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DEVELOPMENT OF QUALITY ASSESSMENT METHODS FOR WOOD 

IMAGES 

ABSTRACT 

Image Quality Assessment (IQA) is a vital element in improving the efficiency of an 

automatic recognition system of various wood species. There is a need to develop a No-

Reference Image Quality Assessment (NR-IQA) system as a perfect and distortion free 

wood images may be impossible to be acquired in the dusty and dark environment in 

timber factories. Many IQAs which focus on some image of interest such as natural 

images have been proposed. However, an IQA specifically for wood images have not 

been proposed so far. Hence, this thesis proposes two No-Reference IQA (NR-IQA) 

metrics, Modified BRISQUE Wood Image Quality Assessment (MBW-IQA) and GLCM 

and Gabor Wood Image Quality Assessment (GGW-IQA) to assess the quality of wood 

images. Firstly, Support Vector Machine (SVM) Regression (SVR) was trained using 

Generalized Gaussian Distribution (GGD) and Asymmetric Generalized Gaussian 

Distribution (AGGD) features calculated for wood images together with the mean opinion 

score (MOS) obtained from subjective evaluation to develop the MBW-IQA. Secondly, 

SVR was trained using Gray Level Co-Occurrence Matrix (GLCM) and Gabor features 

calculated for wood images together with the MOS to develop the GGW-IQA metric. The 

MBW-IQA and GGW-IQA metrics are compared with one of the established NR-IQA 

metrics, namely, Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE), 

Deep Neural Network IQA (deepIQA), Deep Bilinear Convolution Neural Network (DB-

CNN) and five Full Reference-IQA (FR-IQA) metrics known as MSSIM, SSIM, FSIM, 

IWSSIM and GMSD. Results shows that the GGW-IQA outperforms the MBW-IQA, 

BRISQUE, deepIQA, DB-CNN and all the FR-IQA metrics. Moreover, the GGW-IQA 
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metric is beneficial in wood industry as a distortion free reference image is not needed to 

evaluate the wood images. 

Keywords: Wood images, NR-IQA, MBW-IQA, GGW-IQA, BRISQUE, deepIQA, DB-

CNN, FR-IQA 
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PEMBANGUNAN KAEDAH PENILAIAN KUALITI BAGI IMEJ KAYU 

ABSTRAK 

Penilaian Kualiti Imej (IQA) adalah elemen penting dalam meningkatkan kecekapan 

sistem pengenalan automatik pelbagai spesies kayu. Terdapat keperluan untuk 

membangunkan Sistem Penilaian Kualiti Tanpa Rujukan (NR-IQA) sebagai imej kayu 

bebas yang kurang sempurna dan mungkin tidak dapat diperoleh dalam persekitaran yang 

berdebu dan gelap di kilang-kilang balak. Banyak kaedah IQA yang fokus kepada imej 

tertentu seperti image semulajadi telah dicadangkan. Akan tetapi, kaedah IQA bagi imej 

kayu belum dicadang setakat ini. Oleh itu, tesis ini mencadangkan dua NR-IQA, Modified 

BRISQUE Wood Image Quality Assessment (MBW-IQA) and GLCM and Gabor Wood 

Image Quality Assessment (GGW-IQA) untuk menilai kualiti imej kayu. Pertama, 

Regresi Mesin Sokongan Vektor (SVM) (SVR) telah dilatih menggunakan GGD dan 

AGGD yang dikira untuk imej kayu bersama dengan skor pendapat min (MOS) yang 

diperoleh daripada penilaian subjektif untuk membangunkan metric, MBW-IQA. Kedua, 

SVR dilatih menggunakan ciri GLCM dan Gabor yang dikira untuk imej kayu bersama 

dengan skor MOS untuk membangunkan metric, GGW-IQA. Metrik MBW-IQA dan 

GGW-IQA yang dicadangkan dibandingkan dengan Pengukur Kualiti Spatial Imej Blind 

/ Referenceless (BRISQUE), Deep Neural Network IQA (deepIQA), Deep Bilinear 

Convolution Neural Network (DB-CNN) dan lima metrik Rujukan IQA (FR-IQA) yang 

dikenali sebagai MSSIM, SSIM, FSIM, IWSSIM dan GMSD. Keputusan menunjukkan 

bahawa metrik GGW-IQA mengatasi MBW-IQA, BRISQUE, deepIQA, DB-CNN dan 

semua metrik FR-IQA. Selain itu, GGW-IQA yang dicadangkan bermanfaat dalam 

industri kayu sebagai imej rujukan bebas distorsi tidak diperlukan untuk menilai imej 

kayu. 
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Kata Kunci: Imej Kayu, NR-IQA, MBW-IQA, GGW-IQA, BRISQUE, deepIQA, DB-

CNN, FR-IQA 
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CHAPTER 1: INTRODUCTION 

Wood is a plant tissue with a characteristic porous and fibrous structure, which is 

widely used  for furniture, millwork, flooring, building construction, paper production, 

and as a source of energy  (Shivashankar, 2018).The demand for wood is increasing day 

by day where it is used for many purposes mainly for construction of building, paper, 

furniture, cooking utensils and sports equipment (Shivashankar, 2018).  In  the  South  

East  Asia  region,  Malaysia  is  one  of  the  timber-producing  countries  other  than 

Indonesia  and  Laos (Noor, Kadir, & Muhamad, 2020). According to the Minister of 

Plantations Industries and Commodities, YB Dato' Dr Mohd Khairuddin Bin Aman 

Razali, for decades, the timber industry has played an important role in the socioeconomic 

development in Malaysia. The timber industry has become the main contributor to the 

Malaysia’s export revenue. Malaysian wood and wood products especially furniture has 

been exported to over 160 countries around the world. The timber sector also provides 

employment to about 240,000 workers and as to date there are about 3,500 number of 

mills still in operation. For the year of 2019, the timber sector has contributed 1.6% to 

the gross domestic product (GDP) and 2.3% of the Malaysia’s total merchandise export 

with total exports of RM22.5 billion for timber and timber-related products. From January 

to November 2020, timber-based products have contributed 14.9% to the export of 

commodity products.  

Every wood species has their unique physical properties such as knot, colour, 

structure and density which determines its usage and price (Barmpoutis, Dimitropoulos, 

Barboutis, & Grammalidis, 2018; Funck, Zhong, Butler, Brunner, & Forrer, 2003; 

Longuetaud et al., 2012; Shivashankar, 2018; Zamri, Cordova, Khairuddin, Mokhtar, & 

Yusof, 2018). For example, mahogany is used mainly for fine furniture crafting as it is a 

medium-dense hardwood. It is also essential to choose the right wood for construction of 
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building to ensure the safety and durability of the building. The characteristic of the wood 

with specific applications has made the selection of wood became crucial in timber 

industry. 

Besides that, fraudulent labeling practiced by some timber exporters will reduce the 

country’s incomes generated by tax. This happened when lower tax is imposed on high 

quality wood that is mislabeled as low quality (R. Li, Buongiorno, Turner, Zhu, & 

Prestemon, 2008). In addition, illegal logging of high quality wood also takes place where 

the timber industries were given permit by the authority to cut down different wood but 

some of the timber industries tend to cut down higher quality wood in the forest.  A study 

by the American Forest & Paper Association has estimated that illegal logging depresses 

world timber prices by between 7% and 16%, depending on the product. This causes the 

world to loose of at least US$460 million each year (R. Li et al., 2008). In Malaysia, 

illegal logging accounted for 14–25% of the total timber production in the country (Noor 

et al., 2020). The illegal logging effects the economy through tax and premium evasion 

which causes loss of government income. It is estimated that the amount of government 

loss due to illegal logging stood at US$10 billion per annum  (Noor et al., 2020).  

To rectify these issues, timber industries and supervisory agencies have made efforts 

to appoint certified personnel to identify quality of wood via manual inspection to ensure 

that the timber industries are trading the correct timber species and correct timber is being 

used to manufacture the wood products. Furthermore, supervisory agencies have to verify 

that the timbers have not been cut down illegally from the forests (Gazo, Wells, Krs, & 

Benes, 2018; Yusof, Khalid, & Anis, 2013).  However, manual inspection takes longer 

time, hectic work and subjective (Gazo et al., 2018; Shivashankar, 2018). Hence, wood 

image processing such as wood slice recognition and wood texture analysis are performed 

to judge the physical properties and economic value of different wood species correctly 
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(Guang-sheng & Peng, 2012; Pan & Kudo, 2011). In addition, wood slice recognition and 

wood texture analysis could detect wood species accurately and this could decrease the 

economic losses due to mislabeling of a good quality wood with a lower quality.  

However, in order to perform these image processing and recognition tasks, good 

quality wood images are needed. A low-quality image may produce an inaccurate result 

from the wood slice recognition and texture analysis. However, it may not be possible to 

obtain a perfect image due to the dusty, high temperature and poor illumination 

environment in the timber factories (Ratnasinga, Ioras, Swan, Yoon, & Thanasegar, 

2011). Therefore, a feedback system prior to image processing and recognition tasks must 

be implemented to avoid wood species misclassification. If the initial image obtained is 

of low quality, the feedback system will automatically inform the operator either to 

acquire a new image after taking the corrective action such as cleaning the camera lens, 

station and wood surface.  

Prior studies on wood slice recognition based on image processing  can be found 

in work of  (Barmpoutis et al., 2018; Khalid, Lee, Yusof, & Nadaraj, 2008; 

Venkatachalapathy & Sudhakar, 2014; Zamri et al., 2018). In Khalid et al., 

Venkatachalapathy & Sudhakar and Zamri et al., the wood images were enhanced before 

performing the recognition tasks in order to obtain clearer texture properties from the 

images. However, the wood images quality was not assessed before the pre-processing 

and recognition tasks. This means that some of the images may be enhanced even though 

they were already of good quality. In this case, the enhancement is redundant and 

contributes to additional computational process. Furthermore, enhancement process 

ignores the dynamical information of image channels (Barmpoutis et al., 2018). If the 

images were assessed beforehand, images with low quality could be identified, and 

corrective actions could be taken to obtain higher quality images to be used for 
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recognition tasks. Hence, the recognition rate can be increased than the one obtained 

without quality assessment.  

There are two types of image quality assessment (IQA) which are objective and 

subjective evaluations. Subjective evaluation is the scores given by human subjects based 

on their judgment on the image quality while objective assessment is a method defined 

mathematically to assess images (L.S. Chow, Rajagopal, & Paramesran, 2016).  

Subjective evaluation is often assumed as the benchmark or gold standard in the image 

quality assessment.  However, subjective evaluation is not practical as it is time 

consuming.  Therefore, objective assessment is used as an alternative to the subjective 

evaluation. The aim of the objective assessment is to be consistent and in close agreement 

with subjective evaluation (H.R. Sheikh, Sabir, & Bovik, 2006). In this study, Full 

Reference Image Quality Analysis (FR-IQA) is chosen as an objective assessment to 

evaluate the wood images. FR-IQA evaluates an image by comparing the image with its 

reference image where the reference image has to be a distortion free image.  (Chandler, 

2013; Gulame, Joshi, & Kamthe, 2013).    

In this research, firstly the importance of IQA module to improve the rate of wood 

species recognition system was studied. The wood images were motion-blurred due to 

imperfections in the imaging and capturing process. Then, IQA module was used to 

monitor the quality of images before proceeding to the next stage which is the feature 

extraction process. The IQA module will determine whether the image has to undergo the 

image deblurring process based on the image quality value. If the image is of low quality 

based on the image quality value obtained, then the image will be deblurred before the 

feature extraction procedure. A reliable motion deblurring technique, which is based on 

Lucy–Richardson algorithm, was used to enhance the motion-blurred images before 

proceeding to the next stage, which is the feature extraction process. Then, a statistical 
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feature extraction technique was proposed to extract 24 features from each wood image. 

Finally, a Support Vector Machine (SVM) was used to classify the 20 tropical wood 

species. This study shows that the rate of wood species recognition or identification 

system can be improved with the IQA module.  

Next, thirty human subjects with normal vision acuity, eleven staff from Tapak 

Semaian Mantin, Jabatan Perhutanan Negeri Sembilan and nineteen students and staff 

from Department of Electrical and Electronic Engineering, Manipal International 

University (MIU), Nilai, Malaysia were selected to evaluate the wood images and the 

scores obtained from the subjective human evaluation are represented in Mean Opinion 

Score (MOS) form. The five objective FR-IQA metrics: Structural Similarity Index 

(SSIM) (Zhou Wang, Simoncelli, & Bovik, 2003), Multiscale SSIM (MS-SSIM) (Zhou 

Wang et al., 2003), Feature Similarity (FSIM) (L. Zhang, Zhang, & Mou, 2011), 

Information Weighted SSIM (IW-SSIM) (Zhou Wang & Li, 2011) and Gradient 

Magnitude Similarity Deviation (GMSD) (Xue, Zhang, Mou, & Bovik, 2014) are 

regarded as the benchmark and compared with the subjective MOS. The correlation 

between the MOS and the FR-IQA metrics will be computed using Pearson Linear 

Correlation Coefficient (PLCC) and Root Mean Squared Error (RMSE). The subjective 

MOS will be used to develop the NR-IQA metrics for wood images.  

The noisy and dusty environment in timber factories may not be able to produce 

a perfect reference image to assess the quality of an image. Therefore, the reference 

images used in the previous studies might be subjected to a small degree of distortions. 

In fact, the FR-IQA metrics can only provide a relative measure of the image quality for 

various distorted images compared to the so-called ‘reference image’. Apparently, FR-

IQA is not the best way to evaluate wood images. Hence, NR-IQA is a more suitable 

method to evaluate wood images as they do not require any reference image.  
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Two NR-IQAs were proposed. The first NR-IQA method is based on a 

modification of a widely-used NR-IQA, the Blind/Referenceless Image Spatial Quality 

Evaluator (BRISQUE) model is proposed. The first NR-IQA method is known as 

Modified BRISQUE Wood Image Quality Assessment, MBW-IQA. BRISQUE is an IQA 

model, which considers the luminance and image features of the natural images and it is 

not a distortion-specific model (Mittal, Moorthy, & Bovik, 2012). The BRISQUE model 

is trained with subjective scores to enable emulation of human judgement on the quality 

of the images. Modification of the BRISQUE model for wood analysis is required, as it 

was designed to evaluate natural images. The MBW-IQA is compared with BRISQUE, 

Deep Neural Network IQA (deepIQA), Deep Bilinear Convolution Neural Network (DB-

CNN) and five types of established FR-IQA metrics, i.e. Structural Similarity Index 

(SSIM) (Zhou Wang et al., 2003), Multiscale SSIM (MS-SSIM) (Zhou Wang et al., 

2003), Feature Similarity (FSIM) (L. Zhang et al., 2011), Information Weighted SSIM 

(IW-SSIM) (Zhou Wang & Li, 2011) and Gradient Magnitude Similarity Deviation 

(GMSD) (Xue et al., 2014). The relative performances in terms of efficiency of the 

MBW-IQA, BRISQUE, deepIQA, DB-CNN and FR-IQAs are determined based on the 

correlation between the expert mean opinion scores (MOS) and the metrics using Pearson 

Linear Correlation Coefficient (PLCC) and Root Mean Squared Error (RMSE) (L.S. 

Chow et al., 2016).   

Second NR-IQA is designed using widely used features for wood recognition, Gray 

Level Co-Occurrence Matrix (GLCM) and Gabor features to evaluate wood images. This 

NR-IQA metric is known as GLCM and Gabor Wood Image Quality Assessment, GGW-

IQA. SVR was trained using GLCM and Gabor features calculated for wood images and 

the mean opinion score (MOS) which was obtained from subjective evaluation. The 
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GGW-IQA is compared with the MBW-IQA, BRISQUE, deepIQA, DB-CNN and the 

same five FR-IQA metrics, SSIM, MS-SSIM, FSIM, IW-SSIM and GMSD. 

1.1 Objectives of Dissertation  

The objectives of this dissertation are outlined as follow: 

• To perform both subjective and objective assessment of Full Reference Image 

Quality Assessment (FR-IQA) for wood images. 

• To propose a No Reference Image Quality Assessment (NR-IQA) method for 

assessing the image quality of wood images by modifying well-established 

NR-IQA, BRISQUE. 

• To propose GLCM and Gabor features based No Reference Image Quality 

Assessment (NR-IQA) method to evaluate wood images. 

1.2 Scope of Research  

The scopes of the research in this dissertation are as follows. Firstly, the need of Image 

Quality Assessment (IQA) module to improve the accuracy of wood species recognition 

system were studied and proven. Then, subjective and objective assessment are 

performed on wood images to analyse the quality of wood images for wood species 

recognition purposes. Several distorted images are generated from the reference images 

by applying Gaussian White Noise and Motion Blur at various levels of distortions for 

comparison purposes.  Thirty subjects, eleven staff from Tapak Semaian Mantin, Jabatan 

Perhutanan Negeri Sembilan, nineteen students and staff from Department of Electrical 

and Electronic Engineering, Manipal International University (MIU), Nilai were selected 

to assess the distorted images for the subjective evaluation. The scores obtained from the 

subjects were transformed into Mean Opinion Score (MOS).  In the objective evaluation, 

five Full Reference-IQA (FR-IQA) metrics, namely MSSIM, SSIM, FSIM, IWSSIM and 
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GMSD were used to evaluate the distorted images. The objective FR-IQAs were used as 

the benchmark to validate the subjective MOS obtained for wood images. The 

relationship between the subjective MOS and objective FR-IQAs are examined using 

performance metrics namely PLCC and RMSE. 

Secondly, two NR-IQA metrics were proposed to assess wood images. 

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) is modified by training 

the Support Vector Machine (SVM) Regression (SVR) with the MOS and the locally 

normalized luminance coefficients of the wood images to develop the first NR-IQA 

metric, MBW-IQA. The second NR-IQA metric, GGW-IQA were designed using widely 

used features for wood species recognition, Gray Level Co-Occurrence Matrix (GLCM) 

and Gabor features to evaluate wood images. SVR was trained using GLCM and Gabor 

features calculated for wood images and the mean opinion score (MOS) which was 

obtained from subjective evaluation.  

Lastly, the proposed NR-IQA metrics, MBW-IQA and GGW-IQA are compared with 

one of the established NR-IQA metrics, namely, Blind/Referenceless Image Spatial 

Quality Evaluator (BRISQUE), Deep Neural Network IQA (deepIQA), Deep Bilinear 

Convolution Neural Network (DB-CNN) and five Full Reference-IQA (FR-IQA) metrics 

known as MSSIM, SSIM, FSIM, IWSSIM and GMSD. The efficiency of the proposed 

NR-IQA metrics, MBW-IQA and GGW-IQA are shown in the form of PLCC and RMSE 

values calculated between the metrics and MOS.  

1.3 Organization of Dissertation 

This dissertation is organized as follows. Chapter 1 explains the background of the 

study, problem statements, research objectives and scope of the research. Chapter 2 

reviews the related works on image quality assessment for images. The reviews are based 
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on FR-IQA and NR-IQA studies done for images. Chapter 3 discusses on the application 

of Image Quality Assessment (IQA) module to motion-blurred wood images for wood 

species identification system. In this chapter, the importance of IQA module in the wood 

species recognition system were explained and proven. Chapter 4 discusses on the 

correlation between subjective and objective assessment of wood images. A wood 

database which contains the reference images, distorted images and MOS is created. 

Chapter 5 and 6 discusses the two NR-IQA metrics designed to assess wood images. 

Chapter 5 explains the proposed first NR-IQA metric, MBW-IQA which is a modified 

method based on an existing state-of-the-art method, BRISQUE. Chapter 6 explains the 

proposed second NR-IQA method, GGW-IQA developed using GLCM and Gabor 

features. Finally, Chapter 7 presents the conclusion of the work in this dissertation and 

discusses the future works in image quality assessment of wood images. 
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CHAPTER 2: LITERATURE REVIEW 

The demand for wood is increasing day by day where it is used for many purposes 

mainly for construction of building, paper, furniture, cooking utensils and sports 

equipment (Shivashankar, 2018).  Every wood species has their unique physical 

properties such as knot, colour, structure and density which determines its usage and price 

(Barmpoutis et al., 2018; Funck et al., 2003; Longuetaud et al., 2012; Shivashankar, 2018; 

Zamri et al., 2016, Yusof et al., 2013b).  

The need for wood recognition system is becoming critical in areas of forest 

management. Effectiveness in forest management is important to the timber industries 

with the intention to sustain and improve productivity and quality of the timber products 

in furniture industries and housing industries (Ibrahim, Khairuddin, Abu Talip, Arof, & 

Yusof, 2017). The accurate classification of wood species is needed to ensure that the 

timber merchandise has the required properties which are the optimized features. As 

example, the precise wood species must be used for the safety in construction industries. 

Choosing and ensuring the correct wood to be used is very important to construct a 

dependable roof truss. Besides that, fraudulent labeling practiced by some timber 

exporters will reduce the country’s incomes generated by tax. This happened when lower 

tax is imposed on high quality wood that is mislabeled as low quality (R. Li et al., 2008). 

Therefore, in order to manage forest resources effectively, timber industries must certify 

that they are trading the correct timber species, and supervisory agencies have to verify 

that the timbers have not been cut down illegally from the forests. 

To rectify this issue, manufacturers have made efforts to appoint certified personnel 

to identify quality of wood via manual inspection (Gazo et al., 2018; Yusof et al., 2013a). 

However, manual inspection takes longer time, hectic work and subjective (Gazo et al., 
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2018; Shivashankar, 2018). Hence, wood image processing such as wood slice 

recognition and wood texture analysis are performed to judge the physical properties and 

economic value of different wood species correctly (Guang-sheng and Peng, 2012; Pan 

and Kudo, 2011). In addition, wood slice recognition and wood texture analysis could 

detect wood species accurately and this could decrease the economic losses due to 

mislabeling of a good quality wood with a lower quality.  

However, in order to perform these image processing and recognition tasks, good 

quality wood images are needed. A low-quality image may produce an inaccurate result 

from the wood slice recognition and texture analysis. However, it may not be possible to 

obtain a perfect image due to the dusty, high temperature and poor illumination 

environment in the timber factories (Ratnasinga et al., 2011). Therefore, a feedback 

system prior to image processing and recognition tasks must be implemented to avoid 

wood species misclassification. If the initial image obtained is of low quality, the 

feedback system will automatically inform the operator either to acquire a new image 

after taking the corrective action such as cleaning the camera lens, station and wood 

surface.  

Prior studies on wood slice recognition based on image processing  can be found in 

work of  (Barmpoutis et al., 2018; Khalid et al., 2008; Venkatachalapathy & Sudhakar, 

2014; Zamri et al., 2018). In Khalid et al., Venkatachalapathy & Sudhakar and Zamri et 

al., the wood images were enhanced before performing the recognition tasks in order to 

obtain clearer texture properties from the images. However, the wood images quality was 

not assessed before the pre-processing and recognition tasks. This means that some of the 

images may be enhanced even though they were already of good quality. In this case, the 

enhancement is redundant and contributes to additional computational process. 

Furthermore, enhancement process ignores the dynamical information of image channels 
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(Barmpoutis et al., 2018). If the images were assessed beforehand, images with low 

quality could be identified, and corrective actions could be taken to obtain higher quality 

images to be used for recognition tasks. Hence, the recognition rate can be increased than 

the one obtained without quality assessment.  

Image Quality Assessment (IQA) can be divided into two categories, namely 

subjective and objective evaluation. Subjective evaluation is where the images will be 

evaluated by the human subjects and scores will be given based on their perception on 

the quality of the images whereas objective evaluation uses mathematical algorithm to 

produce quality score of the images.  Although subjective evaluation is regarded as the 

gold standard in IQA, it is impractical as it is costly and time consuming. Therefore, 

objective evaluation is preferred compared to subjective evaluation. The ultimate goal of 

objective evaluation is to mimic the quality predictions of an average human observer 

(Z.; Wang, 2011).  

There are three types of objective evaluation namely Full-Reference-IQA (FR-

IQA), Reduced Reference-IQA (RR-IQA) and No-Reference/Blind IQA (NR-IQA) 

(Chandler, 2013; Gulame et al., 2013). Figure 2.1 illustrates the categories of Image 

Quality Assessment (IQA).  

FR-IQA evaluates an image by comparing the image with its reference image 

while NR-IQA evaluates an image without its reference image. On the other hand, RR-

IQA assesses an image using partial information from the reference images. NR-IQA is 

the most suitable metric to assess wood images as the noisy and dusty environment in 

timber factories may not be able to produce a perfect reference image to assess the quality 

of an image.   
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Figure 2.1: Categories of Image Quality Assessment (IQA) 

2.1 Full Reference Image Quality Assessment (FR-IQA) 

FR-IQA is an objective assessment which evaluates an image by comparing the 

image with its reference image. The reference images have to be perfect or distortion free 

image for an accurate image quality evaluation. There are several widely cited and 

established FR-IQA metrics, namely Structural Similarity Index (SSIM) (Zhou Wang et 

al., 2003), Multiscale SSIM (MS-SSIM) (Zhou Wang et al., 2003), Feature Similarity 

(FSIM) (L. Zhang et al., 2011), Visual Information Fidelity (VIF) (Hamid Rahim Sheikh 

& Bovik, 2006), Information Weighted SSIM (IW-SSIM) (Zhou Wang & Li, 2011) and 

Gradient Magnitude Similarity Deviation (GMSD) (Xue et al., 2014). Their formulas and 

brief description are given in Table 2.1. In Table 2.1, r(x,y) denotes the reference image 

and t(x,y) denotes the distorted image. nx and ny are the size of the image in pixels across 

x and y dimensions. Both r(x,y) and t(x,y) should have the same size. These FR-IQA 

metrics were tested on several natural images database, namely TID2008, CSIQ and 

LIVE and are suitable to evaluate images distorted with Gaussian White Noise and 

Motion Blur.  

The main goal of IQA is to model an objective assessment metric that is very close 

to the human subjective evaluation (H.R. Sheikh et al., 2006). To achieve this goal, 

several researchers have produced databases to carried out experiments using the 

subjective based FR-IQA on natural images. To the best of our knowledge, there are ten 
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publically available databases, namely Tampere Image Database (TID 2013) (Nikolay 

Ponomarenko et al., 2015), TID2008 (N Ponomarenko et al., 2008), LIVE, (H.R. Sheikh 

et al., 2006), CSIQ (Larson & Chandler, 2010), Image and Video Communication 

Database (IVC) (Patrick Le Callet, 2005), Media Information and Communication 

Technology Database (MICT) (“MICT Image Quality Evaluation Database,” n.d.), 

Wireless Imaging Quality Database (WIQ) (Engelke, U., Kusuma, M., Zepernick, H. J., 

& Caldera, 2009), Cornell-A57 Database (A57) (Chandler & Hemami, 2007), KonIQ-

10K (J. Wang & Wang, 2014) and LIVE In the Wild (Bovik, 2016).  

Few researchers have produced database on MR images and underwater images.   

A database on MR images which incorporates subjective based FR-IQA on Magnetic 

Resonance Image (MRI) images was generated (Li Sze Chow, Rajagopal, & Paramesran, 

2016). The MRI database consists of 25 original reference images and 750 distorted 

images. The reference images were distorted with two types of distortions: Gaussian 

White Noise, Gaussian Blur, DCT compression, JPEG compression and JPEG2000 

compression. Twenty-eight subjects were chosen to evaluate the images.  

Recently, a database on underwater images was generated . The database 

comprises of 30 ground-truth images and 900 synthetic underwater images of the same 

scene, called synthetic underwater image dataset (SUID). The reference images were 

distorted with different turbidity types and degradation levels by reconstructing four 

common underwater challenge scenes including greenish scene, bluish scene, low-light 

scene, hazy scene. The reference and distorted images were evaluated by fifty human 

subjects (Hou et al., 2020).  These databases are always used to measure the efficiency of 

newly designed quality metrics model by comparing it with the subjective scores.  

The details of these databases are as shown in Table 2.2. These databases are also 

used to model automated image quality assessment which is known as No-Reference 
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Image Quality Assessment (NR-IQA). NR-IQA will be explained further in the next 

section. 

To the best of our knowledge, subjective based FR-IQA on wood images has not 

been done. The noisy and dusty environment in timber industry may not be able to 

produce a distortion-free image. If there is no perfect reference image, it means that the 

FR-IQA metrics can only provide a relative measure of image quality in comparison to 

the so-called ‘reference image’. In other words, it is not an ideal IQA method for wood 

images. Therefore, NR-IQA is a more appropriate method to evaluate the quality of wood 

images. So far, NR-IQA on wood images has not been studied yet as there is no study on 

subjective based FR-IQA on wood images.
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Table 2.1: FR-IQA Algorithm 

No IQA Algorithm Year Description 

1 Structural Similarity Index Metrics (SSIM)(Zhou Wang, Bovik, 

Sheikh, & Simoncelli, 2004) 

 

2004 Captures the loss in the structure of the image. 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑟𝜇𝑡 + 𝐶1)(2𝜎𝑟𝑡 + 𝐶2)

(𝜇𝑟
2 + 𝜇𝑡

2 + 𝐶1)(𝜎𝑟
2 + 𝜎𝑡

2 + 𝐶2)
                                           (2.1) 

where 𝜇𝑟 and 𝜇𝑡 are the mean intensity for the reference and 

distorted images respectively; 𝜎𝑟 and 𝜎𝑡 are the standard 

deviation for the reference and distorted images respectively; 

𝜎𝑟𝑡 is estimated as: 

𝜎𝑟𝑡 =
1

𝑁−1
∑ (𝑟𝑖 − 𝜇𝑟)(𝑡𝑖 − 𝜇𝑡)
𝑁
𝑖=1                                           (2.2) 
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No IQA Algorithm Year Description 

where 𝐶1 = (𝐾1𝐿)2 and 𝐶2 = (𝐾2𝐿)
2 where L is the dynamic 

range of the pixels values (i.e. 255 for 8-bit grayscale images, 

as in our case), K1 = 0.01 and K2  = 0.03. 

2 Multiscale SSIM (MS-SSIM)(Zhou Wang et al., 2004) 2004 Mean of SSIM that evaluates overall image quality by using a 

single overall quality. 

𝑀𝑆𝑆𝐼𝑀 (𝑟, 𝑡) =  
1

𝑀
∑ 𝑆𝑆𝐼𝑀(𝑟𝑗
𝑀
𝑗=1 , 𝑡𝑗)                                  (2.3) 

3 Feature SIMilarity (FSIM)(L. Zhang et al., 2011) 2011 A low-level feature based image quality assessment which 

used two types of features: Phase Congruency (PC) and 

Gradient Magnitude (GM). Ω represents the whole image 

spatial domain. 

𝐹𝑆𝐼𝑀 (𝑟, 𝑡) =  
∑ 𝑆𝐿(𝑥).𝑃𝐶𝑚(𝑥)𝑥∈Ω

∑ 𝑃𝐶𝑚(𝑥)𝑥∈Ω
                                               (2.4) Univ
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No IQA Algorithm Year Description 

where  

𝑃𝐶𝑚(𝑥) = 𝑚𝑎𝑥(𝑃𝐶𝑟(𝑥). 𝑃𝐶𝑡(𝑥))                                         (2.5)                                                 

𝑆𝐿 = [𝑆𝑃𝐶(𝑥)]
𝛼[𝑆𝐺(𝑥)]

𝛽                                                             (2.6) 

where  

𝑆𝑃𝐶(𝑥) =
2𝑃𝐶𝑟(𝑥).𝑃𝐶𝑡(𝑥)+𝑇1

𝑃𝐶𝑟
2(𝑥)+𝑃𝐶𝑡

2(𝑥)+𝑇1
                                            (2.7)                     

𝑆𝐺(𝑥) =
2𝐺𝑟(𝑥).𝐺𝑡(𝑥)+𝑇2

𝐺𝑟
2(𝑥)+𝐺𝑡

2(𝑥)+𝑇2
                                                 (2.8)                        

4 Information Weighted SSIM (IW-SSIM)(Zhou Wang & Li, 

2011) 

2011 Obtained by combining content weighting with MS-SSIM.  

𝐼𝑊 − 𝑆𝑆𝐼𝑀 =
∑ 𝜔𝑗,𝑖 𝑐(𝑟𝑗,𝑖,𝑡𝑗,𝑖)𝑠(𝑟𝑗,𝑖,𝑡𝑗,𝑖)𝑖

∑ 𝜔𝑗,𝑖𝑖
                              (2.9)       Univ
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No IQA Algorithm Year Description 

where 

 𝑐(𝑟𝑗,𝑖, 𝑡𝑗,𝑖) =  
2𝜎𝑟𝜎𝑡+𝐶2

𝜎𝑟
2+𝜎𝑡

2+𝐶2
                                                (2.10)                  

and   

𝑠(𝑟𝑗,𝑖, 𝑡𝑗,𝑖) =
𝜎𝑟𝑡+𝐶3

𝜎𝑟𝜎𝑡+𝐶3
                                                    (2.11)                    

where 𝜎𝑟 and 𝜎𝑡 are the standard deviation for the reference 

and distorted images respectively; 𝜎𝑟𝑡 is estimated as: 

𝜎𝑟𝑡 =
1

𝑁−1
∑ (𝑟𝑖 − 𝜇𝑟)(𝑡𝑖 − 𝜇𝑡)
𝑁
𝑖=1                                  (2.12)             
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No IQA Algorithm Year Description 

where 𝐶1 = (𝐾1𝐿)2 , 𝐶3 = (𝐾2𝐿)
2/2 where L is the dynamic 

range of the pixels values (i.e. 255 for 8-bit grayscale images, 

as in our case), K1 = 0.01 and K2  = 0.03. 

5 Gradient Magnitude Similarity Deviation (GMSD) (Xue et al., 

2014) 

2014 Computes the pixel-wise similarity between the gradient 

magnitude maps of the reference and distorted images to 

create a Local Quality Map (LQM) of the distorted image. 

𝐺𝑀𝑆𝐷 =  √
1

𝑁
∑ (𝐺𝑀𝑆(𝑖) − 𝐺𝑀𝑆𝑀)2𝑁
𝑖=1                       (2.13)       

where 𝑁 represents the total number of pixels in the image and  

𝐺𝑀𝑆 (𝑖) =
2𝑚𝑟(𝑖)𝑚𝑡(𝑖)+𝑐

𝑚𝑟
2(𝑖)+𝑚𝑡

2(𝑖)+𝑐
                                            (2.14)                  
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No IQA Algorithm Year Description 

where 𝑚𝑟(𝑖) and 𝑚𝑡(𝑖) denotes the gradient magnitude of the 

reference and distorted images. 

And 

𝐺𝑀𝑆𝑀 = 
1

𝑁
∑ 𝐺𝑀𝑆(𝑖)𝑁
𝑖=1                                           (2.15)                  
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Table 2.2: Image Databases 

Database Year Website Link No. of 

Reference 

Images 

No. of 

Distorted 

Images 

No. of 

Distortion 

Types 

Type of 

Image 

No. of 

Subjects 

TID2013 2013 http://www.ponomarenko.info/tid2013.htm 25 3000 24 Colour 971 

TID2008 2008 http://www.ponomarenko.info/tid2008.htm 25 1700 17 Colour 838 

CSIQ 2010 https://computervisiononline.com/dataset/1105138666 30 866 6 Colour 35 

LIVE 2006 http://live.ece.utexas.edu/research/quality/subjective.htm 29 779 5 Colour 161 

IVC 2005 http://ivc.univ-nantes.fr/en/databases/IRCCyN_IVC_Toyama_LCD/ 10 185 4 Colour 15 

MICT 2008 http://mict.eng.u-toyama.ac.jp/mictdb.html 14 168 2 Colour 16 

WIQ 2009 https://computervisiononline.com/dataset/1105138665 7 80 5 Gray 60 

A57 2007 http://vision.eng.shizuoka.ac.jp/A57/a57_db.zip 3 54 6 Gray 7 

LIVE In 

the Wild 

2016 http://live.ece.utexas.edu/research/ChallengeDB/index.html 1169 1169 - Colour 175 Univ
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Database Year Website Link No. of 

Reference 

Images 

No. of 

Distorted 

Images 

No. of 

Distortion 

Types 

Type of 

Image 

No. of 

Subjects 

 

KonIQ-

10K 

2014 http://database.mmsp-kn.de/koniq-10k-database.html 

 

10073 10073 - Colour 120 

MRI 2016 https://www.sciencedirect.com/science/article/abs/pii/S0730725X1600028X 25 750 6 MRI 28 

SUID 

 

2020 https://ieee-dataport.org/open-access/suid-synthetic-underwater-image-

dataset#files 

 

30 900 4 Underwater 50 
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2.2 No Reference Image Quality Assessment (NR-IQA) 

NR-IQA is an objective assessment which automatically predicts the subjective 

quality of distorted images with respect to human perception without the information 

about the reference images. NR-IQA is the most suitable IQA metric in practical 

applications where the reference image is difficult to obtain or unavailable. Several NR-

IQA algorithms have been developed by training Support Vector Machine (SVM) with 

natural images from LIVE database (H.R. Sheikh et al., 2006), namely   

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) (Mittal et al., 2012), 

Blind Image Integrity Notator using DCT-Statistics (BLIINDS) (Saad, Bovik, & 

Charrier, 2012), Distortion Identification-based Image Verity and Integrity Evaluation 

(DIIVINE) (Moorthy & Bovik, 2011), Complex Extension of DIIVINE (C-DIIVINE) (Y. 

Zhang, Moorthy, Chandler, & Bovik, 2014), DIIVINE- Generalized Gaussian scale 

mixtures (GGSM) (Gupta, Moorthy, Soundararajan, & Bovik, 2018), Hierarchical 

Feature Degradation- Blind Image Quality Assessment (HFD-BIQA) (Wu, Zeng, Dong, 

Shi, & Lin, 2019) and ContourletQA (C. Li et al., 2021).  

The DIIVINE metric is generated by modelling a set of neighbouring wavelet 

coefficients using the Gaussian scale mixture (GSM) model. The GSM model has been 

used to model the marginal and joint statistics of the wavelet coefficients of natural 

images. Next, statistical features were extracted from the distorted image using the 

steerable pyramid decomposition. The steerable pyramid decomposition was computed 

in two scales and six orientations and these forms 12 sub-bands. Eighty-eight (88) 

features were extracted from the natural images and the details of the features are shown 

in Table 2.2. Then, the extracted features and subjective scores of natural images in LIVE 

database were used to train SVM. The SVM model then predicts the quality score and the 

predicted score is the DIIVINE score (Moorthy & Bovik, 2011).  
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Table 2.3: Details of Features Extracted to Model DIIVINE Metric  

Features Description of the features Computations 

f1-f12 Variance of sub-band 

coefficients 

Fitting a generalized 

Gaussian to sub-band 

coefficients 

f13-f24 Shape parameter of sub-

band coefficients 

Fitting a generalized 

Gaussian to sub-band 

coefficients 

f25-f31 Shape parameter across 

sub-band coefficients 

Fitting a generalized 

Gaussian to orientation 

sub-band coefficients 

f32-f43 Correlations across scales Computing windowed 

structural correlation 

between filter response 

f44-f73 Spatial correlation across 

sub-bands 

Fitting a polynomial to the 

correlation function 

f74-f88 Across orientation 

statistics 

Computing windowed 

structural correlation 

between adjacent 

orientations at same scale 

 

The BLIINDS metric is a fast single-stage framework that relies on a statistical 

model of local discrete cosine transform (DCT) coefficients. Firstly, 2-D DCT coefficient 

is computed from an image. This is performed by partitioning the image into equally sized 

n x n blocks, which is referred to as local image patches, then computing a local 2-D DCT 
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on each of the blocks. Then, feature extraction is performed in the local frequency (DCT) 

domain from the 2D DCT coefficients computed previously. Twenty-four features were 

extracted over three scales. Then, the extracted features and subjective scores of natural 

images in LIVE database were used to train SVM. The SVM model then predicts the 

quality score and the predicted score is the BLIINDS score (Saad et al., 2012). BLIINDS 

metric is better than DIIVINE metric as DIIVINE uses a dense complex representation 

of images in the wavelet domain and extracts a large number of features to train the 

algorithm compared to BLIINDS (Saad et al., 2012). However, it requires nonlinear 

sorting of block based NSS features, which slows it considerably. Moreover, the image 

has to be transformed to DCT domain as well. Therefore, BRISQUE metric has been 

introduced.  

The BRISQUE model used a spatial approach. First, a locally normalized 

luminance, also known as Mean Subtracted Contrast Normalized (MSCN) is computed. 

The MSCN coefficients were then fitted to Generalized Gaussian Distribution (GGD) and 

Asymmetric Generalized Gaussian Distribution (AGGD). There are two parameters 

computed for the GGD where 𝛼 represents the shape of the distribution and 𝜎2 represents 

the variance. While, four parameters were computed for AGGD, namely  which 

represents the shape of the distribution, l
2 and r

2 which represent the left- and right-

scale parameters, respectively, and 𝜂. The four parameters of AGGD: 𝜂, 𝑣, 𝜎𝑙2, 𝜎𝑟2 are 

calculated along four orientations of the neighbourhood pixels of LIVE images. In total, 

18 parameters of GGD and AGGD where 2 parameters of GGD and 16 parameters of 

AGGD were computed for LIVE images. The 18 features are explained in Table 2.4. The 

18 parameters were then computed at two scales and this forms 36 parameters which 

represents the features of LIVE images.   These 36 features and subjective scores of LIVE 
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images are used to train the SVR. The SVM model then predicts the quality score and the 

predicted score is the BRISQUE score (Mittal et al., 2012). 

Table 2.4: Explanation of 18 parameters 

Features Description Computation Procedures 

𝑓1 − 𝑓2 𝛼 and 𝜎2 Fit GGD to MSCN 

coefficients 

𝑓3 − 𝑓6 , 𝜂, l
2 and r

2 Fit AGGD to horizontal (H) 

pairwise products 

𝑓7 − 𝑓10 , 𝜂, l
2 and r

2 Fit AGGD to vertical (V) 

pairwise products 

𝑓11 − 𝑓14 , 𝜂, l
2 and r

2 Fit AGGD to diagonal (𝐷1) 

pairwise products 

𝑓15 − 𝑓18 , 𝜂, l
2 and r

2 Fit AGGD to diagonal (𝐷2 

pairwise products 

 

The C-DIIVINE is the extension of DIIVINE metric which blindly assesses image 

quality based on the complex Gaussian scale mixture model corresponding to the 

complex version of the steerable pyramid wavelet transform. Three distribution models 

were used to fit the statistics of the wavelet coefficients: (1) the complex Generalized 

Gaussian distribution is used to model the wavelet coefficient magnitudes, (2) the 

Generalized Gaussian distribution is used to model the coefficients' relative magnitudes, 

and (3) the wrapped Cauchy distribution is used to model the coefficients' relative phases. 

All these distributions have characteristic shapes that are consistent across different 

natural images but change significantly in the presence of distortions. Complex wavelet 
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structural similarity index was used to measure degradation of the correlations across 

image scales, which serves as an important indicator of the sub-bands' energy distribution 

and the loss of alignment of local spectral components contributing to image structure. 

The complex steerable pyramid decomposition was computed in six orientations over 3 

scales and this forms 18 sub-bands in total. Three types of features, namely magnitude 

based features, phase based features and across-scale correlation features were extracted 

from LIVE images. These features and subjective scores of LIVE images are used to train 

the SVR. The SVM model then predicts the quality score and the predicted score is the 

C-DIIVINE score (Y. Zhang et al., 2014). Although, the performance of C-DIIVINE is 

slightly better than BRISQUE, C-DIIVINE runs slower than BRISQUE. This is mainly 

because of the divisive normalization, a relatively time- consuming process required for 

computing the magnitude-based features (Y. Zhang et al., 2014). 

The GGSM-DIIVINE is a statistical model proposed for the image wavelet 

coefficients by generalizing the Gaussian Scale Mixtures (GSM) model for natural 

images. The GGSM model is suitable for the wavelet coefficients of both natural and 

distorted images.  The Kotz-type distribution, a multivariate elliptical distribution, where 

zero mean zero-mean Multivariate Generalized Gaussian (MVGG) were incorporated 

into the GGSM model.  Both the GSM and the GGSM represent infinite (scale) mixtures 

of Multivariate Gaussian and MVGG vectors, respectively. An iterative approach to 

estimate the normalizer were used, while matching the statistics of the normalized 

coefficients to that of the underlying MVGG distribution. Next, the  88 statistical features 

of DIIVINE were extracted in the wavelet domain after divisive normalization under the 

GGSM model (Gupta et al., 2018). The performance of the GGSM-DIIVINE were 

compared with BRISQUE using LIVE database and the result shows that BRISQUE 

outperforms the GGSM-DIIVINE metric.  
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The CounterletQA is a new NR-IQA model that operates on natural scene statistics 

in the contourlet domain. Before applying the contourlet transform, two preprocessing 

steps are performed to create more information-dense, low-entropy representations. 

Firstly, the image is converted into the CIELAB color space and gradient magnitude map. 

Then, 80 ‘quality-aware’ features were computed in the contourlet transform domain: the 

energy of the sub-band coefficients within scales, and the energy differences between 

scales, as well as measurements of the statistical relationships of pixels across scales. The 

80 features are described in Table 2.5. These features were then fed to SVR model which 

learns to predict image quality (C. Li et al., 2021).  The performance of the CounterletQA 

were compared with GGSM-DIIVINE and BRISQUE using LIVE database and the result 

shows that CounterletQA outperforms the GGSM-DIIVINE metric. However, the 

features extraction computation for CounterletQA takes more time compared to 

BRISQUE as only 36 features are extracted from the image for BRISQUE while 80 

features are extracted for CounterletQA.  

Table 2.5: Explanation of 80 ‘quality aware’ features (C. Li et al., 2021)  

Features Description Computation Procedures 

𝑓1 − 𝑓24 Energy within scales Sub-band image 

coefficients by contourlet 

transform 

𝑓25 − 𝑓48 Energy differences across scales Compute the energy 

differences across scales along 

8 orientations 

𝑓49 − 𝑓80 Neighboring Energy Statistics across 

scales 

Fit GGD to neighboring 

pairs, R1 and R5 after 
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Features Description Computation Procedures 

merging all orientations at the 

second and 

third scales 

 

On the other hand, there several researchers have proposed Convolution Neural 

Network (CNN) based NR-IQA metric such as Deep Neural Network IQA (deepIQA) 

and Deep Bilinear Convolution Neural Network (DB-CNN). deepIQA is trained end to-

end and involves 10 convolutional layers, 5 pooling layers for feature extraction and 2 

fully connected layers for regression (Bosse, Maniry, Müller, Wiegand, & Samek, 2018)  

while DB-CNN is trained by two sets of features namely, CNN for synthetic distortions 

(S-CNN) and VGG-16, that are bi-linearly pooled to predict the quality of the image (W. 

Zhang, Ma, Yan, Deng, & Wang, 2018). However, CNN based NR-IQA model requires 

a very large training database as limited number of labelled training data often leads to 

overfitting problem in CNN (W. Zhang et al., 2018). 
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CHAPTER 3: APPLICATION OF IMAGE QUALITY ASSESSMENT 

MODULE TO MOTION‑BLURRED WOOD IMAGES FOR WOOD 

SPECIES IDENTIFICATION SYSTEM 

3.1 Introduction 

The objective of this chapter is to classify tropical wood species based on motion-

blurred wood texture images. Despite tighter conservation regulations, demand for timber 

products has continued to increase due to growing population. Normally, experts identify 

the wood species based on the pattern of the wood surface texture. However, manual 

inspection on wood texture is tedious, time-consuming, impractical and cost-ineffective 

for a human to analyze a large number of timber species. Therefore, a reliable automatic 

wood recognition system is needed in order to classify the wood species efficiently. The 

proposed system includes image acquisition, image quality assessment module (IQA), 

image deblurring, feature extraction and classification. In this research, the wood images 

are motion-blurred due to imperfections in the imaging and capturing process. Hence, an 

IQA module is proposed to monitor the quality of images before proceeding to the next 

stage which is the feature extraction process. The IQA module will determine whether 

the image has to undergo the image deblurring process based on the image quality value. 

If the image is of low quality based on the image quality value obtained, then the image 

will be deblurred before the feature extraction procedure. A reliable motion deblurring 

technique, which is based on Lucy–Richardson algorithm, is employed to enhance the 

motion-blurred images before proceeding to the next stage, which is the feature extraction 

process. Then, a statistical feature extraction technique is proposed to extract 24 features 

from each wood image. Finally, a support vector machine is used to classify the 20 

tropical wood species. This chapter also proves the important of IQA module to increase 

the rate of  wood species recognition or identification system.  
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3.2 Background of the Study 

Increasing forestry to supply more timber is a long-term commitment and as such 

must be well planned and the forests well managed in order to maximize their broad and 

far-reaching benefits. Nowadays, the machine vision and image processing industries are 

vast, ever-expanding and on the cutting edge of technology. Researches on wood based 

on image analysis have been implemented in various applications, such as wood species 

classification systems (Bremananth R. ; Nithya B. ; Saipriya R., 2009; Esteban et al., 

2017; Ibrahim et al., 2017; Yusof et al., 2013; Zamri et al., 2018), wood defect 

classification (Gu, Andersson, & Vicen, 2010), health assessment of tree trunk (Qin et 

al., 2018), determining the influence of bark on the mapping of mechanical strain  (Dahle 

2017), hyperspectral mapping of wood to determine fit-for-purpose usage (Defoirdt et al., 

2017), strain measurement on a tree subjected to mechanical load (Sebera et al. 2014), 

wood fingerprint recognition (Pahlberg et al. 2015) and automatic bark detection (Denzler 

et al. 2013). 

The features and characteristics of timbers vary widely, which makes classifying 

wood species an important practical problem in timber industry. In order to manage 

timber resources efficiently, the supervisory agencies have to verify the correct timber 

species traded by the timber industry. The inspection of wood species is vital for timber-

exporting countries to curb fraudulent labeling of timber species at custom checkpoints. 

Hence, a reliable wood species recognition system based on image analysis is crucial in 

order to perform wood inspection process at custom checkpoints to ease the timber 

trading verification process. In order to perform the image recognition tasks, good quality 

of wood images is important. A low-quality image may cause misclassification of wood 

species. In previous works (Bremananth R. ; Nithya B. ; Saipriya R., 2009; Esteban et al., 
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2017; Ibrahim et al., 2017; Yusof et al., 2013; Zamri et al., 2018), the quality of wood 

images was not assessed before the preprocessing and recognition stage. This means that 

some of the images may be enhanced even though they were already of good quality. In 

this case, the enhancement or deblurring is redundant and contributes to additional 

computational process. If the images were assessed beforehand, images with low quality 

could be identified, and corrective actions could be taken to obtain higher-quality images 

to be used for recognition tasks. Therefore, an image quality assessment (IQA) module is 

proposed in this research to assess the quality of wood images captured in order to aid the 

classification process. If the initial image obtained is of low quality, the IQA module will 

direct the image to undergo the image deblurring process before proceeding to the feature 

extraction stage. 

When an image is captured in low-light conditions or of a fast moving object, 

motion blur can cause significant degradation of the image. This is caused by the 

movement of the object relative to the sensor in the camera during the time the shutter is 

open. Both the object moving and camera shake contribute to this blurring. There are 

several techniques that can be used to remove motion blur that can be split roughly into 

the following categories: (1) hardware in the optical system of the camera to stabilize the 

image, (2) preprocessing of the image to remove motion blur by estimating the camera’s 

motion and (3) a hybrid approach that measures the camera’s motion during image 

capture. Motion-blurred wood images may cause the wood features to be degraded. Image 

of wood samples must be at acceptable quality before recognition can be done, to avoid 

misclassifications. Thus, the image is evaluated using IQA module first, and if the quality 

score generated from the IQA module shows the image is of low quality, then the image 

will be deblurred. Hence, this study proposed the implementation of motion deblurring 
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technique on wood images to enhance the feature representation of the wood texture 

images to aid the classification process effectively. 

In previous works, the wood images are preprocessed using homomorphic filters 

(Bremananth R. ; Nithya B. ; Saipriya R., 2009; Esteban et al., 2017; Ibrahim et al., 2017; 

Yusof et al., 2013; Zamri et al., 2018). Homomorphic filtering utilizes a linear filter to do 

a nonlinear mapping to a different domain. The algorithm of homomorphic filtering is 

explained in more detail in Woods and Gonzalez (2008). However, homomorphic 

filtering technique does not work well on motion-blurred images. Unlike previous works 

by (Bremananth R. ; Nithya B. ; Saipriya R., 2009; Esteban et al., 2017; Ibrahim et al., 

2017; Yusof et al., 2013; Zamri et al., 2018), this research focuses on classifying tropical 

wood species based on motion-blurred wood texture images. Therefore, a more reliable 

denoising technique which is based on Lucy–Richardson (LR) algorithm is proposed to 

overcome the limitation of previous works and improve the image representation of the 

wood texture. Lucy–Richardson algorithm has been shown to be effective in enhancing 

motion-blurred images in various applications such as in satellite image restoration 

(Aouinti, Nasri, Moussaoui, & Bouali, 2018), animal PET imaging (Angelis, Gillam, 

Kyme, Fulton, & Meikle, 2018), thyroid cancer treatment (Barrack, Scuffham, & 

McQuaid, 2018) and inversion of light scattering data (Buccini, Donatelli, & Ferri, 2018). 

Generally, an automated wood species recognition system is comprised of four basic 

modules which are image acquisition, image preprocessing, feature extraction and 

classification. To the best of the authors’ knowledge, previous works on automated wood 

species recognition system only focused on classifying wood species based on non-

motion-blurred images and do not employ any IQA module to access the quality of the 

input wood images. Hence, this research focuses on applying IQA module to access the 
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quality of input images before feature extraction and analyzing wood texture images for 

classification of tropical wood species. 

3.3 Methodology 

This section explains the image acquisition of the wood surface texture. This section 

also describes the image quality assessment (IQA) module which is proposed in this 

research to evaluate the quality of wood images before transferring the image to the next 

process, which is the feature extraction process. Image deblurring using the Lucy–

Richardson technique will be also explained in this section.  

3.3.1 Image Acquisition 

The first step in the proposed wood species recognition system is the image 

acquisition of the wood surface texture. One of the characteristics that remains unique to 

each wood species even after undergoing the chemical procedures is the surface texture. 

The wood samples were in cubic form (approximately 25.4 mm by 25.4 mm in size). The 

treatment of the wood samples was done by sanding the wood surfaces. This research was 

performed on 20 tropical wood species. A specially designed portable camera was used 

to capture wood surface images at 10X magnification. The portable camera is suitable for 

on-field testing thanks to its portability and embedded white LED lights to ensure 

controlled environment. The camera is equipped with a systematic focusing function, 

whereby the distance between the camera and the wood sample is fixed to 10 cm. The 

housing of the camera is made of a tube based on theoretical optimal object distance, and 

hence, the object is just required to be laid against the camera housing. The “tube 

function” is made in opaque material in order to cut all ambient light and its fluctuations. 

The size of each image is 768 × 576 pixels. The wood images were obtained from Forest 
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Research Institute Malaysia (FRIM). Figure 3.1 shows the sample of 10 tropical wood 

species used in this study. 

 

Figure 3.1: Ten Reference Wood Images: a) Balau, b) Bintangor, c) Bitis, d) 

Chengal, e) Durian, f) Gerutu, g) Giam, h) Jelutong, i) Kapur, j) Kekatong 
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3.3.2 The proposed image quality assessment (IQA) module 

An image quality assessment (IQA) module is proposed in this research to 

evaluate the quality of wood images before transferring the image to the next process, 

which is the feature extraction process. There are five full reference image quality 

analysis (FR-IQA) metrics employed as the IQA module in this research, which are 

Structural Similarity Index (SSIM) (Zhou Wang et al., 2003), Multiscale SSIM (MS-

SSIM) (Zhou Wang et al., 2003), Feature SIMilarity (FSIM) (L. Zhang et al., 2011), 

Information Weighted SSIM (IW-SSIM) (Zhou Wang & Li, 2011) and Gradient 

Magnitude Similarity Deviation (GMSD) (Xue et al., 2014).  These FR-IQA metrics were 

explained in Section 2.1. 

The threshold for the IQA module is 0.9 for MSSIM, SSIM, FSIM and IWSSIM, 

while threshold is 0.1 for GMSD. If the initial image obtained is of low quality (below 

0.9 for MSSIM, SSIM, FSIM and IWSSIM and above 0.1 for GMSD), the IQA module 

will direct the image to undergo the image deblurring process before proceeding to the 

feature extraction stage. If the initial image is of good quality (above 0.9 for MSSIM, 

SSIM, FSIM and IWSSIM and below 0.1 for GMSD), then the image will directly 

proceed to the feature extraction process. The flowchart of the proposed IQA module is 

presented in Figure 3.2. 

 

Figure 3.2: Flowchart of the proposed IQA module in wood species recognition 

system 
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3.3.3 Image Deblurring  

Due to imperfections in the imaging and capturing process, the recorded image 

invariably represents a degraded version of the original scene. These images obtained 

lower MSSIM, SSIM, FSIM and IWSSIM and higher GMSD scores due to the low 

quality of the image. The degradation results in image blur, affecting identification and 

extraction of the useful information in the images. It can be caused by relative motion 

between the camera and the original scene or by optical aberration. Lucy–Richardson 

(LR) algorithm is an iterative image restoration technique. LR algorithm is developed 

based on Bayesian framework by maximizing the likelihood probability function 

iteratively as follows (Abang, Ramli, & Halim, 2018) 

𝑝(𝐹|𝐺) = 𝑝(𝐺|𝐹)
𝑝(𝐹)

𝑝(𝐺)
           (3.1) 

where 𝑝(𝐺|𝐹) is the likelihood probability, 𝑝(𝐹|𝐺) is the posterior probability, 

𝑝(𝐹)is a model of the original image, and 𝑝(𝐺) is a model of the degraded image. The 

example of motion-blurred image and deblurred image using Lucy Richardson technique 

is shown in Figure 3.3. 

  

(a) (b) 

Figure 3.3: Wood sample of species Shorea laevis (a) motion-blurred image, (b) 

de-blurred image using LR technique 
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3.3.4 Feature Extraction 

The most important step in texture classification is the feature extraction stage where 

the challenge is to represent textures mathematically and accurately. The most significant 

features used by experts to identify the wood species are the pore appearances. This is 

because pores are exclusive for every species. Therefore, this research will focus on size 

of pores, quantity of pores, types of pores and arrangement of pores on the wood texture. 

Basically, the statistical feature extraction process consists of two steps, namely pore 

extraction and fuzzy pore management as shown in Figure 3.4. The statistical features 

will only allow distinct pores to be acknowledged as characteristics of a wood species. 

Then, a support vector machine (SVM) classifier is used to classify the wood species 

based on the statistical wood features. 

 

Figure 3.4: The flowchart of the statistical feature extraction process (Zamri et 

al., 2018) 

In the statistical feature extraction process, the area of a region is detected and measured 

by pixels, which means the number of pixels inside a region was used to represent the 

area of region. The components in an image are classified to convert a binary image into 

a label matrix to compute region descriptors. The binary images are created by using the 

default binarization based on Otsu’s method for optimal threshold selection. A threshold 
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filter displays each pixel of an image in only one of the two states, black or white. That 

state is set according to a particular threshold value. If the pixel’s brightness is greater 

than the threshold, the pixel is colored white, if less, then black. This thresholding 

technique stores the intensities of the pixels in an array. The threshold is calculated by 

using total mean and variance. Based on this threshold value, each pixel is set to either 0 

or 1. The pore extraction process extracted the statistical properties of pores from both 

binary images for each wood image. The second step in the proposed statistical feature 

extraction is the fuzzy management process. Fuzzy if-else rules are employed to 

categorize the pores from both binary images into several features such as sizes of pores, 

types of pores and pore arrangements. The total number of statistical features extracted 

from each wood image is 24 features. The extracted features are 12 features from black 

pore image and 12 features from white pore image. The 12 features extracted from each 

binary image are quantity of small vessels, medium vessels, large vessels, solitary vessels, 

pair vessels and multiple vessels, and vessel arrangements between small vessel with 

small vessel, medium vessel with medium vessel, large vessel with large vessel, small 

vessel with medium vessel, small vessel with large vessel and medium vessel with large 

vessel. The detail algorithm on the proposed statistical feature extraction technique is 

explained in (Zamri et al., 2018). The next step after feature extraction is the classification 

process, where the wood species are classified into its own species based on the statistical 

features. 

3.3.5 Classification 

 Classifying data is the key to determine the features or characteristics of its 

desired group. This is performed by training a classifier model that works by analyzing 

features and assigning each sample to a certain class (Iglesias, Anjos, Martínez, Pereira, 

& Taboada, 2015) . Support vector machine (SVM) is a useful tool as a learning algorithm 
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in analyzing and recognizing data. In SVM, the input training data are mapped into a high 

dimensional space using radial basis function kernel (RBF), where the optimal 

hyperplane is determined (Chang, Chih-Chung and Lin, 2011). SVM classifier has been 

widely used in solving various problems, such as solid waste level classification (Aziz et 

al., 2018), moisture content recognition for wood chips (Daassi-Gnaba et al., 2018), wood 

defect classification (Gu et al., 2010) and image analyses on beef tenderness forecasting 

(Konda Naganathan et al., 2016). The classification process was performed by using 

LIBSVM toolbox implemented in MATLAB. The optimum value of penalty parameter 

of the error term, C and kernel parameter, gamma (𝛾), was obtained by using grid search 

method using the training data. The algorithm of LIBSVM is explained in more detail in 

(Chih-Wei Hsu, Chih-Chung Chang, 2016). Cross-validation and grid search were 

applied to find the satisfactory parameters for RBF kernel. 

3.4 Results and Discussions 

There are a total of 1400 wood images used in this research, which were obtained 

from 20 tropical wood species. The experiments were done in two phases: training phase 

and testing phase. For each wood species, 70 images were captured, where 40 images 

were used as training database, while 30 images were used as testing images to evaluate 

the performance of the proposed system. Several experiments were performed to evaluate 

the performance of the proposed system: (1) image quality assessment for motion-blurred 

images, (2) image quality assessment for deblurred images and (3) classification of wood 

species.  

3.4.1 Image quality assessment for motion‑blurred images 

Figure 3.5 shows the average of image quality values for 20 wood species based 

on motion-blurred images. There are five different IQA techniques employed in this 
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research to evaluate the quality of wood images such as MSSIM, SSIM, FSIM, IWSSIM 

and GMSD for comparison purposes. 

 

Figure 3.5: The average of image quality values for motion-blurred images from 

20 wood species by using five different IQA techniques. 

 

Based on the results obtained, it can be seen that the value of image quality for blurred 

images is below 0.8 for all four IQA techniques (MSSIM, SSIM, FSIM, IWSSIM) and 

above 0.1 for GMSD. A good quality image will have IQA value nearing to 1.0 for 

MSSIM, SSIM, FSIM, IWSSIM while value nearing to 0 for GMSD. This means that the 

blurred image has low image quality. Hence, these low quality images will have to 

undergo the LR deblur process as presented in Figure 3.2 to improve the image quality 

before proceeding to the feature extraction process. Figure 3.6 shows the example of 

motion-blurred wood images used in this work and quality scores obtained from the IQA 

modules.  
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(a) 
MSSIM: 0.626 
SSIM: 0.497 
FSIM: 0.764 

IWSSIM: 0.540 
GMSD: 0.179 

 

(b) 
MSSIM: 0.707 
SSIM: 0.574 
FSIM: 0.760 

IWSSIM: 0.622 
GMSD: 0.160 

(c) 
MSSIM: 0.567 
SSIM: 0.385 
FSIM: 0.713 

IWSSIM: 0.516 
GMSD: 0.211 

   

(d) 
MSSIM: 0.687 
SSIM: 0.509 
FSIM: 0.792 

IWSSIM: 0.634 
GMSD: 0.160 

(e) 
MSSIM: 0.693 
SSIM: 0.475 
FSIM: 0.769 

IWSSIM: 0.649 
GMSD: 0.173 

(f) 
MSSIM: 0.733 
SSIM: 0.529 
FSIM: 0.772 

IWSSIM: 0.703 
GMSD: 0.181 

 

   

(g) 
MSSIM: 0.603 
SSIM: 0.458 
FSIM: 0.745 

IWSSIM: 0.511 
GMSD: 0.178 

(h) 
MSSIM: 0.476 
SSIM: 0.410 
FSIM: 0.687 

IWSSIM: 0.353 
GMSD: 0.223 

(i) 
MSSIM: 0.602 
SSIM: 0.466 
FSIM: 0.723 

IWSSIM: 0.486 
GMSD: 0.194 

 
Figure 3.6: Samples of motion-blurred wood  images from wood species (a) 

Shorea  laevis, (b) Calophyllum kunstleri, (c) Palaquium stellatum, (d) 

Neobalanocarpas heimii, (e) Durio spp, (f) Parashorea globose, (g) Hopea spp,            

(h) Dyera costulata, (i) Drybala 
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From Figure 3.6, it is found that all the blurred images have lower MSSIM, SSIM, 

FSIM, IWSSIM scores (lower than 0.8) and GMSD scores greater than 0.1. This also 

shows that the images are of lower quality. In addition, the features of the pores on the 

wood texture could not be distinctively differentiate, as a result of low value of image 

quality as tabulated in Figure 3.5. This will further contribute to the misclassification of 

the wood species since the feature extractor will not be able to extract distinctive features 

from the wood texture images effectively. Therefore, IQA module is useful in order to 

assess the quality of the images before the feature extraction process.  

3.4.2 Image quality assessment for deblurred images 

It is an important task to faithfully evaluate the perceptual quality of input images 

in many applications, such as image restoration. A good image quality assessment (IQA) 

model should deliver high quality prediction accuracy to aid the classification process. 

Figure 3.7 tabulates the average of image quality values for 20 wood species based on 

motion-deblurred images. Based on the results obtained, it can be seen that the value of 

image quality for deblurred images is above 0.9 for MSSIM, SSIM, FSIM, IWSSIM IQA 

techniques and below 0.1 for GMSD technique. This proves that the deblurrred images 

are of good quality since the IQA value nearing to 1.0 for MSSIM, SSIM, FSIM, IWSSIM 

while IQA value nearing to 0 for GMSD. Figure 3.8 shows the example of motion-

deblurred wood images used in this work. The features of the pores on the wood texture 

could now be differentiate distinctively. This will further contribute to higher 

classification rate of the wood species since the feature extractor will be able to extract 

distinctive features from the wood texture images effectively.
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Figure 3.7: The average of image quality values for deblurred images from 20 wood species by using five different IQA techniques 
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Figure 3.8: Samples of de-blurred wood images from wood species (a) Shorea 

laevis, (b) Calophyllum kunstleri, (c) Palaquium stellatum, (d) Neobalanocarpas 

heimii, (e) Durio spp, (f) Parashorea globose, (g) Hopea spp, (h) Dyera costulata, (i) 

Drybalanops aromatic. 
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3.4.3 Classification of wood species 

This experiment was done to evaluate the capability of the proposed system to 

classify the test samples accurately based on the trained wood database. In order to 

examine the classification performance for each wood species, a confusion matrix is 

tabulated as shown in Table 3.1. The confusion matrix shows how the predictions are 

made by the proposed wood species recognition system. There were 30 test samples used 

for each wood species. As shown in Table 3.1, this study focused on classifying motion-

blurred images by employing Lucy–Richardson algorithm to enhance the images and IQA 

module to assess the quality of images, which results in 89.3% classification accuracy for 

20 wood species.  

The proposed system is benchmarked with previous works as shown in Table 3.2. 

The previous works focused on enhancing the images by using homomorphic filtering 

technique, and none of the previous works implemented the IQA module in their system. 

Homomorphic filtering technique is one of the important ways used for digital images, 

especially when the input image suffers from poor illumination conditions. Albeit the 

accuracy of the system proposed by previous works was more than 90%, the accuracy 

dropped to 50% when the homomorphic filtering technique was employed on the current 

motion blurred wood database. Hence, the employment of a homomorphic filtering 

technique is inadequate when dealing with motion-blurred images since this technique 

only works well for enhancing details in blurry images and is sensitive to noise. This is 

because the homomorphic filtering method boosts high-frequency data of the images, and 

the noise which is part of that data will be increased as well (Woods and Gonzalez 2008). 

This shows that the employment of IQA module and Lucy–Richardson algorithm 

in classifying motion-blurred wood images based on statistical features is more reliable 
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compared to previous works. Finally, the proposed system is also tested on 30 test 

samples for each species using non motion-blurred images. Based on the results, it can 

be seen that the classification accuracy for non-motion-blurred images is higher by 

approximately 6% compared to classifying the motion-blurred images. For future works, 

a more efficient feature extraction approach and classification technique can be proposed 

to improve the performance of the proposed system. 

Table 3.1: Confusion matrix of 30 wood species for 30 test samples for each 

species 

Wood species 
Correctly 

classified 
Misclassifie

d 
Shorea  laevis 26 4 
Calophyllum 

kunstleri  27 
3 

Palaquium stellatum 28 2 
Neobalanocarpas 

heimii 27 
3 

Durio spp 27 3 
Parashorea globosa 26 4 
Hopea spp 27 3 
Dyera costulata 28 2 
Drybalanops 

aromatic 26 
4 

Cynometra 
malaccensis 27 

3 

Madhuca utilis 26 4 
Hevea brasiliensis 28 2 
Pometia ridleyi 27 3 
Artocarpus dadah 26 4 
Dialum kingie 26 4 
M. quadrifida 27 3 
Kokoona sessilis 27 3 
Dehaasia curtisii 28 2 
Sp of lauraceacae 26 4 
Pentace curtisii 26 4 
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Table 3.2: The comparison of classification accuracy and test samples used for 

testing between the proposed system and previous works 

 

3.5 Chapter Conclusion 

In conclusion, the image quality assessment (IQA) module has been adopted to 

measure the quality of the motion-blurred wood images before proceeding to the feature 

extraction process. If the wood image is of poor quality, the image will be enhanced by 

using Lucy–Richardson (LR) deblurring technique. The deblurred image will then be 

passed to the feature extraction stage and finally to the classification stage. The mean of 

IQA values for each wood species has been computed by using five different IQA 

approaches for comparison purposes. Then, the classification accuracy of the proposed 

system is computed based on the deblurred images. The results are also compared with 

previous works, which implemented homomorphic filtering. Based on the results 

obtained, the proposed IQA module and LR deblurring technique gives better 

performance in denoising the motion-blurred wood texture images.

Previous works 
Test samples 
are motion 
blurred ? 

Image pre-
processing 
technique 

Classification 
accuracy (%) 

GLCM feature extraction 
by Khalid et al. (2008) 

No Homomorphic 
filter 

95.0 % 

BGLAM  feature 
extraction by Zamri et al. 

(2016) 

No Homomorphic 
filter 

98.0% 

BGLAM and statistical 
features by Yusof et al. 

2013b 

No Homomorphic 
filter 

93.0% 

Statistical feature 
extraction by Ibrahim et al. 

(2018) 

No Homomorphic 
filter 

89.3 % 

The proposed system with 
IQA module 

No Lucy 
Richardson 
algorithm 

95.0% 
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CHAPTER 4: SUBJECTIVE AND OBJECTIVE ASSESSMENT ON WOOD 

IMAGES 

4.1 Introduction 

The objective of this chapter is to perform both subjective and objective 

assessment of Full Reference Image Quality Assessment (FR-IQA) for wood images. The 

wood images are distorted with two distortion types that may occur during image 

acquisition process. There is a total of 190 wood images which consists of 180 distorted 

images. The distorted images are derived from ten reference images by using two types 

of distortion which are Gaussian White Noise and Motion Blur. The wood images are 

evaluated by thirty human subjects, eleven staff from Tapak Semaian Mantin, Jabatan 

Perhutanan Negeri Sembilan, nineteen students and staff from Department of Electrical 

and Electronic Engineering, Manipal International University (MIU), Nilai. The subject 

ratings are converted to Mean Opinion Score (MOS).  

This study also produces a set of MOS data related to these distorted wood images. 

The MOS values are compared with five FR-IQA metrics: Structural Similarity Index 

(SSIM) (Zhou Wang et al., 2003), Multiscale SSIM (MS-SSIM) (Zhou Wang et al., 

2003), Feature SIMilarity (FSIM) (L. Zhang et al., 2011), Information Weighted SSIM 

(IW-SSIM) (Zhou Wang & Li, 2011) and Gradient Magnitude Similarity Deviation 

(GMSD) (Xue et al., 2014). These FR-IQAs were tested on several natural images 

database such as TID2008, CSIQ and LIVE and are suitable to evaluate images distorted 

with Gaussian White Noise and Motion Blur. We use Pearson Linear Correlation 

Coefficient (PLCC) and Root Mean Square Error (RMSE) to validate the correlation 

between MOS and all the five FR-IQA. High correlation is found between MOS and all 

the five FR-IQAs for all the two types of distortions.  
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4.2 Background of the Study 

The demand for wood is increasing day by day where it is used for many purposes 

mainly for construction of building, paper, furniture, cooking utensils and sports 

equipment (Shivashankar, 2018).  Every wood species has their unique physical 

properties such as knot, colour, structure and density which determines its usage and price 

(Barmpoutis et al., 2018; Funck et al., 2003; Longuetaud et al., 2012; Shivashankar, 2018; 

Zamri et al., 2018). For example, mahogany is used mainly for fine furniture crafting as 

it is a medium-dense hardwood. It is essential to choose the right wood for construction 

of building to ensure the safety and durability of the building. Therefore, selection of 

wood should be made carefully.  

To rectify this issue, manufacturers have made efforts to appoint certified 

personnel to identify quality of wood via manual inspection (Gazo et al., 2018; Yusof et 

al., 2013). However, manual inspection takes longer time, hectic work and subjective 

(Gazo et al., 2018; Shivashankar, 2018). Hence, wood image processing such as wood 

slice recognition and wood texture analysis are performed to judge the physical properties 

and economic value of different wood species correctly (Guang-sheng & Peng, 2012; Pan 

& Kudo, 2011). In addition, wood slice recognition and wood texture analysis could 

detect wood species accurately and this could decrease the economic losses due to 

mislabeling of a good quality wood with a lower quality.  

However, in order to perform these image processing and recognition tasks, good 

quality wood images are needed. A low-quality image may produce an inaccurate result 

from the wood slice recognition and texture analysis. However, it may not be possible to 

obtain a perfect image due to the dusty, high temperature and poor illumination 

environment in the timber factories (Ratnasinga et al., 2011). Therefore, a feedback 
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system prior to image processing and recognition tasks must be implemented to avoid 

wood species misclassification. If the initial image obtained is of low quality, the 

feedback system will automatically inform the operator either to acquire a new image 

after taking the corrective action such as cleaning the camera lens, station and wood 

surface.  

Prior studies on wood slice recognition based on image processing  can be found 

in work of  (Barmpoutis et al., 2018; Khalid et al., 2008; Venkatachalapathy & Sudhakar, 

2014; Zamri et al., 2018). In Khalid et al., Venkatachalapathy & Sudhakar and Zamri et 

al., the wood images were enhanced before performing the recognition tasks in order to 

obtain clearer texture properties from the images. However, the wood images quality was 

not assessed before the pre-processing and recognition tasks. This means that some of the 

images may be enhanced even though they were already of good quality. In this case, the 

enhancement is redundant and contributes to additional computational process. 

Furthermore, enhancement process ignores the dynamical information of image channels 

(Barmpoutis et al., 2018). If the images were assessed beforehand, images with low 

quality could be identified, and corrective actions could be taken to obtain higher quality 

images to be used for recognition tasks. Hence, the recognition rate can be increased than 

the one obtained without quality assessment.  

There are two types of image quality assessment (IQA) which are objective and 

subjective evaluations. Subjective evaluation is the scores given by human subjects based 

on their judgment on the image quality while objective assessment is a method defined 

mathematically to assess images (L.S. Chow et al., 2016).  Subjective evaluation is often 

assumed as the benchmark or gold standard in the image quality assessment.  However, 

subjective evaluation is not practical as it is time consuming.  Therefore, objective 
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assessment is used as an alternative to the subjective evaluation. The aim of the objective 

assessment is to be consistent and in close agreement with subjective evaluation (H.R. 

Sheikh et al., 2006). In this study, Full Reference Image Quality Analysis (FR-IQA) is 

chosen as an objective assessment to evaluate the wood images. FR-IQA evaluates an 

image by comparing the image with its reference image where the reference image has to 

be a distortion free image (Chandler, 2013; Gulame et al., 2013).    

4.3 Methodology 

This section explains the reference wood images chosen and the two types of image 

distortions applied to the reference wood images. The procedures involved in subjective 

evaluation and the processing of the subjective scores are explained in this section. This 

section also describes performance metrics used to evaluate the correlation between MOS 

values and all the five FR-IQA metrics for different types of distortions. 

4.3.1 Reference Images 

 Ten wood images from ten wood species encountered in the lumber industry 

which are economically important, namely Turraeanthus africanus (Avodire), Ochroma 

pyramidale (Balsa), Cordia spp. (Bocote), Juglans cinerea (Butternut), Tilia Americana 

(Basswood), Vouacapoua americana (Brownheart), Cornus florida (Dogwood), Cordia 

spp. (Laurel Blanco), Swartzia Cubensis (Katalox), and Dipterocarpus spp (Keruing). 

The images were obtained from a public wood database: https://www.wood-

database.com/ (Meier, 2007). The ten wood images are shown in Figure 4.1. The images 

were converted to grayscale and the pixel values were normalized to the range 0 - 255 for 

ease of applying the same levels of distortion across all the reference images. The images 

consisted of a matrix of 600 x 600 pixels, corresponding to resolution of 360000 and an 

image area of 9525 cm2. The ten reference images are from ten different wood species 
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and have varying grain and texture pattern and characteristics. The details of the reference 

images are shown in Table 4.1. These ten reference wood images were the distorted by 

Gaussian white noise and motion blur, which represent image distortions typically 

encountered in the industrial setting. Gaussian white noise often arises in during 

acquisition of wood images due to sensor noise (Rahman, Haque, Rozario, & Uddin, 

2014) caused by poor illumination and high ambient temperature in the lumber mill 

(Ratnasinga et al., 2011). On the other hand, wood images are subjected to motion blur 

when there is a relative motion between the camera and the wood slice (Guang-sheng & 

Peng, 2012). The Gaussian white noise with standard deviation, 𝜎𝐺𝑁 and motion blur with 

standard deviation, 𝜎𝑀𝐵 were applied to the reference images at nine levels of distortion 

of the reference images, i.e.: 𝜎𝐺𝑁 = 10, 20, 30, 40, 50, 60, 70, 80 and 90 for Gaussian 

white noise and 𝜎𝑀𝐵 = 2, 4, 6, 8, 10, 12, 14, 16 and 18 for motion blur. 
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Figure 4.1: Ten reference wood images (a) Turraeanthus africanus, (b) Ochroma pyramidale, (c) Tilia americana, (d) Cordia spp., 

(e) Juglans cinerea, (f) Vouacapoua americana, (g) Dipterocarpus spp., (h) Swartzia Cubensis, (i) Cordia spp., (j) Cornus florida 
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Table 4.1: Details of Reference Images 

No Image Wood Name Colour Intensity Grain and 
Texture Usage 

1 

 

Turraeanthus 
africanus 

Pale yellow or 
cream. 32-255 

Grain can be 
straight, wavy, or 

irregular and 
interlocked. 

Texture is fine, 
with a high 

natural luster. 

Veneer, cabinetry, 
furniture, 

millwork, and 
plywood. 

2 

 

Ochroma 
pyramidale 

White to off-
white or tan color 50-255 

Balsa has a 
straight grain 

with a medium to 
coarse texture 

and low natural 
luster. 

Buoys, rafts, 
surfboards, model 
airplanes, musical 

instruments, 
packing/transport 

cases, core stock in 
sandwich 

laminations, and 
fishing lures. Univ
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No Image Wood Name Colour Intensity Grain and 
Texture Usage 

3 

 

Tilia americana Pale white to 
light brown color 126-255 

Grain is straight, 
with a fine, even 

texture and 
moderate natural 

luster. 

Carvings, lumber, 
musical 

instruments 
(electric guitar 
bodies), veneer, 
plywood, and 
wood pulp and 
fiber products 

4 

 

Cordia spp. 

Yellowish brown 
body with 

dramatic dark 
brown to almost 

black stripes. 

0-255 

Grain is 
interlocked. 

Medium uniform 
texture. Good 
natural luster. 

Fine furniture, 
cabinetry, flooring, 

veneer, 
boatbuilding, 

musical 
instruments, 

gunstocks, turned 
objects, and other 

small specialty 
wood items 
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No Image Wood Name Colour Intensity Grain and 
Texture Usage 

5 

 

Juglans cinerea 
Light to medium 
tan with a reddish 

tint. 
8-255 

Grain is typically 
straight, with a 

medium to coarse 
texture. Silky 
natural luster. 

Veneer, carving, 
furniture, interior 
trim, boxes, and 

crates 

6 

 

Vouacapoua 
americana 

Medium to dark 
brown with a 
reddish hue. 

8-255 

Grain is straight 
to slightly 

irregular, with a 
uniform medium 

texture and 
moderate natural 

luster 

Flooring, heavy 
construction, 

turned objects, 
furniture, and 

cabinetry 
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No Image Wood Name Colour Intensity Grain and 
Texture Usage 

7 

 

Dipterocarpus 
spp. 

Light to medium 
yellowish brown 

to a darker 
reddish brown. 

0-255 

Grain is 
generally straight 

to slightly 
interlocked. 
Medium to 

coarse texture 
and moderate 
natural luster 

Furniture, flooring, 
trailer decks, and 

utility lumber 

8 

 

Swartzia 
Cubensis 

Medium reddish 
brown to purplish 

black, with 
darker 

contrasting 
stripes. 

0-255 

The grain is 
usually straight, 
but can also be 

irregular or 
interlocked. With 

a fine even 
texture and good 

natural luster 

Inlays, fine 
furniture and 

cabinetry, parquet 
flooring, turnings, 

and other small 
specialty items 
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No Image Wood Name Colour Intensity Grain and 
Texture Usage 

9 

 

Cordia spp. 

Light yellowish 
to medium 

brown, with 
darker streaks. 

54-255 

Grain is straight 
to shallowly 
interlocked. 

Texture can vary 
from fine to 
coarse. Good 
natural luster 

Veneer, furniture, 
turned objects, 

cabinetry, 
boatbuilding, and 

millwork 

10 

 

Cornus florida Reddish brown. 70-255 

Grain is 
interlocked, with 
a fine, uniform 

texture. Moderate 
natural luster. 

Golf club heads, 
textile shuttles, 
bows (archery), 
mallets, pulleys, 

and turned objects 
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4.3.2 Types of Image Distortion 

The ten reference images were distorted using two types of distortions each at 

nice different levels as summarized in Table 4.2. The Gaussian white noise with standard 

deviation, 𝜎𝐺𝑁 and motion blur with standard deviation, 𝜎𝑀𝐵 were applied to the reference 

images. The distortion level is determined by the standard deviation where higher 

standard deviation produces higher distortion. 

 

Table 4.2: Summary of all types of distortions applied to the reference wood 

images. 

Distortion type Description Distortion levels 

Gaussian White 

Noise 

Gaussian White Noise distribution with standard 

deviation, σGN. 

σGN: 10, 20, 30, 40, 

50, 60, 70, 80 and 90 

Motion Blur 
Applies linear motion of a camera with the 

length of the motion, σMB. 

𝜎𝑀𝐵 = 2, 4, 6, 8, 10, 

12, 14, 16 and 18 

 

Gaussian white noise and motion blur were selected as these artifacts often occur 

in wood images. Gaussian noise often occurs during image acquisition which arises in 

images due to sensor noise (Rahman et al., 2014) caused by poor illumination and high 

temperature in the timber factory (Ratnasinga et al., 2011). On the other hand, wood 

images are subjected to motion blur when there is a relative motion between the camera 

and the wood slice (Guang-sheng & Peng, 2012). Figure 4.2 show one reference images 

with two types of distorted images with nine levels of distortions each. 
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Reference Image: Ochroma 

pyramidale 

     
σGN: 10 σGN: 20 σGN: 30 σGN: 40 σGN: 50 

    

 

σGN: 60 σGN: 70 σGN: 80 σGN: 90  

     
σMB: 2 σMB: 4 σMB: 6 σMB: 8 σMB: 10 

    

 

σMB: 12 σMB: 14 σMB: 16 σMB: 18  

Figure 4.2: Reference image with two types of distorted images with nine levels of distortions each 
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4.3.3 Subjective Evaluation  

Thirty subjects, eleven staff from Tapak Semaian Mantin, Jabatan Perhutanan 

Negeri Sembilan, nineteen students and staff from Department of Electrical and 

Electronic Engineering, Manipal International University (MIU), Nilai, Malaysia were 

chosen to evaluate the wood images. The age of the subjects is between 20 to 50 years 

old. The evaluation was performed based on the procedures suggested in Rec. ITU-R 

BT.500-11 and Chow et al. (L.S. Chow et al., 2016; Recommendation, 2000).  The 

evaluation was performed in an office environment using a 21 inch LED monitor with a 

resolution of 1920 x 1080 pixels.  The subjects’ near vision acuity was checked using 

Snellen Chart before the subjective evaluation to ensure that the subject is fit to perform 

the evaluation task. The Snellen Chart is shown in Appendix A.  

Simultaneous Double Stimulus for Continuous Evaluation (SDSCE) 

methodology was implemented for the subjective evaluation (L.S. Chow et al., 2016; 

Recommendation, 2000). The reference and distorted images are displayed on the 

monitor screen side by side where the reference image is displayed on the left, and the 

distorted image is displayed on the right. Each subject evaluates the distorted image by 

comparing the quality of the images (right side) with its reference image (left side). Figure 

4.3 shows an example of the monitor display during the evaluation session. 
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Reference Image: Ochroma pyramidale Image Distorted by Gaussian White 

Noise, σGN: 50 

Figure 4.3: Monitor display during the evaluation session. Left is the Reference 
Image and right is the Distorted Image. 

The subject rates either 5 (Excellent), 4 (Good), 3 (Fair), 2(Poor) or 1(Bad) for 

each image displayed. These numerical scores were not revealed to the subjects as it could 

cause biasness by the subjects (Bindu, Ganpati, & Sharma, 2012).  

Firstly, written instructions on the evaluation procedures were given to each 

subject prior to evaluation of the wood images. The written instructions are printed in 

Appendix B. Then, a demonstration session was conducted with a few examples of 

distorted images corresponding to a recommended quality rating. A mock test was also 

performed where the subjects evaluated two sets of wood images (two reference images 

with thirty-six test images). In the case where two similar reference images were shown 

on the screen, if the subject did not rate it as ‘Excellent’ quality, this subject would not 

do the rest of the image evaluation. The subjective evaluation period should take less than 

30 minutes for each subject to avoid fatigue. There was no time constraint for the 

subjective assessment. The subjects took an average of 45 minutes for each session. 
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The subjective evaluation was conducted virtually using Google Form for staff 

from Tapak Semaian Mantin, Jabatan Perhutanan Negeri Sembilan to facilitate smooth 

evaluation without interrupting their daily work. The sample of google form is attached 

in Appendix C. Figure 4.4 shows the picture taken during evaluation by four of the staff 

from Tapak Semaian Mantin, Jabatan Perhutanan Negeri Sembilan. 

  

  

Figure 4.4: Four of the subjects (staff from Tapak Semaian Mantin, Jabatan 

Perhutanan Negeri Sembilan) performing subjective evaluation 

4.3.4 Processing of Subjective Scores 

The ratings obtained from the subjects were used to calculate MOS using Eq. (4.1) 

where the average of the scores obtained from all the thirty human subjects were 

calculated: 

MOS (k) = 1
𝑁
∑ 𝑆𝑖𝑘
𝑁
𝑖=1          (4.1) 
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where 𝑆𝑖𝑘 is the score given by 𝑖𝑡ℎ subject for 𝑘𝑡ℎ  image and N is the number of human 

subject. In this study, N = 30 as we have thirty human subjects. 

Next, five FR-IQA metrics were calculated using the original reference image and 

each distorted images. The chosen FR-IQA metrics are Structural Similarity Index 

(SSIM) (Zhou Wang et al., 2003), Multiscale SSIM (MS-SSIM) (Zhou Wang et al., 

2003), Feature SIMilarity (FSIM) (L. Zhang et al., 2011), Information Weighted SSIM 

(IW-SSIM) (Zhou Wang & Li, 2011) and Gradient Magnitude Similarity Deviation 

(GMSD) (Xue et al., 2014).  These FR-IQA metrics were explained in Section 2.1. 

4.3.5 Performance Metrics 

We use two types of performance metrics to validate the MOS values in this study: 

Root Mean Square Error (RMSE) (Chai & Draxler, 2014) , logistic regression (H.R. 

Sheikh et al., 2006; Xue et al., 2014; L. Zhang et al., 2011) and correlation coefficient, 

Pearson Linear Correlation Coefficient (PLCC). The formulas for these performance 

metrics are listed in Table 4.3. In Table 4.3, M denotes the MOS values, Q denotes the 

original objective scores calculated from the FR-IQA metrics, and Qr denotes the 

objective scores after regression.  

RMSE is a standard statistical metric used to evaluate the performance of a model 

and the consistency of the prediction. A nonlinear regression for the objective scores is 

constructed using a logistic regression function. It provides nonlinear mapping between 

the objective and subjective scores (Rohaly, A. M., Corriveau, P. J., Libert, J. M., 

Webster, A. A., Baroncini, V., Beerends, J., ... & Winkler, 2000). The nonlinear mapping 

is plotted on a graph for visual inspection and comparison between the subjective data 

points and computed objective values.   
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Table 4.3: Performance Metrics 

No IQA 

Algorithm 

Description 

1 
Logistic 

Regression 

𝑄𝑟 = 𝛽1 (
1

2
− 

1

1+exp (𝛽2(𝑄−𝛽3)) 
) + 𝛽4𝑄 + 𝛽5          (4.2) 

where 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5 are the regression model 

parameters. Optimal parameters, 𝛽 are obtained using 

nonlinear least squares. 

2 PLCC 

𝑃𝐿𝐶𝐶(𝑄𝑟 ,𝑀) =  
∑ (𝑄𝑟𝑖−𝑄𝑟

̅̅̅̅ ) ∑ (𝐷𝑖−�̅�)
𝑛
𝑖

𝑛
𝑖

√∑ (𝑄𝑟𝑖−𝑄𝑟
̅̅̅̅ )𝑛

𝑖
2
√∑ (𝐷𝑖−�̅�)

𝑛
𝑖

2
               (4.3) 

where 𝑄𝑟̅̅ ̅ and �̅� are the means for dataset Qr and M 

respectively. 

5 RMSE 
𝑅𝑀𝑆𝐸(𝑄𝑟 ,𝑀) = √

∑ (𝑄𝑟𝑖−𝐷𝑖)
2𝑛

𝑖

𝑛
                             (4.4) 

i. where n is the total number of data pairs. 

 

Relationship between two datasets can be measured statistically using correlation 

coefficient. According to Taylor R. (Taylor, 1990), two datasets are said to have high 

correlation if the correlation coefficient values are between 0.68 to 1.0. The correlation 

coefficients, PLCC was used in this study to measure the relationship between the 

subjective score (MOS) and objective (FR-IQA) scores. PLCC, also known as Pearson 

product-moment correlation coefficient, is used to evaluate the accuracy of the prediction.  
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4.4 Results and Discussions 

In order to evaluate the performance of the proposed system, a 190 wood images 

which consists of 10 reference images from 10 wood species and 180 distorted images 

are produced by applying distortions to the 10 reference images.  

4.4.1 Relationship Between MOS and Different Distortion Levels 

The variation on the subjective evaluation with the increasing distortion level for 

Gaussian White Noise and Motion Blur is shown in Figure 4.4 (a) and (b), respectively. 

Higher standard deviation in Gaussian White Noise and Motion Blur, 𝜎𝐺𝑁 and 𝜎𝑀𝐵 

produces poorer quality of distorted images, where the MOS values are lower. Based on 

scatter plot in Figure 4.4 (a) and (b), the MOS value decreases as the distortion level 

increases. This means that human subjects could differentiate images distorted with 

different levels of Gaussian white noise and motion blur.  This is due to less perceptibility 

of the low contrast entity after the image is subjected to Gaussian White Noise. Hence, 

the visual quality of the wood images will be affected (L.S. Chow et al., 2016).  On the 

other hand, Motion Blur could cause the camera movement to be visible resulting the 

image quality to be affected (Kurimo et al., 2009).  
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(a) 

 

(b) 

Figure 4.5: Scatter Plot of MOS versus distortion levels of (a) Gaussian White 
Noise and (b) Motion Blur 

 

4.4.2 Relationship Between MOS and FR-IQAs 

The MOS values obtained from the subjective evaluation were compared with 

five FR-IQAs: Structural Similarity Index (SSIM) (Zhou Wang et al., 2003), Multiscale 

SSIM (MS-SSIM) (Zhou Wang et al., 2003), Feature SIMilarity (FSIM) (L. Zhang et al., 
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2011), Information Weighted SSIM (IW-SSIM) (Zhou Wang & Li, 2011) and Gradient 

Magnitude Similarity Deviation (GMSD) (Xue et al., 2014). PLCC and RMSE were 

calculated between MOS and the five FR-IQA metrics. The nearer the PLCC values to 1, 

the closer the relationship between MOS and the FR-IQA metric, which means that the 

FR-IQA agrees with the MOS values. Table 4.4 shows the PLCC and RMSE values 

between MOS and five FR-IQAs. The PLCC values for Gaussian White Noise, Motion 

Blur and overall images are close to 1. This means that the correlation between MOS and 

all the five FR-IQAs is high for Gaussian White Noise (Taylor, 1990).  In addition, the 

PLCC values between MOS and FSIM for Gaussian White Noise, Motion Blur and 

overall images are the highest compared to the other four FR-IQA metrics.  

Lower RMSE values signify closer relationship between MOS and the FR-IQA 

metric. Both PLCC and RMSE values in Table 4.4 gives similar findings where MOS is 

close to all the five FR-IQAs. The PLCC and RMSE values in Table 4.3 also show that 

FSIM is the closest FR-IQA metric to MOS for the overall images. 

 

Table 4.4: PLCC and RMSE values between MOS and five FR-IQAs 

  MSSIM SSIM FSIM IWSSIM GMSD 

PLCC GWN 0.823 0.908 0.955 0.923 0.919 

MB 0.908 0.873 0.951 0.913 0.924 

All 0.855 0.824 0.953 0.913 0.913 

RMSE GWN 0.723 0.643 0.423 0.667 0.512 

MB 0.637 0.734 0.408 0.567 0.615 

All 0.672 0.702 0.414 0.626 0.554 
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The MOS values versus the FR-IQAs: MSSIM, SSIM, FSIM, IWSSIM and GMSD 

were plotted for Gaussian White Noise, Motion Blur and overall images in Figures 4.5 – 

4.9 (a) – (c), respectively. The fitted curves using non-linear regression were overlaid 

with the data points on the same graphs. The trend of Figures 4.5 -  4.8 are as expected, 

where a better image quality is represented by a larger MOS score corresponding to all 

the FR-IQA values closer to 1. In contrast, the trend of Figure 4.9 is a better image as 

represented by a larger MOS score corresponding to GMSD values closer to 0.   The 

characteristics of the curve fitting in Figures 4.5 – 4.9 (a) – (c)   differs for every FR-IQA 

metric due to different data distribution and inconsistent relationship between the FR-

IQAs and MOS to evaluate the wood images for lower Gaussian Noise and Motion Blur. 

Based on the results as tabulated in Table 4.4, we found that MOS close to the FR-IQAs 

for wood images distorted with Gaussian White Noise and Motion Blur. Therefore, MOS 

is valid and the MOS values calculated in our study are applicable to model a new NR-

IQA method. 
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Figure 4.6: MOS versus MSSIM for a) Gaussian White Noise, b) Motion Blur, c) Overall Images Univ
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Figure 4.7: MOS versus SSIM for a) Gaussian White Noise, b) Motion Blur, c) Overall Images 
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Figure 4.8: MOS versus FSIM for a) Gaussian White Noise, b) Motion Blur, c) Overall Images 
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Figure 4.9: MOS versus IWSSIM for a) Gaussian White Noise, b) Motion Blur, c) Overall Images 
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Figure 4.10: MOS versus GMSD for a) Gaussian White Noise, b) Motion Blur, c) Overall Images 
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4.5 Chapter Conclusion 

190 wood images (10 reference and 180 distorted images) was generated in this study. 

The reference images were distorted with Gaussian White Noise and Motion Blur which 

commonly occur during the acquisition of wood images. The study also contains the 

subjective MOS and five types of objective FR-IQAs evaluation. The relationship 

between the subjective MOS and objective FR-IQAs are examined using performance 

metrics namely PLCC and RMSE. Both performance metrics showed that MOS is close 

to all the FR-IQAs. Hence, the MOS values calculated in our study are applicable to 

model a new NR-IQA method which will be explained in the next chapter. 
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CHAPTER 5: MODIFIED BRISQUE WOOD IMAGE QUALITY ASSESSMENT 

FOR WOOD IMAGES 

5.1 Introduction 

The objective of this chapter is to propose a No Reference Image Quality Assessment 

(NR-IQA) method for accessing the image quality of wood images. This is achieved by 

modifying a widely-used NR-IQA, the Blind/Referenceless Image Spatial Quality 

Evaluator (BRISQUE) model (Mittal et al., 2012). This NR-IQA metric is known as 

Modified BRISQUE Wood Image Quality Assessment, MBW-IQA. Modification of the 

BRISQUE model for wood analysis is required, as it was designed to evaluate natural 

images. 

Similar to the original BRISQUE model, the proposed NR-IQA quantifies the 

deviations in the wood image that arises due to the distortion by using the locally 

normalized luminance coefficients. The locally normalized luminance coefficients are 

used to calculate the image features. The Support Vector Machine (SVM) Regression 

(SVR) was trained with the Mean Opinion Score (MOS) and the locally normalized 

luminance coefficients to develop the MBW-IQA metric.  The locally normalized 

luminance coefficients are calculated for the wood images. 

The efficiency of MBW-IQA metric is compared with BRISQUE, Deep Neural 

Network IQA (deepIQA), Deep Bilinear Convolution Neural Network (DB-CNN) and 

five types of established FR-IQA metrics, i.e. Structural Similarity Index (SSIM) (Zhou 

Wang et al., 2003), Multiscale SSIM (MS-SSIM) (Zhou Wang et al., 2003), Feature 

Similarity (FSIM) (L. Zhang et al., 2011), Information Weighted SSIM (IW-SSIM) 

(Zhou Wang & Li, 2011) and Gradient Magnitude Similarity Deviation (GMSD) (Xue et 

al., 2014) using PLCC and RMSE values. 
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5.2 Background of the Study 

Wood is a plant tissue with a characteristic porous and fibrous structure, which is 

widely used  for furniture, millwork, flooring, building construction, paper production, 

and as a source of energy  (Shivashankar, 2018). There are thousands of wood producing 

tree species, yielding materials of distinct physical characteristic such as structure, 

density, colour and texture (Barmpoutis et al., 2018), which can define their preferred 

usages and monetary values (Zamri et al., 2018).  While timber production at high 

latitudes is based on a small number of species, there is great diversity in tropical forests. 

For example, conifers of the genus Pine are widespread in the northern hemisphere, 

producing a moderately priced wood of high resin content that is widely used for indoor 

furniture. Bocote (Cordia gerascanthus), which can be found in a native of central 

America, is used to produce expensive hardwood that is suitable for high quality furniture 

and cabinetry, as its oily surface gives it a naturally glossy finish. Rosewood (Dalbergia 

sp.) is another expensive wood, sought after for instrument making and flooring due to it 

high strength and density. Since each wood species has a different price and 

characteristics, misclassification could lead to financial losses. Therefore, it important to 

identify correctly the different wood species.  

Traditionally, the recognition of wood species is done by human (Gazo et al., 2018). 

However, this is time consuming and involves high cost to the lumber industry. Hence, 

many algorithms have been developed for automatic recognition of wood samples 

(Barmpoutis et al., 2018; Guang-sheng & Peng, 2012; Shivashankar, 2018; 

Venkatachalapathy & Sudhakar, 2014). There is scope for improving the accuracy of 

automatic wood recognition systems through use of high quality microscopy images, 

which are sometimes pre-processed to enhance their recognition. However, image 

enhancement processes bring an extra requirement for time, and may impart a 
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checkerboard artefact to the wood images (Xiao, Tang, Jiang, Li, & Wang, 2018). 

Furthermore, the environment in timber factories is encumbered by dust, poor 

illumination, and heat (Ratnasinga et al., 2011), which risk degrading the image quality. 

Hence, a suitable image quality assessment (IQA) metric is needed to evaluate captured 

images before proceeding in the pipeline for recognition algorithms.  

As mentioned in Chapter 2, IQA can be divided into two categories, namely 

subjective and objective evaluations. Subjective evaluation occurs when the images are 

evaluated by human, who provide scores based on their perception on the image quality, 

whereas objective evaluation uses mathematical algorithms to calculate quality score for 

the images.   

There are three types of objective evaluation, namely Full-Reference-IQA (FR-IQA), 

Reduced Reference-IQA (RR-IQA) and No-Reference/Blind IQA (NR-IQA) (Chandler, 

2013; Gulame et al., 2013). FR-IQA evaluates an image by comparing the image with its 

reference image, while NR-IQA evaluates an image without using a reference image. On 

the other hand, RR-IQA assesses an image using partial information from reference 

images. NR-IQA is the most suitable metric to assess wood images, given the 

impediments to obtaining high quality images in the environment of lumber mills. Hence, 

an NR-IQA procedure motivated from a widely-used NR-IQA, the Blind/Referenceless 

Image Spatial Quality Evaluator (BRISQUE) model, MBW-IQA is proposed. BRISQUE 

is an IQA model, which considers the luminance and image features of the natural images 

and it is not a distortion-specific model (Mittal et al., 2012). The BRISQUE model is 

trained with subjective scores to enable emulation of human judgement on the quality of 

the images. BRISQUE is trained to evaluate natural images. Therefore, it is not optimal 
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to assess wood images. Hence, a NR-IQA, MBW-IQA is proposed to assess wood images 

specifically.  

5.3 Training and Testing Database  

The BRISQUE model was trained to assess natural images by using Support Vector 

Machine (SVM) Regression (SVR), which was trained with subjective Difference Mean 

Opinion Scores (DMOS) and 36 features calculated for natural images: four features of 

Generalized Gaussian Distribution (GGD) and 32 features of Asymmetric Generalized 

Gaussian Distribution (AGGD) (Mittal et al., 2012). Similar to the BRISQUE approach, 

the MBW-IQA model was trained to assess wood images by using SVR in conjunction 

with Generalized Gaussian Distribution (GGD) and Asymmetric Generalized Gaussian 

Distribution (AGGD) features calculated for wood images and the subjective MOS from 

subjective evaluation.  

The SVM model is used widely in modelling IQA metric as it is capable to handle 

high-dimensional data exist along with a corresponding lack of knowledge of the 

underlying distribution. Even with a relatively small sample size, SVMs have the benefit 

of not being constrained by distributional assumptions, other than that the data are 

independent and identically distributed (Wilson, 2008).  

5.3.1 Wood Images 

The same ten wood images from ten wood species, namely Turraeanthus 

africanus (Avodire), Ochroma pyramidale (Balsa), Cordia spp. (Bocote), Juglans 

cinerea (Butternut), Tilia Americana (Basswood), Vouacapoua americana (Brownheart), 

Cornus florida (Dogwood), Cordia spp. (Laurel Blanco), Swartzia Cubensis (Katalox), 

and Dipterocarpus spp (Keruing) as mentioned in Section 4.3.1 were chosen.  The 

Gaussian white noise with standard deviation, 𝜎𝐺𝑁 and motion blur with standard 
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deviation, 𝜎𝑀𝐵 were applied to the reference images at nine levels of distortion of the 

reference images, i.e.: 𝜎𝐺𝑁 = 10, 20, 30, 40, 50, 60, 70, 80 and 90 for Gaussian white 

noise and 𝜎𝑀𝐵 = 2, 4, 6, 8, 10, 12, 14, 16 and 18  for motion blur.  

5.3.2 GGD and AGGD Features 

First, Mean Subtracted Contrast Normalized (MSCN), 𝐼(𝑚, 𝑛) is calculated using Eq. 

(5.1) (Mittal et al., 2012): 

     𝐼(𝑚, 𝑛) =
𝐼(𝑚,𝑛)−µ(𝑚,𝑛)

𝜎(𝑚,𝑛)+1
   (5.1) 

Where I(m,n) denotes an image, (m,n) denotes the local mean of I(m,n), 𝜎(𝑚, 𝑛) is 

the local variance of I(m,n), ∈ 1,2, … ,𝑀, 𝑛 ∈ 1,2, … ,𝑁 are spatial indices, M and N are 

the height and width of image, I(m,n) respectively.  

The local mean, (m,n) and local variance, (m,n) are calculated using Eq. (5.2) and 

Eq. (5.3), respectively (Mittal et al., 2012): 

𝜇(𝑚, 𝑛) = ∑ ∑ 𝑤𝑘,𝑙𝐼𝑘,𝑙(𝑚, 𝑛)
𝐿
𝑙=−𝐿

𝐾
𝑘=−𝐾        (5.2) 

𝜎(𝑚, 𝑛) = √∑ ∑ 𝑤𝑘,𝑙 (𝐼𝑘,𝑙(𝑚, 𝑛) − 𝜇(𝑚, 𝑛))
2

𝐿
𝑙=−𝐿

𝐾
𝑘=−𝐾      (5.3) 

where  𝑤 =  {𝑤𝑘,𝑙|𝑘 = −𝐾,… , 𝐾, 𝑙 = −𝐿,… , 𝐿} denotes a 2-dimension (2D) 

circularly-symmetric Gaussian weighting function that is sampled out to three standard 

deviations and rescaled to unit volume, and where 𝐾 and 𝐿 are the window sizes. The 

MSCN, local mean and local variance on the wood images are shown in Figure 4.1 to 

depict the effect of the contrast normalization.  Figure 5.1 (d) shows that the local variance 

field, σ only highlights the boundary of the pores, and Figure 5.1 (e) shows that the MSCN 
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coefficients highlights key elements of the wood images such as pores and grains, with 

few low-energy residual object boundaries.  

(a) (b) 

  

(c) (d) 

  

(e)  

 

 

Figure 5.1: The effect of the image normalization procedure. Results are 

presented for the representative case of  to Swartzia Cubensis: (a) Original image 

I, (b) Local mean field, μ, (c) I − μ, (d) Local variance field, σ and (e) MSCN 

coefficients 
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 According to Mittal et al., the characteristics of MSCN coefficients varies with the 

occurrence of the distortions (Mittal et al., 2012). Therefore, the MSCN coefficients were 

plotted for the reference image and images distorted with Gaussian white noise and 

motion blur in Figure 5.2 to depict resultant changes in the coefficients. Figure 5.2 shows 

that the reference images exhibit Gaussian distribution, while the distribution of the 

images distorted with Gaussian white noise and motion blur have different tail 

behaviours. 

 

Figure 5.2: Histogram of MSCN coefficients for reference image and distorted 

images with: Gaussian white noise (GWN) and motion blur (MB) 

Two types of Gaussian distribution functions were incorporated in this study to 

accommodate the varying characteristics of MSCN coefficients: Generalized Gaussian 

Distribution (GGD) and Asymmetric Generalized Gaussian Distribution (AGGD) (Mittal 

et al., 2012). There are two parameters computed for the GGD, where 𝛼 represents the 

shape of the distribution and 𝜎2 represents the variance. These two parameters are 

calculated for wood images using the moment-matching principle. The GGD is computed 

using Eq. (5.4) (Sharifi & Leon-Garcia, 1995): 
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𝑓(𝑥; 𝛼, 𝜎2) =
𝛼

2𝛽Γ(
1

𝛼
)
exp (−(

|𝑥|

𝛽
)
𝛼

)      (5.4) 

where 

𝛽 = 𝜎√
Γ(

1

𝛼
)

Γ(
3

𝛼
)
         (5.5) 

Γ(𝑎) = ∫ 𝑡𝑎−1
∞

0
𝑒−𝑡 𝑑𝑡, 𝑎 > 0       (5.6) 

There are four parameters computed for AGGD, namely , which represents the 

shape of the distribution, l
2 and r

2 which represent the left- and right-scale parameters, 

respectively, and 𝜂. The AGGD is computed using Eq. (5.7) (Lasmar, Stitou, & 

Berthoumieu, 2009): 

𝑓(𝑥; 𝑣, 𝜎𝑙
2, 𝜎𝑟

2) =

{
 

 
𝑣

(𝛽𝑙+𝛽𝑟)Γ(
1

𝑣
)
exp (−(

−𝑥

𝛽𝑙
)
𝑣

)          𝑥 < 0

𝑣

(𝛽𝑙+𝛽𝑟)Γ(
1

𝑣
)
exp (−(

𝑥

𝛽𝑟
)
𝑣

)           𝑥 ≥ 0
    (5.7) 

where  

𝛽𝑙 = 𝜎𝑙√
Γ(
1

𝑣
)

Γ(
3

𝑣
)
         (5.8) 

𝛽𝑟 = 𝜎𝑟√
Γ(
1

𝑣
)

Γ(
3

𝑣
)
         (5.9) 

The parameters (𝜂, 𝑣, 𝜎𝑙2, 𝜎𝑟2) of the best AGGD fit are computed using the similar 

moment-matching approach used for GGD and 𝜂 is calculated using Eq. (5.10) (Mittal et 

al., 2012): 
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𝜂 = (𝛽𝑟 − 𝛽𝑙)
Γ(
2

𝑣
)

Γ(
1

𝑣
)
                   (5.10) 

 

The four parameters of AGGD: 𝜂, 𝑣, 𝜎𝑙2, 𝜎𝑟2 are calculated along various orientations 

of the neighbourhood pixels of wood images, as illustrated in Figure 5.3.  

 

Figure 5.3: Eight orientations of neighbourhood pixels of wood images: 

horizontal (𝑯𝟏 and  𝑯𝟐 ), vertical (𝑽𝟏 and 𝑽𝟐) and diagonal (𝑫𝟏, 𝑫𝟐, 𝑫𝟑 𝐚𝐧𝐝 𝑫𝟒) 

The pairwise products of MSCN coefficients are computed along eight orientation, 

namely horizontal (𝐻1 and 𝐻2), vertical (𝑉1 and 𝑉2), and diagonal (𝐷1, 𝐷2, 𝐷3 and 𝐷4) as 

shown in Figure 5.3 using Eqs. (5.11) – (5.18) (Mittal et al., 2012): 

𝐻1(𝑚, 𝑛) = 𝐼(𝑚, 𝑛)𝐼(𝑚, 𝑛 + 1)      (5.11) 

𝐻2(𝑚, 𝑛) = 𝐼(𝑚, 𝑛)𝐼(𝑚, 𝑛 − 1)      (5.12) 

𝑉1(𝑚, 𝑛) = 𝐼(𝑚, 𝑛)𝐼(𝑚 + 1, 𝑛)      (5.13) 

𝑉2(𝑚, 𝑛) = 𝐼(𝑚, 𝑛)𝐼(𝑚 − 1, 𝑛)      (5.14) 
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𝐷1(𝑚, 𝑛) = 𝐼(𝑚, 𝑛)𝐼(𝑚 + 1, 𝑛 + 1)     (5.15) 

𝐷2(𝑚, 𝑛) = 𝐼(𝑚, 𝑛)𝐼(𝑚 + 1, 𝑛 − 1)     (5.16) 

𝐷3(𝑚, 𝑛) = 𝐼(𝑚, 𝑛)𝐼(𝑚 − 1, 𝑛 − 1)     (5.17) 

𝐷4(𝑚, 𝑛) = 𝐼(𝑚, 𝑛)𝐼(𝑚 − 1, 𝑛 + 1)     (5.18) 

where 𝑚 ∈ 1, 2, … ,𝑀 , 𝑛 ∈ 1, 2, … ,𝑁 and M and N are the height and width of the 

image. 

The histogram of the pairwise products of MSCN coefficients along all eight 

orientations is shown in Figure 5.4. The difference between pairwise products of MSCN 

coefficients along 𝐻1 and 𝐻2, 𝑉1 and 𝑉2, 𝐷1 and 𝐷3, and 𝐷2 and 𝐷4 were calculated, which 

indicates that  𝐻1= 𝐻2, 𝑉1 = 𝑉2, 𝐷1 = 𝐷3, and 𝐷2 =𝐷4. Hence, four orientations, namely 

𝐻1, 𝑉1, 𝐷1 and 𝐷2 were chosen. The 𝜂, 𝑣, 𝜎𝑙2, and 𝜎𝑟2  parameters of AGGD are calculated 

along these four orientations. In total, we thus calculated 18 parameters of GGD and 

AGGD for the wood images, i.e. two parameters of GGD and 16 parameters of AGGD. 

According to Mittal et al.,  an IQA considering multi-scale information of an image can 

assess images accurately (Mittal et al., 2012).  Therefore, the 18 parameters are computed 

at two scales (original image scale and image reduced by a factor of 0.5). Hence, the full 

procedure produces 36 parameters to represent the features of wood images, all of which 

are used to train the SVR. Only two scales were used, as Mittal et al. has shown that 

performance of the metric in unimproved when more scales are incorporated (Mittal et 

al., 2012). Moreover, the computation time will increase with increasing number of 

scales.  
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Figure 5.4: Histogram of pairwise products of MSCN coefficients in eight directions: (a) D1 (b) D2 (c) D3 (d) D4 (e) H1 (f) H2 (g) V1 (h) V2 for 

the Reference image and images distorted with: Gaussian white noise (GWN) and motion blur (MB) Univ
ers
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5.3.3 MOS 

The same MOS values obtained from the subjective evaluation obtained for wood 

images as explained in Section 4.3.3 were used to train SVR. 

5.3.4 Regression Module 

Similar to BRISQUE, an ∈ −SVR model (Chang, Chih-Chung and Lin, 2011) was 

used to design MBW-IQA. As noted above, the ∈ −SVR is trained using MOS and 36 

GGD and AGGD features of wood images. The 36 image features calculated for the wood 

images are mapped to the MOS values of the respective wood images. The 36 features 

and MOS of wood images were divided randomly into two sets, where one set is used for 

training and the other set for testing the system: 80% of the 36 features and MOS values 

were used to train the SVR model and remaining 20% were used to test the model. The 

training and testing datasets were permutated randomly to avoid any biasness while 

training and testing of the model (Mittal et al., 2012).  

Several experiments were performed on the training and testing data split (70% for 

training and 30% for testing, 80% for training and 20% for testing and 90% for training 

and 10% for testing). The PLCC and RMSE were calculated for these data splits and the 

result is shown in Table 5.1.  

Table 5.1: PLCC and RMSE for Data Splits for One Iteration 

Percentage of Training 

Data (%) 

Percentage of Testing 

Data (%) 

PLCC RMSE Computation 

time (second) 

70 30 0.953 0.792 18 

80 20 0.985 0.245 30 

90 10 0.987 0.238 50 
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When a higher percentage of data (90%) for training procedure was tested, the model 

performance only increased slightly. However, the computation time is longer. A lower 

percentage of data (70%) for training procedure was tested but the performance of the 

model decreased. Hence, 80% of data was used for training and 20% of data was used for 

testing the model. There was no overlap between the training and testing data to ensure a 

fair prediction of quality scores. 

The difference between the BRISQUE and the MBW-IQA metric is, BRISQUE is 

made to assess natural images where the SVR model was trained with DMOS, 36 GGD 

and AGGD features of natural images, while the MBW-IQA is trained with MOS, 36 

GGD and AGGD features of wood images. The flow diagram of the MBW-IQA metric 

is shown in Figure 5.5. Pearson’s Linear Correlation Coefficient (PLCC) (Song, 2007) 

and Root Mean Square Error (RMSE) (Chai & Draxler, 2014) between the MOS values 

and the quality score obtained from the MBW-IQA were calculated to evaluate the 

performance of the system. Higher PLCC and lower RMSE values indicate that the 

system is accurate, since the quality scores obtained from the MBW-IQA are close in 

magnitude to the MOS values. The training and testing of the system were iterated 1000 

times and the PLCC and RMSE values were recorded for every iteration. The optimized 

cost parameter, C, and width parameter, g, of the SVR model is chosen based on the 

median of the PLCC and RMSE values. In this study, C = 512 and g = 0.25 were used to 

form the optimized SVM model.   Univ
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Figure 5.5: Flow diagram of the MBW-IQA Metric 

 

5.3.5 Performance Evaluation  

The MBW-IQA is compared with five FR-IQA metrics: Structural Similarity Index 

(SSIM) (Zhou Wang et al., 2003), Multiscale SSIM (MS-SSIM) (Zhou Wang et al., 

2003), Feature Similarity (FSIM) (L. Zhang et al., 2011), Information Weighted SSIM 

(IW-SSIM) (Zhou Wang & Li, 2011) and Gradient Magnitude Similarity Deviation 

(GMSD) (Xue et al., 2014). In addition, the MBW-IQA is also compared with BRISQUE, 

deepIQA, DB-CNN which are an established NR-IQA. PLCC and RMSE (L.S. Chow et 

al., 2016) values between these FR-IQAs, BRISQUE, deepIQA, DB-CNN and MBW-

IQA are calculated in order to evaluate the performance of the MBW-IQA, BRISQUE, 

deepIQA, DB-CNN and FR-IQAs.  

5.4 Results and Discussions 

Second dataset were created to evaluate the performance of the MBW-IQA metric. 

The MBW-IQA metric is compared with the five FR-IQAs, BRISQUE, deepIQA and 
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DB-CNN obtained for the second dataset. This dataset was generated using 10 ‘perfect’ 

reference images obtained from ten different wood species namely, Julbernardia 

pellegriniana (Beli), Dalbergia cultrate (Blackwood), Dalbergia retusa (Cocobolo), 

Dalbergia cearensis (Kingwood), Guaiacum officinale (Lignum), Swartzia spp. 

(Queenwood), Dalbergia spruceana (Rosewood), Dalbergia sissoo (Sisso), 

Swartzia benthamiana (Wamara) and Euxylophora paraensis (Yellowheart). These 

images are shown in Figure 5.6. These images were obtained from the same wood image 

database (Meier, 2007). These images were distorted with Gaussian white noise with 𝜎𝐺𝑁 

= 10, 20, 30, 40, 50, 60, 70, 80 and 90 and motion blur with 𝜎𝑀𝐵 = 2, 4, 6, 8, 10, 12, 14, 

16 and 18 to form 180 images. In total, this dataset comprises of 190 wood images.  
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Figure 5.6: Ten reference wood images in the second dataset (a) Julbernardia pellegriniana,, (b) Dalbergia cultrate, (c) Dalbergia 

retusa, (d) Dalbergia cearensis, (e) Guaiacum officinale, (f) Swartzia spp., (g) Dalbergia spruceana, (h) Dalbergia sissoo, (i) 

Swartzia benthamiana and (j) Euxylophora paraensisUniv
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5.4.1 Relationship Between MOS and Different Distortion Levels 

The relationship between MOS and different distortion levels of Gaussian white noise 

and motion blur is shown in Figure 5.7 (a) and (b). Higher MOS values indicates higher 

image quality, and higher distortion levels generate lower image quality. Hence, the MOS 

values for images with higher distortion levels will be lower.  Based on scatter plot in 

Figure 5.7 (a) and (b), the MOS value decreases as the distortion level increases. This 

means that human subjects could differentiate images distorted with different levels of 

Gaussian white noise and motion blur.  

 
(a) 

 

 
(b) 

Figure 5.7: Scatter Plot of MOS versus distortion levels of (a) Gaussian White 
Noise and (b) Motion Blur 
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5.4.2 Relationship between MOS and MBW-IQA Metric, BRISQUE, FR-IQAs 

The calculated PLCC and RMSE values between MOS and the MBW-IQA, BRISQUE 

and the five FR-IQA metrics are shown in Table 5.2. PLCC values close to 1 indicates 

that the MOS correlates well with the IQA metric, whereas lower RMSE values indicate 

that the MOS correlates with the IQA metric. Table 5.2 shows that the PLCC values for 

Gaussian white noise, motion blur and the overall images obtained for the MBW-IQA 

metric are the highest compared to BRISQUE and five FR-IQAs. Furthermore, Table 5.2 

also shows that the lowest PLCC values is for BRISQUE, meaning that the MBW-IQA 

metric outperforms BRISQUE, SSIM, MS-SSIM, FSIM, IW-SSIM and GMSD. This is 

also indicated by the MBW-IQA having the lowest RMSE values and BRISQUE having 

the highest RMSE values. The PLCC and RMSE were illustrated in histogram form in 

Figures 5.8 and 5.9 to show the difference in the PLCC and RMSE values between MOS 

and the MBW-IQA metric, BRISQUE and the five FR-IQA metrics clearly.
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Table 5.2: PLCC and RMSE values between MOS and MBW-IQA, deepIQA, DB-CNN, BRISQUE, FR-IQAs 

  
MBW-

IQA 
BRISQUE deepIQA DB-CNN MSSIM SSIM FSIM IWSSIM GMSD 

PLCC 

GWN 0.935 0.585 0.542 0.527 0.847 0.865 0.903 0.855 0.914 

MB 0.954 0.563 0.513 0.538 0.845 0.805 0.912 0.902 0.915 

All 0.942 0.594 0.528 0.529 0.843 0.836 0.914 0.879 0.910 

RMSE 

GWN 0.462 1.126 1.256 1.457 0.675 0.627 0.558 0.633 0.542 

MB 0.335 0.957 1.134 1.386 0.564 0.643 0.487 0.502 0.475 

All 0.400 1.028 1.248 1.365 0.614 0.629 0.526 0.552 0.510 
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Figure 5.8: PLCC between MOS and MBW-IQA, deepIQA, DB-CNN, BRISQUE, FR-IQAs 
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Figure 5.9: RMSE between MOS and MBW-IQA, deepIQA, DB-CNN, BRISQUE, FR-IQAs 
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5.5 Chapter Conclusion 

In this chapter, we proposed a No-Reference Image Quality Assessment (NR-IQA) 

metric, MBW-IQA to evaluate wood images prior to species classification. The MBW-

IQA metric was produced by modifying BRISQUE, one of the established NR-IQA 

methods. Some modification is required as BRISQUE was trained to assess natural 

images and is therefore not optimal to assess wood images. Therefore, the MBW-IQA 

metric was trained using MOS and a set of features calculated for wood images. The 

performance of the MBW-IQA metric was evaluated by comparing the correlation 

between MOS, MBW-IQA, deepIQA, DB-CNN, BRISQUE and five FR-IQA metrics, 

whereas PLCC and RMSE were calculated in order to determine the relationship between 

MOS, the MBW-IQA metric, deepIQA, DB-CNN, BRISQUE and a range of FR-IQAs. 

PLCC and RMSE values both showed that the MBW-IQA metric outperforms 

BRISQUE, deepIQA, DB-CNN and the five FR-IQAs. The MBW-IQA gives a sensitive 

and accurate assessment of the quality of wood images, which should serve for selecting 

images suitable for entry into the wood recognition algorithm. In timber industry, it is 

impossible to obtain a perfect image due to the nature of the industry itself such as dust, 

poor illumination, hot environment and motion blur caused by relative motion between 

the camera and the wood slice. Notably, our quality assessment does not require a perfect 

reference image in order to evaluate the quality of the test wood images. 
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CHAPTER 6: GLCM AND GABOR FEATURES BASED NO-REFERENCE 

IMAGE QUALITY ASSESSMENT FOR WOOD IMAGES 

6.1 Introduction 

The objective of this chapter is to propose GLCM and Gabor features based No 

Reference Image Quality Assessment (NR-IQA) method to evaluate the quality of wood 

images. This method is known as GLCM and Gabor Wood Image Quality Assessment 

(GGW-IQA) metric. The GGW-IQA metric is proposed to improvise the MBW-IQA 

metric by incorporating widely used GLCM and Gabor features in wood species 

recognition system (Bremananth R. ; Nithya B. ; Saipriya R., 2009; Khalid et al., 2008; 

Tou, Tay, & Lau, 2009; Venkatachalapathy & Sudhakar, 2014). The high efficiency of 

the wood recognition algorithm which uses these features (Bremananth R. ; Nithya B. ; 

Saipriya R., 2009; Khalid et al., 2008; Tou et al., 2009; Venkatachalapathy & Sudhakar, 

2014) shows that they reflects the unique characteristics of wood images such as knot and 

pores. The GGW-IQA is compared with the Blind/Referenceless Image Spatial Quality 

Evaluator (BRISQUE), Deep Neural Network IQA (deepIQA), Deep Bilinear 

Convolution Neural Network (DB-CNN), Modified BRISQUE Wood Image Quality 

Assessment (MBW-IQA) (as explained in Chapter 5) and five types of established FR-

IQA metrics, i.e. Structural Similarity Index (SSIM) (Zhou Wang et al., 2003), Multiscale 

SSIM (MS-SSIM) (Zhou Wang et al., 2003), Feature Similarity (FSIM) (L. Zhang et al., 

2011), Information Weighted SSIM (IW-SSIM) (Zhou Wang & Li, 2011) and Gradient 

Magnitude Similarity Deviation (GMSD) (Xue et al., 2014). The relative efficiency of 

the proposed two NR-IQA methods: MBW-IQA, GGW-IQA, deepIQA, DB-CNN, 

BRISQUE and FR-IQAs are determined based on the correlation between the human 

mean opinion scores (MOS) and the metrics using Pearson Linear Correlation Coefficient 

(PLCC) and Root Mean Squared Error (RMSE) (L.S. Chow et al., 2016).  
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6.2 Background of the Study 

In this study, GLCM and Gabor features were used to develop the NR-IQA metric. 

These two features are widely used in wood species recognition system (Bremananth R. ; 

Nithya B. ; Saipriya R., 2009; Khalid et al., 2008; Tou et al., 2009; Venkatachalapathy & 

Sudhakar, 2014). The GLCM depicts second order statistic of an image by calculating 

how frequent pairs of pixel with specific values and in a specified spatial relationship 

occur in an image (Abd Latif, MH, Md. Yusof, H, Sidek, S.N, Rusli, 2015). There are 

four texture statistics in the GLCM matrix and they are contrast, correlation, energy and 

homogeneity. The 2D Gabor function which represents the spatial summation properties 

of simple cells in the visual cortex (Rubiyah Yusof, Nenny Ruthfalydia Rosli, 2010). 

There are seven parameters in the Gabor features, 𝑥, 𝑦; 𝜆, 𝜃, 𝜓, 𝜎, 𝛾, where  𝑥 and 𝑦 

represents the image, 𝜆 is the wavelength of the sinusoidal factor, 𝜃 is the orientation of 

the normal to the parallel stripes of a Gabor function, 𝜓 is the phase offset, 𝜎 is the 

standard deviation of the Gaussian envelope and 𝛾 is the spatial aspect ratio. These 

features are calculated in four orientations, 0°, 45°, 90° and 135° which represents the 

similar 4 orientations in GGD and AGGD features calculation as explained in Section 

5.3.2.  

6.3 Materials and Methods 

6.3.1 Training and Testing Database 

A SVR model is trained with the GLCM and Gabor features calculated for normalized 

wood images with the subjective MOS obtained from subjective evaluation for wood 

images to design the GGW-IQA metric. These GLCM and Gabor features and MOS are 

used as the training and testing database for the SVR model.  
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6.3.2 Wood Images 

The same ten wood images from ten wood species, namely Turraeanthus 

africanus (Avodire), Ochroma pyramidale (Balsa), Cordia spp. (Bocote), Juglans 

cinerea (Butternut), Tilia Americana (Basswood), Vouacapoua americana (Brownheart), 

Cornus florida (Dogwood), Cordia spp. (Laurel Blanco), Swartzia Cubensis (Katalox), 

and Dipterocarpus spp (Keruing) as mentioned in Section 4.3.1 were chosen.  The 

Gaussian white noise with standard deviation, 𝜎𝐺𝑁 and motion blur with standard 

deviation, 𝜎𝑀𝐵 were applied to the reference images at nine levels of distortion of the 

reference images, i.e.: 𝜎𝐺𝑁 = 10, 20, 30, 40, 50, 60, 70, 80 and 90 for Gaussian white 

noise and 𝜎𝑀𝐵 = 2, 4, 6, 8, 10, 12, 14, 16 and 18  for motion blur.  

6.3.3 GLCM and Gabor Features 

First, Mean Subtracted Contrast Normalized (MSCN), 𝐼(𝑚, 𝑛) as explained in Section 

5.3.2 is calculated (Mittal et al., 2012). Next, two types of features GLCM and Gabor 

features were incorporated in this study. 

6.3.3.1 GLCM Features 

GLCM is one of the most popular feature extraction method. The GLCM 

characterize second order statistic of an image by computing how often pairs of pixel 

with specific values and in a specified spatial relationship occur in an image. The matrix 

contains the conditional joint probabilities of all pair wise combinations of gray levels 

given at particular displacement distance, d and orientation, θ. The displacement distance, 

d is also known as inter-pixel distance. The probability, Pij  can be defined as Eq. (6.1) 

(Abd Latif, MH, Md. Yusof, H, Sidek, S.N, Rusli, 2015) 

𝑃𝑖𝑗 = {𝐶𝑖𝑗|(𝑑, 𝜃)}           (6.1) 
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where 

𝐶𝑖𝑗 =
𝑃𝑖𝑗

∑ 𝑃𝑖𝑗
𝐺
𝑖,𝑗=1

          (6.2) 

Where 𝐶𝑖𝑗 denotes the number of occurrences of gray level in row, i and column, j, 𝑃𝑖𝑗 

denotes the probability value from the GLCM and G represents the total number of gray 

levels. Four texture statistics, contrast, correlation, energy and homogeneity were 

extracted from the GLCM matric.  

Contrast measures the local variations in the gray-level co-occurrence matrix and is 

defined as Eq. (6.3). 

Contrast = ∑ |𝑖 − 𝑗|2𝑝(𝑖, 𝑗)𝑖,𝑗         (6.3) 

Correlation measures the joint probability occurrence of the specified pixel pairs and 

is defined as Eq. (6.4). 

Correlation = ∑ (𝑖−𝜇𝑖)(𝑗−𝜇𝑗)𝑝(𝑖,𝑗)

𝜎𝑖𝜎𝑗
𝑖,𝑗         (6.4) 

Energy provides the sum of squared elements in the GLCM. And it is also known as 

uniformity or the angular second moment. The energy parameter is computed as Eq. (6.5) 

Energy = ∑ 𝑝(𝑖, 𝑗)2𝑖,𝑗          (6.5) 

Homogeneity measures the closeness of the distribution of elements in the GLCM to 

the GLCM diagonal and is computed as Eq. (6.6). 

Homogeneity = ∑ 𝑝(𝑖,𝑗)

1+|𝑖−𝑗|𝑖,𝑗          (6.6) 
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These four parameters were computed at four directions, 0°, 45°, 90° and 135° and 

these forms sixteen GLCM features.  

6.3.3.2 Gabor Features 

The two- dimensional Gabor function to model the spatial summation properties of 

simple cells in the visual cortex is defined as Eq. (6.7) 

𝑔(𝑥, 𝑦; 𝜆, 𝜃, 𝜓, 𝜎, 𝛾) = 𝑒𝑥𝑝 (−
𝑥′2+𝛾2𝑦′2

2𝜎2
) 𝑐𝑜𝑠 (2𝜋

𝑥′

𝜆
+ 𝜓)    (6.7) 

Where 𝑥′ = 𝑥 𝑐𝑜𝑠 𝜃 + 𝑦 𝑠𝑖𝑛 𝜃 and 𝑦′ = −𝑥 𝑠𝑖𝑛 𝜃 + 𝑦 𝑐𝑜𝑠 𝜃    (6.8) 

𝜆 denotes the wavelength of the sinusoidal factor, 𝜃 denotes the orientation of the 

normal to the parallel stripes of a Gabor function, 𝜓 represents the phase offset, 𝜎 

represents the standard deviation of the Gaussian envelope and 𝛾 represents the spatial 

aspect ratio and it specifies the ellipticity of the support of the Gabor function. The 

computational models of such 2D Gabor filters are as in Eq. (6.9) and (6.10): 

ℎ𝑒 = 𝑔(𝑥, 𝑦)𝑐𝑜𝑠(2𝜋𝑓(𝑥 cos 𝜃 + 𝑦 sin 𝜃))      (6.9) 

ℎ𝑜 = 𝑔(𝑥, 𝑦)𝑠𝑖𝑛(2𝜋𝑓(𝑥 cos 𝜃 + 𝑦 sin 𝜃))               (6.10) 

Where ℎ𝑒 and ℎ𝑜 represents the even symmetric and odd symmetric Gabor filters while 

𝑔(𝑥, 𝑦) represents the isotropic Gaussian function as in Eq. (6.11): 

𝑔(𝑥, 𝑦) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

𝑥′2+𝑦′2

2𝜎2
)                 (6.11) 

And the spatial frequency response of the Gabor functions is as shown in Eq. (6.12): 

𝑓 = 𝑁/𝑃                    (6.12) 
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Where 𝑁 denotes the size of the kernel and 𝑃 denotes period in pixel. 

In this study, wavelength, 𝜆 was in increasing powers of two starting from 4/√2 up to 

the hypotenuse length of the input image (Jain, Anil K., 1991) and four orientation, 0°, 

45°, 90° and 135° were used. This forms twenty-eight features Gabor features. In total, 

the sixteen GLCM and twenty-eight Gabor features were combined and this forms forty-

four features in total. These forty-four features were calculated for the normalized wood 

images.  

6.3.4 MOS 

The same MOS values obtained for wood images as explained in Section 4.3.3 were 

also used to train SVR.  

6.3.5 Regression Module 

The ∈ −SVR is trained using MOS and forty-four GLCM and Gabor features of 

wood images to design GGW-IQA metric. The forty-four image features calculated for 

the wood images are mapped to the MOS values of the respective wood images. The 

forty-four features and MOS of wood images were divided randomly into two sets, where 

one set is used for training and the other set for testing the system: 80% of the forty-four 

features and MOS values were used to train the SVR model and remaining 20% were 

used to test the system. The training and testing datasets were permutated randomly to 

avoid any biasness while training and testing of the system (Mittal et al., 2012). The flow 

diagram of the GGW-IQA metric system is shown in Figure 6.1. 
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Figure 6.1: Flow diagram of the GGW-IQA Metric 

The performance of the GGW-IQA metric were evaluated using Pearson’s Linear 

Correlation Coefficient (PLCC) (Song, 2007) and Root Mean Square Error (RMSE) 

(Chai & Draxler, 2014) calculated between the MOS values and the quality score 

obtained from the GGW-IQA metric. Higher PLCC and lower RMSE values indicate that 

the quality metric is in close agreement with the MOS values. The training and testing of 

the system were iterated 1000 times and the PLCC and RMSE values were recorded for 

every iteration. The optimized cost parameter, C, and width parameter, g, of the SVR 

model is chosen based on the median of the PLCC and RMSE values obtained for all the 

1000 iterations. In this study, C = 32768 and g = 0.125 were used to form the optimized 

SVM model.   

6.3.6 Performance Evaluation  

The GGW-IQA metric is compared with five FR-IQA metrics (Rajagopal, H., 

Khairuddin, A.S.M., Mokhtar, 2019): Structural Similarity Index (SSIM) (Zhou Wang et 

al., 2003), Multiscale SSIM (MS-SSIM) (Zhou Wang et al., 2003), Feature Similarity 

(FSIM) (L. Zhang et al., 2011), Information Weighted SSIM (IW-SSIM) (Zhou Wang & 
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Li, 2011) and Gradient Magnitude Similarity Deviation (GMSD) (Xue et al., 2014). In 

addition, the GGW-IQA metric is also compared with MBW-IQA metric deepIQA, DB-

CNN and BRISQUE. PLCC and RMSE (L.S. Chow et al., 2016) values between these 

FR-IQAs, BRISQUE, deepIQA, DB-CNN and the two proposed metrics, GGW-IQA and 

MBW-IQA are calculated in order to evaluate the performance of the proposed GGW-

IQA and MBW-IQA metrics, BRISQUE, deepIQA, DB-CNN and FR-IQAs.  

6.4 Results and Discussions 

The same second dataset as explained in Section 5.4 were used to evaluate the 

efficiency of the proposed metric. The GGW-IQA metric is compared with the five FR-

IQAs, BRISQUE, deepIQA and DB-CNN obtained for the second dataset. This dataset 

was produced using the same ten ‘perfect’ reference images as explained in Section 5.4.1. 

These images were distorted with Gaussian white noise with 𝜎𝐺𝑁 = 10, 20, 30, 40, 50, 60, 

70, 80 and 90 and motion blur with 𝜎𝑀𝐵 = 2, 4, 6, 8, 10, 12, 14, 16 and 18 to form 180 

images. In total, this dataset comprises of 190 wood images.   

In addition, the efficiency of the proposed metric was also tested with third dataset 

which is generated using wood images obtained from Forest Research Institute Malaysia 

(FRIM). Ten reference wood images were obtained from ten different wood species. The 

gaussian white noise with standard deviation, 𝜎𝐺𝑁  and motion blur with standard 

deviation, 𝜎𝑀𝐵  were applied to the reference images. For each type of the distortions, 

there were nine levels of distortion applied to the reference images where the standard 

deviation takes the value of 10, 20, 30, 40, 50, 60, 70, 80 and 90. This dataset comprises 

of ten reference and 180 distorted wood images. The GGW-IQA metric is compared with 

the five FR-IQAs, BRISQUE, deepIQA and DB-CNN obtained for the second dataset. 
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6.4.1 Relationship between MOS and GGW-IQA, MBW-IQA, BRISQUE, FR-

IQAs 

The calculated PLCC and RMSE values between MOS and the GGW-IQA, MBW-

IQA, deepIQA, DB-CNN, BRISQUE and the five FR-IQA metrics for second and third 

dataset are shown in Tables 6.1-6.2, respectively. PLCC values close to 1 indicates that 

the MOS correlates well with the IQA metric, whereas lower RMSE values indicate that 

the MOS correlates with the IQA metric. Tables 6.1-6.2 shows that the PLCC values for 

Gaussian white noise, motion blur and the overall images obtained for the GGW-IQA are 

the highest compared to the MBW-IQA, deepIQA, DB-CNN, BRISQUE and five FR-

IQAs. This shows that the GGW-IQA outperforms MBW-IQA, deepIQA, DB-CNN, 

BRISQUE, SSIM, MS-SSIM, FSIM, IW-SSIM and GMSD. GGW-IQA is the best metric 

compared to other seven metrics as it is designed by using Gabor and GLCM features and 

these features are widely used as it reflects the unique characteristics of wood images 

such as the knot and pores. This is also indicated by the GGW-IQA metric having the 

lowest RMSE values compared to MBW-IQA, BRISQUE and FR-IQAs. The PLCC and 

RMSE values for second and third dataset were illustrated in histogram form in Figures 

6.2 - 6.5, respectively to show the difference in the PLCC and RMSE values between 

MOS and the GGW-IQA, MBW-IQA, deepIQA, DB-CNN, BRISQUE and the five FR-

IQA metrics clearly. Sample of wood images with the MOS and quality scores values of 

GGW-IQA, MBW-IQA, deepIQA, DB-CNN, BRISQUE and the five FR-IQA metrics is 

shown in Figure 6.6.Univ
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Table 6.1: PLCC and RMSE values between MOS and GGW-IQA, MBW-IQA, BRISQUE and five FR-IQAs for second dataset 

  
GGW-

IQA 

MBW-

IQA 
BRISQUE 

deepIQA DB-

CNN 
MSSIM SSIM FSIM IWSSIM GMSD 

PLCC GWN 0.982 0.935 0.585 0.542 0.527 0.847 0.865 0.903 0.855 0.914 

MB 0.987 0.954 0.563 0.513 0.538 0.845 0.805 0.912 0.902 0.915 

All 0.985 0.942 0.594 0.528 0.529 0.843 0.836 0.914 0.879 0.910 

RMSE GWN 0.253 0.462 1.126 1.256 1.457 0.675 0.627 0.558 0.633 0.542 

MB 0.217 0.335 0.957 1.134 1.386 0.564 0.643 0.487 0.502 0.475 

All 0.206 0.400 1.028 1.248 1.365 0.614 0.629 0.526 0.552 0.510 
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Table 6.2: PLCC and RMSE values between MOS and GGW-IQA, MBW-IQA, BRISQUE and five FR-IQAs for third dataset 

  GGW-IQA MBW-IQA BRISQUE deepIQA DB-CNN MSSIM SSIM FSIM IWSSIM GMSD 

PLCC GWN 0.971 0.957 0.629 0.514 0.517 0.954 0.963 0.959 0.955 0.944 

MB 0.962 0.933 0.623 0.525 0.519 0.575 0.664 0.646 0.689 0.650 

All 0.968 0.927 0.615 0.518 0.513 0.869 0.589 0.743 0.887 0.867 

RMSE GWN 0.283 0.306 1.026 1.224 1.209 0.364 0.327 0.345 0.361 0.401 

MB 0.225 0.325 1.002 1.138 1.228 0.550 0.502 0.513 0.486 0.511 

All 0.219 0.315 0.938 1.236 1.216 0.504 0.823 0.682 0.469 0.507 
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Figure 6.2: PLCC values between MOS and GGW-IQA, MBW-IQA, deepIQA, DB-CNN, BRISQUE and five FR-IQAs for 

second dataset 
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Figure 6.3: RMSE values between MOS and GGW-IQA, MBW-IQA, deepIQA, DB-CNN, BRISQUE and five FR-IQAs for 

second dataset 
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Figure 6.4: PLCC values between MOS and GGW-IQA, MBW-IQA, deepIQA, DB-CNN, BRISQUE and five FR-IQAs for third 

dataset 
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Figure 6.5: RMSE values between MOS and GGW-IQA, MBW-IQA, deepIQA, DB-CNN, BRISQUE and five FR-IQAs for 

third dataset 
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Figure 6.6: Sample of wood images with MOS and quality scored from GGW-IQA, MBW-IQA, deepIQA, DB-CNN, BRISQUE 

and five FR-IQAs 

 

Wood species: Julbernardia pellegriniana 

 
𝜎𝐺𝑁  = 30 

 
𝜎𝐺𝑁  = 70 

 
𝜎𝑀𝐵  = 10 

 
𝜎𝑀𝐵  = 16 

MOS 4 MOS 1.00 MOS 4.00 MOS 1.00 
GGW-IQA 3.98 GGW-IQA 1.10 GGW-IQA 3.90 GGW-IQA 1.10 
MBW-IQA 4.09 MBW-IQA 1.17 MBW-IQA 3.73 MBW-IQA 1.97 
BRISQUE 52.85 BRISQUE 66.74 BRISQUE 54.37 BRISQUE 57.66 
deepIQA 54.91 deepIQA 70.35 deepIQA 52.23 deepIQA 64.12 
DB-CNN 62.13 DB-CNN 75.13 DB-CNN 56.89 DB-CNN 54.73 
MSSIM 0.87 MSSIM 0.62 MSSIM 0.94 MSSIM 0.76 
SSIM 0.42 SSIM 0.13 SSIM 0.79 SSIM 0.56 
FSIM 0.93 FSIM 0.79 FSIM 0.93 FSIM 0.77 

IWSSIM 0.88 IWSSIM 0.66 IWSSIM 0.93 IWSSIM 0.70 
GMSD 0.11 GMSD 0.22 GMSD 0.09 GMSD 0.19 
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6.5 Chapter Conclusion 

In this study, a GLCM and Gabor features based No-Reference Image Quality 

Assessment (NR-IQA) metric, GGW-IQA was proposed to evaluate wood images prior 

to species classification. The GGW-IQA metric was trained using MOS and a set of 

GLCM and Gabor features calculated specifically for wood images.  The GLCM and 

Gabor features were used to design GGW-IQA metric as these features are widely used 

for wood species recognition. The efficiency of the GGW-IQA was evaluated by 

comparing the correlation between MOS, GGW-IQA MBW-IQA, deepIQA, DB-CNN, 

BRISQUE and five FR-IQA metrics for two datasets, second dataset (reference images 

obtained from open database) and third dataset (reference images obtained from FRIM). 

The PLCC and RMSE were calculated to determine the relationship between MOS, 

GGW-IQA, MBW-IQA, deepIQA, DB-CNN, BRISQUE and five FR-IQAs. PLCC and 

RMSE values both showed that the GGW-IQA outperforms MBW-IQA, deepIQA, DB-

CNN, BRISQUE and the FR-IQAs for both datasets. The results obtained shows that the 

GGW-IQA metric could assess the quality of wood images accurately. In addition, the 

GGW-IQA metric does not require a ‘perfect’ reference image in order to evaluate the 

quality of the wood images similar to the MBW-IQA. This is beneficial especially when 

it is impossible to obtain a perfect reference image in the dusty environment of lumber 

mill.  
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CHAPTER 7: CONCLUSION AND FUTURE WORKS 

The ultimate goal of this dissertation is to design a suitable No Reference Image 

Quality Assessment (NR-IQA) model for wood images. To achieve this, firstly, both 

subjective and objective assessment of Full Reference Image Quality Assessment (FR-

IQA) were performed on 190 wood images. MOS values were obtained from the 

subjective evaluation on the wood images. MSCN coefficients and 36 features were also 

calculated for the wood images.  

A NR-IQA for wood images, MBW-IQA was modeled using these MOS values and 

36 Generalized Gaussian Distribution (GGD) and Asymmetric Generalized Gaussian 

Distribution (AGGD) features to train SVR model. A well-known NR-IQA in evaluating 

natural images, Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) was 

modified to develop the MBW-IQA metric. The significant difference between the 

BRISQUE and the MBW-IQA metric is, BRISQUE used natural images to calculate the 

Mean Subtracted Contrast Normalized (MSCN) coefficients and images features; while 

the MBW-IQA metric used wood images for this purpose. Then, the MBW-IQA metric 

was compared with BRISQUE, Deep Neural Network IQA (deepIQA), Deep Bilinear 

Convolution Neural Network (DB-CNN) and five types of established FR-IQA metrics, 

i.e. Structural Similarity Index (SSIM), Multiscale SSIM (MS-SSIM), Feature Similarity 

(FSIM), Information Weighted SSIM (IW-SSIM) and Gradient Magnitude Similarity 

Deviation (GMSD).  

Next, a Gray Level Co-Occurrence Matrix (GLCM) and Gabor feature-based NR-

IQA, GGW-IQA metric to evaluate the quality of wood images were proposed. The 

GLCM and Gabor features were computed for the normalized wood images. The 44 

features of GLCM and Gabor were trained together with MOS using SVR for form the 
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GGW-IQA metric. The GGW-IQA metric was compared with the MBW-IQA metric, 

BRISQUE, deepIQA, DB-CNN and five FR-IQAs and results shows that the GGW-IQA 

metric outperforms the MBW-IQA, BRISQUE, deepIQA, DB-CNN and FR-IQAs. The 

GGW-IQA metric outperforms the MBW-IQA metric as it incorporates set of widely 

used features for wood species recognition, namely GLCM and Gabor features. These 

features are widely used as it reflects the unique characteristics of wood images such as 

the knot and pores. Section 7.1 summarizes the main contributions of this dissertation. 

Section 7.2 outlines the future directions for improving this work.  

7.1 Summary of Main Contributions 

In this dissertation, firstly the importance of Image Quality Assessment (IQA) 

module in improving the rate of wood species recognition system has been studied. 

Results obtained from the study has shown that the wood species recognition system can 

be improved with IQA module where the wood image have to be evaluated first before 

feeding it to the recognition system. If the quality of the wood image is high, the image 

will be fed into the recognition system. If the quality of the wood image is low, the image 

will be denoised and the denoised image will be fed into the recognition system.  

Next, both subjective and objective assessment of Full Reference Image Quality 

Assessment (FR-IQA) were performed on 190 wood images. All the wood images has 

their own MOS values. The study on NR-IQA model for wood images has not been done 

till now. Therefore, an effective and practical NR-IQA model is needed to assess the 

image quality produced from any new hardware or software in wood. Hence a tailored-

made NR-IQA method has been proposed in this dissertation to evaluate wood images.  

A NR-IQA model were proposed to evaluate wood images by modifying 

BRISQUE model, a renowned NR-IQA in evaluating natural images. This model is 

known as Modified BRISQUE Wood IQA (MBW-IQA) metric in this research. The 
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BRISQUE model assessed the image quality by using the locally normalized luminance 

coefficients. The MBW-IQA model trained a new regression model, Support Vector 

Machine (SVM) Regressor (SVR) using wood image features and MOS from 190 wood 

images. The MBW-IQA metric was compared with BRISQUE,deepIQA, DB-CNN and 

five types of established FR-IQA metrics, i.e. Structural Similarity Index (SSIM), 

Multiscale SSIM (MS-SSIM), Feature Similarity (FSIM), Information Weighted SSIM 

(IW-SSIM) and Gradient Magnitude Similarity Deviation (GMSD). The correlation 

between the MBW-IQA, BRISQUE, deepIQA, DB-CNN and FR-IQAs were computed. 

There was a relatively high correlation between the MBW-IQA and MOS compared to 

the BRISQUE and FR-IQAs.  

Next, a GLCM and Gabor features-based NR-IQA were proposed and investigated. 

This is the proposed second NR-IQA metric in this research and it is known as GLCM 

and Gabor Wood IQA (GGW-IQA). In this study, 44 features of GLCM and Gabor were 

calculated for the normalized wood images. These features and the MOS obtained from 

the subjective evaluation were used to train the SVR to generate a NR-IQA metric. The 

efficiency of the GGW-IQA metric was compared with the MBW-IQA, BRISQUE, 

deepIQA, DB-CNN and five FR-IQAs. The results obtained from this study proved that 

the GGW-IQA outperforms the MBW-IQA, BRISQUE, deepIQA, DB-CNN and FR-

IQAs. This proves that GGW-IQA metric accurately measured the image quality of wood 

images. 

7.2 Future works 

Currently, the wood images were distorted with only two types of distortions: 

Gaussian White Noise and Motion Blur. Hence, for the future work, more reference wood 

images with more distortions such as JPEG and JPEG2000 compression, JPEG blocking 

and interpolation could be included. Compression plays a crucial role when it involves 

Univ
ers

iti 
Mala

ya



120 

 

large database. Therefore, the reliability of compression in wood images can be studies 

by studying the effect of compressions to the wood images. In addition, camera distortion 

such as JPEG blocking and interpolation will be explored and added into the wood 

images. Furthermore, more human subjects can be involved in order to get more MOS 

values. Crowdsourcing such as Amazon Mechanical Turk can be used to obtain many 

scores from the human subjects around the world. Thus, a larger training and testing 

dataset can be formed to train SVR. This process may further improve the performance 

of the proposed NR-IQA metric. In addition, convolution neural network technique and 

extreme learning machines can be incorporated with a larger training and testing dataset.  

The proposed NR-IQA model can be extended to estimate noise parameters in wood 

images based on the calculated features. The image content measures are used to predict 

the noise variance in the image. The noise variance can be used to train SVR model where 

the  features of the wood images are mapped to the noise prediction parameter. After the 

training phase, the automatic parameter prediction could predict the noise level in an 

image (Mittal et al., 2012).  The noise level predicted could be used to adjust the amount 

of denoising strength of the filter in any filter based denoising algorithm (Martı & Manjo, 

2010).  The noise level estimated can be input to the filter based denosing algorithm.  A 

higher visual quality denoised image can be produced when the noise level is predicted 

accurately. Univ
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