STABILITY OF SLOPE CUTS IN THE DINDING SCHIST OF THE UKAY PERDANA AREA, SELANGOR DARUL EHSAN, MALAYSIA.

NKPADOBI JOHNBOSCO IKENNA

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR, MALAYSIA

OCTOBER 2009

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of candidate: NKPADOBI JOHNBOSCO IKENNA (Passport No: A00459196)

Registration/ Matric No: SGR050007

Name of degree: MASTER OF SCIENCE

Title of Project/ Research report/Dissertation/Thesis: STABILITY OF SLOPE CUTS IN THE DINDING SCHIST OF THE UKAY PERDANA AREA, SELANGOR DARUL EHSAN, MALAYSIA..

Field of Study: ENGINEERING GEOLOGY

I do solemnly and sincerely declare that

- (1) I am the sole author/writer of this work;
- (2) This work is original;
- (3) Any use of any work in which copyright exist was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the work and its authorship have been acknowledged in this work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby, assign all and every rights in the copyright to this work to the University of Malaya ("UM"), who henceforth shall be the owner of the copyright in this work and that any reproduction or use in any form or by any means what so ever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature.

Date.

Subscribed and solemnly declared before,

Date

Witness's signature

Name:

Designation:

ABSTRACT

In the Ukay Perdana area are found low grade regionally metamorphosed rocks that have been mapped as the Dinding schist of Lower Palaeozoic age. The Dinding schist comprises quartz-biotite-muscovite schist, quartz schist and meta-volcanics; the meta-volcanics being the predominant bedrock of the Ukay Perdana area.

Laboratory determinations, employing the recommended saturation and buoyancy technique of ISRM (1979), show fresh (unweathered) samples of the meta-volcanics to have apparent porosities of 2.5% and, average dry and saturated unit weights of 25.82 kN/m^3 and 26.08 kN/m^3 respectively. Samples of slightly weathered meta-volcanic rock material, however, have an apparent porosity of 8.2% with average dry and saturated unit weights of 23.99 kN/m³, and 24.78 kN/m³ respectively. Tilt tests involving diamond sawn surfaces (cut parallel to foliation) of the slightly weathered meta-volcanics yield a basic friction angle (Φ b) of 23°, whilst similar tests on diamond sawn surfaces of the fresh (unweathered) meta-volcanics yield a basic friction angle of 30°. Schmidt hammer tests with Schmidt hammer model N were carried out on the bedrock, the granite veins, and the metasomatised rocks in the area. With more than 20 impacts conducted with a minimal separation of the plunger diameter between impacts locations, the results yield Schmidt hammer mean rebound number of 40 for slightly weathered bedrocks, 44 for cut but unpolished and unweathered bedrock, 51 for naturally exposed bedrock, 53 for metasomatised polished rock surface, and 62 for granite vein. The hammer rebound range of 40 - 62 corresponds to the dry density range of 2447 kg/m³ - 2665 kg/m³ obtained from standard method of IRSM, 1979.

Structural discontinuity planes in the meta-volcanics of the Ukay Perdana area comprise granite veins, joints of various sizes and shapes, and a northeast-southwest foliation trend. Granite veins and dykes that cut the bedrock are evidence of a subsequent phase of intrusion of granitic rocks and post-metamorphism. Indications of the rocks being subjected to the later disturbance are observed in the development of the northwest-southeast trend of joints in the bedrock.

Slope cuts in the study area expose both fresh (unweathered) bedrock as well as slightly to completely weathered bedrock. Weathering profiles over fresh bedrock show four broad morphological zones on the basis of differences in the colour, textures and degree of preservation of the original bedrock materials, textures and structures. The topmost zone is highly weathered, and the rock material is in the transitional stage to form soil. The material is completely discoloured to yellowish red, but the fabric is completely preserved. The moderately weathered rock shows partial discoloration of reddish yellow, but the mass structure and material texture are completely preserved. Discontinuity planes in the moderately weathered rocks are commonly filled by ironrich secondary material, and the material fragment or block corner can be chipped by hand. In the slightly weathered bedrock material, there is reddish brown discoloration along discontinuity planes with the mass structure and material texture being completely preserved. However, the material is generally weaker and fragment corners cannot be chipped by hand. The lowest zone of unweathered bedrock shows no visible sign of rock material weathering, though there were some discolorations on major discontinuity surfaces.

A number of failures of slope cuts have occurred in the Ukay Perdana area and include failures in highly to completely weathered meta-volcanics as well as fresh (unweathered) bedrock. The failures involving the weathered materials are due to excavation and undercutting at the feet of existing slopes. Intense, short period rainfall and prolonged high rainfalls are major causal factors; the gradual disintegration of the bedrock encouraging infiltration and, starting with hair-line cracks that subdivide the weathered materials into angular fragments. The failures are thus triggered by an increase of the pore water pressure. Failures in the unweathered bedrock are mostly rock falls and topples. Though rainfall as a causal factor of these failures is sine qua non, inherent and adversely oriented structural discontinuity planes (including schistocity, foliation, cleavage, joints, unconformities, and flexural shears) are contributory causes. However, subsurface seepage, pore water pressures, and removal of the vegetation cover through erosion and drought are also contributing causal factors of rock falls and topples. Several methods to enhance stability of slope cuts in the area are discussed.

DEDICATION

This work is dedicated to my parents Hon. Chief & Lolo Augustine Ezeji Nkpadobi.

ACKNOWLEDGEMENT

My first acknowledgement goes to Almighty God whose glory endures forever. This work was carried out during my first year of marriage, when I had my first child-Johnbosco Jr, during the time of economic hardship and political instability in my country Nigeria. Yet Almighty God saw me through. I thank my wife- Mrs Amarachi Charity Nkpadobi for her support, understanding, and being able to take care of my family during my period of absence.

I wish to express my unreserved gratitude to my supervisor, Prof John Kuna Raj, whose meticulous supervision was the embodiment of the success of this very work. O God, bless my father and mother who single handedly gave me education beyond starvation level. God, bless my brothers and sisters whose prayers and inspirations saw me through.

Last but not the least, I thank the staff of Geology Department and Institute of Post-Graduate Studies, University of Malaya for all their supports in my various needs throughout the duration of this work.

TABLE OF CONTENTS

Page

ABSTRACT	ii
DEDICATION	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	xi
LIST OF TABLES	xvi
APPENDICES	xvii

CHAPTER ONE: INTRODUCTION

1.1 Slope stability	1
1.2 Slope failures	4
1.2.1 Classification of slope failures	4
1.2.1a. Falls	6
1.2.1b. Topples	6
1.2.1c. Slides	8
1.2.1d. Lateral spreads	13
1.2.1e. Flow	15
1.2.1f. Complex failures	18
1.2.2. Causes of slope failures	20
1.3. Aims of study	23
1.4. Method of study	25

CHAPTER TWO: ENVIRONMENTAL SETTING OF STUDY AREA

2.1. Location and accessibility	27
2.2. Geomorphology (Relief and Scenery)	30
2.3. Climate	32
2.3.1. Climate and vegetation	32
2.3.2. Temperature and rainfall	34
2.4. Geology of Kuala Lumpur	38
2.4.1. Dinding schist	40
2.4.2. Hawthornden schist	40
2.4.3. Kuala Lumpur limestone	41
2.4.4. Kenny hill formation	42
2.5. Geology of study area	44

CHAPTER THREE: DINDING SCHIST - PETROGRAPHY AND

GEOLOGICAL STRUCTURES

3.1 Introduction	47
3.2. Field occurrence	48
3.3. Petrography of investigated rock materials	52
3.3.1 Sample UM/GLG/2005/A	52
3.3.2 Sample UM/GLG/2005/B	57
3.3.3 Sample UM/GLG/2005/C	60
3.3.4 Sample UM/GLG/2005/D	64

3.3.5. Summary on petrography	68
3.4 Structures	69
3.4.1 Introduction	69
3.4.2 Veins	70
3.4.3. Joints	72
3.4.4 Flow structures	77

CHAPTER FOUR: DINDING SCHIST-PHYSICAL AND MECHANICAL

PROPERTIES

4.1 Introduction	80
4.2 Physical properties of the Dinding schist	81
4.3 Basic friction angle	86
4.3.1 Introduction	86
4.3.2. Tilt tests	87
4.4 . Residual friction angle	90
4.4.1 Correction factor	90
4.4.2 Schmidt hammer	95
4.4.2.1 Introduction	95
4.4.2.2 Method of study	95
4.4.3. Estimation of residual friction angle	96
4.5. Weathering	101
4.5.1. Introduction	101
4.5.2. Weathering of the Dinding schist	104
4.5.3. Summary on weathering	109

CHAPTER FIVE: STABILITY OF CUT SLOPES IN THE STUDY AREA

5.1. Introduction	110
5.2. Failures of cut slopes in Ukay Perdana	111
5.3. Cut slope stabilization methods in Ukay Perdana	118
5.4. Possible future instability of slopes	123
5.5. Suggested mitigation methods for future failures	127
CHAPTER SIX: SUMMARY AND CONCLUSIONS	
6.1 Summary	128
6.2. Conclusions	130
BIBLIOGRAPHY	131
APPENDICES	136

LIST OF FIGURES

Fig. 1.1: Schematic diagram of a steeper slope	3
Fig 1.2.: Schematic diagram showing influence of different factors on instability	3
Fig.1.3: Fall - material free fall	7
Fig. 1.4. Topples - the end-over-end motion of rock down a slope	7
Fig. 1.5: Graphic diagram of rotational and translational movements	9
Fig. 1.6: Schematic diagram of a rotational slide	11
Fig. 1.7: Schematic diagram of a translational slide	11
Fig. 1.8: Schematic diagram of a block slide	12
Fig. 1.9: Schematic diagram of a lateral spread	14
Fig. 1.10: Classic features of a Lateral Spread	14
Fig. 1.11: Flow. Viscous to fluid-like motion of debris	16
Fig. 1.12: Sketch of subdivisions of slurry flows and granular flows based	19
on saturation and velocity	
Fig. 2.1: Developing site on top of a very high slope cut in Taman Ukay	28
Perdana, with clear view of the Quartz dyke	
Fig. 2.2: Residential buildings at the foot of a benched slope in Viera Ukay	28
Fig 2.3. Location map of Ukay Perdana showing major and feeder roads	29
Fig. 2.4: Steep sided hills separated by V-shaped valleys	31
Fig. 2.5: Residential houses along steep slope angles	31
Fig. 2.6: Natural vegetation of the study area in the form of thick	33
canopy of foliage	

Fig. 2.7: Monthly rainfall for year 2007 at site 3217002 in Empangan Genting	35
Klang in Wilayah Persekutuan	
Fig. 2.8: Histogram of year 2007 Monthly Rainfal at site 3217003 in	35
Ibu Bekalan KM.11 at Gombak, Wilayah Persekutuan	
Fig 2.9: Map of Peninsular Malaysia showing study area	39
Fig. 2.10: Geological setting of Ulu Kelang area (Gobbett, 1964; Yin, 1974)	45
Fig. 2.11: Pronounced sub-parallel granite intrusion into the dinding schist in	46
Taman Ukay Perdana.	
Fig. 3.1: Sample Location Map of Ukay Perdana area	49
Fig. 3.2: Exposure of Dinding schist in Taman Ukay Perdana	50
Fig. 3.3: Staining and alteration of original minerals in exposed bedrock	50
in Jalan UP3	
Fig. 3.4: Foliation trend of exposed bedrock in Jalan UP3	51
Fig. 3.5: Sample UM/GLG/2005/A collection point	53
Fig.3.6a.: Photomicrograph of sample UM/GLG/2005/A showing irregular	54
quartz porphyroblasts in fine grained matrix of quartz and muscovite	
Fig.3.6b.: Photomicrograph of sample UM/GLG/2005/A showing relic	55
microcline within matrix of fine grained quartz and muscovite	
Fig.3.6c.: Photomicrograph of sample UM/GLG/2005/A showing foliation	56
trend of the schistose rock	
Fig.3.7a.: Photomicrograph of sample UM/GLG/2005/B showing quartz	58
porphyroblast within an aligned matrix of fine grained quartz,	
muscovite and biotite	

xii

Fig.3.7b.: Photomicrograph of sample UM/GLG/2005/B showing the foliation	59
trend of the schist	
Fig.3.8a.: Granite photomicrograph of sample UM/GLG/2005/D. The quartz	61
is translucent with flecks of muscovite, biotite, and k-feldspars	
Fig.3.8b.: Photomicrograph of sample UM/GLG/2005/D showing	62
granite/schist boundary	
Fig.3.8c.: Photomicrograph of sample UM/GLG/2005/D. The quartz and	63
microcline porphyroblasts are seen as individual grains.	
Fig.3.9: Sample UM/GLG/2005/E location point	65
Fig.3.10a. Photomicrograph of sample UM/GLG/2005/E. The quartz	66
porphyroblasts are seen within the fine grained quartz and	
muscovite with small flakes of albite	
Fig.3.10b.: Photomicrograph of sample UM/GLG/2005/E showing the	67
layered structure of the original rock	
Fig. 3.11: Schist outcrop along Jalan UP 3/2 with granite veins intrusion	71
Fig. 3.12. Schematic sketch of various joint surfaces encountered in the study area	74
Fig. 3.13. Plot of Poles for joint planes	75
Fig. 3.14. Rose diagram showing joint orientation	76
Fig. 3.15. Rose diagram showing the trend of foliation	79
Fig. 4.1: Diamond sawn and highly polished surfaces of block samples	83
Fig. 4.2: Diamond sawn, but unpolished surfaces of block samples	83
Fig. 4.3: Original discontinuity surfaces of unweathered rock blocks	84
Fig. 4.4: Set up of the measurement of Saturated Weight in air (Wa)	84

xiii

Fig. 4.5: Set up of the measurement of Saturated Weight in water (Ww)	85
Fig. 4.6: Set-up of tilt test	89
Fig. 4.7: Roughness profile and associated JRC values	93
Fig. 4.8. Estimate of joint wall compressive strength from Schmidt hardness	94
Fig. 4.9. The writer using the Schmidt hammer model N in-situ rocks in	98
Taman Ukay Perdana	
Fig. 4.10. Empirical relations between hammer rebound values and	99
the measured dry density	
Fig. 4.11. Estimation of joint wall compressive strength (uniaxial compressive	100
strength) with the use of the Schmidt hammer data	
Fig.4.12: Schematic sketch showing the different morphological zones of the	106
weathering profile	
Fig.4.13. Gradual degradation of exposed bedrock from slightly weathered	107
to moderately weathered unit	
Fig. 4.14: Exposed highly weathered zone with visible relicts of moderately	108
weathered units found in-between	
Fig.5.1. Shallow slips at older unbenched cuts	113
Fig.5.2. Topple in Jalan UP5/7	113
Fig.5.3a. Photograph of the complex failure involving rockfalls	114
and planar sliding	
Fig.5.3b. Hanging nets protecting the tumbling blocks at the base of the cut	114
Fig.5.4. Schematic diagram showing the profile of the complex	115
failure at Jalan UP 3/1	
Fig.5.5. Wedge failure in Jalan UP 3/2	116

xiv

Fig.5.6: A slump type of failure adjacent to Sri Baiduri apartment	117
Fig.5.7: Guniting – Wire mesh used with pipes almost half buried	119
within the sprayed concrete.	
Fig.5.8: Photo of benched slope in Vierra Ukay	119
Fig.5.9. Retaining walls in Taman Ukay Perdana	120
Fig. 5.10a. Drainage hose from Summer Set residential units down the slope	121
Fig. 5.10b. The drainage hose empties into the gutter drain at the foot of the slope	122
Fig. 5.11. Location map of study area showing possible future instability sites	125
Fig. 5.12. Burning and clearing of vegetation in Jalan UP5	126

LIST OF TABLES

Table. 1.1: Types of landslides. Abbreviated version of Varnes' classification	5
of slope movements	
Table 2.1: Year 2007 Monthly rainfall data, site 3217002 in Empangan	36
Genting Klang, Wilayah Persekutuan	
Table 2.2: Year 2007 Monthly rainfall data, site 3217003 in Ibu Bekalan	37
KM.11 at Gombak, W. Persekutuan, (DID,2008)	
Table 3.1. Data for trend of joints	73
Table 3.2: Data for trend of foliation	78
Table 4.1 : Physical properties of the Dinding schist	85
Table 4.2 : Physical properties of the Dinding schist and corresponding	89
basic friction angles.	
Table 4.3: Schmidt hammer data and mechanical properties of	99
investigated rocks	

APPENDICES

	Page
Appendix 1. Strike, dip values, and dip directions of the joints	136
Appendix 2. Strike of foliation	137
Appendix 3. Method of determination of physical properties of the	138
Dinding schist	
Appendix 4: Physical properties of fresh (unweathered) samples of	139
the Dinding schist	
Appendix 5: Physical properties of slightly weathered samples	140
of the Dinding schist	
Appendix 6. Method of determining basic friction angle	141
Appendix 7: Results of Tilt Tests involving original discontinuity	142
surfaces of unweathered block samples A1 and A2	
Appendix 8: Results of Tilt Tests involving slightly weathered	143
block samples B1 and B2	
Appendix 9: Results of Tilt Tests involving slightly weathered block	144
samples B1 and B3	
Appendix 10: Results of Tilt Tests involving slightly weathered	145
block samples B2 and B3	
Appendix 11: Results of Tilt Tests involving unweathered block	146
samples C1 and C2	
Appendix 12: Results of Tilt Tests involving unweathered block	147
samples D1 and D2	
Appendix 13: Results of Tilt Tests involving unweathered block	148
samples E1 and E2	

xvii

Appendix 14:	Plot of shear stress against normal stress for original	149
	discontinuity surfaces of Block samples A1 and A2	
Appendix 15:	Plot of shear stress against normal stress of diamond sawn but	150
	unpolished surfaces of slightly weathered samples B1 and B2	
Appendix 16:	Plot of shear stress against normal stress of diamond sawn but	151
	unpolished surfaces of slightly weathered samples B1 and B3	
Appendix 17:	Plot of shear stress against normal stress of diamond sawn but	152
	unpolished surfaces of slightly weathered samples B2 and B3	
Appendix 18:	Plot of shear stress against normal stress of diamond sawn and	153
	highly polished surfaces of unweathered samples C1 and C2	
Appendix 19:	Plot of shear stress against normal stress of diamond sawn and	154
	slightly polished surfaces of unweathered samples D1 and D2	
Appendix 20:	Plot of shear stress against normal stress of diamond sawn but	155
	unpolished surfaces of unweathered samples E1 and E2.	