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INVENTORY MODELS FOR DETERIORATING ITEMS WITH POWER 
PATTERN DEMAND RATE 

 
ABSTRACT 

Inventory management has become a prevalent topic in the field of operational research over 

some decades now. It cuts across many areas like management sciences, statistics and 

engineering. However, research focusing on inventory model with power demand pattern is 

quite limited. Demand patterns are defined as different ways by which products are removed 

out of inventory to supply customers demand during the schedule period. Power demand 

pattern permits suiting the demand to a more practical situation. In this research, four 

deterministic inventory model for deteriorating items with power demand pattern has been 

developed. We considered in the first models an inventory model for deteriorating item with 

power demand pattern and time-dependent holding cost without shortages, in the second 

model, we considered an inventory model for linear time-dependent deteriorating rate and 

time-varying demand with shortages completely backlogged, while in the third model, an 

inventory model for delayed deteriorating items with power demand considering shortages 

and lost sales. Linear deteriorating inventory policy for products with power demand pattern 

and variable holding cost considering shortages is developed in the final model with some 

additional features. In all the models, the objective is to determine the optimal replenishment 

strategy for the proposed inventory model to minimise the total inventory cost per unit time. 

Mathematical formulation for and analysis of the inventory problems were developed within 

the framework of the model assumptions. A system of differential equations incorporating 

initial and boundary conditions are given for the proposed inventory policy, and the problem 

solved using Microsoft@Excel@ Solver and maple software 2018 to obtain the optimal 

solutions for all the models. Numerical examples are given at the end of each developed 
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inventory model to establish the robustness and effectiveness of the models. Moreover, the 

sensitivity analysis of each model was carried out to see the effects of various changes in 

some possible parameters combination of the inventory policy. 

Keywords: Inventory control, Power demand pattern, Deterioration, Shortages, Linearly, 

Non-instantaneous. 
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MODEL INVENTORI UNTUK ITEMS YANG MEROSOT DENGAN 
KADAR PERMINTAAN CORAK KUASA 

 
ABSTRAK 

Pengurusan inventori telah menjadi satu topik yang sangat popular dalam bidang 

penyelidikan operasi sejak beberapa dekad yang lalu. Ia meliputi beberapa bidang seperti 

sains pengurusan, stastistik dan kejuruteraan. Walau bagaimanapun, penyelidikan yang 

memberi tumpuan kepada model inventori dengan permintaan corak kuasa agak terhad. 

Corak permintaan didefinasikan sebagai cara yang berbeza di mana produk dikeluarkan 

daripada inventori untuk dibekalkan kepada pelanggan dalam tempoh yang dijadualkan. 

Permintaan corak kuasa boleh menyesuaikan permintaan kepada situasi yang lebih praktikal. 

Dalam penyelidikan ini, empat model inventori deterministik untuk item yang semakin 

merosot dengan permintaan corak kuasa telah dibentuk. Dalam model pertama, kami 

mempertimbangkan satu model inventori untuk item yang semakin merosot dengan 

permintaan corak kuasa dan kos pemegangan bergantung kepada masa tanpa kekurangan. 

Dalam model kedua, kami mempertimbangkan satu model inventori di mana kadar merosot 

bergantung kepada masa secara linear, permintaan corak kuasa dan kekurangan dipenuhi 

sepenuhmya. Untuk model ketiga, kami membentuk satu model inventori dengan 

kemerosotan tertangguh, permintaan corak kuasa dengan kekurangan dan hilang jualan. 

Model terakhir kami menggabungkan kesemua ciri tiga model di atas dimana corak merosot 

adalah linear, permintaan corak kuasa, kos pemegangan berubah dan kekurangan dibenarkan. 

Dalam semua model, objektifnya adalah untuk menentukan strategi pengisian semula dalam 

model inventori yang optimum supaya meminimumkan jumlah kos inventori seunit masa. 

Perumusan matematik dan analisis masalah inventori telah dirumuskan berdasarkan andaian 

model. Satu sistem persamaan pembeza dengan syarat awal dan sempadan telah diberikan 

untuk menjelaskan inventori yang dicadangkan dan masalah telah diselesaikan dengan 
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perisian Microsoft@Excel@ Solver dan maple 2018 untuk mendapatkan penyelesaian 

optimum untuk semua model. Contoh berangka telah diberikan di akhir setiap model untuk 

menunjukkah keberkesanan setiap model itu. Selain itu, analisis kepekaan telah dijalankan 

untuk melihat kesan beberapa perubahan yang mungkin bagi setiap model inventori yang 

telah dibentuk 

Kata kunci: Kawalan inventori, Permintaan corak kuasa, Kemerosotan, KekuranganLinear, 

Tidak serta merta. 
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CHAPTER: INTRODUCTION 

 1.1    Introduction 

This introductory chapter aims to outlines the background of the research, set the 

statement of the problem, state the research purpose and relevance of the study, discuss the 

research outputs and outcome, indicate the methodology for the research employed in this 

research work and introduce the organisation follows in the thesis. 

 

1.2  Background of the Study 

The target of inventory management is most appropriately described as when the 

inventory should be replenished and how much should be added to the inventory. This 

situation has led to inventory problems consisting of making optimal decisions to either 

minimise or maximise the total cost of the inventory system. 

Inventory in general terms can be defined as physical stocks of good kept in store to meet 

future demand. It also means a usable, but idle resources that have economic value in material 

management. It is essential to keep physical stocks in the system to meet anticipated demand, 

failure to do can lead to non-availability of materials/goods when in need which will lead to 

disruption in production or services to be delivered. According to Muckstadt et al. (2010), 

we daily experience inventory in a different form at a very specific point in time. For a 

household, we stock our kitchen with different types of foods items not necessarily needed 

at that specific point in time, but essential to be used in future time. Manufacturers stock their 

facilities with inventories of finished goods, raw materials, and work in progress. 

Wholesalers and retailers stores are filled with materials in excess to prevent stock-out when 

the products and the materials are needed. Hospital and health centres stocked drugs and 

other related materials to be used in the nearest future. Security personnel stocked their 
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armouries with different equipments and materials to maintain laws and order in the society 

when the need arises. These and many other more examples tell us that inventory exists as a 

result of policy and technology. 

One of the most vital component of an inventory model is demand. We keep inventories 

in order to meet the demand, fulfilled order, and satisfied requirement. Inventory problems 

subsist as a result of demand; if not, inventory problem will not take place. Over decades, 

inventory problems have resolved round the case of demand been monotonic or a fixed 

function. Demand is said to be constant at the fully developed stage of the product’s life cycle 

while it is monotonic at the onset or last stage of the life cycle of the items. Majority of the 

available inventory models deals with these kind of demand functions. In reality, this is 

almost impossible. It is better to assume that, the demand of an items is dependent on 

time/time-varying. 

Deterioration is a common phenomenon in inventory model. Some existing models deals 

with non-deterioration items while others deal with instantaneous deterioration, and still 

others considered delayed deteriorating items. In this technological age, some items will 

maintained their freshness over a period of time before they goes bad. It will be appropriate 

to consider this type of delayed deterioration which is a very important in inventory model.  

In these recent days, varying holding cost is engaging the attention of many researchers 

as a result of its important in maintaining inventory. It is usually assumed that 

holding/carrying cost is known and always considered as constant. On the contrary, when 

inventory is stored for later usage, then it is rather important to preserve the physical states 

of the inventory at hand. To be current and up-to date with the present market reality, time-

dependent holding/carrying cost is very essential to consider in inventory model problems. 

In inventory model, when the shortages happen, it is presumed that the whole demand is 

either totally lost or totally backlogged. Realistically, this situation is not true. During the 

Univ
ers

iti 
Mala

ya



3 
 

stock-out time, certain consumers are ready to hold on for the succeeding refill and accept 

their orders at the termination of shortage time. Other will prefer alternative way of 

purchasing from other available source. Partial backlogging or lost sales best describes this 

type of situation in the modelling of inventory. In many cases, consumers who once suffered 

from stock-out may not buy the items again from the individual suppliers, and they usually 

turn to another stores to buy the items. As a result of this, a bulky percentage of the 

transactions are lost, resulting in a little profit. This reason make partial backlogging an 

important factor to be considered when setting up mathematical inventory model. 

Organization or business enterprise can profit immensely from making use of 

mathematical models for inventory. Mathematical models are use to maximize profits and/or 

to minimize cost and to forestall having a dormant commodity. The models help the business 

to discover the optimal inventory period of times and to also recommend the total amount of 

the product that must be ordered or produced to reduce the cost. For any business enterprise 

or organization to benefit maximally from mathematical models, firstly, mathematical model 

that will be formulated must put into consideration several key factors. Secondly, using the 

model they evaluate the order quantity and optimal cycle times. Lastly, the business 

enterprise or organization must make use of computer often to keep the record of the 

inventory positions, costs and other factors so that they can modify the models, if they so 

desire.  

The target of this thesis is to develop various mathematical inventory models with power 

demand patterns and time-dependent deterioration rate and time-varying holding cost which 

are some of the gaps discovered in the available academic literature. 
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1.3  Statement of the Problem 

The purpose of this research work/thesis is to improve on the present state of knowledge 

in the subject area of mathematical modelling of inventory control and management through 

developing theoretically sound and empirically feasible generalised inventory model 

framework to help the managers of inventory to determine the optimal order and production 

size that minimise the total inventory costs. The purpose is demonstrated in four salient 

objectives:   

1.  To propose an inventory model for linearly time-dependent deteriorating items with 

power pattern, shortages and time-varying demand.  

 2.  To propose an inventory model for delayed deteriorating items with power demand 

considering shortages and lost sales.  

3.  To propose an inventory model for deteriorating items with time-varying demand rate 

and time- dependent holding cost without considering shortages  

4.  To propose an inventory model for a linear inventory policy for items with power demand 

pattern and variable holding cost considering shortages.  

 

1.4  Aims and Objectives of the Research 

The impetus of this research is to develop/advance new models and to extend the previous 

research in the economic order quantity model by adding dependent linearly deteriorating 

items that have power pattern to determine the optimal minimum cost. It is of interest to 

consider a model with time-dependent holding cost as against the previous models, which 

assumed that holding cost is constant. Also, this research will examine delayed deteriorating 

items with power demand considering shortages and lost sales. Moreover, a linear 

deteriorating inventory policy for items with power demand pattern and time-dependent 

holding cost with shortages will be addressed. Besides, the outcome of the models will lead 
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to recommendations on how to exploit these models in practical and theoretical ways. 

 

1.5  Relevance of this study 

The research is relevant to both academic and industry in the sense that, in educational, it 

will improve the present state of knowledge and understanding on the field of inventory 

management and also provide a guide for subsequent research work, and in the industrial 

area, it will help to minimise/maximise the costs and the profits which is the sole aims of 

every industry.  

 

1.6  Research outputs and outcomes 

The outcomes of this research will be enumerated below: 

 1.  To develop an inventory model for deteriorating item with power demand pattern and 

time-varying holding cost as against the usual constant holding cost.  

2.  To develop the inventory model with linearly dependent deteriorating items as against 

the usual assumption that the deterioration is constant.  

3.  To develop a new model for linear deteriorating inventory policy for items with power 

demand pattern and variable holding cost considering shortages from all the three models 

mentioned above.  

4.  To develop an economic order quantity model for delayed deteriorating items with power 

demand pattern considering shortages and lost sales.  
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1.7  Research Methodology 

This research work is a modelling research work that has to be carried out mainly by  

the following steps: 

1.  Literature Review 

   Comprehensive literature review were carried out under the following subtopic:   

        - Classical EOQ (economic order quantity models)  

        - Economic production quantity model  

        - Inventory models with constant deteriorating rate  

        - Economic order quantity ( EOQ) model with power demand pattern  

        - Economic production quantity (EPQ) model with power demand pattern  

        - Deteriorating inventory model with shortages partially backlogged  

        - Inventory model for deteriorating items with power demand and shortages 

         completely backlogged  

2.  Decision Variables 

Analysis of the inventory and formulation of the problem are developed within the 

framework of assumptions made for the model to determine the inventory policies of the 

system. The decision variables were identified and solutions provided.  

3.  Model Building 

The formulated inventory problems are represented by the system of ordinary differential 

equations (ODE) with both initial and boundary conditions.  

4.  Developing Algorithms and Solution Approach 

Mathematical models are developed for each of the different inventory problems. The aims 

are to establish the inventory policy that minimises/maximises the total cost/profits per unit 

time of the formulated models. Solvers like Maple, Excel will be used to solve the non-linear 

equations concerning decision variables. Moreover, some numerical examples will be 
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presented to illustrate the applications of the developed models.  

5.  Performance Measure 

Sensitivity analysis on the decision variables with regards to changes in the parameter of the 

model will be carried out. Specific conclusions will be made at the end of each develop 

models.  

1.8  Organisation of the Thesis 

 The contents of the thesis will be divided into six chapters. 

Chapter One: Presented introduction of this work. This chapter begins with the introduction 

of the research, background of the study, statement of the problem, aims and objectives of 

the research, relevance of this study, research outputs and outcomes, research methodology 

and organisation of the thesis. 

Chapter Two: Discusses literature review about the work. This chapter reviews the 

published works of literature related to mathematical modelling on inventory models with 

time-varying demand, inventory models with deteriorating items, inventory models with 

power demand pattern, inventory models for non-instantaneous (delayed) deteriorating 

items, inventory models with shortages and production inventory models for deteriorating 

items and a time-dependent deteriorating inventory model for items with power demand and 

variable holding cost considering shortages. 

Chapter Three: Discusses the development of the inventory model for deteriorating items 

with power demand pattern and time-dependent holding cost without shortages. This chapter 

deals with the inventory model for deteriorating items with time-varying holding cost. 

Shortages are not considered in the policy. The chapter started with an introduction and 

followed by assumptions and notation employed in building the model. Mathematical 

formulation and solution to the formulated problem were given. Moreover, numerical 
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examples and sensitivity analysis to show the effects of various changes in some possible 

parameters was performed. The chapter ends with concluding observations. 

Chapter Four: Proposes an inventory model for linearly time-dependent deteriorating items 

with power pattern, shortages and time-varying demand. This chapter is concerned with the 

development of an EOQ model for linearly time-dependent deteriorating items. The chapter 

begins with an introduction follows by modelling assumption, mathematical model 

formulation was developed with the solution provided. Furthermore, numerical illustration 

was given to determine the accuracy of the model. Also, a sensitivity analysis was carried 

out along with concluding remarks at the end of the chapter. 

Chapter Five: Proposes a linear deteriorating inventory model for items with power demand 

pattern and variable holding cost considering shortages. This chapter presents an inventory 

model for items that possess a deteriorating linear rate with holding cost, which is also time-

dependent. The demand is assumed to follow a power demand pattern. The chapter begins 

with the introduction, notation and assumptions for the model is also provided. The 

mathematical formulation of the problem follow this, and the solution method is given. A 

numerical example illustrates the model and graphical representation of sensitivity analysis 

to show the influence of various changes in some possible parameters is provided based on 

the numerical example. Concluding observations is given at the termination of the chapter. 

Chapter Seven: Highlights the overall summary, conclusion and next step of research. This 

section deals with the overview the entire work, the outcome with research contributions and 

further research direction for future action. 

References, List of Publications and Appendix The thesis ends with references, list of 

publications and appendix arrange in that order. 
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       Figure 1.1: An illustrative outline of the organisation of the thesis. 
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CHAPTER 2:  REVIEW OF LITERATURE 

2.1  Introduction 

The investigation of academic publications related to inventory models has engaged the 

attention of many researchers and has been discussed extensively over the last many decades. 

Numerous research works have been produced where various inventory models were 

introduced and developed. Most of these works centred significantly on the development of 

solutions of economic order quantity models. Different aspects of EOQ models such as 

deterioration, shortages, instantaneous or non-instantaneous replenishment, different type of 

demand has been discussed and analysed. 

In this section, a review of the literature of both the EOQ and EPQ model related to this 

thesis will be discussed here. 

2.1.1  Inventory Model with Time-Varying Demand 

The first (EOQ) economic order quantity formula was propounded by Harris (1913) in 

1913, and since then, many researchers have analysed different kind of inventory system, 

modifying some of the assumptions in the first model. It is assumed in an economic order 

quantity model that the demand for goods is unchanging. Nevertheless, this presumption is 

not truly popular or realistic in practices, and it will be preferable to take into consideration 

that the demand varies with time. The review of inventory models with time-varying demand 

is critical since it permits to appropriately modelling the behaviour and evolution of the 

inventory according to Sicilia et al. (2014). 

Several researchers have worked on inventory models in which the demand varies with 

time. Donalson (1977) analysed an inventory replenishment models with traditional no-

shortage strategy for a linear drift in demand using the method of calculus to obtain optimal 

time of replenishment. Silver (1979) studied an inventory replenishment selection rule for a 
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linear trend in demand. Ritchie (1984) analysed a simple solution method for an inventory 

model with demand linearly growing. He extended the time planning horizon of Donaldson 

analytical solution. 

Mitra et al. (1984) designed a technique for determining an economic order quantity model 

with decreasing and increasing linear trend in demand. Goswami & Chaudari (1991) 

considered a model for an economic order quantity with a linear direction in demand 

considering shortages. Goswami & Chaudari (1992) proposed an order-level inventory 

model for degenerating items without shortages. The deterioration rate is time-varying, and 

the demand rate is dependent upon time. Hariga (1993) discussed on solution procedure for 

solving an inventory replenishment policy with a linear trend in demand for both increasing 

and decreasing markets. Teng (1996) developed a model for a deterministic inventory 

replenishment system with a linear trend in demand. Zhao (2001) proposed a heuristics to 

solve a replenishment system when the shift in demand is linearly diminishing. Lo et al. 

(2002) developed a standard no-shortages inventory replenishment policy for linearly 

increasing and falling trend in demand, and he provided a particular solution method to derive 

an optimum solution for the system. Goyal & Giri (2003) developed a heuristics procedure 

for evaluating replenishment space of time for an inventory with a linear diminishing demand 

rate over a definable horizon. 

Yang et al. (2004) proposed a solution procedure to solve a non-linear replenishment 

policy with decreasing demand. Zhou (2003) analysed a deterministic replenishment policy 

for a multiples warehouses with demand varying with time at a decreasing rate, shortages 

were allowed in the policy. Zhou et al. (2004) analysed a deterministic time-varying demand 

lot-sizing model with waiting-time-dependent partial backlogging. Teng et al. (2005) 

considered a deterministic economic production quantity model with demand and cost 

varying with time. Jiafu et al. (2008) examined a combined heuristics for determining order 
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quantity under demand that changes with time. 

Omar & Yeo (2009) developed an inventory model that fulfilled a continuous time-

varying demand. Zhou et al. (2016) presented an optimum production inventory model for 

an integrated multiple-stage supply chain with time-varying demand. Escuin et al. (2017) 

proposed an inventory replenishment system under stochastic time-varying demand. 

Benkherouf et al. (2017) investigated a limited horizon inventory control problems for two 

complementary products. The demand is assumed to be time-dependent. Other notable and 

recent publication in this area are: Kumar (2019). 

 

2.1.2  Inventory Models with Deteriorating Items 

Deterioration is one of the terms that cannot be overlooked in inventory management. It 

is a known fact that almost all items deteriorate over a given period. In most items, the rate 

at which the items deteriorate is so insignificant that there is little need to consider its values 

to determine the economic lot sizes. On the other hand, there are area such as the production 

of chemical like turpentine, alcohol etc., electronics components such as computer parts, 

chips, resistors, capacitors, touch screen monitors etc., perishable foods such as bread, milk, 

meats, vegetables etc., that the deterioration which may occur during reasonable storage 

period is sufficiently considerable that such loss cannot be ignored.  

Deterioration can, therefore, be described as decay, spoilage or damage that inhibits the 

commodities from being utilised for its intended objective. Deterioration can be categorised 

into two types which are: (i) Process deterioration which affects the inventory system, by 

either raising the operating costs or raises the probability of failure and (ii) Product 

deterioration which reduces the on-hand inventory level or reduces the customers demand. 

Deteriorating items are the commodity that has a fixed and short period of the lifetime. 

Examples include, among others: yoghurt, meats, fish, fruits, vegetables, drugs, and so forth. 
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The study of deteriorating inventory models problem for items started with Whitin (1957) 

who proposed a fashion item that deteriorates at the close of the depository period. Ghare 

(1963) was the first to model a negative exponential decaying inventory. They observed that 

decay follow a pattern in which at any given period, it is proportional to the magnitude of the 

stock at the beginning of the period. Covert & Philip (1973) expanded the last model by 

taking into consideration deterioration as a Weibull distribution . 

Mishra (1975) presented a production lot-size inventory model for degenerating items 

with a fixed and variable deterioration rate. Dave (1979) studied an inventory model for a 

discontinuous-in- time order level for degenerating items with instantaneous replenishment.  

Also, Dave & Patel (1981) considered an inventory model for commodities that have a 

constant deterioration and the demand is time proportional with immediate replacement. Mak 

(1982) proposed a production lot-size inventory model for an exponentially decaying items 

considering shortages. He obtained an approximate solution for the optimal production lot-

size, the production period, total inventory cycle time and the average total cost. Nahmias 

(1982) provided the first detailed reviews on the problem of finding a satisfactory ordering 

policies for fixed lifetime decomposable inventory and continuously exponential decay 

inventory.  

Chowdhury & Chaudhuri (1983) carried out an order-level procedure for deteriorating 

products considering rates of replenishment as finite and allowed shortage. Elsayed & Teresi 

(1983) proposed an analysis for degenerating inventory model for commodities with 

shortages allowed. Two types of models were examined. Model 1 has a deterministic demand 

with finite rate of production while model 2 has a random probabilistic demand and 

deterioration rate is two-parameter Weibull distribution. Hollier & Mak (1983) proposed an 

inventory replenishment approach for decaying products. Constant deterioration rate was 

assumed, and the demand rate is decreasing and exponentially negative. Raafat et al. (1991) 
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analysed an inventory model for deteriorating products with constant decline. He obtained 

an alternative method for Mak1982 production method where he got a correct average total 

cost expression for the production lot-size system.  

An inventory model for constant deteriorating items with inventory-level-dependent 

demand rate and constant demand was investigated by Giri et al. (1996). Bhunia & Maiti 

(1998) considered an inventory model with a finite rate of replenishment and dependent on 

the instantaneous inventory level for deteriorating items. Two models were expanded, one 

with shortages and other without shortages, and the price of deterioration and demand are 

found to be a direct increasing function of time. Deng et al. (2007) analysed and examined 

some earlier work on inventory models for degenerating items with ramp types demand rate. 

He corrected the errors in the previous calculations and proposed an efficient and thorough 

method of obtaining an optimal solution. Some excellent survey on recent trend in modelling 

continuously deteriorating items were carried out by (Raafat 1991; Goyal & Giri (2001); Li 

et al. 2010; Bakker et al. 2012; Janssen et al. 2016). Banerjee & Agrawal (2017) developed 

an inventory model for degenerating items in which the selling price of the product depend 

directly on the freshness of the product. Shortage was considered as a lost sale. 

It has been discovered empirically that bankruptcy and life expectancy of many products 

can best be demonstrated in term of Weibull distribution. This empirical discovery has 

motivated many researchers to represent the time to deteriorate of an item by a Weibull 

distribution. An EOQ model in which the rate of deterioration follows a two-parameter 

Weibull distribution (WB) without shortages was formulated by Covert & Philip (1973). This 

model was further generalised by Philip (1974) considering three-parameter Weibull 

distribution. Sarkar et al. (2013) proposed a deteriorating inventory model for commodities 

with a finite rate of production and time-varying demand over a limited planning horizon.  

(Sanni & Chukwu 2013; Jain 2016) presented an inventory model with gradient-type demand 
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and three-parameter Weibull distribution deterioration considering shortages. Chakraborty et 

al. (2018) proposed two warehouse inventory model with gradient type demand rate, 

considering deterioration rate as three-parameter Weibull distribution with acceptable delay 

in payment accommodating shortages that are backlogged partially. Also, (Jalan 1996; Wu 

2001; Rajeswari & Vanjikkodi 2012; Mukhopadhyay et al. 2005) derived an economic order 

quantity (eoq) model for commodities with two-parameters Weibull distribution 

deterioration and demand is assumed to be linearly increasing with shortages. 

Other interesting works in this direction can be found in (Kaliraman 2019; Mishra 2016a; 

Ritha & Vinoline 2018; Santhi & Karthikeyan 2017; Shaikh et al. 2019; Tuan et al. 2017; 

Singh et al. 2018; Pramanik & Maiti 2019). 

 

2.1.3   Inventory Models with Power Demand Pattern 

Demand pattern is defined as distinct methods by which items are removed out of 

inventory during the scheduling session to satisfy the demand of the customers. The demand 

pattern is said to be uniform if the rate of demand is unchanged during all the inventory 

cycles. One of the advantages of demand pattern is that it enables suiting the demand for 

more practical situations. Thus, the pattern permits representing the behaviour of demand 

when it is uniformly distributed throughout the period, and also to reflect sales in different 

phases of the product life cycle in the market. For example, the demand for inventory 

increases overtime during the growing period and a decrease in the decline phase. 

Many researchers have developed an inventory model that the demand follows a power 

pattern. Datta & Pal (1988) seem to be the first to examine an order level inventory model 

for items with power demand pattern and the deterioration rate is variable. The demand is 

considered as both probabilistic and deterministic. Gupta & Jauhari (1995) established an 

EOQ model for deteriorating items with power demand pattern considering the permissible 
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delay in payment. Abdul-Jalbar et al. (2009) presented a two-level echelon inventory model 

for items with power demand and shortages. They assumed that the manner at which items 

are taken out from the inventory to the retailers follows a power pattern. 

Also, Singh et al. (2009) proposed an inventory model for deteriorating items with power 

demand pattern considering holding cost as an incremental function of time under-inflation 

and allowed shortages. Sarbjit & Shivraj (2011) in their paper derived an inventory model 

for deteriorating products with both probabilistic and deterministic power demand pattern. 

The rate of deterioration is considered as a variable, incorporating inflation and permissible 

delay in payment. (Krishnaraj & Ramasamy (2012); Mishra et al. (2012)) proposed an 

inventory model for perishable items with power demand pattern under two-parameter 

Weibull distribution deterioration with or without shortages. 

An inventory model for non-instantaneous Weibull distribution deterioration items under 

power demand pattern was investigated by Palanivel & Uthayakumar (2014). They 

considered shortages in their model and assumed holding cost is a linearly increasing function 

of time during storage. Rajeswari et al. (2015) examined a fuzzy inventory system for items 

that deteriorate with power demand pattern and shortages are partially backlogged. Pradhan 

et al. (2016) proposed an inventory model for deteriorating items under two-parameter 

Weibull distribution and power demand pattern. San-Jose et al. (2017b) examined an 

optimum inventory system for items that deteriorate with power demand pattern. They 

proposed a three-parameter Weibull distribution deterioration rate with shortages partially 

backlogged. 

Also, San-Jose et al. (2017a) propounded an optimal inventory policy for degenerating 

items with power demand pattern with shortages partially backlogged. Sharmila & 

Uthayakumar (2018) investigated a two-warehouse inventory model for decaying items with 

power demand pattern. The holding cost is time-varying and trade credit is offered. 
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2.1.4  Inventory Models for Non- Instantaneous(delayed) Deteriorating Items. 

Many researchers believe that the deterioration begins in an instant as the retailer receives 

the commodity. However, this is not always true since some products will have a period to 

retain the freshness of their original quality. During this period, there is no deterioration taken 

place. Wu et al. (2006) described this situation as "non-instantaneous deterioration", and he 

was the earliest to introduced and analysed an optimum replenishment model for non-

instantaneous degenerating products under dependent stock demand with partial 

backlogging. In reality, this type of situation does occur in some commodities such as fruits, 

first-hand vegetable and so forth which possess a short life-span to maintain a fresh quality, 

during this interval, there is almost no spoilage. Shortly, after this interval, some of the 

products begin to degenerate. 

The impression that the deterioration commences from the instant of arrival in stock, for 

such type of items can mislead retailers to make inaccurate replenishment policy as a result 

of overestimate of the total relevant cost. It is, therefore, significant to examine the inventory 

problem for the non-instantaneous degenerating item in the field of inventory management. 

Ouyang et al. (2006) proposed an appropriate inventory model for non-instantaneous 

deteriorating items considering permissible delay in payment. The work generalised many 

previous models that are related to their work. Chung (2009) provided a full proof on the 

solution technique for non-instantaneous deteriorating products with permissible delay in 

payment. He corrected some errors in the previous works. Geetha & Uthayakumar (2010) 

propounded an inventory model for a non-instantaneous degenerating products considering 

delay in payment with shortages partially backlogged. 

An inventory model for non-instantaneous decaying items weighing the effect of 

preservation technology investment on inventory parameters was presented by Dye (2013). 

Shah et al. (2013) studied an optimising and marketing inventory model for non-
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instantaneous degenerating items in which the advertisement and selling price depends on 

the demand rate. Maihami & Abadi (2012) presented a joint control and pricing inventory 

model for non-instantaneous deteriorating items considering the permissible delay in 

payment and shortages are partially backlogged. 

Also, Maihami & Kamaladi (2012) examined an inventory control model and joint pricing 

system for a non-instantaneous degenerating product with price and time-dependent demand. 

They incorporated shortages in the model that is partially backlogged. Soni (2013) developed 

an optimum replenishment model for non-instantaneous deteriorating items with permissible 

delay in payment for items that have the price and stock dependent demand. Wu et al. (2014) 

commented on the work of Soni. They modified and corrected the deficiency found in their 

work. Mahmoudinezhad et al. (2014) proposed an inventory model for non-instantaneous 

degenerating products with permissible delay in payment under imperfect quality and 

inflation.  

An optimising and replenishment system for non-instantaneous deteriorating items under 

stochastic demand and promotional efforts was developed by Maihami & Karimi (2014). 

Chang et al. (2015) investigated an inventory model for optimum pricing and ordering 

policies for non-instantaneous deteriorating items with order size-dependent and permissible 

delay in payment. Zhang et al. (2015) formulated an optimal dynamic pricing and 

replenishment cycle model for non-instantaneous deteriorating items under inventory level 

and price-dependent demand. Anchal et al. (2016) discussed on inventory model for non-

instantaneous deteriorating items considering trade credit financing facility with shortages 

partially backlogged. They thought the deterioration rate as the variable with linear demand. 

Analysis of sensitivity of an inventory model for a non-instantaneous and time-varying 

deterioration without shortages was carried out by Malik et al. (2016). Other recent works in 

this direction were carried out by following authors: (Sharma et al. 2016; Tawari et al. 2016; 
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Udayakumar & Geetha 2018; Rangarajan & Karthikeyan 2017; Li et al. 2019; Jaggi et al. 

2018). 

2.1.5   Inventory Models With Shortages 

In inventory management, shortages do occur as a result of the low level of stock and the 

demand cannot be fully satisfied. Shortages can also occur as a result of the stock not been 

persistently documented (periodic inspection), or the stock is ordered behind schedule or 

when the requested quantity arrived late.  

Backlogging occurs as a result of shortages. Researchers sometimes do assume partial 

backlogging while others considered full backlogging. Completely backlogged happens 

when the customers are ready to wait until the arrival of the future order; otherwise, the 

customers leave the system. Partial backlogging occurs when in a specific situation in the 

time of stock-out period, the customers are not willing or cannot stay; hence, their demand is 

satisfied from other sources. 

The duration of discontinuing time for replenishment is the primary factor in calculating 

backlogging, and it is discovered that the lingering the waiting time, the lower the 

backlogging rate. Customers who experience shortages may not repurchase the goods from 

the respective suppliers and turn to another source to buy their products. As a consequence 

of this, a colossal proportion of sale is lost, leading to a dwindling profit. Partial backlogging 

is, therefore, a necessary factor to consider in inventory management. 

Numerous researchers have occupied their concentration on inventory models with 

shortages under partial backlogging. Datta & Pal (1991) formulated an inventory model 

under-inflation and time-value of money considering the demand rate as linear time-

dependent with shortages allowed. Abad (1996) presented a generalised model of dynamic 

pricing and lot-sizing model for perishable products with shortages, and shortages are 
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backlogged partially. Chakrabati & Chaudhuri (1997) presented a deteriorating inventory 

replenishment model for products with a linear slope in demand under a finite time horizon 

with shortages allowed in every cycle. Chung & Tsai (1997) developed an algorithm to solve 

an EOQ model for degenerating items with the demand that has a linear trend and allowable 

shortages. They corrected the shortcoming in the previous model. 

An integrated inventory model for perishable items considering the effect of pricing, 

advertisement and backorder on the profit of the system was carried out by Luo (1998). San-

Jose et al. (2009) proposed a generalised EOQ inventory model with shortage allowed and 

partially backlogged. An optimal pricing and lot-sizing model for perishable items under 

limited production incorporating partial back-ordering and lost sale was formulated by Abad 

(2003). Yang (2004) derived an inventory model for degenerating items for two-warehouse 

under-inflation and allowed shortages. They obtained an optimal solution that is unique and 

less expensive to operate. Chen et al. (2007) studied an optimum replenishment model for 

demand that is time-varying, continuous and deterministic with shortages in product life 

cycles. Taleizadeh et al. (2013a) addressed a deterministic inventory control model for 

perishable product with special sale and shortages. 

Also, Taleizadeh et al. (2013b) considered an EOQ model with partial delayed payment 

and shortages that are partially backlogged. Jain (2016) proposed an EOQ inventory model 

for products with demand that is a ramp type, considering degeneration as three-parameter 

Weibull distribution with shortages. Later, Rasel (2017) developed a deterministic inventory 

model with two-parameter Welbull distribution deterioration, and the demand rate is a 

gradient type function of time. Shortage is permitted and wholly backlogged. Recently, 

Pervin et al. (2018) suggested a deterministic inventory control model for deteriorating 

products with time-dependent demand and time-varying holding cost, and the deterioration 

rate is Weibull distribution. Shortages were allowed in the system. 
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2.1.6  Inventory Model with Time-Dependent Holding Cost 

Holding cost has been considered in the economic ordered quantity model as a constant 

function of time. In reality, holding cost can also vary with time since it is usually connected 

with the storage of an item until usage or store inventory. 

In this direction, Naddor (1966) seems to be the first to establish a derivation of total 

inventory cost for a demand rate that is constant for a lot size system by considering holding 

cost in the form 𝑞𝑚𝑡𝑛 where 𝑞 is the amount of stock held for a time 𝑡 and 𝑚, 𝑛 are non- 

negative integers. Muhlemann & Valtis-Spanopoulos (1980) modified the traditional EOQ 

model formula by considering the rate of demand as a constant and the holding cost as a 

variable function and expressed them as a percentage of the average value of the capital 

invested in the stock. Later, Weiss (1982) presented a generalised economic order quantity 

model by taking the unit cost, selling price, demand rate and set up cost as a constant 

parameter and holding cost is considered as a non-linear function of the duration of time the 

item remained in stock. 

Also, Baker & Urban (1988) propounded an inventory model for an item with the demand 

rate considered as inventory level dependent. The model maximises the average profit per 

unit time by taking the optimum order level and order point as the decision variables. Goh 

(1994) proposed a deterministic, continuous inventory model for a distinct item. The rate of 

demand is inventory level-dependent, and the holding cost varies with time. Two possible 

cases were examined. The first for a non-linear function of the duration of time the item is 

held in inventory and second for the non-linear function of the amount of the on-hand 

inventory. 

Furthermore, Giri & Chaudari (1998) came up with a deterministic perishable inventory 

model with demand rate depending on stock, and holding costs are treated in two way viz: a 

non-linear function of the time distance for which the item held in stock and functional form 
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of the amount of the on-hand inventory. Shao et al. (2000) established an inventory model 

for the optimum target for a process under multiple markets and holding cost is considered 

as a variable function of time. 

Other authors that considered holding cost as variable are (Alfares, 2007; Pando et al. 

(2012, 2013); Sazvar et al., 2013; Ferguson et al., 2007; Tripathi, 2013; Mishra et al. 2013; 

Amutha & Chandrasekaran, 2013; Alfares & Ghaithan, 2016; Shukla et al. 2017; 

Uthayakumar & Karuppasamy, 2017; Ghasemi & Afshar, 2013). 

  Besides, Alfares & Ghaithan (2019) carried out a thorough research paper review that 

classified the formulation of EPQ and EOQ models under the presumption of variable 

holding cost. Different types of holding costs are considered, which includes time-dependent 

variable holding cost, stock dependent variable holding cost and multiple dependent variables 

holding cost. Moreover, San-Jose et al. (2019) propounded an inventory model for an item 

in which the demand rate is dependent on selling price and time power function. Holding 

cost is presumed to be the power function of time. The model maximises the total inventory 

profit per unit time by considering the inventory cycle and selling price as the decision 

variables. 

2.1.7  Production Inventory Models for Deteriorating Items 

Economic production order quantity (EPQ) models are applicable for the instances where 

the company acquires its stock over some period or where the products are manufactured 

internally rather than obtained. Several researchers have deliberated on deteriorating 

production inventory models for items.  

Mishra (1975) seems to be the first researcher who presented a production lot-size 

inventory model for degenerating products in which the deteriorating rate is both time-

varying and constant. Shortages are not allowed in the model. Other notable works in this 
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direction are (Duan et al, 2018; Goyal & Gunasekaran, 1995; Widyadana & Wee, 2011; 

Taleizadh et al. 2015; Tai  2013; Bukhari & El-Gohary 2012). 

  In the above models, shortages are not put into consideration, Balkhi & Benkherouf (1996) 

established a production lot-size inventory models for degenerating products under random 

time-varying demand and production rate. Shortages are allowed. Samanta (2016) formulated 

an economic production quantity inventory model for degenerating items with shortage 

tolerated. A deteriorating production inventory model for product with finite designing 

horizon and linear time-varying demand were presented by (Khanra (2016); Sana et al. 

(2004)). Shortage is allowed and wholly backlogged. Mishra (2012) proposed a production 

inventory model for degenerating products in which demand, production, deterioration and 

other logistic depend on time with shortages allowed, and wholly backlogged. 

  Krishnamoorhi & Sivashankari (2016) considered a three-level production inventory 

model for deteriorating products with the rate of production shown as a variation. Shortage 

is permitted. A sustainable economic production quantity inventory model that incorporate 

various form of shortages was studied by Taleizadeh et al. (2018). 

  Bard & Moore (1990) studied a production planning inventory model considering demand 

as variable. A production inventory planning model for accepting an order when the demand 

is not satisfied was proposed by Aouam et al. (2018). Chen et al. (2014) put together the 

deteriorating economic production quantity inventory model for commodities with up-stream 

complete trade credit and permissible delay in payment. 

  A production inventory model with price and quality decisions in production was presented 

by Jalali et al. (2019). Mokhtari et al. (2017) derived a computational approach to the 

economic production quantity inventory model for the perishable product in which the 

demand rate is probabilistic and stock-dependent. Shortages are accepted and wholly 

backlogged. Pal et al. (2015) proposed a deteriorating economic production quantity 
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inventory model for product with gradient type demand and putting over-valuation into 

consideration under fuzziness. The rate of deterioration is two-parameter Weibull 

distribution, and time horizon is finite, and shortages are allowed. 

  Viji & Karthikeyan (2018) proposed an economic production quantity inventory model for 

three-stage of production with the deterioration rate following a two-parameter Weibull 

distribution. Shortages are accepted. Zhao et al. (2016) presented an optimal production 

quantity inventory model for a multi-stage supply chain. The demand rate is the time variable, 

and the model was considered over a limited planning horizon. Shah &Vaghela (2018) 

reviewed economic order quantity (EPQ) deteriorating inventory model for commodities in 

which demand depend on price, subject to two-level marketing credit financing. 

2.1.8  Literature Gap 

To the best of our understanding, there are no/few mathematical inventory models 

developed under the following headings which this thesis intended to address.   

• Deteriorating inventory model for items with time-varying demand rate and time-dependent 

holding cost with no shortages.  

• Inventory model for items with linearly time-dependent deteriorating rate and           

time-dependent holding cost with power pattern demand considering shortages.  

• Delayed deteriorating inventory model with power pattern demand rate and lost sale with 

shortages partially backlogged.  

 • Inventory policy for items with linear time-dependent deteriorating rate, variable 

holding cost and power demand form rate with partially backlogged shortages.  
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CHAPTER 3: AN INVENTORY MODEL FOR DETERIORATINGITEMS WITH 

TIME-VARYING DEMAND RATE AND TIME-DEPENDENT HOLDING COST 

WITHOUT SHORTAGES. 

3.1 Introduction 

In the management of inventory, many mathematical inventory models have been 

developed over many decades to contain different scenarios. Some models considered where 

the holding or carrying cost, set-up cost, demand rate as a fixed function concerning time. 

All this has led to a wide variation of model in the economic ordering quantity and economic 

production quantity when compared with the real situation in the world under inventory 

problems. 

  It is, therefore, necessary that the model and assumptions imposed on the models should 

be carefully considered in a way to get closer to the real situation as much as possible. 

  In this chapter, we developed a deteriorating inventory model for items with time-

dependent holding cost as against the fixed holding cost which is at a time very far from 

present reality. Other works that had been done in this area include that of Singh (2017); 

Mishra et al. (2013). However, this model considered time-varying demand which is of 

power pattern which makes it more suitable for products which are just gaining recognition 

in the market. 

 

3.2  Assumptions and notation 

Assumptions 

The development of the model is based on the following assumptions:   

1.  The demand rate of the items is represented by power pattern and is a continuous function 

of time  
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2.  Lead time is negligible/ trivial 

3.  The rate of deterioration of items is constant  

4.  Shortages are not permitted  

5.  The rate of replenishment is infinite  

6.  Planning horizon is finite  

            Notation 

    The following notation is essentials in this chapter.   

    • 𝑇 is the length of the inventory cycle (time)  

    • 𝑄 is the order quantity/units  

    • 𝐼(𝑡) is the inventory level at time t  

    • 𝑟 is the average demand per inventory cycle.  

    • 𝑛 is the demand pattern index (n is non-negative)  

    • 𝐾 is the ordering cost / $ /order  

    • ℎ is the holding cost per unit $ / time  

    • 𝐶 is the cost per deteriorated unit/ $ /order  

    • 𝑆𝐶 is the set-up cost/cycle  

    • 𝐷𝐶 is the deteriorating cost/time units/cycle  

    • 𝐻𝐶 is the holding cost is a linear function of time (t) = a + b t, 

              (a and b are non-negative)  

    • 𝑇𝐶 is the total cost of the inventory model/time units  

3.3   Mathematical model formulation 

Employing the assumptions and notation above, Figure.3.1 gives the graphical 

representation of the inventory model. 𝑄 is the ordering quantity at the beginning of the 

planning horizon. The inventory model is derived mathematically as follows: 
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Figure 3.1: Graphical illustration of Inventory Model. 

 

     The instantaneous inventory level 𝐼(𝑡) at any time 𝑡 during the cycle time 𝑇 is  

        given by:  

 𝑑𝐼(𝑡)

𝑑𝑡
+ 𝛼𝐼(𝑡) = −𝐷  ;         0 ≤ 𝑡 ≤ 𝑇 (3.1) 

  𝑤ℎ𝑒𝑟𝑒     𝐷 =
𝑟𝑡

1
𝑛

−1

𝑛𝑇
1
𝑛

−1
 

        Using integrating factor = 𝑒𝛼𝑡𝑑𝑡  

 𝐼′(𝑡)𝑒𝛼𝑡 = −
𝑟𝑡

1
𝑛

−1

𝑛𝑇
1
𝑛

−1
𝑒𝛼𝑡 

 𝐼′(𝑡)𝑒𝛼𝑡 = −
𝑟𝑡

1
𝑛

−1

𝑛𝑇
1
𝑛

−1
[∫ 𝑒𝛼𝑡𝑡

1

𝑛
−1𝑑𝑡] 

                               Using power series:  

 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+⋅ 

 𝑒𝛼𝑡 = 1 + 𝛼𝑡 +
𝛼2𝑡2

2!
+

𝛼3𝑡3

3!
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           Since 𝛼 is small, we can truncate the series at the third terms 

 𝐼(𝑡)𝑒𝛼𝑡 = −
𝑟

𝑛𝑇
1
𝑛

−1
[∫ 𝑡

1

𝑛
−1𝑑𝑡 + 𝛼 ∫ 𝑡

1

𝑛𝑑𝑡 +
𝛼2

2
∫ 𝑡

1

𝑛
+1𝑑𝑡] 

 𝐼(𝑡)𝑒𝛼𝑡 = −
𝑟

𝑛𝑇
1
𝑛

−1
[𝑛𝑡

1

𝑛 +
𝛼𝑛𝑡

1
𝑛

+1

𝑛+1
+

𝛼2𝑛𝑡
1
𝑛

+2

2(2𝑛+1)
] 

𝐼(𝑡)𝑒𝛼𝑡 = −
𝑟

𝑛𝑇
1
𝑛

−1
[𝑛𝑡

1
𝑛 +

𝛼𝑛𝑡
1
𝑛

+1

𝑛 + 1
+

𝛼2𝑛𝑡
1
𝑛

+2

4𝑛 + 2
] + 𝐶 

                Applying the boundary condition: 𝐼(𝑇) = 0, we have:  

 0 = −
𝑟

𝑛𝑇
1
𝑛

−1
[𝑛𝑡

1

𝑛 +
𝛼𝑛𝑡

1
𝑛

+1

𝑛+1
+

𝛼2𝑛𝑡
1
𝑛

+2

4𝑛+2
] + 𝐶 

 𝐶 = −
𝑟

𝑛𝑇
1
𝑛

−1
[𝑛𝑡

1

𝑛 +
𝛼𝑛𝑡

1
𝑛

+1

𝑛+1
+

𝛼2𝑛𝑡
1
𝑛

+2

4𝑛+2
] 

                From this, we have:  

 𝐼(𝑡)𝑒𝛼𝑡 =
𝑟

𝑇
1
𝑛

−1
[(𝑇

1

𝑛 − 𝑡
1

𝑛) +
𝛼

𝑛+1
(𝑇

1

𝑛
+1 − 𝑡

1

𝑛
+1) +

𝛼2

4𝑛+2
(𝑇

1

𝑛
+2 − 𝑡

1

𝑛
+2)] 

 𝐼(𝑡) =
𝑟𝑒−𝛼𝑡

𝑇
1
𝑛

−1
[(𝑇

1

𝑛 − 𝑡
1

𝑛) +
𝛼

𝑛+1
(𝑇

1

𝑛
+1 − 𝑡

1

𝑛
+1) +

𝛼2

4𝑛+2
(𝑇

1

𝑛
+2 − 𝑡

1

𝑛
+2)]   

                                        0 ≤ 𝑡 ≤ 𝑇 (3.2) 

              The optimum order quantity level is given by 𝐼(0) = 𝑄  

 𝑄 =
𝑟

𝑇
1
𝑛

−1
[𝑇

1

𝑛 +
𝛼

𝑛+1
𝑇

1

𝑛
+1 +

𝛼2

4𝑛+2
𝑇

1

2
+2] (3.3) 

         The total cost (𝑇𝐶) per unit time is made up of the following cost components:   

1. The holding cost 𝐻𝐶 per cycle [0, 𝑇] is given by:  

 𝐻𝐶 =
1

𝑇
∫

𝑇

0
(𝑎 + 𝑏𝑡)𝐼(𝑡)𝑑𝑡 

 𝐻𝐶 =
1

𝑇
∫

𝑇

0
(𝑎 + 𝑏𝑡) [

𝑟𝑒−𝛼𝑡

𝑇
1
𝑛

−1
[(𝑇

1

𝑛 − 𝑡
1

𝑛) +
𝛼

𝑛+1
(𝑇

1

𝑛
+1 − 𝑡

1

𝑛
+1) 

 +
𝛼2

4𝑛+2
(𝑇

1

𝑛
+2 − 𝑡

1

𝑛
+2)]] 𝑑𝑡 
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 𝐻𝐶 =
1

𝑇
∫

𝑇

0
(𝑎 + 𝑏𝑡) [

𝑟(1−𝛼𝑡)

𝑇
1
𝑛

−1
[(𝑇

1

𝑛 − 𝑡
1

𝑛) +
𝛼

𝑛+1
(𝑇

1

𝑛
+1 − 𝑡

1

𝑛
+1) 

 +
𝛼2

4𝑛+2
(𝑇

1

𝑛
+2 − 𝑡

1

𝑛
+2)]] 𝑑𝑡 

 𝐻𝐶 =
𝑟

𝑇
1
𝑛

∫
𝑇

0
(𝑎 + 𝑏𝑡) [(1 − 𝛼𝑡)(𝑇

1

𝑛 − 𝑡
1

𝑛) 

 +
𝛼(1−𝛼𝑡)

𝑛+1
(𝑇

1

𝑛
+1 − 𝑡

1

𝑛
+1) +

𝛼2(1−𝛼𝑡)

4𝑛+2
(𝑇

1

𝑛
+2 − 𝑡

1

𝑛
+2)] 

 𝐻𝐶 =
𝑟

𝑇
1
𝑛

∫
𝑇

0
(𝑎 + 𝑏𝑡) [𝑇

1

𝑛 − 𝑡
1

𝑛 − 𝛼𝑡𝑇
1

𝑛 + 𝛼𝑡
1

𝑛
+1 +

𝛼𝑇
1
𝑛

+1

𝑛+1
−

𝛼𝑡
1
𝑛

+1

𝑛+1
 

 −
𝛼2𝑡𝑇

1
𝑛

+1

𝑛+1
+

𝛼2𝑡
1
𝑛

+2

𝑛+1
+

𝛼2𝑇
1
𝑛

+2

4𝑛+2
−

𝛼2𝑡
1
𝑛

+2

4𝑛+2
−

𝛼3𝑡𝑇
1
𝑛

+1

4𝑛+2
+

𝛼3𝑡
1
𝑛

+3

4𝑛+2
] 

 𝐻𝐶 =
𝑟

𝑇
1
𝑛

[∫
𝑇

0
𝑎𝑇

1

𝑛𝑑𝑡 − ∫
𝑇

0
𝑎𝑡

1

𝑛𝑑𝑡 − ∫
𝑇

0
𝛼𝑎𝑡𝑇

1

𝑛𝑑𝑡 + ∫
𝑇

0

𝛼𝑎𝑡
1
𝑛

+1

𝑛+1
𝑑𝑡 

 + ∫
𝑇

0

𝛼𝑎𝑇
1
𝑛

+1

𝑛+1
(1 − 𝛼𝑡)𝑑𝑡 + ∫

𝑇

0

𝛼2𝑎𝑡
1
𝑛

+2

𝑛+1
𝑑𝑡 + ∫

𝑇

0

𝛼2𝑎𝑇
1
𝑛

+2

4𝑛+2
𝑑𝑡 

 − ∫
𝑇

0

𝛼2𝑎𝑡
1
𝑛

+2

4𝑛+2
𝑑𝑡 − ∫

𝑇

0

𝛼3𝑎𝑇
1
𝑛

+1

4𝑛+2
𝑑𝑡 + ∫

𝑇

0

𝛼3𝑎𝑡
1
𝑛

+3

4𝑛+2
𝑑𝑡 + ∫

𝑇

0
𝑏𝑇

1

𝑛𝑑𝑡 

 − ∫
𝑇

0
𝑏𝑡

1

𝑛
+1𝑑𝑡 − ∫

𝑇

0
𝑏𝛼𝑇

1

𝑛𝑡2𝑑𝑡 + ∫
𝑇

0

𝛼𝑏𝑡
1
𝑛

+2

𝑛+1
𝑑𝑡 + ∫

𝑇

0

𝛼2𝑏𝑡
1
𝑛

+3

𝑛+1
𝑑𝑡 

 + ∫
𝑇

0

𝛼𝑏𝑡𝑇
1
𝑛

+1

𝑛+1
(1 − 𝛼𝑡)𝑑𝑡 + ∫

𝑇

0

𝛼2𝑏𝑡𝑇
1
𝑛

+2

4𝑛+2
𝑑𝑡 − ∫

𝑇

0

𝛼2𝑏𝑡
1
𝑛

+3

4𝑛+2
𝑑𝑡 

 − ∫
𝑇

0

𝛼3𝑏𝑡2𝑇
1
𝑛

+1

4𝑛+2
𝑑𝑡 + ∫

𝑇

0

𝛼3𝑏𝑡
1
𝑛

+4

4𝑛+2
𝑑𝑡] 

           Upon integration and simplification, we arrive at the following equation:  

 𝐻𝐶 =
𝑟ℎ

𝑇
1
𝑛

[𝑎𝑇
1

𝑛
+1 −

𝑎𝑛𝑇
1
𝑛

+1

𝑛+1
−

𝛼𝑎𝑛𝑇
1
𝑛

+2

𝑛+1
+

𝛼𝑎𝑛𝑇
1
𝑛

+2

(2𝑛+1)(𝑛+1)
+

𝛼𝑎𝑇
1
𝑛

+2

𝑛+1
 

 −
𝛼2𝑎𝑛𝑇

1
𝑛

+3

(2(𝑛+1)
+

𝛼2𝑎𝑛𝑇
1
𝑛

+3

(𝑛+1)(3𝑛+1)
+

𝛼2𝑎𝑇
1
𝑛

+3

4𝑛+2
−

𝛼2𝑎𝑛𝑇
1
𝑛

+3

(3𝑛+1)(4𝑛+3)
 

 −
𝛼3𝑎𝑇

1
𝑛

+3

2(4𝑛+2)
+

𝛼3𝑎𝑛𝑇
1
𝑛

+4

(4𝑛+1)(4𝑛+2)
+

𝑏𝑇
1
𝑛

+2

2
−

𝑏𝑛𝑇
1
𝑛

+2

2𝑛+1
−

𝛼𝑏𝑇
1
𝑛

+3

3
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 +
𝛼𝑏𝑛𝑇

1
𝑛

+3

(3𝑛+1)(𝑛+1)
+

𝛼𝑏𝑇
1
𝑛

+3

2(𝑛+1)
−

𝛼2𝑏𝑇
1
𝑛

+4

3(𝑛+1)
+

𝛼2𝑏𝑛𝑇
1
𝑛

+4

(4𝑛+1)(𝑛+1)
 

 +
𝛼2𝑏𝑇

1
𝑛

+4

2(4𝑛+2)
−

𝛼2𝑏𝑛𝑇
1
𝑛

+4

(4𝑛+2)(4𝑛+1)
−

𝛼3𝑏𝑇
1
𝑛

+4

3(4𝑛+2)
+

𝛼3𝑏𝑛𝑇
1
𝑛

+5

(4𝑛+2)(5𝑛+1)
] (3.4) 

           The number of deteriorated unit during the cycle period (0, 𝑇) is given by: 

 𝑁𝑑𝑢 = 𝑄 − ∫
𝑇

0
𝐷(𝑡)𝑑𝑡, 𝑤ℎ𝑒𝑟𝑒       𝐷(𝑡) =

𝑟𝑡
1
𝑛

−1

𝑛𝑇
1
𝑛

−1
 

 𝑁𝑑𝑢 = 𝑄 − 𝑟𝑇 

 =
𝑟

𝑇
1
𝑛

−1
(𝑇

1

𝑛 +
𝛼

𝑛+1
𝑇

1

𝑛
+1 +

𝛼2

4𝑛+2
𝑇

1

𝑛
+2) − 𝑟𝑇 

 𝑁𝑑𝑢 =
𝑟𝛼𝑇2

𝑛+1
+

𝛼2𝑟𝑇3

4𝑛+2
 

2. Therefore, the deterioration cost is given by:  

 𝐷𝐶 =
𝐶1

𝑇
(

𝛼𝑟𝑇2

𝑛+1
+

𝛼2𝑟𝑇3

4𝑛+2
) 

 𝐷𝐶 =
𝛼𝐶1𝑟𝑇

𝑛+1
+

𝛼2𝑟𝐶1𝑇2

4𝑛+2
 (3.5) 

  

3. Ordering cost/set-up cost (𝑆𝐶) per cycle [0, 𝑇] is given by: 

 

       𝑆𝐶 =
𝐾

𝑇
 (3.6) 

                      The total cost per unit time is given by: 

𝑇𝐶 = 𝐻𝐶 + 𝐷𝐶 + 𝑆𝐶 

 𝑇𝐶 = [𝑎𝑟ℎ𝑇 −
𝑎𝑟ℎ𝑛𝑇

𝑛+1
−

𝛼𝑟𝑎ℎ𝑛𝑇2

𝑛+1
+

𝛼𝑟𝑎ℎ𝑛𝑇2

(2𝑛+1)(𝑛+1)
+

𝛼𝑟ℎ𝑎𝑇2

𝑛+1
−

𝛼2𝑎𝑟ℎ𝑛𝑇3

2(𝑛+1)
 

 +
𝛼2𝑎𝑟ℎ𝑛𝑇3

(3𝑛+1)(𝑛+1)
+

𝛼2𝑟𝑎ℎ𝑇3

4𝑛+2
−

𝛼2𝑟𝑎ℎ𝑛𝑇3

(4𝑛+3)(3𝑛+1)
−

𝛼3𝑟ℎ𝑎𝑇3

2(4𝑛+2
+

𝛼3𝑟𝑎ℎ𝑛𝑇4

(4𝑛+1)(4𝑛+2)
 

 +
𝑏𝑟ℎ𝑇2

2
−

𝑟𝑏ℎ𝑛𝑇2

2𝑛+1
−

𝛼𝑟𝑏ℎ𝑇3

3
+

𝛼𝑟ℎ𝑏𝑛𝑇3

(3𝑛+1)(𝑛+1)
+

𝛼𝑟ℎ𝑏𝑇3

2(𝑛+1)
−

𝛼2𝑟𝑏ℎ𝑇4

3(𝑛+1)
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 +
𝛼2𝑟ℎ𝑏𝑇4

(4𝑛+1)(𝑛+1)
+

𝛼2𝑟𝑏ℎ𝑇4

2(4𝑛+2
−

𝛼2𝑟𝑏ℎ𝑛𝑇4

(4𝑛+1)(4𝑛+2
−

𝛼3𝑟𝑏ℎ𝑇4

3(4𝑛+2
+

𝛼3𝑟𝑏𝑛ℎ𝑇5

(4𝑛+2)(5𝑛+1)
 

 +
𝛼𝐶1𝑟𝑇

𝑛+1
+

𝛼2𝑟𝐶1𝑇2

4𝑛+2
+

𝐾

𝑇
] (3.7) 

    The necessary and sufficient conditions for the total cost 𝑇𝐶 to be minimised is that: 

 𝜕(𝑇𝐶)

𝜕𝑇
= 0     𝑎𝑛𝑑     

𝜕2(𝑇𝐶)

𝜕𝑇2 ≥ 0     𝑓𝑜𝑟  𝑎𝑙𝑙     𝑇 > 0 (3.8) 

  

3.4  Method of Solution 

We present in this section, a way to calculate the inventory system that minimises the total 

cost with unit time as given in Equation (3.7). Here, we find the first partial derivative of 𝑇𝐶 

concerning the decision variable 𝑇:  

 𝜕(𝑇𝐶)

𝜕𝑇
= 𝑎𝑟ℎ −

𝑎𝑟ℎ𝑛

𝑛+1
−

2ℎ𝑟𝑎𝑛𝛼

𝑛+1
+

2ℎ𝑟𝑎𝑛𝛼𝑇

(2𝑛+1)(𝑛+1)
+

2ℎ𝑟𝑎𝛼𝑇

𝑛+1
 

 −
3ℎ𝑟𝑎𝛼2𝑇2

2(𝑛+1)
+

3𝑟𝑎𝑛ℎ𝛼2𝑇2

(𝑛+1)(3𝑛+1)
+

3𝑟𝑎ℎ𝛼2𝑇2

(4𝑛+2)
−

3𝑟𝑎𝑛ℎ𝛼2𝑇2

(4𝑛+3)(3𝑛+1)
 

 −
3𝑟𝑎ℎ𝛼3𝑇2

2(4𝑛+2)
+

4ℎ𝑛𝑟𝑎𝛼3𝑇3

(4𝑛+2)(4𝑛+1)
+ 𝑏ℎ𝑟𝑇 −

2ℎ𝑛𝑟𝑏𝛼2𝑇

(2𝑛+1)
− 𝑟ℎ𝑏𝛼𝑇2 +

3𝑟𝑏𝑛ℎ𝛼𝑇2

(𝑛+1)(3𝑛+1)
 

 +
3𝑟𝑏ℎ𝛼𝑇2

2(𝑛+1)
−

4𝑟𝑏ℎ𝛼2𝑇3

3(𝑛+1)
+

4𝑏ℎ𝑟𝛼2𝑇3

(4𝑛+1)(𝑛+1)
+

2𝑟𝑏𝛼2𝑇3

(4𝑛+2)
−

4𝑏ℎ𝑛𝑟𝛼2𝑇3

(4𝑛+1)(4𝑛+2)
 

 −
4𝑏ℎ𝑟𝛼3𝑇3

3(4𝑛+2)
+

5𝑏ℎ𝑛𝑟𝛼3𝑇4

(4𝑛+2)(5𝑛+1)
+

𝐶1𝛼𝑟

𝑛+1
+

2𝐶1𝑟𝑇𝛼2

4𝑛+2
−

𝐾

𝑇2 = 0 (3.9) 

  

3.5  Numerical illustration 

The proposed model is more evident by considering some numerical example in this 

section. In this example, we evaluated the solution of the inventory problem, calculate the 

schedule period and order quantity level. 

Example: Considering the subsequent parametric values for the inventory model 𝐾 = 50, 

𝑎 = 0.5, 𝑏 = 0.01, 𝐶1 = 1.5, 𝑟 = 100, 𝑛 = 0.5, 𝛼 = 0.4, ℎ = 2.5 in appropriate units. 

Taking into consideration these numerical values, from Equation (3.9) we obtain a non-linear 

Univ
ers

iti 
Mala

ya



32 
 

equation. Using maple software 2018, to solve the equation, we obtain schedule period 𝑇 for 

which the inventory is zero to be 0.562 years; replenishment order quantity 𝑄 is 116.240 

units, inventory total cost 𝑇𝐶 is $168.19. 

From Equation (7.1), the second partial derivative of the cost function 𝑇𝐶 with respect to 

the variable 𝑇 is positive, which satisfied the sufficient condition i.e.  

 𝜕2𝑇𝐶(𝑇)

𝜕𝑇2 = 2.102696 > 0 

establishing that it is the minimum point. 

Figure 3 shows that the function 𝑇𝐶 is convex concerning 𝑇 (Schedule period). 
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Figure 3.2: Graphical representation of convexity of total cost against 𝑻. 
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3.6  Sensitivity analysis  

The effect of changes in the values of various parameters 𝑟, ℎ, 𝐾, 𝐶, 𝑛, 𝑎, 𝑏  and 𝛼  is 

observed in this section on the optimum total cost and the optimum order quantity. The 

sensitivity analysis is carried out by changing each of the parameters by +20%, +10%, 

−10%, −20% taking one parameter at a time and keeping other parameters constant. The 

analysis is built on the example above, and the results are displayed in Table 3.1 and 

represented graphically by Figures (3.3 -3.5). The following observations are derived from 

the sensitivity analysis. 

 1.  As the demand rate 𝑟 is increasing, there is an increase in optimal order quantity 𝑄, 

and optimal total cost 𝑇𝐶, which results in a decrease in the optimal cycle time 𝑇. The 

economic implication or consequence of this is that as demand rate is increasing, there is a 

need for retailers to order more quantity, to lower the order frequency and inventory cost.  

2.  As the deteriorating parameter 𝛼 is increasing, there is an increase in optimal total cost, 

optimal order quantity and decrease in the optimal cycle time. The implication of this is that 

an increase in deterioration rate will lead to a rise in the minimum total cost per unit time, 

and this will decrease the optimal cycle time.  

3.  As the ordering cost is increasing, there is an increase in the optimal cycle time 𝑇, 

optimal ordering quantity 𝑄 and optimal total cost 𝑇𝐶. The implication of this is that the 

retailers should order more quantity when the ordering cost is high to avoid frequent ordering 

and save cost.  

4.  As the value of purchasing cost 𝐶 is increasing, there is a decrease in optimal cycle time 

𝑇 and optimal ordering quantity 𝑄, but there is an increase in the optimal total cost 𝑇𝐶. The 

implication of this is that as the purchasing cost is increasing, the optimal total cost will also 

be increasing. The retailers can control this situation by shortening the optimal cycle time 
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and reduce the quantity ordered.  

 5.  An increase in the holding cost ℎ and parameter 𝑎 and 𝑏 will result in a decrease in 

the optimal cycle time and optimal ordering quantity. However, there is an increase in the 

optimal total cost. Here, retailers should shorten the cycle length of time and amount of order 

optimal to maintain the inventory cost as low as possible, which can act as an adjustment 

strategy.  

6.  An increase in the power index 𝑛 leads to an increase in the optimal cycle time 𝑇 and 

reduces the optimal total cost 𝑇𝐶 and the optimal ordering quantity 𝑄.  
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    Figure 3.3: Graphical representation of sensitivity analysis of total cost. 
 

(a) 

(b) 
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Figure 3.4: Graphical representation of sensitivity analysis of order quantity. 
   

(a) 

(b) 
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Figure 3.5: Graphical representation of sensitivity analysis of cycle time. 

 
 

(b) 
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Table 3.1:The consequence of changes in various parameters of the inventory models. 
   
                 
P*       V*       C* 

                Change in: 
 
T           TC         Q        W*      J*       Z*                      

 
 
r 

120 
110 
100 
90 
80 

20 
10 
 0 
-10 
-20 

0.517 
0.538 
0.562 
0.589 
0.621 

183.29 
175.91 
168.19 
160.06 
151.46 

117.838 
127.057 
116.240 
105.383 
94.477 

8.981 
4.594 
0 
-4.833 
-9.946 

1.374 
9.305 
0 
-9.341 
-18.722 

-7.905 
-4.207 
0 
4.849 
10.525 

 
 
α 

0.48 
0.44 
0.40 
0.36 
0.32 

20 
10 
 0 
-10 
-20 

0.538 
0.549 
0.562 
0.575 
0.589 

174.811 
171.533 
168.187 
164.769 
161.274 

118.878 
117.575 
116.240 
114.869 
113.458 

3.938 
1.989 
0 
-2.032 
-4.110 

2.269 
1.149 
0 
-1.180 
-2.393 

-4.243 
-2.194 
0 
2.357 
4.898 

 
 
K 

60 
55 
50 
45 
40 

20 
10 
 0 
-10 
-20 

0.610 
0.586 
0.562 
0.536 
0.508 

185.260 
176.898 
168.187 
159.074 
149.491 

117.742 
117.009 
116.240 
115.431 
114.573 

10.151 
5.179 
0 
-5.418 
-11.116 

1.292 
0.661 
0 
-0.697 
-1.435 

8.526 
4.377 
0 
-4.641 
-9.594 

 
 
C 
 

1.80 
1.65 
1.50 
1.35 
1.20 

20 
10 
 0 
-10 
-20 

0.547 
0.554 
0.562 
0.569 
0.577 

172.991 
170.606 
168.187 
165.733 
163.243 

115.794 
116.012 
116.240 
116.478 
116.725 

2.856 
1.438 
0 
-1.459 
-2.939 

-0.384 
0.196 
0 
0.204 
0.417 

-2.555 
-1.302 
0 
1.355 
2.766 

 
 
h 
 

3.0 
2.75 
2.50 
2.25 
2.0 

20 
10 
 0 
-10 
-20 

0.529 
0.545 
0.562 
0.680 
0.601 

178.777 
173.572 
168.187 
162.603 
156.795 
 

115.235 
115.713 
116.240 
116.827 
117.486 

6.297 
3.202 
0 
-3.320 
-6.774 

-0.865 
-0.454 
0 
0.505 
1.072 

-5.770 
-3.022 
0 
3.346 
7.081 

 
 
n 

0.60 
0.55 
0.50 
0.45 
0.40 

20 
10 
 0 
-10 
-20 

0.584 
0.573 
0.562 
0.551 
0.540 

162.281 
168.224 
168.187 
171.316 
174.576 

115.827 
116.025 
116.240 
116.474 
116.728 

-3.511 
0.022 
0 
1.860 
3.798 

-0.355 
-0.185 
0 
0.201 
0.419 

3.894 
1.940 
0 
-1.927 
-3.845 

 
 
a 
 
 

0.60 
0.55 
0.50 
0.45 
0.40 

20 
10 
 0 
-10 
-20 

0.529 
0.545 
0.562 
0.580 
0.601 

178.738 
173.551 
168.187 
162.627 
156.846 

115.241 
115.716 
116.240 
116.823 
117.475 

6.273 
3.189 
0 
-3.306 
-6.743 

-0.860 
-0.451 
0 
0.501 
1.062 

-5.732 
-3.001 
0 
3.319 
7.018 

 
 
b 
 

0.012 
0.011 
0.010 
0.009 
0.008 

20 
10 
 0 
-10 
-20 

0.561 
0.562 
0.562 
0.562 
0.562 

168.232 
168.209 
168.187 
168.165 
168.142 

116.232 
116.236 
116.240 
116.244 
116.249 

0.027 
0.013 
0 
-0.013 
0.027 

-0.007 
-0.004 
0 
0.004 
0.007 

-0.048 
-0.024 
0 
0.024 
0.048 

 
Note: P*= Parameters, V*=Values, C*= % Changes, W* = %Change in TC, J*= %Change 
in Q, Z*= % Change in T. 
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 3.7    Concluding Observations 

This model considered a deteriorating inventory model with a constant deterioration rate, 

and the demand rate follows a power pattern. Shortages are not allowed in the model and 

holding cost is assumed to be a linear function of time. The power demand pattern rate is 

chosen because of the new products in the market now in which the demand is dependent 

upon time. When some products are introduced into the market, the demand may be constant 

for some time after which the products will gain recognition, and then the need for such 

products increases. See Figure (3.3a). Examples of such products are android phones, 

fashions, electronics, computers, etc. Holding cost is presumed to be dependent on time 

because it has multiple factors that can be allowed to be represented as a linear function of 

time. 

  The results from Table 3.1 and Figures (3.3-3.5) show that there is an increase in the total 

cost as the holding cost is increasing, thereby reducing the schedule period and the ordering 

quantity. It is also discovered that as the deterioration rate is rising, there is an increase in the 

total cost, leading to growing in the order quantity and reducing the scheduling period. The 

model can be useful in the control of inventory of business enterprises that deal with products 

that have their demand and holding cost dependent on time. The model can be expanded in 

many directions; for example, shortages can be introduced into the model; another direction 

is to consider preservative technology and price-dependent demand.  

  However, in some cases, it is advisable to examine an inventory model with shortages, 

especially when the holding cost is prohibitive. 
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CHAPTER 4: AN INVENTORY MODEL FOR LINEARLY TIME-DEPENDENT 

DETERIORATING ITEMS WITH POWER PATTERN, SHORTAGES, AND 

TIME-VARYING DEMAND. 

 

4.1  Introduction 

In Chapter 3, An inventory model for deteriorating items with time-varying demand rate 

and time-dependent holding cost without shortages is propounded over a bounded horizon. 

  Many inventory models are developed under the assumption that the rate of deterioration 

is constant. It will be more realistic to consider that the price of decay of many commodities 

will go on increasing with time. This assumption is valid in some way because once any 

products start to decay, the rate of decaying continues to grow consistently day by day. 

Although it will not be correct to assume that the deterioration starts immediately, the items 

are produced. There will be a time when the product will maintain its freshness before the 

decline set in. 

  In this chapter, the inventory model for linearly time-dependent deteriorating items with 

power patterns, shortage, and time-varying demand is considered. Deterioration rate is 

assumed to be a linear function of time. We developed a new model and extended the work 

of  Rajeswari & Indrani (2015) by examining the inventory cycle time as one of the decision 

variables. Here the inventory cycle time is not fixed as in the above paper. Inventory cycles 

depend on two decision variables, that is the time at which the inventory level descends to 

zero and the length of the scheduling period. 

  We minimise the total average system cost per unit time. We derived two non-linear 

equations from the developed model, and we solve the equations using Mathematica and 

excel solver to obtain the optimal solution. Numerical examples are propounded to establish 

the application of the model developed, and we use the cases to carry out sensitivity analysis 
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on the impacts of various changes in some possible combinations of model parameters on the 

decision variables of the mathematical model. 

4.2  Modelling Assumptions 

The inventory model is established based on the following assumptions 

    1.  Deterioration rate is considered as a linear time-dependent  

    2.  Shortages are permitted and are backlogged  

    3.  Demand is considered to be in the form of power demand pattern  

    4.  Time horizon is made to be unbounded/ infinite  

    5.  Lead time is negligible/trivial  

    6.  One item is discussed only in this model  

    7.  The average order is deterministic.  

 

    The following notation was used.   

    • 𝐼(𝑡) is the Inventory level of the system  

    • 𝜃 is the Deteriorating rate (𝜃   𝑙𝑖𝑒𝑠  𝑏𝑒𝑡𝑤𝑒𝑒𝑛   0  𝑎𝑛𝑑  1)  

    • 𝑇 is the scheduling period  

    • 𝑡1 is the time at which the inventory system drops to zero  

    • 𝑀 is the initial level of the stock  

    • 𝑚 is the re-order points  

    • 𝐴 is the ordering cost/unit item /unit time  

    • ℎ is the carrying cost/unit item/unit time  

    • 𝑏 is the backlogging cost /unit item/unit time  

    • 𝑤 is the deteriorating cost/unit item/unit time  

    • 𝑝 is the purchasing cost/unit item/unit time  
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    • 𝑑 is the average demand per cycle period  

    • 𝐷(𝑡) is the demand up to the time t. here (𝑡   𝑙𝑖𝑒𝑠  𝑏𝑒𝑡𝑤𝑒𝑒𝑛   0  𝑎𝑛𝑑  𝑇)  

    • The index of demand pattern is 𝑛. (𝑛 is assumed to be higher than 0)  

    • 𝑄 is the order quantity/unit item/unit time  

    • 𝐾1(𝑡1, 𝑇) is the average amount carried in the inventory system  

    • 𝑆2(𝑡1, 𝑇) is the average amount of shortage in the system  

    • 𝐷3(𝑡1, 𝑇) is the average quantity of deteriorated units  

    • 𝑃4(𝑡1, 𝑇) is the average quantity of purchased units  

    • 𝑄𝐶(𝑇) is the ordering cost/unit item/unit time  

    • 𝐻𝐶(𝑡1, 𝑇) is the holding cost/unit item /unit time  

    • 𝑃𝐶(𝑡1, 𝑇)is the purchasing cost/unit item /unit time  

    • 𝐷𝐶(𝑡1, 𝑇) is the deteriorating cost/ unit item /unit time  

    • 𝑇𝐶(𝑡1, 𝑇) is the total average cost of the inventory system  

  

4.3   Mathematical model formulation 

In the development of this model, a situation where inventory is followed by shortages is 

considered. Here, in this presented model, a cycle can be split up into two periods. [0, 𝑇] is 

taken as a single cycle duration. Through [0,  𝑡1] the inventory is on the positive side and 

through [𝑡1, 𝑇] the inventory is on the negative side. 

Under the given assumptions, the commencing inventory level is M units at time 𝑡 = 0. 

Throughout the period 𝑡 = 0 to 𝑡 = 𝑡1, the inventory level diminishes, due to demand and 

deterioration, until it gets to zero level at 𝑡 =   𝑡1. During the interval [𝑡1, 𝑇] the system 

experiences shortages which are backlogged to the close of the cycle. At interval 𝑡 = 𝑇, the 

inventory arrives at a maximum shortage level 𝑚 to clear the backlogged and the inventory 
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level rises again to level 𝑀. The system is depicted in Figure 4.1.  

   

   

Figure 4.1: Graphical representation of Inventory Model. 
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        The differential equations for the described model are: 

 𝑑𝐼(𝑡)

𝑑𝑡
+ 𝜃𝐼(𝑡) = −

𝑑𝑡
1
𝑛

−1

𝑛𝑇
1
𝑛

−1
    0 ≤   𝑡 ≤ 𝑡1 (4.1) 

 𝑑𝐼(𝑡)

𝑑𝑡
= −

𝑑𝑡
1
𝑛

−1

𝑛𝑇
1
𝑛

−1
    𝑡1 ≤ 𝑡 ≤ 𝑇 (4.2) 

 Making use of the boundary conditions 𝐼(0) = 𝑀, 𝐼(𝑡1) = 0   𝑎𝑛𝑑   𝐼(𝑇) = 𝑚  

Using the integrating factor 𝑒∫ 𝜃𝑡𝑑𝑡 = 𝑒
𝜃𝑡2

2   

 𝐼(𝑡)𝑒
𝜃𝑡2

2 = −
𝑑

𝑛𝑇
1
𝑛

−1
[∫ (𝑒

𝜃𝑡2

2 𝑡
1

𝑛
−1)𝑑𝑡] 

 Since 𝜃 is small, 0 ≤ 𝜃 ≤ 1, we take the first three-term of the power series i.e  

 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
. . . . . . . . . . .. 

 𝑒
𝜃𝑡2

2 = 1 +
𝜃𝑡2

2
+

(𝜃𝑡2)2

8
+

(𝜃𝑡2)3

24
+. . . . . . . . . . . . . . . . .. 

 𝐼(𝑡)𝑒
𝜃𝑡2

2 = −
𝑑

𝑛𝑇
1
𝑛

−1
[∫ (1 +

𝜃𝑡2

2
+

𝜃2𝑡4

8
)(𝑡

1

𝑛
−1)𝑑𝑡] 

 𝐼(𝑡)𝑒
𝜃𝑡2

2 = −
𝑑

𝑛𝑇
1
𝑛

−1
[𝑛𝑡

1

𝑛 +
𝑛𝜃𝑡

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑛𝑡
1
𝑛

+4

8(4𝑛+1)
] + 𝐶 

  𝑢𝑠𝑖𝑛𝑔  𝑡ℎ𝑒  𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛     𝐼(0) = 𝑀 

 𝑀 = 𝐶,    Tℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 

 𝐼(𝑡)𝑒
𝜃𝑡2

2 = 𝑀 −
𝑑

𝑛𝑇
1
𝑛

−1
[𝑛𝑡

1

𝑛 +
𝑛𝜃𝑡

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑛𝑡
1
𝑛

+4

8(4𝑛+1)
] 

 𝐼(𝑡) = 𝑀𝑒−
𝜃𝑡2

2 −
𝑑𝑒

−
𝜃𝑡2

2

𝑇
1
𝑛

−1
[𝑡

1

𝑛 +
𝜃𝑡

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡
1
𝑛

+4

8(4𝑛+1)
] (4.3) 

                From Equation (4.2) , we have: 

 

 𝐼(𝑡) = −
𝑑

𝑛𝑇
1
𝑛

−1
[∫ 𝑡

1

𝑛
−1𝑑𝑡] 
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 𝐼(𝑡) = −
𝑑

𝑛𝑇
1
𝑛

−1
[𝑛𝑡

1

𝑛] + 𝐶, 𝑏𝑢𝑡     𝐼(𝑡1) = 0 

 0 = −
𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛] + 𝐶 

 𝐶 =
𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛] 

 𝐼(𝑡) = −
𝑑

𝑇
1
𝑛

−1
[𝑡

1

𝑛 − 𝑡1

1

𝑛] (4.4) 

 𝐼(𝑡) is a persistently decreasing function in the time interval [0, 𝑇], therefore the initial net 

stock level at this interval is procured by substituting the boundary condition 𝐼(𝑡1) into 

Equation (4.3), we have: 

 0 = 𝑀𝑒−
𝜃𝑡1

2

2 −
𝑑𝑒

−
𝜃𝑡1

2

2

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] 

 𝑀𝑒−
𝜃𝑡1

2

2 =
𝑑𝑒

−
𝜃𝑡1

2

2

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] 

 𝑀 =
𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] (4.5) 

               Replacing Equation (4.5) into Equation (4.3), we have: 

 𝐼(𝑡) = −
𝑑𝑒

−
𝜃𝑡2

2

𝑇
1
𝑛

−1
[𝑡

1

𝑛 +
𝜃𝑡

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡
1
𝑛

+4

8(4𝑛+1)
] 

 +
𝑑𝑒

−
𝜃𝑡2

2

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] 

 𝐼(𝑡) = −
𝑑𝑒

−
𝜃𝑡2

2

𝑇
1
𝑛

−1
[(𝑡1

1

𝑛 − 𝑡
1

𝑛) +
𝜃

2(2𝑛+1)
(𝑡1

1

𝑛
+2

− 𝑡
1

𝑛
+2) 

 +
𝜃2

8(4𝑛+1)
(𝑡1

1

𝑛
+4

− 𝑡
1

𝑛
+4)] 
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 𝐼(𝑡) =
𝑑(1−

𝜃𝑡2

2
+

𝜃2𝑡4

8
)

𝑇
1
𝑛

−1
[(𝑡1

1

𝑛 − 𝑡
1

𝑛) +
𝜃

2(2𝑛+1)
(𝑡1

1

𝑛
+2

− 𝑡
1

𝑛
+2) 

 +
𝜃2

8(4𝑛+1)
(𝑡1

1

𝑛
+4

− 𝑡
1

𝑛
+4)] 

 s𝑖𝑛𝑐𝑒    0 ≤ 𝜃 ≤ 1     𝑤𝑒  ℎ𝑎𝑣𝑒 ∶ 

 𝐼(𝑡) =
𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 − 𝑡
1

𝑛 −
𝜃𝑡2𝑡1

1
𝑛

2
+

𝜃2𝑡4𝑡1

1
𝑛

8
+

𝜃𝑛𝑡
1
𝑛

+2

2𝑛+1
+

𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
 

 −
𝜃2𝑡2𝑡1

1
𝑛

+2

4(2𝑛+1)
−

𝜃2𝑡
1
𝑛

+4

8
+

𝜃2𝑡
1
𝑛

+4

4(2𝑛+1)
−

𝜃2𝑡
1
𝑛

+4

8(4𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] (4.6) 

 From the boundary condition 𝐼(𝑇) = 𝑚, substitute into Equation (4.4) to get the re-order 

point: 

 𝑚 = −
𝑑

𝑇
1
𝑛

−1
[𝑇

1

𝑛 − 𝑡1

1

𝑛] (4.7) 

 To obtain the lot size Q that replenish the stock, we have:  

𝑄 + 𝑚 = 𝑀    ⇒ 𝑄 = 𝑀 − 𝑚  

 𝑄 =
𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] +

𝑑

𝑇
1
𝑛

−1
[𝑇

1

𝑛 − 𝑡1

1

𝑛] 

 𝑄 =
𝑑

𝑇
1
𝑛

−1
[𝑇

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] (4.8) 

 For this inventory system, the average amount carried depend on the decision variables  

              𝑡1 and 𝑇  

 𝐾1(𝑡1, 𝑇) =
1

𝑇
∫

𝑡1

0
𝐼(𝑡)𝑑𝑡 

 𝐾1(𝑡1, 𝑇) =
𝑑

𝑇
1
𝑛

[∫
𝑡1

0
𝑡1

1

𝑛𝑑𝑡 − ∫
𝑡1

0
𝑡

1

𝑛𝑑𝑡 −
𝜃𝑡1

1
𝑛

2
∫

𝑡1

0
𝑡2𝑑𝑡 +

𝜃2𝑡1

1
𝑛

8
∫

𝑡1

0
𝑡4𝑑𝑡 

 +
𝜃𝑛

2𝑛+1
∫

𝑡1

0
𝑡

1

𝑛
+2𝑑𝑡 +

𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
∫

𝑡1

0
𝑑𝑡 
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 −
𝜃2𝑡1

1
𝑛

+2

4(2𝑛+1)
∫

𝑡1

0
𝑡2𝑑𝑡 −

𝜃2

8
∫

𝑡1

0
𝑡

1

𝑛
+4𝑑𝑡 +

𝜃2

4(2𝑛+1)
∫

𝑡1

0
𝑡

1

𝑛
+4𝑑𝑡 

 −
𝜃2

8(4𝑛+1)
∫

𝑡1

0
𝑡

1

𝑛
+4𝑑𝑡 +

𝜃2

8(4𝑛+1)
∫

𝑡1

0
𝑡1

1

𝑛
+4

𝑑𝑡] 

 𝐾1(𝑡1, 𝑇) =
𝑑

𝑇
1
𝑛

[𝑡1

1

𝑛
+1

−
𝑛𝑡1

1
𝑛

+1

𝑛+1
−

𝜃𝑡1

1
𝑛

+3

6
+

𝜃2𝑡1

1
𝑛

+5

40
+

𝜃𝑛2𝑡1

1
𝑛

+3

(2𝑛+1)(3𝑛+1)
 

 +
𝜃𝑡1

1
𝑛

+3

2(2𝑛+1)
−

𝜃2𝑡1

1
𝑛

+5

12(2𝑛+1)
−

𝜃2𝑛𝑡1

1
𝑛

+5

8(5𝑛+1)
+

𝜃2𝑛𝑡1

1
𝑛

+5

4(2𝑛+1)(5𝑛+1)
 

 −
𝜃2𝑛𝑡1

1
𝑛

+5

8(4𝑛+1)(5𝑛+1)
+

𝜃2𝑡1

1
𝑛

+5

8(4𝑛+1)
] 

                Upon simplification, we have: 

 𝐾1(𝑡1, 𝑇) =
𝑑

𝑇
1
𝑛

[
𝑡1

1
𝑛

+1

𝑛+1
+

𝜃𝑡1

1
𝑛

+3

3(3𝑛+1)
+

𝜃2𝑡1

1
𝑛

+5

15(5𝑛+1)
] (4.9) 

                 The average shortage across the cycle period is: 

 𝑆2(𝑡1, 𝑇) = −
1

𝑇
∫

𝑇

0
𝐼(𝑡)𝑑𝑡 

 𝑆2(𝑡1, 𝑇) = −
𝑑

𝑇
1
𝑛

∫
𝑇

0
[𝑡1

1

𝑛 − 𝑡
1

𝑛]𝑑𝑡 

 𝑆2(𝑡1, 𝑇) =
𝑑

𝑇
1
𝑛

[
𝑛𝑇

1
𝑛

+1

𝑛+1
+

𝑡1

1
𝑛

+1

𝑛+1
− 𝑡1

1

𝑛𝑇] (4.10) 

        Along the negative inventory cycle, the total quantity of deteriorated units is: 

 𝐷3(𝑡1, 𝑇) = 𝑄 − ∫
𝑇

0

𝑑𝑡1

1
𝑛

−1

𝑛𝑇
1
𝑛

−1
𝑑𝑡 

 𝐷3(𝑡1, 𝑇) = 𝑄 −
𝑑

𝑛𝑇
1
𝑛

−1
[𝑇

1

𝑛] 

 𝐷3(𝑡1, 𝑇) =
𝑑

𝑇
1
𝑛

−1
[𝑇

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
− 𝑇

1

𝑛] 
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 𝐷3(𝑡1, 𝑇) =
𝑑

𝑇
1
𝑛

−1
[

𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] 

 To get the average deteriorated unit along the period, we have to divide the total quantity 

deteriorated along the cycle with 𝑇  

 𝐷3(𝑡1, 𝑇) =
1

𝑇
.

𝑑

𝑇
1
𝑛

−1
[

𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] 

 𝐷3(𝑡1, 𝑇) =
𝑑

𝑇
1
𝑛

[
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] (4.11) 

 Moreover, the average purchasing units along the inventory is: 

 𝑃4(𝑡1, 𝑇) =
𝑄

𝑇
 

 𝑃4(𝑡1, 𝑇) =
𝑑

𝑇.𝑇
1
𝑛

−1
[𝑇

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] 

 𝑃4(𝑡1, 𝑇) =
𝑑

𝑇
1
𝑛

[𝑇
1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] (4.12) 

     The average total cost for the inventory system is made up of the following cost 

components: Ordering cost + holding cost + purchasing cost + deteriorating cost + 

backlogging cost.   

1.  Holding cost per unit of time is:  

 𝐻𝐶(𝑡1, 𝑇) =
ℎ𝑑

𝑇
1
𝑛

[
𝑡1

1
𝑛

+1

𝑛+1
+

𝜃𝑡1

1
𝑛

+3

3(3𝑛+1)
+

𝜃2𝑡1

1
𝑛

+5

15(5𝑛+1)
] (4.13) 

  

     2.  Backlogging cost per unit of time is:  

 𝐵𝐶(𝑡1, 𝑇) =
𝑏𝑑

𝑇
1
𝑛

[
𝑛𝑇

1
𝑛

+1

𝑛+1
+

𝑡1

1
𝑛

+1

𝑛+1
− 𝑡1

1

𝑛𝑇] (4.14) 

     3.  The ordering cost per unit of time is:  
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 𝑂𝐶(𝑇) =
𝐴

𝑇
 (4.15) 

      4.  The deteriorating cost per unit of time is:  

 𝐷𝐶(𝑡1, 𝑇) =
𝑤(𝜃−𝐷(𝑡))

𝑇
 

 𝐷𝐶(𝑡1, 𝑇) =
𝑑𝑤

𝑇
1
𝑛

[
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] (4.16) 

      5.  The purchasing cost per unit of time is  

 𝑃𝐶(𝑡1, 𝑇) =
𝑃𝑄

𝑇
 

 𝑃𝐶(𝑡1, 𝑇) =
𝑑𝑝

𝑇
1
𝑛

[𝑇
1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] (4.17) 

The average total inventory cost per units of time is the sum of the entire cost components 

given in Equations (4.13 - 4.17)  

 𝑇𝐶(𝑡1, 𝑇) =
𝐴

𝑇
+

ℎ𝑑

𝑇
1
𝑛

[
𝑡1

1
𝑛

+1

𝑛+1
+

𝜃𝑡1

1
𝑛

+3

3(3𝑛+1)
+

𝜃2𝑡1

1
𝑛

+5

15(5𝑛+1)
] +

𝑏𝑑

𝑇
1
𝑛

[
𝑛𝑇

1
𝑛

+1

𝑛+1
+

𝑡1

1
𝑛

+1

𝑛+1
− 𝑡1

1

𝑛𝑇] 

 +
𝑑𝑤

𝑇
1
𝑛

[
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] +

𝑑𝑝

𝑇
1
𝑛

[𝑇
1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] (4.18) 

      We are to find the optimum solution that minimises the total average cost of the 

            function 𝑇𝐶(𝑡1, 𝑇) such that 0 lies between 𝑡1 and 𝑇 and 𝑇 > 0. 

 

4.4  Solution method 

To minimise the total relevant cost per unit time, we find the optimal value of the decision 

variables 𝑡1  and 𝑇 . We consider the partial derivatives of 𝑇𝐶(𝑡1, 𝑇) w.r.t. the decision 

variables 𝑡1 and 𝑇. 

 𝜕𝑇𝐶(𝑡1,𝑇)

𝜕𝑡1
=

ℎ𝑑

𝑇
1
𝑛

[
𝑡1

1
𝑛

𝑛
+

𝜃𝑡
1
𝑛

+2

3𝑛
] +

𝑏𝑟

𝑇
1
𝑛

[
𝑡1

1
𝑛

𝑛
−

𝑇𝑡1

1
𝑛

−1

𝑛
] 
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 +
𝑑𝑤

𝑇
1
𝑛

[
𝜃𝑡1

1
𝑛

+1

2𝑛
] +

𝑑𝑝

𝑇
1
𝑛

[
𝜃𝑡1

1
𝑛

+1

2𝑛
] = 0 (4.19) 

                         and  

 𝜕𝑇𝐶(𝑡1,𝑇)

𝜕𝑇
= −

𝐴

𝑇2 −
ℎ𝑟

𝑛𝑇
1
𝑛

+1
[

𝑡1

1
𝑛

+1

𝑛+1
+

𝜃𝑡1

1
𝑛

+3

3(3𝑛+1)
] +

𝑏𝑑𝑛

𝑛+1
−

𝑏𝑑𝑡1

1
𝑛

+1

𝑛(𝑛+1)𝑇
1
𝑛

+1
 

 +
(1−𝑛)𝑏𝑑𝑡1

1
𝑛

𝑛𝑇
1
𝑛

−
𝑑𝑤

𝑛𝑇
1
𝑛

+1
[

𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
] −

𝑑𝑝

𝑛𝑇
1
𝑛

+1
[

𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
] = 0 (4.20) 

 Equations (4.19) and (4.20) is a non-linear equation, and we solve for the decision variables 

𝑡1 𝑎𝑛𝑑     𝑇 when we equate them to zero to get the optimum solution, provided that:  

 [
𝜕2𝜓(𝑡1,𝑇)

𝜕𝑡1
2 ] [

𝜕2𝜓(𝑡1,𝑇)

𝜕𝑇2 ] − [
𝜕2𝜓(𝑡1,𝑇)

𝜕𝑡𝜕𝑇
]

2

≥ 0. (4.21) 

   

4.5  Numerical illustration 

In this section, we consider some numerical examples to justify our developed model. In 

these examples, we find a solution to the inventory problem, evaluate the values of 𝑡1 and 

𝑇 and substitute their values to Equation (4.18) to get the average total cost. We also get the 

re-order point from Equation (4.7) and lot-size from Equation (4.8).  

Example 1: 

We examine the following parametric values for the inventory system. 

𝑑 = 100, 𝐴 = 50, ℎ = 2, 𝑏 = 4, 𝑤 = 12, 𝑝 = 10  𝑛 = 0.5  𝜃 = 0.1  with appropriate 

units. 

Here we use maple 2018 to get the optimum solution and check for convexity using Equation 

(4.12). 

𝑇 = 0.756 years, 𝑡1 = 0.463 years, 𝑇𝐶(𝑡1, 𝑇) = 1127.52 units, 𝑄 = 75.794 units, 𝑀 =

28.561 units, 𝑚 = −47.233 units. 
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From Equation (4.21) the Hessian is 𝐻(𝑡1, 𝑇) = 240676.6344, which is positive; it implies 

that (𝑡1, 𝑇) is the minimum point.  

The convexity of the total cost function and the decision variables are given in Figure (4.2).  

Example 2.  

We reflect on the same example as in example 1, but we make our 𝑛 = 2 with appropriate 

units. 

𝑇 = 0.903  years, 𝑡1 = 0.546  years, 𝑇𝐶 = 1105.44  units, 𝑄 = 90.488  units, 𝑀 =

70.386 units, 𝑚 = −20.103 units.  

From Equation (4.21), the Hessian is 𝐻(𝑡1, 𝑇) = 143318.229, which is positive; it implies 

that (𝑡1, 𝑇) is the minimum point. 

 

Example 3.  

We consider the following parametric values for the inventory system as found in Rajeswari 

& Indrani (2015). 

𝑑 = 50, 𝐴 = 250, ℎ = 0.5, 𝑏 = 12, 𝑤 = 15, 𝑝 = 8  𝑛 = 2  𝜃 = 0.05  with appropriate 

units. 

Here, we want to make a comparison between our results with the optimal system 

propounded by the above authors. Solving Equations (4.9 and 4.10) in our propose model 

and input the same parametric values from the said authors, the following results are 

obtained: 

𝑇 = 2.726432  years, 𝑡1 = 2.339401  years, 𝑇𝐶(𝑡1, 𝑇) = 549.406768  units, 𝑄 =

139.908330  units, 𝑀 = 122.951587  units, 𝑚 = −10.0459318  units. From Equation 

(4.12), the Hessian is: 𝐻(𝑡1, 𝑇) = 5218.42892 > 0 which is positive, it implies that (𝑡1, 𝑇) 

is the minimum point.  

Univ
ers

iti 
Mala

ya



53 
 

Bearing in mind that Rajeswari & Indrani (2015) make the scheduling period constant and 

regarded 𝑇 = 1 year. Their results for the optimum policy are as follows: 𝑡1 = 0.973038 

years, 𝑄 = 50.215149 units, and the inventory minimum cost is $658.43. It implies from 

the results that our optimal policy of $549.407 is better than their own optimal policy of 

$658.43. It should be noted that the minimum inventory total cost of the said authors is 18% 

higher than our own model. The reason for the difference is that, they fixed their scheduling 

period to be 𝑇 = 1 year which did not really give accurate results. More also, other variables 

from our results are not considered by the Rajeswari & Indrani (2015). 
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Figure 4.2: Graphical representation of convexity of total cost against cycle and       
schedule time. 
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Figure 4.3: Graphical illustration of Convexity of total cost per unit time. 
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4.6  Sensitivity analysis 

A sensitivity analysis of the optimal inventory system is conducted in this section. The 

effect of changes that occurs in the system policy when the input parameter is varied are 

carefully considered. Observations are based on the reactions of the 𝑡1, 𝑇, 𝑄, 𝑀, 𝑚, 𝑇𝐶 

against the input parameters 𝑑, 𝐴, 𝑛, ℎ, 𝑝, 𝑏, 𝑤 and 𝜃. 

By the results from Table 4.1 the following observations are derived:   

1.  Increase in the value of parameter 𝐴 leads to increase in the inventory cycle time 𝑡1, 

scheduling period 𝑇, total cost 𝑇𝐶, quantity order 𝑄, Initial stock level, 𝑀, but decrease in 

re-order point 𝑚, here the optimal decision variables are highly sensitive to change in the 

parameter 𝐴. See Figures (4.4a,4.5a,4.6a,4.7a).  

 2.  Increases in the value of demand rate parameter 𝑑 lead to decrease in the inventory 

cycle 𝑡1, scheduling period 𝑇 and re-order point 𝑚, but there is an increase in the inventory 

total cost 𝑇𝐶, quantity order 𝑄, and initial stock level 𝑀. Here the decision variables are 

highly sensitive to change in parameter 𝑑. See Figures (4.5, 4.6, 4 .7). 

 3.  An increase in the input parameter ℎ leads to a decrease in the inventory cycle 𝑡1, 

schedule period 𝑇, quantity order 𝑄, and initial stock level 𝑀, but there is an increase in the 

inventory total cost 𝑇𝐶. Hence the decision variables are moderately sensitive to change in 

parameter ℎ.  See Figures (4.4, 4.6, 4.7).  

4.  As the inventory total cost 𝑇𝐶, and re-order point 𝑚 increases, there is a decrease in the 

inventory cycle time 𝑡1, scheduling period 𝑇, quantity order 𝑄 and initial stock level 𝑀 as 

the value of parameter 𝑏  increase. Here the optimal decision variables are moderately 

sensitive to change in 𝑏. See Figures (4.4,4.6, 4.8).  

5.  When the input parameters 𝑤  and 𝑝  increase in values, there is a decrease in the 

inventory cycle time 𝑡1, schedule period 𝑇, quantity order 𝑄, initial stock level 𝑀, and re-
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order level 𝑚, also, the inventory total cost increases. The decision variables have a low 

sensitivity to change in the parameters 𝑤 and 𝑃. See Figures (4.4, 4.7,4.8).  

6.  In parameter 𝑛 , as the value increases, there is the corresponding decrease in the 

inventory cycle 𝑡1, schedule period 𝑇, quantity order 𝑄, and re-order level 𝑚. However, 

there is an increase in the inventory total cost 𝑇𝐶 and initial stock level 𝑀. The optimal 

decision variables are moderately sensitive to change in 𝑛.  See Figures (4.4,4.5, 4.6,4.7).  

7.  An increase in the value of deterioration parameter 𝜃  leads to an increase in the 

inventory total cost 𝑇𝐶, but a decrease in all other decision variables. It is observed here that 

deterioration parameter 𝜃 have a very low sensitivity to change. See Figures (4.5,4.7,4.8).  

In Table 4.1, below, the following abbreviations are use: 

Note: P = parameter, V = values, C =% changes, TC*= %change in TC, Q*= %change in 

ordering quantity, M*= %change in ordering level, m*= %change in re-order point. 
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Table 4.1: Outcome of changes in various parameters of the inventory models. 
 
                                 
             
  
   P      V        C           

                               
                      Change in:  
        
 
    T       t1       TC*       Q*        M*      m*                                                                                 

 
 

A 

75 
65.5 
50 
37.5 
25 

+50 
+25 
 0 
-25 
-50 

0.915 
0.859 
0.756 
0.660 
0.545 

0.551 
0.521 
0.464 
0.409 
0.341 

+2.65 
+1.70 
0 
-1.56 
-1.87 

+21.060 
+13.584 
0 
-12.728 
-28.024 

+17.429 
+11.359 
0 
-11.052 
-24.892 

+23.255 
+14.929 
0 
-13.742 
-29.917 

 
 
d 

150 
125 
100 
75 
50 

+50 
+25 
 0 
-25 
-50 

0.625 
0.681 
0.756 
0.866 
1.047 

0.388 
0.421 
0.464 
0.525 
0.623 

+46.79 
+23.46 
0 
-23.63 
-47.54 

+23.794 
+12.478 
0 
-14.101 
-30.713 

+27.089 
+14.172 
0 
-15.898 
-34.410 

+21.802 
+11.454 
0 
-13.014 
-28.477 

 
h 

 

3.0 
2.5 
2.0 
1.5 
1.0 

+50 
+25 
 0 
-25 
-50 

0.717 
0.735 
0.756 
0.784 
0.819 

0.386 
0.421 
0.464 
0.515 
0.580 

+0.83 
+0.46 
0 
-0.59 
-1.34 

-28.477 
-2.923 
0 
+3.736 
+8.565 

-27.137 
-15.147 
0 
+19.440 
+4.788 

+5.882 
-4.68 
0 
-5.760 
-13.339 

 
 

b 
 

6.0 
5.0 
4.0 
3.0 
2.0 

+50 
+25 
0 
-25 
-50 

0.681 
0.712 
0.756 
0.827 
0.955 

0.478 
0.472 
0.464 
0.450 
0.426 

+1.131 
+0.643 
0 
-0.889 
-2.205 

-9.899 
-5.848 
0 
+9.227 
+26.078 

+18.254 
+10.294 
0 
-13.800 
-33.161 

-26.923 
-15.609 
0 
-23.151 
-61.899 

 
 

w 
 

18 
15 
10 
9.0 
6.0 

+50 
+25 
0 
-25 
-50 

0.746 
0.751 
0.756 
0.762 
0.769 

0.449 
0.456 
0.464 
0.472 
0.480 

+0.103 
+0.053 
0 
-0.055 
-0.114 

-1.371 
-0.714 
0 
+0.779 
+1.634 

-4.868 
-2.521 
0 
+2.719 
+5.665 

+0.744 
+0.379 
0 
-0.394 
-0.804 

 
 

p 

15 
12.5 
10 
7.5 
5.0 

+50 
+25 
0 
-25 
-50 

0.748 
0.752 
0.756 
0.761 
0.766 

0.451 
0.457 
0.464 
0.470 
0.477 

+44.431 
+22.217 
0 
-22.219 
-44.439 

-1.158 
-0.599 
0 
0.644 
+1.340 

-4.104 
-2.113 
0 
+2.251 
+4.655 

+0.624 
+0.317 
0 
-0.327 
-0.665 

 
 

n 

0.75 
0.625 
0.5 
0.375 
0.25 

+50 
+25 
0 
-25 
-50 

0.762 
0.755 
0.757 
0.774 
0.835 

0.467 
0.463 
0.464 
0.474 
0.508 

-0.130 
-0.013 
0 
-0.208 
-0.933 

+0.715 
-0.141 
0 
+2.300 
+10.298 

+39.318 
+21394 
0 
-26.448 
+59.713 

-22.628 
-13.164 
0 
19.684 
+52.633 

 
 

θ 

0.15 
0.125 
0.1 
0.075 
0.05 

+50 
+25 
0 
-25 
-50 

0.738 
0.747 
0.756 
0.768 
0.782 

0.438 
0.450 
0.464 
0.479 
0.498 

+0.185 
+0.097 
0 
-0.107 
-0.226 

-2.365 
-1.270 
0 
1.496 
-3.297 

-8.496 
+4.517 
0 
+5.203 
+11.310 

+1.343 
+0.694 
0 
-0.745 
-1.549 
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Figure 4.4: Graphical representation of sensitivity analysis of cycle time against 
percentage change in input parameters. 
  

  

(b) 
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Figure 4.5: Graphical representation of sensitivity analysis of total cost against 
percentage change in input parameters. 
  

 

(a) 

(b) 
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Figure 4.6: Graphical representation of sensitivity analysis of ordering quantity against 
percentage change in input parameters. 
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Figure 4.7: Graphical representation of sensitivity analysis of initial-level against 
percentage change in input parameters. 
  

(a) 

(b) 
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Figure 4.8: Graphical representation of sensitivity analysis of re-ordering cost against 
percentage change in input parameters. 
  
 
 

 

(a) 

(b) 
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4.7  Concluding Observations 

In this chapter, a deterministic inventory model for deteriorating items with linear 

deterioration rate has been presented. Demand follows a power pattern and shortages are 

permitted which are wholly backlogged. The aims are to find an optimum solution that 

minimises the total average cost. The decision variables here are the time at which the 

inventory drops to zero and the schedule cycle period. Numerical examples are given, and 

sensitivity analysis back up with graphical representation is carried out to show how the 

optimal decision is affected by changes in different parameters in the model. The following 

are our concluding remarks:  

1.  When the ordering cost 𝐴 is increasing, the optimal inventory cost is rising. See 

       Figure 4.6.  

2.  When the demand rate 𝑑 is increasing, the optimal cost and the ordering quantity  

         are growing. See Figures (4.5 and 4.6).  

3.  When the deteriorating rate 𝜃 is increasing, the ordering quantity is decreasing, leading  

      to growth in the optimal inventory cost. See Figures (4.6, 4.7).  

4.  When the power index 𝑛 is increasing, the inventory ordering quantity is increasing. 

              See Figure (4.6a).  

The model is useful to inventory keeping company/organisation that deals with 

deteriorating item that deteriorates with the passage of time and the demand also varies as 

the time progresses. Examples of such items include an android mobile phone, computer 

chips, fashion, electronics etc. The model presented in this chapter provides a basis for 

various possible extensions. In this direction, future research can enrich the model by adding 

more realistic assumption like finite replenishment, incorporating, non-instantaneous 

deterioration, lost sales, product reliability, time value of money, and so on. 
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When customers required items that are not in stock in the organisation stores, then the 

customer will go another place (otherwise known as a lost sale) or place an order for the 

products in another area. 

Some organisation are the sole supplier of some product, and they offer a competitive 

price to their customer, and some also provide a discount for delaying in the delivery of 

certain items. The acts give these organisation opportunities not to lose the sale when it’s 

inventory eventually drop to zero. Customers, in this case, have to wait for their order to be 

filled whichever time the new order arrives. 

Therefore, shortages are the need/demand that will be fulfilled in some time later than 

desire. The next model will be formulated base on this fact. 
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CHAPTER 5: A LINEAR DETERIORATING INVENTORY POLICY FOR ITEMS 

WITH POWER DEMAND PATTERN AND VARIABLE HOLDING COST 

CONSIDERING SHORTAGES 

 

5.1  Introduction 

In Chapter four, an economic order quantity model for a linearly time-depended 

deteriorating items with power pattern form, shortages and time-varying demand rate was 

examined. 

  In the management of inventory, there are times shortages or stock-out do occur. During 

this duration, some consumers would be kind enough to, hold back for backlogging, albeit 

others will not be patient enough to wait, and they will turn elsewhere to meet their demand. 

As a result of this, opportunity cost arises from the lost sale should be taken into consideration 

in any inventory model as against a complete backlogging which are very common in 

inventory modelling. 

  In this chapter, a linear deteriorating inventory model for products with power demand 

pattern and variable holding cost will be considered. This model is an extension of our model 

in chapter three by adding time-depending on the holding cost and time-depending on the 

deteriorating rate. If 𝑡𝑑 = 0, we have the same model as in Adaraniwon & Omar (2019) with 

fixed holding cost. The intention is to minimise the total cost per unit time by optimising the 

schedule period or cycle time and optimal ordering quantity. 

5.2  Notation and Assumptions 

The mathematical inventory model for this work is developed established on the following 

assumptions and notation. 
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            Notation   

    • 𝑇 : Length of the inventory cycle.  

    • 𝑡1: Time at which the inventory deleted to 0.  

    • 𝑄1(𝑡): Positive inventory level at time 𝑡.  

    • 𝑄2(𝑡): Negative inventory level at time 𝑡.  

    • 𝜃: Deteriorating rate (0 < 𝜃 ≤ 1)  

    • 𝑃: Ordering quantity (units)  

    • 𝑀: Maximum inventory level during the cycle  

    • 𝑁: Maximum inventory level during negative inventory period  

    • 𝑑: Average demand per scheduling period per units per time  

    • 𝛾: Backlogging rate. (0 ≤ 𝛾 ≤ 1)  

    • 𝑛: Demand pattern index, (𝑛 must be greater than 0)  

    • 𝐴: Ordering cost ($ per order)  

    • ℎ: Holding cost per unit ($ per /time/unit)  

    • 𝑍: Purchasing cost per unit ($ per unit).  

    • 𝐾: Cost per shortage unit ($ per unit).  

    • 𝑆: Cost per lost sale unit ($ per unit).  

    • 𝐻𝐶: Holding cost per/time/unit.  

    • 𝑆𝐶: Shortage cost per/time/unit  

    • 𝐿𝑆𝐶: Lost sale cost per/time/unit.  

    • 𝑇𝐶: Total cost of the inventory policy per/time/unit.  

        Assumptions   

    1.  Demand is a power demand pattern.  

    2.  Shortages are permitted and partially backlogged  
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    3.  Deterioration rate of item is a linear function of time  

    4.  Holding cost is time-dependent and taken as ℎ(𝑡) = ℎ + 𝛽𝑡 , where ℎ >

                                       0, 𝛽 > 0  

    5.  Lead time is negligible.  

    6.  Replenishment is instantaneous.  

    7.  Demand 𝐷(𝑡) varies with time and taken as 𝐷(𝑡) =
𝑑𝑡

1
𝑛

𝑛𝑇
1
𝑛

−1
, where 𝑑 is the average 

demand and the power index is 𝑛, 0 < 𝑛 < ∞ and 0 ≤ 𝑡 ≤ 𝑇. The rate of demand at any 

given time 𝑡 is 𝐷′(𝑡)  

  

5.3  Mathematical Formulation 

In the presented model, a cycle can be split up into two periods. In this diagram, [0, 𝑇] is 

considered as a single duration. Through [0,  𝑡1] the inventory is on positive side and through 

[𝑡1, 𝑇] the inventory is on the negative side. Let 𝑄1(𝑡) be the stock level at time t which 

ranges between 0 ≤ 𝑡 ≤ 𝑇. At the onset of the inventory cycle, the maximum inventory level 

𝑄1(0) = 𝑀 reduces as a result of demand and the process of deterioration also set in for the 

items. At the interval 𝑡 = 𝑡1, the inventory system gets down to zero level. After that, at the 

interval [𝑡1, 𝑇], shortages occur in the system, and they are backlogged at the end of the 

cycle. At the interval 𝑡 = 𝑇, the system reaches a level N.  

The inventory level 𝑄1(𝑡) and 𝑄2(𝑡) during the cycle period is described in Figure 5.1.  

Based on the above assumptions, the differential equations represent the stock level is 

given as: 
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Figure 5.1: Graphical representation of inventory model. 

 

  𝑑𝑄1(𝑡)

𝑑𝑡
+ 𝜃𝑡𝑄(𝑡) =

𝑑𝑡
1
𝑛

−1

𝑛𝑇
1
𝑛−1

    0 ≤   𝑡 ≤ 𝑡1 (5.1) 

   With the boundary conditions 𝑄1(0) = 𝑀, 𝑄1(𝑡1) = 0   𝑎𝑛𝑑   𝑄2(𝑡1) = 0  

Using the integrating factor 𝑒∫ 𝜃𝑡𝑑𝑡 = 𝑒
𝜃𝑡2

2   

 𝑄1(𝑡)𝑒
𝜃𝑡2

2

𝑑𝑡
+ 𝜃𝑡𝑄1(𝑡)𝑒

𝜃𝑡2

2 = −
𝑑

𝑛𝑇
1
𝑛

−1
[𝑡

1

𝑛
−1𝑒

𝜃𝑡2

2 ] 

 𝑄1(𝑡)𝑒
𝜃𝑡2

2 = −
𝑑

𝑛𝑇
1
𝑛

−1
[∫ 𝑡

1

𝑛
−1𝑒

𝜃𝑡2

2 ] 𝑑𝑡 

 Since 𝜃 is small, 0 ≤ 𝜃 ≤ 1, taking the first three expressions of the power series, we have:  
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 𝑒𝑡 = 1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
. . . . . . . . . . .. 

 𝑒
𝜃𝑡2

2 = 1 +
𝜃𝑡2

2
+

(𝜃𝑡2)2

8
+

(𝜃𝑡2)3

24
+. . . . . . . . . . . . . . . . .. 

 𝑄1(𝑡)𝑒
𝜃𝑡2

2 = −
𝑑

𝑛𝑇
1
𝑛

−1
[∫ 𝑡

1

𝑛
−1 (1 +

𝜃𝑡2

2
+

𝜃2𝑡4

8
)] 𝑑𝑡 

 𝑄1(𝑡)𝑒
𝜃𝑡2

2 = −
𝑑

𝑛𝑇
1
𝑛

−1
[𝑛𝑡

1

𝑛 +
𝑛𝜃𝑡

1
𝑛

+2

2(2𝑛+1)
+

𝑛𝜃2𝑡
1
𝑛

+4

8(4𝑛+1)
] + 𝐶 

 Making use of the boundary condition 𝑄1(0) = 𝑀  

𝑀 = 𝐶, therefore:  

 𝑄1(𝑡)𝑒
𝜃𝑡2

2 = 𝑀 −
𝑑

𝑛𝑇
1
𝑛

−1
[𝑛𝑡

1

𝑛 +
𝑛𝜃𝑡

1
𝑛

+2

2(2𝑛+1)
+

𝑛𝜃2𝑡
1
𝑛

+4

8(4𝑛+1)
] 

 𝑄1(𝑡)𝑒
𝜃𝑡2

2 = 𝑀 −
𝑑

𝑇
1
𝑛

−1
[𝑡

1

𝑛 +
𝜃𝑡

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡
1
𝑛

+4

8(4𝑛+1)
] 

 𝑄1(𝑡) = 𝑀𝑒−
𝜃𝑡2

2 −
𝑑𝑒

−
𝜃𝑡2

2

𝑇
1
𝑛

−1
[𝑡

1

𝑛 +
𝜃𝑡

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡
1
𝑛

+4

8(4𝑛+1)
] (5.2) 

 During the negative inventory, the policy is described by the equation:  

 𝑄2(𝑡)

𝑑𝑡
= −𝛾𝐷(𝑡)    𝑡1 ≤   𝑡 ≤ 𝑇 (5.3) 

 𝑄2(𝑡) = −
𝛾𝑑

𝑛𝑇
1
𝑛

−1
∫ 𝑡

1

𝑛
−1𝑑𝑡 

 𝑄2(𝑡) = −
𝛾𝑑

𝑇
1
𝑛

−1
(𝑡

1

𝑛) + 𝐶 

 Using the boundary condition 𝑄2(𝑡1) = 0  

 0 = −
𝛾𝑑

𝑇
1
𝑛

−1
𝑡1

1

𝑛 + 𝐶 

 𝐶 =
𝛾𝑑

𝑇
1
𝑛

−1
𝑡1

1

𝑛 

            Therefore:  
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 𝑄2(𝑡) = −
𝛾𝑑

𝑇
1
𝑛

−1
𝑡

1

𝑛 +
𝛾𝑑

𝑇
1
𝑛

−1
𝑡1

1

𝑛 

 𝑄2(𝑡) =
𝛾𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 − 𝑡
1

𝑛] (5.4) 

 𝑄1 is a steadily decreasing function in the time interval [0, 𝑇]; therefore the initial net stock 

level at this interval is obtained by substituting the boundary condition 𝑄𝑡1
= 0 , into 

Equation (5.3), we have  

 0 = 𝑀𝑒−
𝜃𝑡1

2

2 −
𝑑𝑒

−
𝜃𝑡1

2

2

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] 

 𝑀𝑒−
𝜃𝑡1

2

2 =
𝑑𝑒

−
𝜃𝑡1

2

2

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] 

 𝑀 =
𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] (5.5) 

 The maximum negative inventory per units is given as: 

 𝑁 = −𝑄2(𝑇) 

 𝑁 =
𝛾𝑑

𝑇
1
𝑛

−1
(𝑇

1

𝑛 − 𝑡1

1

𝑛) (5.6) 

 The order size during the entire period [0, 𝑇] is given as: 

 𝑃 = 𝑀 + 𝑁 

 𝑃 =
𝛾𝑑

𝑇
1
𝑛

−1
(𝑇

1

𝑛 − 𝑡1

1

𝑛) +
𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] 

 𝑃 =
𝑑

𝑇
1
𝑛

−1
[𝛾𝑇

1

𝑛 − 𝛾𝑡1

1

𝑛 + 𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] (5.7) 

The cost of holding inventory occurs at the interval [0, 𝑡1] only; hence, the holding cost 

during this interval [0, 𝑡1] is obtained as follows: 

 𝐻𝐶 = ∫
𝑡1

0
ℎ(𝑡)𝑄1(𝑡)𝑑𝑡 
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 𝐻𝐶 = ∫
𝑡1

0
(ℎ + 𝛽𝑡)𝑄1𝑑𝑡 

 𝐻𝐶 = ∫
𝑡1

0
(ℎ + 𝛽𝑡) [𝑀𝑒−

𝜃𝑡2

2 −
𝑑𝑒

−
𝜃𝑡2

2

𝑛𝑇
1
𝑛

−1
(𝑡

1

𝑛 +
𝜃𝑡

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡
1
𝑛

+4

8(4𝑛+1)
)] 𝑑𝑡 

 𝐻𝐶 = ∫
𝑡1

0
(ℎ + 𝛽𝑡) [𝑡1

1

𝑛 − 𝑡
1

𝑛 −
𝜃𝑡2𝑡1

1
𝑛

2
+

𝜃2𝑡4𝑡1

1
𝑛

8
+

𝜃𝑛𝑡
1
𝑛

+2

2𝑛+1
+

𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
 

 −
𝜃2𝑡2𝑡1

1
𝑛

+2

4(2𝑛+1)
−

𝜃2𝑡
1
𝑛

+4

8
+

𝜃2𝑡
1
𝑛

+4

4(2𝑛+1)
−

𝜃2𝑡
1
𝑛

+4

8(4𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
] 

             Upon expansion and some simplifications, we have: 

 𝐻𝐶 =
𝑑

𝑇
1
𝑛

−1
[ℎ𝑡1

1

𝑛
+1

−
ℎ𝑛𝑡1

1
𝑛

+1

𝑛+1
−

ℎ𝜃𝑡1

1
𝑛

+3

6
+

ℎ𝜃2𝑡1

1
𝑛

+5

40
+

ℎ𝜃𝑛2𝑡1

1
𝑛

+3

(2𝑛+1)(3𝑛+1)
 

 +
ℎ𝜃𝑡1

1
𝑛

+3

2(2𝑛+1)
−

ℎ𝜃2𝑡1

1
𝑛

+5

12(2𝑛+1)
−

ℎ𝑛𝜃2𝑡1

1
𝑛

+5

8(5𝑛+1)
+

ℎ𝑛𝜃2𝑡1

1
𝑛

+5

4(5𝑛+1)(2𝑛+1)
 

 −
ℎ𝑛𝜃2𝑡1

1
𝑛

+5

8(5𝑛+1)(4𝑛+1)
+

ℎ𝜃2𝑡1

1
𝑛

+5

8(4𝑛+1)
+

𝛽𝑡1

1
𝑛

+2

2
−

𝛽𝑛𝑡1

1
𝑛

+2

2𝑛+1
−

𝛽𝜃𝑡1

1
𝑛

+4

8
 

 +
𝛽𝜃2𝑡1

1
𝑛

+6

48
+

𝛽𝜃2𝑛2𝑡1

1
𝑛

+4

(2𝑛+1)(4𝑛+1)
+

𝛽𝜃𝑡1

1
𝑛

+4

4(2𝑛+1)
−

𝛽𝜃2𝑡1

1
𝑛

+7

16(2𝑛+1)
−

𝛽𝜃2𝑛𝑡1

1
𝑛

+6

8(6𝑛+1)
 

 +
𝛽𝜃2𝑛𝑡1

1
𝑛

+6

8(6𝑛+1)
+

𝛽𝜃2𝑛𝑡1

1
𝑛

+6

4(2𝑛+1)(6𝑛+1)
−

𝛽𝜃2𝑛𝑡1

1
𝑛

+6

8(4𝑛+1)(6𝑛+1)
+

𝛽𝜃2𝑡1

1
𝑛

+6

16(4𝑛+1)
] (5.8) 

            Purchase cost is obtained thus: 

 𝑃𝐶 = 𝑍 (𝑀 + ∫
𝑇

𝑡1
𝛾𝐷(𝑡)) 𝑑𝑡 

 𝑃𝐶 =
𝑍𝑑

𝑇
1
𝑛

−1
(𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
+

𝛾

𝑛𝑇
1
𝑛

−1
(∫

𝑇

𝑡1
𝑡

1

𝑛
−1𝑑𝑡)) 

 𝑃𝐶 =
𝑍𝑑

𝑇
1
𝑛

−1
(𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
+

𝛾

𝑇
1
𝑛

−1
(𝑇

1

𝑛 − 𝑡1

1

𝑛)) 

 𝑃𝐶 =
𝑍𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
+ 𝛾(𝑇

1

𝑛 − 𝑡1

1

𝑛)] (5.9) 
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 Shortages as a result of stock out is stockpile in the policy during the interval [𝑡1, 𝑇]. 

The policy attains the optimum level of shortage at (𝑡 = 𝑇); hence, the overall shortage cost 

at this period obtained thus:  

 𝑆𝐶 = 𝐾 ∫
𝑇

𝑡1
− 𝑄2(𝑡)𝑑𝑡 

 𝑆𝐶 = 𝐾 ∫
𝑇

𝑡1
−

𝛾𝑑

𝑇
1
𝑛

−1
(𝑡1

1

𝑛 − 𝑡
1

𝑛)𝑑𝑡 

 𝑆𝐶 = −
𝐾𝛾𝑑

𝑇
1
𝑛

−1
∫

𝑇

𝑡1
(𝑡1

1

𝑛 − 𝑡
1

𝑛)𝑑𝑡 

 𝑆𝐶 =
𝐾𝑑𝛾

𝑇
1
𝑛

−1
[𝑇𝑡1

1

𝑛 −
𝑛𝑇

1
𝑛

+1

𝑛+1
−

𝑡1

1
𝑛

+1

𝑛+1
] (5.10) 

 As a result of stock out during (𝑡1, 𝑇), Shortage is stockpile, but not all consumers are 

willing to stand by for the next lot size to emerge. Hence this culminates in some loss of sale, 

which accounts for the loss in profits. 

Lost sale cost is calculated as follows: 

 𝐿𝑆𝐶 = 𝑆 ∫
𝑇

𝑡1
(1 − 𝛾)𝐷(𝑡)𝑑𝑡 

 𝐿𝑆𝐶 = 𝑆 ∫
𝑇

𝑡1
(1 − 𝛾)

𝑑𝑡
1
𝑛

−1

𝑛𝑇
1
𝑛

−1
𝑑𝑡 

 𝐿𝑆𝐶 =
𝑆𝑑(1−𝛾)

𝑛𝑇
1
𝑛

−1
[∫

𝑇

𝑡1
𝑡

1

𝑛
−1𝑑𝑡] 

 𝐿𝑆𝐶 =
𝑆𝑑(1−𝛾)

𝑛𝑇
1
𝑛

−1
[𝑛𝑇

1

𝑛 − 𝑛𝑡
1

𝑛] 

 𝐿𝑆𝐶 =
𝑆𝑑(1−𝛾)

𝑇
1
𝑛

−1
[𝑇

1

𝑛 − 𝑡
1

𝑛] (5.11) 

  The total cost for the inventory system is made up of the following cost components 

TC = Ordering cost + Holding cost + Purchase cost + Shortage cost + Lost sale cost /T  

 𝑇𝐶 =
𝑑

𝑇
1
𝑛

−1
[ℎ𝑡1

1

𝑛
+1

−
ℎ𝑛𝑡1

1
𝑛

+1

𝑛+1
−

ℎ𝜃𝑡1

1
𝑛

+3

6
+

ℎ𝜃2𝑡1

1
𝑛

+5

40
+

ℎ𝜃𝑛2𝑡1

1
𝑛

+3

(2𝑛+1)(3𝑛+1)
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 +
ℎ𝜃𝑡1

1
𝑛

+3

2(2𝑛+1)
−

ℎ𝜃2𝑡1

1
𝑛

+5

12(2𝑛+1)
−

ℎ𝑛𝜃2𝑡1

1
𝑛

+5

8(5𝑛+1)
+

ℎ𝑛𝜃2𝑡1

1
𝑛

+5

4(5𝑛+1)(2𝑛+1)
 

 −
ℎ𝑛𝜃2𝑡1

1
𝑛

+5

8(5𝑛+1)(4𝑛+1)
+

ℎ𝜃2𝑡1

1
𝑛

+5

8(4𝑛+1)
+

𝛽𝑡1

1
𝑛

+2

2
−

𝛽𝑛𝑡1

1
𝑛

+2

2𝑛+1
−

𝛽𝜃𝑡1

1
𝑛

+4

8
 

 +
𝛽𝜃2𝑡1

1
𝑛

+6

48
+

𝛽𝜃2𝑛2𝑡1

1
𝑛

+4

(2𝑛+1)(4𝑛+1)
+

𝛽𝜃𝑡1

1
𝑛

+4

4(2𝑛+1)
−

𝛽𝜃2𝑡1

1
𝑛

+7

16(2𝑛+1)
−

𝛽𝜃2𝑛𝑡1

1
𝑛

+6

8(6𝑛+1)
 

 +
𝛽𝜃2𝑛𝑡1

1
𝑛

+6

8(6𝑛+1)
+

𝛽𝜃2𝑛𝑡1

1
𝑛

+6

4(2𝑛+1)(6𝑛+1)
−

𝛽𝜃2𝑛𝑡1

1
𝑛

+6

8(4𝑛+1)(6𝑛+1)
+

𝛽𝜃2𝑡1

1
𝑛

+6

16(4𝑛+1)
] 

 +
𝑍𝑑

𝑇
1
𝑛

[𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
+ 𝛾(𝑇

1

𝑛 − 𝑡1

1

𝑛)] 

 +
𝐾𝑑𝛾

𝑇
1
𝑛

[𝑇𝑡1

1

𝑛 −
𝑛𝑇

1
𝑛

+1

𝑛+1
−

𝑡1

1
𝑛

+1

𝑛+1
] 

 +
𝑆𝑑(1−𝛾)

𝑇
1
𝑛

[𝑇
1

𝑛 − 𝑡
1

𝑛] +
𝐴

𝑇
 (5.12) 

  

5.4  Solution Method 

We propound an approach to evaluate the inventory policy that minimises the total 

inventory cost per unit time in this section. From Equation (5.12), we find the first partial 

derivative of 𝑇𝐶(𝑇, 𝑡1) concerning the decision variables 𝑇 and 𝑡1: 

             We obtain:  

 𝜕𝑇𝐶(𝑡1,𝑇)

𝜕𝑡1
     𝑎𝑛𝑑     

𝜕𝑇𝐶(𝑡1,𝑇)

𝜕𝑇
 

To minimise the total cost 𝑇𝐶(𝑡1, 𝑇) per unit time, the optimum value of 𝑇   𝑎𝑛𝑑   𝑡1 can be 

procured by solving the equations 

 𝜕𝑇𝐶(𝑡1,𝑇)

𝜕𝑡1
= 0     𝑎𝑛𝑑     

𝜕𝑇𝐶(𝑡1,𝑇)

𝜕𝑇
= 0 (5.13) 

 Provided that Equation (5.12) satisfies the following conditions: 
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 (
𝜕2𝑇𝐶(𝑡1,𝑇)

𝜕𝑡1
2 )     > 0     𝑎𝑛𝑑     (

𝜕2𝑇𝐶(𝑡1,𝑇)

𝜕𝑇2
)     > 0 (5.14) 

 (
𝜕2𝑇𝐶(𝑡1,𝑇)

𝜕𝑡1
2 ) (

𝜕2𝑇𝐶(𝑡1,𝑇)

𝜕𝑇2 ) − (
𝜕2𝑇𝐶(𝑡1,𝑇)

𝜕𝑡1𝜕𝑇
)

2

> 0 (5.15) 

  𝜕𝑇𝐶(𝑡1,𝑇)

𝜕𝑡1
=

𝑑

𝑇
1
𝑛

[
ℎ(𝑛+1)𝑡

1
𝑛

𝑛
− ℎ𝑡1

1

𝑛 −
ℎ𝜃(3𝑛+1)𝑡1

1
𝑛

+2

6𝑛
+

ℎ𝜃2(5𝑛+1)𝑡1

1
𝑛

+4

40𝑛
 

 +
ℎ𝜃𝑛𝑡1

1
𝑛

+2

2𝑛+1
+

ℎ𝜃(3𝑛+1)𝑡1

1
𝑛

+2

2𝑛(2𝑛+1)
−

ℎ𝜃2(5𝑛+1)𝑡1

1
𝑛

+4

2𝑛(2𝑛+1)
−

ℎ𝜃2𝑡1

1
𝑛

+4

8
 

 +
ℎ𝜃2𝑡1

1
𝑛

+4

4(2𝑛+1)
−

ℎ𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
+

ℎ𝜃2(5𝑛+1)𝑡1

1
𝑛

+4

8𝑛(4𝑛+1)
+

𝛽(2𝑛+1)𝑡1

1
𝑛

+1

2𝑛
− 𝛽𝑡1

1

𝑛
+1

 

 −
𝛽𝜃(4𝑛+1)𝑡1

1
𝑛

+3

8𝑛
+

𝛽𝜃2(6𝑛+1)𝑡1

1
𝑛

+5

48𝑛
+

𝛽𝜃2𝑛𝑡1

1
𝑛

+3

(2𝑛+1)
+

𝛽𝜃(4𝑛+1)𝑡1

1
𝑛

+3

4𝑛(2𝑛+1)
 

 −
𝛽𝜃2(7𝑛+1)𝑡1

1
𝑛

+6

16𝑛(2𝑛+1)
−

𝛽𝜃2𝑡1

1
𝑛

+5

8
+

𝛽𝜃2𝑡1

1
𝑛

+5

4(2𝑛+1)
−

𝛽𝜃2𝑡1

1
𝑛

+5

8(4𝑛+1)
+

𝛽𝜃2(6𝑛+1)𝑡1

1
𝑛

+5

16𝑛(4𝑛+1)
] 

 𝑍𝑑

𝑇
1
𝑛

[
𝑡1

1
𝑛

−1

𝑛
+

𝜃𝑡1

1
𝑛

+1

2𝑛
+

𝜃2𝑡1

1
𝑛

+3

8𝑛
−

𝛾𝑡1

1
𝑛

−1

𝑛
] −

𝐾𝛾𝑑

𝑇
1
𝑛

[
𝑇𝑡1

1
𝑛

−1

𝑛
−

𝑡1

1
𝑛

𝑛
] 

 −
𝑆𝑑(1−𝛾)

𝑇
1
𝑛

(
𝑡1

1
𝑛

−1

𝑛
) +

𝐴

𝑇
= 0 (5.16) 

 𝜕𝑇𝐶(𝑡1,𝑇)

𝜕𝑇
=

−𝐴

𝑇2 −
𝑑

𝑛𝑇
1
𝑛

+1
[ℎ𝑡

1

𝑛
+1 −

ℎ𝑛𝑡1

1
𝑛

+1

𝑛+1
+

ℎ𝜃𝑡1

1
𝑛

+3

6
+

ℎ𝜃2𝑡1

1
𝑛

+5

40
+

ℎ𝑛2𝜃𝑡1

1
𝑛

+3

(2𝑛+1)(3𝑛+1)
 

 +
ℎ𝜃𝑡1

1
𝑛

+3

4𝑛+2
−

ℎ𝜃2𝑡1

1
𝑛

+5

4𝑛+2
−

ℎ𝑛𝜃2𝑡1

1
𝑛

+5

4𝑛+8
+

ℎ𝑛𝜃2𝑡1

1
𝑛

+5

4(2𝑛+1)(5𝑛+1)
−

ℎ𝑛𝜃2𝑡1

1
𝑛

+5

8(4𝑛+1)(5𝑛+1)
 

 +
ℎ𝜃2𝑡1

1
𝑛

+5

8(4𝑛+1)
+

𝛽𝑡1

1
𝑛

+2

2
−

𝛽𝑛𝑡1

1
𝑛

+2

2𝑛+1
−

𝛽𝜃𝑡1

1
𝑛

+4

8
+

𝛽𝜃2𝑡1

1
𝑛

+6

48
+

𝛽𝜃2𝑛2𝑡1

1
𝑛

+4

(2𝑛+1)(4𝑛+1)
 

 +
𝛽𝜃𝑡1

1
𝑛

+4

8𝑛+4
−

𝛽𝜃2𝑡1

1
𝑛

+7

32𝑛+16
−

𝛽𝜃2𝑛𝑡1

1
𝑛

+6

48𝑛+8
+

𝛽𝑛𝜃2𝑡1

1
𝑛

+2

4(2𝑛+1)(6𝑛+1)
+

𝛽𝜃2𝑡1

1
𝑛

+6

64𝑛+16
 

 −
𝛽𝜃2𝑛𝑡1

1
𝑛

+2

8(4𝑛+1)(6𝑛+1)
] −

𝑍𝐷

𝑛𝑇
1
𝑛

+1
[𝑡1

1

𝑛 +
𝜃𝑡1

1
𝑛

+2

4𝑛+2
+

𝜃2𝑡1

1
𝑛

+4

8(4𝑛+1)
+ 𝛾𝑇

1

𝑛 − 𝛾𝑡
1

𝑛] 
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 +
𝑍𝑑𝛾

𝑛𝑇
+

𝐾𝛾𝑑

𝑛𝑇
1
𝑛

+1
[𝑇𝑡1

1

𝑛 −
𝑛𝑇

1
𝑛

+1

𝑛+1
−

𝑡1

1
𝑛

+1

𝑛+1
] −

𝐾𝑑𝛾(𝑡1

1
1−𝑇

1
𝑛)

𝑇
1
𝑛

 

 +
𝑆𝑑(1−𝛾)

𝑛𝑇
−

𝑆𝑑(1−𝛾)(𝑇
1
𝑛−𝑡1

1
𝑛)

𝑛𝑇
1
𝑛

+1
 (5.17) 

Equations (5.16) and (5.17) are highly non-linear; the values of 𝑡1 and 𝑇 are solved for the 

optimal values to obtain minimum total inventory cost per unit time. Maple software 2018 

and Excel was utilised to get the values of the decision variables.  

 

5.5  Numerical Examples 

Here, we give an example to demonstrate the results derived from the linear deteriorating 

inventory policy for products with power demand pattern and variable holding coat 

considering shortages 

Example 5.51  

  The subsequent parametric values are considered for the inventory policy in their respective 

units 

𝐴 = 500 , 𝑑 = 100 , ℎ = 0.4 units, 𝛽 = 15 , 𝐾 = $10 per units, 𝑆 = $8 per units, 𝑍 =

$12 per units, 𝜃 = 0.8, 𝑛 = 0.5, 𝛾 = 0.6 

Solving Equation (5.16) and Equation (5.17), The optimum value of 𝑇 = 1.671 and 𝑡1 =

0.593 

Make use of these values of 𝑡1  and 𝑇 , the second derivatives can be found. Hence 

𝜕2𝑇𝐶(𝑡1,𝑇)

𝜕𝑡1
2 = 977.479 > 0 and 𝜕2𝑇𝐶(𝑡1,𝑇)

𝜕𝑇2 = 294.161 > 0, 

𝜕2𝑇𝐶(𝑡1,𝑇)

𝜕𝑇𝜕𝑡1
= −254.961. Therefore from Equation (5.15), we have: 

𝜕2𝑇𝐶(𝑡1,𝑇)

𝜕𝑡1
2 ∗

𝜕2𝑇𝐶(𝑡1,𝑇)

𝜕𝑇2 − (
𝜕2𝑇𝐶(𝑡1,𝑇)

𝜕𝑇𝜕𝑡1
)

2

= 222531.2104 . 𝑇  and 𝑡1  minimises the total 

inventory average cost since they both satisfies the necessary and sufficient condition 
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Equation (5.14) and Equation (5.15). 

When the values of 𝑇  and 𝑡1  are substituted into Equation (5.12) , the total cost 

𝑇𝐶(𝑡1, 𝑇) = 1627.69. and 𝑀 = 22.6001, 𝑃 = 110.210 𝑁 = 87.610 

To further establish that the solution is correct, the total cost function is plotted against some 

values of 𝑡1 and 𝑇, which give us a strictly convex graph as shown in Figures (5.2, 5.3). 

    

           
  Figure 5.2: Graphical representation of convexity of total cost against schedule and 
  cycle time (a) Total cost and 𝒕𝟏, (b) Total cost and 𝑻. 
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Figure 5.3: Graphical representation of convexity of total cost per unit time (Total cost 
and (𝑻, 𝒕𝟏)). 
 

It is evident from Figures (5.2 and 5.3), that the total cost function is strictly convex, 

showing us that the optimal value of 𝑡1 and 𝑇 can be derived with the aid of the total cost 

function of the policy as long as the total inventory cost per unit time is the minimum.  
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Table 5.1: Sensitivity Analysis of the Parameters in the Inventory model. 
                                                                  
 
P*    V*       C*                        

                                  Change in: 
 
  T      T*         t1              TC(t1,T)            U*            P            G* 

 
 
d 
 

120 
110 
100 
90 
80 
 

20 
10 
0 

-10 
-20 

1.535 
1.598 
1.671 
1.755 
1.854 

-8.107 
-4.328 

0 
5.028 
10.967 

0.557 
0.574 
0.593 
0.615 
0.639 

1890.85 
1759.87 
1627.69 
1494.11 
1358.89 

16.168 
8.121 

0 
-8.206 
-16.514 

121.791 
116.116 
110.209 
104.038 
97.559 

10.509 
5.360 

0 
-5.599 
-11.478 

 
 
 
A 

600 
550 
500 
450 
400 
 

20 
10 
 0 
-10 
-20 

1.817 
1.746 
1.671 
1.591 
1.507 

8.781 
4.537 
  0 
-4.773 
9.823 

0.630 
0.613 
0.593 
0.572 
0.549 
 

1685.00 
1656.95 
1627.69 
1597.03 
1564.75 

3.521 
1.798 
  0 
-1.884 
-3.867 

119.613 
115.072
110.21 
105.082 
99.64 

8.532 
4.412 
  0 
-4.653 
-9.591 

 
 
 

K 

12 
11 
10 
9 
8 

20 
10 
 0 
-10 
-20 

1.545 
1.603 
1.671 
1.750 
1.845 

-7.532 
-4.042 
  0 
4.745 
10.408 

0.609 
0.601 
0.593 
0.583 
0.572 

1674.79 
1650.51 
1627.69 
1602.87 
1575.71 

2.894 
1.402 
  0 
-1.525 
-3.193 

104.155 
106.927 
110.201 
114.152 
118.967 

-5.486 
-2.971 
  0 
3.585 
7.95 

 
 
 S 

9.6 
8.8 
8.0 
7.2 
6.4 

20 
10 
 0 
-10 
-20 

1.658 
1.665 
1.671 
1.676 
1.680 

-0.774 
-0.359 
  0 
0.305 
0.557 

0.617 
0.605 
0.593 
0.580 
0.567 

1683.23 
1655.56 
1627.69 
1599.62 
1571.37 

3.412 
1.712 
  0 
-1.724 
-3.460 

190.489 
110.373 
110.21 
109.998 
109.74 

0.253 
0.148 
  0 
-0.192 
-0.426 

 
 
 h 

0.48 
0.44 
0.40 
0.36 
0.32 

20 
10 
 0 
-10 
-20 

1.670 
1.671 
1.671 
1.671 
1.671 

-0.014 
-0.007 
  0 
0.007 
0.014 

0.591 
0.592 
0.593 
0.594 
0.595 

1628.10 
1627.90 
1627.69 
1627.48 
1611.04 

0.025 
0.013 
  0 
-0.013 
-1.023 

110.112 
110.16 
110.21 
110.259 
110.309 

-0.089 
-0.045 
  0 
0.044 
0.001 

 
 

𝛽 

18 
16.5 
15 
13.5 
12 

20 
10 
 0 
-10 
-20 

1.662 
1.666 
1.671 
1.675 
1.681 

-0.490 
-0.257 
  0 
0.285 
0.604 

0.568 
0.580 
0.593 
0.607 
0.622 

1630.88 
1629.35 
1627.69 
1625.88 
1623.89 

0.196 
0.102 
  0 
-0.111 
-0.233 

108.821 
109.481 
110.210 
111.021 
111.929 

-1.260 
-0.661 
  0 
0.736 
1.560 

 
 

 Z 

14.4 
13.2 
12 
10.8 
9.6 

20 
10 
 0 
-10 
-20 

1.678 
1.675 
1.671 
1.664 
1.655 

0.429 
0.261 
  0 
-0.392 
-0.926 

0.538 
0.566 
0.593 
0.620 
0.647 

1784.49 
1706.46 
1627.69 
1548.11 
1467.62 

9.633 
4.839 
  0 
-4.889 
-9.834 

108.613 
109.416 
110.210 
110.965 
111.683 

-1.449 
-0.720 
  0 
0.685 
1.337 

 
 
𝜃 

0.96 
0.88 
0.8 
0.72 
0.64 

20 
10 
 0 
-10 
-20 

1.663 
1.667 
1.671 
1.675 
1.680 

-0.459 
-0.238 
  0 
0.256 
0.533 

0.572 
0.582 
0.593 
0.604 
0.616 

1630.16 
1628.96 
1627.69 
1626.34 
1624.91 

0.152 
0.078 
  0 
-0.083 
-0.171 

108.284 
108.734
110.21 
110.712 
111.243 

-0.840 
-0.432 
  0 
0.455 
0.937 
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Table 5.1, continued. 
                                            
          
   

 
 

      P*       V*      C* 

                 
                Change in: 

 

     
        
  
T          T*       t1        TV(t1, T)    U*       P                      

 
 
 
G* 

 
𝛾 

    
 

0.72 
0.66 
0.60 
0.54 
0.48 

20 
10 
 0 
-10 
-20 

1.535 
1.599 
1.671 
1.754 
1.851 

-8.10 
-4.310 
  0 
4.972 
10.812 

0.625 
00.610 
0.593 
0.573 
0.550 

1711.88 
1671.07 
1627.69 
1581.48 
1532.13 

5.172 
2.665 
  0 
-2.839 
-5.871 

119.77 
115.253 
110.210 
104.603 
98.389 

8.674 
4.576 
  0 
-5.086 
-10.726 

 
 

n 

0.60 
0.55 
0.50 
0.45 
0.40 

20 
10 
 0 
-10 
-20 

0.987 
1.647 
1.671 
1.703 
1.751 

-40.948 
-1.430 
  0 
1.955 
4.812 

0.384 
0.587 
0.593 
0.601 
0.613 

1728.46 
1636.77 
1627.69 
1616.03 
1601.09 

6.181 
0.558 
  0 
-0.716 
-1.635 

67.926 
110.634 
110.210 
110.288 
111.262 

-38.367 
0.385 
  0 
0.071 
0.883 

 

Note: P = Parameter, V=Values, C = %Change, U*= %change in TC, G* = %change in P. 
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Figure 5.4: Graphical representation of sensitivity analysis of total cost against 
percentage change in input parameters. 

(b) 

(a) 
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Figure 5.5: Graphical representation of sensitivity analysis of ordering quantity against 
percentage change in input parameters. 
 

(b) 

(a) 
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Figure 5.6: Graphical representation of sensitivity analysis of cycle time              
against percentage change in input parameters. 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 
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 5.6  Results and Discussion 

Based on the above computational results, in the example 5.51 and displayed in Table  

5.1, the following remarks can be drawn up: 

1.  A rise in the value of demand rate 𝑑 produces a decrease in the schedule period 𝑇, but 

there is an increase in the inventory total cost 𝑇𝐶 and ordering quantity 𝑃.  

2.  It is observed that an increase in ordering cost 𝐴 leads to a rise in the schedule period, 

inventory total cost and ordering cost.  

3.  An increase in the shortage cost 𝐾 results in a decrease in schedule period and order 

quantity, but there is an increase in the total inventory cost.  

4.  Increase in the lost sale 𝑆 leads to a decrease in the schedule period; the total inventory 

cost and order quantity increases.  

5.  Increase in the value of parameter 𝛽  and holding cost ℎ  results to decrease in the 

schedule period and ordering quantity, but the inventory total cost increases.  

6.  Increase in the purchasing cost 𝑍  leads to increase in the schedule period and total 

inventory cost; however, there is a decrease in the ordering quantity.  

7.  Increase in the value of deterioration parameter 𝜃 result in a decrease in schedule period 

and order quantity, but the inventory total cost is increasing.  

8.  When the backlogging rate 𝛾 is growing, there is a rise in the inventory total cost and 

ordering cost, which results in a decrease in the scheduled period.  

9.  Finally, the growth of the value of index number 𝑛 of the power demand pattern results 

in the rise in the schedule period and inventory total cost; however, there is a decrease in the 

ordering quantity.  

  Economic implication of the above results is stated thus:   

1.  Increase in demand rate 𝑑 results in an increase in the total cost 𝑇𝐶, ordering quantity 
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𝑃, lower cycle time 𝑡1, and 𝑇. Implication of this is that an increase in demand rate will lead 

to a decrease in the optimal cycle, but results in the higher value of optimal total cost per unit 

time. This is normal because if the demand rate is taller, the stock will be used up quickly, 

and the cycle time will decrease.  

2.  Increase in the value of the deterioration rate 𝜃 result in lower value of cycle length 𝑇, 

smaller ordering quantity and increase in the value optimal total cost. The implication of this 

is that an increase in the deterioration rate will lead to a decrease in the optimal cycle length. 

The total cost per unit time will increase because when deterioration cost increases, there will 

be an increase in the total inventory cost per unit time, which will lead to stocks getting finish 

earlier as a result of lower cycle length.  

3.  Increase in the values of holding cost ℎ and 𝛽 lead to an increase in the amount of total 

cost and a decrease in the value of ordering quantity with lower cycle time and length. This 

is advantageous to retailers in that when the holding cost is kept at a minimum, the volume 

of inventory ordering quantity must be reduced and the time for the stock to be used up must 

also be reduced to minimise the total inventory cost.  

5.7  Sensitivity Analysis 

Generally, models are formulated to choose some future direction of action. Consequently, 

the parameters employed would be based on the prediction of future conditions, which 

unavoidably introduces some element of uncertainty. Based on the above reason, it is always 

essential to conduct a sensitivity analysis after finding the solution to the model with the 

assumed values of the chosen parameters. The main reason for this is to identify those 

parameters that cannot be altered much without changing the optimal solution, we then select 

a solution which remains a good one over the intervals of possible values of the sensitive 

parameters. Here, based on the example 5.51, the sensitivity analysis of the decision variables 
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𝑇∗, the schedule period, 𝐺∗ ordering quantity, and inventory total cost 𝑈∗ against changes 

in the parameters 𝑑, 𝐴, 𝐾, 𝑆, ℎ, 𝑏𝑒𝑡𝑎, 𝑍, 𝜃, 𝛾 and 𝑛 of the inventory policy is analysed. By 

varying the values from +20%, +10%, −10%, −20%. One parameter is considered at a 

time while leaving the other parameters constant.  

The results are displayed in Table 5.1 and graphically represented by Figures (5.4-5.6), 

The main observations of the results and the graphical representations of the sensitivity 

analysis concerning the parameters are as follows: 

1.  20% overestimation in the value of the demand rate 𝑑 result in increases of 𝑈∗ and 𝐺∗ 

by 16% and 11% respectively, but the decrease in 𝑇∗ by 8%. 20% underestimation in 

the demand rate 𝑑 results in reductions of 𝑈∗ and 𝐺∗ by 17% and 11% respectively, but 

increase in 𝑇∗ by 11%. Thus 𝑈∗, 𝐺∗  and 𝑇∗ are moderately sensitive to changes in the 

values of the parameter 𝑑.  

2.  20% overestimation in the amount of the ordering cost 𝐴 leads to increases of 𝑈∗, 𝐺∗ 

and 𝑇∗ by 4%, 9% and 9% respectively. On the other hand, 20% underestimation in the 

demand rate 𝐴  results in decreases of 𝑈∗ , 𝐺∗  and 𝑇∗  by 4% , 10%  and 10% 

respectively. Thus, 𝐺∗  and 𝑇∗  are moderately sensitive, and 𝑈∗  is lowly sensitive to 

changes in the values of the parameter 𝐴. 

3.  20% overestimation in the amount of the shortage cost 𝐾 leads to increases of 𝑈∗ by 

3%  while 𝐺∗  and 𝑇∗  decreases by 5%  and 8%  respectively. However, 20% 

underestimation in 𝐾  leads to increases in 𝐺∗  and 𝑇∗  by 8%  and 10%  respectively, 

while 𝑈∗ decrease by 3%. Thus, 𝑇∗ and 𝐺∗ are moderately sensitive to changes in both 

overestimation and underestimation, while 𝑈∗ is less susceptible to changes in the value of 

parameter 𝐾.  

4.  20% overestimation in the value of the power pattern index 𝑛 leads to increases of 𝑈∗ 
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by 6% and decreases in 𝐺∗ and 𝑇∗ by 41% and 38% respectively. On the other hand, 

20% underestimation in 𝑛 results in increases of 𝐺∗ and 𝑇∗ by 1% and 5% respectively 

while 𝑈∗ decrease by 2%. Thus, 𝐺∗ and 𝑇∗ are highly sensitive to overestimation and 𝑈∗ 

is lowly sensitive to changes in overestimation; meanwhile, 𝑇∗  is less sensitive in 

underestimation and 𝐺∗  and 𝑇∗  are less sensitive in underestimation to changes in the 

values of the parameter 𝑛.  

5.  20% overestimation in the amount of the backlogging rate 𝛾 leads to increases of 𝑈∗ 

and 𝐺∗  by 5%  and 9%  respectively, while 𝑇∗  decrease by 8% . For 20% 

underestimation in 𝛾 results in increases of 𝑇∗ by 11% and reductions of 𝑈∗ and 𝐺∗ by 

6% and 11% respectively, Thus 𝑇∗ is relatively sensitive, 𝐺∗ is moderately susceptible, 

and 𝑈∗ is lowly sensitive to changes in the values of the parameter 𝛾.  

6.  20% overestimation in the value of the purchase cost Z leads to an increase in 𝑈∗ by 

10% and decrease in 𝐺∗ by 1%. Also, 20% underestimation in 𝑍 results in decline of 𝑈∗ 

by 10% and increase of 𝐺∗ by 1%. Thus 𝑈∗ is moderately sensitive, 𝐺∗ is less sensitive, 

and 𝑇∗ is insensitive to changes in the values of the parameter 𝑍.  

7.  20% overestimation in the value of the parameter 𝛽 leads to decrease in 𝐺∗ by 1%, 

and 20% underestimation leads to a 2% increase in 𝐺∗. Therefore, 𝐺∗ is less sensitive, 

and 𝑈∗ and 𝑇∗ are insensitive to changes in the value of parameter 𝛽.  

8.  20% of both overestimation and underestimation in the value of the unit lost sale cost 𝑆 

in 𝑈∗ are 3% and 3%. Thus 𝑈∗ is less sensitive, 𝐺∗ and 𝑇∗ are insensitive to changes in 

the value of parameter 𝑆.  

9.  All the decision variables 𝐺∗ , 𝑈∗  and 𝑇∗  are insensitive to both overestimation and 

underestimation in the parameters ℎ and 𝜃.  
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5.8  Concluding Observations 

In this chapter, a linear deteriorating inventory policy for products with variable holding 

cost and demand presumed to be in the form of power demand pattern is proposed. The model 

is an extension of Adaraniwon & Omar (2019) when 𝑡𝑑 = 0 with the addition of time-

dependent deterioration rate and variable holding cost. Shortages are allowed and partially 

backlogged which captures real-life situation since some retailers will be willing to wait for 

the arrival of new stock during stock-out patiently, but the longer the waiting time, the 

possibility of the consumers looking for elsewhere to meet their demand. 

The objective of this model is to evaluate the optimal replenishment procedure that 

minimises the average inventory total cost per unit time. If the deterioration rate were to be 

constant, the model would be reduced to that of Mishra (2016b) without power demand 

pattern. Optimum order quantity and optimal replenishment cycle time were derived, and the 

solution obtained. The outcomes are further established with the aid of numerical example 

and, sensitivity analysis carried out and depicted graphically of the decision variables with 

regards to alterations in the input parameters in the model. 

The results obtained indicate that the effect of power demand index parameter 𝑛 on the 

average minimum cost is quite significant. On thorough examining the influence of the policy 

input parameters on the decision variables, it was found out that 𝑈∗  is sensitive to 

overestimation and underestimation of the parameters 𝑑 and 𝑍 while 𝐺∗ is susceptible to 

the overestimation and underestimation of the parameters 𝑑, 𝐴, 𝐾, 𝑛, 𝛾 . Also, 𝑈∗  is less 

sensitive or insensitive to overestimation and underestimation of the parameters 

𝐴, 𝐾, 𝑛, 𝛽, 𝑆, ℎ and 𝜃 while 𝐺∗ is less sensitive or insensitive of the parameters 𝑛, 𝑍, 𝛽, 𝑆, ℎ 

and 𝜃. 

The developed model can be extended further by adding a quantity discount, trade credit, 
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stochastic demand rate, finite replenishment, and so on. 
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CHAPTER 6: AN INVENTORY MODEL FOR DELAYE DETERIORATING 

ITEMS WITH POWER DEMAND CONSIDERING SHORTAGES AND LOST 

SALES 

 
6.1  Introduction 

In the previous Chapter 5, an inventory policy for items with linear time-dependent 

deteriorating rate, variable holding cost and power demand pattern with shortages which are 

backlogged partially was developed and discussed. In daily business world, shortages do 

occur, during this period some customers are impatient to wait for backorder and therefore 

would go to another seller to buy or go for alternative items, while some will be willing to 

wait for backorder. In the inventory model with dependent stock demand, some researchers 

assumed shortages should be completely backlogged while some believe that shortages 

should be partially backlogged. 

As a result of extremely competitive market, delivering varieties of items to the consumers 

owing to globalization, partial backorder is more feasible than complete backorder. Example 

can be found in high technology items and fashionable commodities with short product life 

span. The readiness of a consumers to tarry for long for backlogging during the shortage time 

reduces with the hold-back time. Through the stock-out period, the backorder rate is generally 

regarded as a non-increasing linear function of backorder replenishment lead time through 

the amount of shortages. The bigger the expected shortage quantity is, the smaller the 

backorder rate would be. the left-over fraction of the shortage is lost. This type of 

backlogging is refers to as time-dependent partial backlogging.  

In this chapter, an inventory model for delayed deteriorating items with power demand 

considering shortages and lost sales is considered. We assumed shortages is partially 

backorder and remaining is lost. Here, we developed a new model and expanded the work of 
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Sicilia et al. (2014) by incorporating lost sale. 

 

6.2  Modelling Assumptions and Notation 

The following assumptions are used:   

    1.  The inventory system involves a single item.  

    2.  Deterioration takes place after the life span of the items.  

    3.  There is no replenishment or repair taking place for any deteriorating items.  

    4.  The replenishment takes place at a tremendous rate with zero lead time.  

    5.  The demand rate, 𝐷(𝑡) at any time 𝑡 is 𝐷(𝑡) =
𝑑𝑡

1
𝑛

−1

𝑛𝑇
1
𝑛

−1
 where 𝑑 means 

       the average demand, 𝑛 is the pattern index with 0 < 𝑛 < ∞.  

    6.  Shortages are accepted with the backlogging rate is depending on the length of the   

waiting time for the succeeding replenishment. The negative inventory of the 

backlogging rate is given by 𝐵(𝑡) =
1

1+𝛾(𝑇−𝑡)
,  

    where 𝛾 is a backlogging parameter 0 ≤ 𝑡 ≤ 𝑇 and the waiting time is 

         (𝑇 − 𝑡), (𝑡𝑑 ≤ 𝑡 ≤ 𝑇). The unresolved fraction 1 − 𝐵(𝑡) is considered as lost sales.  

            The subsequent notations are used in the model   

    • 𝐴 is the ordering cost.  

    • 𝛼 is the deteriorating rate, (0 < 𝛼 < 1).  

    • 𝐾1 is the holding cost.  

    • 𝐾2 is the deteriorating cost per unit per year.  

    • 𝐾3 is the shortage cost for backlogged items per unit per year.  

    • 𝐾4 is the cost of lost sale per unit.  

    • 𝑇 is the optimum cycle length.  
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    • 𝑡𝑑 is the length of time when the items experience no deterioration.  

    • 𝑡1 is the length of time when the inventory has no shortage.  

    • 𝑄 is the quantity ordered during a cycle of length 𝑇.  

    • 𝑆 is the maximum inventory level during [0, 𝑇].  

    • 𝑃 is the maximum backordered unit during the stock out period.  

    • 𝑄1(𝑡) is the level of positive inventory at time 𝑡 where 0 ≤ 𝑡 ≤ 𝑡𝑑  

           when there is no deterioration.  

    • 𝑄2(𝑡) is the level of positive inventory at time 𝑡 where 𝑡𝑑 ≤ 𝑡 ≤ 𝑡1  

          when there is deterioration.  

    • 𝑄3(𝑡) is the level of negative inventory at time 𝑡 where 𝑡𝑑 ≤ 𝑡 ≤ 𝑇.  

    • 𝜓(𝑡1, 𝑇) is the total cost per unit per time. 

6.3  Mathematical Formulation 

In this propounded model, a cycle can be separated into three periods. In this diagram, 

[0, 𝑇] is considered as a single cycle duration. During [0, 𝑡𝑑] and [𝑡𝑑 ,  𝑡1] the inventory is 

on the positive side and [𝑡1 ,   𝑇] is on the negative side of the inventory. The inventory 

system for the model is given in Figure 6.1. In the beginning, a lot size of 𝑄 units enter the 

system at the beginning of each cycle, where 𝑄 = 𝑃 + 𝑆. The deterioration will take place 

after time 𝑡𝑑 and reach zero inventory level in time 𝑡1. The shortages occur in the interval 

[𝑡1, 𝑇] and there are partially backlogged and lost sales at the end of cycle time. 

 

 

 

Univ
ers

iti 
Mala

ya



93 
 

 

Figure 6.1: Graphical Illustration of Inventory Model. 

 

  The following differential equations can describe the inventory system in Figure 6.1, 

 𝑑𝐼1(𝑡)

𝑑𝑡
= −

𝑑𝑡
1
𝑛

−1

𝑛𝑇
1
𝑛

−1
,    0 ≤ 𝑡 ≤ 𝑡𝑑 . (6.1) 

 𝑑𝐼2(𝑡)

𝑑𝑡
+ 𝛼𝐼2(𝑡) = −

𝑑𝑡
1
𝑛

−1

𝑛𝑇
1
𝑛

−1
,    𝑡𝑑 ≤ 𝑡 ≤ 𝑡1. (6.2) 

 𝑑𝐼3(𝑡)

𝑑𝑡
=

−𝐵(𝑡)

1+𝛾(𝑇−𝑡)
,    𝑡1 ≤ 𝑡 ≤ 𝑇. (6.3) 

 With the boundary conditions 𝐼1(0) = 𝑆, 𝐼2(𝑡1) = 0, a𝑛𝑑 𝐼3(𝑡1) = 0 . 

Solving the above differential equations, then we have  

 𝐼1(𝑡) = 𝑆 −
𝑑

𝑇
1
𝑛

−1
[𝑡

1

𝑛]    0 ≤ 𝑡 ≤ 𝑡𝑑. (6.4) 

 From Equation ( 6.2), we have:  
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 𝐼2(𝑡)𝑒𝛼𝑡 = − ∫
𝑑𝑡

1
𝑛

−1

𝑛𝑇
1
𝑛

−1
𝑒𝛼𝑡𝑑𝑡 = −

𝑑

𝑛𝑇
1
𝑛

−1
∫ 𝑒𝛼𝑡𝑡

1

𝑛
−1𝑑𝑡. 

 We take the first three terms of the exponential function and disregarding the higher terms  

       since it becomes minimal. It follows that:  

 𝐼2(𝑡)𝑒𝛼𝑡 = −
𝑑

𝑇
1
𝑛

−1
[∫ (1 + 𝛼𝑡 +

𝛼2𝑡2

2!
)𝑡

1

𝑛
−1𝑑𝑡] 

 = −
𝑑

𝑇
1
𝑛

−1
[∫ 𝑡

1

𝑛
−1𝑑𝑡 + 𝛼 ∫ 𝑡

1

𝑛𝑑𝑡 +
𝛼2

2
∫ 𝑡

1

𝑛
+1𝑑𝑡] 

 = −
𝑑

𝑇
1
𝑛

−1
[𝑡

1

𝑛 +
𝛼𝑡

1
𝑛

+1

𝑛+1
+

𝛼2𝑡
1
𝑛

+2

2(2𝑛+1)
] + 𝐶 

       With the boundary condition 𝐼2(𝑡1) = 0, we have  

 𝐶 =
𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 +
𝛼𝑡1

1
𝑛

+1

𝑛+1
+

𝛼2𝑡1

1
𝑛

+2

2(2𝑛+1)
] 

 𝐼2(𝑡) =
𝑑𝑒−𝛼𝑡

𝑇
1
𝑛

−1
[(𝑡1

1

𝑛 − 𝑡
1

𝑛) +
𝛼

𝑛+1
(𝑡1

1

𝑛
+1

− 𝑡
1

𝑛
+1) +

𝛼2

2(2𝑛+2)
(𝑡1

1

𝑛
+2

− 𝑡
1

𝑛
+2)] 

             Expanding further and considering the first three terms, then  

 𝐼2(𝑡) =
𝑑

𝑇
1
𝑛

−1
[(1 − 𝛼𝑡 +

𝛼2𝑡2

2
)[𝑡1

1

𝑛 − 𝑡
1

𝑛] +
𝛼

𝑛+1
(1 − 𝛼𝑡 +

𝛼2𝑡2

2
)[𝑡1

1

𝑛
+1

− 𝑡
1

𝑛
+1] 

 +
𝛼2

2(2𝑛+1)
(1 − 𝛼𝑡 +

𝛼2𝑡2

2
)[𝑡1

1

𝑛
+2

− 𝑡
1

𝑛
+2]] 

 𝐼2(𝑡) =
𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 − 𝑡
1

𝑛 +
𝑛𝛼𝑡

1
𝑛

+1

𝑛+1
− 𝛼𝑡𝑡1

1

𝑛 +
𝛼2𝑡2𝑡1

1
𝑛

2
−

𝛼2𝑡
1
𝑛

+2

2
+

𝛼𝑡1

1
𝑛

+1

𝑛+1
 

 +
𝛼2𝑡

1
𝑛

+2

𝑛+1
−

𝛼2𝑡𝑡1

1
𝑛

+1

𝑛+1
+

𝛼2𝑡1

1
𝑛

+2

2(2𝑛+1)
−

𝛼2𝑡
1
𝑛

+2

2(2𝑛+1)
] (6.5) 

              At time 𝑡𝑑, from Figure (6.1), we have 𝐼1(𝑡𝑑) = 𝐼2(𝑡𝑑) , then  
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 𝑆 −
𝑑

𝑇
1
𝑛

[𝑡𝑑

1

𝑛] =
𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 − 𝑡𝑑

1

𝑛 +
𝑛𝛼𝑡𝑑

1
𝑛

+1

𝑛+1
− 𝛼𝑡𝑑𝑡1

1

𝑛 +
𝛼2𝑡𝑑

2𝑡1

1
𝑛

2
−

𝛼2𝑡𝑑

1
𝑛

+2

2
+

𝛼𝑡1

1
𝑛

+1

𝑛+1
 

 +
𝛼2𝑡

𝑑

1
𝑛

+2

𝑛+1
−

𝛼2𝑡𝑑𝑡1

1
𝑛

+1

𝑛+1
+

𝛼2𝑡1

1
𝑛

+2

2(2𝑛+1)
−

𝛼2𝑡
𝑑

1
𝑛

+2

2(2𝑛+1)
] 

𝑆 =
𝑑

𝑇
1
𝑛

−1
[𝑡1

1
𝑛 +

𝑛𝛼𝑡𝑑

1
𝑛

+1

𝑛 + 1
− 𝛼𝑡𝑑𝑡1

1
𝑛 +

𝛼2𝑡𝑑
2𝑡1

1
𝑛

2
−

𝛼2𝑡𝑑

1
𝑛

+2

2
+

𝛼𝑡1

1
𝑛

+1

𝑛 + 1
 

 +
𝛼2𝑡𝑑

1
𝑛

+2

𝑛+1
−

𝛼2𝑡𝑑𝑡1

1
𝑛

+1

𝑛+1
+

𝛼2𝑡1

1
𝑛

+2

2(2𝑛+1)
−

𝛼2𝑡𝑑

1
𝑛

+2

2(2𝑛+1)
] (6.6) 

           Replacing Equation (6.6) into Equation (6.4)  

 𝐼1(𝑡) =
𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 − 𝑡
1

𝑛 +
𝑛𝛼𝑡𝑑

1
𝑛

+1

𝑛+1
− 𝛼𝑡𝑑𝑡1

1

𝑛 +
𝛼2𝑡𝑑

2𝑡1

1
𝑛

2
−

𝛼2𝑡𝑑

1
𝑛

+2

2
+

𝛼𝑡1

1
𝑛

+1

𝑛+1
 

 +
𝛼2𝑡𝑑

1
𝑛

+2

𝑛+1
−

𝛼2𝑡𝑑𝑡1

1
𝑛

+1

𝑛+1
+

𝛼2𝑡1

1
𝑛

+2

2(2𝑛+1)
−

𝛼2𝑡𝑑

1
𝑛

+2

2(2𝑛+1)
] (6.7) 

         In the time of the shortage interval [𝑡1, 𝑇], the demand at the time 𝑡 is partially 

     backlogged, the solution to Equation (6.3) making use of the boundary condition: 

         𝐼3(𝑡1) = 0 results in:  

 𝐼3(𝑡) =
𝑑

𝑇
1
𝑛

−1
[(𝑡1

1

𝑛 − 𝑡
1

𝑛)(1 − 𝛾𝑇) +
𝛾

𝑛+1
(𝑡1

1

𝑛
+1

− 𝑡
1

𝑛
+1)] (6.8) 

 The maximum back-ordered inventory P is obtained when 𝑡 = 𝑇, from Equation (6.8)  

 𝑃 = −
𝑑

𝑇
1
𝑛

−1
[(𝑡1

1

𝑛 − 𝑇
1

𝑛)(1 − 𝛾𝑇) +
𝛾

𝑛+1
(𝑡1

1

𝑛
+1

− 𝑇
1

𝑛
+1)] (6.9) 

 Finally, from Figure 6.1, we have  

 𝑄 =
𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 − 𝛼𝑡𝑑𝑡
1

𝑛 +
𝑛𝛼𝑡

𝑑

1
𝑛

+1

𝑛+1
+

𝛼𝑡1

1
𝑛

+1

𝑛+1
−

𝛼2𝑡𝑑𝑡1

1
𝑛

+1

𝑛+1
+

𝛼2𝑡
𝑑

1
𝑛

+2

𝑛+1
] 
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 −
𝑑

𝑇
1
𝑛

−1
[(𝑡1

1

𝑛 − 𝑇
1

𝑛)(1 − 𝛾𝑇) +
𝛾

𝑛+1
(𝑡1

1

𝑛
+1

− 𝑇
1

𝑛
+1)] (6.10) 

   The total relevant inventory cost per cycle consist of the following cost components:   

1. The ordering cost is A.  

2. The inventory holding cost is given by:  

 𝐻𝐶 = 𝐾1 [∫
𝑡𝑑

0
𝐼1(𝑡)𝑑𝑡 + ∫

𝑡1

𝑡𝑑
𝐼2(𝑡)𝑑𝑡] 

 =
𝐾1𝑑

𝑇
1
𝑛

−1
[∫

𝑡𝑑

0
(𝑡1

1

𝑛 − 𝑡
1

𝑛 +
𝑛𝛼𝑡

𝑑

1
𝑛

+1

𝑛+1
− 𝛼𝑡𝑑𝑡1

1

𝑛 +
𝛼2𝑡𝑑

2𝑡1

1
𝑛

2
−

𝛼2𝑡
𝑑

1
𝑛

+2

2
+

𝛼𝑡1

1
𝑛

+1

𝑛+1
 

 +
𝛼2𝑡𝑑

1
𝑛

+2

𝑛+1
−

𝛼2𝑡𝑑𝑡1

1
𝑛

+1

𝑛+1
+

𝛼2𝑡1

1
𝑛

+2

2(2𝑛+1)
−

𝛼2𝑡𝑑

1
𝑛

+2

2(2𝑛+1)
) 𝑑𝑡] 

 +
𝐾1𝑑

𝑇
1
𝑛

−1
[∫

𝑡1

𝑡𝑑
(𝑡1

1

𝑛 − 𝑡
1

𝑛 +
𝑛𝛼𝑡

1
𝑛

+1

𝑛+1
− 𝛼𝑡𝑡1

1

𝑛 +
𝛼2𝑡2𝑡1

1
𝑛

2
−

𝛼2𝑡
1
𝑛

+2

2
+

𝛼𝑡1

1
𝑛

+1

𝑛+1
 

 +
𝛼2𝑡

1
𝑛

+2

𝑛+1
−

𝛼2𝑡𝑡1

1
𝑛

+1

𝑛+1
+

𝛼2𝑡1

1
𝑛

+2

2(2𝑛+1)
−

𝛼2𝑡
1
𝑛

+2

2(2𝑛+1)
) 𝑑𝑡] 

                      Upon simplification, we have:  

 𝐻𝐶 =
𝐾1𝑑

𝑇
1
𝑛

−1
[

𝛼2𝑡𝑑
3𝑡1

1
𝑛

3
−

𝛼𝑡𝑑
2𝑡1

1
𝑛

2
+

𝑡1

1
𝑛

+1
(2−𝛼2𝑡𝑑

2)

2(𝑛+1)
+

𝑛𝛼𝑡𝑑

1
𝑛

+2

2𝑛+1
+

𝛼𝑡1

1
𝑛

+2

2(2𝑛+1)
 

 +
𝛼2𝑡1

1
𝑛

+3

6(3𝑛+1)
−

𝛼2𝑛2𝑡
𝑑

1
𝑛

+3

(𝑛+1)(3𝑛+1)
] (6.11) 

3. The deterioration cost is  

 𝐷𝐶 = 𝐾2 [𝐼2(𝑡𝑑) − ∫
𝑡1

𝑡𝑑
𝐵(𝑡)𝑑𝑡] 

 =
𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 − 𝑡𝑑

1

𝑛 +
𝑛𝛼𝑡

𝑑

1
𝑛

+1

𝑛+1
− 𝛼𝑡𝑑𝑡1

1

𝑛 +
𝛼2𝑡𝑑

2𝑡1

1
𝑛

2
−

𝛼2𝑡
𝑑

1
𝑛

+2

2
+

𝛼𝑡1

1
𝑛

+1

𝑛+1
 

 +
𝛼2𝑡

𝑑

1
𝑛

+2

𝑛+1
−

𝛼2𝑡𝑑𝑡1

1
𝑛

+1

𝑛+1
+

𝛼2𝑡1

1
𝑛

+2

2(2𝑛+1)
−

𝛼2𝑡
𝑑

1
𝑛

+2

2(2𝑛+1)
] −

𝑑

𝑇
1
𝑛

−1
[𝑡1

1

𝑛 − 𝑡𝑑

1

𝑛] 
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 𝐷𝐶 =
𝑑

𝑇
1
𝑛

−1
[

𝑛𝛼𝑡𝑑

1
𝑛

+1

𝑛+1
− 𝛼𝑡𝑑𝑡1

1

𝑛 +
𝛼2𝑡𝑑

2𝑡1

1
𝑛

2
−

𝛼2𝑡𝑑

1
𝑛

+2

2
+

𝛼𝑡1

1
𝑛

+1

𝑛+1
 

 +
𝛼2𝑡

𝑑

1
𝑛

+2

𝑛+1
−

𝛼2𝑡𝑑𝑡1

1
𝑛

+1

𝑛+1
+

𝛼2𝑡1

1
𝑛

+2

2(2𝑛+1)
−

𝛼2𝑡
𝑑

1
𝑛

+2

2(2𝑛+1)
] (6.12) 

4. Shortage cost per cycle as a result of the backlog is given by:  

 𝑆𝐶 = 𝐾3 [∫
𝑇

𝑡1
− 𝐼3(𝑡)𝑑𝑡] 

 =
−𝐾3𝑑

𝑇
1
𝑛

−1
[∫

𝑇

𝑡1
((𝑡1

1

𝑛 − 𝑡
1

𝑛)(1 − 𝛾𝑇) +
𝛾

𝑛+1
(𝑡1

1

𝑛
+1

− 𝑡
1

𝑛
+1)) 𝑑𝑡] 

 =
−𝐾3𝑑

𝑇
1
𝑛

−1
[𝑇𝑡1

1

𝑛(1 − 𝛾𝑇) −
𝑡1

1
𝑛

+1

𝑛+1
(1 − 2𝛾𝑇) −

𝛾𝑡1

1
𝑛

+2

2𝑛+1
 

     +
𝑛𝑇

1
𝑛

+1

𝑛+1
+

2𝑛2𝛾𝑇
1
𝑛

+2

(2𝑛+1)(𝑛+1)
] (6.13) 

  

5. The lost sale cost during the interval [0. 𝑇] is given by:  

 𝐿𝐶 = 𝐾4 [∫
𝑇

𝑡1
{1 −

𝐵(𝑡)𝑑𝑡

1+𝛾(𝑇−𝑡)
}] 

                𝐿𝐶 =
𝐾4𝑑

𝑇
1
𝑛

−1
[

𝑛𝛾𝑇
1
𝑛

+1

𝑛+1
+

𝛾𝑡1

1
𝑛

+1

𝑛+1
− 𝛾𝑇𝑡1

1

𝑛] (6.14) 

    Finally, the total relevant inventory cost per unit time is given by  

𝜓(𝑡1, 𝑇) = 1

𝑇
 (ordering cost + holding cost + deteriorating cost +  

                shortage cost and lost sale cost ).  

 𝜓(𝑡1, 𝑇) =
𝐴

𝑇
+

𝐾1𝑑

𝑇
1
𝑛

[
𝛼2𝑡𝑑

3𝑡1

1
𝑛

3
−

𝛼𝑡𝑑
2𝑡1

1
𝑛

2
+

𝑡1

1
𝑛

+1
(2−𝛼2𝑡𝑑

2)

2(𝑛+1)
+

𝑛𝛼𝑡
𝑑

1
𝑛

+2

2𝑛+1
+

𝛼𝑡1

1
𝑛

+2

2(2𝑛+1)
 

 +
𝛼2𝑡1

1
𝑛

+3

6(3𝑛+1)
−

𝛼2𝑛2𝑡𝑑

1
𝑛

+3

(𝑛+1)(3𝑛+1)
] 
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 +
𝐾2𝑑

𝑇
1
𝑛

[
𝑛𝛼𝑡𝑑

1
𝑛

+1

𝑛+1
− 𝛼𝑡𝑑𝑡1

1

𝑛 +
𝛼2𝑡𝑑

2𝑡1

1
𝑛

2
−

𝛼2𝑡𝑑

1
𝑛

+2

2
+

𝛼𝑡1

1
𝑛

+1

𝑛+1
 

 +
𝛼2𝑡

𝑑

1
𝑛

+2

𝑛+1
−

𝛼2𝑡𝑑𝑡1

1
𝑛

+1

𝑛+1
+

𝛼2𝑡1

1
𝑛

+2

2(2𝑛+1)
−

𝛼2𝑡
𝑑

1
𝑛

+2

2(2𝑛+1)
] 

 +
−𝐾3𝑑

𝑇
1
𝑛

[𝑇𝑡1

1

𝑛(1 − 𝛾𝑇) −
𝑡1

1
𝑛

+1

𝑛+1
(1 − 2𝛾𝑇) −

𝛾𝑡1

1
𝑛

+2

2𝑛+1
 

 +
𝑛𝑇

1
𝑛

+1

𝑛+1
+

2𝑛2𝛾𝑇
1
𝑛

+2

(2𝑛+1)(𝑛+1)
] +

𝐾4𝑑

𝑇
1
𝑛

−1
[

𝑛𝛾𝑇
1
𝑛

+1

𝑛+1
+

𝛾𝑡1

1
𝑛

+1

𝑛+1
− 𝛾𝑇𝑡1

1

𝑛] (6.15) 

   Therefore, we are interested in finding the values of 𝑡1 and 𝑇 that minimise the function 

   𝜓(𝑡1, 𝑇)  given in Equation (6.15) in the feasible/attainable region 𝐹(𝑡1, 𝑇): 0 ≤ 𝑡1 ≤

𝑇, 𝑇 > 0. 

6.4  Solution approach 

In this section, we find the optimum solution of (𝑡1, 𝑇) that minimise the total relevant 

cost. Take into consideration the partial derivatives of 𝜓(𝑡1, 𝑇) concerning the decision 

variable 𝑡1 and 𝑇 such that: 

 𝜕𝜓(𝑡1,𝑇)

𝜕𝑡1
= 0        𝑎𝑛𝑑    

𝜕𝜓(𝑡1,𝑇)

𝜕𝑇
= 0, (6.16) 

                           Provided:  

 [
𝜕2𝜓(𝑡1,𝑇)

𝜕𝑡1
2 ] [

𝜕2𝜓(𝑡1,𝑇)

𝜕𝑇2 ] − [
𝜕2𝜓(𝑡1,𝑇)

𝜕𝑡𝜕𝑇
]

2

> 0 (6.17) 

 From Equation (6.16), we get:  

 𝜕𝜓(𝑡1,𝑇)

𝜕𝑡1
=

𝐾1𝑑

𝑇
1
𝑛

[
𝛼2𝑡𝑑

3𝑡1

1
𝑛

−1

3𝑛
−

𝛼𝑡𝑑
2𝑡1

1
𝑛

−1

2𝑛
+

𝑡1

1
𝑛(2−𝛼2𝑡𝑑

2)

2𝑛
+

𝛼𝑡1

1
𝑛

+1

2𝑛
+

𝛼2𝑡1

1
𝑛

+2

6𝑛
] 

 +
𝐾2𝑑

𝑇
1
𝑛

[
−𝛼𝑡𝑑𝑡1

1
𝑛

−1

𝑛
+

𝛼2𝑡𝑑
2𝑡1

1
𝑛

−1

2𝑛
+

𝛼𝑡1

1
𝑛

𝑛
−

𝛼2𝑡𝑑𝑡1

1
𝑛

𝑛
+

𝛼2𝑡1

1
𝑛

+1

2𝑛
] 
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 −
𝐾3𝑑

𝑇
1
𝑛

[
𝑇𝑡1

1
𝑛

−1

𝑛
(1 − 𝛾𝑇) −

𝑡1

1
𝑛

𝑛
(1 − 2𝛾𝑇) −

𝛾𝑡1

1
𝑛

+1

𝑛
] 

 +
𝐾4𝑑

𝑇
1
𝑛

[
𝛾𝑡1

1
𝑛

𝑛
−

𝛾𝑇𝑡1

1
𝑛

−1

𝑛
] = 0 (6.18) 

 𝜕𝜓(𝑡1,𝑇)

𝜕𝑇
= −

𝐴

𝑇2 −
𝐾1𝑑

𝑛𝑇
1
𝑛

+1
[

𝛼2𝑡𝑑
3𝑡1

1
𝑛

3
−

𝛼𝑡𝑑
2𝑡1

1
𝑛

2
+

𝑡1

1
𝑛

+1
(2−𝛼2𝑡𝑑

2)

2(𝑛+1)
+

𝑛𝛼𝑡
𝑑

1
𝑛

+2

2𝑛+1
+

𝛼𝑡1

1
𝑛

+2

2(2𝑛+1)
 

 +
𝛼2𝑡1

1
𝑛

+3

6(3𝑛+1)
−

𝛼2𝑛2𝑡𝑑

1
𝑛

+3

(𝑛+1)(3𝑛+1)
] 

 −
𝐾2𝑑

𝑛𝑇
1
𝑛

+1
[

𝑛𝛼𝑡𝑑

1
𝑛

+1

𝑛+1
− 𝛼𝑡𝑑𝑡1

1

𝑛 +
𝛼2𝑡𝑑

2𝑡1

1
𝑛

2
−

𝛼2𝑡𝑑

1
𝑛

+2

2
+

𝛼𝑡1

1
𝑛

+1

𝑛+1
 

 +
𝛼2𝑡𝑑

1
𝑛

+2

𝑛+1
−

𝛼2𝑡𝑑𝑡1

1
𝑛

+1

𝑛+1
+

𝛼2𝑡1

1
𝑛

+2

2(2𝑛+1)
−

𝛼2𝑡𝑑

1
𝑛

+2

2(2𝑛+1)
] 

 +
(1−𝑛)𝐾3𝑑𝑡1

1
𝑛

𝑛𝑇
1
𝑛

+
(2−

1

𝑛
)𝐾3𝑑𝛾𝑡1

1
𝑛

𝑇
1
𝑛

−1
−

𝐾3𝑑𝑡1

1
𝑛

+1

𝑛(𝑛+1)𝑇
1
𝑛

+1
+

𝐾3𝑑𝑛

𝑛+1
+

(1−𝑛)2𝐾3𝑑𝛾𝑡1

1
𝑛

+1

(𝑛2+𝑛)𝑇
1
𝑛

 

 −
𝐾3𝑑𝛾𝑡1

1
𝑛

+2

(2𝑛2+𝑛)𝑇
1
𝑛

+1
−

4𝑛2𝛾𝑇𝐾3𝑑

(2𝑛2+3𝑛+1)
+

𝐾4𝑑𝑛𝛾

𝑛+1
−

𝐾4𝑑𝛾𝑡1

1
𝑛

+1

(𝑛2+𝑛)𝑇
1
𝑛

+1
 

 +
(1−𝑛)𝐾4𝑑𝛾𝑡1

1
𝑛

𝑛𝑇
1
𝑛

= 0 (6.19) 

To obtain an optimal value that minimises the total cost per unit time, we solved the 

Equation (6.18) and Equation (6.19) simultaneously. It could be observed that the equations 

are non-linear. Here we use excel solver to find the optimum solution and check for convexity 

using Equation (6.17).  

We can see from our model that, if 𝑡𝑑 = 0    a𝑛𝑑    𝛾 = 0 then it becomes an inventory 

model with instantaneous deterioration and complete backlogging where the total relevant 

cost per unit time is given by  
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 𝜓(𝑡1, 𝑇) =
𝐴

𝑇
+

𝐾1𝑑

𝑇
1
𝑛

[
𝑡1

1
𝑛

+1
(2−𝛼2𝑡𝑑

2)

2(𝑛+1)
+

𝛼𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝛼2𝑡1

1
𝑛

+3

6(3𝑛+1)
] 

 +
𝐾2𝑑

𝑇
1
𝑛

[
𝛼2𝑡1

1
𝑛

+2

2(2𝑛+1)
+

𝛼𝑡1

1
𝑛

+1

𝑛+1
] 

 −
𝐾3𝑑

𝑇
1
𝑛

[𝑇𝑡1

1

𝑛 −
𝑡1

1
𝑛

+1

𝑛+1
−

𝑛𝑇
1
𝑛

+1

𝑛+1
] (6.20) 

  Equation (6.20) is similar to the one obtained by Sicilia et al.(2014). Although in our case, 

purchasing cost was not taken into consideration.  

 

 

6.5  Numerical Examples 

   We elucidate the proposed model with some numerical examples. 

Example 1 as found in Sicilia et al. (2014) 

𝐴 = 50, 𝑑 = 100, 𝐾1 = 2, 𝐾2 = 4, 𝐾3 = 12, 𝐾4 = 10, 𝑛 = 0.5,    𝛼 = 0.1, 𝑡𝑑 = 0.4𝛾 = 0.2 

in appropriate unit. The following results was obtained 𝑡1 = 0.385 years, 𝑇 = 0.440 years. 

From Equation (6.15), 𝜓(𝑡1, 𝑇) = $161.78 , 𝑄 = 43.911  units, 𝑆 = 33.663  units, 𝑃 =

10.248 units  

From Equation (6.17) the Hessian is 𝐻(𝑡1, 𝑇) = 11040994 which is positive, it implies that 

(𝑡1, 𝑇) is the minimum point. 

Example 2. 

Repeating the same example 1, but we make n =3. The following was obtain 𝑇 = 0.969 

years, 𝑡1 = 0.831  years, 𝑆 = 92.448  units, 𝜓(𝑡1, 𝑇) = $97.99 , 𝑃 = 4.783  units, 𝑄 =

97.231 units.  

From Equation (6.17), the Hessian is 𝐻(𝑡1, 𝑇) = 1259413.774 , which is positive; it 

implies that (𝑡1, 𝑇) is the minimum point.  
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Table 6.1: Sensitivity Analysis of the Parameters in the Inventory model. 

                                           
  
  P*       V*       C*                                               

                            Change in: 
  
  T          t1       TVC       S         P        Q 

 
 

d 

120 
110 
100 
90 
80 

+20 
+10 
0 
-10 
-20 

0.406 
0.420 
0.430 
0.464 
0.493 

0.353 
0.368 
0.385 
0.405 
0.430 

177.29 
169.71 
161.78 
153.44 
144.59 

37.217 
35.454 
33.663 
31.830 
29.980 

11.051 
10.655 
10.248 
9.827 
9.390 

48.268 
46.109 
43.911 
41.667 
39.371 

                   
                 

A 
 
 

60 
55 
50 
45 
40 

+20 
+10 
0 
-10 
-20 

0.482 
0.461 
0.430 
0.418 
0.395 

0.421 
0.430 
0.385 
0.366 
0.345 

177.19 
169.63 
161.78 
163.52 
144.77 

36.725 
35.208 
33.663 
32.086 
30.471 

11.446 
10.852 
10.248 
9.620 
8.996 

28.171 
46.060 
43.911 
41.716 
39.467 

   
 

K1 

2.4 
2.2 
2.0 
1.8 
1.6 

+20 
+10 
0 
-10 
-20 

0.413 
0.426 
0.440 
0.457 
0.477 

0.354 
0.368 
0.385 
0.404 
0.427 

173.44 
167.83 
161.78 
155.25 
148.16 

30.292 
31.864 
33.663 
35.751 
38.218 

11.003 
10.631 
10.248 
9.855 
9.452 

41.295 
42.495 
43.911 
45.605 
47.669 

 
 

K2 

4.8 
4.4 
4.0 
3.6 
3.2 

+20 
+10 
0 
-10 
-20 

0.439 
0.440 
0.440 
0.440 
0.439 

0.385 
0.385 
0.385 
0.385 
0.384 

161.74 
161.76 
161.78 
161.80 
161.83 

33.697 
33.680 
33.663 
33.646 
33.628 

10.243 
10.246 
10.248 
10.250 
10.253 

43.940 
43.925 
43.911 
43.896 
43.881 

 
 

K3 

14.4 
13.2 
12 
10.8 
9.6 

+20 
+10 
0 
-10 
-20 

0.430 
0.435 
0.440 
0.446 
0.453 

0.383 
0.384 
0.385 
0.386 
0.387 

164.58 
163.28 
161.78 
160.05 
158.02 

34.186 
33.943 
33.663 
33.334 
32.944 

8.785 
9.460 
10.248 
11.178 
12.194 

42.971 
43.404 
43.911 
44.512 
45.238 

 
 

K4 

12 
11 
10 
9 
8 

+20 
+10 
0 
-10 
-20 

0.438 
0.439 
0.440 
0.441 
0.442 

0.385 
0.385 
0.385 
0.385 
0.385 

162.31 
162.05 
161.78 
161.51 
161.23 

33.762 
33.713 
33.663 
33.611 
33.558 

9.968 
10.106 
10.248 
10.394 
10.544 

43.730 
43.819 
43.911 
44.005 
44.102 

 
 

n 

0.60 
0.55 
0.50 
0.45 
0.40 

+20 
+10 
0 
-10 
-20 

0.479 
0.459 
0.439 
0.420 
0.401 

0.418 
0.401 
0.385 
0.368 
0.352 

154.52 
157.98 
161.78 
165.94 
170.44 

38.182 
35.946 
33.663 
31.338 
28.971 

9.668 
9.934 
10.248 
10.631 
11.115 

47.850 
45.880 
43.911 
41.968 
40.085 

 
 

td 

0.48 
0.44 
0.40 
0.36 
0.32 

+20 
+10 
0 
-10 
-20 

0.452 
0.445 
0.440 
0.435 
0.432 

0.397 
0.391 
0.385 
0.380 
0.376 

160.77 
161.22 
161.78 
162.46 
163.22 

35.005 
34.281 
33.663 
33.148 
32.732 

10.168 
10.193 
10.248 
10.330 
10.437 

45.172 
44.474 
43.911 
43.478 
43.170 
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Table 6.1, continued. 
                                            
  
  
  P*       V*       C*                                                               

                Change in: 
  
 
T           t1       TVC         S         P         Q 

 
 

𝛼 

0.12 
0.11 
0.10 
0.09 
0.08 

+20 
+10 
0 
-10 
-20 

0.442 
0.441 
0.440 
0.439 
0.438 

0.388 
0.387 
0.386 
0.385 
0.384 

161.73 
161.76 
161.78 
161.81 
161.83 

33.403 
33.683 
33.663 
33.642 
33.620 

10.243 
10.244 
10.248 
10.251 
10.254 

43.946 
43.928 
43.911 
43.893 
43.874 

 
 

𝛾 

0.24 
0.22 
0.20 
0.18 
0.16 

+20 
+10 
0 
-10 
-20 

0.438 
0.439 
0.440 
0.441 
0.441 

0.385 
0.386 
0.387 
0.388 
0.389 

162.28 
162.03 
161.78 
161.53 
161.26 

33.755 
33.710 
33.663 
33.614 
33.565 
 

9.976 
10.110 
10.248 
10.389 
10.535 

43.732 
43.820 
43.911 
44.004 
44.099 

 

 

6. 6  Sensitivity Analysis 

Table 6.1 shows the effects of changes of some model parameters on the decision variables 

base on the first example. 

A careful study of the results obtained in the above tables and within the specified range 

of values of the selected parameters indicate the following observations:   

1. As the demand rate 𝑑 is increasing, the quantity order 𝑄 is also increasing, leading to an 

increase in the total cost 𝑇𝑉𝐶. Also, 𝑇a𝑛𝑑  𝑡1 are decreasing. The economic implication of 

this is that as the demand is getting higher, the stock will take a short time to finish and so 

𝑇a𝑛𝑑  𝑡1 decreases. Increase in demand rate will produce an improvement in order quantity 

and the total inventory cost.  

2. As the ordering cost 𝐴  increase, 𝑇, 𝑡1, 𝑄, 𝑇𝑉𝐶  are all increasing. The economic 

implication of this is that it is advisable to order more quantity when the ordering cost is 

expensive to prevent the order frequency and damage.  

3.  𝑇, 𝑄, 𝑡1 decreases with an increase in the holding cost 𝐾1. It is observed that there is an 

increase in the total inventory cost as the holding cost is increasing. The economic 
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implication of this is that as the holding cost is rising, it is better to reduce the cycle duration 

and order quantity to keep the cost of inventory as low as possible.  

4. As the deteriorating cost 𝐾2 is increasing, there is an increase in 𝑇, 𝑡1, 𝑄, which lead to a 

slight decrease in the total inventory cost. It implies that when the deteriorating price is 

higher, there is a need to order more quantity and increase the cycle period to take the 

opportunity of reduced deteriorating cost.  

5. As 𝐾1a𝑛𝑑  𝐾2 are increasing, there is decease in 𝑇, 𝑡1a𝑛𝑑  𝑄, which result in an increase 

in the inventory total cost 𝑇𝑉𝐶.  

6. It is discovered that as the backlogging rate 𝛾  increases, the parameters 𝑇, 𝑡1a𝑛𝑑  𝑄, 

reduces while there is a slight increase in the total inventory cost.  

7. Increase in the parameters 𝑛  a𝑛𝑑  𝑡𝑑 lead to an increase in 𝑇, 𝑡1, a𝑛𝑑  𝑄 while the total 

inventory cost reduces. 

 

 6.7  Concluding Observations 

In this chapter, an EOQ Inventory model for delayed deteriorating items with power 

demand, considering shortages and lost sales is presented. It extended a similar model carried 

out by Sicilia et al.(2014). We incorporate delay deterioration and lost sales. The effect of 

demand rate, constant rate of deterioration and partial backlogging rate on order quantity and 

total inventory cost per unit time are reported. Numerical examples are given, and sensitivity 

analysis carried out to show how the optimal decision is affected by changes in different 

parameters in the model. The following are our concluding remarks:   

    1.  When the demand rate d is increasing, the inventory total cost is rising.  

    2.  When the ordering cost A is increasing, the inventory total cost is also 

        growing.  
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    3.  As the rate of deterioration 𝛼 is increasing, the inventory total cost is 

        decreasing leading to the increase in the inventory level 𝑆.  

    4.  When the backlogging rate 𝛾 is expanding, the inventory total cost 

           is increasing.  

    5.  As the length of time 𝑡𝑑 for the stock to deplete to zero is rising, the 

        Inventory total cost is decreasing.  

    6.  When the power index 𝑛 is growing, the inventory total cost is decreasing.  

From the above observations, the effect of demand rate, deteriorating rate and backlogging 

rate on optimal replenishment policy cannot be easily neglected. The propounded model can 

be utilised in inventory control of some delayed deteriorating item such as food items, 

vegetables, milk, fish so on. The model investigated in this chapter provides a basis for 

various feasible extension. In this direction, future research can enrich the model by 

incorporating time and stock demand dependent, preservation technologies, and so on. 
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CHAPTER 7: SUMMARY, CONCLUSION AND RECOMMENDATIONS 

7.1  Summary 

The primary purpose of this study is to fill the gaps in the academic literature as 

enumerated in Section 2.1.8 and to advance mathematical models for deteriorating items 

with power pattern demand rate. The aim has been achieved through four main objectives. 

These objectives were accomplished by developing four models which are deterministic in 

nature. 

The first model developed is an inventory model for deteriorating items with power 

demand pattern and time-dependent holding cost without shortages. It is observed that in 

many economic order quantity models, holding cost is always considered as a constant 

function of time. In this model, the holding cost is assumed to be time-dependent, and the 

deterioration rate is supposed to be constant. The aim is to minimise the total average cost by 

finding the optimal cycle time and ordering quantity, and shortages are not considered in this 

model.  

A high non-linear differential equation was arrived at after the development of the model 

which was solved by excel solver and backup by maple software 2018, which was used to 

evaluate the optimal cycle time and optimal ordering quantity. Numerical example has been 

presented to illustrate the applicability of the developed model. From the numerical example, 

the study of the outcome of various several in some feasible combination of the parameters 

in the model on decision variables are also carried out, and the results are depicted 

graphically. 

In the second model, an inventory model for linearly time-dependent deteriorating rate 

and time-varying demand with shortages partially backlogged is proposed. The model 

extends the first model by adding shortages and time-dependent deteriorating rate. Based on 
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the assumptions, the initial inventory height is 𝑀 units at time 𝑡 = 0. During the period 𝑡 =

0 and 𝑡 = 𝑡1, the inventory level diminishes, due to deterioration and demand until it gets to 

zero level at 𝑡 = 𝑡1. Throughout the interval [𝑡1, 𝑇] the system experiences shortages which 

are backlogged to the close of the cycle. At the interval 𝑡 = 𝑇 , the inventory get to a 

maximum shortages level 𝑚 to get rid of the backlogged and the inventory level increases 

again to level 𝑀.  

Numerical illustrations are given at the end of the developed model, and sensitivity 

analysis administered base on one of the example. The total cost function concerning the 

decision variables 𝑡1 and 𝑇 is plotted, and we obtained a strictly convex graph to establish 

the result. We also represented the sensitivity analysis graphically. 

The third model is based on all the attributes and assumption of the other three models 

proposed. In this model, a linearly deteriorating inventory policy with power demand pattern 

and variable holding cost considering shortages which are partially backlogged is developed. 

When 𝑡𝑑 = 0 and the deterioration rate is constant, we have similar work considered by 

(Mishra (2016b), Sicilia et al. (2014)). The main purpose of the model is to evaluate the 

optimal replenishment cycle length to minimise the total variable cost per unit time. 

Numerical illustration is made available to establish the application of the developed model, 

and the example was used to investigate the consequences of various alterations in some 

possible combination of the parameters in the model on the decision variables in the policy. 

The convexity graph of the total function concerning the decision variables is also plotted 

which is a strictly convex function. Also, we make the sensitivity analysis clearer by plotting 

the optimum cycle time 𝑇∗, the optimal total cost 𝑈∗ and the optimum ordering quantity 𝐺∗ 

against the inventory input parameters and make our observations. 
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The fourth model developed is an inventory model for delayed deteriorating items with 

power demand considering shortages and lost sales. In this model, a lot size 𝑄 unit enters 

the system at the inception of each cycle. The deterioration takes places after time 𝑡𝑑 and 

attains zero inventory level at time 𝑡1. The shortages happen in the interval and partially 

backlogged and lost sales at the end of the cycle time. 

The main focus is to minimise the total average cost per unit time by calculating the 

optimum time value 𝑡 at which the inventory comes down to zero level and the schedule 

period 𝑇. The model extends the paper of Sicilia et al. (2014) without considering purchase 

cost. A highly non-linear differential equations are derived and solved by excel solver and 

maple. Numerical illustrations are made available at the end of the developed model and 

sensitivity analysis carried out. 

7.2  Conclusion 

In this thesis, different deterministic inventory models are investigated. Models are 

established for items with time-dependent and delayed deteriorating rate, time-varying 

holding cost, and power demand pattern rate. At the end of each developed inventory model, 

some specific conclusions are given. Nevertheless, general findings will now be drawn across 

the whole thesis and summarised as follows:   

1.  An inventory model for deteriorating items is proposed in chapter 3. The model considers 

a fixed rate of deterioration and the holding cost is linear time-dependent. When holding cost 

is assumed as time-dependent, it represents a real-life situation and is valid in the storage of 

some deteriorating food products such as meats, cake, wheat, flours, vegetables etc. The 

outcomes unveil that the effect of demand rate parameter 𝑟 and holding cost parameter ℎ 

on total inventory cost is significant. 

Sensitivity analysis results of the decision variables as against the changes in the model 
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parameters indicate that 𝑇, 𝑇𝐶 and 𝑄 are exorbitantly sensitive to changes in 𝑟, 𝐾, 𝑎 while 

they are moderately sensitive in the parameter 𝛼, 𝐶1, ℎ and less insensitive to change in 

parameter 𝑏 and 𝑛.  

The economic implication of this is that optimum ordering quantity along with total cost 

per unit time are sensitive to power demand parameter, ordering cost and the holding cost. 

Moreover, it can be said they are less insensitive to unit purchasing cost and parameter 𝑏.  

2.  In chapter 4, a deterministic inventory model for linearly time-dependent deterioration 

rate is proposed. Demand rate varying with time and shortages are partially backlogged. The 

effect of power-dependent demand rate, backlogging cost, holding cost, deteriorating cost 

and purchasing cost on the optimal replenishment policy is high and hence should not be left 

out in developing this type of inventory model. The developed model can be useful in 

controlling the inventory of particular products that deteriorate with the advance of time and 

demand also varies with time. Examples of such products are android phone, computer chips, 

fashion, electronics etc.  

3.  The third developed model deals with inventory model for delayed deteriorating items. 

The inventory demand rate is in power pattern form considering shortages and lost sales 

which are partially backlogged. It is discovered from the results of Table 4 that the impacts 

of changing the parameters of the model 𝑑, 𝐴, 𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝑛, 𝑡𝑑 , 𝛼, 𝛾 on the replenishment 

policy disclose the following:   

    - At the time the demand rate 𝑑 is rising, the inventory total cost is 

          increasing.  

    - During the time the holding cost 𝐾1 is rising, the inventory total cost is  

              increasing  

     When the deteriorating cost 𝐾2 is growing, the total cost is increasing  
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    - When the shortage cost 𝐾3 is increasing, the inventory total cost is 

             increasing  

    - When the value of lost sales 𝐾4 is rising, the inventory total cost is 

          increasing  

    - As the deterioration rate 𝛼 is expanding, the total cost is decreasing  

    - When the backlogging parameter increase, there is also a corresponding 

          increase in the total inventory cost.  

The model is essential because, in a product life cycle, demand is increasing with time 

during growth phrase, then after reaching its zeniths, the demand attains stability for a limited 

period otherwise known as maturity stage. After that, the demand begins to decrease with 

time and eventually tending to 0.  

 4.  The fourth model deals with a linear deterioration inventory policy for products with 

power demand pattern and variable holding cost considering shortages. The model found 

deteriorating rate as time-dependent. The application of linear time-dependent holding cost 

is an accurate representation of any real-life situation and correct for the storage of some 

perishable and decaying items such as food products. The results obtained shows that the 

effect of demand rate 𝑑, backlogging parameter 𝛼 and purchasing cost 𝑍 on total inventory 

cost 𝑈∗ is quite enormous. 

The results of the sensitivity analysis of the decision variables concerning the alterations  

in the model parameters indicate the following results:   

    - 𝑈∗ and 𝐺∗ are highly sensitive to overestimation and underestimation of the model 

       parameters 𝑑 and 𝛾.  

   - 𝑈∗ and 𝐺∗ are less insensitive to the overestimation and underestimation of the model   

       parameters ℎ and 𝜃.  
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  - 𝑈∗ is highly sensitive to overestimation and underestimation of the model parameters 

         𝑍.  

  - 𝑈∗ is moderately susceptible to overestimation and underestimation of the model 

     parameters 𝐴, 𝐾 and 𝑆 and somewhat sensitive to the overestimation of the 

     parameters 𝑛.  

  - 𝑈∗ is less insensitive to both overestimate and underestimate of the model parameters  

             𝛽 and less impervious to underestimate of the parameter 𝑛.  

  - 𝐺∗ is highly sensitive to overestimation and underestimation of the model parameters 

       𝐴 and 𝐾 and highly responsive to overestimation of the parameter 𝑛.  

  - 𝐺∗  is lowly sensitive to overestimation and underestimation of the model          

parameters 𝑍 and 𝐵 and also lowly sensitive to underestimation of the parameter 𝑛.  

  - 𝐺∗ is less insensitive to overestimation and underestimation of the model 

      parameter 𝑆 and less insensitive to the underestimation of the parameter 

            𝑛.  

The contributions of this research include the following: 

1.  A model has been developed of an inventory policy for deteriorating items with power 

pattern and time-dependent holding cost without shortages. This model provides a simple to 

understand solution as against the general belief that holding cost is a constant function as 

found in Singh (2017). From the results obtained, it has been shown that enlargement in the 

total cost will lead to an enlargement in the holding cost. The model is an extension of the 

first contribution, where holding cost is time-dependent, along with the demand rate is in 

power form function of time. A graphical representation of convexity of total cost concerning 

the decision variable is provided. No existing model is known to have considered such an 

inventory model ahead of this one.  
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2.  An attempt or effort has been made to propound and extend the model of Rajeswari & 

Indrani (2015), who proposed an Eoq inventory model for deteriorating products with 

linearly time-dependent deterioration rate. In the consideration of this model, the schedule 

period is presumed to be fixed, and the decision variables are the time at which inventory 

level drops to zero. Here in this model, the scheduled time is not fixed and is considered as 

one of the decision variables which accurately represents an inventory model. We provided 

the graphical description of the convexity of the total cost with respect to the decision 

variables to establish the reliability of the model. It is yet to be discovered in works of 

literature that such a model has been investigated elsewhere.  

3.  A model has been presented of an inventory system for delayed deteriorating items with 

power demand pattern considering shortages and lost sales. Here we broaden the work of 

Sicilia et al. (2014) by adding lost sales that are partially backlogged. This model contributes 

to the existing ones in that the effect of demand rate, deteriorating rate and backlogging rate 

parameter on optimal replenishment policy is quite significant and cannot be ignored in 

inventory modelling development. No published work to the best of our understanding has 

been done similar to this model.  

4.  A model has been developed for a linear time-dependent deterioration rate along with 

time-varying demand considering shortages which are partially backlogged. The model is a 

reality of the behaviours of the customers in the time of the stock-out period such that some 

consumers will be ready to be patient for the arrival of new stocks, while others will look 

elsewhere as a result of intolerant. We assumed that the holding cost is a linear function of 

time to reflect the truth that holding cost increase linearly with time and also deteriorating 

rate is taken into consideration as time dependent to show that deterioration increases 

continuously as time progresses. The work of (Adaraniwon & Omar (2019), Mishra (2016b)) 

is made more realistic. Time-varying demand, linear deterioration rate along with time-
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dependent holding cost combined has not been so prevalent in literature.  

 

7.3  Recommendations 

Since inventory modelling deals mainly on reducing the inventory costs, it will be 

commendable for those operating inventory management of deteriorating items to exploit the 

findings of this research work in their decision-making procedures or process. 

It is therefore recommended for future research work that attentions can be geared toward 

the following areas:   

1.  Investigation can be carried out on probabilistic re-order point, and order-level policy for 

deteriorating/degenerating items.  

2.  Explore a model in inventory for deteriorating items for linear and other different types 

of power demand pattern.  

3.  Extension of all the four inventory models to financial analysis although it is non-

inventory. It is necessary because there is high global inflations and high-interest rates, which 

can help the decision-makers for planning purposes in banking and financial markets.  

4.  Research can be carried out on probabilistic inventory models. Only a few research works 

have been investigated in this direction.  

5.  Research can be carried out to include time-value of money, trade credits, discount rate, 

salvage values etc.  

6.  The models can also be developed in a fuzzy environment.  
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