.
- Simons, K., Brilman, W., Mengers, H., Nijmeijer, K., & Wessling, M. (2010). Kinetics of CO2 Absorption in Aqueous Sarcosine Salt Solutions: Influence of Concentration, Temperature, and CO2 Loading. *Industrial & Engineering Chemistry Research*, 49(20), 9693-9702. <u>https://doi.org/10.1021/ie100241y</u>
- Smale, R., Max Krahe and Tim Johnson. (2012). Aviation report market based mechanisms to curb greenhouse gas emissions from international aviation.
- Sofia, D., Llano, P., Giuliano, A., Hernández, M., Peña, F., & Barletta, D. (2013). Cogasification of Coal-Petcoke and Biomass in the Puertollano IGCC Power Plant. *Chemical Engineering Research and Design*. <u>https://doi.org/10.1016/j.cherd.2013.11.019</u>
- Sohaib, Q., Muhammad, A., Younas, M., Rezakazemi, M., Druon-Bocquet, S., & Sanchez-Marcano, J. (2021). Rigorous non-isothermal modeling approach for mass and energy transport during CO2 absorption into aqueous solution of amino acid ionic liquids in hollow fiber membrane contactors. *Separation and Purification Technology*, 254, 117644. <u>https://doi.org/https://doi.org/10.1016/j.seppur.2020.117644</u>
- Song, H.-J., Lee, M.-G., Kim, H., Gaur, A., & Park, J.-W. (2011). Density, Viscosity, Heat Capacity, Surface Tension, and Solubility of CO2 in Aqueous Solutions of Potassium Serinate. *Journal of Chemical & Engineering Data*, 56(4), 1371-1377. <u>https://doi.org/10.1021/je101144k</u>
- Song, H.-J., Park, S., Kim, H., Gaur, A., Park, J.-W., & Lee, S.-J. (2012). Carbon dioxide absorption characteristics of aqueous amino acid salt solutions. *International Journal of Greenhouse Gas Control*, 11, 64-72. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2012.07.019</u>
- Spigarelli, B. P., & Kawatra, S. K. (2013). Opportunities and challenges in carbon dioxide capture. Journal of CO2 Utilization, 1, 69-87. https://doi.org/https://doi.org/10.1016/j.jcou.2013.03.002
- Stanger, R., & Wall, T. (2011). Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage. *Progress in Energy and Combustion* Science, 37(1), 69-88. <u>https://doi.org/https://doi.org/10.1016/j.pecs.2010.04.001</u>
- Suleman, H., Maulud, A. S., & Man, Z. (2016). Carbon Dioxide Solubility in Aqueous Potassium Lysinate Solutions: High Pressure Data and Thermodynamic Modeling. *Procedia Engineering*, 148, 1303-1311. <u>https://doi.org/https://doi.org/10.1016/j.proeng.2016.06.543</u>
- Suleman, H., Maulud, A. S., & Syalsabila, A. (2018). Thermodynamic modelling of carbon dioxide solubility in aqueous amino acid salt solutions and their blends with alkanolamines. *Journal of CO2 Utilization*, 26, 336-349. <u>https://doi.org/https://doi.org/10.1016/j.jcou.2018.05.014</u>

- Suleman, H., Maulud, A. S., Syalsabila, A., & Shahid, M. Z. (2020). The contribution of aqueous l-arginine salts to equilibrium carbon dioxide absorption in a co-promoter role at high pressure. *Fluid Phase Equilibria*, 524, 112743. <u>https://doi.org/https://doi.org/10.1016/j.fluid.2020.112743</u>
- Suleman, H., Maulud, A. S., Syalsabila, A., Shahid, M. Z., & Fosbøl, P. L. (2020). Highpressure experimental and theoretical study of CO2 solubility in aqueous blends of lysine salts with piperazine as new absorbents. *Fluid Phase Equilibria*, 507, 112429. <u>https://doi.org/https://doi.org/10.1016/j.fluid.2019.112429</u>
- Sun, W.-C., Yong, C.-B., & Li, M.-H. (2005). Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-1-propanol and piperazine. *Chemical Engineering Science*, 60, 503-516. <u>https://doi.org/10.1016/j.ces.2004.08.012</u>
- Tans, P. (2011). Recent global monthly mean CO2. Retrieved April, 15, 2011.
- Thee, H., Nicholas, N. J., Smith, K. H., da Silva, G., Kentish, S. E., & Stevens, G. W. (2014). A kinetic study of CO2 capture with potassium carbonate solutions promoted with various amino acids: Glycine, sarcosine and proline. *International Journal of Greenhouse Gas Control*, 20, 212-222. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2013.10.027</u>
- Thompson, J. G., Combs, M., Abad, K., Bhatnagar, S., Pelgen, J., Beaudry, M., Rochelle, G., Hume, S., Link, D., Figueroa, J., Nikolic, H., & Liu, K. (2017). Pilot testing of a heat integrated 0.7MWe CO2 capture system with two-stage air-stripping: Emission. *International Journal of Greenhouse Gas Control*, 64, 267-275. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2017.08.003</u>
- Tollefson, J., & Monastersky, R. (2012). The global energy challenge: Awash with carbon. *Nature*, 491(7426), 654-655. <u>https://doi.org/10.1038/491654a</u>
- Usman, M., Hillestad, M., & Deng, L. (2018). Assessment of a membrane contactor process for pre-combustion CO2 capture by modelling and integrated process simulation. *International Journal of Greenhouse Gas Control*, 71, 95-103. https://doi.org/https://doi.org/10.1016/j.ijggc.2018.02.012
- Vaidya, P. D., & Mahajani, V. V. (2005). Kinetics of the Reaction of CO2 with Aqueous Formulated Solution Containing Monoethanolamine, N-Methyl-2-pyrrolidone, and Diethylene Glycol. *Industrial & Engineering Chemistry Research*, 44(6), 1868-1873. <u>https://doi.org/10.1021/ie049226r</u>
- Vasantha, T. R. N., Kumar, A., Attri, P., Venkatesu, P., & Devi, R. S. R. (2012). Influence of biocompatible ammonium ionic liquids on the solubility of 1-alanine and 1-valine in water. *Fluid Phase Equilibria*, *335*, 39-45.
- Vellini, M., & Gambini, M. (2015). CO2 capture in advanced power plants fed by coal and equipped with OTM. *International Journal of Greenhouse Gas Control*, 36, 144-152. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2015.01.022</u>

- Wappel, D., Gronald, G., Kalb, R., & Draxler, J. (2010). Ionic liquids for post-combustion CO2 absorption. *International Journal of Greenhouse Gas Control*, 4(3), 486-494. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2009.11.012</u>
- Wei, C.-C., Puxty, G., & Feron, P. (2014). Amino acid salts for CO2 capture at flue gas temperatures. *Chemical Engineering Science*, 107, 218-226. <u>https://doi.org/https://doi.org/10.1016/j.ces.2013.11.034</u>

Williams, M. (2002). Climate Change-Information Kit. UNEP.

- Xie, C., Dong, Y., Zhang, L., Chu, G., Luo, Y., Sun, B., Zeng, X., & Chen, J. (2019). Low-Concentration CO2 Capture from Natural Gas Power Plants Using a Rotating Packed Bed Reactor. *Energy & Fuels*, 33(3), 1713-1721. <u>https://doi.org/10.1021/acs.energyfuels.8b02780</u>
- Xue, Z., Zhang, Z., Han, J., Chen, Y., & Mu, T. (2011). Carbon dioxide capture by a dual amino ionic liquid with amino-functionalized imidazolium cation and taurine anion. *International Journal of Greenhouse Gas Control*, 5(4), 628-633. <u>https://doi.org/https://doi.org/10.1016/j.ijggc.2011.05.014</u>
- Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B., Bland, A. E., & Wright, I. (2008). Progress in carbon dioxide separation and capture: A review. *Journal of Environmental* Sciences, 20(1), 14-27. https://doi.org/https://doi.org/10.1016/S1001-0742(08)60002-9
- Yang, M., Jing, W., Zhao, J., Ling, Z., & Song, Y. (2016). Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF (tetrahydrofuran) + TBAB (tetra-n-butyl ammonium bromide)). *Energy*, 106, 546-553. <u>https://doi.org/https://doi.org/10.1016/j.energy.2016.03.092</u>
- Yang, N., Yu, H., Xu, D. y., Conway, W., Maeder, M., & Feron, P. (2014). Amino acids/NH3 Mixtures for CO2 Capture: Effect of Neutralization Methods on CO2 Mass Transfer and NH3 Vapour Loss. *Energy Procedia*, 63, 773-780. <u>https://doi.org/https://doi.org/10.1016/j.egypro.2014.11.086</u>
- Yu, B., Yu, H., Li, K., Yang, Q., Zhang, R., Li, L., & Chen, Z. (2017). Characterisation and kinetic study of carbon dioxide absorption by an aqueous diamine solution. *Applied Energy*, 208, 1308-1317. https://doi.org/https://doi.org/10.1016/j.apenergy.2017.09.023
- Yu, H., Xiang, Q., Fang, M., Yang, Q., & Feron, P. (2012). Promoted CO2 absorption in aqueous ammonia. *Greenhouse Gases: Science and Technology*, 2. <u>https://doi.org/10.1002/ghg.1280</u>
- Yuan, S., Chen, Y., Ji, X., Yang, Z., & Lu, X. (2017). Experimental study of CO2 absorption in aqueous cholinium-based ionic liquids. *Fluid Phase Equilibria*, 445, 14-24. <u>https://doi.org/https://doi.org/10.1016/j.fluid.2017.04.001</u>
- Zanone, A., Tavares, D. T., & Paiva, J. L. d. (2018). An FTIR spectroscopic study and quantification of 2-amino-2-methyl-1-propanol, piperazine and absorbed carbon dioxide in concentrated aqueous solutions. *Vibrational Spectroscopy*, 99, 156-161. <u>https://doi.org/https://doi.org/10.1016/j.vibspec.2018.03.007</u>

- Zarei, A., Hafizi, A., Rahimpour, M. R., & Raeissi, S. (2020). Carbon dioxide absorption into aqueous potassium salt solutions of glutamine amino acid. *Journal of Molecular Liquids*, *301*, 111743. <u>https://doi.org/https://doi.org/10.1016/j.molliq.2019.111743</u>
- Zhai, H., & Rubin, E. S. (2018). Systems Analysis of Physical Absorption of CO2 in Ionic Liquids for Pre-Combustion Carbon Capture. *Environmental science &* technology, 52(8), 4996-5004. <u>https://doi.org/10.1021/acs.est.8b00411</u>
- Zhang, Z. (2016). Comparisons of various absorbent effects on carbon dioxide capture in membrane gas absorption (MGA) process. *Journal of Natural Gas Science and Engineering*, 31, 589-595. https://doi.org/10.1016/j.jngse.2016.03.052
- Zhang, Z., Chen, F., Rezakazemi, M., Zhang, W., Lu, C., Chang, H., & Quan, X. (2018). Modeling of a CO2-piperazine-membrane absorption system. *Chemical Engineering Research and Design*, 131, 375-384. <u>https://doi.org/https://doi.org/10.1016/j.cherd.2017.11.024</u>
- Zhang, Z., Yan, Y., Zhang, L., Chen, Y., & Ju, S. (2014). CFD investigation of CO2 capture by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membranes: Part B. Effect of membrane properties. *Journal of Natural Gas Science and Engineering*, 19, 311-316. <u>https://doi.org/https://doi.org/10.1016/j.jngse.2014.05.023</u>
- Zheng, J., Zhang, P., & Linga, P. (2017). Semiclathrate hydrate process for precombustion capture of CO2 at near ambient temperatures. *Applied Energy*, 194, 267-278. <u>https://doi.org/https://doi.org/10.1016/j.apenergy.2016.10.118</u>
- Zheng, S., Tao, M., Liu, Q., Ning, L., He, Y., & Shi, Y. (2014). Capturing CO2 into the Precipitate of a Phase-Changing Solvent after Absorption. *Environmental science* & technology, 48(15), 8905-8910. <u>https://doi.org/10.1021/es501554h</u>
- Zhou, Z., Jing, G., & Zhou, L. (2012). Characterization and absorption of carbon dioxide into aqueous solution of amino acid ionic liquid [N1111][Gly] and 2-amino-2methyl-1-propanol. *Chemical Engineering Journal*, 204-206, 235-243. <u>https://doi.org/https://doi.org/10.1016/j.cej.2012.07.108</u>