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INVENTORY MODELS FOR DETERIORATING ITEMS WITH POWER
PATTERN DEMAND RATE

ABSTRACT
Inventory management has become a prevalent topic in the field of operational research over
some decades now. It cuts across many areas like management sciences, statistics and
engineering. However, research focusing on inventory model with power demand pattern is
quite limited. Demand patterns are defined as different ways by which products are removed
out of inventory to supply customers demand during the schedule period. Power demand
pattern permits suiting the demand to a more practical situation. In this research, four
deterministic inventory model for deteriorating items with power demand pattern has been
developed. We considered in the first models an inventory model for deteriorating item with
power demand pattern and time-dependent holding cost without shortages, in the second
model, we considered an inventory model for linear time-dependent deteriorating rate and
time-varying demand with shortages completely backlogged, while in the third model, an
inventory model for delayed deteriorating items with power demand considering shortages
and lost sales. Linear deteriorating inventory policy for products with power demand pattern
and variable holding cost considering shortages is developed in the final model with some
additional features. In all the models, the objective is to determine the optimal replenishment
strategy for the proposed inventory model to minimise the total inventory cost per unit time.
Mathematical formulation for and analysis of the inventory problems were developed within
the framework of the model assumptions. A system of differential equations incorporating
initial and boundary conditions are given for the proposed inventory policy, and the problem
solved using Microsoft@Excel@ Solver and maple software 2018 to obtain the optimal

solutions for all the models. Numerical examples are given at the end of each developed

il



inventory model to establish the robustness and effectiveness of the models. Moreover, the
sensitivity analysis of each model was carried out to see the effects of various changes in
some possible parameters combination of the inventory policy.

Keywords: Inventory control, Power demand pattern, Deterioration, Shortages, Linearly,

Non-instantaneous.
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MODEL INVENTORI UNTUK ITEMS YANG MEROSOT DENGAN
KADAR PERMINTAAN CORAK KUASA

ABSTRAK
Pengurusan inventori telah menjadi satu topik yang sangat popular dalam bidang
penyelidikan operasi sejak beberapa dekad yang lalu. Ia meliputi beberapa bidang seperti
sains pengurusan, stastistik dan kejuruteraan. Walau bagaimanapun, penyelidikan yang
memberi tumpuan kepada model inventori dengan permintaan corak kuasa agak terhad.
Corak permintaan didefinasikan sebagai cara yang berbeza di mana produk dikeluarkan
daripada inventori untuk dibekalkan kepada pelanggan dalam tempoh yang dijadualkan.
Permintaan corak kuasa boleh menyesuaikan permintaan kepada situasi yang lebih praktikal.
Dalam penyelidikan ini, empat model inventori deterministik untuk item yang semakin
merosot dengan permintaan corak kuasa telah dibentuk. Dalam model pertama, kami
mempertimbangkan satu model inventori untuk item yang semakin merosot dengan
permintaan corak kuasa dan kos pemegangan bergantung kepada masa tanpa kekurangan.
Dalam model kedua, kami mempertimbangkan satu model inventori di mana kadar merosot
bergantung kepada masa secara linear, permintaan corak kuasa dan kekurangan dipenuhi
sepenuhmya. Untuk model ketiga, kami membentuk satu model inventori dengan
kemerosotan tertangguh, permintaan corak kuasa dengan kekurangan dan hilang jualan.
Model terakhir kami menggabungkan kesemua ciri tiga model di atas dimana corak merosot
adalah linear, permintaan corak kuasa, kos pemegangan berubah dan kekurangan dibenarkan.
Dalam semua model, objektifnya adalah untuk menentukan strategi pengisian semula dalam
model inventori yang optimum supaya meminimumkan jumlah kos inventori seunit masa.
Perumusan matematik dan analisis masalah inventori telah dirumuskan berdasarkan andaian
model. Satu sistem persamaan pembeza dengan syarat awal dan sempadan telah diberikan

untuk menjelaskan inventori yang dicadangkan dan masalah telah diselesaikan dengan



perisian Microsoft@Excel@ Solver dan maple 2018 untuk mendapatkan penyelesaian
optimum untuk semua model. Contoh berangka telah diberikan di akhir setiap model untuk
menunjukkah keberkesanan setiap model itu. Selain itu, analisis kepekaan telah dijalankan
untuk melihat kesan beberapa perubahan yang mungkin bagi setiap model inventori yang
telah dibentuk

Kata kunci: Kawalan inventori, Permintaan corak kuasa, Kemerosotan, KekuranganLinear,

Tidak serta merta.
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CHAPTER: INTRODUCTION

1.1  Introduction
This introductory chapter aims to outlines the background of the research, set the
statement of the problem, state the research purpose and relevance of the study, discuss the
research outputs and outcome, indicate the methodology for the research employed in this

research work and introduce the organisation follows in the thesis.

1.2 Background of the Study

The target of inventory management is most appropriately described as when the
inventory should be replenished and how much should be added to the inventory. This
situation has led to inventory problems consisting of making optimal decisions to either
minimise or maximise the total cost of the inventory system.

Inventory in general terms can be defined as physical stocks of good kept in store to meet
future demand. It also means a usable, but idle resources that have economic value in material
management. It is essential to keep physical stocks in the system to meet anticipated demand,
failure to do can lead to non-availability of materials/goods when in need which will lead to
disruption in production or services to be delivered. According to Muckstadt et al. (2010),
we daily experience inventory in a different form at a very specific point in time. For a
household, we stock our kitchen with different types of foods items not necessarily needed
at that specific point in time, but essential to be used in future time. Manufacturers stock their
facilities with inventories of finished goods, raw materials, and work in progress.
Wholesalers and retailers stores are filled with materials in excess to prevent stock-out when
the products and the materials are needed. Hospital and health centres stocked drugs and

other related materials to be used in the nearest future. Security personnel stocked their



armouries with different equipments and materials to maintain laws and order in the society
when the need arises. These and many other more examples tell us that inventory exists as a
result of policy and technology.

One of the most vital component of an inventory model is demand. We keep inventories
in order to meet the demand, fulfilled order, and satisfied requirement. Inventory problems
subsist as a result of demand; if not, inventory problem will not take place. Over decades,
inventory problems have resolved round the case of demand been monotonic or a fixed
function. Demand is said to be constant at the fully developed stage of the product’s life cycle
while it is monotonic at the onset or last stage of the life cycle of the items. Majority of the
available inventory models deals with these kind of demand functions. In reality, this is
almost impossible. It is better to assume that, the demand of an items is dependent on
time/time-varying.

Deterioration is a common phenomenon in inventory model. Some existing models deals
with non-deterioration items while others deal with instantaneous deterioration, and still
others considered delayed deteriorating items. In this technological age, some items will
maintained their freshness over a period of time before they goes bad. It will be appropriate
to consider this type of delayed deterioration which is a very important in inventory model.

In these recent days, varying holding cost is engaging the attention of many researchers
as a result of its important in maintaining inventory. It is usually assumed that
holding/carrying cost is known and always considered as constant. On the contrary, when
inventory is stored for later usage, then it is rather important to preserve the physical states
of the inventory at hand. To be current and up-to date with the present market reality, time-
dependent holding/carrying cost is very essential to consider in inventory model problems.

In inventory model, when the shortages happen, it is presumed that the whole demand is

either totally lost or totally backlogged. Realistically, this situation is not true. During the



stock-out time, certain consumers are ready to hold on for the succeeding refill and accept
their orders at the termination of shortage time. Other will prefer alternative way of
purchasing from other available source. Partial backlogging or lost sales best describes this
type of situation in the modelling of inventory. In many cases, consumers who once suffered
from stock-out may not buy the items again from the individual suppliers, and they usually
turn to another stores to buy the items. As a result of this, a bulky percentage of the
transactions are lost, resulting in a little profit. This reason make partial backlogging an
important factor to be considered when setting up mathematical inventory model.

Organization or business enterprise can profit immensely from making use of
mathematical models for inventory. Mathematical models are use to maximize profits and/or
to minimize cost and to forestall having a dormant commodity. The models help the business
to discover the optimal inventory period of times and to also recommend the total amount of
the product that must be ordered or produced to reduce the cost. For any business enterprise
or organization to benefit maximally from mathematical models, firstly, mathematical model
that will be formulated must put into consideration several key factors. Secondly, using the
model they evaluate the order quantity and optimal cycle times. Lastly, the business
enterprise or organization must make use of computer often to keep the record of the
inventory positions, costs and other factors so that they can modify the models, if they so
desire.

The target of this thesis is to develop various mathematical inventory models with power
demand patterns and time-dependent deterioration rate and time-varying holding cost which

are some of the gaps discovered in the available academic literature.



1.3 Statement of the Problem
The purpose of this research work/thesis is to improve on the present state of knowledge

in the subject area of mathematical modelling of inventory control and management through
developing theoretically sound and empirically feasible generalised inventory model
framework to help the managers of inventory to determine the optimal order and production
size that minimise the total inventory costs. The purpose is demonstrated in four salient
objectives:

1. To propose an inventory model for linearly time-dependent deteriorating items with
power pattern, shortages and time-varying demand.

2. To propose an inventory model for delayed deteriorating items with power demand
considering shortages and lost sales.
3. To propose an inventory model for deteriorating items with time-varying demand rate
and time- dependent holding cost without considering shortages
4. To propose an inventory model for a linear inventory policy for items with power demand

pattern and variable holding cost considering shortages.

1.4 Aims and Objectives of the Research

The impetus of this research is to develop/advance new models and to extend the previous
research in the economic order quantity model by adding dependent linearly deteriorating
items that have power pattern to determine the optimal minimum cost. It is of interest to
consider a model with time-dependent holding cost as against the previous models, which
assumed that holding cost is constant. Also, this research will examine delayed deteriorating
items with power demand considering shortages and lost sales. Moreover, a linear
deteriorating inventory policy for items with power demand pattern and time-dependent

holding cost with shortages will be addressed. Besides, the outcome of the models will lead



to recommendations on how to exploit these models in practical and theoretical ways.

1.5 Relevance of this study

The research is relevant to both academic and industry in the sense that, in educational, it
will improve the present state of knowledge and understanding on the field of inventory
management and also provide a guide for subsequent research work, and in the industrial
area, it will help to minimise/maximise the costs and the profits which is the sole aims of

every industry.

1.6 Research outputs and outcomes
The outcomes of this research will be enumerated below:

1. To develop an inventory model for deteriorating item with power demand pattern and
time-varying holding cost as against the usual constant holding cost.
2. To develop the inventory model with linearly dependent deteriorating items as against
the usual assumption that the deterioration is constant.
3. To develop a new model for linear deteriorating inventory policy for items with power
demand pattern and variable holding cost considering shortages from all the three models
mentioned above.
4. To develop an economic order quantity model for delayed deteriorating items with power

demand pattern considering shortages and lost sales.



1.7 Research Methodology
This research work is a modelling research work that has to be carried out mainly by
the following steps:
1. Literature Review
Comprehensive literature review were carried out under the following subtopic:
- Classical EOQ (economic order quantity models)
- Economic production quantity model
- Inventory models with constant deteriorating rate
- Economic order quantity ( EOQ) model with power demand pattern
- Economic production quantity (EPQ) model with power demand pattern
- Deteriorating inventory model with shortages partially backlogged
- Inventory model for deteriorating items with power demand and shortages
completely backlogged
2. Decision Variables
Analysis of the inventory and formulation of the problem are developed within the
framework of assumptions made for the model to determine the inventory policies of the
system. The decision variables were identified and solutions provided.
3. Model Building
The formulated inventory problems are represented by the system of ordinary differential
equations (ODE) with both initial and boundary conditions.
4. Developing Algorithms and Solution Approach
Mathematical models are developed for each of the different inventory problems. The aims
are to establish the inventory policy that minimises/maximises the total cost/profits per unit
time of the formulated models. Solvers like Maple, Excel will be used to solve the non-linear

equations concerning decision variables. Moreover, some numerical examples will be



presented to illustrate the applications of the developed models.

5. Performance Measure

Sensitivity analysis on the decision variables with regards to changes in the parameter of the
model will be carried out. Specific conclusions will be made at the end of each develop

models.

1.8 Organisation of the Thesis

The contents of the thesis will be divided into six chapters.
Chapter One: Presented introduction of this work. This chapter begins with the introduction
of the research, background of the study, statement of the problem, aims and objectives of
the research, relevance of this study, research outputs and outcomes, research methodology
and organisation of the thesis.
Chapter Two: Discusses literature review about the work. This chapter reviews the
published works of literature related to mathematical modelling on inventory models with
time-varying demand, inventory models with deteriorating items, inventory models with
power demand pattern, inventory models for non-instantaneous (delayed) deteriorating
items, inventory models with shortages and production inventory models for deteriorating
items and a time-dependent deteriorating inventory model for items with power demand and
variable holding cost considering shortages.
Chapter Three: Discusses the development of the inventory model for deteriorating items
with power demand pattern and time-dependent holding cost without shortages. This chapter
deals with the inventory model for deteriorating items with time-varying holding cost.
Shortages are not considered in the policy. The chapter started with an introduction and
followed by assumptions and notation employed in building the model. Mathematical

formulation and solution to the formulated problem were given. Moreover, numerical



examples and sensitivity analysis to show the effects of various changes in some possible
parameters was performed. The chapter ends with concluding observations.

Chapter Four: Proposes an inventory model for linearly time-dependent deteriorating items
with power pattern, shortages and time-varying demand. This chapter is concerned with the
development of an EOQ model for linearly time-dependent deteriorating items. The chapter
begins with an introduction follows by modelling assumption, mathematical model
formulation was developed with the solution provided. Furthermore, numerical illustration
was given to determine the accuracy of the model. Also, a sensitivity analysis was carried
out along with concluding remarks at the end of the chapter.

Chapter Five: Proposes a linear deteriorating inventory model for items with power demand
pattern and variable holding cost considering shortages. This chapter presents an inventory
model for items that possess a deteriorating linear rate with holding cost, which is also time-
dependent. The demand is assumed to follow a power demand pattern. The chapter begins
with the introduction, notation and assumptions for the model is also provided. The
mathematical formulation of the problem follow this, and the solution method is given. A
numerical example illustrates the model and graphical representation of sensitivity analysis
to show the influence of various changes in some possible parameters is provided based on
the numerical example. Concluding observations is given at the termination of the chapter.
Chapter Seven: Highlights the overall summary, conclusion and next step of research. This
section deals with the overview the entire work, the outcome with research contributions and
further research direction for future action.

References, List of Publications and Appendix The thesis ends with references, list of

publications and appendix arrange in that order.
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CHAPTER 2: REVIEW OF LITERATURE

2.1 Introduction

The investigation of academic publications related to inventory models has engaged the
attention of many researchers and has been discussed extensively over the last many decades.
Numerous research works have been produced where various inventory models were
introduced and developed. Most of these works centred significantly on the development of
solutions of economic order quantity models. Different aspects of EOQ models such as
deterioration, shortages, instantaneous or non-instantaneous replenishment, different type of
demand has been discussed and analysed.

In this section, a review of the literature of both the EOQ and EPQ model related to this

thesis will be discussed here.

2.1.1 Inventory Model with Time-Varying Demand

The first (EOQ) economic order quantity formula was propounded by Harris (1913) in
1913, and since then, many researchers have analysed different kind of inventory system,
modifying some of the assumptions in the first model. It is assumed in an economic order
quantity model that the demand for goods is unchanging. Nevertheless, this presumption is
not truly popular or realistic in practices, and it will be preferable to take into consideration
that the demand varies with time. The review of inventory models with time-varying demand
is critical since it permits to appropriately modelling the behaviour and evolution of the
inventory according to Sicilia et al. (2014).

Several researchers have worked on inventory models in which the demand varies with
time. Donalson (1977) analysed an inventory replenishment models with traditional no-
shortage strategy for a linear drift in demand using the method of calculus to obtain optimal

time of replenishment. Silver (1979) studied an inventory replenishment selection rule for a
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linear trend in demand. Ritchie (1984) analysed a simple solution method for an inventory
model with demand linearly growing. He extended the time planning horizon of Donaldson
analytical solution.

Mitra et al. (1984) designed a technique for determining an economic order quantity model
with decreasing and increasing linear trend in demand. Goswami & Chaudari (1991)
considered a model for an economic order quantity with a linear direction in demand
considering shortages. Goswami & Chaudari (1992) proposed an order-level inventory
model for degenerating items without shortages. The deterioration rate is time-varying, and
the demand rate is dependent upon time. Hariga (1993) discussed on solution procedure for
solving an inventory replenishment policy with a linear trend in demand for both increasing
and decreasing markets. Teng (1996) developed a model for a deterministic inventory
replenishment system with a linear trend in demand. Zhao (2001) proposed a heuristics to
solve a replenishment system when the shift in demand is linearly diminishing. Lo et al.
(2002) developed a standard no-shortages inventory replenishment policy for linearly
increasing and falling trend in demand, and he provided a particular solution method to derive
an optimum solution for the system. Goyal & Giri (2003) developed a heuristics procedure
for evaluating replenishment space of time for an inventory with a linear diminishing demand
rate over a definable horizon.

Yang et al. (2004) proposed a solution procedure to solve a non-linear replenishment
policy with decreasing demand. Zhou (2003) analysed a deterministic replenishment policy
for a multiples warehouses with demand varying with time at a decreasing rate, shortages
were allowed in the policy. Zhou et al. (2004) analysed a deterministic time-varying demand
lot-sizing model with waiting-time-dependent partial backlogging. Teng et al. (2005)
considered a deterministic economic production quantity model with demand and cost

varying with time. Jiafu et al. (2008) examined a combined heuristics for determining order
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quantity under demand that changes with time.

Omar & Yeo (2009) developed an inventory model that fulfilled a continuous time-
varying demand. Zhou et al. (2016) presented an optimum production inventory model for
an integrated multiple-stage supply chain with time-varying demand. Escuin et al. (2017)
proposed an inventory replenishment system under stochastic time-varying demand.
Benkherouf et al. (2017) investigated a limited horizon inventory control problems for two
complementary products. The demand is assumed to be time-dependent. Other notable and

recent publication in this area are: Kumar (2019).

2.1.2 Inventory Models with Deteriorating Items

Deterioration is one of the terms that cannot be overlooked in inventory management. It
is a known fact that almost all items deteriorate over a given period. In most items, the rate
at which the items deteriorate is so insignificant that there is little need to consider its values
to determine the economic lot sizes. On the other hand, there are area such as the production
of chemical like turpentine, alcohol etc., electronics components such as computer parts,
chips, resistors, capacitors, touch screen monitors etc., perishable foods such as bread, milk,
meats, vegetables etc., that the deterioration which may occur during reasonable storage
period is sufficiently considerable that such loss cannot be ignored.

Deterioration can, therefore, be described as decay, spoilage or damage that inhibits the
commodities from being utilised for its intended objective. Deterioration can be categorised
into two types which are: (i) Process deterioration which affects the inventory system, by
either raising the operating costs or raises the probability of failure and (ii) Product
deterioration which reduces the on-hand inventory level or reduces the customers demand.

Deteriorating items are the commodity that has a fixed and short period of the lifetime.

Examples include, among others: yoghurt, meats, fish, fruits, vegetables, drugs, and so forth.
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The study of deteriorating inventory models problem for items started with Whitin (1957)
who proposed a fashion item that deteriorates at the close of the depository period. Ghare
(1963) was the first to model a negative exponential decaying inventory. They observed that
decay follow a pattern in which at any given period, it is proportional to the magnitude of the
stock at the beginning of the period. Covert & Philip (1973) expanded the last model by
taking into consideration deterioration as a Weibull distribution .

Mishra (1975) presented a production lot-size inventory model for degenerating items
with a fixed and variable deterioration rate. Dave (1979) studied an inventory model for a
discontinuous-in- time order level for degenerating items with instantaneous replenishment.

Also, Dave & Patel (1981) considered an inventory model for commodities that have a
constant deterioration and the demand is time proportional with immediate replacement. Mak
(1982) proposed a production lot-size inventory model for an exponentially decaying items
considering shortages. He obtained an approximate solution for the optimal production lot-
size, the production period, total inventory cycle time and the average total cost. Nahmias
(1982) provided the first detailed reviews on the problem of finding a satisfactory ordering
policies for fixed lifetime decomposable inventory and continuously exponential decay
inventory.

Chowdhury & Chaudhuri (1983) carried out an order-level procedure for deteriorating
products considering rates of replenishment as finite and allowed shortage. Elsayed & Teresi
(1983) proposed an analysis for degenerating inventory model for commodities with
shortages allowed. Two types of models were examined. Model 1 has a deterministic demand
with finite rate of production while model 2 has a random probabilistic demand and
deterioration rate is two-parameter Weibull distribution. Hollier & Mak (1983) proposed an
inventory replenishment approach for decaying products. Constant deterioration rate was

assumed, and the demand rate is decreasing and exponentially negative. Raafat et al. (1991)
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analysed an inventory model for deteriorating products with constant decline. He obtained
an alternative method for Mak1982 production method where he got a correct average total
cost expression for the production lot-size system.

An inventory model for constant deteriorating items with inventory-level-dependent
demand rate and constant demand was investigated by Giri et al. (1996). Bhunia & Maiti
(1998) considered an inventory model with a finite rate of replenishment and dependent on
the instantaneous inventory level for deteriorating items. Two models were expanded, one
with shortages and other without shortages, and the price of deterioration and demand are
found to be a direct increasing function of time. Deng et al. (2007) analysed and examined
some earlier work on inventory models for degenerating items with ramp types demand rate.
He corrected the errors in the previous calculations and proposed an efficient and thorough
method of obtaining an optimal solution. Some excellent survey on recent trend in modelling
continuously deteriorating items were carried out by (Raafat 1991; Goyal & Giri (2001); Li
et al. 2010; Bakker et al. 2012; Janssen et al. 2016). Banerjee & Agrawal (2017) developed
an inventory model for degenerating items in which the selling price of the product depend
directly on the freshness of the product. Shortage was considered as a lost sale.

It has been discovered empirically that bankruptcy and life expectancy of many products
can best be demonstrated in term of Weibull distribution. This empirical discovery has
motivated many researchers to represent the time to deteriorate of an item by a Weibull
distribution. An EOQ model in which the rate of deterioration follows a two-parameter
Weibull distribution (WB) without shortages was formulated by Covert & Philip (1973). This
model was further generalised by Philip (1974) considering three-parameter Weibull
distribution. Sarkar et al. (2013) proposed a deteriorating inventory model for commodities
with a finite rate of production and time-varying demand over a limited planning horizon.

(Sanni & Chukwu 2013; Jain 2016) presented an inventory model with gradient-type demand
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and three-parameter Weibull distribution deterioration considering shortages. Chakraborty et
al. (2018) proposed two warehouse inventory model with gradient type demand rate,
considering deterioration rate as three-parameter Weibull distribution with acceptable delay
in payment accommodating shortages that are backlogged partially. Also, (Jalan 1996; Wu
2001; Rajeswari & Vanjikkodi 2012; Mukhopadhyay et al. 2005) derived an economic order
quantity (eoq) model for commodities with two-parameters Weibull distribution
deterioration and demand is assumed to be linearly increasing with shortages.

Other interesting works in this direction can be found in (Kaliraman 2019; Mishra 2016a;
Ritha & Vinoline 2018; Santhi & Karthikeyan 2017; Shaikh et al. 2019; Tuan et al. 2017;

Singh et al. 2018; Pramanik & Maiti 2019).

2.1.3 Inventory Models with Power Demand Pattern

Demand pattern is defined as distinct methods by which items are removed out of
inventory during the scheduling session to satisfy the demand of the customers. The demand
pattern is said to be uniform if the rate of demand is unchanged during all the inventory
cycles. One of the advantages of demand pattern is that it enables suiting the demand for
more practical situations. Thus, the pattern permits representing the behaviour of demand
when it is uniformly distributed throughout the period, and also to reflect sales in different
phases of the product life cycle in the market. For example, the demand for inventory
increases overtime during the growing period and a decrease in the decline phase.

Many researchers have developed an inventory model that the demand follows a power
pattern. Datta & Pal (1988) seem to be the first to examine an order level inventory model
for items with power demand pattern and the deterioration rate is variable. The demand is
considered as both probabilistic and deterministic. Gupta & Jauhari (1995) established an

EOQ model for deteriorating items with power demand pattern considering the permissible
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delay in payment. Abdul-Jalbar et al. (2009) presented a two-level echelon inventory model
for items with power demand and shortages. They assumed that the manner at which items
are taken out from the inventory to the retailers follows a power pattern.

Also, Singh et al. (2009) proposed an inventory model for deteriorating items with power
demand pattern considering holding cost as an incremental function of time under-inflation
and allowed shortages. Sarbjit & Shivraj (2011) in their paper derived an inventory model
for deteriorating products with both probabilistic and deterministic power demand pattern.
The rate of deterioration is considered as a variable, incorporating inflation and permissible
delay in payment. (Krishnaraj & Ramasamy (2012); Mishra et al. (2012)) proposed an
inventory model for perishable items with power demand pattern under two-parameter
Weibull distribution deterioration with or without shortages.

An inventory model for non-instantaneous Weibull distribution deterioration items under
power demand pattern was investigated by Palanivel & Uthayakumar (2014). They
considered shortages in their model and assumed holding cost is a linearly increasing function
of time during storage. Rajeswari et al. (2015) examined a fuzzy inventory system for items
that deteriorate with power demand pattern and shortages are partially backlogged. Pradhan
et al. (2016) proposed an inventory model for deteriorating items under two-parameter
Weibull distribution and power demand pattern. San-Jose et al. (2017b) examined an
optimum inventory system for items that deteriorate with power demand pattern. They
proposed a three-parameter Weibull distribution deterioration rate with shortages partially
backlogged.

Also, San-Jose et al. (2017a) propounded an optimal inventory policy for degenerating
items with power demand pattern with shortages partially backlogged. Sharmila &
Uthayakumar (2018) investigated a two-warehouse inventory model for decaying items with

power demand pattern. The holding cost is time-varying and trade credit is offered.
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2.1.4 Inventory Models for Non- Instantaneous(delayed) Deteriorating Items.

Many researchers believe that the deterioration begins in an instant as the retailer receives
the commodity. However, this is not always true since some products will have a period to
retain the freshness of their original quality. During this period, there is no deterioration taken
place. Wu et al. (2006) described this situation as "non-instantaneous deterioration", and he
was the earliest to introduced and analysed an optimum replenishment model for non-
instantaneous degenerating products under dependent stock demand with partial
backlogging. In reality, this type of situation does occur in some commodities such as fruits,
first-hand vegetable and so forth which possess a short life-span to maintain a fresh quality,
during this interval, there is almost no spoilage. Shortly, after this interval, some of the
products begin to degenerate.

The impression that the deterioration commences from the instant of arrival in stock, for
such type of items can mislead retailers to make inaccurate replenishment policy as a result
of overestimate of the total relevant cost. It is, therefore, significant to examine the inventory
problem for the non-instantaneous degenerating item in the field of inventory management.

Ouyang et al. (2006) proposed an appropriate inventory model for non-instantaneous
deteriorating items considering permissible delay in payment. The work generalised many
previous models that are related to their work. Chung (2009) provided a full proof on the
solution technique for non-instantaneous deteriorating products with permissible delay in
payment. He corrected some errors in the previous works. Geetha & Uthayakumar (2010)
propounded an inventory model for a non-instantaneous degenerating products considering
delay in payment with shortages partially backlogged.

An inventory model for non-instantaneous decaying items weighing the effect of
preservation technology investment on inventory parameters was presented by Dye (2013).

Shah et al. (2013) studied an optimising and marketing inventory model for non-
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instantaneous degenerating items in which the advertisement and selling price depends on
the demand rate. Maihami & Abadi (2012) presented a joint control and pricing inventory
model for non-instantaneous deteriorating items considering the permissible delay in
payment and shortages are partially backlogged.

Also, Maihami & Kamaladi (2012) examined an inventory control model and joint pricing
system for a non-instantaneous degenerating product with price and time-dependent demand.
They incorporated shortages in the model that is partially backlogged. Soni (2013) developed
an optimum replenishment model for non-instantaneous deteriorating items with permissible
delay in payment for items that have the price and stock dependent demand. Wu et al. (2014)
commented on the work of Soni. They modified and corrected the deficiency found in their
work. Mahmoudinezhad et al. (2014) proposed an inventory model for non-instantaneous
degenerating products with permissible delay in payment under imperfect quality and
inflation.

An optimising and replenishment system for non-instantaneous deteriorating items under
stochastic demand and promotional efforts was developed by Maihami & Karimi (2014).
Chang et al. (2015) investigated an inventory model for optimum pricing and ordering
policies for non-instantaneous deteriorating items with order size-dependent and permissible
delay in payment. Zhang et al. (2015) formulated an optimal dynamic pricing and
replenishment cycle model for non-instantaneous deteriorating items under inventory level
and price-dependent demand. Anchal et al. (2016) discussed on inventory model for non-
instantaneous deteriorating items considering trade credit financing facility with shortages
partially backlogged. They thought the deterioration rate as the variable with linear demand.

Analysis of sensitivity of an inventory model for a non-instantaneous and time-varying
deterioration without shortages was carried out by Malik et al. (2016). Other recent works in

this direction were carried out by following authors: (Sharma et al. 2016; Tawari et al. 2016;
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Udayakumar & Geetha 2018; Rangarajan & Karthikeyan 2017; Li et al. 2019; Jaggi et al.

2018).

2.1.5 Inventory Models With Shortages

In inventory management, shortages do occur as a result of the low level of stock and the
demand cannot be fully satisfied. Shortages can also occur as a result of the stock not been
persistently documented (periodic inspection), or the stock is ordered behind schedule or
when the requested quantity arrived late.

Backlogging occurs as a result of shortages. Researchers sometimes do assume partial
backlogging while others considered full backlogging. Completely backlogged happens
when the customers are ready to wait until the arrival of the future order; otherwise, the
customers leave the system. Partial backlogging occurs when in a specific situation in the
time of stock-out period, the customers are not willing or cannot stay; hence, their demand is
satisfied from other sources.

The duration of discontinuing time for replenishment is the primary factor in calculating
backlogging, and it is discovered that the lingering the waiting time, the lower the
backlogging rate. Customers who experience shortages may not repurchase the goods from
the respective suppliers and turn to another source to buy their products. As a consequence
of this, a colossal proportion of sale is lost, leading to a dwindling profit. Partial backlogging
is, therefore, a necessary factor to consider in inventory management.

Numerous researchers have occupied their concentration on inventory models with
shortages under partial backlogging. Datta & Pal (1991) formulated an inventory model
under-inflation and time-value of money considering the demand rate as linear time-
dependent with shortages allowed. Abad (1996) presented a generalised model of dynamic

pricing and lot-sizing model for perishable products with shortages, and shortages are
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backlogged partially. Chakrabati & Chaudhuri (1997) presented a deteriorating inventory
replenishment model for products with a linear slope in demand under a finite time horizon
with shortages allowed in every cycle. Chung & Tsai (1997) developed an algorithm to solve
an EOQ model for degenerating items with the demand that has a linear trend and allowable
shortages. They corrected the shortcoming in the previous model.

An integrated inventory model for perishable items considering the effect of pricing,
advertisement and backorder on the profit of the system was carried out by Luo (1998). San-
Jose et al. (2009) proposed a generalised EOQ inventory model with shortage allowed and
partially backlogged. An optimal pricing and lot-sizing model for perishable items under
limited production incorporating partial back-ordering and lost sale was formulated by Abad
(2003). Yang (2004) derived an inventory model for degenerating items for two-warehouse
under-inflation and allowed shortages. They obtained an optimal solution that is unique and
less expensive to operate. Chen et al. (2007) studied an optimum replenishment model for
demand that is time-varying, continuous and deterministic with shortages in product life
cycles. Taleizadeh et al. (2013a) addressed a deterministic inventory control model for
perishable product with special sale and shortages.

Also, Taleizadeh et al. (2013b) considered an EOQ model with partial delayed payment
and shortages that are partially backlogged. Jain (2016) proposed an EOQ inventory model
for products with demand that is a ramp type, considering degeneration as three-parameter
Weibull distribution with shortages. Later, Rasel (2017) developed a deterministic inventory
model with two-parameter Welbull distribution deterioration, and the demand rate is a
gradient type function of time. Shortage is permitted and wholly backlogged. Recently,
Pervin et al. (2018) suggested a deterministic inventory control model for deteriorating
products with time-dependent demand and time-varying holding cost, and the deterioration

rate is Weibull distribution. Shortages were allowed in the system.
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2.1.6 Inventory Model with Time-Dependent Holding Cost

Holding cost has been considered in the economic ordered quantity model as a constant
function of time. In reality, holding cost can also vary with time since it is usually connected
with the storage of an item until usage or store inventory.

In this direction, Naddor (1966) seems to be the first to establish a derivation of total
inventory cost for a demand rate that is constant for a lot size system by considering holding

cost in the form q™t"

where g is the amount of stock held for a time t and m,n are non-
negative integers. Muhlemann & Valtis-Spanopoulos (1980) modified the traditional EOQ
model formula by considering the rate of demand as a constant and the holding cost as a
variable function and expressed them as a percentage of the average value of the capital
invested in the stock. Later, Weiss (1982) presented a generalised economic order quantity
model by taking the unit cost, selling price, demand rate and set up cost as a constant
parameter and holding cost is considered as a non-linear function of the duration of time the
item remained in stock.

Also, Baker & Urban (1988) propounded an inventory model for an item with the demand
rate considered as inventory level dependent. The model maximises the average profit per
unit time by taking the optimum order level and order point as the decision variables. Goh
(1994) proposed a deterministic, continuous inventory model for a distinct item. The rate of
demand is inventory level-dependent, and the holding cost varies with time. Two possible
cases were examined. The first for a non-linear function of the duration of time the item is
held in inventory and second for the non-linear function of the amount of the on-hand
inventory.

Furthermore, Giri & Chaudari (1998) came up with a deterministic perishable inventory
model with demand rate depending on stock, and holding costs are treated in two way viz: a

non-linear function of the time distance for which the item held in stock and functional form
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of the amount of the on-hand inventory. Shao et al. (2000) established an inventory model
for the optimum target for a process under multiple markets and holding cost is considered
as a variable function of time.

Other authors that considered holding cost as variable are (Alfares, 2007; Pando et al.
(2012, 2013); Sazvar et al., 2013; Ferguson et al., 2007; Tripathi, 2013; Mishra et al. 2013;
Amutha & Chandrasekaran, 2013; Alfares & Ghaithan, 2016; Shukla et al. 2017;
Uthayakumar & Karuppasamy, 2017; Ghasemi & Afshar, 2013).

Besides, Alfares & Ghaithan (2019) carried out a thorough research paper review that
classified the formulation of EPQ and EOQ models under the presumption of variable
holding cost. Different types of holding costs are considered, which includes time-dependent
variable holding cost, stock dependent variable holding cost and multiple dependent variables
holding cost. Moreover, San-Jose et al. (2019) propounded an inventory model for an item
in which the demand rate is dependent on selling price and time power function. Holding
cost is presumed to be the power function of time. The model maximises the total inventory
profit per unit time by considering the inventory cycle and selling price as the decision

variables.

2.1.7 Production Inventory Models for Deteriorating Items

Economic production order quantity (EPQ) models are applicable for the instances where
the company acquires its stock over some period or where the products are manufactured
internally rather than obtained. Several researchers have deliberated on deteriorating
production inventory models for items.

Mishra (1975) seems to be the first researcher who presented a production lot-size
inventory model for degenerating products in which the deteriorating rate is both time-

varying and constant. Shortages are not allowed in the model. Other notable works in this
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direction are (Duan et al, 2018; Goyal & Gunasekaran, 1995; Widyadana & Wee, 2011;
Taleizadh et al. 2015; Tai 2013; Bukhari & El-Gohary 2012).

In the above models, shortages are not put into consideration, Balkhi & Benkherouf (1996)
established a production lot-size inventory models for degenerating products under random
time-varying demand and production rate. Shortages are allowed. Samanta (2016) formulated
an economic production quantity inventory model for degenerating items with shortage
tolerated. A deteriorating production inventory model for product with finite designing
horizon and linear time-varying demand were presented by (Khanra (2016); Sana et al.
(2004)). Shortage is allowed and wholly backlogged. Mishra (2012) proposed a production
inventory model for degenerating products in which demand, production, deterioration and
other logistic depend on time with shortages allowed, and wholly backlogged.

Krishnamoorhi & Sivashankari (2016) considered a three-level production inventory
model for deteriorating products with the rate of production shown as a variation. Shortage
is permitted. A sustainable economic production quantity inventory model that incorporate
various form of shortages was studied by Taleizadeh et al. (2018).

Bard & Moore (1990) studied a production planning inventory model considering demand
as variable. A production inventory planning model for accepting an order when the demand
is not satisfied was proposed by Aouam et al. (2018). Chen et al. (2014) put together the
deteriorating economic production quantity inventory model for commodities with up-stream
complete trade credit and permissible delay in payment.

A production inventory model with price and quality decisions in production was presented
by Jalali et al. (2019). Mokhtari et al. (2017) derived a computational approach to the
economic production quantity inventory model for the perishable product in which the
demand rate is probabilistic and stock-dependent. Shortages are accepted and wholly

backlogged. Pal et al. (2015) proposed a deteriorating economic production quantity
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inventory model for product with gradient type demand and putting over-valuation into
consideration under fuzziness. The rate of deterioration is two-parameter Weibull
distribution, and time horizon is finite, and shortages are allowed.

Viji & Karthikeyan (2018) proposed an economic production quantity inventory model for
three-stage of production with the deterioration rate following a two-parameter Weibull
distribution. Shortages are accepted. Zhao et al. (2016) presented an optimal production
quantity inventory model for a multi-stage supply chain. The demand rate is the time variable,
and the model was considered over a limited planning horizon. Shah &Vaghela (2018)
reviewed economic order quantity (EPQ) deteriorating inventory model for commodities in

which demand depend on price, subject to two-level marketing credit financing.

2.1.8 Literature Gap

To the best of our understanding, there are no/few mathematical inventory models
developed under the following headings which this thesis intended to address.
* Deteriorating inventory model for items with time-varying demand rate and time-dependent
holding cost with no shortages.
* Inventory model for items with linearly time-dependent deteriorating rate and
time-dependent holding cost with power pattern demand considering shortages.
* Delayed deteriorating inventory model with power pattern demand rate and lost sale with
shortages partially backlogged.

* Inventory policy for items with linear time-dependent deteriorating rate, variable

holding cost and power demand form rate with partially backlogged shortages.
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CHAPTER 3: AN INVENTORY MODEL FOR DETERIORATINGITEMS WITH
TIME-VARYING DEMAND RATE AND TIME-DEPENDENT HOLDING COST

WITHOUT SHORTAGES.

3.1 Introduction

In the management of inventory, many mathematical inventory models have been
developed over many decades to contain different scenarios. Some models considered where
the holding or carrying cost, set-up cost, demand rate as a fixed function concerning time.
All this has led to a wide variation of model in the economic ordering quantity and economic
production quantity when compared with the real situation in the world under inventory
problems.

It is, therefore, necessary that the model and assumptions imposed on the models should
be carefully considered in a way to get closer to the real situation as much as possible.

In this chapter, we developed a deteriorating inventory model for items with time-
dependent holding cost as against the fixed holding cost which is at a time very far from
present reality. Other works that had been done in this area include that of Singh (2017);
Mishra et al. (2013). However, this model considered time-varying demand which is of
power pattern which makes it more suitable for products which are just gaining recognition

in the market.

3.2 Assumptions and notation

Assumptions

The development of the model is based on the following assumptions:

1. The demand rate of the items is represented by power pattern and is a continuous function

of time
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2. Lead time is negligible/ trivial
3. The rate of deterioration of items is constant
4. Shortages are not permitted
5. The rate of replenishment is infinite
6. Planning horizon is finite
Notation
The following notation is essentials in this chapter.
* T is the length of the inventory cycle (time)
* Q is the order quantity/units
 I(t) is the inventory level at time t
* 7 is the average demand per inventory cycle.
* n is the demand pattern index (n is non-negative)
* K is the ordering cost / $ /order
* h is the holding cost per unit $ / time
* C is the cost per deteriorated unit/ $ /order
* SC is the set-up cost/cycle
* DC is the deteriorating cost/time units/cycle
* HC is the holding cost is a linear function of time (t) =a + b t,
(a and b are non-negative)

» TC is the total cost of the inventory model/time units

3.3 Mathematical model formulation
Employing the assumptions and notation above, Figure.3.1 gives the graphical
representation of the inventory model. @ is the ordering quantity at the beginning of the

planning horizon. The inventory model is derived mathematically as follows:
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Figure 3.1: Graphical illustration of Inventory Model.
The instantaneous inventory level I(t) at any time t during the cycle time T is
given by:
L04vaity=-D; o0=t<T 3.1)
1q
where D = mi
nTn *

Using integrating factor = e*tdt

1

s—1

Ir(t)eat - _ rtr; eat
nTn*

1

=1
I'(t)es = - = [f e“tt%_ldt]

1
1
nTn

Using power series:
x2
e*=1+x+ Bl +-

242 343
e =1+at+E-+ 25
2! 3!

27



Since «a is small, we can truncate the series at the third terms
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Tt n+1 2(2n+1)

1 1
wt r 1 antntl  a?ntnt?
I(t)e* = ntn + + +C

O nT%-1 n+1  4n+2

Applying the boundary condition: I(T) = 0, we have:

_ 1 1
1 —+1 2 —+2
r - antn a“ntn
O = — 1 ntn + 1 + 4 2 + C
nTn -1 i n+ n+ |
_ 1 1 A
1 —+1 2. ,=t2
T - antn a“ntn
C - - 1 Tltn + 1 + 4 2
TLTﬁ_l ] n+ n+ ]

From this, we have:

at _ a %+1 _ %+1 a? %4.2 _ %4.2
I(t)e™ = - (T ety + (T t )]
a l'|'1 l+1 a? l+2 l+2

0<t<T (3.2)

The optimum order quantity level is given by I1(0) = Q

1 1
ey I (3.3)

4an+2

Q=

The total cost (TC) per unit time is made up of the following cost components:
1. The holding cost HC per cycle [0, T] is given by:

C == (a+bt)I(t)dt

re at

=17 @+ bt [ (77— ) + - (et — et

4an+2

+ o’ (T%+2 _ t%+2)]l dt
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r(1- at)

1 1 1 1
= —f (a + bt) [ (Tn —tn) + ﬁ (T —tnth)

o (T%” — t%”)]l dt

an+2

HC = ilfOT (a + bt) [(1 — at)(T% - t%)

- 1 1 201_ 1 1
n a(l-at) (TZH . tﬁﬂ) + a’(1-at) (TZ+2 _ t5+2)]
n+1 4n+2
r T L 1 1 ) aT%+1 at%+1
HC:_lfO (a+bt) Tn —tn —qtTn + atn + —
Tn n+1 n+1
— aernt? n Qn*? | qrrat? _ a2 nt? _ Gntt a3t
n+1 n+1 4an+2 an+2 4n+2 4an+2
1 +1
T nt
HC = —llf aTadt — fo atndt —f aatTndt+f aatn’ ¢
Tn
1
T aaTn* T a atn T a aTn
+/y = (1—at)dt+f d+f - dt
T azat%+2 T a aTn T a atn
~Jo Tt b o -t t+J, " de + f bTadt

1

1
T, 14 T abtn*? T a?btn*>
— [ btn dt—f baTnt 2dt + [) ——dt+ [, ——dt

1

1
T abtTnt T a thn T a?btn*3
+ (1 —at)dt + f —Zdt — fo yo—es

Tcxbtn
+2

1
fT a3pt2Tnt?!
0 4n+2

dt + | dt

Upon integration and simplification, we arrive at the following equation:

1 1 1 1
HC rh (1Tl+1 anTn™  aanTn™? aanTnt? aaTn™?
= —_— n —_— —_—
- n+1 n+1 (2n+1)(n+1) n+1
1 1 1 1
a?anTn®? a?anTn’? a?arnt3 a?anTnt?
(2(n+1) (n+1)(3n+1) 4n+2 (3n+1)(4n+3)
1 1 1 1 1
a3arnt3 adanTnt? pTn*?  pnrnt?  aprnt?

2(4n+2) (4n+1)(4n+2) 2 2n+1 3



1 1 1 1
=43 =43 St4 4
abnTn abTn a’bTn a’bnTn

(Bn+1)(n+1) 2(n+1) 3(n+1) (4n+1)(n+1)

1 1 1 1
a?pTntt a?bnTntt adprntt a3bnTnt®
= = + (3.4)

2(4n+2) (4n+2)(4n+1) 3(4n+2) (4n+2)(5n+1)

The number of deteriorated unit during the cycle period (0,T) is given by:

1

71
Ndu = Q — fOT D(t)dt,where D(t) = rtl_l
nTn
Ndu=Q —rT
1 1 2 1
= (17 + T+ SoTat) T
Tt n+1 4an+2
Ndu = raT?  a?r73

n+1 4an+2

2. Therefore, the deterioration cost is given by:

_G arT?  a?rr3
b = T (n+1 4n+2)
DC = aCyrT | a’rCq T? (3.5)
T o+ 4n+2 :
3. Ordering cost/set-up cost (SC) per cycle [0,T] is given by:
K
SC = P (3.6)

The total cost per unit time is given by:

TC=HC+DC+SC

arhnT  arahnT? arahnT? arhaT?  a?arhnT?
TC = [arhT — - + + -
n+1 n+1 (2n+1)(n+1) n+1 2(n+1)
a?arhnT3 a?rahT3 a?rahnT3 adrhaT? adrahnT*
(B3n+1)(n+1) 4n+2 (4n+3)(3n+1) 2(4n+2 (4n+1)(4n+2)
brhT? rbhnT?  arbhT3 arhbnT? arhbT®  a?rbhT*
2 2n+1 3 Bn+1)(n+1) 2(n+1) 3(n+1)
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a?rhbT* a?rbhT? a?rbhnT* a3rbhT* a3rbnhTS

(4n+1)(n+1) 2(4n+2 (4n+1)(4n+2 3(4n+2 (4n+2)(5n+1)

+ + +=
n+1 4n+2 T

aCyrT . a?rCyT? K] 3.7)

The necessary and sufficient conditions for the total cost TC to be minimised is that:

a(TC) 9%(TC)
o =0 and 372 >0 forall T>0 (3.9)

3.4 Method of Solution
We present in this section, a way to calculate the inventory system that minimises the total
cost with unit time as given in Equation (3.7). Here, we find the first partial derivative of TC

concerning the decision variable T':

a(TC) _ arh arhn  2hrana 2hranaT 2hraaT
aT n+1 n+1 (2n+1)(n+1) n+1
3hraa’T? 3ranha?T? 3raha?T? 3ranha?T?

2(n+1) (n+1)(3n+1) (4n+2) (4n+3)(3n+1)

3raha3T? 4hnraa3T3 2hnrba®T 3rbnhaT?

- + + bhrT — ——— — rhbaT? + ——
2(4n+2) (4n+2)(4n+1) (2n+1) (n+1)(3n+1)
3rbhaT?  4rbha?T3 4bhra?T3 2rbaT3 4bhnra?T3
2(n+1) 3(n+1) (4n+1)(n+1) (4n+2) (4n+1)(4n+2)
4bhra3T3 5hhnra3T* Ciar | 2C;rTa? K 0 (3.9)
3(4n+2) = (4n+2)(5n+1)  n+l 4n+2 T2 :

3.5 Numerical illustration

The proposed model is more evident by considering some numerical example in this
section. In this example, we evaluated the solution of the inventory problem, calculate the
schedule period and order quantity level.
Example: Considering the subsequent parametric values for the inventory model K = 50,
a=0.5,b=001, ¢, =15, r=100, n=0.5, a = 0.4, h = 2.5 in appropriate units.

Taking into consideration these numerical values, from Equation (3.9) we obtain a non-linear
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equation. Using maple software 2018, to solve the equation, we obtain schedule period T for
which the inventory is zero to be 0.562 years; replenishment order quantity Q is 116.240
units, inventory total cost TC is $168.19.

From Equation (7.1), the second partial derivative of the cost function TC with respect to

the variable T is positive, which satisfied the sufficient condition i.e.

OTCM) _ 5102696 > 0
oT?

establishing that it is the minimum point.

Figure 3 shows that the function TC is convex concerning T (Schedule period).
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Figure 3.2: Graphical representation of convexity of total cost against T.
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3.6 Sensitivity analysis

The effect of changes in the values of various parameters 7, h,K,C,n,a,b and « is
observed in this section on the optimum total cost and the optimum order quantity. The
sensitivity analysis is carried out by changing each of the parameters by +20%, +10%,
—10%, —20% taking one parameter at a time and keeping other parameters constant. The
analysis is built on the example above, and the results are displayed in Table 3.1 and
represented graphically by Figures (3.3 -3.5). The following observations are derived from
the sensitivity analysis.

1. As the demand rate r is increasing, there is an increase in optimal order quantity Q,
and optimal total cost TC, which results in a decrease in the optimal cycle time T. The
economic implication or consequence of this is that as demand rate is increasing, there is a
need for retailers to order more quantity, to lower the order frequency and inventory cost.

2. As the deteriorating parameter « is increasing, there is an increase in optimal total cost,
optimal order quantity and decrease in the optimal cycle time. The implication of this is that
an increase in deterioration rate will lead to a rise in the minimum total cost per unit time,
and this will decrease the optimal cycle time.

3. As the ordering cost is increasing, there is an increase in the optimal cycle time T,
optimal ordering quantity  and optimal total cost TC. The implication of this is that the
retailers should order more quantity when the ordering cost is high to avoid frequent ordering
and save cost.

4. As the value of purchasing cost C is increasing, there is a decrease in optimal cycle time
T and optimal ordering quantity @, but there is an increase in the optimal total cost TC. The
implication of this is that as the purchasing cost is increasing, the optimal total cost will also

be increasing. The retailers can control this situation by shortening the optimal cycle time
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and reduce the quantity ordered.

5. An increase in the holding cost h and parameter a and b will result in a decrease in
the optimal cycle time and optimal ordering quantity. However, there is an increase in the
optimal total cost. Here, retailers should shorten the cycle length of time and amount of order
optimal to maintain the inventory cost as low as possible, which can act as an adjustment
strategy.

6. An increase in the power index n leads to an increase in the optimal cycle time T and

reduces the optimal total cost TC and the optimal ordering quantity Q.
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(a)

(b)

Figure 3.3: Graphical representation of sensitivity analysis of total cost.
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(b)

Figure 3.4: Graphical representation of sensitivity analysis of order quantity.
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(a)

(b)

Figure 3.5: Graphical representation of sensitivity analysis of cycle time.
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Table 3.1:The consequence of changes in various parameters of the inventory models.

Change in:
p* V* C* T TC Q W J* 7*
120 20 0.517 | 183.29 117.838 | 8.981 1.374 | -7.905
110 10 0.538 | 17591 127.057 | 4.594 | 9.305 -4.207
r 100 0 0.562 | 168.19 116.240 | 0 0 0
90 -10 0.589 | 160.06 105.383 | -4.833 | -9.341 | 4.849
80 -20 0.621 151.46 94.477 [-9.946 |-18.722 | 10.525
0.48 20 0.538 | 174.811 | 118.878 | 3.938 | 2.269 | -4.243
0.44 10 0.549 | 171.533 | 117.575 | 1.989 1.149 | -2.194
o 0.40 0 0.562 | 168.187 | 116.240 | 0 0 0
0.36 -10 0.575 | 164.769 | 114.869 | -2.032 | -1.180 |2.357
0.32 -20 0.589 |161.274 |113.458 | -4.110 |-2.393 |4.898
60 20 0.610 | 185.260 | 117.742 | 10.151 | 1.292 | 8.526
55 10 0.586 | 176.898 | 117.009 | 5.179 | 0.661 4.377
K 50 0 0.562 | 168.187 | 116.240 | 0 0 0
45 -10 0.536 | 159.074 | 115.431 | -5.418 | -0.697 | -4.641
40 -20 0.508 |149.491 | 114.573 | -11.116 | -1.435 [-9.594
1.80 20 0.547 | 172.991 | 115.794 | 2.856 | -0.384 | -2.555
1.65 10 0.554 | 170.606 | 116.012 | 1.438 | 0.196 |-1.302
C 1.50 0 0.562 | 168.187 |116.240 | 0 0 0
1.35 -10 0.569 | 165.733 | 116.478 | -1.459 | 0.204 1.355
1.20 -20 0.577 1163.243 | 116.725|-2.939 |0.417 |2.766
3.0 20 0.529 | 178.777 | 115.235 | 6.297 | -0.865 | -5.770
2.75 10 0.545 | 173.572 | 115.713 | 3.202 | -0.454 | -3.022
h 2.50 0 0.562 | 168.187 | 116.240 | 0 0 0
2.25 -10 0.680 | 162.603 | 116.827 | -3.320 | 0.505 3.346
2.0 -20 0.601 156.795 | 117.486 | -6.774 | 1.072 | 7.081
0.60 20 0.584 | 162.281 | 115.827 | -3.511 |-0.355 | 3.894
0.55 10 0.573 | 168.224 | 116.025 | 0.022 | -0.185 | 1.940
n 0.50 0 0.562 | 168.187 | 116.240 | 0 0 0
0.45 -10 0.551 171316 | 116.474 | 1.860 | 0.201 -1.927
0.40 -20 0.540 | 174.576 |116.728 | 3.798 |0.419 | -3.845
0.60 20 0.529 | 178.738 | 115.241 | 6.273 | -0.860 | -5.732
0.55 10 0.545 | 173.551 | 115.716 |3.189 |-0.451 | -3.001
a 0.50 0 0.562 | 168.187 | 116.240 | 0 0 0
0.45 -10 0.580 | 162.627 | 116.823 | -3.306 | 0.501 3.319
0.40 -20 0.601 156.846 | 117.475]-6.743 | 1.062 | 7.018
0.012 |20 0.561 168.232 | 116.232 | 0.027 | -0.007 | -0.048
0.011 |10 0.562 | 168.209 | 116.236 | 0.013 | -0.004 | -0.024
b 0.010 0 0.562 | 168.187 | 116.240 | 0 0 0
0.009 |-10 0.562 | 168.165 | 116.244 | -0.013 | 0.004 | 0.024
0.008 |-20 0.562 |168.142 |116.249 | 0.027 |0.007 ] 0.048

Note: P*= Parameters, V*=Values, C*= % Changes, W* = %Change in TC, J*= %Change

in Q, Z*= % Change in T.

39



3.7 Concluding Observations

This model considered a deteriorating inventory model with a constant deterioration rate,
and the demand rate follows a power pattern. Shortages are not allowed in the model and
holding cost is assumed to be a linear function of time. The power demand pattern rate is
chosen because of the new products in the market now in which the demand is dependent
upon time. When some products are introduced into the market, the demand may be constant
for some time after which the products will gain recognition, and then the need for such
products increases. See Figure (3.3a). Examples of such products are android phones,
fashions, electronics, computers, etc. Holding cost is presumed to be dependent on time
because it has multiple factors that can be allowed to be represented as a linear function of
time.

The results from Table 3.1 and Figures (3.3-3.5) show that there is an increase in the total
cost as the holding cost is increasing, thereby reducing the schedule period and the ordering
quantity. It is also discovered that as the deterioration rate is rising, there is an increase in the
total cost, leading to growing in the order quantity and reducing the scheduling period. The
model can be useful in the control of inventory of business enterprises that deal with products
that have their demand and holding cost dependent on time. The model can be expanded in
many directions; for example, shortages can be introduced into the model; another direction
is to consider preservative technology and price-dependent demand.

However, in some cases, it is advisable to examine an inventory model with shortages,

especially when the holding cost is prohibitive.

40



CHAPTER 4: AN INVENTORY MODEL FOR LINEARLY TIME-DEPENDENT
DETERIORATING ITEMS WITH POWER PATTERN, SHORTAGES, AND

TIME-VARYING DEMAND.

4.1 Introduction
In Chapter 3, An inventory model for deteriorating items with time-varying demand rate
and time-dependent holding cost without shortages is propounded over a bounded horizon.

Many inventory models are developed under the assumption that the rate of deterioration
is constant. It will be more realistic to consider that the price of decay of many commodities
will go on increasing with time. This assumption is valid in some way because once any
products start to decay, the rate of decaying continues to grow consistently day by day.
Although it will not be correct to assume that the deterioration starts immediately, the items
are produced. There will be a time when the product will maintain its freshness before the
decline set in.

In this chapter, the inventory model for linearly time-dependent deteriorating items with
power patterns, shortage, and time-varying demand is considered. Deterioration rate is
assumed to be a linear function of time. We developed a new model and extended the work
of Rajeswari & Indrani (2015) by examining the inventory cycle time as one of the decision
variables. Here the inventory cycle time is not fixed as in the above paper. Inventory cycles
depend on two decision variables, that is the time at which the inventory level descends to
zero and the length of the scheduling period.

We minimise the total average system cost per unit time. We derived two non-linear
equations from the developed model, and we solve the equations using Mathematica and
excel solver to obtain the optimal solution. Numerical examples are propounded to establish

the application of the model developed, and we use the cases to carry out sensitivity analysis
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on the impacts of various changes in some possible combinations of model parameters on the

decision variables of the mathematical model.

4.2 Modelling Assumptions

The inventory model is established based on the following assumptions

1.

2.

Deterioration rate is considered as a linear time-dependent
Shortages are permitted and are backlogged

Demand is considered to be in the form of power demand pattern
Time horizon is made to be unbounded/ infinite

Lead time is negligible/trivial

One item is discussed only in this model

The average order is deterministic.

The following notation was used.

 I(t) is the Inventory level of the system

* 0 is the Deteriorating rate (6 lies between 0 and 1)

* T is the scheduling period

* t; is the time at which the inventory system drops to zero

* M is the initial level of the stock

* m is the re-order points

» A is the ordering cost/unit item /unit time

* h is the carrying cost/unit item/unit time

* b is the backlogging cost /unit item/unit time

* w is the deteriorating cost/unit item/unit time

* p is the purchasing cost/unit item/unit time
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* d is the average demand per cycle period

* D(t) is the demand up to the time t. here (t lies between 0 and T)
* The index of demand pattern is n. (n is assumed to be higher than 0)
* @Q is the order quantity/unit item/unit time

* K,(t;,T) is the average amount carried in the inventory system

* S,(t1,T) is the average amount of shortage in the system

* D;(ty,T) is the average quantity of deteriorated units

* P,(t1,T) is the average quantity of purchased units

* QC(T) is the ordering cost/unit item/unit time

* HC(ty,T) is the holding cost/unit item /unit time

* PC(ty, T)is the purchasing cost/unit item /unit time

* DC(t4,T) is the deteriorating cost/ unit item /unit time

* TC(t,,T) is the total average cost of the inventory system

4.3 Mathematical model formulation

In the development of this model, a situation where inventory is followed by shortages is
considered. Here, in this presented model, a cycle can be split up into two periods. [0, T] is
taken as a single cycle duration. Through [0, t;] the inventory is on the positive side and
through [t;, T] the inventory is on the negative side.

Under the given assumptions, the commencing inventory level is M units at time t = 0.
Throughout the period t = 0 to t = t;, the inventory level diminishes, due to demand and
deterioration, until it gets to zero level at t = t;. During the interval [t;, T] the system
experiences shortages which are backlogged to the close of the cycle. At interval t = T, the

inventory arrives at a maximum shortage level m to clear the backlogged and the inventory
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level rises again to level M. The system is depicted in Figure 4.1.

Figure 4.1: Graphical representation of Inventory Model.
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The differential equations for the described model are:

1

-1
LD4ver)=-"— 0< t<t (4.1)
dt nTﬁ—l
di(t) den?
el t, <t<T (4.2)

Making use of the boundary conditions 1(0) = M, I(t;) =0 and I(T) =m

t2
Using the integrating factor e/ #19t = ¢z~
ﬁ d ﬁ 1_1
I(H)ez = —— [f (e7z tn )dt]
nTn *

Since 6 is small, 0 < 6 < 1, we take the first three-term of the power series i.e

x3

x2
e*=1+x+=+=
2t | 3l

ot? 2 22 243
ez =1+ 400 L OO
2 8 24
ot2 2 2:4 1
ez = ———[f @+Z+ T Hat|
=1 2 8
nTn
ot2 1 %+2 2 %+4
I(t)eT -4 (1 ntn + not 6 nt C
a1 2(2n+1)  8(4n+1)

using the boundary condition 1(0)=M

M = C, Therefore

ot2 1 e o tia]
zt d = ] 6
I(tez =M ——5|ntn + 222 et
! 2(2n+1) 8(4n+1)_
etz _ﬁ 1 l+2 2 l+4 )
2= de 2 = otn f<tn
I(t) =Me = — - ltn 2(n+1) | 8(an+1)] (43)

From Equation (4.2) , we have:

I(t) = ——— [f t%_ldt]
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d 1
I(t) = ——1|nta| + C,but  I(t;) =0

nTn

1
d n
0: —Eltllﬁ'c

d 1
C :l—_lltfl

Tn

uo:-fié—él (4.4)

Tn
I(t) is a persistently decreasing function in the time interval [0, T], therefore the initial net
stock level at this interval is procured by substituting the boundary condition I(t;) into

Equation (4.3), we have:

2 ot1 [ 1 L2 Lis
0= Me_& de™z |, , 6th 62th
- -t | T 2@n+1)  os(ant1)
2 0 [ 1 Lz Lia
Me_ezﬁ _ de 2 tz T Htf Hzt;l
- T%—l 1 7 202n+1) = 8(4n+1)
1 1
1 =42 =+a
d = ot" 0%t
M=— |t +-— L 4.5)
-t 2(2n+1)  8(4n+1)

Replacing Equation (4.5) into Equation (4.3), we have:

o2 1 1
de” 7 I L e Tt l
n

It =— a1 202n+1) | 8(4n+1)
ot> 1 1
_I_de‘T t% n 9tf+2 92t;1+4
T%—1 1 7 202n+1)  8(4n+1)
d ‘ezL2 L 1 0 1i2 1
— € n = n =+2
I(t) = —F (tf — tn) + 2@n+1) (t’f — tn )

2 At C+a
+ 8(4n+1) (& —tn )l
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— n _ n —+2
I(t) = Tn (t tn ) + 2(2n+1) (t tn" )
92 %+4 l+4
+ 8(4n+1) CU N
since 0<60<1 we have:
1 1 1
1 1 n 244470 L2 nt?
2 ot2 t] o-t*t ontn ot
— n __ 1 1
I®) = e tp—tn - -+ 8 2n+1  2(2n+1)
l+2 1 1 l+"l-
022} g2tn it + o2tn**  gZ¢n™? + 021 46
4(2n+1) 8 4(2n+1) 8(4n+1)  8(4n+1) (4.6)

From the boundary condition I(T) = m, substitute into Equation (4.4) to get the re-order

point:

1

1
m=——— [Tz - ql (4.7)

To obtain the lot size Q that replenish the stock, we have:

Q+m=M =Q=M-m

- 1 1

1 =42 Z+4 1

d = otn o2l d 1 =

Q=——|t1+;—+——|+——|Tn—t]
! 2(2n+1) 8(4n+1) a1

1 1

[ =42 =+
_d oty 62t}
Q a1 Tn 2(2n+1) 8(4n+1)] (4.8)

For this inventory system, the average amount carried depend on the decision variables

ty and T

1 pt
K, T) = 2 10t
) 1 ok
- 1
Ki(t, T) =S| [,* t7dt — [ tndt —%f t2de + 249

Tn

f tttde

l+z

on t1 +2 t1
+2n+1f0 dt + 2(2 +1)f
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1

=42
6%t} t1 o 0% rt1 144 62 t1 144
mfo t dt ?J-O tn dt + 2(2n+1) fO tn dt

62 t; L 02 t, o+4
[t tnttde + [er dt

8(4n+1) Y0 8(4n+1)70 1
1 1
1 —+1 =+3 =+5 =+
d|,;t1 nt} ottt 62t} on?t}
Ki(t, T) == |t - — +
™ n+1 6 40 (2n+1)(3n+1)
1 1 1 1
=+3 =45 =+5 —+
n 2+ 2 n 2 n
ot] 0°t] _ 0°nt] 0°nt]

2(2n+1) 12(2n+1) 8(5n+1) & 4(2n+1)(5n+1)

1 1
=+5 =+5
2 2
__ e*ne? 62t}

8(4n+1)(5n+1) 8(4n+1)

Upon simplification, we have:

1 1 1
=41 =+3 =+5
n n 2+
d [t1 ot} 0°t] ]

K (t,T) = T_% n+l = 3(3n+1)  15(5n+1)
The average shortage across the cycle period is:

S,(t,T) = =7 [} 1(t)dt

1 1

d (T 1
Sy(t1,T) = _Tfo [tf — tn]dt
Tn

1 L 1
—+1 n =
d |nTn t
Sz(tl,T) = -7 1 _t]7_1T
Tn n+1 n+1

Along the negative inventory cycle, the total quantity of deteriorated units is:

1
=—1
T dth
D3(t11T) = Q - fo ;l_ldt
nTn

D3(t,T) =Q — 4 - [T%]

nTn

1
=+2
ety 62t] 1

d
D5(t4,T) _T%_l Tn 2(2n+1) 8(4n+1)_ "

(4.9)

(4.10)
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l+2 l+4-

d ot 0%th

D3 (tl, T) == 1 + 1
T%—l 2(2n+1) = 8(4n+1)

To get the average deteriorated unit along the period, we have to divide the total quantity

deteriorated along the cycle with T

l+2 l+4—
1 d | et 6%er
D3(t,T) = T T%_l [2(2n+1) + 8(4n+1)

1
7 |2+ 8(4n+1)

d| e t%Jr2 0? t%+4
Dﬂhf)=—[ L— 4 — ] (4.11)

Moreover, the average purchasing units along the inventory is:

Q
Py(t1,T) = T

12 Lis
_d I ett 62t}
Po(t, T) = —= 1 [Tn T 2(2n+1) " 8(4n+1)

d 1
Py(t,,T) = I Tn+

Tn

1, i,
o4 o4 ] (4.12)

2(2n+1) = 8(4n+1)

The average total cost for the inventory system is made up of the following cost
components: Ordering cost + holding cost + purchasing cost + deteriorating cost +
backlogging cost.

1. Holding cost per unit of time is:

hd t%Jr1 9t%+3 62t%+5
_ el 1 1
HC(t, T) = . [n+1 3(3n+1) 15(5n+1)] (4.13)
2. Backlogging cost per unit of time is:
1 i1 1
bd |nTn*t -
BC(t,,T) = E[ — ;H — 7T (4.14)

3. The ordering cost per unit of time is:
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0C(T) = ‘;‘ (4.15)

4. The deteriorating cost per unit of time is:

DC(t,, T) = 12D
d et%+2 92t%+4
_aw 1 1
DC(t,T) = e [2(2n+1) + 8(4n+1)] (4.16)

5. The purchasing cost per unit of time is

PC(t;, T) =22

1
PC(t,T) =& |17 +

Tn

(4.17)

1 1
=+2 Zt+4
n 2+
otn 62t
22n+1) = 8(4n+1)

The average total inventory cost per units of time is the sum of the entire cost components

given in Equations (4.13 - 4.17)

1 1 1 1
=+1 =43 =+5 1 =+1
A | hd |t} ot o2tr bd |nTn*t |t} =
TC(tl,T):—+—1 T _tlT
T ™ n+1 3(3n+1)  15(5n+1) ™ n+1 n+1
1 1 1 1
=42 —+4 =42 =44
dw | ot} 62t7 +dp Tl+ ot} 62t7 (4.13)
== =ZlT= .
T% 22n+1) = 8(4n+1) T% 22n+1) = 8(4n+1)

We are to find the optimum solution that minimises the total average cost of the

function TC(ty,T) such that O lies between t; and T and T > 0.

4.4 Solution method
To minimise the total relevant cost per unit time, we find the optimal value of the decision
variables t; and T. We consider the partial derivatives of TC(t;,T) w.r.t. the decision

variables t; and T.

1

= 1 l 1_1
dTC(t,,T) _ hd [l + gtn*? Lo th Tt}
— =gt |t T

atq T 3n m|n n
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1 1
dw |6th dp |6t
—|—=——|+—=<|——|=0 (4.19)
| 2n | 2n
and
1 1 1
=+1 =+3 =+1
OTC(t1,T) A hr |t} otl bdn bdtl}
— == —
aT T nrntl | ntl 3(3n+1) n+1 n(n+1)Tn+1
1 1 1
= =42 =42
(1-n)bdt™ dw ot" d otn
+ i vl pycwwrd T 2anin| = 0 (4.20)
nTH nTatt (2n+1) Tl (2n+1)

Equations (4.19) and (4.20) is a non-linear equation, and we solve for the decision variables

t; and T when we equate them to zero to get the optimum solution, provided that:

[azg(t}m] [ - [ >0, 421)

4.5 Numerical illustration

In this section, we consider some numerical examples to justify our developed model. In
these examples, we find a solution to the inventory problem, evaluate the values of t; and
T and substitute their values to Equation (4.18) to get the average total cost. We also get the
re-order point from Equation (4.7) and lot-size from Equation (4.8).
Example 1:

We examine the following parametric values for the inventory system.
d=100, A=50, h=2,b=4 w=12, p=10 n=0.5 6 =0.1 with appropriate
units.
Here we use maple 2018 to get the optimum solution and check for convexity using Equation
(4.12).
T = 0.756 years, t; = 0.463 years, TC(t,,T) = 1127.52 units, Q = 75.794 units, M =

28.561 units, m = —47.233 units.
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From Equation (4.21) the Hessian is H(t;,T) = 240676.6344, which is positive; it implies
that (t;,T) is the minimum point.

The convexity of the total cost function and the decision variables are given in Figure (4.2).

Example 2.

We reflect on the same example as in example 1, but we make our n = 2 with appropriate
units.

T =0.903 years, t; =0.546 years, TC = 1105.44 units, Q = 90.488 units, M =
70.386 units, m = —20.103 units.

From Equation (4.21), the Hessian is H(t;,T) = 143318.229, which is positive; it implies

that (t;,T) is the minimum point.

Example 3.

We consider the following parametric values for the inventory system as found in Rajeswari
& Indrani (2015).

d=50, A=250, h=05 b=12, w=15 p=8n=2 0 =0.05 with appropriate
units.

Here, we want to make a comparison between our results with the optimal system
propounded by the above authors. Solving Equations (4.9 and 4.10) in our propose model
and input the same parametric values from the said authors, the following results are
obtained:

T = 2.726432 years, t; = 2.339401 years, TC(t;,T)=549.406768 units, Q =
139.908330 units, M = 122.951587 units, m = —10.0459318 units. From Equation
(4.12), the Hessian is: H(t;,T) = 5218.42892 > 0 which is positive, it implies that (t;,T)

1s the minimum point.
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Bearing in mind that Rajeswari & Indrani (2015) make the scheduling period constant and
regarded T = 1 year. Their results for the optimum policy are as follows: t; = 0.973038
years, Q = 50.215149 units, and the inventory minimum cost is $658.43. It implies from
the results that our optimal policy of $549.407 is better than their own optimal policy of
$658.43. It should be noted that the minimum inventory total cost of the said authors is 18%
higher than our own model. The reason for the difference is that, they fixed their scheduling
periodtobe T = 1 year which did not really give accurate results. More also, other variables

from our results are not considered by the Rajeswari & Indrani (2015).
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Figure 4.2: Graphical representation of convexity of total cost against cycle and
schedule time.
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Figure 4.3: Graphical illustration of Convexity of total cost per unit time.
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4.6 Sensitivity analysis

A sensitivity analysis of the optimal inventory system is conducted in this section. The
effect of changes that occurs in the system policy when the input parameter is varied are
carefully considered. Observations are based on the reactions of the t;,T,Q, M, m,TC
against the input parameters d, A,n, h,p,b,w and 6.
By the results from Table 4.1 the following observations are derived:
1. Increase in the value of parameter A leads to increase in the inventory cycle time t;,
scheduling period T, total cost TC, quantity order @Q, Initial stock level, M, but decrease in
re-order point m, here the optimal decision variables are highly sensitive to change in the
parameter A. See Figures (4.4a,4.5a,4.6a,4.7a).

2. Increases in the value of demand rate parameter d lead to decrease in the inventory
cycle t;, scheduling period T and re-order point m, but there is an increase in the inventory
total cost TC, quantity order @, and initial stock level M. Here the decision variables are
highly sensitive to change in parameter d. See Figures (4.5, 4.6, 4 .7).

3. An increase in the input parameter h leads to a decrease in the inventory cycle ¢,
schedule period T, quantity order @, and initial stock level M, but there is an increase in the
inventory total cost TC. Hence the decision variables are moderately sensitive to change in
parameter h. See Figures (4.4, 4.6, 4.7).

4. As the inventory total cost TC, and re-order point m increases, there is a decrease in the
inventory cycle time t;, scheduling period T, quantity order @ and initial stock level M as
the value of parameter b increase. Here the optimal decision variables are moderately
sensitive to change in b. See Figures (4.4,4.6, 4.8).

5. When the input parameters w and p increase in values, there is a decrease in the

inventory cycle time t;, schedule period T, quantity order Q, initial stock level M, and re-
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order level m, also, the inventory total cost increases. The decision variables have a low
sensitivity to change in the parameters w and P. See Figures (4.4, 4.7,4.8).

6. In parameter n, as the value increases, there is the corresponding decrease in the
inventory cycle t;, schedule period T, quantity order Q, and re-order level m. However,
there is an increase in the inventory total cost TC and initial stock level M. The optimal
decision variables are moderately sensitive to change in n. See Figures (4.4,4.5, 4.6,4.7).
7. An increase in the value of deterioration parameter 6 leads to an increase in the
inventory total cost TC, but a decrease in all other decision variables. It is observed here that
deterioration parameter 8 have a very low sensitivity to change. See Figures (4.5,4.7,4.8).
In Table 4.1, below, the following abbreviations are use:

Note: P = parameter, V = values, C =% changes, TC*= %change in TC, Q*= %change in

ordering quantity, M*= %change in ordering level, m*= %change in re-order point.
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Table 4.1: Outcome of changes in various parameters of the inventory models.

Change in:

P \% C T ti TC* Q* M* m*

75 +50 0915 |0.551 +2.65 +21.060 | +17.429 | +23.255

65.5 +25 0.859 |0.521 +1.70 | +13.584 | +11.359 | +14.929
A |50 0 0.756 | 0.464 0 0 0 0

37.5 -25 0.660 | 0.409 -1.56 -12.728 | -11.052 | -13.742

25 -50 0.545 0.341 -1.87 -28.024 | -24.892 | -29.917

150 +50 0.625 | 0.388 +46.79 | +23.794 | +27.089 | +21.802

125 +25 0.681 |0.421 +23.46 | +12.478 | +14.172 | +11.454
d 100 0 0.756 | 0.464 0 0 0 0

75 -25 0.866 | 0.525 -23.63 | -14.101 | -15.898 | -13.014

50 -50 1.047 |0.623 -47.54 | -30.713 | -34.410 | -28.477

3.0 +50 0.717 | 0.386 +0.83 -28.477 | -27.137 | +5.882
h 2.5 +25 0.735 |0.421 +0.46 -2.923 | -15.147 | -4.68

2.0 0 0.756 | 0.464 0 0 0 0

1.5 -25 0.784 | 0.515 -0.59 +3.736 | +19.440 | -5.760

1.0 -50 0.819 | 0.580 -1.34 +8.565 | +4.788 | -13.339

6.0 +50 0.681 |0.478 +1.131 | -9.899 | +18.254 | -26.923

5.0 +25 0.712 | 0.472 +0.643 | -5.848 | +10.294 | -15.609
b 4.0 0 0.756 | 0.464 0 0 0 0

3.0 -25 0.827 | 0.450 -0.889 | +9.227 |-13.800 | -23.151

2.0 -50 0.955 |0.426 -2.205 | +26.078 | -33.161 | -61.899

18 +50 0.746 | 0.449 +0.103 | -1.371 | -4.868 | +0.744

15 +25 0.751 | 0.456 +0.053 |-0.714 |-2.521 |+0.379
w 10 0 0.756 | 0.464 0 0 0 0

9.0 -25 0.762 | 0.472 -0.055 | +0.779 | +2.719 |-0.394

6.0 -50 0.769 | 0.480 -0.114 | +1.634 | +5.665 | -0.804

15 +50 0.748 | 0.451 +44.431 | -1.158 | -4.104 | +0.624

12.5 +25 0.752 | 0.457 +22.217 | -0.599 | -2.113 | +0.317
p 10 0 0.756 | 0.464 0 0 0 0

7.5 -25 0.761 | 0.470 -22.219 | 0.644 +2.251 | -0.327

5.0 -50 0.766 |0.477 -44.439 | +1.340 | +4.655 | -0.665

0.75 +50 0.762 | 0.467 -0.130 | +0.715 | +39.318 | -22.628

0.625 | +25 0.755 |0.463 -0.013 | -0.141 | +21394 | -13.164
n 0.5 0 0.757 | 0.464 0 0 0 0

0375 |-25 0.774 | 0.474 -0.208 | +2.300 | -26.448 | 19.684

0.25 -50 0.835 |0.508 -0.933 | +10.298 | +59.713 | +52.633

0.15 +50 0.738 | 0.438 +0.185 | -2.365 |-8.496 |+1.343

0.125 | +25 0.747 | 0.450 +0.097 | -1.270 | +4.517 | +0.694
0 0.1 0 0.756 | 0.464 0 0 0 0

0.075 |-25 0.768 | 0.479 -0.107 | 1.496 +5.203 | -0.745

0.05 -50 0.782 | 0.498 -0.226 | -3.297 | +11.310 | -1.549
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(2)

(b)

Figure 4.4: Graphical representation of sensitivity analysis of cycle time against
percentage change in input parameters.

59



(a)

(=]

(b) ——W —8—P —a—n

50 25

VARIATIOM INTC

PERCEMTAGE CHANGE IN THE INFUT PARAMETERS

Figure 4.5: Graphical representation of sensitivity analysis of total cost against
percentage change in input parameters.
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(a)

Figure 4.6: Graphical representation of sensitivity analysis of ordering quantity against
percentage change in input parameters.
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(2)

(b)

Figure 4.7: Graphical representation of sensitivity analysis of initial-level against
percentage change in input parameters.
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Figure 4.8: Graphical representation of sensitivity analysis of re-ordering cost against
percentage change in input parameters.

63



4.7 Concluding Observations

In this chapter, a deterministic inventory model for deteriorating items with linear
deterioration rate has been presented. Demand follows a power pattern and shortages are
permitted which are wholly backlogged. The aims are to find an optimum solution that
minimises the total average cost. The decision variables here are the time at which the
inventory drops to zero and the schedule cycle period. Numerical examples are given, and
sensitivity analysis back up with graphical representation is carried out to show how the
optimal decision is affected by changes in different parameters in the model. The following
are our concluding remarks:

1. When the ordering cost A is increasing, the optimal inventory cost is rising. See
Figure 4.6.
2. When the demand rate d is increasing, the optimal cost and the ordering quantity
are growing. See Figures (4.5 and 4.6).
3. When the deteriorating rate 6 is increasing, the ordering quantity is decreasing, leading
to growth in the optimal inventory cost. See Figures (4.6, 4.7).
4. When the power index n is increasing, the inventory ordering quantity is increasing.
See Figure (4.6a).

The model is useful to inventory keeping company/organisation that deals with
deteriorating item that deteriorates with the passage of time and the demand also varies as
the time progresses. Examples of such items include an android mobile phone, computer
chips, fashion, electronics etc. The model presented in this chapter provides a basis for
various possible extensions. In this direction, future research can enrich the model by adding
more realistic assumption like finite replenishment, incorporating, non-instantaneous

deterioration, lost sales, product reliability, time value of money, and so on.
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When customers required items that are not in stock in the organisation stores, then the
customer will go another place (otherwise known as a lost sale) or place an order for the
products in another area.

Some organisation are the sole supplier of some product, and they offer a competitive
price to their customer, and some also provide a discount for delaying in the delivery of
certain items. The acts give these organisation opportunities not to lose the sale when it’s
inventory eventually drop to zero. Customers, in this case, have to wait for their order to be
filled whichever time the new order arrives.

Therefore, shortages are the need/demand that will be fulfilled in some time later than

desire. The next model will be formulated base on this fact.
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CHAPTER 5: A LINEAR DETERIORATING INVENTORY POLICY FOR ITEMS
WITH POWER DEMAND PATTERN AND VARIABLE HOLDING COST

CONSIDERING SHORTAGES

5.1 Introduction

In Chapter four, an economic order quantity model for a linearly time-depended
deteriorating items with power pattern form, shortages and time-varying demand rate was
examined.

In the management of inventory, there are times shortages or stock-out do occur. During
this duration, some consumers would be kind enough to, hold back for backlogging, albeit
others will not be patient enough to wait, and they will turn elsewhere to meet their demand.
As aresult of this, opportunity cost arises from the lost sale should be taken into consideration
in any inventory model as against a complete backlogging which are very common in

inventory modelling.

In this chapter, a linear deteriorating inventory model for products with power demand
pattern and variable holding cost will be considered. This model is an extension of our model
in chapter three by adding time-depending on the holding cost and time-depending on the
deteriorating rate. If t; = 0, we have the same model as in Adaraniwon & Omar (2019) with
fixed holding cost. The intention is to minimise the total cost per unit time by optimising the

schedule period or cycle time and optimal ordering quantity.

5.2 Notation and Assumptions
The mathematical inventory model for this work is developed established on the following

assumptions and notation.
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Notation
* T : Length of the inventory cycle.
* t;: Time at which the inventory deleted to 0.
* Q,(t): Positive inventory level at time t.
* (Q,(t): Negative inventory level at time t.
* 6: Deteriorating rate (0 < 6 < 1)
* P: Ordering quantity (units)
* M: Maximum inventory level during the cycle
* N: Maximum inventory level during negative inventory period
* d: Average demand per scheduling period per units per time
* v: Backlogging rate. (0 <y <1)
* n: Demand pattern index, (n must be greater than 0)
* A: Ordering cost ($ per order)
* h: Holding cost per unit ($ per /time/unit)
* Z: Purchasing cost per unit ($ per unit).
* K: Cost per shortage unit ($ per unit).
* S: Cost per lost sale unit ($ per unit).
* HC: Holding cost per/time/unit.
* SC: Shortage cost per/time/unit
* LSC: Lost sale cost per/time/unit.
» TC: Total cost of the inventory policy per/time/unit.
Assumptions
1. Demand is a power demand pattern.

2. Shortages are permitted and partially backlogged
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3. Deterioration rate of item is a linear function of time

4. Holding cost is time-dependent and taken as h(t) = h+ [ft, where h >
0,6>0

5. Lead time is negligible.

6. Replenishment is instantaneous.

1

. ot dtn .
7. Demand D(t) varies with time and taken as D(t) = %, where d is the average
nTn"

demand and the power index is n, 0 <n < oo and 0 <t < T. The rate of demand at any

given time t is D'(t)

5.3 Mathematical Formulation
In the presented model, a cycle can be split up into two periods. In this diagram, [0, T] is
considered as a single duration. Through [0, t;] the inventory is on positive side and through
[t;, T] the inventory is on the negative side. Let Q(t) be the stock level at time t which
ranges between 0 < t < T. At the onset of the inventory cycle, the maximum inventory level
Q1(0) = M reduces as a result of demand and the process of deterioration also set in for the
items. At the interval ¢ = tq, the inventory system gets down to zero level. After that, at the
interval [t;, T], shortages occur in the system, and they are backlogged at the end of the
cycle. At the interval ¢ = T, the system reaches a level N.
The inventory level Q(t) and Q,(t) during the cycle period is described in Figure 5.1.
Based on the above assumptions, the differential equations represent the stock level is

given as:
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Figure 5.1: Graphical representation of inventory model.

1
1
WO Lo =T o< t<t, ()

nTn-1

With the boundary conditions Q;(0) = M, Q,(t;) =0 and Q,(t;) =0

ot?
Using the integrating factor e/ 0%t = ¢
6t?
== ot? 1 6t2
= d — Z-
Qe 2 4 gt (e = ———|tn e
dt £
nTn
ﬁ d 1_1 ﬁ
Qe s = ——1=|f otes |t
nTnt

Since 0 issmall, 0 < 8 < 1, taking the first three expressions of the power series, we have:
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¢ t2 8
er=1+t+=-+—
2! 3

ot2 2 22 243
gt 7] (7] V]
ez =1 428 O (60,
2 8 24
o2 1 0tz 92t*
Q.(t)ez = ——5 [f tn 1(1+i+ t)]dt
nTﬁ—l 2 8

1
T 22n+1)  8(4n+1)

ot> 1 Liz 2,544
ot” d 1 net 2t
Q:i(t)ez =— [ntn o — l

Making use of the boundary condition Q;(0) = M

M = C, therefore:

nT%_l 2(2n+1) = 8(4n+1)

ot2 1 1 2. it
o d 1 ot 0%t
Q,(t)ez =M — lntn+ el =% ]

ot2 1 12 2, 144
b d = Otn 6<tn
Q,(t)ez =M — tn +

T

1 22n+1) = 8(4n+1)

2
Q.(t) = Me_g — d:%_f [t% zfj:) 89(12%:)1 (52)
During the negative inventory, the policy is described by the equation:
L0~ —yp) ;< t<T (5.3)
(1) =~ [ v tae

nTn~

Q:(t) = -4 (t%) +C

Tn

Using the boundary condition Q,(t;) =0

1
0=—2L¢tryg
rat !
1
C=2Lyn
T%‘l 1
Therefore:
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1

a X d
Q,(t) = — yz_l tn 4+ S—tr
Tn T
1
d |- 1
(0 = -1 [tf - tn] (5:4)

Q; is asteadily decreasing function in the time interval [0, T]; therefore the initial net stock

level at this interval is obtained by substituting the boundary condition Q;, = 0, into

Equation (5.3), we have

2 0t [ 1 Li2 Lia
0= Me_% de”2 | 5, Ot} R
= - i
e 2(2n+1) = 8(4n+1)
ot3 1 1
9t2 ot l +2 2 +4
Me_Tl _ de - ot} 0%t}
T%—l 1 7 202n+1)  8(4n+1)
1 1
1 =42 =+4
d = ot 0%t
M =——|t} . L (5.5)
2(2n+1) = 8(4n+1)

The maximum negative inventory per units is given as:

N = —-Q,(T)
= (T%_ tf> (5.6)
Tn

The order size during the entire period [0, T] is given as:

P=M+N

1+4

ER L g 62¢n
P=2(Tn—t7 |+ 0|t + 2 !
a1 2(2n+1) 8(4n+1)

]

Tn
d 1 l l gt%+2 62t%+4
— - _ n n 1 1
P = T%—1 yIn—yti+14 2(2n+1) = 8(4n+1) (5.7)

The cost of holding inventory occurs at the interval [0, t;] only; hence, the holding cost

during this interval [0, t;] is obtained as follows:

HC = [} h(©Q: (B)de
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HC = [* (h+ Bt)Qydt

22n+1)  8(4n+1)

[ ot? _oe 1 %+2 2 %+4
HC = [[* (h+Bt) [Me™7 —Z <tz+ o Ot ) dt

r 1 1 1
1 = = 1 —+2
t1 = 1 0ttt 92ttt gntnt? ot
HC = h+pt) |t} —th ———++ L L
fO ( pt) 1 2 8 2n+1 2(2n+1)
1 1
—+2 1 1 1 —+4
62t2¢n g2¢tntt g2ttt 92¢tntt 62tn
4(2n+1) 8 4(2n+1)  8(4n+1) = 8(4n+1)
Upon expansion and some simplifications, we have:
1 1 1 1
1 =41 =43 =+5 =43
HC = & htzﬂ hnt? hot? n ho2t} hon?t}
- T%-1 1 n+1 6 40 (2n+1)(3n+1)
1 1 1 1
=43 =+5 =+5 =+5
hotl ho2th hn62t] hng2t]

2(2n+1)  12(2n+1) 8(5n+1) 4(5n+1)(2n+1)

Lis Lis L2 L2 Lis
_ hne%tp hoZth pty  pnty  poty
8(5n+1)(4n+1)  8(4n+1) 2 2n+1 8
1 1 1 1 1
=46 =44 =44 =47 =46
" BOZt} BO2n?tT pett —  pert} peint}
48 2n+1)(4n+1)  4(2n+1) 16(2n+1) 8(6n+1)
1 1 1 1
=+6 =46 =+6 =+6
BO2nt} BO2ntl} __ Be*nt} BOZt}
8(6n+1) 4(2n+1)(6n+1) 8(4n+1)(6n+1) 16(4n+1)

Purchase cost is obtained thus:

PC=2(M+ N yD(®))dt

1 —+2 l+4-
Zd pos ot 02t T 1_
PC=-—(th+ 22—+ 21—+ ([ tn'dt)
rat 2(2n+1)  8(4n+1) nTnt 1

1 —+2 l+4- 1
_zd n ot} 62¢l y 1 _.n
PC = L b+ 2(2n+1) + 8(4n+1) + T%_l (T= tl)

Tn
7Zd [ l et%-'-z 62t%+4 1 l
— n 1 1 PO o (X
PC = le—1 ty + 2(2n+1) = 8(4n+1) +y (T —t])

(5.8)

(5.9)
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Shortages as a result of stock out is stockpile in the policy during the interval [t;, T]

The policy attains the optimum level of shortage at (t = T); hence, the overall shortage cost

at this period obtained thus:

SC=K ftTl — Q,(t)dt

1 1
SC=KJ, - Y (&7 — tm)dt

1
Tn !

1 1
SC = X217 (&7 - twydt

ra-i b

d 1 Tl+1 t%H
SC=¥[Ttn—” —a ] (5.10)

As a result of stock out during (t;,T), Shortage is stockpile, but not all consumers are

willing to stand by for the next lot size to emerge. Hence this culminates in some loss of sale,

which accounts for the loss in profits.

Lost sale cost is calculated as follows:

LSC =S [, (1 —y)D(t)dt

1
=—1
LSC =S [ (1-y)“5—dt

1
nTn

AT 1
LSC = Z52 [T v |

=1
nTn N

a1 1
Ls¢ =340 [ s _ ntz]

=—1
nTn

n !

T 1 1
Lsc =4 Tz—tz] (5.11)

The total cost for the inventory system is made up of the following cost components

TC = Ordering cost + Holding cost + Purchase cost + Shortage cost + Lost sale cost /T

1 1 1 1
1 =+1 =+3 =+5 =43
TC = & ht#l hnt? hot? n ho2t} hon?t?
Y n+1 6 40 (2n+1)(3n+1)
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1 1 1 1

=43 =45 =+5 =+5
hot? hoZtl hn6?t} hn6?t}
2(2n+1)  12(2n+1)  8(5n+1) = 4(5n+1)(2n+1)

1 1 1 1 1
=45 =45 =42 =+2 —+4
hn62t} hoZth Bt pnt] BOLT
8(5n+1)(4n+1) = 8(4n+1) 2 2n+1 8
1 1 1 1 1
=+6 —+4 —+4 =47 =+6
n BOt} BO*n?t} pety —  pert} pe*nt}
48 (2n+1)(4n+1)  4(2n+1) 16(2n+1)  8(6n+1)
1 1 1 1
—~+6 —~+6 —+6 nté
BO>ntl} BO2ntl} BO2nt} BOZt}
8(6n+1) = 4(2n+1)(6n+1) 8(4n+1)(6n+1)  16(4n+1)
1 1
1 =+2 —+4 1
zd|, 5 , 6t} 62¢h r =
had tn 1 1 Tn — tn
+ e + 2(2n+1)  8(4n+1) +v( 1)
1
1 1.4 =+1
Kd n nTn t?
pRayfpyn _ntn G
™ n+1 n+1
sd(1- O
+2CD T — | + 2 (5.12)
Tn

5.4 Solution Method

We propound an approach to evaluate the inventory policy that minimises the total
inventory cost per unit time in this section. From Equation (5.12), we find the first partial
derivative of TC(T,t;) concerning the decision variables T and t;:

We obtain:

oTC(t{,T oTC(t4,T
(t1,T) and (t4,T)
atq oT

To minimise the total cost TC(t;,T) per unit time, the optimum value of T and t; canbe

procured by solving the equations

ITC(t1T) _ 0 and ITC(t1T) _

o - 0 (5.13)

Provided that Equation (5.12) satisfies the following conditions:
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1 1. %+1 % 1
zZdy Kyd Tt; _ nTn _ ty . Kdy(t;—-Tn)
1

+ T T3 +1 +1 1
n nTi+1 n n Tﬁ

1 1
LS4y _ Sd(l—)’)l(T”‘t?) (5.17)
nT nTnt!

Equations (5.16) and (5.17) are highly non-linear; the values of t; and T are solved for the
optimal values to obtain minimum total inventory cost per unit time. Maple software 2018

and Excel was utilised to get the values of the decision variables.

5.5 Numerical Examples

Here, we give an example to demonstrate the results derived from the linear deteriorating
inventory policy for products with power demand pattern and variable holding coat
considering shortages
Example 5.51

The subsequent parametric values are considered for the inventory policy in their respective
units
A =500, d =100, h = 0.4 units, # =15, K = $10 per units, S = $8 per units, Z =
$12 per units, 8 = 0.8, n =0.5, y = 0.6
Solving Equation (5.16) and Equation (5.17), The optimum value of T = 1.671 and t; =
0.593
Make use of these values of t; and T, the second derivatives can be found. Hence

02TC(t1,T) 92TC(t1,T)

202 =977.479 > 0 and prea 294.161 > 0,
2
§TCtsT) g;;ttl'n = —254.961. Therefore from Equation (5.15), we have:
1

9%TC(t1,T) . 9%TC(t4,T) (62TC(t1,T)

2
P 372 3Tat, ) = 222531.2104 . T and t; minimises the total

inventory average cost since they both satisfies the necessary and sufficient condition
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Equation (5.14) and Equation (5.15).

When the values of T and t; are substituted into Equation (5.12), the total cost
TC(t;,T) =1627.69.and M = 22.6001, P = 110.210 N = 87.610

To further establish that the solution is correct, the total cost function is plotted against some

values of t; and T, which give us a strictly convex graph as shown in Figures (5.2, 5.3).

a.
Iln'
\\ 1635+ [
16454 | ,./
e 16341 ,.'
\ 16334 X
'\
1640-
"~ 163 f
TC \ I(
\
1631+ f
1635-
16304
1629-
1630-
1628+
W15 16 17 18 19 20 1003008
'II" i

Figure 5.2: Graphical representation of convexity of total cost against schedule and
cycle time (a) Total cost and t,, (b) Total cost and T.
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Figure 5.3: Graphical representation of convexity of total cost per unit time (Total cost
and (T, tq)).

It 1s evident from Figures (5.2 and 5.3), that the total cost function is strictly convex,
showing us that the optimal value of t; and T can be derived with the aid of the total cost

function of the policy as long as the total inventory cost per unit time is the minimum.
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Table 5.1: Sensitivity Analysis of the Parameters in the Inventory model.

Change in:

P* V* C* T T* t1 TCt1,T) U* p G*
120 20 | 1.535 [ -8.107 | 0.557 | 1890.85 | 16.168 | 121.791 | 10.509
110 10 | 1.598 | -4.328 | 0.574 | 1759.87 | 8.121 | 116.116 | 5.360

d |100 0 | 1.671 0 0.593 | 1627.69 0 110.209 0
90 10 | 1.755 | 5.028 | 0.615 | 1494.11 | -8.206 | 104.038 | -5.599
80 20 | 1.854 | 10.967 | 0.639 | 1358.89 | -16.514 | 97.559 | -11.478
600 |20 |1.817 [8.781 |0.630 |1685.00 |3.521 |119.613 |8.532
550 |10 |1.746 |4.537 |0.613 |1656.95 |1.798 |115.072 | 4.412
500 0 |1671 | 0 0.593 | 1627.69 0 110.21 0

A |450 |-10 | 1.591 |-4.773 |0.572 |1597.03 |-1.884 | 105.082 | -4.653
400 |20 |1.507 |9.823 [0.549 |1564.75 |-3.867 |99.64 | -9.591
12 20 |1.545 [-7.532 |0.609 |1674.79 [2.894 |104.155 |-5.486
11 10 [1.603 |-4.042 |0.601 |1650.51 |1.402 |106.927 |-2.971
10 0 [1671 | 0 0.593 | 1627.69 0 110201 | ©

K |9 210 | 1.750 |4.745 | 0.583 | 1602.87 |-1.525 | 114.152 |3.585
8 20 | 1.845 |10.408 |0.572 |1575.71 |-3.193 |118.967 | 7.95
9.6 20 |1.658 [-0.774 |0.617 |1683.23 [3.412 |190.489 | 0.253
8.8 10 [1.665 |-0359 |0.605 |165556 |1.712 |110.373 |0.148

S |8.0 0 [1671 | 0 0.593 | 1627.69 0 110.21 0
7.2 210 | 1.676 0305 |0.580 |1599.62 |-1.724 |109.998 |-0.192
6.4 20 |1.680 [0.557 |0.567 |1571.37 |-3.460 |109.74 |-0.426
048 |20 [1.670 |-0.014 |0.591 |1628.10 |0.025 |[110.112 | -0.089
044 |10 |1.671 |-0.007 |0.592 |1627.90 |0.013 |110.16 |-0.045

h 040 | 0 |1.671 | 0 0.593 | 1627.69 0 110.21 0
036 |-10 [1.671 |0.007 |0.594 |1627.48 |-0.013 |110.259 |0.044
032 |20 [1.671 |0.014 |0595 |1611.04 |-1.023 |110.309 | 0.001
18 20 |1.662 [-0.490 [0.568 |1630.88 |0.196 | 108.821 |-1.260
165 |10 | 1.666 |-0.257 |0.580 |1629.35 |0.102 | 109.481 | -0.661

B |15 0 [1671 | 0 0.593 | 1627.69 0 110210 | 0
13.5 |-10 |1.675 |0.285 |0.607 |1625.88 |-0.111 |111.021 | 0.736
12 20 |1.681 |0.604 |0.622 |1623.89 |[-0.233 |111.929 |1.560
144 |20 [1.678 | 0429 [0538 |1784.49 |9.633 | 108.613 | -1.449
132 |10 |1.675 | 0261 |0566 |1706.46 |4.839 |109.416 | -0.720

z |12 0 [1671 | 0 0.593 | 1627.69 0 110210 | 0
108 | 10 |1.664 |-0.392 |0.620 |1548.11 |-4.889 | 110.965 | 0.685
9.6 20 | 1.655 |-0.926 |0.647 |1467.62 |-9.834 | 111.683 |1.337
096 |20 [1.663 |-0.459 |0572 [1630.16 |0.152 |108.284 | -0.840
088 |10 |[1.667 |-0238 |0.582 |1628.96 |0.078 |108.734 | -0.432

9 |08 0 |1671 | 0 0.593 | 1627.69 0 110.21 0
0.72 |-10 [1.675 | 0256 |0.604 |1626.34 |-0.083 |110.712 | 0.455
064 |20 |1.680 | 0533 |0616 |162491 |-0.171 |111.243 |0.937
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Table 5.1, continued.

Change in:
p* v C* | T T* t) TVt T) U* P |G*
0.72 |20 1.535 |-8.10 0.625 | 1711.88 | 5.172 | 119.77 | 8.674
y 0.66 10 1.599 | -4.310 00.610 | 1671.07 | 2.665 | 115.253 | 4.576
0.60 0 1.671 0 0.593 |1627.69 | 0 110210 | O

0.54 -10 | 1.754 | 4.972 0.573 1581.48 | -2.839 | 104.603 | -5.086
0.48 -20 | 1.851 |10.812 | 0.550 1532.13 | -5.871 | 98.389 | -10.726

0.60 20 0.987 |-40.948 | 0.384 1728.46 | 6.181 | 67.926 | -38.367
0.55 10 1.647 | -1.430 0.587 1636.77 | 0.558 | 110.634 | 0.385

n 0.50 0 1.671 0 0.593 1627.69 | 0 110210 | O
0.45 -10 | 1.703 | 1.955 0.601 1616.03 | -0.716 | 110.288 | 0.071
0.40 -20 | 1.751 | 4.812 0.613 1601.09 | -1.635 | 111.262 | 0.883

Note: P = Parameter, V=Values, C = %Change, U*= %change in TC, G* = %change in P.
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(a)

(b)

Figure 5.4: Graphical representation of sensitivity analysis of total cost against
percentage change in input parameters.
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(2)

(b)

Figure 5.5: Graphical representation of sensitivity analysis of ordering quantity against
percentage change in input parameters.
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(a)

(b)

Figure 5.6: Graphical representation of sensitivity analysis of cycle time
against percentage change in input parameters.
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5.6 Results and Discussion

Based on the above computational results, in the example 5.51 and displayed in Table
5.1, the following remarks can be drawn up:
1. A rise in the value of demand rate d produces a decrease in the schedule period T, but
there is an increase in the inventory total cost TC and ordering quantity P.
2. It is observed that an increase in ordering cost A leads to a rise in the schedule period,
inventory total cost and ordering cost.
3. An increase in the shortage cost K results in a decrease in schedule period and order
quantity, but there is an increase in the total inventory cost.
4. Increase in the lost sale S leads to a decrease in the schedule period; the total inventory
cost and order quantity increases.
5. Increase in the value of parameter  and holding cost h results to decrease in the
schedule period and ordering quantity, but the inventory total cost increases.
6. Increase in the purchasing cost Z leads to increase in the schedule period and total
inventory cost; however, there is a decrease in the ordering quantity.
7. Increase in the value of deterioration parameter 6 result in a decrease in schedule period
and order quantity, but the inventory total cost is increasing.
8. When the backlogging rate y is growing, there is a rise in the inventory total cost and
ordering cost, which results in a decrease in the scheduled period.
9. Finally, the growth of the value of index number n of the power demand pattern results
in the rise in the schedule period and inventory total cost; however, there is a decrease in the
ordering quantity.

Economic implication of the above results is stated thus:

1. Increase in demand rate d results in an increase in the total cost TC, ordering quantity
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P, lower cycle time t;, and T. Implication of this is that an increase in demand rate will lead
to a decrease in the optimal cycle, but results in the higher value of optimal total cost per unit
time. This is normal because if the demand rate is taller, the stock will be used up quickly,
and the cycle time will decrease.

2. Increase in the value of the deterioration rate 8 result in lower value of cycle length T,
smaller ordering quantity and increase in the value optimal total cost. The implication of this
is that an increase in the deterioration rate will lead to a decrease in the optimal cycle length.
The total cost per unit time will increase because when deterioration cost increases, there will
be an increase in the total inventory cost per unit time, which will lead to stocks getting finish
earlier as a result of lower cycle length.

3. Increase in the values of holding cost h and £ lead to an increase in the amount of total
cost and a decrease in the value of ordering quantity with lower cycle time and length. This
is advantageous to retailers in that when the holding cost is kept at a minimum, the volume
of inventory ordering quantity must be reduced and the time for the stock to be used up must

also be reduced to minimise the total inventory cost.

5.7 Sensitivity Analysis

Generally, models are formulated to choose some future direction of action. Consequently,
the parameters employed would be based on the prediction of future conditions, which
unavoidably introduces some element of uncertainty. Based on the above reason, it is always
essential to conduct a sensitivity analysis after finding the solution to the model with the
assumed values of the chosen parameters. The main reason for this is to identify those
parameters that cannot be altered much without changing the optimal solution, we then select
a solution which remains a good one over the intervals of possible values of the sensitive

parameters. Here, based on the example 5.51, the sensitivity analysis of the decision variables
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T*, the schedule period, G* ordering quantity, and inventory total cost U* against changes
in the parameters d, A, K, S, h, beta,Z,0,y and n of the inventory policy is analysed. By
varying the values from +20%, +10%, —10%, —20%. One parameter is considered at a
time while leaving the other parameters constant.

The results are displayed in Table 5.1 and graphically represented by Figures (5.4-5.6),
The main observations of the results and the graphical representations of the sensitivity
analysis concerning the parameters are as follows:

1. 20% overestimation in the value of the demand rate d result in increases of U* and G*
by 16% and 11% respectively, but the decrease in T* by 8%. 20% underestimation in
the demand rate d results in reductions of U* and G* by 17% and 11% respectively, but
increase in T* by 11%. Thus U*,G* and T* are moderately sensitive to changes in the
values of the parameter d.

2. 20% overestimation in the amount of the ordering cost A leads to increases of U*, G*
and T* by 4%, 9% and 9% respectively. On the other hand, 20% underestimation in the
demand rate A results in decreases of U*, G* and T* by 4%, 10% and 10%
respectively. Thus, G* and T* are moderately sensitive, and U* is lowly sensitive to
changes in the values of the parameter A.

3. 20% overestimation in the amount of the shortage cost K leads to increases of U* by
3% while G* and T* decreases by 5% and 8% respectively. However, 20%
underestimation in K leads to increases in G* and T* by 8% and 10% respectively,
while U* decrease by 3%. Thus, T* and G* are moderately sensitive to changes in both
overestimation and underestimation, while U is less susceptible to changes in the value of
parameter K.

4. 20% overestimation in the value of the power pattern index n leads to increases of U*
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by 6% and decreases in G* and T* by 41% and 38% respectively. On the other hand,
20% underestimation in n results in increases of G* and T* by 1% and 5% respectively
while U* decrease by 2%. Thus, G* and T are highly sensitive to overestimation and U*
is lowly sensitive to changes in overestimation, meanwhile, T* is less sensitive in
underestimation and G* and T* are less sensitive in underestimation to changes in the
values of the parameter n.

5. 20% overestimation in the amount of the backlogging rate y leads to increases of U*
and G* by 5% and 9% respectively, while T* decrease by 8% . For 20%
underestimation in y results in increases of T* by 11% and reductions of U* and G* by
6% and 11% respectively, Thus T* is relatively sensitive, G* is moderately susceptible,
and U™ is lowly sensitive to changes in the values of the parameter y.

6. 20% overestimation in the value of the purchase cost Z leads to an increase in U* by
10% and decrease in G* by 1%. Also, 20% underestimation in Z results in decline of U*
by 10% and increase of G* by 1%. Thus U* is moderately sensitive, G* is less sensitive,
and T* is insensitive to changes in the values of the parameter Z.

7. 20% overestimation in the value of the parameter § leads to decrease in G* by 1%,
and 20% underestimation leads to a 2% increase in G*. Therefore, G* is less sensitive,
and U* and T™ are insensitive to changes in the value of parameter f3.

8. 20% of both overestimation and underestimation in the value of the unit lost sale cost S
in U* are 3% and 3%. Thus U~" is less sensitive, G* and T* are insensitive to changes in
the value of parameter S.

9. All the decision variables G*, U* and T" are insensitive to both overestimation and

underestimation in the parameters h and 6.

87



5.8 Concluding Observations

In this chapter, a linear deteriorating inventory policy for products with variable holding
cost and demand presumed to be in the form of power demand pattern is proposed. The model
is an extension of Adaraniwon & Omar (2019) when t; = 0 with the addition of time-
dependent deterioration rate and variable holding cost. Shortages are allowed and partially
backlogged which captures real-life situation since some retailers will be willing to wait for
the arrival of new stock during stock-out patiently, but the longer the waiting time, the
possibility of the consumers looking for elsewhere to meet their demand.

The objective of this model is to evaluate the optimal replenishment procedure that
minimises the average inventory total cost per unit time. If the deterioration rate were to be
constant, the model would be reduced to that of Mishra (2016b) without power demand
pattern. Optimum order quantity and optimal replenishment cycle time were derived, and the
solution obtained. The outcomes are further established with the aid of numerical example
and, sensitivity analysis carried out and depicted graphically of the decision variables with
regards to alterations in the input parameters in the model.

The results obtained indicate that the effect of power demand index parameter n on the
average minimum cost is quite significant. On thorough examining the influence of the policy
input parameters on the decision variables, it was found out that U* is sensitive to
overestimation and underestimation of the parameters d and Z while G is susceptible to
the overestimation and underestimation of the parameters d,A,K,n,y. Also, U* is less
sensitive or insensitive to overestimation and wunderestimation of the parameters
A, K,n,(,5, h and 8 while G* is less sensitive or insensitive of the parameters n, Z, 3, S, h
and 6.

The developed model can be extended further by adding a quantity discount, trade credit,
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stochastic demand rate, finite replenishment, and so on.
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CHAPTER 6: AN INVENTORY MODEL FOR DELAYE DETERIORATING
ITEMS WITH POWER DEMAND CONSIDERING SHORTAGES AND LOST

SALES

6.1 Introduction

In the previous Chapter 5, an inventory policy for items with linear time-dependent
deteriorating rate, variable holding cost and power demand pattern with shortages which are
backlogged partially was developed and discussed. In daily business world, shortages do
occur, during this period some customers are impatient to wait for backorder and therefore
would go to another seller to buy or go for alternative items, while some will be willing to
wait for backorder. In the inventory model with dependent stock demand, some researchers
assumed shortages should be completely backlogged while some believe that shortages
should be partially backlogged.

As aresult of extremely competitive market, delivering varieties of items to the consumers
owing to globalization, partial backorder is more feasible than complete backorder. Example
can be found in high technology items and fashionable commodities with short product life
span. The readiness of a consumers to tarry for long for backlogging during the shortage time
reduces with the hold-back time. Through the stock-out period, the backorder rate is generally
regarded as a non-increasing linear function of backorder replenishment lead time through
the amount of shortages. The bigger the expected shortage quantity is, the smaller the
backorder rate would be. the left-over fraction of the shortage is lost. This type of
backlogging is refers to as time-dependent partial backlogging.

In this chapter, an inventory model for delayed deteriorating items with power demand
considering shortages and lost sales is considered. We assumed shortages is partially

backorder and remaining is lost. Here, we developed a new model and expanded the work of
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Sicilia et al. (2014) by incorporating lost sale.

6.2 Modelling Assumptions and Notation

The following assumptions are used:

1.

2.

.0\

The inventory system involves a single item.
Deterioration takes place after the life span of the items.
There is no replenishment or repair taking place for any deteriorating items.

The replenishment takes place at a tremendous rate with zero lead time.

g

The demand rate, D(t) at any time t is D(t) = dtrll - where d means

nTn-

the average demand, n is the pattern index with 0 < n < oo.

Shortages are accepted with the backlogging rate is depending on the length of the

waiting time for the succeeding replenishment. The negative inventory of the

1
1+y(T-t)’

backlogging rate is given by B(t) =

where y is a backlogging parameter 0 < ¢ < T and the waiting time is
(T —1t),(ty <t <T). Theunresolved fraction 1 — B(t) is considered as lost sales.

The subsequent notations are used in the model
A is the ordering cost.
* «a is the deteriorating rate, (0 < a < 1).
* K; is the holding cost.
* K, is the deteriorating cost per unit per year.
* K3 is the shortage cost for backlogged items per unit per year.
* K, is the cost of lost sale per unit.

* T is the optimum cycle length.
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* t, is the length of time when the items experience no deterioration.

* t, is the length of time when the inventory has no shortage.

* Q is the quantity ordered during a cycle of length T.

* S is the maximum inventory level during [0, T].

* P is the maximum backordered unit during the stock out period.

* Q1(t) is the level of positive inventory at time t where 0 <t < t,

when there is no deterioration.

* Q,(t) is the level of positive inventory at time t where t; <t < t;
when there is deterioration.

* Q3(t) is the level of negative inventory at time t where t; <t <T.

* Y(ty,T) is the total cost per unit per time.

6.3 Mathematical Formulation

In this propounded model, a cycle can be separated into three periods. In this diagram,
[0, T] is considered as a single cycle duration. During [0, t4] and [tg, t;] the inventory is
on the positive side and [t; T] is on the negative side of the inventory. The inventory
system for the model is given in Figure 6.1. In the beginning, a lot size of Q units enter the
system at the beginning of each cycle, where Q = P + S. The deterioration will take place
after time t; and reach zero inventory level in time ¢;. The shortages occur in the interval

[t;, T] and there are partially backlogged and lost sales at the end of cycle time.
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Figure 6.1: Graphical Illustration of Inventory Model.

The following differential equations can describe the inventory system in Figure 6.1,

diy(t) _ dtn

2 g 0<t<ty, (6.1)
d d At
2O 4 o) =-22 ¢, <t <t (6.2)
dt nTﬁ_l
diz(t) _ —B(t)
@ 1o nstsT (6.3)

With the boundary conditions I;(0) = S,1,(t;) = 0,and I3(t;) =0 .

Solving the above differential equations, then we have

1
L(t)=S———[ta] 0<t<t, (6.4)

Tn™

From Equation ( 6.2), we have:
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dent

d i
L(t)e® = — [ ——e%dt = ——— [ e®tn 'dt.
nTnt nrnt

We take the first three terms of the exponential function and disregarding the higher terms

since it becomes minimal. It follows that:

1
L(t)e = — & [f (1+at +£)t5_1dt]
Tﬁ_l 2!
1 1 1
= ———|f it + a [ tadt +“72f ta*at|
™

1 1
d 1 gtn'? a?tnt?
n+1  2(2n+1)

With the boundary condition I,(t;) = 0, we have

1 1
. t% .\ atliﬂ aztlﬁ“
T%- 1 n+l  2(2n+1)
_de~at % 1 a 5t 14 a? %+2 1
Iz(t) - F (tl - tn) + m (tl —tn ) + 2(2n+2) (tl —tn )

Expanding further and considering the first three terms, then

L 1
< L ren = @ a?t? 1 14
L= I(l —at+—)[t] —tn]+ — (1 —at+—)[t] —tn"]
Tn
a 1 a?t? %+2 1.,
2(2n+1) (I—at+—)[t7 —tn""]
1 1
1 1 e 1 2.2+ 2.1y o+l
Iz(t): 1d tn_tz_l_natn _attn_l_a tot] _a tn +(1L‘1
|t n+1 1 > > —
1 1
txzir%Jr2 ozzttlﬁ+1 aztlﬁﬂ azt%” .
nH n+l 2(2n+1)  2(2n+1) (6.5)

At time t4, from Figure (6.1), we have I;(t;) = I,(t;) , then
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1 1 1 2.7n 2,nt? ntt
S J— i tn —_ d tTl — tn + atg — t tn + aztdt? — @ tg at‘f
Lffal ™ I |11 "d n+1 ataty 2 2 n+1
Tn T
1 1 1 1
=+2 S+1 =42 =42
a’ty a’tgth a®t? a’ty
n+1 n+1 2(2n+1) 2(2n+1)
1 1 1 1
41 = = Z+1
d |1 nat? 1 @?tith afth ath
— n d n 1 d 1
S=——[th+ — aty th + -
Tn1 n+1 2 2 n+1
1 1 1
=42 S+1 =42 =42
a’ty a’tgth a®t? aty 6.6)
n+1 n+1 2(2n+1)  2(2n+1) ’
Replacing Equation (6.6) into Equation (6.4)
1 1 1 1
1 =41 = =+ =41
d = 1 nat? = a2ttt a?th at?
L(t) =——[th —tn + —— — at,t7 + —L — —4 L
Tt n+1 2 2 n+1
1 1 1 1
=42 =+1 =+2 =+2
a’ty a’tgth a’th atly 6.7)
n+1 n+1 2(2n+1)  2(2n+1) ’

In the time of the shortage interval [t;, T], the demand at the time t is partially

backlogged, the solution to Equation (6.3) making use of the boundary condition:

I3(t;) = 0 results in:

I3(t) =

1
Tn
The maximum back-ordered inventory P is obtained when ¢t =T,

p=--2

1
Tt

Finally, from Figure 6.1, we have

. d

d . L v oatl iy
@ - -y + L - et

= 1 R B
(tl —Tn)(1—yT) + —y (t1 —Tn"")

(6.8)

from Equation (6.8)

(6.9)

Q = —— [t} — atgtn + —%

Tn

1 1 1

1 —+1 =+1 =+1
- 1 n n 2 n
nat’t at]  d’tgt

n+1
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1 1
d = 1 =+1 1
—= |} =T —yT) + 7 =T (6.10)
Tn

The total relevant inventory cost per cycle consist of the following cost components:

1. The ordering cost is A.

2. The inventory holding cost is given by:

HC =K, [fot"’ L(t)dt + fttdl Iz(t)dt]

1 1 1 1
1 n 1 = = 1
Kid | pta [ .7 L natl] o ooaftit aft} at?
=—=—|[“|tr—tn+ —atyth + -
1|70 1 n+1 1 2 2 n+1
Tn
1 1 1 1
nt2 —=+1 —=+2 —+2
2 2
a’ty  a’tgt] a’t} — alty
n+1 n+1 2(2n+1) 2(2n+1)
1 1
1 i 1 24241 ENP ntt
Kid | pt1 [ ,5 tn —  aft*tl  a?tn at?
+—|[ | tr—tn+ — att™ + L L
=1 |“ta 1 n+1 1 2 2 n+1
Tn
1 1
1 =+1 =42 1
aZtnt? a’tt] a’tl a’tnt?
n+1 n+1 2(2n+1) 2(2n+1)
Upon simplification, we have:
1 1 1 1 1
= = Z+1 =+2 =+2
3 2 2
HC = Kad a’taty atgt? |t} (2-a’tz)  natg at}
T%—1 3 2 2(n+1) 2n+1  2(2n+1)
1 1
=+3 =43
atl a*n®ty 6.11)
6(3n+1) (n+1)(3n+1) ’
3. The deterioration cost is
ty
DC = K, [Iy(ta) - N B(t)dt|
1 1 1 1
1 1 —+1 1 = —+ 41
d - - . nat} o Attt atth atl
=——|tr—t" + — atgt? + -
——1 n+1 2 2 n+1
Tn
1 1 1 1
—+2 —+1 —+2 —+2 1 1
2+ 2 n 24+n 2imn = -
a’ty  attgty act] _atty . d (g
1
n+1 n+1 2(2n+1)  2(2n+1) -t d
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a |nat? L g2i24m g24m ntl
DC = L — qtyth + —H d L
rat| i 2 2 n+1
1 1 1 1
aztg“ _ aztdtfﬂ aztf+2 _ ocztg+2 6.12
n+1 n+1 2(2n+1)  2(2n+1) (6.12)
4. Shortage cost per cycle as a result of the backlog is given by:
T
SC=Ks|[;. — Ix()dt]
—K3d [ T = 1 y 241 e
=1 ftl ¢y —tDA—yT) +—= (7 —tn ) )dt
Kod [ 1 t%ﬂ Vt%+2
. A3 n _ _ 1 _ — 1
ot T =yD) =z A =2vD) - 35
1 1
nTnt? 2n2yTn*?
n+1 (2n+1)(n+1)l (6.13)
5. The lost sale cost during the interval [0.T] is given by:
_ T o _ _B®)adt ]
LC =K, [ftl {1 1+y(T—t)}
i1 711“ 1
L= M Yh__ypen (6.14)
Tt n+1 +1

Finally, the total relevant inventory cost per unit time is given by
1 . . oy
Y(t,, T) = » (ordering cost + holding cost + deteriorating cost +

shortage cost and lost sale cost ).

1 1 1 1 1
= = =+1 =+ =+2
W(t,T) _A Kd a?tith  atith " (2-a?td) | nat] at?
1 =TT -
’ T 3 2 2(n+1) 2n+1 2(2n+1)
1 1
—+3 —+3
a’th a’n?tl
6(3n+1) (n+1)(3n+1)
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=+1 1 2. o S+1
Kpd | nat? — a?tith  aft e
+ 5 L —atyt? + L4 L
| e 2 2 n+1
1 1 1 1
=42 =41 =42 =42
a’ty a’tgth a®t? a’ty
- + —
n+1 n+1 2(2n+1) 2(2n+1)
a 1 t%+1 t%+2
_KS n 1 Y 1
+—— Tt} (1 —yT) — 1—-2yT) — ——
1 1( vT) n+1( ¥yT) 2n+1
Tn
i L2 i a1
n nTn 2n2yTn Kid |nyTn n ytl Ttg
n+l  (2n+1)(n+1) T%—l n+1 a1 Vh

] (6.15)

Therefore, we are interested in finding the values of t; and T that minimise the function

Y(ty,T) given in Equation (6.15) in the feasible/attainable region F(t;,T):0 <t; <

T,T > 0.

6.4 Solution approach

In this section, we find the optimum solution of (t;, T) that minimise the total relevant

cost. Take into consideration the partial derivatives of ¥(t;, T) concerning the decision

variable t; and T such that:

oYt T) _ 0

and LD _ g
dty

oT !

Provided:

-5 > o

From Equation (6.16), we get:

1

(6.16)

(6.17)

1 1 1 1
-1 -1 = =+1 =+2
3 2 2
oY (t,T) _Kid a’tytl _ atgt? N th(2-a?tF) n atl n a®th
atq T% 3n 2n 2n 2n 6n
1 1 1 1 1
=1 | = = =+1
+ Kad |—atqth a?tith + at}  a’tqt] + a?th
T% 2n n n 2n
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nTn

using Equation (6.17).

cost per unit time is given by

1 1
-1 = =+1
Kzd | Tt} t 1434
~E =y - (- 2yT) - T
- n n n
Tn
r 1 1
Kud |yt?  yTt!
—T Tl — 71 =0 (6.18)
Tn
r 1 1 1 1 1
= = =+1 —+2 =+2
M(tT) _ _ A _ _Kid [aPtgt?  atgty |t (2-a’ty) | natg at?
aT T2 nT%H 3 2 2(n+1) 2n+1  2(2n+1)
1 1 .
241 aznztﬁ"'
a“t, d
6(3n+1) (n+1)(3n+1)
1 1 1
- 1 = = —+1
Kod |nat] oty att} n
- —atgt] + —
nTﬁH n+1 2 2 n+1
Liz =41 =42 —+
2+ 2 n 2+ 2+
+atd _ a’tgt] a’tp —  aty
n+1 n+1 2(2n+1)  2(2n+1)
l 1 l l+1 l+1
+ (1-n)Kzdt? = (2—)Kzdyty K3dth Kzdn + (1-n)2Kzdyt™
T 1 N 1 1
nTn Tt n(n+1)TR n+l (n2+n)Tn
%-}-2 2 %+1
Kzdyty 4an?yTKsd Kydny K,udyt]
1. (2n2 - 1
(2n? +n)Tn+1 (2n?+3n+1) n+1 (n2+n)Tn+
1
(1—n)K4dyt?
+——F2=0 (6.19)

To obtain an optimal value that minimises the total cost per unit time, we solved the
Equation (6.18) and Equation (6.19) simultaneously. It could be observed that the equations

are non-linear. Here we use excel solver to find the optimum solution and check for convexity

We can see from our model that, if t; =0 and y = 0 then it becomes an inventory

model with instantaneous deterioration and complete backlogging where the total relevant
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1 1 1
241 =42 243
2
W(ty, T) _ A Kd tl (2-a?ty) | at} ath
L T 2 2(n+1) 2(2n+1) = 6(3n+1)

- 1 1

—+2 =41

Kod | a?t] atl
2(2n+1) n+1

Tn

- 1
1 —+1 1
Ksd|,..> tP nTntt
— 2T -2 — (6.20)
™ n+1 n+1

Equation (6.20) is similar to the one obtained by Sicilia et al.(2014). Although in our case,

purchasing cost was not taken into consideration.

6.5 Numerical Examples

We elucidate the proposed model with some numerical examples.
Example 1 as found in Sicilia et al. (2014)
A=50,d=100,K, =2,K, =4,K;=12,K,=10,n=0.5, a=0.1,t; = 0.4y =0.2
in appropriate unit. The following results was obtained t; = 0.385 years, T = 0.440 years.
From Equation (6.15), ¥ (t;,T) = $161.78, Q = 43.911 units, S = 33.663 units, P =
10.248 units
From Equation (6.17) the Hessian is H(t{,T) = 11040994 which is positive, it implies that
(t1, T) is the minimum point.
Example 2.

Repeating the same example 1, but we make n =3. The following was obtain T = 0.969
years, t; = 0.831 years, S = 92.448 units, Y(t;,T) = $97.99, P = 4.783 units, Q =
97.231 units.

From Equation (6.17), the Hessian is H(t;, T) = 1259413.774, which is positive; it

implies that (t;, T) is the minimum point.
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Table 6.1: Sensitivity Analysis of the Parameters in the Inventory model.

Change in:

p* v C* T t TVC S P Q
120 +20 | 0.406 0.353 177.29 | 37.217 | 11.051 |48.268
110 +10 | 0.420 0.368 169.71 |35.454 | 10.655 |46.109
d 100 0 0.430 0.385 161.78 |33.663 | 10.248 | 43.911
90 -10 0.464 0.405 153.44 |31.830 |9.827 |41.667
80 -20 0.493 0.430 144.59 [29.980 |9.390 39.371
60 +20 | 0.482 0.421 177.19 |36.725 | 11.446 |28.171
55 +10 | 0.461 0.430 169.63 | 35.208 | 10.852 | 46.060
A 50 0 0.430 0.385 161.78 |33.663 | 10.248 | 43.911
45 -10 0.418 0.366 163.52 | 32.086 |9.620 |41.716
40 -20 0.395 0.345 144.77 |30.471 | 8.996 39.467
24 +20 | 0.413 0.354 173.44 |30.292 | 11.003 |41.295
22 +10 | 0.426 0.368 167.83 | 31.864 | 10.631 |42.495
Ki 2.0 0 0.440 0.385 161.78 |33.663 | 10.248 | 43.911
1.8 -10 0.457 0.404 155.25 | 35.751 |9.855 45.605
1.6 -20 0.477 0.427 148.16 | 38.218 |9.452 47.669
4.8 +20 | 0.439 0.385 161.74 | 33.697 | 10.243 | 43.940
4.4 +10 | 0.440 0.385 161.76 | 33.680 |10.246 | 43.925
Ko 4.0 0 0.440 0.385 161.78 |33.663 | 10.248 | 43.911
3.6 -10 0.440 0.385 161.80 |33.646 | 10.250 |43.896
3.2 -20 0.439 0.384 161.83 |33.628 | 10.253 | 43.881
14.4 +20 | 0.430 0.383 164.58 | 34.186 | 8.785 42.971
13.2 +10 | 0.435 0.384 163.28 |33.943 |9.460 | 43.404
K3 12 0 0.440 0.385 161.78 | 33.663 |10.248 | 43911
10.8 -10 0.446 0.386 160.05 |33.334 | 11.178 |44.512
9.6 -20 0.453 0.387 158.02 |32.944 |12.194 |45.238
12 +20 [ 0.438 0.385 162.31 | 33.762 | 9.968 43.730
11 +10 | 0.439 0.385 162.05 |33.713 | 10.106 |43.819
K4 10 0 0.440 0.385 161.78 | 33.663 |10.248 | 43911
9 -10 0.441 0.385 161.51 |33.611 | 10.394 |44.005
8 -20 0.442 0.385 161.23 | 33.558 | 10.544 |44.102
0.60 +20 | 0.479 0.418 154.52 | 38.182 | 9.668 47.850
0.55 +10 | 0.459 0.401 15798 | 35946 |9.934 |45.880
n 0.50 0 0.439 0.385 161.78 |33.663 | 10.248 | 43.911
0.45 -10 0.420 0.368 165.94 |31.338 | 10.631 |41.968
0.40 -20 0.401 0.352 170.44 | 28.971 | 11.115 |40.085
0.48 +20 | 0.452 0.397 160.77 |35.005 | 10.168 |45.172
0.44 +10 | 0.445 0.391 161.22 | 34.281 |10.193 |44.474
td 0.40 0 0.440 0.385 161.78 |33.663 | 10.248 | 43.911
0.36 -10 0.435 0.380 162.46 |33.148 | 10.330 |43.478
0.32 -20 0.432 0.376 163.22 |32.732 |10.437 |43.170
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Table 6.1, continued.
Change in:

p* v c* |T t TVC S P Q

0.12 [+20 |0.442 [0388 [161.73 [33.403 [10.243 [43.946
0.11 +10 | 0.441 |0.387 |161.76 |33.683 | 10.244 |43.928
a [010 |0 0440 |0386 |161.78 |[33.663 |10.248 |43.911
009 |-10 |0.439 [0.385 |161.81 |33.642 |10.251 |43.893
008 |20 0438 |0384 [161.83 |33.620 |10.254 |43.874
024 [+20 [0.438 [0.385 [162.28 [33.755 [9.976 |43.732
022 |+10 |0.439 [0.386 |162.03 |33.710 |10.110 |43.820
y 020 o 0440 |0387 |161.78 |[33.663 |10.248 |43.911
0.18 |-10 |0.441 [0.388 |161.53 |33.614 |10.389 |44.004
0.16 |20 |0.441 [0389 |161.26 |33.565 |10.535 | 44.099

6.6 Sensitivity Analysis

Table 6.1 shows the effects of changes of some model parameters on the decision variables
base on the first example.

A careful study of the results obtained in the above tables and within the specified range
of values of the selected parameters indicate the following observations:
1. As the demand rate d is increasing, the quantity order @ is also increasing, leading to an
increase in the total cost TVC. Also, Tand t; are decreasing. The economic implication of
this is that as the demand 1s getting higher, the stock will take a short time to finish and so
Tand t; decreases. Increase in demand rate will produce an improvement in order quantity
and the total inventory cost.
2. As the ordering cost A increase, T,t;,Q,TVC are all increasing. The economic
implication of this is that it is advisable to order more quantity when the ordering cost is
expensive to prevent the order frequency and damage.
3. T,Q,t; decreases with an increase in the holding cost K;. It is observed that there is an

increase in the total inventory cost as the holding cost is increasing. The economic

102



implication of this is that as the holding cost is rising, it is better to reduce the cycle duration
and order quantity to keep the cost of inventory as low as possible.

4. As the deteriorating cost K, is increasing, there is an increase in T, t;, @, which lead to a
slight decrease in the total inventory cost. It implies that when the deteriorating price is
higher, there is a need to order more quantity and increase the cycle period to take the
opportunity of reduced deteriorating cost.

5. As Kjand K, are increasing, there is decease in T, t;and Q, which result in an increase
in the inventory total cost TVC.

6. It is discovered that as the backlogging rate y increases, the parameters T,t;and Q,
reduces while there is a slight increase in the total inventory cost.

7. Increase in the parameters n and t; lead to an increase in T,t;,and Q while the total

inventory cost reduces.

6.7 Concluding Observations
In this chapter, an EOQ Inventory model for delayed deteriorating items with power

demand, considering shortages and lost sales is presented. It extended a similar model carried
out by Sicilia et al.(2014). We incorporate delay deterioration and lost sales. The effect of
demand rate, constant rate of deterioration and partial backlogging rate on order quantity and
total inventory cost per unit time are reported. Numerical examples are given, and sensitivity
analysis carried out to show how the optimal decision is affected by changes in different
parameters in the model. The following are our concluding remarks:

1. When the demand rate d is increasing, the inventory total cost is rising.

2. When the ordering cost A is increasing, the inventory total cost is also

growing.
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3. As the rate of deterioration « is increasing, the inventory total cost is
decreasing leading to the increase in the inventory level S.
4. When the backlogging rate y is expanding, the inventory total cost
1s increasing.
5. As the length of time t; for the stock to deplete to zero is rising, the
Inventory total cost is decreasing.
6. When the power index n is growing, the inventory total cost is decreasing.

From the above observations, the effect of demand rate, deteriorating rate and backlogging
rate on optimal replenishment policy cannot be easily neglected. The propounded model can
be utilised in inventory control of some delayed deteriorating item such as food items,
vegetables, milk, fish so on. The model investigated in this chapter provides a basis for
various feasible extension. In this direction, future research can enrich the model by

incorporating time and stock demand dependent, preservation technologies, and so on.
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CHAPTER 7: SUMMARY, CONCLUSION AND RECOMMENDATIONS

7.1 Summary

The primary purpose of this study is to fill the gaps in the academic literature as
enumerated in Section 2.1.8 and to advance mathematical models for deteriorating items
with power pattern demand rate. The aim has been achieved through four main objectives.
These objectives were accomplished by developing four models which are deterministic in

nature.

The first model developed is an inventory model for deteriorating items with power
demand pattern and time-dependent holding cost without shortages. It is observed that in
many economic order quantity models, holding cost is always considered as a constant
function of time. In this model, the holding cost is assumed to be time-dependent, and the
deterioration rate is supposed to be constant. The aim is to minimise the total average cost by
finding the optimal cycle time and ordering quantity, and shortages are not considered in this
model.

A high non-linear differential equation was arrived at after the development of the model
which was solved by excel solver and backup by maple software 2018, which was used to
evaluate the optimal cycle time and optimal ordering quantity. Numerical example has been
presented to illustrate the applicability of the developed model. From the numerical example,
the study of the outcome of various several in some feasible combination of the parameters
in the model on decision variables are also carried out, and the results are depicted
graphically.

In the second model, an inventory model for linearly time-dependent deteriorating rate
and time-varying demand with shortages partially backlogged is proposed. The model

extends the first model by adding shortages and time-dependent deteriorating rate. Based on
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the assumptions, the initial inventory height is M units at time ¢ = 0. During the period t =
0 and t = t4, the inventory level diminishes, due to deterioration and demand until it gets to
zero level at t = t;. Throughout the interval [t;, T] the system experiences shortages which
are backlogged to the close of the cycle. At the interval t = T, the inventory get to a
maximum shortages level m to get rid of the backlogged and the inventory level increases
again to level M.

Numerical illustrations are given at the end of the developed model, and sensitivity
analysis administered base on one of the example. The total cost function concerning the
decision variables t; and T is plotted, and we obtained a strictly convex graph to establish
the result. We also represented the sensitivity analysis graphically.

The third model is based on all the attributes and assumption of the other three models
proposed. In this model, a linearly deteriorating inventory policy with power demand pattern
and variable holding cost considering shortages which are partially backlogged is developed.
When t; = 0 and the deterioration rate is constant, we have similar work considered by
(Mishra (2016b), Sicilia et al. (2014)). The main purpose of the model is to evaluate the
optimal replenishment cycle length to minimise the total variable cost per unit time.
Numerical illustration is made available to establish the application of the developed model,
and the example was used to investigate the consequences of various alterations in some
possible combination of the parameters in the model on the decision variables in the policy.
The convexity graph of the total function concerning the decision variables is also plotted
which is a strictly convex function. Also, we make the sensitivity analysis clearer by plotting
the optimum cycle time T, the optimal total cost U™ and the optimum ordering quantity G*

against the inventory input parameters and make our observations.
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The fourth model developed is an inventory model for delayed deteriorating items with
power demand considering shortages and lost sales. In this model, a lot size Q unit enters
the system at the inception of each cycle. The deterioration takes places after time t; and
attains zero inventory level at time t;. The shortages happen in the interval and partially
backlogged and lost sales at the end of the cycle time.

The main focus is to minimise the total average cost per unit time by calculating the
optimum time value t at which the inventory comes down to zero level and the schedule
period T. The model extends the paper of Sicilia et al. (2014) without considering purchase
cost. A highly non-linear differential equations are derived and solved by excel solver and
maple. Numerical illustrations are made available at the end of the developed model and

sensitivity analysis carried out.

7.2 Conclusion

In this thesis, different deterministic inventory models are investigated. Models are
established for items with time-dependent and delayed deteriorating rate, time-varying
holding cost, and power demand pattern rate. At the end of each developed inventory model,
some specific conclusions are given. Nevertheless, general findings will now be drawn across
the whole thesis and summarised as follows:
1. Aninventory model for deteriorating items is proposed in chapter 3. The model considers
a fixed rate of deterioration and the holding cost is linear time-dependent. When holding cost
1s assumed as time-dependent, it represents a real-life situation and is valid in the storage of
some deteriorating food products such as meats, cake, wheat, flours, vegetables etc. The
outcomes unveil that the effect of demand rate parameter r and holding cost parameter h
on total inventory cost is significant.

Sensitivity analysis results of the decision variables as against the changes in the model
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parameters indicate that T,TC and Q are exorbitantly sensitive to changes in r, K, a while
they are moderately sensitive in the parameter «, C;, h and less insensitive to change in
parameter b and n.

The economic implication of this is that optimum ordering quantity along with total cost
per unit time are sensitive to power demand parameter, ordering cost and the holding cost.
Moreover, it can be said they are less insensitive to unit purchasing cost and parameter b.

2. In chapter 4, a deterministic inventory model for linearly time-dependent deterioration
rate is proposed. Demand rate varying with time and shortages are partially backlogged. The
effect of power-dependent demand rate, backlogging cost, holding cost, deteriorating cost
and purchasing cost on the optimal replenishment policy is high and hence should not be left
out in developing this type of inventory model. The developed model can be useful in
controlling the inventory of particular products that deteriorate with the advance of time and
demand also varies with time. Examples of such products are android phone, computer chips,
fashion, electronics etc.
3. The third developed model deals with inventory model for delayed deteriorating items.
The inventory demand rate is in power pattern form considering shortages and lost sales
which are partially backlogged. It is discovered from the results of Table 4 that the impacts
of changing the parameters of the model d, A, Ky, K5, K3, K4, n, t4, @, ¥ on the replenishment
policy disclose the following:

- At the time the demand rate d is rising, the inventory total cost is

increasing.
- During the time the holding cost K; is rising, the inventory total cost is
increasing

When the deteriorating cost K, is growing, the total cost is increasing
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- When the shortage cost K3 is increasing, the inventory total cost is
increasing
- When the value of lost sales K, is rising, the inventory total cost is
increasing
- As the deterioration rate a is expanding, the total cost is decreasing
- When the backlogging parameter increase, there is also a corresponding
increase in the total inventory cost.

The model is essential because, in a product life cycle, demand is increasing with time
during growth phrase, then after reaching its zeniths, the demand attains stability for a limited
period otherwise known as maturity stage. After that, the demand begins to decrease with
time and eventually tending to 0.

4. The fourth model deals with a linear deterioration inventory policy for products with
power demand pattern and variable holding cost considering shortages. The model found
deteriorating rate as time-dependent. The application of linear time-dependent holding cost
is an accurate representation of any real-life situation and correct for the storage of some
perishable and decaying items such as food products. The results obtained shows that the
effect of demand rate d, backlogging parameter a and purchasing cost Z on total inventory
cost U™ is quite enormous.

The results of the sensitivity analysis of the decision variables concerning the alterations
in the model parameters indicate the following results:

- U* and G™ are highly sensitive to overestimation and underestimation of the model
parameters d and y.
- U* and G* are less insensitive to the overestimation and underestimation of the model

parameters h and 6.

109



U™ is highly sensitive to overestimation and underestimation of the model parameters
Z.

- U" is moderately susceptible to overestimation and underestimation of the model

parameters A, K and S and somewhat sensitive to the overestimation of the

parameters n.

U” is less insensitive to both overestimate and underestimate of the model parameters

p and less impervious to underestimate of the parameter n.

G™ is highly sensitive to overestimation and underestimation of the model parameters

A and K and highly responsive to overestimation of the parameter n.

- G* is lowly sensitive to overestimation and underestimation of the model
parameters Z and B and also lowly sensitive to underestimation of the parameter n.
- G* is less insensitive to overestimation and underestimation of the model
parameter S and less insensitive to the underestimation of the parameter
n.

The contributions of this research include the following:
1. A model has been developed of an inventory policy for deteriorating items with power
pattern and time-dependent holding cost without shortages. This model provides a simple to
understand solution as against the general belief that holding cost is a constant function as
found in Singh (2017). From the results obtained, it has been shown that enlargement in the
total cost will lead to an enlargement in the holding cost. The model is an extension of the
first contribution, where holding cost is time-dependent, along with the demand rate is in
power form function of time. A graphical representation of convexity of total cost concerning
the decision variable is provided. No existing model is known to have considered such an

inventory model ahead of this one.
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2. An attempt or effort has been made to propound and extend the model of Rajeswari &
Indrani (2015), who proposed an Eoq inventory model for deteriorating products with
linearly time-dependent deterioration rate. In the consideration of this model, the schedule
period is presumed to be fixed, and the decision variables are the time at which inventory
level drops to zero. Here in this model, the scheduled time is not fixed and is considered as
one of the decision variables which accurately represents an inventory model. We provided
the graphical description of the convexity of the total cost with respect to the decision
variables to establish the reliability of the model. It is yet to be discovered in works of
literature that such a model has been investigated elsewhere.

3. A model has been presented of an inventory system for delayed deteriorating items with
power demand pattern considering shortages and lost sales. Here we broaden the work of
Sicilia et al. (2014) by adding lost sales that are partially backlogged. This model contributes
to the existing ones in that the effect of demand rate, deteriorating rate and backlogging rate
parameter on optimal replenishment policy is quite significant and cannot be ignored in
inventory modelling development. No published work to the best of our understanding has
been done similar to this model.

4. A model has been developed for a linear time-dependent deterioration rate along with
time-varying demand considering shortages which are partially backlogged. The model is a
reality of the behaviours of the customers in the time of the stock-out period such that some
consumers will be ready to be patient for the arrival of new stocks, while others will look
elsewhere as a result of intolerant. We assumed that the holding cost is a linear function of
time to reflect the truth that holding cost increase linearly with time and also deteriorating
rate is taken into consideration as time dependent to show that deterioration increases
continuously as time progresses. The work of (Adaraniwon & Omar (2019), Mishra (2016b))

is made more realistic. Time-varying demand, linear deterioration rate along with time-
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dependent holding cost combined has not been so prevalent in literature.

7.3 Recommendations

Since inventory modelling deals mainly on reducing the inventory costs, it will be
commendable for those operating inventory management of deteriorating items to exploit the
findings of this research work in their decision-making procedures or process.

It is therefore recommended for future research work that attentions can be geared toward
the following areas:
1. Investigation can be carried out on probabilistic re-order point, and order-level policy for
deteriorating/degenerating items.
2. Explore a model in inventory for deteriorating items for linear and other different types
of power demand pattern.
3. Extension of all the four inventory models to financial analysis although it is non-
inventory. It is necessary because there is high global inflations and high-interest rates, which
can help the decision-makers for planning purposes in banking and financial markets.
4. Research can be carried out on probabilistic inventory models. Only a few research works
have been investigated in this direction.
5. Research can be carried out to include time-value of money, trade credits, discount rate,
salvage values etc.

6. The models can also be developed in a fuzzy environment.
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