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STUDIES ON THE BINDING AND INTERACTION OF 

NEOLACTOTETRAOSYLCERAMIDE AND PEPTIDES WITH DENGUE 

VIRUS TYPE 2 ENVELOPE PROTEIN 

ABSTRACT 

Dengue fever is a common tropical infection and this acute febrile illness can be a 

deadly infection in cases of severe manifestation, causing dengue haemorrhagic shock 

syndrome. Due to the nature of the mosquito-borne infection, dengue has become a 

significant public health threat in many developing tropical countries. In this study, 

envelope (E) protein is selected as a target for drug design because it is believed to be 

responsible for the initial viral attachment to target cells and for mediating cellular entry 

of the virus. Domain III of the E-protein is found to be critical for virus adsorption to 

the receptors expressed on the host cell surface. In the present work, the ability of 

potential inhibitors to inhibit DENV was assessed in silico through docking of ligands 

into the 1OKE pdb structure, followed by binding modes analysis and calculations of 

the free energy of binding. The ligands involved were neolactotetraosylceramide 

(nLc4Cer) and peptides (19-28 amino acids) that were believed to inhibit the trimeric 

conformation formation of DENV E-protein. The E-protein-nLc4Cer and peptide E-

protein complex models were generated using AutoDock 4.2 and Swarmdock docking 

programs. Then, the interaction of complexes were analysed using molecular dynamics 

simulation, followed by evaluation of the binding free energy and per-residue free 

energy decomposition analysis using the Molecular Mechanics Poisson Boltzmann 

Surface Area (MMPBSA) and Molecular Mechanics Generalized Born Surface Area 

(MMGBSA). The amino acid residues in the DENV E-protein important for the 

interactions with inhibitors had also been highlighted. These computational studies 

suggest that nLc4Cer and the peptides involved are proposed as potential inhibitors of 

DENV E-protein and are feasible to be developed as antiviral drugs for the treatment of 
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dengue fever. The information gathered may pave the way for the design of new anti-

dengue drugs thereby aiding the discovery of a therapeutic cure for this infectious 

disease. 

Keywords: dengue, peptide, envelope protein, molecular dynamics simulation, free 

energy of binding 
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KAJIAN DALAM MEMAHAMI PENGIKATAN DAN INTERAKSI 

“NEOLACTOTETRAOSYLCERAMIDE” DAN PEPTIDA-PEPTIDA DENGAN 

PROTEIN ENVELOPE VIRUS DENGGI JENIS 2 

ABSTRAK 

Demam denggi adalah penyakit berjangkit yang biasanya ditemui di kawasan tropika 

dan penyakit febril akut ini boleh menjadi jangkitan yang membawa maut dalam kes-

kes dengan manifestasi teruk yang menyebabkan sindrom kejutan denggi berdarah. 

Penyakit yang disebabkan oleh jangkitan nyamuk ini telah menjadi satu ancaman 

kesihatan di kebanyakan negara tropika yang sedang membangun. Dalam kajian ini, 

protein envelop (E) dipilih sebagai sasaran untuk merekabentuk ubatan kerana ia 

dipercayai bertanggungjawab sebagai langkah awal pelekatan virus kepada sel-sel 

sasaran sebelum kemasukan virus tersebut ke dalam sel. Domain III protein-E didapati 

penting bagi pelekatan virus pada permukaan sel perumah. Keupayaan perencat yang 

berpotensi untuk menghalang DENV telah dinilai secara “in silico” dengan cara 

memasukkan ligan ke dalam struktur pdb 1OKE diikuti dengan analisis mod ikatan dan 

pengiraan tenaga bebas pengikatan. Dalam penyelidikan ini, ligan-ligan yang terlibat 

adalah neolactotetraosylceramide (nLc4Cer) dan peptida-peptida (asid amino 19-28) 

yang dipercayai boleh merencat pembentukkan konformasi “trimeric” bagi protein-E. 

Model-model E-protein-nLc4Cer dan peptida E-protein komplek telah dihasilkan 

dengan menggunakan program AutoDock 4.2 dan Swarmdock. Kemudian, interaksi 

kompleks-kompleks tersebut dianalisa dengan menggunakan simulasi dinamik molekul, 

diikuti oleh penilaian tenaga bebas pengikatan dan analisis penguraian tenaga bagi 

setiap asid amino dengan menggunakan algoritma Molecular Mechanics Poisson 

Boltzmann Surface Area (MMPBSA) dan Molecular Mechanics Generalized Born 

Surface Area (MMGBSA). Residu asid amino dalam protein-E DENV yang penting 

untuk interaksi dengan perencat juga ditekankan kepentingannya. Keputusan kajian 
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mencadangkan bahawa nLc4Cer dan peptida yang terlibat berpotensi sebagai perencat 

kepada protein-E virus denggi dan berdayamaju untuk dibangunkan sebagai ubat-ubatan 

antiviral untuk merawat demam denggi. Kajian ini boleh membuka jalan untuk 

merekabentuk ubat-ubatan antidenggi baru, sekali gus membantu penemuan penawar 

terapeutik untuk penyakit berjangkit ini. 

Kata kunci: denggi, peptida, protein envelop, simulasi dinamik molekul, tenaga bebas 

pengikatan  
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CHAPTER 1: INTRODUCTION 

1.1 Background of Study 

Dengue is a viral infection caused by four types of viruses (DENV1, DENV2, 

DENV3 and DENV4) belonging to the Flaviviridae family. The viruses are transmitted 

through the bite of infected Aedes aegypti mosquitoes that feed both indoors and 

outdoors during daytime. These mosquitoes thrive in areas with standing water, 

including puddles, water tanks, containers and old tyres. Lack of reliable sanitation and 

regular garbage collection can also contribute to the spread of the mosquitoes. 

Dengue occurs nationally in Malaysia, with increased risk in urban and 

periurban areas. Recent cases have been confirmed in Johor, Malacca, Negeri Sembilan, 

Kuala Lumpur, Selangor, Putrajaya, Perak, Penang, Pahang, Perlis and Sarawak (Zaki et 

al., 2019). Peak transmission occurs in the late monsoon season (October until February 

in East Peninsular Malaysia, Sabah and Sarawak, while in West Peninsular Malaysia is 

in July until August). A vaccine is available for people living in some dengue endemic 

countries, but not commercially available for travellers.  

In mammalian cells, there are many candidate molecules that may act as 

receptors for dengue recognition, which include neolactotetraosylceramide (nLc4Cer). 

nLc4Cer had been reported as a putative receptor and the most promising target for 

DENV entry inhibitor design (Hidari, Abe, & Suzuki, 2013). The non-reducing terminal 

disaccharide residue, Galβ1-4GlcNAc, of nLc4Cer is a critical determinant for the 

binding of DENV2. The virus entry process mediated through host carbohydrate 

molecule is crucially involved in virus propagation and the pathological progression of 

dengue disease. Therefore, by understanding the molecular mechanism of virus entry 

from this study, the future development of effective new therapies to treat dengue 

patients can be done.  
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On the other hand, peptides were also used in this study as they have been 

reported to be highly selective against their target, possess low toxicity and low 

accumulation in tissues (Chew, Poh, & Poh, 2017). They readily exist in the human 

body and exert diverse biological roles, especially as signalling and regulatory 

molecules in a variety of physiological processes. Peptides that either interact with the 

virus particle or target at viral replication steps of the life cycle have a probability to be 

used as a cure for dengue disease. By targeting the attachment factor, peptides may 

prevent the attachment and binding of viral proteins with the host cell, thus inhibit the 

DENV entry.  

In this study, computational approaches such as molecular dynamics (MD) 

simulation and docking methods were used to study the interactions of potential 

inhibitors, which were neolactotetraosylceramide (nLc4Cer) and peptides, with dengue 

virus (DENV) envelope (E) protein. This was followed by evaluation of the binding free 

energy and per-residue free energy decomposition analysis using the Molecular 

Mechanics Poisson Boltzmann Surface Area (MMPBSA) and Molecular Mechanics 

Generalized Born Surface Area (MMGBSA) methods. In addition, these methods were 

used to identify possible binding sites in the domain (DIII) region of the E-protein. 

These approaches allowed us to explore the various conformational states and protein 

flexibility, and eventually obtained the binding energies of the ligand binding towards 

these multiple structures. Currently, these methods are becoming common in 

computational tools for drug discovery. The advantage of this MD simulation method is 

it can explicitly treat structural flexibility and give entropic effects (Vivo, Masetti, 

Bottegoni, & Cavalli, 2016). This would allow more accurate estimation of the 

thermodynamics and kinetics associated with drug-target recognition and binding. 
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1.2 Problem Statement 

The rise in dengue cases reported can be due to the increase in people mobility in 

Malaysia, which facilitate the spread of the virus all around the country (Pang & Loh, 

2016). Moreover, Malaysia has a long dry season, and together with occasional heavy 

rains produce a perfect mosquito-breeding condition. 

Currently, there is no available drug that is effective against all four dengue virus 

serotypes (DENV1 to 4). Once a person has immunity against one dengue serotype, the 

individual will never be infected with that same serotype again. If the person is 

subsequently infected with a different dengue serotype, however, he or she will have an 

increased risk of developing a more severe dengue illness. Hence, a safe drug must 

provide immunity against all four DENVs and further studies are compulsory in order to 

protect people from severe dengue infections.  

Outcomes from phase III clinical trials showed that the first dengue vaccine, 

Dengvaxia (CYD-TDV), successfully reduced dengue hospitalizations by 80%. 

However, its average efficacy against DENV was low, especially against DENV1 at 

approximately 50% and against DENV2 at 39%. Furthermore, previous clinical trials 

revealed that CYD-TDV vaccination caused elevated risks of hospitalization for 

children less than nine years of age. The World Health Organization has therefore 

recommended the use of CYD-TDV vaccine only in countries where epidemiological 

data indicated a high burden of dengue (Chew et al., 2017). 

Presently, the structural study towards understanding the binding of nLc4Cer and 

designed peptides to DENV2 E-protein is rarely done especially in Malaysia. Thus, the 

current study will provide important call to deliver a durable and effective drug in order 

to fight this fatal global threat. 
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1.3 Aim and Objectives 

This study focuses mainly towards inhibiting the attachment of DENV E-protein 

to the host cell. The aim of this research is to understand the binding modes of 

neolactotetraosylceramide (nLc4Cer) and peptides to DENV E-protein, and screen for 

potential inhibitors of DENV E-protein through docking and molecular dynamics 

simulations.  

Objectives of this study are: 

i. To evaluate the binding stability of nLc4Cer to DENV E-protein. 

ii. To investigate the binding pathway of nLc4Cer towards the binding site. 

iii. To identify potential peptide inhibitors that can inhibit the trimeric conformation 

formation of DENV E-protein. 

iv. To synthesize some of the peptides identified as potential inhibitors.  

 

1.4 Scope of this Study 

The research is focused on exploring for potential inhibitors of DENV E-protein. 

The scope of this research is limited to the computational studies and can be classified 

into two major parts which involved binding mechanisms of neolactotetraosylceramide 

(nLc4Cer) towards DENV E-protein and the study of peptides as potential inhibitors. 

The movement of nLc4Cer towards the binding site was also observed through docking 

study. In this section, a cost effective technique known as “pathway docking” was used 

to illustrate ligand-receptor binding free energy in order to find potential pathways of 

nLc4Cer approaching E-protein binding site. Meanwhile, for the peptide study, only the 

best and potent peptides were chosen for syntheses for future inhibition assay and their 

binding free energy were evaluated through the molecular dynamics simulation method.  
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1.5 Output to be Predicted 

The output of this study shall include inhibitors that may inhibit DENV entry 

into host cell by interacting directly with the virus E-protein and interfere with the 

viral attachment to host cell surface. Inhibition occurs as a result of inhibitor binding 

to E-protein, induction of structural changes in the DENV surface, and interference with 

virus-cell binding. Inhibitor targeting the cell entry of DENV may help to overcome 

dengue infection. 

The binding energies between peptides and nLc4Cer towards E-protein obtained 

for this study should also show negative values indicating favourable binding. In this 

study, important amino acids that are involved in the binding interaction are identified. 

It is hoped that the designed peptides and nLc4Cer may act as inhibitors of DENV E-

protein and may lead to the development of drugs against DENV infections.  

 

1.6 Benefit of Research 

This study is intended to highlight the importance of finding potential inhibitors 

against dengue activities that can have impact on the quality of life of the society. This 

research is very important as it can become a significant step in the design of drugs 

against dengue diseases which eventually leads to the reduction of the society burden by 

introducing potential inhibitors. 

The peptides and nLc4Cer have the potentials to block DENV entry into target 

cells, which result in the inhibition of viral infection. Hopefully, the new inhibitor 

discovery stategy based on peptides and nLc4Cer will help in the future development of 

therapeutics against DENV infections. With effective antivirals, vaccination and vector 

controls such as fogging, dengue in endemic countries can be better controlled and the 

state of public health can be improved.  

Univ
ers

iti 
Mala

ya



6 
 

1.7 Thesis Organization 

This thesis contains five chapters. Chapter 1 is the introduction to the whole 

study including problem statement, aim and objectives, scope and benefit of research. 

Chapter 2 presents a literature review of the dengue phenomenon worldwide and 

especially in Malaysia, the dengue virus structure and its life cycle, the importance of 

dengue virus (DENV) envelope protein (E-protein) as target for viral entry as well as 

implimentation of in silico study in this research. 

Characterization of ligand binding site on DENV2 E-protein is discussed in 

Chapter 3. In this chapter, the usage of Discovery Studio 4.0 software in determining 

the binding site of E-protein will be discussed. Several regions of the E-protein are 

believed to be the target binding sites for inhibition activity. This chapter also presents 

data analysis of the binding pathway of neolactotetraosylceramide (nLc4Cer) towards 

DENV2 E-protein. Docking pathway method was performed using AutoDock 4.2 to 

observe the movement of nLc4Cer as it approached DENV E-protein prior to binding. 

In Chapter 4, binding free energy calculations of peptides  inhibiting DENV E-

protein were evaluated by using MD simulation. In this study, the Molecular Mechanics 

Poisson Boltzmann Surface Area (MMPBSA) and Molecular Mechanics Generalized 

Born Surface Area (MMGBSA) algorithims were used to assess the binding affinity of 

peptide-E-protein complexes. In addition of that, this chapter gives a description on how 

the peptides were syntesized using the automated peptide synthesizer. Purification of the 

synthesized peptides was done using liquid chromatography mass spectrometry (LCMS) 

and high performance liquid chromatography (HPLC).  

Chapter 5 provides the conclusion of research studied and recommendation for 

further works. The flow chart below (Figure 1.1) shows the architecture of this study 
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towards finding potential inhibitors that can inhibit the formation of DENV E-protein 

trimeric conformation.   

 

      PART (A)           PART (B) 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 1.1: Workflow of this research project. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Dengue  

2.1.1 Global Burden of Dengue Fever 

 According to the World Health Organization (WHO), dengue fever is a disease 

spread by female Aedes aegypti mosquitoes (Figure 2.1). WHO has characterized the 

disease as one of the world‟s fastest-growing viral risk. Today, dengue ranks as the most 

important mosquito-borne viral disease in the world (Chang, Tien, & Lu, 2018). The 

dengue virus (DENV) passes through the mosquito gut into the mid gut; it then 

replicates in the mid gut and also in body tissues. After five days, the virus then infects 

the salivary glands. Upon feeding, the mosquito bites a human and delivers the dengue 

virus through the saliva.  

Dengue fever is a febrile illness that affects infants, toddlers and adults with 

symptoms appearing 3-14 days after the pandemic bite. This acute illness of sudden 

onset usually follows with symptoms such as headache, fever, exhaustion, severe 

muscle and joint pain, swollen glands and rash. Other signs of dengue fever consist of 

bleeding gums, serious pain behind the eyes and red palms and soles. This disease can 

become lethal for people with low levels of immunity. Since there are four serotypes of 

dengue virus (DENV), which are DENV1, 2, 3 and 4, hence it is possible to get dengue 

fever several times. Nevertheless, a dengue infection produces immunity for a lifetime 

to that particular serotype to which the patient was exposed. On the contrary, it does not 

provide immunity to other dengue virus serotypes. 

According to WHO, the year 2016 was characterized by large dengue outbreaks 

worldwide. The Region of the Americas reported more than 2.38 million cases in 2016, 

where Brazil alone contributed slightly less than 1.5 million cases, approximately 3 

times higher than in 2014. There was also a record of 1,032 dengue deaths reported in 
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the region. Meanwhile, in 2017, the Region of Americas had reported 50,172 cases of 

dengue fever, a reduction as compared with corresponding periods in previous years 

(Adam et al., 2017). In general, majority of the dengue cases reported involved 

returning tourists that had been declared as disease endemic areas. Dengue cases were 

reported particularly in Northern Mexico, Virgin Islands, Guam and Samoa (Guarner & 

Hale, 2019). The Western Pacific Region had been reported dengue outbreaks in several 

Member States in the Pacific, as well as the circulation of DENV1 and DENV2 

serotypes. An estimated 500,000 people with severe dengue require hospitalization each 

year, and about 2.5% of those affected die. 

In the late 2015 and early 2016, the first dengue vaccine, Dengvaxia by Safoni 

Pasteur, was registered in several countries for use in individuals 9 - 45 years of age, 

living in endemic areas (Bustamam, Aldila, & Yuwanda, 2018). Dengue vaccine 

development efforts aim for a vaccine which simultaneously provides long-term 

protection against all DENV serotypes (Schmitz, Roehrig, Barrett, & Hombach, 2011). 

Recent studies (Dans, Dans, Lansang, Silvestre, & Guyatt, 2018; Halstead, 2018) in 

Phase 3 trials in Asia and Latin America have shown that the licensed tetravalent 

vaccine, Dengvaxia, had variable efficacy depending on immune status prior to 

vaccination and the infection serotype. The Dengvaxia clinical trials had revealed that 

even individuals with detectable neutralizing antibodies to a particular serotype 

experienced vaccine break-through infections. In fact, based on long-term follow up 

data, Dengvaxia is no longer recommended for use in DENV-naive individuals as 

reported by Gallichotte et al. (2018). 

  Since there is no exact medicine to treat dengue fever available, thus prevention 

in terms of mosquito control is the main strategy in dengue management. Awareness 

of the geographical distribution and trouble of dengue is necessary in order to 

determine how to optimally allocate the limited resources available for dengue control 
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and in evaluating the impact of such activity universally. The global burden of dengue 

is terrifying and represents a growing challenge to public health. It is hoped that the 

evaluation of contemporary dengue risk distribution and burden will help to reduce 

dengue cases worldwide (Bhatt et al., 2013). 

 

 
Figure 2.1: The Aedes aegypti mosquito in action (Dennis, Goldman, & Vosshall, 
2019) 

 
 

2.1.2 Dengue in South East Asia Region 

 Generally, 1.3 billion people living in Southeast Asia are at risk of dengue 

infection. Since 2003, only eight countries in the region had reported cases. According 

to the WHO, in 2004 Bhutan reported its first case, in 2005 Timor-Leste, then in 2006 

Nepal. North Korea is the only country in the region that is free of this disease. The 

seasonal pattern of dengue vary across various countries: cases peak in India between 

August and November; in Indonesia during January and February; and in Myanmar 

and Sri Lanka between May and August. Basically, dengue fatality is not high, but 

costs including loss of productivity and the financial burden of health services have a 

large impact on economies and households (Ghosh & Dar, 2015). The disease can also 

affect revenue from tourism and foreign direct investment. According to health policy 

researchers at Brandeis University, Waltham, Massachusetts, USA, the annual 
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economic burden of dengue in Southeast Asia is nearly one billion US dollars with 

Indonesia and Thailand experiencing the highest costs. Thailand, Vietnam and 

Colombia have seen dramatic increase in dengue infections due to the absence of 

vaccination campaigns as well as lack of vector control activities (Lee et al., 2017). 

Meanwhile, in Philippines, which has the largest number of death, nevertheless had 

made some inroads as bringing numbers down from 499 deaths as they started a 

school-based dengue vaccination program in Manila as well as increase awareness in 

dengue understanding among public (Undurraga et al., 2017). 

In Thailand, dengue hemorrhagic fever (DHF) poses a main problem to public 

health. Every year, DHF that can cause to organ impairment, severe bleeding and 

eventually death affects between 15,000 and 105,000 people. In fact, the prevention 

and treatment programs to reduce dengue cases become difficult as the number and 

location of cases differ drastically (Lauer et al., 2018). Meanwhile, according to 

Singapore National Environment Agency, in year 2017, there were 2,772 dengue cases 

had been reported and this is the lowest figure in the past 16 years. This decrement 

was believed due to the local population has built up immunity after high number of 

infected disease where there were dengue outbreaks (Ang et al., 2019). In other parts 

of Asia, Hong Kong, Japan and South Korea have seen increments in dengue cases, 

largely because of people coming back from visits in Southeast Asian countries (Ebi & 

Nealon, 2016).  

  Southeast Asian countries report heightened efforts this year to control this fatal 

disease. Without a preventive vaccines or treatment, the rigorous public-awareness 

campaigns are the only tools to encounter dengue. In Bangkok, teams of municipal 

officers in jumpsuits armed with mosquito-killer spraying machines and masks fan out 

every day at houses and communities where dengue patients have been reported. Their 
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responsibility is to prevent the possibility of dengue spread by killing adult mosquitoes 

and whipping out their breeding sites (Messina et al., 2019). 

  Until now there is no specific treatment for dengue fever. For serious dengue 

cases, the medication is only limited to intravenous drips to try to replenish fluids 

victims lose as they struggle against fevers reaching as high as 41°C. Maintenance of 

the patient‟s body fluid volume is extremely important especially for severe dengue 

care. Without good medication, victims may have bleeding and shock (Cucunawangsih 

& Lugito, 2017). 

 

2.1.3 Dengue in Malaysia 

 In Malaysia, the wet season is already shaping up as potentially the worst on 

record for dengue fever with regional governments stepping up efforts to limit the 

spread of the potentially deadly disease. According to General Health Director, Dr. 

Noor Hisham Abdullah, the number of dengue fever cases for the period of February 18 

to 24 increase by 52 compared to previous week. He claimed that a total of 1,224 cases 

were reported for that period compared to 1,172 cases earlier week. Twenty people have 

already died in Malaysia due to dengue compared with forty death were recorded in 

2017, a drop of twenty cases by 50% (G.H. et al., 2019). Recent cases have been 

confirmed in Johor, Malacca, Negeri Sembilan, Kuala Lumpur, Selangor, Putrajaya, 

Perak, Penang, Pahang, Perlis, and Sarawak. 

Health experts believe that rainy season that brought mosquitoes out in April, 

contributed to the seriousness of the dengue challenge. In addition, above average 

temperatures that many experts blame on global warming encourage early mosquito 

breeding. Meanwhile, dengue is thought to be mutating as a result of immunity that has 
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built up in the region. And if the virus is spread by travellers, more countries are 

expected to be affected (Pang & Loh, 2016). 

 

2.1.4 Dengue Virus Structure and Life Cycle 

 Flaviviruses consist of single stranded positive sense RNA genomes that are 

approximately 11 kb in size. The viral genome is translated as a polyprotein in the 

cytoplasm. There are signal and stop-transfer sequences that direct the translocation of 

the polyprotein back and forth across the endoplasmic reticulum (ER) membrane. The 

polyprotein is subsequently co- and post-translationally modified by viral and host-

encoded proteases to produce three structural and seven nonstructural proteins. The 

mature virion consists of three structural proteins which are the capsid, C; a membrane 

associated protein (which is produced from the precursor prM), M; and the envelope 

protein, E. The nonstructural (NS) proteins include large, highly conserved proteins, 

which are NS1, NS3, and NS5, and four small hydrophobic proteins, NS2A, NS2B, 

NS4A, and NS4B. The following diagram (Figure 2.2) depicts the flavivirus genome 

organization. 

 

Figure 2.2: The dengue virus genome encodes three structural (capsid [C], 
membrane [M] and envelope [E] and seven nonstructural (NS1, NS2A, NS2B, NS3, 
NS4A, NS4B and NS5) proteins (Tomlinson, Malmstrom, & Watowich, 2009). 
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 As the major surface protein, many groups have concentrated on E-protein in 

their studies of viral particles. The crystal structure of E-protein revealed each that 

monomer consists of three domains that are believed to play crucial role in the virus life 

cycle (Hacker, 2009). Dengue E-protein with a molecular weight of 54.5 kDa is folded 

largely into beta-sheets and contain three distinctive domains: the N-terminus central 

domain (domain I); the fusion (or dimerization) domain that contains the fusion peptide 

(domain II); and the immunoglobulin (IgG) like domain (domain III). The domain III is 

mainly responsible for receptor recognition, which is essential for viral attachment to 

facilitate viral entry into host cells by receptor-mediated method (Watterson, Kobe, & 

Young, 2012). The mannose found at the glycosylated site appears to be critical for viral 

entry through receptor binding. Exposure of E-protein dimers to low pH in early 

endosomes after viral uptake results in irreversible conformational adjustment of E-

protein to a trimer conformation. The crystallographic structures suggest that E-proteins 

in the dimer form experience a dramatic conformational adjustment through the 

interdomain linkers that results in irreversible change of the dimer E-protein to the 

homotrimer form. This pH-induced trimer structure is capable to ruin the strong packing 

on the outer virion surface.  

 DENV go into a cell through receptor-mediated endocytosis through binding of 

E-proteins and receptors. After the interaction of E-protein with the receptors, E-protein 

undergoes conformational adjustment to allow the fusion of plasma membrane with 

dengue viral envelope in a pH-dependent manner. The viral access can be stopped by 

using antibody against E-protein, or using protease to remove the cell surface receptors 

(Chen et al., 1997). DENV can also attach to macrophage or monocyte cells mediated 

by reactive immunoglobulin G (IgG) binding to Fc-receptors. The cells bearing Fc-

receptors normally produce higher number of virus when infected with DENV in the 

presence of serologically cross-reactive but not neutralizing antisera. This 
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immunological phenomenon is known as “antibody-dependent enhancement” and is 

considered to play a role in the pathogenesis of dengue hemorrhagic fever and dengue 

shock syndrome (Flipse et al., 2016). 

 

2.1.5 Dengue Fever & Dengue Treatment 

Antiviral treatments for dengue infection still do not exist. Supportive care and 

hydration are the only treatments available for DENV infected patients especially for 

those who developed hypertension with dengue hemorrhagic fever (DHF). Infants and 

young children are often asymptomatically infected with DENV with assorted clinical 

syndromes. They often present with an undifferentiated febrile illness accompanied by a 

maculopapular rash. For adults when infected, they are more likely to become sick with 

80% of adults developing clinical symptoms of the disease. Dengue fever is commonly 

identified by an acute abrupt onset saddleback fever, serious headache, nausea and 

vomiting, myalgias, retro-orbital pain, an early maculopapular rash, low grade 

thrombocytopenia and hepatomegaly. Typically, patients will recover in two to seven 

days  (John & Rathore, 2019; Soe et al., 2018). 

Dengue patients may exhibit signs of dehydration due to fever, vomiting, or 

diarrhea and lost fluids should be replaced with oral electrolyte replacement solutions. 

The high dengue fever can be treated with Acetaminophen (Tylenol) for pain relief. 

Patients are encouraged to seek immediate medical attention if they develop symptom 

of serious dehydration or shock, where hospitalization and admission to the intensive 

care unit is highly endorsed. During hospitalization, doctors constantly monitor the 

patient‟s blood pressure, hematocrit, platelet count, urinary output and mental status.  

Patients may also be transfused if they lose excessive amounts of blood due to 

hemorrhage. Admission into the ward is suggested for at least twenty-four hours 

following defervescence and patients should not be sent home until they meet the 
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following criteria: their appetite return, have clinical improvement, there is no 

respiratory distress, stable hematocrit, platelets greater than 50,000/mm3 and good urine 

output (Hacker, 2009).   

In the late 2015 and early 2016, the first dengue vaccine, Dengvaxia by Safoni 

Pasteur, was registered in several countries for the usage of individual 9-45 years of age. 

Outcomes from phase III clinical trials showed that the vaccine had successfully 

reduced dengue hospitalizations by 80%. Unfortunately, the average efficacy against 

DENV was low, especially against DENV1 at approximately 50% and against DENV2 

at 39%. On the other hand, the average efficacy against DENV3 and DENV4 was 

slightly higher at 75% and 77%, respectively. In fact, clinical trials had confirmed that 

this vaccine caused elevated risks of hospitalization for children below nine years of 

age. The World Health Organization has therefore recommended the use of this vaccine 

only in endemic areas where high dengue cases had been reported (Fauci et al., 2019). 

 

2.1.6 Dengue Virus Envelope (E) Protein as Target for Viral Attachment 

  Nowadays, the DENV entry step into host cell has become an interesting 

therapeutic strategy because it correlates to a barrier to disturb the beginning of the 

infection. Inhibition of DENV entry during the beginning stage of virus infection may 

weaken the viremia in infected human resulting in the interruption of dengue fever to 

the serious life threatening infection, reduce the infected vector number and finally 

breaking the transmission cycle. The envelope (E) protein which has 495 amino acids 

was reported to play an important role in viral infection through DENV attachment to 

the host cell receptors as it binds to receptors. It is also one of the structural proteins of 

DENV which is known to be a target of antiviral inhibitors and plays a special role in 

the cell membrane fusion process (Dubayle et al., 2015). A study by Zhang et al. (2004) 

revealed the high flexibility of E-protein as it undergoes considerable conformational 
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adjustment during maturation. The flexibility of E-protein is crucial for the maturation 

and fusion processes. Therefore, it is one of the most valuable candidate proteins for the 

development of DENV drugs. 

   The region of the E-protein that might bind to cell-specific receptors remain a 

big issue due to the virion surface glycoprotein containing no well-defined spike 

structures common to other enveloped viruses. With the development of bioinformatics, 

Ilyas and co-workers (2011) have developed some tools and methods to study the rules 

in the variation of E-protein based on the fact that, there must be some conservative 

regions to maintain its function and structure. Moreover by analysis of huge number of 

sequences of E-protein, it is possible to design new drugs for the prevention of DENV 

infection. 

Structurally, the most attractive region of the E-protein to study is the domain III 

(DIII), which forms the virus surface and is involved in receptor binding with the host 

cells and fusion process. Moreover, DIII plays an important role both in spreading and 

inhibiting viral infection as well as stabilizing the E-protein structure (Elahi et al., 2014; 

Munoz et al., 2013). DIII is the main target of neutralizing antibodies against DENV 

(Valdes et al., 2011) and because it is relatively small, it is ideal for NMR and 

computational studies. Mouse monoclonal antibody (MAb) studies (Fibriansah et al., 

2015) showed that the most potent antibodies bind to DIII and the most efficient 

inhibition on the viral attachment was observed when monoclonal antibody (MAb) bind 

with the epitopes on DIII (Chong et al., 2015). The study of potential inhibitor of 

DENV E-protein based on DIII was also done previously by Guzman and co-workers 

(2010). Additionally, Alhoot et al. (2013) successfully reported the inhibitory peptide 

that inhibited DENV entry by targeting the E-protein. This was in agreement with the 

study by Guardia and Lleonart (2014) that reported the existence of small molecules 

that interfered with the DENV entry process mediated by class II fusion proteins.  
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2.2 In Silico Study 

Computational drug discovery can accelerate the challenging process in 

designing and optimizing a new drug candidate. The impact of computational structure-

based drug design on drug discovery has increased in the previous years due to the rapid 

development of faster architectures and improved algorithms for high-level 

computations in a time-affordable manner (Vivo et al., 2016). Receptor and ligand 

flexibilities are crucial in order to correctly predict ligand binding and related 

thermodynamic and kinetic properties. Therefore, molecular dynamics simulation and 

other computational techniques become common computational tools for drug 

discovery. A method famously known as computer aided drug design (CADD) has 

played an important role in the development of therapeutically important small 

molecules for over three decades (Sliwoski, Kothiwale, Meiler, & Lowe, 2014). This 

method can be divided into two which are structure-based and ligand-based drug 

designs. Structure-based method is related to high throughput screening in that both 

target and ligand structure information is necessary. This approach include ligands 

docking, pharmacophore and ligand design method. Meanwhile, ligand-based method 

uses only ligand information for predicting activity depending on its similarity or 

dissimilarity to previously known active ligands. In this study, the approach applied is 

more on structure-based drug design.  

 

2.2.1 Automated Docking 

Computational approach can be used for the categorizing of small molecule 

inhibitors against DENV replication through docking technique. Normally, molecular 

docking method is used to understand the drug-receptor interactions in modern drug 

design. This method rank molecules based on their binding affinities and further 

enhance the molecules to improve binding characteristics. There are several softwares 
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available for the docking process such as FlexX, Autodock and Gemdock. The aim of 

docking is to predict the structure of the complex formed between the target protein and 

the ligand. Once the protein model is built, ligand-docking algorithms predict the ligand 

protein interactions through searching for the best steric and energetically favourable fit. 

This involves the complex with the minimum binding free energy for a ligand bound to 

the receptor binding site. Softwares such as Autodock 4.2 can be used to dock a ligand 

into the receptor to identify the active binding sites and to study the interactions such as 

electrostatic interactions, hydrogen bonds, hydrophobic interactions, hydrophilic 

interactions and Van der Waal‟s interactions. The general idea of a docking program is 

to position the ligand in possible binding modes in the protein active site and eventually 

calculate score for the protein-ligand complex. A successful docking protocol depends 

on both the ability to accurately predict the binding pose and estimate their binding 

affinity. In AutoDock 4.2, the protein is preserved rigid while the ligand is allowed full 

flexibility in most of the docking methods (Peng, 2015). 

Recently, studies that combine both experimental data and computational 

methods have increased dramatically because the techniques are very crucial in drug 

design. Identification and optimization of the best ligand on the structures of 

biomolecules are common scientific challenges. Docking studies enable researchers to 

determine the best position for a ligand to bind on a macromolecule, while molecular 

dynamics (MD) simulation describe the relevant interactions that retain this binding. 

MD simulation normally represent the macromolecule movements in more detail. In the 

case of a protein, the side chain, backbone and domain movements can show how 

ligands are trapped during varieties of conformational states.  Besides that, it is likely to 

distinguish every binding site that would be able to accommodate different ligands 

through atomic movement. Furthermore, MD is used to examine the motion of the key 

catalytic residues side chains, which could give information about the formation of 
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protein transition states. All this information can be used in order to suggest the most 

possible site of binding interactions. 

Basically, MD simulation method can be combined with docking method to 

predict possible protein-ligand complexes. The particularities of both techniques are 

complementary: the rigidity and driven strategy of some docking methods and the force-

field-dependent flexibility of MD simulation can be combined to achieve the target. The 

location of a ligand inside a binding site is predicted by a docking calculation thereby 

yielding the energy-dependent location and conformation. Once the ligand is in the most 

probable site, the MD simulation models the atom motion involved in the interaction. 

 

2.2.2   Molecular Dynamics Simulation Studies on DENV E-Protein Systems 

 Chemistry has been generally known to be an experimental science where no 

molecule could be investigated without being synthesized or found in nature. Nowadays 

with the advent of modern computers and advances in simulation techniques, the 

dynamics and structure of molecular systems can be studied theoretically without them 

being synthesized nor have to be naturally occurring. The development of a method that 

allows the relaxation dynamics and equilibrium fluctuations of protein systems sampled 

by molecular dynamics to be tested via a direct comparison with experiment provides a 

powerful tools in the validation of MD simulations (Ahmadi, 2013). Compatibility 

between the simulation results and the experimental data has encouraged scientists to 

apply molecular dynamics (MD) simulation approach widely.  

 The molecular dynamics (MD) method is the most typical method used for in 

silico studies of molecular motion and flexibility at the atomic level. Static models only 

give little information about the dynamics of the structure, thus structure and dynamics 

have been combined in order to give a good understanding of the receptor system (Peng, 
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2015). In reality, the molecules undergo thermal motions and constantly transform their 

geometry, and MD simulations aim towards providing a more realistic representation of 

this molecular behaviour (Heavner, 2004). The application of computational tools to 

biomolecular analysis has jumped recently due to advances in the quality of both 

software and hardware (Jambrina & Aldegunde, 2016). There is no single experimental 

technique that is able to effectively depict the dynamic structure of DNA, however, MD 

simulations can cater an exhaustive theoretical description. The knowledge of protein 

dynamics is crucial in order to justify protein folding, misfolding,  molecular function, 

aggregation, signal transduction and allostery as well as applications in drug design and 

protein engineering (Katagi, 2013; Schaller, Connors, Oelmeier, Hubbuch, & 

Middelberg, 2015). 

 Recently, a number of simulations have been carried out in order to explore 

various effects in the protein-ligand complex binding free energy. Results from 

molecular dynamics simulations were found to be more reliable than results from 

molecular docking. Dubey and co-workers (2014) had proven via MD simulations that 

the binding free energy of drug R1 is better than the other drugs, and this pattern 

corroborated with the experimental observations. MD simulations has also become a 

prominent approach to generate an ensemble of receptor structures for docking propose 

(Wong, 2008). On the other hand, Lin et al. (2002) performed MD simulation on the 

ligand-free protein and then docked several ligands to the snapshot structures obtained 

from the MD simulation. The MD simulation was performed using AMBER software 

while docking was performed using Autodock software. The ligands were docked to 

5000 snapshot structures from the first 50 ns segment of MD simulation, and it was 

found out that some of these dynamics snapshots were capable to bind the ligand and 

gave poses closest to the experimental structures. Parikesit et al. (2013) used molecular 

docking to predict the formation of peptide bonds between the inhibitor with DENV E-
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protein cavity, followed by MD simulation to analyse the interactions between the 

protein and cyclic peptides at different temperature and time. In MD simulation, the 

starting structure may affect the simulation time to achieve the equilibrium. The closer 

the initial structure to the experimental one, the faster the simulation will reach the 

equilibrium state that agrees with the real system (Ahmadi, 2013). 

 

2.2.3 Free Energy of Binding 

 Calculations of relative binding free energies have been attempted for 

carbohydrate protein complexes using the free energy perturbation method. Molecular 

Mechanics Generalized Born Surface Area (MMGBSA) method is used as a tool in the 

analysis of carbohydrates in aqueous solution and dynamically bound to protein 

receptors. This method has successfully ranked the binding affinity of a series of 

carbohydrate-protein complexes. Nevertheless, the Molecular Mechanics Poisson 

Boltzmann Surface Area (MMPBSA) approach is a more accurate simulation and 

permits the comparison of quite disparate ligands, such as the mono-, tri- and 

pentasaccaride (Bryce, Hillier, & Naismith, 2001). 

 Normally MD simulations were used to generate an ensemble of binding 

conformations in the existence of explicit water, and ultimately the MMPBSA approach 

was used to estimate the binding energy. This method has been applied to estimate 

binding free energies and to figure out the relative stabilities of various biomolecular 

structures. Furthermore, this method has been used to understand biomolecular 

associations in detail by decomposing the total binding energy into a series of 

components. To decompose the binding energy, at first ΔEMM, ΔGpolar, and ΔGnonpolar are 

individually calculated for each residue and were then summed up to get the 

contribution of each residue to the binding energy. However, by extending the 
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simulation time, it does not necessary improve the correlations between the predicted 

binding free energies and the experimental values (Hou, Wang, Li, & Wang, 2011). 

MMPBSA has also been combined with MD simulations to rescore a set of 

docked complexes, significantly improving the utility of the complexes identified. In 

this case, MD simulations were used to produce an ensemble of binding conformations 

in the existence of explicit water, and additionally, the MMPBSA approach was used to 

estimate the binding energy. This tool is convenient in order to count relative binding 

energies, such as to compare various ligands binding into the same receptor protein. 

However, MMPBSA rank the binding affinities of the candidate molecules rather than 

give accurate predictions of the absolute binding free energies (Hou et al., 2011). On the 

other hand, the calculation of the entropic contribution to the binding free energy is 

another challenging problem where it is time-consuming, and the magnitude of standard 

error is high compared to the other energetic terms. The net entropic contribution is 

usually small, and multiple studies have suggested that corrections for changes in the 

configurational free energy of the system lead to only a small improvement in the 

correlation with experiment (Kumari, Kumar, Consortium, & Lynn, 2014b). 

 To gain further insight into the contribution of individual residues to binding, 

free energy decomposition was performed by Peng (2015). In his study, it was reported 

eventhough acetlycholine (ACh) bound to the same binding site in all the muscarinic 

receptors, it seemed to flexibly move in the binding site and make contacts with the key 

residues with different strengths. Favourable contributions to the binding begin from 

vdW interactions and the non-polar part of the solvation free energy, as opposed to 

unfavourable total electrostatic contributions. Therefore, the total electrostatic 

contributions became the major reason for differences in the binding free energy.  
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In MMPBSA or MMGBSA, binding free energy (ΔGbind) between a ligand (L) 

and a receptor (R) to form a complex RL is calculated as follows: 

ΔGbind  = ΔH - TΔS ≈ ΔEMM + ΔGsol - TΔS                                        (2.1) 

  ΔEMM = ΔEinternal + ΔEelectrostatic + ΔEvdW                                          (2.2) 

               ΔGsol = ΔGPB/GB + ΔGSA                                                       (2.3) 

 

where ΔEMM, is the change of the gas phase MM energy, ΔGsol is the solvation free 

energy and –TΔS is the conformational entropy upon binding. ΔEMM includes ΔEinternal 

(bond, angle and dihedral energies), electrostatic ΔEelectrostatic and van der Waals energies 

ΔEvdW. ΔGsol is the sum of electrostatic solvation energy (polar contribution), ΔGPB/GB, 

and non-electrostatic solvation component (non-polar contribution), ΔGSA. The polar 

contribution is calculated using either GB or PB model, while the non-polar energy is 

estimated by solvent accessible surface area (SASA). The conformational entropy 

change (-TΔS) is usually computed by normal-mode analysis on a set of conformational 

snapshots taken from MD simulations (Hou et al., 2011).                                                

 

2.2.4 Protein-Ligand Interactions 

A detailed understanding of the protein–ligand interactions is essential to 

understand biology mechanism at the molecular level. Due to that reason, an in-depth 

understanding of the molecular interaction is very important in facilitating the 

discovery, design, and development of drugs.  

 

2.2.4.1 Hydrogen Bonding Interactions 

 A hydrogen bond is the electrostatic attraction between polar molecules that 

exists when a hydrogen (H) atom is bound to a highly electronegative atom such as 

fluorine (F), oxygen (O) or nitrogen (N), which is named as the hydrogen bond acceptor 
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(HBA). When binding a ligand to its receptor, a hydrogen bond normally contributes 

between 0.5 and 4.7 kcal/mol to the binding energy.  Ligand hydrogen-bond donors and 

acceptors are energetically favourable in solution, where they form hydrogen bonds 

with the surrounding water molecules, and ultimately form hydrogen bonds with 

receptor residues (Durrant & McCammon, 2011). 

 The main role of hydrogen bonds is to correctly position the ligand within the 

active site and then hold the protein active site in a ligand-friendly conformation. 

Hydrogen bond is also essential in determining the three-dimensional structures adopted 

by proteins and nucleic bases. Furthermore hydrogen bonds play a crucial role in the 

stability between subunits in multimeric proteins. These hydrogen bond attractions can 

occur between molecules (intermolecular) or within different parts of a single molecules 

(intramolecular). Basically, a hydrogen bond is stronger than a van der Waals 

interaction, and may exist in inorganic molecules such as water and in organic 

molecules such as DNA and proteins.  

 Peng (2015) in her hydrogen bond analyses on the MD trajectories highlighted 

that transmembrane (TM), TM1 and TM2 underwent much less movement than the 

other TMs. These regions were likely to be stabilized by a network of hydrogen bonding 

interactions. The hydrogen bond networks are crucial for molecular interactions 

preserving the individual helical structure and the overall architecture of the TM bundle 

in the ground and activated states. Upon ligand binding, hydrogen bond networks may 

be either strengthened, resulting in stabilization of the receptor conformation, or 

disrupted, facilitating receptor activation. In another study, Ahmadi (2013) suggested 

that one of the main characteristic of sugars was the ability to participate in hydrogen 

bonds as both acceptor and donor. Each sugar has hydrophilic and hydrophobic region, 

and the detailed interaction of the hydrophilic part is under the control of the 

carbohydrate head group which could involve in hydrogen bonding. 
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 In a study by Deol et al. (2004), a detail picture of the interactions between lipid 

head groups and protein could also be achieved by analysing H-bonds. The monomer 

system exhibited more hydrogen bonding interactions with lipids in comparison of two 

monomers present in dimer-membrane system. This would be expected as monomer 

alone has larger surface area to interact with lipid molecules, whereas monomers in a 

dimer system (where one side interact with each other) only had the remaining one side 

to interact with lipid molecules. Moreover, higher amount of transient H-bonds 

(occupancy < 20%) occurred between donors and acceptors which could probably due 

to the thermal "breathing" motion of lipid and protein molecules.   

 Padariya et al. (2015) also observed the existence of hydrophilic polar side 

chains (Gln, Thr, Tyr and Lys) and non-polar (Gly) residues made very stable hydrogen 

bonds with lipids. The dynamic analysis of H-bond interactions of every residue in the 

protein revealed an important role of aromatic residues in drug binding, given their 

ability to stack with aromatic compounds and get involved in electrostatic interactions 

with charged compounds. 

 

2.2.4.2 Van der Waals Interactions (vdW) 

By definition, van der Waals (vdW) forces are driven by induced electrical 

interactions between two or more atoms or molecules that are very close to each other. 

Unfortunately, vdW interaction is the weakest of all intermolecular attractions between 

molecules. The role of vdW is very important, as its presence would enable the ranking 

of the ligands in the docking process, as agreed by Godoi et al. (2017) in their study on 

NS2B-NS3pro inhibitors. In fact, they reported that compound coded 12m demonstrated 

vdW interactions with Ser17 and Ser131, and π-interaction with His51 present in the 

catalytic cavity, indicating an important relationship to the enzyme inhibitory 

mechanism.   
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Meanwhile, an inspection of the thermodynamical parameters shows that vdW 

interactions played the most important role for binding affinity and the highest for 

ligand 5-(3-chlorophenyl)-N-(2-phenyl-2H-benzo[d][1,2,3]trialzol)furan-2-carboxamide 

(R1), as reported by Dubey et al. (2017) in their study targeting domain III of dengue 

envelope protein. The unfavourable solvation energy and favourable vdW interactions 

of ligand R1 was expected due to high lipophilicity of the ligand which made it highly 

hydrophobic.  

In the interaction of ligand with DENV E-protein, as reported by Lavanya et al. 

(2015), which considered the energetic contribution through vdW interactions, the 

compound Gedunin showed the highest score. However, the number of hydrogen bonds 

formed between Gedunin and the active site residues were less compared to other 

ligands studied which were Nimbin and Azadirone. Meanwhile, in the work done by 

Nasution et al. (2017), it was claimed that not only hydrogen bond interaction could be 

formed but also other non-covalent interaction, such as vdW interaction, resulting in the 

binding affinity between cyclic peptides and the NS2B-NS3 protease. 

 

2.3 Inhibitors Targeting Envelope Proteins 

2.3.1 Carbohydrate as a Small Molecule Inhibitor  

Many important biological processes involve carbohydrate-protein interactions. 

Carbohydrates are generally viewed as highly polar molecules. Carbohydrates are 

characterized by their considerable conformational flexibility and dense polar 

functionality. Since carbohydrates are dynamic in nature and interact intimately with 

aqueous solvent, the prediction of a protein-carbohydrate complex is crucial in 

numerous aspects including antibody-antigen recognition, gene expression, cell-cell 

adhesion, enzyme-substrate specificity and in molecular transportation (Bryce et al., 
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2001; Nivedha, Makeneni, Foley, Tessier, & Woods, 2014; Schmidt et al., 2012). A 

physical understanding of carbohydrate-protein interactions aids in the development of 

therapeutic agents designed to block such interactions. 

 The strength of this kind of interaction is also determined by the carbohydrate 

conformation and orientation with respect to the binding site. In order to probe protein-

carbohydrate interactions, docking and molecular dynamics (MD) simulations 

techniques could be used. Automated molecular docking can be utilized to identify 

binding sites in carbohydrate-binding proteins, or to predict the bound orientation and 

conformation of a carbohydrate or drug mimic in a known binding site. Once a docked 

model is obtained, it can then be used as a starting point for further refinement and 

exploration using MD simulations. Molecular dynamics (MD) simulations are 

employed to refine docked models and to study the dynamic nature of binding.  

 A well-known characteristic of protein-carbohydrate interactions is the low 

affinity of binding, usually in the millimolar range. These interactions are driven by a 

favourable enthalpy offset by the multiple contact points (hydrogen bonds, van der 

Waals interactions and hydrophobic stacking) between the carbohydrate and the protein. 

Moreover, highly organized hydrogen-binding atoms and a higher frequency of 

hydrogen bonds per unit area result in a closely spaced protein-carbohydrate interface. 

In addition, it is not surprising that water plays an essential role in both protein-protein 

and protein-carbohydrate interactions as the human body has a water content of 70%. 

Water molecules are also specifically involved in the binding of proteins to 

carbohydrates by mediating ligation of the carbohydrate epitope to the binding cleft of 

the protein. Upon protein-carbohydrate complexation, water molecules will tend to 

escape to the bulk with a concomitant decrease or increase in energy depending on their 

pre-existing molecular interactions. After protein-carbohydrate binding has occurred, 
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the complex formed will be resolvated and the water molecules will arrange themselves 

according to the new surface exposed (Holgersson, Gustafsson, & Breimer, 2005). 

DENV2 has also been shown to interact with a glycosphingolipid called 

neolactotetraosylceramide (nLc4Cer) that is expressed on mammalian cells such as 

human erythroleukemia K562 cells and baby hamster kidney BHK-21 cells. The 

carbohydrate recognition domain (CRD) of DC-SIGN has been shown to interact with 

DENV by engaging carbohydrate moiesties located on N67 of two neighbouring E-

proteins (Gregory Donald Gromowski, 2008). All serotypes of DEN viruses, DENV1 to 

DENV4, reacted with nLc4Cer, and non-reducing terminal disaccharide residue 

Galbeta1-4GlcNAcbeta1- was found to be a critical determinant for the binding of 

DENV2. These findings strongly suggested that multivalent nLc4 oligosaccharide could 

act as competitive inhibitor against the binding of DENV2 to the host cells (Aoki et al., 

2006). 

 Complex carbohydrates normally have a large number of rotatable bonds and as 

a consequent a large number of theoretically possible conformations can be generated. 

However, with the increase in computer processing power recently, MD simulations 

have become the standard method to study the conformations of carbohydrates (Frank, 

2015). A major advantage of MD methods is that carbohydrates can be studied in 

explicit solvent as well as in their biological context such as glycoproteins, glycolipids, 

or protein-carbohydrate complex.   
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2.3.2 Peptide 

2.3.2.1 Peptide as an Inhibitor 

Peptide development as therapeutic drug against DENV is a promising field in 

drug discovery. Peptide consists of amino acid sequence which is derived from the 

small part of a pathogenic protein, and due to that reason, they are very vulnerable to 

hydrolysis and oxidation reaction. Generally, a peptide has unique pharmacological 

properties due to its higher bioactivity, high specificity and selective to their target, with 

low interaction and toxicity compared to other drugs, as well as low accumulation in 

tissues (Chew et al., 2017). Furthermore, the peptide-based drugs have been widely 

distributed in the market, and approved by the Food and Drug Administration (FDA), 

such as Buserelin and Leuprorelin (Usmani et al., 2017). Peptide drugs can also disrupt 

protein-protein interfaces that cannot be inhibited by the available small molecules or 

even act as allosteric modulators (Yang et al., 2015). Parikesit et al. (2013) in their 

research had screened 300 commercial cyclic peptides against two binding sites of NS5 

methyltransferase in order to develop new hit inhibitors against DENV. Analysis of 

ligand-enzyme binding free energy found that, there were two best peptides that 

maintained stable complex conformations throughout the MD simulations. These two 

commercial cyclic peptides were suggested to be potential candidates to be developed 

into antiviral agents against DENV. 

 Alhoot et al. (2013) had designed four putative antiviral peptides to target the 

domain III (DIII) of DENV2 E-protein using BioMoDroid algorithm. This study found 

out that they were two peptides showing compelling DENV inhibition, when 

simultaneously incubated in the plaque formation assay, as well as in the reverse 

transcription polymerase chain reaction (RT-qPCR) and Western blot analysis. 

Furthermore, the transmission electron microscopy (TEM) images showed that the 
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inhibitory peptides caused structural abnormalities and alteration of the arrangement of 

the viral E-protein, which interfered with virus binding and entry. These peptides would 

have the potential to be active against all the serotypes of dengue and could be a 

promising therapeutic agent for attenuating dengue infection.  

 Peptides become novel recognition agents in bioassays as they can be easily 

synthesized chemically or in bacterial cells by recombination. They retain their binding 

affinity in various environmental conditions and can be simply adjusted to be used in 

different bioassays. Peptides binding selectively to the target molecules are mostly 

selected from peptide libraries that consist of a combination of a great number of 

various peptides (Schmidt, Lee, Yang, & Harrison, 2012). It is feasible to model more 

potent peptide ligands by understanding the structure-activity relationship of the current 

peptides. A good model peptide can precisely demonstrate greater selectivity and 

specificity with lower toxicity, compared to other conventional drug-like molecules. 

However, the use of peptides can be affected by deficiency such as low bioavailability, 

metabolic degradation and low conformational stability. To overcome these limitations, 

non-proteinogenic amino acids may be added in the sequence to produce peptides that 

are naturally stable to proteases and peptidases and eventually fold into well-ordered 

secondary structures (Maffucci, Pellegrino, Clayden, & Contini, 2014). 

 

2.3.2.2 Peptide Folding in Peptide Inhibitor Design 

 The understanding of peptide folding is very crucial in order to understand how 

a protein folds. By knowing the 3D structure or the folding of the peptide, it would 

allow us to understand the functionality and how it interact with other molecules. This 

would lead in the designing of peptides with potential biotechnological or 

pharmaceutical purpose (Daura, Mark, & Gunsteren, 1999). To determine the 3D-

structure of a peptide through experiment is not an easy task. In principal, the process of 
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peptide folding could be simulated directly on a computer using MD simulations 

method (Daura, Jaun, Seebach, Gunsteren, & Mark, 1998; Matthes & Groot, 2009). 

This way specific atomistic information can be obtained, which may be tough to get 

through experimental techniques. One of the major challenges in peptide folding 

simulations is to choose a correct force field due to possible biases different force fields 

have toward certain types of secondary structure (Cino, Choy, & Karttunen, 2012).  

 Understanding the dynamics and mechanism of peptide folding maintains to be 

one of the most challenging problems in molecular biology. Peptide folding simulations 

and experiments characterize the dynamics and molecular mechanisms in the early 

events of protein folding. In general, this type of simulations can be very long up to 

microseconds to stand a good opportunity to observe a single folding event and the 

force field being used must correctly depict the relative energies of a wide array of 

unfolded or misfolded conformations that appear during the folding process. 

Experimentally, peptide folds at very fast rates, requiring probing on the nanoseconds 

time resolution (Gnanakaran, Nymeyer, Portman, Sanbonmatsu, & Garcia, 2003). In 

addition, MD simulations also provide accurate information on the structure nature and 

relationships that takes place during peptide folding processes, as well as identify key 

intermediates and barrier to folding. Long simulations can be especially useful when 

performed near the peptide melting temperature, where the folded and unfolded states 

are equally populated and folding and unfolding occur on the same timescale (Piana, 

Klepeis, & Shaw, 2014). 

 Normally, the short peptides and protein fragments become the ideal model 

systems for the investigation because of their smaller size and structural simplicity. Of 

particular interest are α-helices and β-hairpins, which are two essential secondary 

structures in most of the proteins. Experiments display that the formation of β-hairpins, 

is generally more difficult compared to the formation of α-helices. In addition of its 
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structural simplicity, the β-hairpin is believed to fold in a manner which is similar to the 

folding of small proteins (Shao, Yang, & Gao, 2009). All this knowledge opens a wide 

range of possibilities to use MD simulations in order to understand the process of 

peptide folding and predicting possible folds of peptides in solution. 

 

2.3.3 Small Molecule Inhibitors 

This section briefly review on small molecule inhibitors that inhibit the viral 

attachment and membrane fusion of the DENV E-protein. There are no specific 

treatments available and development of the antiviral drugs for DENV is challenging 

due to the immunization and long lasting protection against all four serotypes. A study 

reported by Chao et al. (2018) had screen few compounds to detect small molecules that 

interfered in the conformational transition which at the end resulted in a series of 

cyanohydrazone compounds that bound to a soluble DI-DII fragment. In vitro result 

showed that these compounds blocked fusion, and infection in cell culture by attach to 

the E-protein conformation on the virion surface before the virus attached to a cell. 

On the other hand, a series of compounds studied by Aarthy et al. (2018), which 

were quercetin, silymarin, dapagliflozlin and fisetin, could be potential candidates to 

inhibit the DENV E-protein. Docking studies revealed that these compounds possessed 

strong interaction with good binding energies. In addition, molecular dynamics 

simulations also revealed that these compounds were highly stable as well as no weak 

interactions were observed between complexes.  

Meanwhile, a study performed by Tambunan et al. (2016) had screened about 

1,320 designed ligands which resulted in 3 best ligands that could form interaction with 

target protein and fusion peptide. These ligands showed good affinity with DENV E-

protein based on free energy of binding values and hydrogen bond interactions. In 
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addition, natural product compounds were also used in the form of fragments could be 

potential inhibitor for the DENV E-protein (Tambunan and Alkaff, 2018). The ligands 

had a lower ΔGbinding values and better molecular interaction with the DENV E-protein 

β-OG pocket binder compared to the native substrate, β-OG. The result indicated that 

the fragment-based drug design employed in the study could be an important computer-

aided drug design and discovery method in developing a new drug for various diseases. 

Basically, the advancement of small molecules for DENV antiviral drugs, has 

been a passive process. At the moment, only four small molecule antiviral drugs, which 

are Chloroquine, Celgosivir, Balapiravir and UV-4B, have entered phase 1 or phase II 

clinical trials (Tian, Zhou, Takagi, Kameoka, & Kawashita, 2018). Pre-clinical and 

clinical trials on antiviral drugs development are still ongoing, and many more research 

need to be performed in order to improve the current study status.  Hopefully in the 

future, many challenges towards finding effective drug candidates could be overcome, 

and the current research work would be able to yield a powerful and effective DENV 

antiviral therapy.  
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CHAPTER 3: STUDIES INVOLVING NEOLACTOTETRAOSYLCERAMIDE 

(nLc4Cer) 

3.1 Introduction 

 The DENV E-protein is responsible for receptor recognition and attachment to 

the host cell. The E-protein comprises three domains and the receptor binding Domain 

III (DIII) has been pursued as drug targets. In general, DIII region in E-protein has 

appeared to be responsible for the initial contact and accumulation of DENV on the 

surface of host cells by binding to glycosaminoglycan receptors (Behnam, Nitsche, 

Boldescu, & Klein, 2016). Therefore, molecular dynamics (MD) simulation and 

docking methods were used to identify possible binding sites in DIII region. These 

methods allowed us to explore the various conformational states and protein flexibility 

and eventually gets the binding energy towards these multiple structures. In this study, 

the E-protein pre-fusion structure was analysed to identify the potential binding site that 

may bind neolactotetraosylceramide (nLc4Cer), which eventually may interfere with the 

conformational transitions that mediate the attachment process. Previous study (Hidari 

& Suzuki, 2011) reported that nLc4Cer was responsible for virus adsorption and virus 

attachment to the host cells.  In mammalian cells, nLc4Cer is a DENV receptor and has 

the non-reducing terminal disaccharide residue Galβ1-4GlcNAc of nLc4Cer which is a 

critical determinant for the binding of DENV2. Therefore, MD simulation was 

performed to generate multiple conformations followed by docking to get best 

conformation, and eventually E-protein-nLc4Cer complex was simulated in explicit 

solvent to understand the interactions involved in the complex.  

Meanwhile, deep understanding of the association process is compulsory in 

order to design drugs that are capable to inhibit with disease-related protein interactions.  

Unfortunately, drug binding is a process that can be difficult to observe via experiment 
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and difficult to analyse using computational techniques. Until now, a consensus for the 

ligand entrance is still not clear with a growing interest among experimental researchers 

that computational simulations always show multiple pathways. In fact, modelling of 

ligand entrance from conventional molecular dynamics techniques has shown to be 

tough and costly (Huang & Wong, 2007; Le, 2012). Most computational models 

consider only the final conformation of the final docked protein-ligand complex and do 

not consider the dynamics of the ligands as it enters the protein binding site. In this 

study, a cost-effective method called “pathway docking” was used to reveal possible 

paths of the ligand approaching the protein binding pocket. This work demonstrates the 

power of pathway docking to show full binding pathway on how a drug find its target 

binding site. A docking approach that directly reveals the ensemble of pathways of 

nLc4Cer to the binding pocket of dengue virus (DENV) envelope (E) protein is 

described.  

 

3.2 Methods 

3.2.1 Characterizing Ligand Binding Site In Dengue Virus Type 2 (DENV2) 

Envelope Protein 

3.2.1.1 Materials 

 The three-dimensional structure of DENV E-protein was retrieved from the 

Protein Data Bank (http://www.rcsb.org/pdb; PDBid: 1OKE) (Berman et al., 2000). 

Chlorine atoms, water and gylcerol molecules were removed. The structure of 

neolactotetraosylceramide (nLc4Cer) was downloaded from PubChem page 

(http://www.ncbi.nlm.nih.gov/pccompound) (Wang, Xiao, Suzek, Zhang, Wong, et al., 

2009) and was minimized using Hyperchem Pro 6.0 software (Young, 2004) with PM3 

parameters using the steepest descent and conjugate gradient methods (termination 

conditions were set to a maximum of 500 cycles or 0.1 kcal/Å mol rms gradient). This 
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energy minimization guaranteed a low energy conformation with suitable bond lengths 

and angles. 

  

3.2.1.2 Molecular Dynamics (MD) Simulation of DENV Envelope (E) Protein 

 MD simulation of DENV E-protein complex was run in explicit solvent with a 

total simulation time of 50 nanoseconds using AMBER software (Salomon-Ferrer, 

Case, & Walker, 2012). It is important to run a simulation long enough to allow the 

system to properly equilibrate. Explicit solvent was chosen as opposed to in-vacuo, so 

that the simulation can imitate the system as close to reality as possible. Generally, the 

results based on explicit solvent are closer to the experimental data than those based on 

implicit solvent simulations. Water was used as the solvent because most proteins 

operate in an aqueous environment and most in vitro studies are also performed under 

this condition. The SHAKE algorithm (Ryckaert, Ciccotti, & Berendsen, 1977a) was 

used to constrain bonds containing hydrogen atoms. Simulation was initiated by heating 

the system from 0 K up to the final temperature of 310 K. The system was subsequently 

solvated with TIP3P water molecules in a truncated octahedral simulation box 

extending up to 12 Å from the solute in each direction. In this case, periodic boundary 

was applied to the system to obtain consistent behaviour. To ensure the overall 

neutrality of the system, Na+ and Cl- ions were added. All minimization and MD 

simulations were conducted using the Particle Mesh Ewald Molecular Dynamics 

(PMEMD) program from AMBER 12 package (Masova & Kollman, 2000; Salomon-

Ferrer et al., 2012). The system was first subjected to 500 steps of steepest descent 

minimization followed by 500 steps of conjugate gradient minimization. Minimization 

was performed in order to avoid any bad contacts prior to MD runs. To equilibrate the 

explicit solvent system, 200 picoseconds MD simulations were performed at a pressure 

of 1 atm using the Berendsen weak-coupling algorithm (Simmerling, Strockbine, & 
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Roitberg, 2002). A time step of 2 femtoseconds was used to integrate the equations of 

motions.  

 

3.2.1.3 Clustering 

 The representative structures during the 100 ns simulation of apo E-protein were 

generated using the cluster option in AMBER 12 software. The obtained conformational 

MD trajectories were clustered into nine conformations in order to focus the protein 

conformational analysis on the binding site. The structures were clustered based on the 

similar conformations using the backbone atom-positional RMSD of all atoms. Cluster 

program from ptraj was used to get a representative and average structure of the MD 

run. Several snapshots were extracted from the trajectory to represent various 

conformations for DENV E-protein. This was done by clustering the trajectory using 

backbone dihedral and selecting the conformations closest to the centre of each cluster 

as a representative conformation. The hierarchiral algorithm was used for clustering (J. 

Shao, Tanner, Thompson, & Cheatham, 2007). Theoretically, different conformations 

will give different binding site that eventually lead to variety of binding energies. MD 

simulation was performed on DENV E-protein to generate an ensemble of monomeric 

conformations to be used as docking targets. Thus, the ability of a ligand in changing 

the protein conformation may be effective in blocking the DENV from successfully 

attacking the human cells. 

 

3.2.1.4 Binding Site Prediction  

  Protein binding sites are the regions where molecular interactions occur with 

ligand. Binding sites may change their sizes and shapes upon binding. Therefore, 

analysis of protein binding sites is highly crucial in order to understand the biological 
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processes that are involved following binding with ligands. Binding pockets were 

detected using Discovery Studio 4.0. The binding site was detected by using the “find 

sites from receptor cavities” in the Tools section under the “Define and Edit Binding 

Sites” in Discovery Studio Program. Binding site uses a CHARMm-based molecular 

dynamic scheme to seek for the optimal binding sites for docking (Yi et al., 2015). 

Based on the analysis of the geometry shape of the protein surface, the cavity which 

could bind to the substrate was identified, and the potential binding sites were predicted. 

Then, the optimal binding site was chosen based on the shape and location of the cavity, 

the location of the residue and the conserved amino acid. A site sphere radius was set to 

assign the entire binding pocket. Other parameters were set as default. By using this 

program, the binding sites and volume of each pocket and cavity of E-protein were 

analysed. 

 

3.2.1.5 Docking of nLc4Cer to DENV E-Protein 

  The E-protein structure used in the computational docking run was based on the 

selected snapshot extracted from clustered MD trajectories. Docking of nLc4Cer to the 

DENV E-protein was performed using AutoDock 4.2 (Morris et al., 2010; Ruba, Arooj, 

& Naz, 2014). In AutoDock, all the missing side chain atoms of the target protein were 

checked and then repaired. Water molecules and ligand attached were removed. In order 

to use the AutoDock 4.2 force field properly, polar hydrogen atoms were added and 

nonpolar hydrogen atoms were merged, and solvation parameters were assigned by 

default using the graphical user interface of AutoDockTools (ADT). In this process, 

AutoDock 4.2 used the united atom model to represent molecules and the AutoDock 

scoring function was calibrated using Gasteiger partial charges on both the ligand and 

macromolecule (Zamri, Teruna, Rahmawati, Frimayanti, & Ikhtiarudin, 2019). Polar 

hydrogens are normally hydrogen atoms that are bonded to electronegative atoms such 
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as oxygen and nitrogen while non-polar hydrogens are hydrogens bonded to carbon 

atoms. All bonds were made rotatable and flexible by allowing the detection of root 

torsion. All docking calculations were performed using Lamarckian Genetic Algorithm 

(LGA) to determine the “globally” optimized conformation. The grid box, with spacing 

of 0.375 Å and a dimension of 128 x 100 x 116 points along the x,y and z axes, was 

centred on the molecule. A population size set up at 150; maximum number of energy 

evaluation, 2,500,000; maximum number of generations, 27 000; rate of gene mutation, 

0.02; and cross rate, 0.8 were used for 100 search runs. Generally, several docking runs 

were required in order to identify the conformations of the ligand within binding site. 

The remaining parameters were set as default. The root mean square deviation (RMSD) 

tolerance for each docking was set at 4.0 Å. The best structure where the system had the 

lowest energy was chosen for further analysis.  

 

3.2.1.6 Calculation of Free Energy of Binding  

Spontaneous changes in a protein system, such as the binding of a ligand to 

receptor, are characterized by a decrease in free energy. The more negative the free 

energy, the stronger the binding occurs. By calculating free energy of binding, a correct 

description of the interaction between the protein and the ligand can be obtained 

(Donnini, 2007). In this study, the free energy of binding (∆Gbind) of E-protein-nLc4Cer 

complex was calculated based on Molecular Mechanics Poisson Boltzmann Surface 

Area (MMPBSA) and Molecular Mechanics Generalized Born Surface Area 

(MMGBSA) procedures in AMBER 12 (Hou et al., 2011; Zhu, Beroza, & Artis, 2014).  

A total of 500 snapshots were collected for binding free energy analysis. The 

calculations, which were performed for each of these snapshots, were intended for the 

estimation of the free energy of binding of the protein-ligand complex (∆Gbind) between 
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the nLc4Cer and E-protein, using the following relationships (Kumari, Kumar, 

Consortium, & Lynn, 2014a) : 

                                 ΔGbind = Gcomplex - Gprotein - Gligand                                            (3.1)                                               

                                             = EMM + GGB/PB + Gnonpolar  - TΔS 

                                    EMM = Ebonded + Eele + EvdW                                                   (3.2) 

 

where Gcomplex, Gprotein and Gligand are the free energies of the complex, protein and 

ligand, respectively; EMM is the change of molecular mechanics potential energy upon 

ligand binding that includes van der Waals (EvdW) and electrostatic (Eele) energies 

(Equation 3.2); GGB/PB and Gnonpolar are the polar and nonpolar components of the 

desolvation free energy, respectively, and –TΔS is the change of conformational entropy 

upon ligand binding (which was not considered in this study because of the high 

computational cost and it tends to have a large error margin leading to significant 

uncertainty in the result) (Chen, Zheng, & Zhang, 2015; Homeyer & Gohlke, 2012; 

McGee, Miller, & Swails, 2009). In general, binding is normally presumed to restraint 

the flexibility of receptor and resulting in increasing cost of conformational entropy. 

Presently, the conformational entropy seems to be the most difficult to calculate. The 

simulation calculation does not consider desolvation and the result considered to be 

inadequate. The large error, outlier trajectories and spurious correlations highlight that 

the sampling procedure still remains the weak point of entropy calculations (Grunberg, 

Nilges, & Leckner, 2006). 

In order to apply the MMPBSA and MMGBSA formulations, a representative 

set of equilibrium conformations for the complex, free protein and free ligand were first 

obtained by atomistic MD simulations in explicit solvent. In the post-processing phase, 

the solvent was discarded and replaced by a dielectric continuum. Changes in the 

individual terms (EMM, Gsol, -TΔS) between the unbound state and bound (complex) 

states were calculated, and contributed to the binding free energies. 
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These energy contributions were computed from the atomic coordinates of the 

protein, ligand, and complex using the (gas phase) molecular mechanics energy function 

(or force field). The solvation free energy term, Gsol, contains both polar and nonpolar 

contributions. The polar contributions are accounted for by the Generalized Born, 

Poisson-Boltzmann model and the non-polar are assumed proportional to the solvent-

accessible surface area (SASA) (Equation 3.3).  

 

                                  Gsol = GPB(GB) + GSASA                                                   (3.3) 

 

3.2.1.7 Analysis of the Decomposition of Free Energy 

Free energy decomposition for the E-protein-nLc4Cer complex was examined in 

order to obtain information on important residues involved in the complex binding. The 

energy decomposition was carried out using the mm_pbsa.pl implemented in the 

AMBER12 package to calculate the per-residue decomposition. Per-residue 

decomposition separated the energy contribution of each residue from the association of 

receptor with the ligand into three terms: van der Waals contribution (∆EvdW), 

electrostatic contribution (∆Eele) and solvation contribution (Chu et al., 2015). The 

decomposition of free energy of E-protein-nLc4Cer complex was calculated based on 

the MMPBSA and MMGBSA protocols. In this study, the decomposition of free energy 

of each system was calculated every 10 ns of the trajectories and 500 snapshots were 

extracted from simulation within this time range. The interaction energy profiles were 

generated by decomposing the total binding free energies into residue-residue 

interaction (free energies).  
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3.2.1.8 Analyses of Results 

  The AMBER package provides energy output in a text file, where energy is 

given as a function of time. The ptraj module of AMBER 12 was used to write the 

backbone RMSD of atomic positions relative to the starting structure. The convergence 

of the energies, temperature, pressure and root mean square deviation (RMSD) were 

checked to indicate the system stability. Selected conformations were analysed using 

Discovery Studio Visualizer (Isa et al., 2019) and Ligplot software (Wallace, 

Laskowski, & Thornton, 1995) which identified the hydrogen bond, hydrophobic and 

pi-pi interactions between DENV E-protein and nLc4Cer. Meanwhile, Ligplot program 

was used to generate 2D schematic diagrams of protein-ligand interactions.  
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3.2.1.9 Flow Chart 

The flow chart below shows method involved in this study towards finding potential 

inhibitors that can inhibit the formation of trimeric conformation of DENV E-protein.  
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3.2.2 Binding Pathway of Neolactotetraosylceramide towards Dengue Virus Type 

2 (DENV2) Envelope Protein 

3.2.2.1 Materials 

The three-dimensional structure of DENV E-protein was retrieved from the 

Protein Data Bank (http://www.rcsb.org/pdb; accession code 1OKE) (Berman et al., 

2000).  Chlorine atoms, water and gylcerol molecules were removed. The structure of 

neolactotetraosylceramide (nLc4Cer) was downloaded from the PubChem page 

(http://www.ncbi.nlm.nih.gov/pccompound) (Wang, Xiao, Suzek, Zhang, Wang, et al., 

2009) and was minimized using Hyperchem Pro 6.0 software with PM3 parameters 

using the steepest descent and conjugate gradient methods (termination conditions set to 

a maximum of 500 cycles or 0.1 kcal/Å mol rms gradient). This energy minimization 

guaranteed a low energy conformation with suitable bond lengths and angles. 

 

3.2.2.2 Docking Pathway of nLc4Cer towards DENV E-Protein 

Docking of nLc4Cer to the crystal structure of DENV2 E-protein was performed 

using AutoDock 4.2 (Morris et al., 2010). This is one of the most suitable softwares to 

perform molecular docking of ligand to their macromolecular receptor (Rizvi, Shakil, & 

Haneef, 2013). The graphical user interface program “AutoDock Tools” was used to 

prepare, run and analyse the docking simulation. For the protein input file, water 

molecules and ligand attached to the E-protein were removed. Polar hydrogen atoms 

were added and non-polar hydrogen atoms were merged, and Kollman charges and 

solvation parameters were assigned by default. For the ligand input file, Gasteiger 

charges were added, non-polar hydrogen atoms were merged and all bonds were made 

rotatable. All docking calculations were performed using the Lamarckian Genetic 

Algorithm (LGA) to determine the optimized conformation. In this study, domain III 
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was which contain the binding site. Therefore, the grid box with spacing of 0.375 Å and 

dimension of 112 x 96 x 118 points along the x, y and z axes was centred on the 

molecule. This procedure resulted in a total of 7 grid boxes for the binding of nLc4Cer 

to E-protein. A population size was set up at 150; maximum number of energy 

evaluation, 2,500,000; maximum number of generations, 27 000; rate of gene mutation, 

0.02; and cross rate, 0.8 were used for 100 search runs. In this study, several docking 

runs were required in order to identify the conformations of a ligand within a receptor 

pocket. The remaining parameters were set as default. A root mean square deviation 

(RMSD) tolerance for each docking was set at 4.0 Å. During the docking process, the E-

protein was made rigid, while positions and torsional bonds of the ligand were kept free 

for flexible docking. For the purpose of pathway docking, the docking job was run in 

three different directions along the x, y and z axes. At each direction, the grid box was 

moved every 10 Å closer towards binding site. Since the starting position for each 

docking run was chosen based on the lowest energy of the docked structure, only one 

time docking was required to determine the docking pathway.  A series of overlapping 

grid-boxes sliding along the x, y and z-directions were created at starting positions 

which were sufficiently high above the surface to its binding site. In this study, binding 

pathway was performed by sliding the docking grid box towards the binding site (Figure 

3.1). The sliding box method allows a box at constant size to slide along the DENV E-

protein structure. The initial slide of the grid-box covered some fraction of the protein 

surface to facilitate cluster analysis and ensure the docking scoring function would 

provide meaningful results (Tran, Le, & Truong, 2013). Docking simulations were 

performed for every possible box location; therefore producing a score for each 

potential docking site (Martins-Jose, 2013). Optimized pathway was then selected based 

on the lowest binding energy along the x, y and z axes. The flow of work in this part of 

the study is shown in Figure 3.2. 
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Figure 3.1: The sliding grid box location on the E-protein where docking has 
performed (Tran et al., 2013). 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2: Flow chart showing summarized method involved in the simulation of 
binding pathway of nLc4Cer towards DENV E-protein. 
 

 

3D structure of DENV E-protein was retrieved from PDB 

nLc4Cer was downloaded from PubChem 

Dock the nLc4Cer with DENV E-protein using AutoDock 4.2 

Docking was run at three different directions (x,y and z axes) 

The grid box was moved every 10 Å closer towards binding site 
to find binding pathway 

Optimized pathway was selected based on the lowest binding 
energy along the x, y and z axes 

Initial position for each docking run was chosen based on the 
lowest energy of docked structure 
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3.3 Results and Discussion 

3.3.1 Characterizing Ligand Binding Site in Dengue Virus Type 2 (DENV2) 

Envelope Protein 

3.3.1.1 Simulation of DENV E-Protein for 100 ns 

Simulation of the DENV E-protein pre-fusion dimer was analysed to outline the 

effect that the conformational changes had on the interactions between residues, 

domains and the subunits. During MD simulations, significant structural changes that 

occurred could be related to the conformational changes towards the protein post-fusion 

state. Thus, it was important to consider the flexibility of the target protein by using 

multiple active conformational states. In this work, the DENV E-protein conformational 

states obtained from MD simulations were investigated to take into account the target 

protein flexibility, where the intention was to sample as closely as possible the 

landscape of the ligand binding region prior to inhibitor binding. The obtained 

conformational MD samples were then clustered into nine groups. A number of sets of 

protein conformational structures at different binding sites were chosen to be employed 

in the following ensemble docking study. Presently, ensemble docking is famously 

known as a powerful strategy to incorporate protein flexibility, notably when the 

ensembles were extracted from MD simulations (Campbell, Lamb, & Joseph-McCarthy, 

2014).  

 

3.3.1.2 Prediction of Binding Site on DENV E-Protein 

In order for proteins to perform biological function successfully, interaction with 

a ligand molecule is often necessary. This interaction is specific, especially within the 

ligand binding location. The binding sites for small molecules are normally located in 

pockets or crevices on the protein surface or sometimes partially buried (Leis, 
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Schneider, & Zacharias, 2010). A receptor may have several potential binding sites, 

thus, it is crucial to know which is the active site that enables specific biological 

functions either via inhibition or catalysis. An active site is the region of the target 

protein that is responsible for its activity and it is made up of different kinds of amino 

acid residues. Since there is no prior knowledge of the binding site location, the 

identification of pockets and cavities can be a starting point for protein function 

annotion, protein ligand docking and protein structure-based drug design (Huang, 

2009). Therefore, it is compulsory to perform a search on the whole protein surface or 

well known as blind docking in order to detect protein pockets.  

This study is to find potential binding sites on the DENV E-protein, whereby, 

the virus membrane fusion activity can be inhibited by nLc4Cer. This prediction usually 

requires the 3D structure of the target protein in order to search for the ligand binding 

site, and the E-protein ectodomain is the most suitable candidate (Degreve, Fuzo, & 

Caliri, 2012). Since DENV E-protein has a very shallow hydrophobic pocket (Harrison, 

2008), thus, the binding site was recognized using the “Define and Edit Binding Site” 

program from Discovery Studio 4.0. This program utilizes several redundant already 

validated geometric algorithm to search for protein cavities (Koska et al., 2008).  

Three possible binding sites were obtained and selected based on the size of 

pocket volume. Determination of pocket volume is based on the geometry shape of the 

protein surface analysed. Protein binding regions provide a microenvironment for 

substrates and inhibitors to interact and modulate the protein‟s activity (Tripathi & 

Kellog, 2010). In this software, the binding site is defined by a sphere that encloses part 

of the binding site volume. The predicted binding sites with the lowest binding energy 

are shown in Figure 3.3. The first binding site, BS1 (a) consists of 33 residues (Val24, 

Glu26, His27, Leu45, Lys51, Pro53, Ile129, Val130, Glu133, Pro166, Ser186, Thr189, 

Gly190, Leu191, Asp192, Met196, Val197, Leu198, Leu199, Gln200, Ala205, Leu207, 
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Val208, Glu269, Ile270, Gln271, Leu277, Leu278, Phe279, Thr280, Gly281, His282, 

and Ser284) having volume of 271.38 Å (Table 3.1). While the second binding site, 

BS2 (b) consists of 12 residues (Glu13, Gly14, Val15, Ser16, Gly17, Gly18, Ser19, 

Trp20, Val21, Met34, Ala35, and Lys36) having volume of 40.88 Å. The third binding 

site, BS3 (c) has 18 residues (Met1, Arg2, Cys3, Ile6, Asp42, Glu44, Ile46, Val140, 

Ile141, Thr142, Gly152, Asn153, Asp154, Thr155, Lys157, His158, Gly159, and 

Lys160) with occupied volume of 39.50 Å. These different binding pockets were 

determined based on the calculation of volume of cavities, and then were docked with 

nLc4Cer. The cavities found on the protein surface are of special significance as they are 

potential sites of protein-ligand and protein-protein interactions (Bhinge et al., 2004). 

Table 3.1 show that BS1 has the lowest binding energy, followed by BS2 and BS3 with 

binding energy -2.80, -2.13 and -0.97 kcal/mol respectively. This shows that the bigger 

the volume of the binding site, the easier nLc4Cer would be able to fit into the binding 

site. The data also revealed that, the bigger the volume, the lower binding energy of the 

complex, thus resulting in favourable interaction. This appropriate binding pocket can 

accommodate a drug molecule properly and at the same time, reduction in the volume 

of binding cavity may lead to the relative surface area of the interaction become smaller 

thus resulting in poor binding affinity (Li et al., 2015). Although they may be a number 

of voids inside the protein, it has been observed that the binding site is usually the 

largest cavity in a protein because a large pocket provides large surface area and hence 

increased the opportunity for molecule binding (Tripathi & Kellog, 2010). 

Determination of this binding cavity is highly important in order to predict protein 

structure, function, stability, mutation studies and identification of potential drug and 

lead optimization (Bhinge et al., 2004; Pandey et al., 2016). 
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Figure 3.3: Positions of the three binding sites, (a) BS1, (b) BS2 and (c) BS3, as 
predicted by Discovery Studio 4.0. Ligand binding site is shown in CPK 
presentation. DI, DII and DIII are illustrated in red, yellow and blue coloured 
ribbons, respectively. 
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Table 3.1: Binding energy of E-protein-nLc4Cer complex subjected to various 
binding sites defined by Discovery Studio 4.0 program.  

Binding site (BS) BS1 BS2 BS3 
Binding energy (kcal/mol) -2.80 -2.13 -0.97 
Number of conformation 18 53 79 

Volume (Å) 271.38 40.88 39.50 
 

Binding site detection is a challenging process because proteins frequently 

undergo large structural changes upon ligand binding. Binding site also presents 

considerable plasticity that may be important in structure-based drug discovery. Study 

done by Almeida et al. (2013) showed that through their Ligplot studies of the protein-

ligand binding modes revealed changes in both the protein sub-pockets conformation 

and in ligand interactions, indicating that the binding site was definitely not static and 

this plasticity could be explored for competitive structure-based drug design.  

According to Ali et al. (2014), this binding position varieties would lead to 

conformational change that could interrupt the protein normal function. Alhoot et al. 

(2013) claimed that, a selection of suitable receptor binding site may lead to 

conformational changes in order to inhibit viral entry into host cells. Furthermore, E-

protein binding sites required a decasaccharide for strong interaction (Marks et al., 

2001). Meanwhile, a study reported by Hung et al. (2004) had suggested that E-protein 

mediated membrane fusion required post binding conformational changes that promoted 

a dimer-to-trimer transition. However, the displacement of the ligand away from the 

binding site was obviously due to the reduced interactions between the protein and the 

ligand in the intermediate subensembles as observed by Koppisetty et al. (2015).  

Meanwhile, Yennamali et al. (2009) had found the cavity site between domain I-

III on the DENV2 E-protein through docking and MD simulation methods. They found 

the existing of binding site only in dimeric structure. The presence of a ligand that can 

occupy this cavity would be able to stabilize the dimer structure and finally inhibits E-
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protein trimerization, so that the fusion process can be stopped. On the other hand, Yan 

and Zou in their study (2014) that predicted the peptide binding sites on protein surfaces 

reported that the cluster with the largest size was predicted as the putative binding site. 

They also claimed that the binding site was located in the largest pocket on the protein 

surface. These data would be beneficial to gain insights into protein–drug interactions. 

Study focusing on binding sites and ligand that can occupy this space may help in 

search for potential DENV inhibitors in order to prevent the viral entry into host cell.    

 

3.3.1.3 Refinement of Docked E-Protein-nLc4Cer Complex using MD Simulation 

The main objective of the MD simulation study is to investigate the positional 

and conformational changes of nLc4Cer in the binding site that provides insight into the 

binding stability. Monitoring the complex‟s pressure, energy and density are the most 

basic metric to monitor a system‟s equilibration and stability. By checking the density, 

temperature, total energy, RMSF, RMSD and radius of gyration (Rg) (figures as 

presented in Figures 3.4-3.11) it is possible to determine whether the system is 

reasonable or not. Furthermore, the stability of the system also proved the credibility of 

docking results. Any damage to the complex structure such as denaturation will affect 

the above parameters. In order to get these parameters, ptraj tool was used and since the 

backbone of the protein is the main concern, only backbone atoms C, CA and N were 

considered. The backbone atoms were used for residues that were chemometrically 

predicted to form alpha helix. Figure 3.4 showed energies that exist during simulation 

where red line indicates the kinetic energy, black line is the potential energy and green 

line is the total energy. Total energy is the sum of potential energy and kinetic energy. 

The kinetic energy remained constant during the simulation implying that temperature 

thermostat, which acts on the kinetic energy, was working correctly. Besides that, the 

potential energy also remained constant indicating that the relaxation was completed 
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and reached equilibrium. This is normally expected, as during MD simulation, the 

complex become more relaxed, allowing the water to interact with the residues from the 

binding site. It is interesting to note that, Almeida et al. (2013) in their study observed a 

protein-ligand complex being diminished at the beginning of the simulation and then 

became stabilized after 10 ns. In fact, during the last 5 ns of simulation, the protein 

ligand interaction increases again when approaching the initial state.  

 
Figure 3.4: The energy of the system: red line (positive) shows the kinetic energy, 
and black line (negative) shows the potential energy. The green line shows the total 
energy of E-protein-nLc4Cer complex during 50 ns simulation. The heating process 
is not shown. 
 
 

The E-protein-nLc4Cer complex has reached an equilibration volume (Figure 

3.5). The smooth transitions in this plot followed by the oscillation above a mean value 

suggest that volume equilibration has been successful. This system has equilibrated at a 

density of approximately 0.98 g cm-3. This seems reasonable as the density of pure 

liquid water at 300 K is approximately 1.0 g cm-3. The water density remains stable 

throughout production run and the average is near the experimental neat value (1 gcm-3) 

which implies the reliability of the system improves (Figure 3.6). Meanwhile, the 

pressure graph seems to show that the pressure fluctuate wildly around 100 bar = 1 atm 
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during the simulation (Figure 3.7). This is sufficient to indicate successful equilibration. 

This large fluctuation may be due to the system size. Pressures are reported in bars in 

which negative pressures indicate that the system would like to contract its volume, i.e. 

that an outward force on the walls of the container would be required to keep the system 

at its current volume; positive pressure is the opposite: the system would like to increase 

its volume, and an inward-directed external force would be required to keep the system 

at its current volume. 

 

 
Figure 3.5: Volume of E-protein-nLc4Cer complex during 50 ns MD simulation. 

Univ
ers

iti 
Mala

ya



56 
 

 
Figure 3.6: Density of E-protein-nLc4Cer complex during 50 ns MD simulation. 
 
 

 
Figure 3.7: Pressure of E-protein-nLc4Cer complex during 50 ns MD simulation. 
 

 

On the other hand, Figure 3.8 showed stability in temperature during simulation 

at constant energy implying that the temperature regulation was applied correctly. In 

this study, the MD simulation was running up to 50 ns because the complex have the 

possibility to surpass greater conformational changes after longer simulation time, 
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revealing important motions that are hardly detected in a shorter simulation. These 

motions can be related to important conformational states during protein equilibrium 

(Almeida et al., 2013). Other researchers such as Behera et al. (2015) and Naseri et al. 

(2015) in their antibody and receptor binding modelling studies had performed 

simulations up to 10 ns at temperature of 310 K under 1 bar pressure.  

Figure 3.8: Temperature of E-protein-nLc4Cer complex during 50 ns MD 
simulation. 

 

The next step is to look at the root mean square deviation (RMSD) curves to 

observe the conformational changes of E-protein-nLc4Cer complex. RMSD values are 

beneficial to describe the magnitude of the conformational changes between the two 

molecular structures. It is used to characterize the quality of biomolecular simulations, 

to cluster conformations and as reaction coordinate for conformational changes. RMSD 

can be calculated over all atoms of a conformation or a subset either to focus 

comparison on a region of interest like an enzyme active site or to exclude highly 

variable elements like surface loops or hydrogen atoms. It is normally calculated using 

only one atom per amino acid residue, normally the α-carbon in order to capture protein 
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conformational changes. The RMSD reflects the change of protein backbone over the 

simulation time. RMSD indicates the similarity of the proteins if their value is small 

such as few angstrom (Å). In Figure 3.9, there is a slight fluctuation in the RMSD of the 

E-protein-nLc4Cer complex due kinetic energy of every atom that causes fluctuation 

and rise in RMSD. The average RMSD found is 3.5 Å. The RMSD was relatively 

higher at the initial stage of the simulation (almost till 10 ns of production dynamics) 

and probably corresponding to small relaxation of the protein following release from its 

crystallographic environment), followed by longer time scale and fluctuations. The high 

RMSD values are due mainly to large structural amino acid changes in the loop regions 

that are in contact with neighbouring proteins. Besides that, the large RMSD indicates 

that structures in the trajectories are significantly different from the initial structure as 

RMSD measures the overall change in conformation from the reference structure. The 

peak fluctuation then decreases and almost becomes steady for the rest of the 

simulation. These observations suggest that the complex structure is stable and retains 

its overall structure during simulation.  

 
Figure 3.9: RMSD of E-protein-nLc4Cer complex during 50 ns MD simulation. 
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Meanwhile, the flexibility of the E-protein-nLc4Cer complex was investigated in 

terms of the atom-positional root-mean-square fluctuations (RMSF) for all non-

hydrogen atoms. RMSF measures how much each individual atom moves around and is 

a totally different calculation from RMSD. It reflects the overall movement of atoms or 

residues over all frames. It is a qualitative measure of protein flexibility as it gives a 

view of relationship between protein conformational flexibility and dynamics. RMSF of 

Cα atom from the MD simulation structures against starting structures was calculated to 

identify the most flexible regions of the E-protein-nLc4Cer region. The larger RMSF 

value conveys more flexible region while the lower RMSF value entails the more 

constrained region (Moonrin et al., 2015). The RMSF average value was 3 Å (Figure 

3.10) and this moderate fluctuation of backbone deviation during simulation reflects the 

global structural rearrangement of complex is well equilibrated, maintained and not 

artificially altered by the simulation. The fluctuations during MD simulation are 

expected as a result of solvated environment and a fully flexible protein.  

 

 
Figure 3.10: RMSF of E-protein-nLc4Cer complex during 50 ns MD simulation. 
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The structure showed more flexibility with the RMSF average value of 3.5 Å at 

residue numbers 151-155. In addition, residues 343-345 which belong to DIII region 

also showed flexibility due to high RMSF values. Based on the results, the residues 

located in following regions: 101-107, 151-155, 224-226, 343-345 were among the 

most fluctuated and mobile residues. Therefore, this region could be critical regions to 

thermostability and can be a potential target for stability enhancement through rational 

design. Normally, the region with high fluctuations is related to connecting loops, turns 

and bends that connect secondary structure elements as well as helices compared to 

other regions (Ganoth, Friedman, Nachliel, & Gutman, 2006). The same observation 

was also reported by Pang et al. (2003) where regions correspond to surface exposed 

loops have been postulated to play an important role in receptor binding. They also 

added that, the region with large fluctuation form „jaws‟ of the protein and contain the 

so-called doorkeeper residues thought to be important in maintaining access to the 

ligand binding site. Large fluctuation was also observed by Wichapong et al. (2014), 

where they reported that high RMSF values of the human-D-amino acid oxidase (h-

DAAO) monomer are likely to result from the absence of contact between the chains 

and therefore had more space to fluctuate. This trend suggested that, the flexibility of 

ligand and receptor may enhance affinity between them. Ganoth et al. (2006) also 

reported high RMSF of the protein in the M1c1p-IQ4 simulation and this was due to the 

structural modification process. However, the reduction in RMSF value was due to rigid 

region in the complex with only a limited space to flex in. Other study reported by 

Panigrahi et al. (2013) also observed minimal fluctuation of the RMSF at the end of MD 

equilibration. The RMSF curves revealed a pattern similar to that calculated for the 

entire simulation time, although the extent of the fluctuations is smaller. 
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Meanwhile, the compactness of the DENV E-protein-nLc4Cer complex 

throughout the simulation can be monitored using radius of gyration (Rg). Rg is another 

indicator of structure stability as well as estimation of the molecule size during 

simulation (Medvedev et al., 2014). It measures a distance of all atoms to the centre of 

mass (COM) of the structure and is calculated according to Equation 3.4 (Mueller, 

2010).  

                                                     (3.4) 

Where ri is the position of atom i with respect to the COM of the structure, and 

mi the mass of atom i. 

A stable complex normally maintains a relatively steady Rg, whereas unfolding 

or collapse will be indicated by Rg change over time. From Figure 3.11, initially, a fast 

collapse at 13 ns (34.5 Å) was observed and continued to have a modest decrease which 

indicate the stability of the complex structure throughout simulation. And again, the 

immediate collapse of the complex's structure at 38 ns (34.2 Å) to form a more compact 

structure was observed. Rg analysis revealed that the system remained compact during 

the 50 ns simulation time and produced average Rg value of 35 Å. This may be due to 

strong affinity of nLc4Cer to the E-protein (Jana, Cahturvedi, & Robine, 2014). On the 

other hand, the complex that showed smaller Rg, could have less molecular surface area, 

thus resulting in a decrease in protein exposure to water as the structure become more 

compact (Mozafari, Tazikeh-Lemeski, & Saboury, 2016). In this study, no significant 

changes were observed for Rg, implying a sustained stability and compactness of the 

complex. However, fluctuations in Rg values were recorded suggesting a loss of 

compactness for its complex. Overall, this study reveals that some critical points of the 

complex are liable to make extensive moves.  
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Figure 3.11: Radius of gyration (Rg) of E-protein-nLc4Cer complex for backbone 
heavy atoms during 50 ns MD simulation. 
 

3.3.1.4 Cluster Analysis 

Conformational changes are extremely important in molecular function where it 

has been proven experimentally that E-protein undergoes extensive conformational 

change during infection process (Zhang, Sun, & Rossmann, 2015; Zhang et al., 2004). 

In order to accomplish its diverse functions, the E-protein must exhibit some 

conformational and dynamical peculiarities at single molecular level, which cannot be 

investigated with the employment of traditional experimental techniques. Degreve et al. 

(2012), employed MD simulation to characterize extensive structural changes in E-

protein under distinct intensive thermodynamic parameters. A comprehensive 

knowledge of the relationship between sequence, structure and the associated dynamics 

is compulsory in order to understand the protein molecular function and to design 

proteins with novel functions (Katagi, 2013). 

Cluster analysis was done in order to classify large number of conformations 

based on the similar structures. The notion of the importance of receptor flexibility has 

fostered the usage of computational technique such as MD simulations to generate 
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ensembles of energetically accessible conformations (Tautermann, Seeliger, & Kriegl, 

2014) as well as to investigate the conformational and positional changes of ligand that 

provide insights into the binding stability (Verma, Jatav, & Sharma, 2014). Clustering 

method relies on similarity or dissimilarity measures between structures. This method 

has emerged as a useful, automated technique to extract conformational states from MD 

simulation data (Philips, Colvin, & Newsam, 2011). In this study, MD simulation of 

DENV E-protein was performed to generate an ensemble of conformations for docking 

purpose. The representative structure of the most populated clusters for each conformer 

was generated using the Cluster trajectory option in ptraj tool. In most cases, the most 

representative is the most populated conformation and are shown in Figure 3.12. The 

lowest binding energy conformation in the first cluster was considered as the most 

favourable docking pose (Heavner, 2004). The representative structures were then used 

in docking study to find the exact binding energy values.  

Each trajectory was divided into nine clusters using hierarchiral clustering 

algorithm. Hierarchiral clustering algorithm was chosen due to their apparent good 

performance in analysing MD trajectory data and its frequent availability in MD 

analysis packages (Wolf & Kirschner, 2013). All nine cluster groups were chosen to be 

representative structures and named as follows: c0, c1, c2, c3, c4, c5, c6, c7 and c8. The 

cluster with the most population, indicated that this cluster conformation was more 

favourable for ligand binding and located in the first rank. Low ∆Gbinding values signify 

that nLc4Cer was in the most stable conformation when bound with E-protein. Table 3.2 

reveals that cluster rank, c0, represents the conformation group with high number of 

conformations in the cluster and with the low binding energy which is -2.83 kcal/mol. 

Low binding energy value signifies that the nLc4Cer was in the most stable 

conformation when bound to E-protein with the binding chance of 80-90% (Usman 

Sumo Friend Tambunan, Noors, Parikesit, Elyana, & Ronggo, 2011). This cluster 
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conformation with low binding energy was chosen as a starting structure for the 

subsequent MD simulation. 

 
(a) First conformation 

 
(b) Second conformation 

 
(c) Third conformation 

 
(d) Fourth conformation 

 
(e) Fifth conformation 

 
(f) Sixth conformation 

 
(g) Seventh conformation 

 
 

(h) Eighth conformation 
 

(i) Ninth conformation 

 
Figure 3.12: The conformational structures of DENV E-protein identified by 
clustering technique. DI, DII and DIII are illustrated in red, yellow and blue 
colours, respectively. 
 

Table 3.2: Binding energy and RMSD of E-protein-nLc4Cer complex subjected to 
different conformations generated from MD trajectories. 

Conformation Binding energy (kcal/mol) Number in cluster RMSD at DIII  

c0 -2.83 35 1.2013 
c1 -1.51 27 1.2635 
c2 -1.56 13 1.0599 
c3 -2.53 15 1.0748 
c4 -2.89 23 1.3953 
c5 -1.16 23 1.0792 
c6 -0.97 20 1.1992 
c7 -2.24 23 1.1391 
c8 -2.22 11 1.1454 
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Each docking conformation was then manually inspected to emphasise the 

common clustering pattern. Normally, the same protein can populate multiple binding 

modes. Meanwhile, a ligand would be able bind to a target with variety of 

conformations due to ligand or receptor protein symmetries. The use of these multiple 

MD configurations can significantly improve docking result since there was an 

improvement in docking performance compared to docking without MD run. Therefore, 

nLc4Cer was docked against a variety of E-protein conformations. Table 3.2 shows that 

binding energy between each cluster is between -1 to -2 kcal/mol with the highest 

binding energy is conformation c6 (-0.97 kcal/mol) and the lowest binding energy is c0 

(-2.83 kcal/mol). This data suggest that the complex can appear in different 

conformations even though they may have identical energy. This is in line with the 

study reported by Guruprasad et al. (2014) where different conformations may have the 

same energy even though each conformation has a specific energy. 

Furthermore, the negative binding energy indicates that nLc4Cer has shown 

binding affinity towards E-protein. In fact, the similarity in binding energy revealed that 

the structure of E-protein-nLc4Cer complex is not differing so much between each 

representative structure. This is supported by the RMSD values where the values 

between each cluster group is not changing so much (Table 3.2). In this case, the ligand 

acts by disrupting the movement of E-protein required for inter-conversion between the 

"open" and "closed" conformations. This binding process invokes large conformational 

changes in both the E-protein and nLc4Cer. The conformational change during binding 

directly impacts on how the process must be simulated in order to give accurate results 

(Treesuwan et al., 2009). 

These varieties of conformations are important as ligands would be able to retard 

or block viral entry if they bind selectively to any conformations of the fusion protein. 

These varieties of conformation revealed a holistic picture of protein plasticity as well 
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as protein function. The plasticity of the binding site environment and in the binding 

modes is evidenced by the differences observed during the MD simulations. In fact, one 

way to predict the protein function is based on their dynamics. As a result, this requires 

the conformational space to be sufficiently explored by a suitable method which, in this 

case, is MD simulations.  

 

3.3.1.5 Binding Free Energy of E-Protein-nLc4Cer Complex 

Carbohydrates are characterized by their considerable conformational flexibility 

and dense polar functionality. Because of their dynamic nature and the fact that they 

interact intimately with aqueous solvent, free energy analysis on MD trajectories of a 

receptor-ligand complex in solution is chosen. Although experimentally inaccessible, 

determination of the free energy components associated with these structural features 

was feasible through theoretical analysis. MMPBSA and MMGBSA studies were 

performed in order to estimate the binding free energy for the interaction between 

nLc4Cer and E-protein during MD simulation. According to Koppisetty et al. (2015), 

this binding energy calculation has a potential application in understanding the 

underlying phenomena as well as to design novel inhibitors of molecular interaction 

pathways.  

In the interaction free energy calculations, the major contribution to the 

stabilization of the E-protein-nLc4Cer complex was attributed to the molecular 

mechanics component of the interaction energy and the nonpolar component of the 

solvation energy. Various energy contributions to the calculation are shown in Table 3.3 

which consist of electrostatic (polar) and van der Waals (non-polar) interactions, polar 

solvation energy and non-polar solvation energy (Duan, Feng, & Zhang, 2016). The 

favourable formation of E-protein-nLc4Cer complex is driven by the electrostatic 

(ΔEelectrostatic) and the vdW (ΔEvdW) terms of the molecular mechanics energy. 
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Table 3.3: Binding free energies predicted using the MMPBSA and MMGBSA 
methods at different simulation times (All data are given in kcal/mol). 

Method Contribution 10 ns 20 ns 30 ns 40 ns 50 ns 

MM 
ELE -59.11 -102.41 -70.31 -67.97 -79.50 

VDW -5022.71 -5012.03 -5080.32 -5113.47 -5149.76 
GAS -5062.45 -5095.31 -5131.24 -5161.94 -5209.54 

PBSA 

PBSUR -6.42 -6.91 -6.60 -6.53 -6.30 
PBCAL 74.84 106.53 78.65 81.08 81.26 
PBSOL 68.42 99.62 72.06 74.55 74.96 
PBELE 15.73 4.12 8.34 13.11 1.75 
PBTOT -4994.03 -4995.69 -5059.18 -5087.39 -5134.59 

GBSA 

GBSUR -3.80 -4.37 -3.95 -4.03 -3.77 
GBCAL 63.06 100.15 69.75 70.74 76.36 
GBSOL 59.26 95.78 65.80 66.71 72.59 
GBELE 3.95 -2.26 -0.56 2.77 -3.15 
GBTOT -5003.19 -4999.53 -5065.44 -5095.23 -5136.96 

The individual energy contributions: ELE = electrostatic energy as calculated by the molecular 
mechanics (MM) force field; vdW = van der Waals contribution from MM; GAS = total gas 
phase energy ELE+vdW+INT; INT = internal energy arising from bond, angle and dihedral 
terms in the MM force field (this term always amounts to zero in the single trajectory approach); 
PBELE/GBELE = sum of the electrostatic solvation free energy and MM electrostatic energy; 
PBSUR/GBSUR = non-polar contribution to the solvation free energy calculated by an 
empirical model; PBCAL/GBCAL = the electrostatic contribution to the solvation free energy 
calculated by PB or GB respectively; PBSOL/GBSOL = sum of non-polar and polar 
contributions to solvation free energy (PBSUR + PBCAL); PBTOT = final estimated binding 
free energy calculated by MMPBSA method; GBTOT = final estimated binding free energy 
calculated by MMGBSA method (all energies are in kcal/mol). 

 

 

In this study, binding free energies represent the sum of the total intermolecular 

energy, total internal energy and torsional free energy minus the energy of the unbound 

system (Gautam et al., 2012). The negative value of electrostatic energy (ELE) during 

the 50 ns simulation (-79.50 kcal/mol) signifies favourable interaction and this energy is 

compulsory for the interactions of all biological macromolecules (Zhang, Witham, & 

Alexoy, 2011). These interactions generate attractive and repulsive forces, which cause 

motion of molecules (Pacholczyk & Kimmel, 2011). This is due to the fact that most 

biological macromolecules are highly charged and the existence of this charge 

distribution may optimize the electrostatic binding free energy when ligands bind to 

their protein targets (Francis, 2002; Kukic & Nielsen, 2010). Thus, favourable 
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electrostatic interactions are produced by complementary charge distribution between 

binding partners. Furthermore, electrostatic complementary between two binding 

components resulting in steering effect which enhances their association rate (Schlick, 

2012). Study reported by Ganoth et al. (2006) also agreed that as the electrostatic 

interactions of the solute with the solvent are taken into account, it appeared that the 

total solvation energy was in favour of the bound state of the protein-peptide complex. 

The current finding suggests that electrostatic energy could be responsible for the 

binding affinity of nLc4Cer to E-protein. 

 
Meanwhile, the effect of van der Waals (vdW) cannot be simply ignored as it is 

closely related to the hydrophobic interaction energy. This vdW force is the sum of the 

attractive and the repulsive non-bond forces between atoms or molecules. During the 

first 10 ns, the vdW energy was -5022.71 kcal/mol, then, slightly increased to -5012.03 

kcal/mol at 20 ns simulation and then underwent continuous constant decrease until the 

end of simulation (-5080.32, -5113.47 and -5149.76 kcal/mol at 30 ns, 40 ns and 50 ns, 

respectively). This could be explained where at the beginning of the simulation (20 ns), 

the attraction between nLc4Cer and E-protein was being diminished, and the increment 

in vdW energy was expected during the MD simulations, where the complex became 

more relaxed, allowing water to interact with the residues from the binding site, thus 

decreased interactions between nLc4Cer and E-protein. Meanwhile, the decreased in 

vdW energy at 30 ns was due to the vdW forces between two particles, resulting in very 

strong interactions. Besides that, low values of these energy components can be 

associated with strong ligand binding (Sindhu & Srinivasan, 2015). This major role 

played by the vdW interactions demonstrated how inter-residue contacts, where the tight 

binding of ligand to the surface exposed amino acid residues on the protein occurred 

(Ganoth et al., 2006). Thus, contribute to the energy stabilization that provide stability 

to the complex and favourable interaction was observed.  
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Nevertheless, the unfavourable contribution to the complex stability was 

observed in GBCAL, GBSOL and GBELE calculations where the interaction energies 

were positive throughout the 50 ns time simulation. The same unfavourable contribution 

was also observed in MMPBSA calculation. This unfavourable binding may be due to 

the weaker electrostatic interactions between ligand and receptor compared to stronger 

force between ligands and solvents (Ma et al., 2015). Even though some internal energy 

terms (GBCAL, GBSOL and GBELE) values are positive, disfavouring the complex 

formation, contribution from van der Waals interaction, one of the main components 

favouring the complex formation. According to AMBER developers (McGee et al., 

2009), favourable electrostatic energy and unfavourable solvation free energy are 

expected during MD simulation. This symbolizes the energy that one has to use to 

desolvate the binding particles and to align their binding interfaces. Yet, the molecular 

mechanics energy component of the interaction energy strongly favours the complexes 

over the unbound molecules. 

The total energy GBTOT is negative throughout simulation which energetically 

favours the complex stability. Initially, the GBTOT was -5003.19 kcal/mol during the 

first 10 ns simulation, and then gradually decreased to -5136.96 kcal/mol as the 

simulation was extended up to 50 ns. On the other hand, the values from PB method 

(PBTOT) were slightly higher where -4994.03, -4995.69, -5059.18, -5087.39 and           

-5134.59 kcal/mol were observed at 10, 20, 30, 40 and 50 ns respectively. Both results 

revealed that the longer the simulation, the better the binding interaction between the 

nLc4Cer and E-protein. 

In term of the calculation models that had been used in this study, the 

Generalized Born (GB) model had been proven to successfully calculate accurate 

solvation energies of small molecules, score protein conformations, evaluate protein-

ligand binding, predict pKa and simulate implicit solvent molecular dynamics. Study by 
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Feig et al. (2003) found that MMGBSA model was the most successful model in 

ranking the binding affinities as it gave lower binding energy compared to MMPBSA. 

In addition, molecular mechanics based on GB model performed well compared to PB 

(Poisson Boltzmann) in order to rank the binding affinities of systems without metal 

ions in the binding sites. MMGBSA methods are typically more stable and accurate than 

MMPBSA methods in a study of the accuracy of continuum solvation models for drug-

like molecules. This is in line with our observation where MMGBSA gave better results 

than MMPBSA. Therefore, the data represented here describe the ligand with best 

binding ability in term of MMGBSA total binding. Previous study had also shown that 

the MMGBSA method was a useful tool in the analysis of carbohydrate, bound and in 

aqueous solution. The method has successfully ranked the binding affinity of a series of 

carbohydrate-protein complexes as reported by Bryce et al. (2001). They also chose to 

use the MMGBSA model in seeking to capture the important effects of conformational 

plasticity and aqueous solvent on carbohydrate-protein binding thermodynamics and 

structure. In contrast, MMPBSA calculation was used to evaluate electrostatic potentials 

for static structures of biomolecules in solution. Additionally, all in all, the application 

of MMPBSA method for MD simulations is limited due to high computational costs and 

technical difficulties (Feig et al., 2003). 

 

3.3.1.6 Per-Residue Free Energy Decomposition (DC) Analysis 

Per-residue free energies of nLc4Cer-E-protein complex were examined in order 

to obtain the information on important residues involved in complex binding. The 

characterization of protein-ligand interfaces has revealed that the binding energy is 

dominated by only a few important residues that have been termed as hot spots. It has 

been suggested by Gromowski et al. (2008) that hot spots of binding energy on a 

protein are predefined, such that particular residues on the protein can be designated as 
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“warm” sites for binding interactions. The binding free energy was then decomposed 

to study the contribution of each residue in the receptor and ligand interactions. This 

method aims to address the contributions of each residue responsible for the protein 

ligand interactions at the interface, which then contribute to the full description of the 

energetic influence on the binding affinity (Chen et al., 2015; Moonrin et al., 2015). 

The plots of the decomposed energies (kcal/mol) versus amino acids residues are 

shown in Figures 3.13 and 3.14. This plot gives an overview of the general evolution of 

the molecular interactions between DENV E-protein and nLc4Cer. The residues were 

found to exhibit positive and negative influences on binding to the E-protein. Negative 

(favourable) binding free energies indicated that the equilibrium was tilted in favour of 

the bound complex, while positive values indicated that the equilibrium was tilted 

towards the unbound protein and ligand (Woods et al., 2014). It can be seen from the 

graph that, nine residues are mainly responsible for the E-protein-nLc4Cer complex 

binding, namely Asn37, Leu294, Met301, Ile335, Pro336, Phe337, Leu351, Val354 and 

Asn355 (calculated per residue free energies are -2.94 kcal/mol, -1.2 kcal/mol, -1.43 

kcal/mol, -1.57 kcal/mol, -1.34 kcal/mol, -1.16 kcal/mol, -1.68 kcal/mol, -3.61 kcal/mol 

and -3.59 kcal/mol, respectively, subjected to MMGBSA). The analysis indicated that 

residues Asn37, Val354 and Asn355 contributed the most to the binding between 

nLc4Cer and E-protein. Most of the residues showed consistent negative value which 

clearly showed that nLc4Cer interacted successfully with E-protein. The hydrophobicity 

and polarity of the above residues made them crucial in structural stability and in 

binding to the nLc4Cer. Moreover, these residues formed strong interactions and these 

interactions made major contributions to the binding free energy. However, energy 

coming from residues Ala35, Glu338 and Arg350 (0.05 kcal/mol, 0.7 kcal/mol and 0.08 

kcal/mol respectively) had less favourable interactions with E-protein due to their low 

binding affinity. The free energy decomposition analysis showed that the contributions 
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from these residues were very small, even unfavourable for nLc4Cer binding. This lower 

energy is also due to the charged residues that energetically made favourable contact 

with water compared with the nLc4Cer itself. Although these residues showed less 

contribution to receptor-ligand interactions, they might function as stabilizing and thus 

facilitate binding for the nLc4Cer.      

In terms of time simulation, there was no significant trend in residues involved 

in the interaction as the same residues also took part in the binding. Both polar and 

hydrophobic residues had the ability to form hydrogen bonds by donating or accepting 

electron from an electronegative atom, thus resulting in stabilization of the E-protein-

nLc4Cer complex.  Furthermore, the presence of charged residues stabilised the binding 

of nLc4Cer to E-protein indicating that these residues were crucially involved in the 

binding. Residue Asn355 remained the largest contributor in the binding energy up to 

50 ns which was -4.28 kcal/mol. Thus, it is believe that several residues were verified to 

have significant effective contributions to the complex. A study reported by Wichmann 

et al. (2010) had suggested that the stability of protein ligand complex interfaces were 

highly dependent on critical amino acids (hot spots), which contributed to a large 

fraction of the binding energy at a particular interface and were often surrounded by 

energetically less important residues. Consequently, disruptors or inhibitors of protein-

ligand interaction did not necessarily target the entire interacting surface but rather 

could be designed to address only those residues located at the hot spots. Based on these 

interactions, it was found that nLc4Cer had the potential to block DENV attachment to 

its candidate receptor. In order to confirm this, the exact binding location of the nLc4Cer 

in the E-protein, co-crystallization of the E-protein with these compounds would be able 

to highlight their exact location and can be compared with the results obtained in this 

study.  
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Figure 3.13: Histogram showing the calculated per-residue free energy 
decomposition using MMPBSA and MMGBSA approaches for E-protein-nLc4Cer 
complex at 50 ns simulation. 
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Figure 3.14: Histogram showing the calculated per-residue free energy 
decomposition using MMGBSA approach for E-protein-nLc4Cer complex at 
different time simulation. 
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3.3.1.7 Analysis of E-Protein-nLc4Cer Complex Interactions 

In order to visualize hydrophobic and H-bond interactions between E-protein 

and nLc4Cer, LigPlot program was employed to describe the protein-ligand interaction 

(Huang, Chen, Chang, & Chen, 2015). The interactions mediated by hydrogen bonds 

and hydrophobic contacts are shown in Figure 3.16. Hydrogen bonds are indicated by 

dashed lines between the atoms involved, while hydrophobic contacts are represented 

by arcs with spokes radiating towards the ligand atoms they contact. Since hydrogen 

bonding is one of the major contributors for protein-ligand interaction, the formation of 

stable H-bonds between E-protein and nLc4Cer molecule were analysed from MD 

simulation trajectories. This ligand was docked in positions near the hydrophobic 

residues in the binding pocket and formed stable hydrogen bonding interactions with the 

binding site residues. It formed hydrogen bonding interactions mainly with residues 

Ala35, Asn37, Lys38, Phe337 and Asn355 with distance 3.17 Å, 2.84 Å, 2.93 Å, 3.03 Å 

and 2.98 Å, respectively. The presence of functional groups made these highly polar 

residues very easy to form hydrogen bond, which eventually has significant effect on 

the protein stability. These results are also in line with a study by Almeida et al. (2013) 

where they reported that hydrogen bonds provided strong attractive forces sufficient to 

stabilize the binding of doxycycline to the hydrophobic residues thereby preventing the 

conformational rearrangement necessary for DENV replication.  

Meanwhile, McAtamney (2008) confirmed that tetrasaccharide bound to DIII 

envelope glycoprotein (EGP), involving each of its carbohydrate moieties in his 

investigation of nLc4Cer ligand binding to EGP. Epitope mapping by STD NMR 

spectroscopy also revealed that the H-1 protein of the N-acetyl-D-glucosamine 

(GlcNAc) made closest contact with DIII via its N-acetyl group. There were also other 

factors such as polarization and induced dipoles that could contribute to the binding. 

Water was found to play a significant role in protein-carbohydrate interactions. They 
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revealed that hydrogen bonds mediated by water were as strong as those without the 

intervening water bridges (Wacowich-Sgarbi, 2000). 

On the other hand, nine hydrophobic interactions (Figure 3.16) were found with 

residues Lys36, Leu351, Val354, and Pro356. These residues were found to be 

conserved and stable throughout the simulations. The existence of these hydrophobic 

residues resulted in a favourable binding energy that stabilized the complex. Despite 

their distinctive polarity, carbohydrates also contain hydrophobic patches on their 

surfaces, due to the steric disposition of hydroxyl groups. These patches form contacts 

with the hydrophobic zones in the protein‟s binding site, which generally involve 

aromatic, as well as non-polar amino acids (Wacowich-Sgarbi, 2000). Therefore, the 

presence of these hydrogen bonding and hydrophobic interactions are crucial for 

binding affinity of E-protein-nLc4Cer complex. 

 

 

Figure 3.15: Connolly surface representation of nLc4Cer at the binding site. 
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Figure 3.16: Schematic diagram (2D) of residues in the binding site which exhibit 
interactions with nLc4Cer at 50 ns MD simulation, obtained using the Ligplot 
program. Keys for the plot are as follows: Ligand nLc4Cer is shown in stick and 
ball, H-bonds are shown as dashed green lines and hydrophobic contacts are 
indicated with spoked red arcs.  

 

 

Figure 3.17: View of nLc4Cer (stick) at the binding site of DENV E-protein (line). 
Residues interacting with ligand are shown as sticks. 
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3.3.1.8 Secondary Structure Analysis 

Secondary protein structure is important as it represents the local conformation 

of amino acids into regular structures. A secondary structure analysis was performed 

using the VMD program, which determines the existence of hydrogen bonds as criteria 

for the presence of secondary structure. In Figure 3.18, the secondary structure element 

of each residue as a function of time was plotted. Colours were used to distinguish 

between secondary structure types. From the figure, the most important colours found 

was yellow for extended configuration and turquoise for turn configuration. These 

results indicated that the extended conformation played an important role in maintaining 

the protein structure and became the predominant secondary structure for the nLc4Cer 

ligand with E-protein. The overall secondary structure pattern was maintained during 

the 50 ns MD simulation, although there was slight change at some points of time. The 

timeline analysis of the secondary structure during the 50 ns of MD simulations showed 

that the protein domains were stable during the trajectory. All the rest of the residues 

were in isolated bridge, α-helix, 3-10 helix and coil regions, constantly alternating 

during simulation, as shown in the Figure 3.18. The simplest secondary structure 

element is the β-turn. MD simulation of E-protein-nLc4Cer complex in water had 

demonstrated that turn-like structures could rapidly form, disappear and reform, with 

coils and turns working as the mobile regions. Meanwhile, α-helices are the commonest 

secondary structural elements because they are generated by local hydrogen bonding 

between C=0 and N-H groups close together in the sequence (Richardson & 

Richardson, 1990). 

Secondary structure contributes significantly to the stabilization of the overall 

complex fold. The arrangement of secondary structure elements provides a convenient 

way to classify types of folds. This prediction is beneficial because the pattern of 

secondary structure elements along the chain can be characteristic of certain overall 
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protein folds. In general, secondary structure elements such as α-helices and β-strands 

are highly important for protein's structure and protein's function. In fact, hydrogen 

bond plays an important role in the formation of these two common secondary 

structures in proteins (Kukkurainen, 2009). Since secondary structures are stabilised by 

H-bonds between backbone carbonyl oxygen atom and the amide hydrogen atom, the 

breaking of backbone H-bonds can lead to large conformational change in protein 

structure and thus could drive the protein away from its native state in MD simulation 

(Duan, Mei, Zhang, Tang, & Zhang, 2014). Therefore, the collapse in E-protein-

nLc4Cer complex during simulation was probably accompanied by changes to its 

secondary structure.  

This secondary structure study contributes significantly to the understanding in 

the stabilization of the overall protein fold. The arrangement of secondary structure 

elements provided a convenient way to classify types of folds. Such prediction is 

basically useful because the trend of secondary structure elements along the chain can 

be characteristic of certain overall protein folds. Therefore, it is reasonable to examine 

the development of secondary structures as a first approximation to total folding 

properties of an amino acid sequence.  
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Figure 3.18: Secondary structure of E-protein-nLc4Cer complex at 50 ns. 
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3.3.2 Binding Pathway of Neolactotetraosylceramide towards Dengue Virus Type 

2 (DENV2) Envelope Protein 

3.3.2.1 Analysis of E-Protein-nLc4Cer Interactions 

Docking method monitors the changes in E-protein-nLc4Cer interactions as the 

ligand moves along the association pathways. Association processes are usually under 

kinetic, rather than thermodynamic control, especially, when several macromolecules 

compete for the same binding site or when a protein encounters alternative pathways 

(Zhou & Bates, 2013). Major questions include which factors control the formation of 

the protein-ligand complexes and whether association pathways really occur. To answer 

these questions, a computational approach was consistently used to analyse the 

complete ensemble of the association pathways.  In this work, a docking approach that 

directly revealed the ensemble of neolactotetraosylceramide (nLc4Cer) pathways to the 

binding pocket is presented (Figure 3.19). Preliminary results suggested that protein-

ligand association method would be able to identify surface regions in which binding is 

most likely to occur (Camacho & Vajda, 2002). By using this method, multiple 

pathways through which the ligand approached the entrance of the binding pocket could 

be observed from the protein surface. In order to identify the docking pathway of 

nLc4Cer towards DENV E-protein, three possible docking pathways connecting to the 

ligand to the binding pocket were identified. Figures 3.20 to 3.22 show the direction and 

conformation of nLc4Cer to bind at different directions of E-protein which are along the 

x, y and z axes. There were three pathways leading to the binding pocket. These major 

pathways led to these docking poses after the ligand entered the mouth of the binding 

pocket. Starting from the ligand outside the receptor, the molecular docking simulations 

led to a ligand docked inside the binding pocket resulting in ligand binding to the 

binding pocket. The ligand was forced to proceed along these pathways to associate. 

These figures revealed that, there are multiple pathways (x, y and z axes) leading from 

the E-protein surface to the binding pocket entrance. From these variety of pathways 
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they was only one pathway with the lowest binding energy that led to successful 

docking after the ligand entered the pocket, as shown in Figure 3.23. The different 

starting structures yielded a variety of exit pathways. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 Figure 3.19: Chemical structure of neolactotetraosylceramide (nLc4Cer), 
C26H45NO21 in (a) 3D and (b) 2D structures. 
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 Figure 3.20: Ligand pathway along x-axis shown in stick (a) and CPK (b).  
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Figure 3.21: Ligand pathway along y-axis shown in shown in stick (a) and CPK 
(b). 
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Figure 3.22: Ligand pathway along z-axis shown in stick (a) and CPK (b). 
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Figure 3.23: Optimized ligand pathway shown in stick (a) and CPK (b). 
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The ligand diffusion through the protein matrix is a complex dynamical process 

involving a large number of different pathways. Docking simulation had successfully 

revealed multiple pathways for ligand binding as this approach treat the ligand as fully 

flexible molecules (Sonoda, Martinez, Webb, Skaf, & Polikarpov, 2008). The ligand 

entered the ligand-binding pocket predominantly along a groove on the protein surface. 

In this study, nLc4Cer followed three major paths since it moved along the groove 

toward the entrance. However, not many ligands had been reported to be able to enter 

the pocket directly from the solution. Wallach and co-workers (2010), in their study, 

had mapped each drug to several potentially affected pathways by docking the ligand 

into a set of various pathways in human proteins. Meanwhile, in a study by Huang and 

Wong (2012), it was revealed that two major docking pathways connected the binding 

pocket and the protein surface. The movement of the peptide along the pathways was 

found to couple with residues in the protein activation loop. Even though these residues 

might not affect binding affinity significantly, they could influence the kinetics of 

peptide entrance and release. Path I was suggested to represent a main pathway for 

ligand dissociation. They also claimed that Paths II and III were also likely to be ligand 

escape routes. They believed that different escape paths were favoured in particular 

situations, suggesting that it was possible to design ligands that only associated stably 

with their receptor. Their study also revealed that, proteins that could participate in 

various pathways would be able to offer multiple biological processes.  

Beside of binding following different pathways, a ligand can also bind via one 

pathway such as in ligand flux analysis, which was demonstrated in a study by Negami 

et al. (2014) that where the ligand entered the ligand-binding pocket through a specific 

pathway. Once the ligand entered the pocket, it moved toward the ligand-binding site 

through a narrow tunnel. Flux analysis result that compared between the two protein 

systems clearly indicated that the ligands tend to move through grooves on the protein 

surface and not over protrusions. The groove was mainly formed by hydrophobic 
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residues. This movement was due to the ligand effectiveness to interact with more 

protein atoms in a groove rather than on the surface of a protrusion. In fact, the longer 

ligand binding pathway observed in the levansucrase-sucrose system compared to other 

system was due to the stronger interactions of sucrose with protein atoms.  

In order to move within protein receptor, ligand uses the protein intrinsic 

flexibility, which was found to play an important role in facilitating ligand entry into or 

exit from the binding pocket (Huang & Wong, 2007). This is specifically important for 

a ligand that enters the protein from the proximal side, because it gives the ability to 

reach its binding site from this region. The large movement of some residues observed 

during docking suggested the protein flexibility played an important role in facilitating 

docking. The flexibility of Ile223 residue could also aid binding with ligand by moving 

away from the binding pocket to open up space for the ligand (Huang & Wong, 2007).  

Docking simulation had successfully revealed multiple pathways for ligand 

binding as this approach treated the ligand as fully flexible molecules (Sonoda et al., 

2008). Besides that, the polarity of the ligand also plays a predominant role in its 

migration within the protein (Mouawad, Tetreau, Abdel-Azeim, Perahia, & Lavalette, 

2007). As shown in the study by Aci-Seche (2011) starting with the ligand outside the 

receptor, the simulation led to a ligand docked inside the binding pocket resulting in a 

structure very close to the holo-form of the complex. This entry process was also guided 

by hydrophobic interactions, and the most interesting part was that the entry pathways 

were very identical to the exit pathways. Therefore, knowledge of ligand entry or exit 

pathways of a receptor would give useful information on how to discriminate between 

different ligand pathways that might have favourably docked in the binding pocket.  

Table 3.4 illustrates the binding energy of the complex as the ligand approached 

the binding site and Table 3.5 shows the binding energy of the complex following the 

optimized ligand pathway. The result revealed that the binding energy values slowly 
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decreased as nLc4Cer moved from the E-protein surface towards the binding pocket. 

Spontaneous structural changes occurred to the protein system when the ligand bound to 

the receptor and this was characterized by free energy reduction. The change in the 

system‟s free energy will determine the extent of protein-ligand association. This 

process of a ligand docking to a binding site mimics the natural course of interaction 

between the ligand and its receptor via the lowest binding energy pathway. In this way, 

the ability of biological system to reach stability and vitality could be obtained through 

the “communication” between the system‟s components. All putative drug pathway 

interactions are inferred by protein-ligand docking. The drug-pathway interaction is the 

sum of docking scores over all proteins belonging to the pathway. This pathway 

information is highly recommended to predict protein-drug interactions especially in 

situation where multiple drugs modulate the same protein target. Moreover, it also 

allows to identify cases in which the modulation of a pathway via different proteins 

affects the same biological process (Wallach et al., 2010). Zhao et al. (2013) 

demonstrated the power of pathway docking to predict the novelty of in vitro enzymatic 

activities and in vivo physiological functions. Meanwhile, Negami et al. (2014) agreed 

that docking simulations produce acceptable results and are useful to study the protein-

ligand association process. In their study, 100 times of docking simulation with 

different initial placements of the ligands were done. They observed that the ligand 

molecules entered into the correct ligand binding pocket and were stable inside the 

binding pocket. These results suggested that molecular docking technique provides the 

adequate and complementary alternative to describe this protein ligand association 

process.  
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Table 3.4: Binding energy (kcal/mol) of nLc4Cer towards E-protein from different 
pathways.  

 
Path 1 Path  2 Path  3 Path  4 Path  5 Path 6 Path  7 

x-axis -2.47 -1.39 -2.17 0.08 6.76 7.15 7.16 
y-axis -2.47 -1.19 -1.47 0.25 7.15 7.16 7.16 
z-axis -2.47 -2.41 -1.90 -1.77 3.20 7.16 7.16 

 

 

Table 3.5: Binding energy (kcal/mol) of optimized pathway for nLc4Cer-E-protein 
complex selected from x, y and z axes. 

Optimized pathway Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 Path 7 
Binding energy (kcal/mol) -2.47 -2.41 -2.17 -1.77 3.20 7.15 7.16 

 

Ligand binding pathway represent an important component of ligand affinity, 

since high energy barrier may block the ligand from entering the binding site (Aci-

Seche et al., 2011). Furthermore, determination of ligand entry is a challenging task 

both experimentally and computationally, especially when experimental structures of 

some components do not exist due to experiment ligand pathways do not give rise to 

any spectroscopic signal (Kurcinski, Jamroz, & Kolinski, 2011). Wei et al. (2004) 

reported, in their study that, the calculated electrostatic energy increased (become less 

favourable) as charged residues were brought closure together upon inhibitor binding. 

During the closure of the active site, a favourable reduction of non-polar surface was 

balanced by the unfavourable electrostatic energy increment. The energy differences 

among the different conformations were meant to reflect the general trend that ligand-

bound conformations might have higher energy than the apo conformation does.  

According to the study by Hsu et al. (2013), the pathway-based screening 

strategy was important to identify multi target inhibitors and to elucidate protein-ligand 

binding mechanisms. The concept of the pathway-based screening technique was to 

simultaneously screen various proteins pathway and extract conserved binding 

environments of these proteins to identify different target inhibitors. This pathway-
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based screening strategy could be used to boost the hit rate because the pathway anchors 

were often highly conserved and basically crucial to perform biological functions. This 

proves that the pathway anchors regularly play important roles for ligand binding. Thus, 

the compounds that match the pathway anchors were normally potential inhibitors of the 

target proteins. This study had proven that, even though there were four proteins that 

had different functions, their pathway anchor residues had similar physicochemical 

properties to interact with their substrates and cofactors. Meanwhile, Held and Noe 

(2012) had reviewed approaches to study the probability distribution of association 

pathways. It was reported that association might occur via pre-binding sites outside the 

native binding site that metastably associated ligands, and also from binding or 

dissociation that had the potential to occur.  

As for the current study, the binding of nLc4Cer ligand to E-protein involved a 

number of different forces, which in the end contributed to the binding affinity of the 

complex. This receptor-ligand association was driven by electrostatic interaction and 

desolvation process resulting in the possibility of finding the approximate binding 

region. The role of electrostatics in binding pathways had been particularly well studied 

(Holgersson et al., 2005). As the interaction partners approach each other, electrostatic 

forces becomes significant for favourably interacting molecules (Held, Metzner, Prinz, 

& Noe, 2011). Fast association is achieved by favourable electrostatic interactions 

between the proteins, which enhance their association rate. Long range electrostatic 

interactions have been shown to play a critical role in the binding pathways of tightly-

bound complexes. The association process is occasionally broken down into two steps. 

First, the binding partners encounter each other through a random collision. Second, as 

the binding surfaces are correctly aligned, the molecules then dock to form the native 

stereospecific complex. Interactions that stabilize the transition state would accelerate 

molecular association rates (Meneses & Mittermaier, 2013). 
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The relatively high association enthalpies (-2.47 kcal/mol) (Table 3.5) of E-

protein-nLc4Cer interactions could also be due to higher degree of hydrogen bonds per 

unit area as well as more favourable angles and shorter distances between the molecules 

involved in the hydrogen binding. Upon E-protein-nLc4Cer complexation, water 

molecules tend to escape to the bulk with a concomitant decrease or increase in energy, 

depending on their pre-existing molecular interactions. After E-protein-nLc4Cer binding 

had occurred, the water molecules then arranged themselves according to the new 

surface exposed. In addition, the inner core structure of an oligosaccharide had been 

shown to influence the binding affinity of the E-protein-nLc4Cer complex. In order to 

allow rapid rates of association and dissociation, slight modifications are compulsory to 

maximize the number of favourable interactions in the ligand bound, as well as in the 

free, protein structures. For instance, many ligands bind between domains that move 

together to include the ligand. Hence, the ligand would be able to associate and 

dissociate and the interactions between protein and ligand are maximized (Ehrlich, 

Nilges, & Wade, 2005). 

Generally, the communications in biological system are mediated through this 

association process between molecules. In most cases, the approaches of rigid-body 

docking of two or more structures are quite successful. Normally, docking pathway is 

accompanied by conformational changes that result in the reduction of the 

conformational entropy. However, this conformational changes are limited and only 

involve the side chains at the association interface (Ahmad, 2012). There are also 

alternate methods such as steered and biased molecular dynamics (MD) approaches, 

where biases are applied to steer a ligand to enter or be released from a protein that can 

speed up the ligand simulation of loading into or unloading from a protein. MD 

simulation may provide alternative way in finding pathways for ligand entry and exit 

from receptor. Unfortunately, these simulations are expensive to be done especially 

when many runs have to be carried out in order to identify representative pathways and 
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to estimate activation barrier as well as to perform long runs to minimize the artificial 

effects of the applied biases. In addition, some of the simulation such as ligand 

dissociation dynamics is extremely slow in comparison to the timescales accessible to 

present simulation techniques and computer resources. This does not mean that the 

actual event of ligand dissociation takes too long, but it is clear that conformational 

sampling cannot be done effectively in conventional MD simulation (Martinez et al., 

2005). Therefore, it is useful to search for alternative ways that utilize different 

approximations. LaBute et al. (2014), had successfully predicted association of off-

target effects by using molecular docking scores for drug-protein matrices.  

 

3.4 Conclusion 

In this study, the binding of nLc4Cer to E-protein had proven effective through 

prediction of binding sites based on protein cavity and MD simulation methods. Several 

parameters such as energy, temperature, RMSD, RMSF and radius of gyration that can 

be used to check the MD simulation accuracy had shown consistency during the 50 ns 

simulation time. Meanwhile, cluster analysis had presented nine conformational 

clusters, with each cluster not showing much difference in binding energy. 

Nevertheless, the cluster group with the lowest binding energy was chosen for further 

MD study and was confirmed to have reasonable binding mode. In addition, post 

analysis on the simulated DENV E-protein-nLc4Cer complex was done by calculating 

the binding free energy and it was found that electrostatic and vdW interactions seemed 

to operate mostly during the long-range attraction between the E-protein and nLc4Cer 

before the complexes were formed. Meanwhile, through binding energy decomposition 

analysis, several important residues that contributed to the complex binding energy have 

been identified. In addition, it was found that hydrophobic and hydrogen bonding 

interactions were responsible for the high affinity of nLc4Cer towards E-protein.  
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Meanwhile, docking approach was performed to systematically investigate E-

protein-nLc4Cer association pathways. This method provides an extensive analysis of 

association pathways by which a ligand approaches its target protein. The result analysis 

demonstrated three association pathways leading from the surface of the E-protein to the 

correct docking pathway. The ligand flexibility was found to play an important role in 

ligand entry and exit from the binding pocket. Knowledge of association pathway would 

be useful in discriminating different pathways that could have been favourably docked 

the ligand into the binding pocket. In addition, this method allow us to efficiently study 

the ligand binding processes and may help those who study drug discovery to find 

optimal association pathways and to design those ligands with the best binding kinetics 

(Chang, Trylska, Tozzini, & McCammon, 2007). The most important thing is the 

information gained from this study is very beneficial for drug design as it compare the 

relative ease of different ligands to enter their target protein and the durations in which 

different drug candidates would stay in the binding pocket once they get there (Huang & 

Wong, 2007). How long a ligand is likely to remain bound to its receptor, thus 

generating the desired pharmacological effects. Ligands that remain bound to their 

receptor for a longer time are pharmacologically more appealing than those 

characterized by a short-lived complex (Vivo et al., 2016). 
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CHAPTER 4: STUDIES INVOLVING PEPTIDES 

4.1      Introduction 

 Peptides form a major part in the biological signalling mechanism. They carry 

information to cells and ultimately become main regulators of life. Normally the 

peptides are used in skin care to increase the amount of collagen being produced in the 

skin, or in other words, peptide is used to minimize wrinkles and relax muscular activity 

(Ahsan, 2019). Peptide synthesis is also become a main factor to confirm the structure 

of natural proteins in medical research and to investigate how protein structure and 

function are controlled by the amino acid sequence (Brummelhuis, Wilke, & Borner, 

2018). Moreover, peptide-based drugs are becoming an important aspect in the 

pharmaceutical drug market, especially when many methods have been developed to 

improve production and to reduce metabolic breakdown (Aneja, & Chaiken, 2013).  

In previous study (Xu, Rahman, Othman, Hu, & Hu, 2012), a series of peptides 

were designed to target the domain III (DIII) of envelope (E) protein with the aim to 

block dengue virus (DENV) entry into target cells. DIII is a crucial part of E-protein as 

it is the receptor binding domain. It is also very antigenic and antibodies to this domain 

are able to efficiently neutralize virus infection (Guardia, Quijada, & Lleonart, 2017). 

Due to this important role of E-protein and its DIII, the search for peptides with binding 

activity to this protein is compulsory in order to find peptides that are able to retard the 

infection process. These designed peptides (Xu et al., 2012) should have the ability to 

block virus infectivity and not become toxic to the target cell. This is supported by in 

vitro drug-screening assay study performed by Baharuddin et al. (2014) that was 

developed to assess the ability of the peptides to interact with DIII. Their results 

observed the peptides had shown binding with DIII region of E-protein and the binding 

between them appeared to be cooperative. The affinity of peptide with code DS36opt 

for the DIII protein (Kd of 9.31 ± 0.15 μM) was slightly higher than that for DN58opt 

Univ
ers

iti 
Mala

ya



95 
 

(Kd of 9.44 ± 0.28 μM). Meanwhile, the peptide coded DN58wt exhibited weaker 

binding affinity for the DIII protein (Kd of 10.79 ± 0.17 μM) compared to DS36opt and 

DN58opt peptides. 

Binding affinities of these peptides towards E-protein were predicted by using a 

combination of docking and explicit solvent molecular dynamics (MD) simulation 

methods. Blind docking was performed to investigate the possible binding modes. The 

interactions within the bound complexes were further investigated by using the 

Molecular Mechanics Poisson Boltzmann Surface Area (MMPBSA) and Molecular 

Mechanics Generalized Born Surface Area (MMGBSA) methods. Specifically, the 

peptides encoded as DN57opt, DN81opt, DS27opt, DS04opt, DS03opt, DS10wt, 

DS36opt, DS36wt, DN58opt and DN58wt, which were designed by Xu et al. (2012) 

using a Monte Carlo method, were used. These peptides comprised of short sequences 

of 20-29 amino acids in length. 

Meanwhile, peptide synthesis is the process of making short sequences of 

polypeptides by adding one amino acid at a time and linking them via peptide bonds. In 

this study, solid phase peptide synthesis (SPPS) method was used, which include 

peptide synthesis, cleavage and precipitation. Due to the possibility of unintended 

reactions and in order to control the coupling reaction, protecting groups are 

compulsory (Isidro-Llobet, Alvarez, & Albericio, 2009) in peptide synthesis. The 

synthesized peptides are often purified using reverse-phase high performance liquid 

chromatography (RP-HPLC). After the desired sequence of amino acids has been 

obtained, the peptides are then removed from the polymeric support. The advantage of 

solid phase peptide synthesis (SPPS) is that, it allows scientists to control the order of 

reactions, such as to control which amino acids are made to react first, which ones come 

second and so on. This approach ensures that only the desired amino acid sequence in 

the peptide is synthesized.  
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4.2 Methods 

4.2.1 Binding Free Energies of Peptides Inhibiting Dengue Virus (DENV) 

Envelope Protein by using Docking & Molecular Dynamics Simulation 

4.2.1.1 Materials 

The three-dimensional structure of pre-fusion dengue virus (DENV) E-protein 

was retrieved from the Protein Data Bank (http://www.rcsb.org/pdb; accession code 

1OKE). The pre-fusion structure of DENV E-protein was used in this study as the target 

structure for the computational method applied in designing peptide entry inhibitors 

(Alhoot et al., 2013). For the protein molecule, all heteroatoms which included the 

drugs, chlorine atoms, water, glycerol and other molecules originating from the 

crystallization buffers were removed. The peptides used in this study were comprised of 

20-29 amino acids in length (Table 4.1). 

 

Table 4.1: Peptides used in this study (Xu et al., 2012). 

Peptide  No. of aa Sequence Location 
DN57opt 28 WYFIRKEFFERIRFLPQRNPHRRDDEWD 205-232 
DN81opt 19 WIFIRYEFFRSFKFLWRGN 205-223 
DS36opt 20 RHWEQFYFRRRERKFWLFFW 351-370 
DS27opt 20 KEYFRRFFHCHNHQREWHWH 261-280 
DS04opt 20 IWWRPRDWPTFIFYFREWRW 31-50 
DS03opt 20 FPFDFHHDRYYHFHWKRYQH 21-40 
DS10wt 20 VCKHSMVDRGWGNGCGLFGK 91-110 
DS36wt 20 LITVNPIVTEKDSPVNIEAE 351-370 
DN58opt 21 TWWCFYFCRRHHPFWFFYRHN 374-394 
DN58wt 21 GDSYIIIGVEPGQLKENWFKK 414-447 

aa: amino acid. 
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4.2.1.2 In Silico Peptide Folding 

AMBER 12 program (Salomon-Ferrer et al., 2012) was used to model the 3D 

structures of the peptides. Peptide folding was performed to simulate the possible 

starting structures of the peptides prior to docking. Wild type peptides with codes 

DS36wt, DS10wt and DN58wt have 100% identity to a part of DENV E-protein amino 

acid sequence, while the new optimized peptides with codes DN57opt, DN81opt, 

DS27opt, DS04opt, DS03opt, DS36opt and DN58opt are totally different compared to 

wild type amino acid sequence (Xu et al., 2012).  

All the peptide folding simulations started with extended conformations of the 

peptides to demonstrate that these peptides could be folded from an arbitrary starting 

structure (Simmerling, Strocbine, & Roitberg, 2002). Topology and parameter files of 

the unfolded peptides (wild type and optimized peptides) were generated via the xLEAP 

program of the AMBER 12 simulation package (Obiol Pardo, 2008). The peptide 

folding simulation was performed using an all-atom classical simulation with AMBER 

ff99SB force field. The best 3D model was selected according to the lowest energy 

generated by ptraj program, considering that the lowest energy model indicated best 

peptide stability, and thus, best quality for the peptide structure.  

Energy minimization and MD simulations were subsequently performed using 

PMEMD.CUDA module in AMBER 12 (Salomon-Ferret, Gotz, Poole, Grand, & 

Walker, 2013) on NVIDIA GPU Quadro 600, which sped up the simulation time with a 

factor of 22.6 to 31.7 improvements compared to regular CPU, to obtain the trajectory 

files from each simulation. A short minimization (total of 1000 steps) of the starting 

structure was performed which comprised 500 steps of steepest descent followed by 500 

steps of conjugate gradient. This process did not cause the peptide to completely fold 

since minimization only drive the starting structure to a local minimum. It reduced steric 

clashes of the structure, fix hydrogen atoms positions so that the system was stabilised 
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prior to MD simulation. Since the system was small, non-bond energy cutoff was 

employed in the calculation of the full Generalised Born solvation energy. 

For the peptide folding simulation, the system was heated up over time step of 

50 picoseconds in a total of 7 stages. Heating in stages reduced the chances that the 

system would blow up by allowing it to equilibrate at each temperature change. 

Normally, MD simulation would be run at 300 K. In this study, the system was heated 

up to 325 K to avoid being kinetically trapped in local minima, leading to a faster 

folding pathway (Simmerling, Strocbine, et al., 2002). A time step of 2 femtoseconds 

was used to integrate the equations of motion. The SHAKE algorithm was used to fix 

the bond distances consisting of hydrogen and heavy atoms, and the Berendsen 

thermostat was used for temperature control. Finally, peptide folding was simulated for 

100 ns at a constant temperature of 325 K and pressure (1 atm) by the Berendsen weak-

coupling algorithm (Simmerling, Strocbine, et al., 2002).  

 

4.2.1.3 Docking of Peptides to DENV E-Protein 

For each peptide, the folded structure with the lowest energy along the 100 ns 

simulation was chosen as the starting structure for docking to DENV E-protein (PDB id: 

1OKE). Docking was done by using the SwarmDock server 

(bmm.cancerresearchuk.org/~SwarmDock/), which performed flexible protein-protein 

docking using the SwarmDock algorithm, where the peptide and side chains of the E-

protein were kept flexible throughout the docking runs. This docking program was used 

to predict and assess the interactions between DENV E-protein and peptides. The server 

started with the pre-processing of input structures where the structures were checked for 

structural correctness, modelling of missing and non-standard residues, and structure 

minimization using the CHARMM molecular mechanics package. This was then 

followed by docking of the peptides using a hybrid particle swarm optimisation where a 
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set of approximately 120 starting positions were generated so that they evenly spaced 

around the DENV E-protein. The whole docking process was repeated four times at 

each starting position and the best structure found during the optimisation was kept for 

the final post-processing stage. The job was then submitted to the server as a full blind 

docking run. After the docking had completed, all the poses underwent minimization 

using CHARMM force field and the minimised structures were then re-ranked. Finally, 

these structures were clustered and the results for this submission were then returned in 

PDB formatted structures, allowing for some visualisation of the clustered solutions. 

The SwarmDock docking algorithm had been selected in this study because this server 

was widely used and had shown considerable success in the critical assessment of 

predicted interactions (CAPRI) experiments. Therefore, this type of docking protocol is 

believed to perform comparatively well when evaluated against other top docking 

algorithm (Torchala, Moal, Chaleil, Fernandez-Recio, & Bates, 2013).  

 

4.2.1.4 Molecular Dynamics Simulations of Peptide-E-Protein Complexes 

Docked peptide-E-protein complex structures with the best pose and lowest 

binding energy were selected for MD studies using AMBER 12. Each complex was 

solvated with a truncated octahedral box of TIP3P water with the box boundaries of at 

least 12 Å from the complex, and was neutralized with Na+ and Cl- ions. The fully 

solvated system was then minimized in two stages. The first stage involved 

minimization of the peptide with 500 steps of steepest descent followed by 500 steps of 

conjugate gradient with a force constant of 500 kcal/mol. The second stage of 

minimization was run on the whole peptide-E-protein complex with 1000 steps of 

steepest descent followed by 1500 steps of conjugate gradient minimization without 

restraints. Minimization was followed by simulation with parameters comprised of the 

time step of 2 femtoseconds, Langevin thermostat set to 310 K and electrostatic 

interactions were treated using the particle mesh Ewald method. The SHAKE algorithm 
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(Ryckaert, Ciccotti, & Berendsen, 1977b) was applied to constrain all hydrogen-heavy 

atom bonds. Then, the complex was heated from 0 to 310 K for 200 picoseconds and 

submitted to molecular dynamics in NPT (constant number of particles, pressure and 

temperature) ensemble for 50 ns. During this phase, structural coordinates of the system 

were taken at 0.1 picosecond intervals to build a trajectory of the system dynamics. 

Time-dependent properties were calculated from the production trajectory. The 

convergence of the energies, root mean square deviation (RMSD) and radius of gyration 

(Rg) were checked to indicate the system stability.  

 

4.2.1.5 Analyses of Results 

The structures of the peptide-E-protein complexes were verified using 

Ramachandran plot, Verify3D and ERRAT programs. A Ramachandran plot was 

generated to check for the stereochemical quality of each peptide-E-protein complex. 

The Ramachandran plot was generated from the online RAMPAGE server at 

http://mordred.bioc.cam.ac.uk/~rapper/rampage.php (Lovell et al., 2003). The Verify3D 

software was used to determine the compatibility of the 3D atomic models with their 

own 1D amino acid (Luthy, Bowie, & Eisenberg, 1992). Incorrect segments of a model 

normally have Verify3D scores below 0.1 which reveal a major problem to the model. 

This program (Laskowski, MacArthur, Moss, & Thornton, 1993) is available in the 

online server version at the Structural Analysis and Verification Server of UCLA 

(University of California, Los Angeles; http://services.mbi.ucla.edu/SAVES/). 

Interactions between the peptides and E-protein in the docked complexes were 

visualized using the Visual Molecular Dynamics (VMD) program (Humphrey, Dalke, & 

Schulten, 1996), analysed using Discovery Studio Visualizer (Koska et al., 2008) and 

Ligplot (Wallace et al., 1995) softwares which identified the hydrogen bonding and 

hydrophobic interactions between E-protein and the peptides. 
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4.2.1.6 Calculation of Free Energy of Binding 

The binding free energy (ΔGbind) of each complex was calculated based on 

Molecular Mechanics Poisson Boltzmann Surface Area (MMPBSA) and Molecular 

Mechanics Generalized Born Surface Area (MMGBSA) procedures in AMBER 12 

program. In this study, the binding free energy of each system was calculated when the 

complexes appeared to gain stable configurations. A total of 500 snapshots were 

collected for estimation of the binding free energy (ΔGbind). The free energy of binding 

of a protein-ligand complex is calculated following relationship shown below (Kumari 

et al., 2014a): 

ΔGbind = Gcomplex - Gprotein - Gligand                                                

                         = EMM + GGB/PB + Gnon-polar - TΔS                           (4.1) 

 

Where Gcomplex, Gprotein and Gligand are the free energies of the complex, protein 

(monomer) and ligand (monomer), respectively; EMM is the change of the molecular 

mechanics potential energy upon peptide binding that includes van der Waals (EvdW) 

and electrostatic (Eele) energies; GGB/PB and Gnon-polar are the polar and non-polar 

components of the desolvation free energy, respectively; and -TΔS is the change of 

conformational entropy upon peptide binding (which was not considered in this study 

because of the high computational cost required and the tendency for a large error 

margin that will lead to significant uncertainty in the results) (Homeyer & Gohlke, 

2012; Hou et al., 2011; Tue-nguen et al., 2013). 
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4.2.1.7 Analysis of the Decomposition of Free Energy 

Free energy decomposition for each peptide-E-protein complex was examined to 

obtain information on important residues involved in the complex binding. The energy 

decomposition was carried out using the mm_pbsa.pl implemented in the AMBER12 

package to calculate the per-residue decomposition. Per residue decomposition 

calculates the energy contribution of single residue by integrating the interactions of 

each residue over all residues in the system. The decomposition of free energy of 

peptide-E-protein complex was calculated based on the MMPBSA and MMGBSA 

protocols. By using the MMPBSA and MMGBSA programs in AMBER 12, the energy 

contribution of each residue (ΔGresidue) was divided into three parts: van der Waals 

energy (∆GvdW), intermolecular electrostatic energy (∆Gele), and solvation energy 

(∆Gsol) due to solvent effect, which was a sum of the polar solvation energy (∆GGB) and 

the non-polar solvation energy (∆GSA). 

 

         ΔGresidue = ΔGvdW + ΔGele + ΔGsolvation = ΔGvdW + ΔGele + ΔGGB + ΔGSA       (4.2)  

                  

Where ΔGvdW and ΔGele are nonbonded van der Waals and electrostatic 

interactions between two residues, respectively. In this study, the decomposition of free 

energy of each system was calculated from the last 10 ns of the trajectories from where 

500 snapshots were extracted. The interaction energy profiles were generated by 

decomposing the total binding free energies into residue-residue interaction.  
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4.2.1.8 Calculation of Hydrogen Bond (H-bond) Occupancies  

The hydrogen bonds between the peptide and the DENV E-protein were 

computed using the trajectory of a production run. The criterion for the hydrogen bond 

formation X-H…Y, where X, Y is either an O or an N atom, must satisfy two 

conditions: (1) the distance between X and Y atoms must be < 3.5 Å; and (2) the angle 

of X-H-Y must be > 120º. Snapshots of trajectories forming H-bonds were calculated 

and are presented for the total 50 ns simulation. 

 

4.2.1.9 Assessment of the Secondary Structure of Folded Peptides 

The secondary structures of the peptides folded were assessed over the course of 

100 ns simulations at 325.15 K using the Virtual Molecular Dynamics (VMD) program. 

VMD plugin Timeline was used to analyse and identify events in MD trajectories 

(Isralewitz, 2011). Timeline creates an interactive 2D box-plot-time versus structural 

component that can show detailed structural events of an entire system over an entire 

MD trajectory. Events in the trajectory appear as patterns in the 2D plot. In this study 

the secondary structures were analysed both in peptide folding and docked complex.   
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4.2.1.10 Flow Chart 

The work flow of the steps involved in this section is shown in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Flow chart showing the methods involved in the study of peptide-E-
protein complex interactions. 
 

 

 

 

Build the peptide starting structure in AMBER 12 

Run 100 ns of MD to simulate peptide folding process 

Dock the folded peptide to DENV E-protein using Swarmdock 

Run the MD simulation of peptide-E-protein complex for 50 ns 

Analyses of the results 

Run a short minimization to avoid steric clashes within the peptide structure 

Secondary structure 
analysis 

Calculation of H-
bond occupancies 

Calculation of free 
energy of binding 

Per-residue 
decomposition analysis 

Result verification: 
Ramachandran plot, 

Verify3D & ERRAT program 

Visualisation of 
interaction using VMD & 

Discovery Studio Univ
ers

iti 
Mala

ya



105 
 

4.2.2 Peptide Synthesis 

The steps involved in this part of the study are shown in the flowchart in  

Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: The flow chart shows summarized method involved in the peptide 
synthesis. 

 

 

 

 

 

 

 

 

 

Synthesis of peptides using the Peptide Synthesizer 

Cleavage of the peptides from the resin using reagent K 

Purification & characterization of peptides using HPLC & LCMS 

Lyophilisation process of the crude peptides for 36 hours 

Peptides produced with purification more than 95% purity 
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4.2.2.1 Solid Phase Peptide Synthesis (SPPS) Method 

The linear peptides were prepared by automated peptide synthesis on a 

Symphony parallel synthesizer (Protein Technologies, Tucson, AZ, USA) via standard 

solid phase peptide synthesis (SPPS) method on chlorotrityl chloride (CTC) resin (0.5 

mmol/g) with Fluorenylmethyloxycarbonyl (Fmoc) protection (Leronymaki et al., 

2015). Peptides used in this study are listed in Table 4.2. In the SPPS method, the CTC 

resin was used as a support to which the growing peptide was anchored. The Fmoc-

protected amino acids were coupled using diisopropylcarbodiimide (DIC, 6.0 equiv) and 

1-hydroxybenzotriazole (HOBt, 6.0 equiv) as coupling reagent and additive, 

respectively, with coupling period of 2 hours. The Fmoc group was removed using a 

solution of 20% piperidine in dimethylformamide (DMF) for 3 minutes, followed by 

20% piperidine in DMF at room temperature for 17 minutes. First amino acid with 

temporary protecting group is attached to the resin via its C-terminus. After the addition 

of an amino acid, the protection group was removed and the resin washed prior to 

subsequent addition of an amino acid. After another 5 minutes, the resin was washed 

with DMF for five times and treated with capping solution [2% acetic anhydrate + 2% 

N-Ethyldiisopropylamine (DIPEA) in DMF] twice for 5 minutes. In preparation for the 

next amino acid coupling, the resin was washed with DMF and treated with 20% 

piperidine in DMF twice at 5 minutes intervals, which were then followed by three 

times DMF washing steps. The coupling of next amino acids were performed in a 

similar fashion to the first coupling procedure except the reaction time before the 

addition of dichloromethane (DCM) was extended to 20 minutes and the repeat of the 

coupling was carried out using a reaction mixture with 1-[Bis(dimethylamino) 

methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU). 

Additionally, the piperidine treatment was extended to 6 minutes. For the coupling of 

amino acid 21-30, the coupling procedure was performed three times, twice with O-

(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU) and once 
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with HATU. The treatment time with piperidine was extended to 8 minutes. For further 

coupling, the coupling was carried out once with TBTU and twice with HATU 

activation. The process is repeated until the sequence is completed. The peptide 

synthesis steps are summarized in Figure 4.3. 

Table 4.2: List of peptides used in this study. The peptide in bold indicates the 
peptides that have been selected for synthesis. 

aa: amino acid. 
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Figure 4.3: Flow chart of solid support peptide synthesis (Made, Els-Heindl, & 
Beck-Sickinger, 2014). 

 

After completion, the peptide side chains were deprotected twice (10 minutes) 

with 20% pipperidine in DMF to remove Fmoc group from the resin-bound polyamide 

and simultaneously cleaved from the solid support by treatment with reagent K 

(trifloureacetic acid (TFA)/water/phenol/thioanisol-1,2-ethanedithiol) (82.5:5:5:2.5) for 

2 hours. The TFA solutions were concentrated by nitrogen flow and the compounds 

were precipitated with diethyl ether (Et2O) to yield the crude materials as white 

powders, which were subsequently centrifuged and Et2O decanted.  

The peptide chain was released by treatment with TFA/H2O/TIS (95/2.5/2.5, 

v/v/v) for 1 hour at room temperature. The colourless solution was filtered and the resin 

was washed with dichoromethane (DCM). The solvent and residues from the cleavage 

cocktail were concentrated under nitrogen. The crude peptide was precipitated with cold 
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Et2O and lyophilized using Savant AES 2000 Automatic Environmental SpeedVac 

system. The crude peptides were purified using preparative reverse-phase high 

performance liquid chromatography (RP-HPLC) and characterized using liquid 

chromatography mass spectrometry (LCMS) (Shimadzu LC/MS 2020). The final 

products were obtained with >95% purity (Xu, Lam, Zhang, & Li, 2013). Quantification 

and characterization data are given in Table 4.3. 

 

Table 4.3: List of synthesized peptides chosen for LCMS analysis. 

Peptide 
Code 

Monoisotopic 
Mass 

Charge 
State 

Mass-to-charge 
ratio (m/z) 

DS36opt  3021.50 
+3 1007.7 
+4 755.5 
+5 604.8 

DS36wt 2181.49 +2 1090.4 
DN81opt 2613.04 +5 523.3 

 

4.2.2.2 Purification of Peptides 

Peptide purification was done via RP-HPLC using a 4.6 mm×150 mm, 5-μm 

particle diameter, 100-Å pore size, Kromasil C8 column. The mobile phases were 

prepared in gradients from 0.1% TFA (trifluoroacetic acid) in acetonitrile (ACN) 

(solution A) and 0.1% aqueous TFA (solution B). For peptides to come out, the solvent 

gradient range was 30% to 50% in 15 minutes. The flow rate was 1.2 mL min−1.  

 

4.2.2.3 Lyophilisation 

 The ACN/H2O solution was removed using a rotary evaporator. The peptide film 

on the side of the flask was re-dissolved in H2O and transferred to a 15 ml conical flask. 

The peptides were frozen in dry ice and then transferred to a lyophilisation vessel, 

which was then attached to the lyophilizer for 36 hours to get dry powder of the 

peptides. 
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4.3 Results and Discussion 

4.3.1 Binding Free Energies of Peptides Inhibiting Dengue Virus (DENV) 

Envelope Protein by using Docking & Molecular Dynamics Simulation 

4.3.1.1 In Silico Peptide Folding 

Peptide folding simulations were performed at three different temperatures 

which are 325 K, 343 K and 373 K (equivalent to 52°C, 70°C and 100°C, respectively). 

For docking purpose, peptide folding conformations at lowest potential energy were 

chosen to dock with DENV E-protein (Table 4.4). This is due to the reason that the 

conformation that had the lowest Gibbs free energy should be thermodynamically most 

stable. Tambunan et al. (2009) in their work also used three different temperatures to get 

peptide folding conformation at the lowest energy. They claimed that by increasing the 

temperature, the movements of the peptide would also increase which resulted in high 

flexibility and dynamics. In addition, higher temperature is associated with a collapse of 

the peptide from extended coils into more compact structures (Hansmann, Masuya, & 

Okamoto, 1997). In fact, by increasing the temperature, the protein unfolds and reaches 

a much more complex and heterogeneous ensemble of conformations, termed as 

“denatured”, resulting in difficulties to characterize the structural properties of the 

denatured states.  

In this study, implicit solvent model was used to fold the peptide because it 

would be able to accelerate folding due to its low viscosity that eases in chain diffusion 

(Nguyen, Maier, Huang, Perrone, & Simmerling, 2014). Peptide folding is basically 

important because amino acids interact with each other to produce a precise three-

dimensional structure in order for the peptide to carry out a particular function, and only 

became biologically active when it folded into specific, complex shape (Ho & Dill, 

2006). However, incorrectly folded proteins may result in many serious and fatal 
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neurodegenerative diseases such as mad cow disease, Alzheimer's disease and 

Creutzfeldt-Jakob disease. 

Table 4.4: Potential energy for peptide folding at different temperatures. 
  325 K (52°C) 343 K (70°C) 373 K (100°C) 
Peptide Energy (kcal/mol) Energy (kcal/mol) Energy (kcal/mol) 

DN57opt -1596.0140 -1568.8126 -1545.8778 
DN81opt -754.2383 -746.7346 -712.6002 
DS36opt -1150.8756 -1135.4784 -1100.4549 
DN58opt -662.2767 -636.9502 -622.5598 
DS27opt -873.6834 -842.2912 -821.3698 
DS04opt -833.8357 -809.8625 -781.4046 
DS03opt -646.7372 -628.8458 -602.2527 
DS10wt -516.5984 -494.4233 -469.3584 
DS36wt -556.6981 -533.9942 -505.9983 
DN58wt -561.3614 -529.4702 -492.2771 

  

4.3.1.2 Docking of Peptides to DENV E-Protein 

The binding energy (Table 4.5) of each peptide-E-protein complex was 

calculated using the Swarmdock algorithm, where flexible peptide was docked into the 

E-protein binding site with flexible side chains. Docking analysis was employed to get 

the best orientation and binding affinity of a peptide to its protein receptor. The negative 

binding energies for all these peptides indicated strong binding between peptide and E-

protein and demonstrated that the protein was in a favourable conformation. This 

concluded that the peptides were able to find the binding site within the protein 

receptor. In this case, the E-protein underwent induced fitting because it continuously 

changed the conformation and the shape in response to peptide binding. Overall, Table 

4.5 showed that the complex containing DN58opt peptide to give the lowest binding 

energy (-34.18 kcal/mol), meanwhile DN58wt peptide showed highest binding energy  

(-20.00 kcal/mol), for monomer E-protein. This revealed the less stability of the wild 

type peptide when in a complex, compared to optimized peptide. This is in line with the 

study by Costin and co-worker (2010) which reported that their optimized peptide had 
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the best RAPDF scores for structural stability and binding compared to wild type 

sequences.  

Table 4.5: Binding energy for both monomer and dimer E-protein docked with 
peptides generated from Swarmdock docking server. 

  Monomer Dimer 

Peptide code  Binding energy 
(kcal/mol) 

Binding energy 
(kcal/mol) 

DN58opt -34.18 -29.54 
DN57opt -33.38 -30.96 
DS36opt -32.18 -31.06 
DN81opt -31.21 -31.36 
DS03opt -31.20 -30.52 
DS27opt -28.60 -24.33 
DS04opt -27.90 -29.00 
DS36wt -24.41 -22.68 
DS10wt -21.95 -21.57 
DN58wt -20.00 -22.58 

 

In this study, the peptides were docked to both the monomer and dimer structures 

of E-protein. Eventhough in the crystal structure, E-protein existed as a dimer, due to 

the need to save computational time, the monomer structures were used for further MD 

simulation study. Furthermore, the monomer structures give the lower binding energy 

compared to dimer structures indicating more stable structure. This is supported by Das 

et al. (2011) that perform docking both to the monomer and dimer structures of 

Glutathione transferase-P1P1 (hGSTP1-1) and their result revealed that the dimer only 

showed one binding sites while the monomer revealed three additional binding sites for 

ligand binding. Furthermore, the monomer structure was found to provide a wider range 

of binding sites for naturally occurring ligands and these docking results suggested that 

the enzyme subunit interface might be important for hGSTP1-1 interactions with the 

ligands. On the other hand, Padariya and co-workers (2015) observed more hydrogen 

bond interactions with lipids in monomer system compared to dimer membrane system. 

This was expected as monomer alone had larger surface to interact with lipid molecules, 
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whereas monomer in dimer system has only a fraction of its surface exposed for 

interaction with lipid molecule. 

 In this study, the trend of the binding energy for some of the peptides such as 

DS36opt, DS36wt, DN58opt and DN58wt were in agreement with the results reported 

for the tryptophan fluorescence quenching assay performed by Baharuddin et al. (2014). 

Good correlations between the docking scores and the dissociation constant (Kd) values 

could be observed as shown in (Table 4.6). Figure 4.4 illustrate the five best 

conformations of the peptides in each peptide-E-protein complex. In general, the 

peptides were able to dock in the binding pocket at various locations. In this study, the 

peptides were docked in the largest or second largest pockets in the protein as suggested 

by Dagliyan et al. (2011). They caused steric hindrance due to their large structures and 

interacted with the chosen residues via their functional groups. Three possible binding 

sites were located in a) between Domains I and II, b) between Domains II and III, and c) 

Domain III as illustrated in Figure 4.5. The best docking pose with the lowest binding 

energy was recorded to be for Domain III, which was also the potential site for antibody 

binding as well as other small molecules (Guardia & Lleonart, 2014; Poggianella et al., 

2015).  

Table 4.6: Relationship between the binding activities from fluorescence quenching 
assay (Baharuddin et al., 2014) and the binding energies calculated using the 
Swarmdock docking algorithm.  
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(a) DN57opt-E-protein complex. 

 

 

 

 

 

 

 

 

(b) DN81opt-E-protein complex. 

 

 

 

 

 

 

 

 

 

(c) DS36opt-E-protein complex. 

Figure 4.4: The top five docked conformation of peptides (a-j) generated from 
SwarmDock docking server (DI-red, DII-yellow, DIII-blue and peptide-colourful). 
Peptides (a-j) are illustrated in various colours and are in circles. 
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(d) DN58opt-E-protein complex. 

 

 

 

 

 

 

 

 

(e) DS27opt-E-protein complex. 

 

 

 

 

 

 

 

 

(f) DS04opt-E-protein complex. 

Figure 4.4: (Continued) 
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(g) DS03opt-E-protein complex. 

 

 

 

 

 

 

 

 
(h) DS10wt-E-protein complex. 
 

 

 

 

 

 

 

 

 

 
(i) DS36wt-E-protein complex. 

Figure 4.4: (Continued) 
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(j) DN58wt-E-protein complex. 

Figure 4.4: (Continued) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Three possible sites for peptide binding (in circles) towards DENV E-
protein. The DENV E-protein is shown as dimer (DI-red, DII-yellow, DIII-blue). 
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4.3.1.3 Refinement of Docked Peptide-E-Protein Complexes using MD simulation 

MD simulation was performed on the best docked complex structure to 

investigate the role of receptor flexibility on the binding of these peptides in aqueous 

solution as well as to assess the stability of peptide-E-protein complex throughout the 

simulation time. The best docking pose was further refined using explicit solvent MD 

simulations. In this study, explicit solvent was applied in the MD simulation as we 

would like to create the system to be as close to the reality as possible. 

 

4.3.1.4 Root Mean Square Deviation (RMSD) 

To validate the dynamic stability of the complexes, total potential energy and 

root mean square deviation (RMSD) of the backbone atoms along the 50 ns MD 

trajectories were monitored. Figures 4.6-4.9 depict the pressure, temperature, density 

and energies for the peptide-E-protein complexes over the course of 50 ns simulation. 

Examination of the pressure variable revealed seemingly large fluctuations in 

instantaneous pressure. The phenomenon was expected where the pressure fluctuated 

around 100 bar = 1 atm during the MD simulation. The negative pressure corresponded 

to a “force” acting to decrease the box size and the positive pressure to a “force‟ acting 

to increase the box size. The important point here is that while the pressure graph 

seemed to show that the pressure fluctuated wildly during the simulation the mean 

pressure stabilized around 1 atm. This was sufficient to indicate successful equilibration 

of the system. Meanwhile, the temperature remained more or less constant at 310 K 

during the simulation indicating the use of Langevin dynamics for temperature 

regulation was successful. On the other hand, the simulation had equilibrated at a 

density of approximately 0.975 gcm-3. This seemed reasonable as the density of pure 

liquid water is approximately 1.00 gcm-3.  In order to validate the dynamic stability of 

the complexes, the total potential energy and root mean square deviation (RMSD) for 
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the backbone atoms along the 50 ns MD trajectories were monitored. Figures 4.9 and 

4.10 illustrate the total potential energy and RMSD profiles for the best five peptides 

studied. The potential energy remained constant during simulation implying that the 

relaxation was completed and equilibrium had been reached (Heavner, 2004). 

 

        

Figure 4.6: Pressure of peptide-E-protein complexes during 50 ns MD simulation. 

 

   

Figure 4.7: Temperature of peptide-E-protein complexes during 50 ns MD 
simulation. 
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Figure 4.8: Density of peptide-E-protein complexes during 50 ns MD simulation. 
 
  

 
Figure 4.9: Potential energy of top five peptide-E-protein complexes during 50 ns 
simulation. The heating process is not shown. 
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Figure 4.10: RMSD of top five peptide-E-protein complexes during 50 ns MD 
simulation. 

 

In order to study conformational changes and structural properties over the 

simulation time, RMSD values were calculated for the peptide-E-protein complexes 

(Figure 4.10). For this purpose, ptraj tool was used and the backbone atoms of C, Cα and 

N were considered. For the complex containing DN81opt (red line) and DS36wt 

(yellow line) RMSD values were observed to oscillate steadily throughout the 

simulation which suggested that there were no large conformational changes in the 

complexes and the peptides remained in the protein binding pocket. However, the 

complexes containing DS04opt, DN57opt and DS03opt gave higher RMSD fluctuations 

around 5-7 Å after 25 ns due to large structural changes of the complexes. The increase 

in RMSD might be due to flexible regions such as large loops of the peptides. This is 

supported by Landon et al. (2008) that also observed an increment in RMSD values, 

which was due to large structural changes with respect to the positions of the amino 

acids in the loop regions of the protein. It is interesting to note that the longer the 

simulation runs, the more these molecules diffuse, resulting in larger RMSD values. The 
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increase in RMSD also associated with the random movement of protein atoms to 

stabilize the protein structure while a lower RMSD normally indicates that the bound 

complex is stable. The overall RMSD value of the complexes under study was 6.5 Å, 

indicating the reliability of the MD simulation protocol had been successfully applied.  

This result is in line with the study reported by  Dagliyan et al. (2011) on protein-

peptide recognition which observed the presence of peptide in the native binding site 

when RMSD from the native pose was lower than 10 Å.  

 

4.3.1.5 Radius of Gyration (Rg)  

The compactness of the peptide-E-protein complex throughout the simulation 

can be monitored using radius of gyration (Rg). The compactness has been defined as a 

ratio of the accessible surface area of a protein to the surface area of the ideal sphere of 

the same volume. It measures a distance of molecule size from its centre of mass. In this 

study, Rg was calculated for the backbone heavy atoms and was calculated according to 

Equation 4.3: 

                                                                                                            (4.3) 

where mi is the mass of atom i, and ri is the position of atom i with respect to the centre 

of mass of the peptide (Spoel, Vogel, & Berendsen, 1996). 

The variation of radius of gyration (Rg) as function of time is presented in Figure 

4.11 and from this figure it is clear that Rg showed significant fluctuations along the 

trajectory which revealed the flexibility of the protein. Normally, a stable complex 

maintains a relatively steady Rg value, whereas unfolding or collapse is indicated by Rg 

change over time. Nevertheless, these observed fluctuations were concentrated around 

an average, which indicated that not all the complexes unfolded along the simulation 

time. There was also a fast collapse of the complex structure, which then became stable 
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and again, the immediate collapse of the complex's structure to form a more compact 

structure. The gradual Rg decrease would be due to the loops at both ends of the α-helix 

that sometimes curled inward. By contrast, the large fluctuations in Rg could be due to 

unfolding and refolding of parts of the α-helix. The collapse in peptide-E-protein 

complex was probably accompanied by changes to its secondary structure which is 

important for protein's structure and function.  

 

Figure 4.11: Radius of gyration (Rg) of top five peptide-E-protein complexes for 
backbone heavy atoms during 50 ns MD simulation. 
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4.3.1.6 Root Mean Square Fluctuation (RMSF)  

The flexibility of the peptide-E-protein complex was investigated in terms of the 

atom-positional root-mean-square fluctuations (RMSF) for all non-hydrogen atoms. 

RMSF measures how much each individual atom moves around and is totally a different 

calculation than RMSD. It reflects the overall movement of atoms or residues over all 

frames. It is also a qualitative measure of protein flexibility as it gives a view of the 

relationship between protein conformational flexibility and dynamics. The fluctuations 

during MD simulation are expected as a result of solvated environment and a fully 

flexible complex.  

The RMSF values of these best five peptides-E-protein complex ranged from 3-

8 Å, showing a large degree of movement. Most of these flexible residues were located 

at both C and N terminals of the protein. This fluctuation of backbone deviation 

reflected the global structure rearrangement of peptide-E-protein complex that was well 

equilibrated, maintained and not artificially altered by the simulation. The structure 

showed more flexibility with the RMSF average value of 7.5-8 Å at residue numbers 

55-100 and 200-250. In addition, residues 350-400 which belong to domain III region 

also showed flexibility due to high RMSF values. As seen in Figure 4.12, for both 

DN57opt (black line) and DS04opt (green line), the Gly349, Glu370, and Asn390 

residues were among the most fluctuated and mobile residues. Therefore, these regions 

could be critical to thermostability and could be potential target sites for stability 

enhancement through rational design. The region with high fluctuations is normally 

related to connecting loops, turns and bends with helices compared to other regions. In 

addition, these high RMSF values of the monomer were likely resulting from the 

absence of contact between the chains and therefore had more space to fluctuate 

(Wichapong et al., 2014). The increment in RMSF value also suggested that the 

flexibility of peptides and E-protein might enhance binding affinity between them. The 
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flexibility of the loop regions also influenced the mobility of complex. However, lower 

RMSF values for DN81opt and DS03opt-E-protein complexes were observed due to the 

peptides rigidly held in the complex with only a limited space to flex. The minimal 

fluctuation of RMSF was also observed at the end of MD equilibration as reported by 

(Panigrahi et al., 2013). 

 
 
Figure 4.12: RMSF profile of top five peptide-E-protein complexes during 50 ns 
MD simulation. 
 

4.3.1.7 Validation of 3D Model Structure 

In this section, the quality of the peptide-E-protein complex, generated by MD 

trajectories was evaluated. Ramachandran plot program was used to examine geometry 

and stereochemistry of all peptide-E-protein complex structures. This plot also included 

a representation of the favourable and unfavourable regions for residues, so that the 

correctly built structure could be determined. The Ramachandran plots of all the ten 

complexes showed that most of the residues were in the sterically allowed region (Table 
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4.7). Nevertheless, few amino acids that were in the disallowed region belonged to the 

loop regions corresponding to the structurally variable region. 

 
Table 4.7: Validation of peptide-E-protein complex structures using different 
verification programs. 

Complex 
Ramachandran plot Verify3D 

(%) 
ERRAT 

(%) Residues in Most 
Favoured Region (%) 

Residues in Disallowed 
Region (%) 

DN57opt 92.3 1.7 91.00 77.44 
DN81opt 93.4 0.7 89.59 74.19 
DS36opt 93.4 0.5 86.47 72.65 
DS27opt 93.2 0.2 90.82 75.89 
DS04opt 94.4 0.7 88.41 73.88 
DS03opt 93.2 1.0 88.41 81.40 
DS10wt 92.4 0.7 92.51 71.43 
DS36wt 95.9 0.5 89.86 84.68 
DN58opt 93.7 0.5 91.81 65.71 
DN58wt 95.0 0.7 87.62 79.70 

 

All the peptide-E-protein complexes had shown that more than 85% of the 

residues were located in the most favoured region with few residues (≤ 2%) in the 

disallowed region. The results (Table 4.7) suggested that the peptide-E-protein complex 

structures were acceptable and possessed sufficient stereochemical qualities and hence 

these structures were used for further MD simulation studies.  

Meanwhile, less than 2% residues in the disallowed region were due to certain 

amino acids in each complex, which were Lys202 (for DN57opt, DS03opt, DS36wt and 

DN58wt respectively), Ala245 (DN81opt), Glu383 (for DS04opt and DS10wt) and 

Arg403 (DS36opt). These amino acids were not located in any of the peptide binding 

region. The result established that only a very small fraction of residues lie in 

appreciably disallowed regions with small polar residues having a significantly greater 

probability of adopting unusual backbone conformations. Disallowed conformations are 

mostly found for polar or charged residues (Gunasekaran, Ramakrishnan, & Balaram, 

1996). In this study, Lys202, Ala245, Glu383 and Arg403 are bulky charged residues 
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which have a relatively low propensity for backbone distortions. Disallowed regions 

basically involve steric hindrance between the side chain C methylene group and main 

chain atom. Hence it frequently occurs in turns regions of proteins where any other 

residue would be sterically hindered. Nonetheless, this disallowed residue does not 

occur frequently in a protein (Pandey et al., 2015). 

The complex structures were also validated by other structure verification 

servers such as Verify 3D and ERRAT to check the quality of the complex structures. 

Verify 3D determines the compatibility of an atomic model (3D) with its own amino 

acid sequence (1D) by assigning a structural class based on its location and environment 

(alpha, beta, loop, nonpolar, etc) and compare the results to good structures. Then, a 

database generated from good structures is used to obtain a score for each of the 20 

amino acids in this structural class. The vertical axes in the plots (Figure 4.13) represent 

the average 3D-1D profile score for each residue in a 21-residue sliding window. The 

scores range from -1 for bad score to +1 for good score. In this analysis, it was found 

that none of the amino acids had a negative score. Therefore, the predicted models were 

compatible with its amino acid sequence with more than 85% of the residues with an 

averaged 3D to 1D score of more than 0.2. In addition, the compatibility scores above 

zero correspond to an acceptable side chain environment (Elengoe, Naser, & Hamdan, 

2014). Thus, the results proved that all the complex structures were of reasonable 

quality and were expected to be satisfactory.  
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 Figure 4.13: Verify3D plot for DS36wt at 50 ns simulation. 89.86% of the residues had an average 3D-1D score of more than 0.2. 
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On the other hand, ERRAT is a program that is used to verify protein structures, 

as well as to obtain a stable structure. A stable structure is used in MD simulations in 

order to gain the binding energy, intermolecular energy, electrostatic energy and total 

internal energy (Bhargava, Nath, Seth, Pant, & Dixit, 2014). ERRAT works by 

analysing the statistics of non-bonded interactions between nitrogen, carbon and oxygen 

atoms, with higher scores indicating higher quality (Elengoe et al., 2014; Wallner & 

Elofsson, 2006). The highest ERRAT score obtained for the peptide-E-protein complex 

was 84.68% (DS36wt) with the generally accepted range of >50, indicating a high 

quality model (Khor, Tye, Lim, Noordin, & Choong, 2014). Thus, this analysis revealed 

that the backbone conformation and non-bonded interactions of the peptide-E-protein 

complexes fit well within the range of a high quality model (Elengoe et al., 2014). The 

validated complex structures used in this study may be used further to understand the 

potential interactions between peptides and DENV E-protein.  

 

4.3.1.8 Binding Free Energy of Peptide-E-Protein Complexes 

Docking results obtained in this study revealed the binding affinities of the 

peptides to E-protein to be in the order of DN58opt > DN57opt > DS36opt > DN81opt 

> DS03opt > DS27opt > DS04opt > DS36wt > DS10wt > DN58wt (Table 4.5). 

However, only five peptide-E-protein complexes were able to run up to 50 ns of MD 

simulations. In this work, MMPBSA and MMGBSA methods were used to calculate the 

binding free energy (ΔGbind) of the peptide-E-protein complexes over the course of 50 

ns trajectory. Even though the simulation time was quite short, longer MD simulation 

does not necessarily mean better predictions. Even a simulation with a length on the 

order of 10 ns would give high precision and accuracy values of binding free energy. In 

this study, as the simulation was extended to 60 ns, the peptide was found outside the 
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binding pocket, providing no indication that association would occur if the simulations 

were to be run longer. Due to this reason, the MD simulation was run up to 50 ns only.  

To characterize the binding affinities of peptide-E-protein complexes, the 

MMPBSA and MMGBSA methods were used to calculate the binding free energy. Both 

Poisson-Boltzmann (PB) and Generalized Born (GB) models were used to evaluate the 

electrostatic component of the solvation free energy and had been successfully applied 

to various protein-ligand or protein-peptide complexes. The PB approach is well 

established and used widely in the literature (Wang et al., 2016). It has gained 

acceptance as a convenient and reliable alternative to explicit solvent in energy 

calculations. Nevertheless, the GB method is still useful to utilize since it saves 

computational time (Wang, Morin, Wang, & Kollman, 2001). Therefore, in this study, 

the MMPBSA and MMGBSA methods were used to compare binding free energies 

from the various types of peptides. 

The individual energies that contributed to the calculation of binding free energy 

on the basis of MMPBSA and MMGBSA are listed in Table 4.8. The estimated total 

binding free energy is negative for all of the complexes, indicating favourable binding 

contacts. Generally, the MMPBSA gave lower PBTOT value compared to MMGBSA 

for all the peptides studied. Even though MMGBSA approach gave slightly higher 

binding energy, the results obtained in this study still suggested that the complexes were 

in their favourable bound states. This proved that MMPBSA method gives better 

performance in ranking the binding affinities since this technique employs a more 

rigorous algorithm than MMGB method (Heavner, 2004; Wang et al., 2001). This is 

supported by Hou and co-workers (2011) where in their study it was shown 
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Table 4.8: Binding free energies predicted using the MMPBSA and MMGBSA methods at different time simulation (All data are given in kcal/mol). 

Method Contribution DS36wt DN81opt DN57opt DS03opt DS04opt 
10 ns 50 ns 10 ns 50 ns 10 ns 50 ns 10 ns 50 ns 10 ns 50 ns 

MM 
ELE  -22.40 -24.70 -173.22 -232.47 -21.05 -151.34 -45.44 -120.86 -8.21 -164.37 
vdW -81.77 -87.59 -53.86 -42.55 -37.19 -42.46 -36.01 -32.81 -21.45 -19.93 
GAS  -104.17 -112.29 -227.08 -275.02 -58.24 -193.80 -81.45 -153.67 -29.66 -184.30 

PBSA 

PBSUR -11.97 -11.83 -9.59 -8.13 -7.27 -8.61 -7.20 -6.72 -4.70 -4.02 
PBCAL 55.71 63.65 209.36 253.57 44.79 165.61 73.93 126.69 23.22 161.32 
PBSOL 43.74 51.82 199.77 245.44 37.51 157.01 66.73 119.97 18.52 157.30 
PBELE 33.31 38.95 36.14 21.10 23.74 14.27 28.49 5.84 15.01 -3.05 

 PBTOT -60.43 -60.46 -27.31 -29.58 -20.72 -36.80 -14.72 -33.70 -11.13 -27.00 

GBSA 

GBSUR -7.67 -7.61 -4.68 -4.01 -3.48 -4.92 -3.43 -3.57 -1.91 -2.36 
GBCAL 59.04 67.64 213.05 264.70 53.01 176.51 84.93 136.66 30.37 166.51 
GBSOL 51.37 60.03 208.36 260.69 49.53 171.59 81.51 133.09 28.46 164.16 
GBELE 36.64 42.94 39.82 32.23 31.97 25.17 39.49 15.80 22.16 2.14 

  GBTOT -52.80 -52.26 -18.72 -14.33 -8.71 -22.21 0.06 -20.57 -1.19 -20.14 
 

The individual energy contributions: ELE = electrostatic energy as calculated by the molecular mechanics (MM) force field; vdW = van der Waals contribution from 
MM; GAS = total gas phase energy ELE+vdW+INT; INT = internal energy arising from bond, angle and dihedral terms in the MM force field (this term always 
amounts to zero in the single trajectory approach); PBELE/GBELE = sum of the electrostatic solvation free energy and MM electrostatic energy; PBSUR/GBSUR = 
non-polar contribution to the solvation free energy calculated by an empirical model; PBCAL/GBCAL = the electrostatic contribution to the solvation free energy 
calculated by PB or GB respectively; PBSOL/GBSOL = sum of non-polar and polar contributions to solvation free energy (PBSUR + PBCAL); PBTOT = final 
estimated binding free energy calculated by MMPBSA method; GBTOT = final estimated binding free energy calculated by MMGBSA method  (all energies are in 
kcal/mol). Univ
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that MMPBSA performed better in calculating absolute binding free energies. 

Therefore, MMPBSA method is preferable and results used using this calculation   

method will be used in further discussions. After all, both MMPBSA and MMGBSA 

models gave quantitatively very similar trend and this indicated the favourable binding 

of the peptides to DENV E-protein. 

Basically, the binding mode that has the lowest binding free energy is expected 

to be the most favourable binding. The complex containing DS36wt had the most 

favourable binding energy, followed by DN81opt, DN57opt, DS03opt, and DS04opt 

where the binding energies were -60.43/-60.46 kcal/mol, -27.31/-29.58 kcal/mol,           

-20.72/-36.80 kcal/mol, -14.72/-33.70 kcal/mol and –11.13/-27.00 kcal/mol, for 10 ns 

and 50 ns simulation respectively. The major contributors to the binding free energy 

were both coming from the van der Waals (vdW) and electrostatic (ELE) energies, as 

calculated in this study using the molecular mechanics (MM) force field. The role of 

vdW and ELE interactions upon peptide binding were computed to study the forces that 

led to the most stable conformation. 

The gas-phase electrostatic value (ELE) of DN81opt showed highly negative 

value (-173.22/-232.47 kcal/mol), followed by DS03opt (-45.44/-120.86 kcal/mol), 

DS36wt (-22.40/-24.70 kcal/mol), DN57opt (-21.05/-151.34 kcal/mol) and DS04opt     

(-8.21/-164.37 kcal/mol) indicating that ELE interactions could contribute to the binding 

specificity. In this case, ELE interactions are important forces in the primary approach 

of the peptides and receptor to each other. These types of interactions are of long-range 

types and can be determinative in the final protein-ligand complex stability (Ebadi, 

Razzaghi-Asl, Khoshneviszadeh, & Miri, 2013). These electrostatic interactions can 

also drive processes such as protein folding, protein-ligand binding, protein-protein 

interaction, electron transfer, protein binding release and enzyme reaction. Since 

electrostatic interactions play a major role in protein interaction, the lack of protein 
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polarization could be reflected in deficiencies in some structural details and dynamical 

properties extracted from MD simulation. This is extremely important since electrostatic 

interaction play a significant role in protein functions and structures.  

On the other hand, the effect of vdW could not be ignored as it is closely related 

to the hydrophobic interaction energy. This vdW interaction is a non-specific interaction 

and is a common name for the attractive and repulsive forces between non-bonded 

atoms. The total binding free energy (PBTOT) is the sum of ELE, vdW and PBSOL and 

these energies contributed favourably to the peptide binding. This is in line with the 

study by Obiol (2008) that showed vdW interaction being the main energy term 

favouring the peptide binding affinity. In this study, DS36wt showed the lowest vdW 

energy value (-81.77/-87.59 kcal/mol) followed by DN81opt (-53.86/-42.55 kcal/mol), 

DN57opt (-37.19/-42.46 kcal/mol), DS03opt (-36.01/-32.81 kcal/mol) and DS04opt (-

21.45/-19.93 kcal/mol). In this case, DS36wt fitted more snugly within the binding 

cavity leading to a tighter binding to E-protein. This favourable fit between the peptide 

and E-protein could also be due to shape complimentary, in addition to the 

comparatively stronger vdW interaction. This proved that the vdW interaction was an 

important factor to the binding affinity. Besides that, the high value of this energy 

component has been associated with strong ligand binding (Mayuri, Bauve, & Kuhn, 

2010), thus providing stability to the complex, and therefore a favourable solvation 

contribution was observed. The effect of solvation also plays an important role where 

the existing interactions between water molecules that form hydrogen bonds with the 

complex also contribute to the complex stability (Bianco, Iskrov, & Franzese, 2012). 

Therefore, both the intermolecular vdW and the ELE interactions are important 

contributions to the binding. The presence of these interactions that contributed to the 

binding free energy plays a crucial role in distinguishing the bioactivity of the peptides. 
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Meanwhile, the PB/GBSUR terms refer to the non-electrostatic contribution of 

the solvation effects and are proportional to the solvent-accessible surface area of the 

molecule. Results showed that energy contributions from PBSUR for DS36wt, 

DN81opt, DN57opt, DS03opt and DS04opt were -11.97/-11.83 kcal/mol, -9.59/-8.13 

kcal/mol, -7.27/-8.61 kcal/mol, -7.20/-6.72 kcal/mol and -4.70/-4.02 kcal/mol, 

respectively. These negative values indicated that they were favourable components, 

even though the absolute values were relatively small. On the other hand, the 

electrostatic contribution to solvation (PB/GBCAL) led to a significant loss of the total 

binding free energy. PB/GBCAL were shown to be unfavourable to the binding, as 

indicated by the positive values, which were 55.71/63.65 kcal/mol, 209.36/253.57 

kcal/mol, 44.79/165.61 kcal/mol, 73.93/126.69 kcal/mol and 23.22/161.32 kcal/mol for 

DS36wt, DN81opt, DN57opt, DS03opt, and DS04opt, respectively.  

 

4.3.1.9 Per-Residue Free Energy Decomposition (DC) Analysis 

Besides ranking the binding free energies correctly, another advantage of the 

MMPBSA and MMGBSA models is that they allow for the decomposition of the total 

binding free energy into individual components, thus enabling the understanding of the 

complex binding process in detail. To identify the key residues (hot spot) related to the 

binding process, the binding free energy between the E-protein and peptide inhibitor 

was decomposed into the contribution of each residue (Ge et al., 2012; Yang, Shen, Liu, 

& Yao, 2011). These hot spot residues are considered as one of the possible ways to 

disturb the peptide-protein interaction. Normally, these hot spots are surrounded by 

moderately conserved and energetically less important residues. They appear to be 

clustered in tightly packed regions in the centre of the interface (Grosdidier & 

Fernandez-Recio, 2008). Figures 4.14-4.18 show the energy contribution of each 

residue to the binding energy. Each amino acid residue was found to exhibit positive or 
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negative influence on the binding to the E-protein which demonstrated the favourable 

and unfavourable interactions of individual residue (Yang et al., 2011). 

From the per-residue binding free energy decomposition analysis, some residues 

of the E-protein binding site that contributed to the ligand binding were identified. 

Figure 4.14 shows that 12 residues on the E-protein were mainly responsible for the 

peptide DS36wt binding to the protein, namely Met34, Asn37, Leu294, Met297, Ile335, 

Pro336, Phe337, Met340, His346, Val354, Asn355 and Phe373. This combination of 

polar and hydrophobic residues clearly showed that they might form side chain or side 

chain-main chain hydrogen bonds with the peptide. It can be noted that Val354 showed 

a highly favourable interaction with DS36wt (PBTOTAL = -3.61 kcal/mol) indicating 

that this charged amino acid was energetically making favourable contact in the 

binding. For DN81opt peptide, residues of the binding site such as Gly17, Asn37, 

Met301, Val347, Leu348, Leu351, Val354 and Pro356 were found to be important 

amino acids in terms of their energetic contributions to the complex formation (Figure 

4.15). This polar amino acid (Asn37) may form side chain with polar amine carbonyl 

group, thus capable to form hydrogen bond. It also gave rigidity to the protein structure 

by imposing certain torsion angles on the segment of the peptide chain. It is notable that 

Val347 was the key residue that had the lowest binding free energy (PBTOTAL = -1.6 

kcal/mol) and this energy contribution was mainly driven by hydrophobic interaction. 

Even though the overall contribution to the binding free energy by these residues was 

small, this finding would have consequences to explain the function of the systems.  

On the other hand, for the complex containing DN57opt peptide, residues Gln52, 

Ala54, Leu56, Ile129, Gln131, Pro132, Pro187, Asn194, Arg210, Gly223 and Ala224 

showed significant and favourable contributions to the binding due to their negative  

energy values. As can be seen from Figure 4.16, the major favourable energy 

contributions originate predominately from the residue Arg210 (PBTOTAL = -5.01 
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kcal/mol). Other observed E-protein binding site residues that contributed to the per 

residue binding energy were Ala54, Leu56, Ile129, Pro132, Pro187 and Ala224. 

Normally, Gly223 is found at the surface of proteins, usually within loop, resulting in 

high flexibility to this region. On the contrary, Pro132 provide rigidity to the protein 

structure by imposing certain torsion angles on the segment of the polypeptide chain. 

These two residues are often highly conserved in protein families since they are 

essential for preserving a particular protein three-dimensional fold (Lodish et al., 2000).  

For the complex containing DS03opt peptide (Figure 4.17), ten residues were 

found to form a hot spot on the E-protein. Interestingly residues participated in 

hydrophobic interactions such as Met301, Pro336, Ile339, Met340, Val347, Ile379 and 

Val382 contributed to important hydrophobic contact with the E-protein with Val347   

(-2.73 kcal/mol) had the highest contribution to the binding energy. These hydrophobic 

interactions had minimum coulombic interaction energies (Ebadi et al., 2013). It also 

further illustrated that charged residue such as Lys344 and polar residue such as His346 

were keys residue in selective binding. This favourable contribution could partially be 

due to their important role in stabilising the protein-peptide binding (Betts & Rusell, 

2003). 

There were six peptide residues for DS04opt-E-protein complex that firmly 

bound to E-protein namely Ile129, Gln131, His209 and Gln211 (Figure 4.18). Our result 

showed that Ile129 played the most critical role in the binding with per residue free 

energy of -0.45 kcal/mol. The presence of this charged residue had shown to be 

stabilising the binding of the peptide to the E-protein. In addition, the favourable 

contribution of residues Ile129 in a deep hydrophobic pocket (Figure 4.19) proved to be 

important for the E-protein and this residue was responsible for the increase in 

hydrophobic interactions.  
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The hydrophobicity and polarity of the residues involved made them crucial in 

structural stability and binding to the peptide. In fact, the stability of protein-protein 

interfaces are dependent on these important amino acids which contributed to a large 

fraction of the binding energy at a particular interface, and were surrounded by 

energetically less important residues. Consequently, a peptide inhibitor of peptide-

protein interaction does not necessarily need to target the entire surface but rather could 

be designed to address only those residues located at the hot spots (Wichmann et al., 

2010). 

 

 

Figure 4.14: Histogram showing the calculated per-residue free energy 
decomposition using MMPBSA approach for DS36wt-E-protein complex. 
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Figure 4.15: Histogram showing the calculated per-residue free energy 
decomposition using MMPBSA approach for DN81opt-E-protein complex. 

 

 

 

Figure 4.16: Histogram showing the calculated per-residue free energy 
decomposition using MMPBSA approach for DN57opt-E-protein complex. 
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Figure 4.17: Histogram showing the calculated per-residue free energy 
decomposition using MMPBSA approach for DS03opt-E-protein complex. 

 

 

 

Figure 4.18: Histogram showing the calculated per-residue free energy 
decomposition using MMPBSA approach for DS04opt-E-protein complex. 
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Figure 4.19: Connolly surface representation of residue Ile129 (brown) at the 
binding site. 

 

4.3.1.10Analysis of Peptide-E-Protein Interaction  

Interactions between the peptides and DENV E-protein were analysed using the 

LIGPLOT program (Wallace et al., 1995), which portrayed the H-bond interaction 

patterns and hydrophobic contacts between the peptides and active site residues. The 

criteria for H-bond interaction used was when the distance between the hydrogen and 

the heteroatom was within the range of 2.5-3.5 Å and the bond angle was within 109º-

110º (Stojanovic & Zaric, 2009). Meanwhile, hydrophobic interactions are particularly 

important in stabilizing a protein conformation. In this study, analyses of H-bonds and 

the hydrophobic interactions before and after simulations were performed to indicate the 

importance of amino acids that contributed to the interactions (Chaudhary & Prasad, 

2014). 

As seen in Table 4.9, hydrophobic interactions were accounted by interactions 

between the peptide DN57opt with nine residues in the binding site, which were Ala54, 
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Leu56, Lys88, Ile129, Trp220, Pro222, Gly223, Ala224 and Ile232. However, after 50 

ns simulation, only seven residues, which were Gln52, Ala54, Leu56, Gln131, Pro132, 

Gln167 and Gly223, were involved in hydrophobic interactions. On the other hand, 

before simulation, H-bond interactions were recorded involving three residues (Arg57, 

Arg210 and Asp225), and after 50 ns four residues (Thr55, Asn133, Asn194 and 

Arg210) were involved. As could be anticipated, side chains of the positively charged 

amino acids, such as Arg, were the most frequently involved in hydrogen bond 

formation during the 50 ns simulation. Moreover, there were several interactions with 

side chains of Asp, where Asp was defined as a hydrogen donor. This was as expected 

since the side chain of Asp is usually negatively charged. The side chains of polar 

residues, such as Thr, also participated in hydrogen bond formation, while hydrophobic 

residues were involved in hydrogen bonds via their backbones (Stojanovic & Zaric, 

2009). Thus, this directionality of the hydrogen bond is very important since it 

contribute favourably to protein stability (Pace et al., 2014).  

For DN81opt-E-protein complex, before simulation, there were thirteen residues 

involved in hydrophobic interaction, whereas after 50 ns simulation the number of 

residues participating in hydrophobic interaction reduced to five. The same was with H-

bond interaction where before simulation there were three residues involved and 

reduced to two residues after 50 ns. Thus, the interaction study showed more complex 

stability from initial simulation compared to after simulation. The increase in the 

number of hydrophobic residues may increase the biological activity of the drug lead. In 

fact, it has been reported that the binding affinity and drug efficacy could be associated 

with hydrophobic interaction (Patil et al., 2010). On the other hand, complex containing 

DS04opt peptide formed H-bonds with Arg57, Asn194 and Arg210 before simulation, 

and formed H-bonds with Asp192, Asn194, Glu195 and Arg210 after simulation. On 

top of that, hydrophobic contacts were also recorded with fifteen residues before 
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simulation, and reduced to four residues after 50 ns simulation. The same trend was also 

observed for DS03opt-E-protein complex where there were fifteen and four residues 

involved in hydrophobic contacts before and after 50 ns, respectively. The peptide 

formed H-bond with Lys36, Glu338 and Asn355 before simulation and with Lys344 

and Glu383 after 50 ns. The involvement in both hydrophobic and H-bond interactions 

by these amino acids is an additional strong argument for their importance.  

Meanwhile, complex containing DS36wt peptide shows H-bond contacts with 

Val347, Arg350 and Asn355 while surrounding residue, Lys36, Met297, Met301, 

Ile335, Pro336, Glu338, Ile339, Leu348, Gly349, Leu351, Val354 and Pro356 

displayed hydrophobic interactions with the peptide before simulation. However, after 

50 ns, DS36wt peptide did not reveal any H-bond nor hydrophobic interaction. The loss 

of H-bond during simulation results in decrease in complex stability. Hence, the absence 

of hydrogen bonding between the peptide and the surrounding amino acid residues at 

the binding site may cause its low binding affinity, thus resulting in the low inhibition 

activity and the high Ki,exp. The result obtained also revealed the importance of 

hydrophobic interactions in stabilizing the peptide at the binding interface. According to 

Patil et al. (2010), the increase in binding affinity of a complex molecule due to 

optimization of hydrophobic interaction at the target-drug interface, comparatively 

demonstrate better efficacy of drug leads. Thus, the results presented herein 

demonstrated that hydrogen bonding and optimized hydrophobic interactions both 

stabilized the peptides at the target site and helped alter binding affinity. This proved the 

importance of both interactions in drug design. 
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Table 4.9: H-bond and hydrophobic interactions analyses using Ligplot, for the top 
five peptide-E-protein complexes. 

Peptide 
Before simulation After 50 ns simulation 

Hydrophobic 
interactions 

H-bond 
interactions 

Hydrophobic 
interactions 

H-bond 
interactions 

DN57opt Ala54 Arg57 Gln52 Thr55 

 
Leu56 Arg210 Ala54 Asn133 

 
Lys88 Asp225 Leu56 Asn194 

 
Ile129 

 
Gln131 Arg210 

 
Trp220 

 
Pro132 

 
 

Pro222 
 

Gln167 
 

 
Gly223 

 
Gly223 

 
 

Ala224 
     Ile232       

DN81opt Asn37  Ile335 Phe337 Lys36 

 
Leu294 Phe337 Val347 Glu338 

 
Met301 Gln358 Leu351 

 
 

Lys334 
 

Val354 
 

 
Pro336 

 
Asn355 

 
 

Glu338 
   

 
Lys344 

   
 

Arg345 
   

 
His346 

   
 

Val347 
   

 
Leu351 

   
 

Asn355 
     Pro356       

DS04opt Ala54 Arg57 Ile129 Asp192 

 
Thr55 Asn194 Val130 Asn194 

 
Leu56 Arg210 Gln131 Glu195 

 
Ile129 

 
Gln211 Arg210 

 
Gln131 

   
 

Glu133 
   

 
Glu195 

   
 

Gln211 
   

 
Leu214 

   
 

Asp215 
   

 
Trp220 

   
 

Pro222 
   

 
Gly223 

   
 

Ala224 
     Ile232       

DS03opt Asn37  Lys36 Met340 Lys344 

 
Leu294 Glu338 Arg345 Glu383 

 
Met301 Asn355 His346 
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Table 4.9: (Continued) 
     
     
     

 

 
 

Lys334 
 

Val347 
 

 
Ile335 

   
 

Pro336 
   

 
Phe337 

   
 

Met340 
   

 
Arg345 

   
 

His346 
   

 
Leu348 

   
 

Arg350 
   

 
Val354 

   
 

Pro356 
     Gln386       

DS36wt Lys36 Val347 N/A N/A 

 
Met297 Arg350 

  
 

Met301 Asn355 
  

 
Ile335 

   
 

Pro336 
   

 
Glu338 

   
 

Ile339 
   

 
Leu348 

   
 

Gly349 
   

 
Leu351 

   
 

Val354 
     Pro356       
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4.3.1.11Hydrogen Bond Occupancy in Molecular Dynamics Simulation 

Peptide-E-protein complex system has the ability to participate in H-bond as 

both donors and acceptors. Since the formation of internal H-bonds in protein polarizes 

the donors and acceptors, the H-bonds in proteins are basically more stable during MD 

calculations. The variation of donor-acceptor distance using MD simulation could be 

used to evaluate the forming and breaking of H-bonds. A H-bond is characterized 

according to the distance between two heavy atoms, such as nitrogen and oxygen atoms, 

is in the range of 2.5-3.2 Å and the angle N-H-O is in the range of 130°-180° 

(Schaeffer, 2008). In this section, the H-bond angle setting was setting slightly different 

with the Ligplot program (section 4.3.1.10) due to different algorithm used.  

In this work, MD simulations of peptide-E-protein complexes were performed 

to study hydrogen bonds between the peptide and E-protein. In order to gain insight 

into the efficiency of the peptide binding into E-protein binding pocket, the percentage 

occupancy and number of hydrogen bond formation were examined. A summary of 

the percentage of H-bonds between the peptides and the E-protein in the trajectories is 

given in Table 4.10. The computational result shows that occupancy percentages of 

hydrogen bonds averaged over simulation time were 91.44%, 90.68%, 72.48% and 

41.24% for each complex containing DS04opt, DS36wt, DS03opt and DN57opt 

peptides, respectively. For DS04opt-E-protein complex, additional H-bond with 

Asp192 with occupancy of 35.44% present in the trajectory. Complex containing 

DS36wt peptide also interacted with His144 with low percentage (35.48%) of H-bond. 

For DS03opt and DN57opt-E-protein complexes, the percentage of H-bond with 

Glu383 and Asp418 were 46.16% and 23.4% respectively also show low H-bond 

patterns. The lower occupancy means that the hydrogen bond is sometimes broken in 

the course of the simulation whereas higher occupancy indicates additional H-bonds 

between the amino acids residue and the ligand molecule are created during simulation 
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(Mukhametov, Newhouse, Aziz, Saito, & Alam, 2014). Hence, it could be suggested 

that H-bonds were frequently formed and broken during the MD simulations in this 

study. The breaking of intra-protein hydrogen bonds might also be responsible for 

deformation or denaturation of some local structures of the complexes during MD 

simulation. The breaking of these bonds could result in changes in the secondary 

structures since the backbone H-bonds lie inside either helices or sheets or other local 

secondary structures in the protein (Ebadi et al., 2013). Therefore, this study provides 

strong evidence that hydrogen bonds are dynamically stable and majority of H-bonds 

appearing in a structure remain intact in MD simulation. 

 

Table 4.10: Hydrogen bond analysis between peptides and E-protein at 50 ns. 

System Donor Acceptor  Occupancy 
(%) 

H-bond 
distance (Å) 

H-bond 
angle (°) 

DS04opt Glu195@OE1 Arg413@NH2  91.44 2.783 133.9 

 
Asp192@OD2  Arg413@NH2  35.44 2.807 168.9 

  Asp192@OD1  Arg413@NH2  32.56 2.811 174.3 
DS36wt Pro400@O Arg350@NH2  90.68 2.801 135.9 

 
Pro400@O  Arg350@NE  42.92 2.876 168.0 

  His144@ND1 Thr353@OG1  35.48 2.889 139.5 
DS03opt Lys344@O  His401@NE2  72.48 2.819      167.6 

 
Glu383@OE2 Arg403@NH2  46.16 2.795 175.3 

  Glu383@OE2 Arg403@NH1  45.44 2.808 161.3 
DN57opt Glu401@OE2 Asn194@ND2  41.24 2.862 135.8 

 
Glu401@OE1 Asn194@ND2  35.72 2.870 133.6 

  Asp418@OD2  Arg188@NH1  23.40 2.798 170.5 
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4.3.1.12Secondary Structure Analysis 

 Molecular dynamics (MD) simulations technique is one of the most popular 

computational methods to investigate the secondary structures of proteins and peptides. 

The secondary structure of a protein indicates the local conformation of the polypeptide 

backbone, normally focusing on common regular folding patterns. A few types of 

secondary structure are particularly stable and occur widely in proteins such as α-

helices, β-sheets, turns and coil and are normally distinguished by the backbone 

torsional angles (φ, Ψ) and the types of non-covalent interactions. Thus, in order to have 

an insight on how overall peptide folding representation looks like, we investigated the 

folding behaviour and secondary structure formation of the peptide-E-protein complex 

at the nanosecond timescale. In the previous study done by Demir et al. (2014), the 

secondary structure of selected peptides had been characterised via circular dichroism 

(CD) spectroscopy and conventional MD simulations. The results obtained from MD 

were found to be consistent with the CD results.   

In order to get insight into secondary structural elements of peptide folding, in 

this study, secondary structural elements were depicted as a function of simulation time 

for both peptide folding and peptide-E-protein complexes. As seen in peptide folding 

secondary structures (Figure 4.20), the conformational ensembles of peptide folding are 

dominated by “turn structures” followed by β isolated bridges, 3-10 helices, α-helices, 

and with small amount of extended configurations and pi-helices. Turn structures are 

the mobile regions of the molecule and is the simplest secondary structure element. The 

presence of turn structures indicated that some hinge residues may be flexible due to 

their inherent conformation properties or because of cross-correlated motions. Analysis 

also demonstrated that turn structures can rapidly form, disappear and reform. These 

folded peptides had a random secondary structure in solution, which may increase their 

capability to interact with the target protein easily and this could be the main reason for 
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increasing affinities of the peptides. Meanwhile, β isolated bridges showed an equal 

propensity in both rigid as well as flexible mobile residues and these structures could 

appear or disappear during simulation. However, any extended configuration structures 

were not observed. Analysis of secondary structure evolution throughout the MD 

trajectories also showed that α-helices in the peptide folding remained intact for most of 

the systems.  

On the other hand, for all the peptide-E-protein complexes, the extended 

configurations, turn configurations and α-helices, were dominant conformational 

structures while 3-10 helices and coils were minor structures (Figure 4.20). Extended 

structures and coils frequently appear in flexible regions rather than in rigid regions. 

Interestingly, most amino acids were observed to be present in the extended 

configuration within the proteins. However, not all peptides we able to form stable α-

helices. This could be due to amino acid sequence that affected the stability of α-helices. 

Additional interactions should occur between amino acid side chains in order to 

stabilize this structure. The presence of residues such as Glu, Asn, Ser, Thr and Leu 

tend to prevent formation of α-helices once they occur close together in the chain. The 

presence of many of these residues, with positively charged R groups, will repel each 

other and prevent formation of the alpha helices. Thus, this secondary structure study is 

significant in generating information on the factors that ensure stabilization of the 

peptide folding as well as providing a convenient way to classify types of folds.   
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Peptide Folding Peptide-E-Protein Complex 

(A1) DN57opt 

 

(A2) DN57opt-E-protein complex 

(B1) DN81opt 

 

(B2) DN81opt-E-protein complex 

 

(C1) DS36opt 

 

 

 

(C2) DS36opt-E-protein complex 

 

 

 

 

 

 

Figure 4.20: Secondary structure plots of peptide-E-protein complexes using 
Visual Molecular Dynamics (VMD). 
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(E1) DS04opt 

 

 

(E2) DS04opt-E-protein complex 

 

 

(F1) DS03opt 

 

(F2) DS03opt-E-protein complex 

 

(G1) DS10wt 

 

 

 

(G2) DS10wt-E-protein complex 

 

 

 
Figure 4.20: (Continued) 
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(H1) DS36wt 

 

 

(H2) DS36wt-E-protein complex 

 

 

(H1) DN58opt 

 

(H2) DN58opt-E-protein complex 

 

(I1) DN58wt (I2) DN58wt-E-protein complex 

 

 
Figure 4.20: (Continued) 
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4.3.2 Peptide Synthesis 

In this study, the peptides with codes DN81opt, DS36wt, and DS36opt were 

selected for synthesis due to their ability to interact with DIII and the binding between 

them appeared to be cooperative (Baharuddin et al., 2014). In addition, docking and 

molecular dynamics simulation that had been performed in this study proved the 

potential of these peptides as inhibitors. This is also in line with the study performed by 

Xu et al. (2012) which successfully identified that these peptides to correspond to a 

region of the dengue virus envelope protein and were designed against target DIII of 

DENV2 envelope protein. Peptides derived from the protein-protein interface have been 

shown to be able to mimic the modes of binding of its original domain to its specific 

partner protein. Thus, they may serve as promising leads for drug development. In 

future, variety of assay tests will be performed on these synthesized peptides to confirm 

the inhibition effect. 

 

4.3.2.1 Solid Phase Peptide Synthesis (SPPS) 

Solid phase peptide synthesis (SPPS) is defined as a process in which a peptide 

anchored by its C-terminus to an insoluble polymer is assembled by the successive 

addition of the protected amino acids constituting its sequence. In this study, the C-to-N 

direction was used to synthesize the peptides as the sequences are long (19-28 amino 

acids). Attachment of the amino acid can be extended with the peptide chain anchored 

through the backbone amide of the C-terminal residue. This allows an attachment 

peptide to be synthesized in the common C-to-N direction, with the free C-terminus 

available for elaboration into suitable peptide mimetic functional groups. Furthermore, 

in (C-to-N) peptide synthesis, an excess of the activated carboxyl component is used to 

drive the reaction to completion. However, in N-to-C synthesis, the carboxyl group is 

anchored and could not be generated in excess (Bodanszky, 1993). In addition, this 
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reverse strategy (N-to-C peptide synthesis) allows the generation of C-terminal-

modified peptide, which have potential application in therapeutic field as well as in 

fragment condensations for the assembly of large peptides. Nevertheless, this method is 

only applicable to peptide aldehydes and chloromethyl ketones (Jakubke & Sewald, 

2008; Lebl & Houghten, 2001). Since in this study, no modified in C-terminal is 

required. Thus, the common C- to N- terminal direction of peptide synthesis is used. 

 In general, each amino acid addition is referred to a cycle consisting of cleavage 

of the Fmoc protecting group, washing step, coupling of a protected amino acid and 

washing steps. In this study, the automated peptide synthesizer was used to synthesize 

the peptides (Figure 4.21). As the growing chain is bound to an insoluble support, the 

excess of reagents and soluble by-products can be removed by simple filtration. 

Washing steps with appropriate solvents ensure the complete removal of cleavage 

agents after the de-protection step as well as the elimination of excesses of reagents and 

by-products resulting from the coupling step. In this study, the peptide synthesis and 

purification steps were quite challenging because of poor peptide solubility, which led 

to low coupling and/or deblocking reactivity (Viau, Letourne, Sirois-Deslongchamps, 

Boulanger, & Fournier, 2007) as well as due to difficulty in attaching the amino acids 

peptides with long sequences (28 amino acids). 

 
Figure 4.21: Automated peptide synthesizer used in this study. 

Univ
ers

iti 
Mala

ya



 

154 
 

In this study, chlorotrityl chloride (CTC) is used as polymeric support as it is 

one of the most widely used resin for the solid-phase synthesis of C-terminal peptides. 

The advantage of CTC resin is, it can be used for the preparation of both protected and 

unprotected peptides (Garcia-Martin, Bayo-Puxan, Cruz, Bohling, & Albericio, 2007). 

In addition, the CTC resin is preferred due to its ability to reduced formation of side 

reactions such as recemization and diketopiperazine. This is due to the characteristic 

hindered structure of chlorotrityl group. Moreover, CTC resin can be applied to prepare 

protected peptide acids under mild cleavage conditions, which can be used in the 

fragment condensation for larger polypeptides (Lee, Ryoo, & Lee, 2007). Due to its 

great properties as a support for solid phase peptide synthesis, the CTC resin was 

chosen.  

Meanwhile, Flourenylmethyloxycarbonyl (Fmoc) protecting group usage is 

compulsory to prevent undesirable side reactions with various amino acid side chains. 

In fact, Fmoc protection allows for a milder deprotection scheme compared to tert-

Butyloxycarbonyl (Boc) protection group. It has the ability to be cleaved under mild 

basic conditions and has stability towards acid. Fmoc deprotection utilize a base which 

is in this study, 20% piperidine in DMF which resulting in neutralization of exposed 

amine. Thus, the neutralisation of the peptide-resin is not necessary as compared to Boc 

approach.  

In order to facilitate peptide formation with minimum side reactions, chemical 

groups that would be able to bind to the amino acid reactive groups and eventually 

block the functional group from nonspecific reaction has been used. Coupling reagent 

and additives such as Diisopropylcarbodiimide (DIC) and 1-Hydroxybenzotriazole 

(HOBt) has been used for this purpose. DIC is particularly useful reagent for SPPS as it 

easily handled as a liquid, and the urea byproduct formed is soluble in most organic 

solvents, allowing facile removal during resin washes (Isidro-Liobet et al., 2019). The 
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presence of these coupling reagents would form a less-reactive intermediate that reduces 

the risk of racemization and eventually shorten the length and cause branching of the 

peptide chain (Valeur & Bradley, 2009). In this study, racemization is referring to the 

one of the main side reaction when activating carboxyl groups of amino acid. Presently, 

this combination of HOBt and DIC is one of the best methods for amino acid coupling. 

Meanwhile, TBTU is another coupling reagent used in SPPS that also showed 

resistance against racemization in spite of their high coupling rates. It has frequently 

used in peptide synthesis due to its mild activating properties. Previous studies (Gutheil 

& Xu, 2002) had successfully proved the high purity (80%) and low racemization (5%) 

of synthesized peptides using combination of HBTU/DIEA and HATU/TMP coupling 

methods. HBTU and TBTU differ only in the choice of anion. The same result was also 

observed by Bodanszky (1993) which claimed that the HATU/TMP coupling method 

gave low levels of epimerization.  

 

4.3.2.2 Lyophilisation 

 After the cleavage of the peptides from the polymeric support, the crude 

materials were treated with glacial acetic acid and lyophilized. This treatment 

significantly improved the solubility of the peptides thus allowing their dissolution in 

aqueous conditions (Viau et al., 2007). This was then followed by purification using 

reverse phase high performance liquid chromatography. 

This lyophilisation process is important for long-term storage of peptides. In this 

study, freeze dryer was used (Figure 4.22) and the process to lyophilised takes around 

36 hours.  Lyophilized peptides can be stored for years at temperatures of -20°C or 

lower with little or no degradation (Hoofnagle et al., 2016). In contrast, peptides in 
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solution form are much less stable. Since peptides are susceptible to degradation by 

bacteria, they should dissolve in sterile and purified water.   

 

 
Figure 4.22: Freeze dryer used in this study for lyophilisation process. 

 

4.3.2.3 Purification of Peptides  

The crude peptides obtained from solid phase peptide synthesis (SPPS) 

contained many by-products resulting from the side products stemming from cleaved 

side chains or oxidation during the cleavage and deprotection process. Purification of 

peptides requires the removal of deletion peptides resulting from incomplete 

coupling/deprotection steps, from racemization or side-chain rearrangement, and from 

various chemical substances introduced during the deprotection or cleavage stages of 

SPPS procedure.  

In this study, reverse phase high performance liquid chromatography (RP-

HPLC) was used to purify the peptides at minimal cost. The combination of RP-HPLC 

and liquid chromatography mass spectrometry (LCMS) provides a powerful tool for 

peptide analysis. By measuring the molecular weight of the peptides present in each of 

the peaks, LCMS provides useful information that assists in identifying the peaks 
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separated by RP-HPLC. LCMS also confirms the purity of each peak and reports their 

molecular weights (Kang, 2012). 

Theoretically, peptides are separated by interacting with the hydrophobic surface 

of particles packed in columns. The particles in the column are usually made of silica 

because silica is physically robust and stable under most solvent conditions (except at 

pH greater than 6.5). When separating peptides by using RP-HPLC, detection is 

normally by UV absorption at 214-215 nm. The peptide bond absorbs well in this 

wavelength range and provides the most sensitive detection for all types of peptides 

(Anthis & Clore, 2013). 

RP-HPLC conditions are essentially the reverse of normal phase 

chromatography. The peptides bind on the column through hydrophobic interactions 

and are eluted by decreasing the ionic strength. Generally, the column supports are 

composed of hydrocarbon alkane chains which are covalently attached to silica. These 

chains range from C4 to C18 carbon atoms in length. Since elution from the column is a 

function of the hydrophobicity, the longer chain hydrocarbon columns are better for 

small, highly charged peptides (Carr, 2002).  

Mass spectrometry has become one of the well-known methods of detection for 

high-performance liquid chromatography (HPLC) analysis of biopolymers for varieties 

of applications. When liquid chromatography is interfaced directly to mass spectrometry 

(LCMS), molecular weight information of peptide can be obtained from the mass 

spectra. Peptides produce varieties of product ions depending on the quantity of 

vibrational energy they possess and the time-window allowed for dissociation. The 

benefit of using high resolution mass analysers is the ability to predict the charge state 

of a peptide ion by calculating the m/z difference between its isotopic peaks. This 
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information will lead us to calculate the monoisotopic mass or molecular weight of the 

peptide being ionised (HuiSong, 2010). 

 The basic concept of LCMS is to form ions from a sample, to separate the ions 

based on their m/z ratio and to measure the abundance of the ions. During electrospray 

ionization, peptide acquires multiple charges (Samson, Rentsch, Minuth, Meier, & 

Loidl, 2019). This allows it to be analysed by a mass spectrometer with a relatively 

limited mass (mass-to-charge) range. It is common to see 2+, 3+, 4+ and 5+ charge 

states depending on the size of the peptide. Peptides that are greater than 2,500 Da tend 

to multiply charge under electrospray conditions, thus reducing their m/z into analytical 

range. Most peptides below 4,000 Da predominantly form the m+2 charge under 

electrospray conditions. Larger peptides and proteins tend to form additional; m+3 and 

m+4 charge states, resulting in the signal being distributed between several different 

ions. Thus, multiple charges produced by peptides are crucial in determining molecular 

weights of synthesized peptides. 

 For peptide with code DS36opt (Figure 4.23), the spectrum is dominated by 

three peaks, one at m/z 604.8, one at m/z 755.5 and another at m/z 1007.7. These three 

peaks correspond to the same peptide. Since most electrospray spectrometers have good 

resolution, it is possible to look at the isotope of singly, doubly or multiple charged 

ions. By looking at the isotopic distribution of the above ions, the isotopes are separated 

by three mass units at m/z 1007.7, m/z 755.5 and at m/z 604.8 with each pattern 

corresponding to the 3+, 4+ and 5+ charges, respectively. This is due to the fact that 

mass spectrometer measures the mass-to-charge ratio. Another advantage of generating 

multiply charged ions with electrospray is that multiply charged ions tend to give more 

complete fragmentation spectra. This is particularly important for de novo sequencing 

of peptides (Trauger, Webb, & Siuzdak, 2002). 

Univ
ers

iti 
Mala

ya



 

159 
 

 

 

To calculate the peptide ion's mass, the m/z for the monoisotopic peak was multiplied 
by the charge state. The calculations below show how the mass of the multiple charge 
of peptide was determined: 

DS36opt: 

(3021.50 + 3)/3 = m/z 1008.17 

(3021.50 + 4)/4 = m/z 756.38 

(3021.50 + 5)/5 = m/z 605.3 

 

 

 

 

 

 

 

To calculate the peptide ion's mass, the m/z for the monoisotopic peak was multiplied 
by the charge state. The calculations below show how the mass of the multiple charge 
of peptide was determined: 

DS36opt: 

(3021.50 + 3)/3 = m/z 1008.17 

(3021.50 + 4)/4 = m/z 756.38 

(3021.50 + 5)/5 = m/z 605.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: LCMS spectrum of peptide with code DS36opt with Mw = 3021.46 
g/mol. ESI calcd for peptide code DS36opt [M+3H]3+ m/z = 1007.7, [M+4H]4+ m/z = 
755.5, [M+5H]5+ m/z = 604.8 

 

On the other hand, for peptide with code DS36wt (Figure 4.23),  LCMS analysis 

conformed that only one peak in the chromatogram corresponds to the peptide with the 

same molecular weight which is at m/z 1090.4, corresponding to doubly charged ion 

(2+). The same pattern is observed with peptide DN81opt (Figure 4.24), where only one 

peak at m/z 523.2878 which corresponds to multiply charged ion (5+) is observed in the 

spectrum. LCMS spectrum of this multiply charged ion matches a 19-amino acid of the 

DN81opt peptide (WIFIRYEFFRSFKFLWRGN).  
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To calculate the peptide ion's mass, the m/z for the monoisotopic peak was 
multiplied by the charge state. The calculation below shows how the mass of the 
multiply charged peptide was determined: 

DS36wt: 

(2181.49 + 2)/2 = 1091.7 

 

 

To calculate the peptide ion's mass, the m/z for the monoisotopic peak was 
multiplied by the charge state. The calculation below shows how the mass of the 
multiply charged peptide was determine: 

DN81opt: 

(2613.04 + 5)/5 = 523.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24: LCMS spectrum of peptide with code DS36wt with Mw = 2181.45 
g/mol. ESI calcd for peptide code DS36wt [M+2H]2+ m/z = 1090.4 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25: LCMS spectrum of peptide with code DN81opt with Mw = 2613.04 
g/mol. ESI calcd for peptide code DN81opt [M+5H]5+ m/z = 523.2878 
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4.4 Conclusion 

In this study, MD simulations were performed on the peptides to evaluate their 

interactions with DENV E-protein in aqua, and to investigate the binding free energy by 

means of MMPBSA and MMGBSA methods and energy decomposition analyses. 

Results showed that the calculated binding free energies concurred well with the 

tryptophan florescence quenching assay previously report, thus confirming the binding 

affinities of these peptides. Meanwhile, RMSD values indicated the overall structural 

stability of the peptide-E-protein complexes. Electrostatic and van der Waals 

interactions contributed mostly during the interactions between the E-protein and the 

peptides. Additionally, several amino acids had been identified for their major 

contributions to the binding efficiency towards E-protein. It can be suggested that these 

amino acids can later be modified by mutation to improve the binding activity. 

The production of peptides via automated peptide synthesis on solid support 

provided a great variety of benefits. Even though SPPS method offered excellent purity 

and yield standards, impurities and imperfections still occurred along the way. This was 

due to the increase in the length of the peptide sequences, as more steps are needed to 

complete the synthesis. Therefore, purification step was necessary in order to ensure 

optimal quality of the peptide.  

In this study, selected peptides had been chosen for synthesis using automated 

peptide synthesizer. In the LCMS spectrum, the signal of the desired products were 

observed and the products were successfully purified. Purity and identity of the products 

were confirmed by HPLC. All the m/z values were consistent with the calculated ones 

based on the chemical formulae of the expected peptides. Based on the obtained 

analytical data, it could be concluded that the desired peptides were successfully 

obtained. 
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CHAPTER 5: GENERAL DISCUSSION & CONCLUSION 

5.1  General Discussion 

From Chapter 3, the concepts of identifying and characterizing protein binding 

pocket computationally using Discovery Studio 4.0 software had been discussed. In this 

study, nLc4Cer which belongs to a carbohydrate group, may become a potential lead for 

drug design. There is always the possibility of the molecule binding to a site other than 

the predicted location on the E-protein. Parameters such as energy, temperature, RMSD, 

RMSF and radius of gyration (Rg) had shown consistency throughout the 50 ns 

simulation time. Meanwhile, cluster analysis had presented nine conformational 

clusters, with each cluster not showing much difference in binding energy. The cluster 

group with the lowest binding energy was chosen for further MD study and was 

confirmed to have reasonable binding mode. In addition, post analysis on the simulated 

DENV E-protein-nLc4Cer complex was done by calculating the binding free energy and 

decomposed energy using MMPBSA and MMGBSA methods. Thus, several important 

residues that contributed to the complex binding energy had been identified. It was also 

found that, hydrophobic and hydrogen bonding interactions were responsible for the 

high affinity of nLc4Cer to bind to the target. From this study, it can be concluded that 

the replication of DENV could be interrupted by suitable compounds targeting specific 

viral protein which is, in this case, the E-protein. This compound may serve as the basis 

for the development of new drugs to combat the DENV infection. 

The study was then continue by applying docking approach to systematically 

investigate E-protein-nLc4Cer association pathways. This study has demonstrated three 

docking pathways leading from the surface of the E-protein to the correct docking 

pathway. The ligand flexibility was found to play an important role in nLc4Cer entry to 

the E-protein binding pocket. Knowledge of association pathway would be useful in 
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discriminating between different ligand pathways that could have been favourably 

docked in the binding pocket.  

In Chapter 4, in order to evaluate the peptide interactions with E-protein and to 

investigate the binding free energy by means of MMPBSA and MMGBSA methods as 

well as energy decomposition analyses, the molecular dynamics simulation was 

performed. Results obtained showed that the calculated binding free energies concurred 

well with the tryptophan florescence quenching assay previously reported, thus 

confirming the binding affinities of these peptides. Electrostatic and van der Waals 

interactions had become major contributors to the interactions between E-protein and 

the peptides. The Ramachandran plot of the peptide-E-protein complexes had shown 

that less than 15% of protein residues were inside the disallowed region. Meanwhile, 

RMSD was used to ensure the overall structural stability of peptide-E-protein 

complexes. Also, several hot-spot residues had been identified through pairwise energy 

decomposition method for their major contributions to the binding efficiency towards E-

protein. 

Besides that, selected peptides had been chosen for synthesis using peptide 

synthesizer. The peptide purity was confirmed via LCMS and the signal of the desired 

products were observed. Furthermore, the masses of the successfully synthesized 

peptides had been confirmed with HPLC where all the m/z values were found to be 

consistent with the calculated expected peptides. Hopefully, this study may contribute to 

the search for antiviral substances, which interfere in the attachment process of the 

DENV to the host cell, or effectively disrupting the process of membrane fusion in the 

entry process of the virus into the host cell. 
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5.2 Conclusion 

In conclusion, the aim and all objectives of this study have been achieved. Both 

nLc4Cer and peptides used in this study could have huge therapeutic potentials which 

make them become attractive candidates for the development of drugs. Results obtained 

from this study indicate that these compounds could behave as inhibitors which bind 

across E-protein and act by inhibiting the conformational changes that occur during 

viral fusion with endosomal membranes. Anti-dengue drugs may potentially shorten the 

duration of illnesses and reduce the risk of disease progression, and this would be a 

significant advancement for both patients and health systems in countries where dengue 

become endemic. Anti-dengue drugs could also potentially lower viral loads and reduce 

dengue severity, thus resulting in dengue cases in endemic areas can significantly be 

managed and the state of public health can be improved. Last but not least, structural 

information derived from this study may aid in the selection of appropriate drug 

candidates for further development and would be able to assist in pharmacokinetic 

studies. 

 

5.3 Significance of the Study 

This study has yielded more information regarding peptides as DENV potential 

inhibitors as there were limited information available from the previous studies (Chew 

et al., 2017). The results obtained can be used as references in planning for more 

effective solutions in terms of effective vaccination and antiviral drugs to health 

problems in relation to dengue fever. This study will help to increase the awareness and 

knowledge as well as to provide more effective, sustainable educational resources 

regarding to dengue diseases all around the world. This study also highlights the 

importance of drug design and development since only symptomatic and supportive 

treatments are available to manage the dengue diseases. Moreover, steps to develop a 
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tetravalent anti-dengue therapeutic capable of providing protection against all four 

dengue serotypes can be planned to prevent sequential serotype infections. 

 

5.4 Suggestion for Future Studies 

Due to resource and technical limitations, only three peptides were successfully 

synthesized. In future, more peptides will be synthesized and tested for their inhibition 

study. Beside of using long sequence of amino acid, short peptides can be designed 

because shorter sequences are basically easy to synthesize compared to longer peptides. 

Secondary structures of the designed peptides can also be characterized by using 

experimental techniques such as circular dichroism (CD) spectroscopy. The outcome 

will highlight the accurate dominant structural components which are random coil, bend 

and turn for the target peptides.  

Synthesized peptides can be tested via plaque reduction assay to confirm their 

inhibition effect. Similar reduction effects can also be observed using quantitative real-

time polymerase chain reaction (PCR) where decrease in transcription level will prove 

the peptides to function as inhibitors.  

Since analyses of the important residues that interacted during the binding had 

been discussed, therefore in future studies, mutagenesis study can be done by replacing 

the important amino acid residues with the other amino acids that may enhance the free 

energy of binding of inhibitor towards E-protein. In addition, quantum mechanics 

method can be used as a tool to study the breakage and formation of hydrogen bond. 

Last but not least, steered MD technique can also be used to study the 

association pathways of ligands towards the binding site at constant velocity and force. 

Through this method, the pathway of nLc4Cer approaching the E-protein binding site 

will be clearer.  
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