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ENERGY-EFFICIENT DATA TRANSMISSION WITH CLUSTERING AND 

COMPRESSIVE SENSING IN WIRELESS SENSOR NETWORKS 

ABSTRACT 

One of the most important application of wireless sensor network is 

environmental monitoring. The application involves lifetime of sensor nodes for longer 

duration associating its energy module. Wireless sensor nodes deployed in sensing field 

aggregate enormous amount of sensed data and transfer them to the sink. The inherent 

limitation of energy carried within the battery of sensor nodes fetches extreme difficulty 

to acquire adequate network lifetime, becoming a bottleneck in forwarding data to sink. 

Hence the motivation is to reduce the amount of data transfer and attain energy efficiency. 

This is achieved by clustering and compressive sensing techniques. First objective is to 

reduce the transmission burden on sensors to attain energy efficiency. The solution is 

achieved by unequal clustering with appropriate cluster head selection and dual sink. 

These two criterions minimizes the energy holes and preserves the network lifetime. 

Energy-Aware Unequal Clustering routing algorithm with Dual sink (EAUC-DUAL) and 

Energy based Cluster Head selection Unequal Clustering with Dual sink (ECH-DUAL) 

are proposed.  EAUC –DUAL uses static and mobile sink. EAUC-DUAL suggests 

smaller size clusters around static sink and the entire clusters in the network transmit their 

data only to the nearest sink providing load balancing and minimizes the hotspot. In the 

extended ECH-DUAL algorithm in addition to dual sink a new cluster head selection 

method is proposed for unequal clustering. It focuses on balancing the burden of cluster 

heads by suitable selection of Tentative Cluster Head (TCH) and Final Cluster Head 

(FCH). Simulation results interprets the network lifetime of EAUC –DUAL is two times 

more than the LEACH algorithm. In the extended ECH-DUAL algorithm the network 

lifetime of ECH-DUAL is twice greater than the network lifetime of EAUC-DUAL. 
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Second objective is to reduce the transfer volume of sensed data and attaining energy 

efficiency. Conventional sampling results in high amount of sensed data. Hence the 

framework of Intelligent Neighbor-Aided Compressive Sensing (INACS) is proposed 

emphasizing on compressive sensing at source, data forwarding based on highest 

correlation to the neighbor node and exact recovery at the sink. Compressive sensing 

techniques and data forwarding reduces the volume of sensed data and the number of 

transmissions. Simulation results conclude better energy efficiency and reconstruction 

accuracy. The energy consumption in INACS is 0.29 times lesser than the existing 

protocol.The third objective focus on the reduction in observational cost and transmission 

cost through compressive sensing and data forwarding techniques respectively. The data 

forwarding should be performed considering the link capacity of nodes and available 

bandwidth. A framework Perceptron-based Optimal Routing (POR) and Perceptron-

based Routing with Moderate Traffic Intensity (PRMTI) is proposed for data forwarding. 

The data forwarding process is initiated considering the network resources. POR is 

suggested for scarce network resources and PRMTI for abundant network resources. 

Simulation has been performed on energy consumption and number of transmissions. 

Residual energy of POR is 0.26 times higher and PRMTI is 0.14 times higher than the 

existing protocol. The simulation results of clustering algorithms, INACS and Perceptron 

framework are validated using various data analysis methods.  

  

Keywords: Clustering, Dual Sink, Compressive Sensing, Data Forwarding, Energy 

Consumption and Network Lifetime. 
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PENGHANTARAN DATA BERKECEKAPAN TENAGA DENGAN 

PENGGUGUSAN DAN PENGESAN MAMPATAN DIDALAM RANGKAIAN 

SENSOR TANPA-WAYAR  

ABSTRAK 

Salah satu aplikasi rangkaian sensor tanpa-wayar yang paling penting adalah di dalam 

pemantauan persekitaran. Aplikasi ini melibatkan masa hayat nod sensor untuk tempoh 

yang lebih lama dengan mengaitkan modul tenaga di dalam nod sensor. Nod sensor tanpa-

wayar digunakan ke atas data yang dikesan di dalam kawasan pengesanan yang besar dan 

memindahkannya ke sink. Had tenaga yang dibawa oleh bateri di dalam nod sensor 

menyebabkan kesukaran untuk mendapat masa hayat yang cukup, ini menyebabkan 

kesesakan penghantaran data ke sink. Oleh yang demikian, tujuan motivasi ini adalah 

mengurangkan jumlah pemindahan data dan mencapai kecekapan tenaga. Ini dapat 

dicapai dengan teknik penggugusan dan penderian mampatan. Objektif pertama ialah 

mengurangkan bebanan penghantaran ke atas sensor untuk mendapatkan kecekapan 

tenaga. Ini dapat diselesaikan dengan menggunakan penggugusan tak sama dengan 

pemilihan ketua gugusan yang sesuai dan dual sink. Kedua-dua kriteria ini mengurangkan 

lubang tenaga dan mengekalkan masa hayat rangkaian. Algoritma penghalaan Energy-

Aware Unequal Clustering with Dual sink (EAUC-DUAL) dan Energy based Cluster 

Head selection Unequal Clustering with Dual sink (ECH-DUAL) telah dicadangkan. 

EAUC-DUAL menggunakan sink yang statik dan bergerak. EAUC-DUAL menggunakan 

saiz gugusan yang kecil sepanjang sink yang statik dan kesemua gugusan di dalam 

rangkaian menghantar data hanya kepada sink yang terdekat dengan menyediakan 

keseimbangan beban dan mengurangkan “titik panas”. Algoritma ECH-DUAL turut 

dicadangkan di dalam pemilihan kepala gugusan untuk penggugusan tidak sama. Ia 

tertumpu kepada keseimbangi beban kepala gugusan dengan pemilihan Tentative Cluster 

Head (TCH) dan Final Cluster Head (FCH). Keputusan simulasi menyatakan masa hayat 

rangkaian EAUC-DUAL adalah dua kali ganda lebih besar daripada algoritma LEACH. 
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Di dalam algoritma ECH-DUAL, masa hayat rangkaian ECH-DUAL adalah dua kali 

ganda lebih besar daripada masa hayat rangkaian EAUC-DUAL. Objektif kedua adalah 

mengurangkan jumlah pemindahan data yang telah dikesan dan mencapai kecekapan 

tenaga. Persampelan lazim menyebabkan jumlah yang tinggi di dalam data yang telah 

dikesan. Oleh yang demikian, rangka kerja Intelligent Neighbor-Aided Compressive 

Sensing (INACS) dicadangkan, di mana ia memberi penekanan kepada penderiaan 

mampatan di sumber, penghantaran data berdasarkan korelasi tertinggi kepada nod jiran 

dan pemulihan yang tepat di sink. Penderiaan mampat dan penghantaran data 

mengurangkan jumlah data yang dikesan dan bilangan penghantaran. Keputusan simulasi 

menyimpulkan kecekapan tenaga dan peratusan pembentukan semula adalah bagus. 

Penggunaan tenaga di dalam INACS adalah 0.29 kali kurang daripada protokol sedia ada. 

Objektif ketiga tertumpu kepada pengurangan jumlah pemantauan dan penghantaran 

melalui teknik penderian mampat dan teknik penghantaran data. Penghantaran data mesti 

dilakukan dengan mengambil kira kapasiti laluan nod dan jalur lebar tersedia. Rangka 

kerja Perceptron-based Optimal Routing (POR) dan Perceptron-based Routing with 

Moderate Traffic Intensity (PRMTI) dicadangkan untuk penghantaran data. Proses 

penghantaran data dijalankan dengan mengambil kira sumber-sumber rangkaian. POR 

dicadangkan untuk sumber-sumber rangkaian yang kurang dan PRMTI untuk sumber-

sumber rangkaian yang banyak. Simulasi telah dijalankan ke atas penggunaan tenaga dan 

bilangan penghantaran. Tenaga residu POR adalah 0.26 lebih tinggi dan PRMTI adalah 

0.14 lebih tinggi daripada protokol sedia ada. Keputusan simulasi algoritma 

penggugusan, INACS dan rangka kerja Perceptron adalah terbukti dengan menggunakan 

pelbagai teknik analisis data. 

Kata kunci: Penggugusan, Dual Sink, Masa Hayat Rangkaian, Pengesan Mampatan, 

Penghantarab Data, Penggunaan Tenaga. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

 Wireless sensor nodes are typically embedded in an environment and it provides 

information about physical phenomena rather than human interaction with the 

environment.  The wireless sensor nodes consist of a sensing unit and communication 

unit. The sensing unit measures the impact of physical phenomena and communication 

unit transfers the data to actuator or sink. Sink are entities procuring the sensed data 

from sensor nodes based on the physical phenomena. Sensors are being positioned in 

the environment and they report the status of information to sink either periodically or at 

the occurrence of event. Wireless sensors are smaller in size and supply energy to meet 

the demands of both sensing and communication unit (Akyildiz et al., 2002). Investing 

more energy to meet quality of service of sensed data can result in shorter lifetime. The 

scope of this thesis concerns about the estimation of sensor lifetime and saving the 

energy consumption within the deployed sensing field (terrain).  

The major issue associated with sensor node lifetime is energy consumption. 

The interlinked factors related to energy consumption are sensing process and 

communication process. The problem behind the sensing approach is, it generates a 

huge amount of sensor readings and has to be transferred to the sink. The sensors with 

resource constraints are subjected to energy drainage due to physical data acquisition 

and subsequent forwarding (Vuran et al., 2004). Thus the assisting solution to overcome 

energy drainage and transfer of sensed data can be complete using the attributes of 

clustering and dual sink. The clustering technique selects a cluster head to transmit data 

thereby reducing the flow of data from all its cluster members to the sink. The addition 

of mobile sink with the existing static sink reduces the hot spot problems.  
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The framework of clustering and dual sink leads to the reduction in transmission 

cost however issues with observational cost has not been considerably reduced. 

Transmission cost refers to the process of transfer of data from the sensors to the sink. 

Observational cost is the method of acquiring data from a sensing field using the desired 

sensing threshold. The observational cost of data acquisition can be reduced by 

compressive sensing techniques. The nature of compressive sensing incorporates 

sparsity where in signal can be represented in a miniature form without losing the 

quality (Aeron et al., 2006). In the scenario where the signal is not sparse the sparsity 

can be attained by means of certain transformations.  

The compressive sensing techniques significantly reduce the local computation 

and sensor data volume. Thus we can say, both transmission cost and observational cost 

is reduced due to the compression incurred. However still losses occur during 

transmission due to attenuation and channel impulse response. The assisting solution 

should govern the status of channel impairment, forwarding at intermediate nodes, post 

processing accuracy for reconstruction of sparse physical data. Achieving sparse 

representation and transfer of data to sink considering the capacity of network resources 

are crucial in the compressive sensing framework.   
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1.2 Motivation 

The motivation behind this primary work is centered on transmission cost 

indicating a reduction in data transmission with a suitably elected cluster head 

governing the metrics of time and energy efficiency. Unequal cluster sizes in the 

network does not allow the sensor nodes to die out faster by saving their energy. 

However sensors with resource constraints are still subject to time varying energy drain. 

To counter this problem a full operation of sinks (static and mobile sinks) has to be used 

with a network infrastructure to collect data. The dual sink prevents the energy holes 

and increases the network lifetime saving the energy consumed inside the network.  

The second motivation is to reduce the number of transmissions without 

compromising on the quality of sensed data. This has been achieved using compressive 

sensing. Compressive sensing in wireless sensor nodes has overcome the rigid sampling 

procedure to acquire sensed data during data acquisition process. The sensed data 

obtained for transfer at the source can be represented in a sparse manner and recovered 

at the destination. The data forwarding from source node to the neighbor nodes is based 

on correlation. In short this work would focus on compressive sensing and data 

forwarding to reduce the sensing cost and the number of transmissions and hence 

achieve energy efficiency.  

The third motivation focuses on reduction in observation cost using compressive 

sensing. The data forwarding is decided based on the capacity of intermediate nodes and 

available bandwidth resources.  In order to effectively transfer the compressed data 

there should be minimal number of sensors to ensure connectivity to the sink. This is 

termed as the communication constraint. Connectivity in wireless sensor network 

defines the possibility, an intermediate node receives transmission and forwards the 

same to the sink.  
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A bottleneck in the wireless networks occurs due to the varying rates of data 

traffic. It can be measured and estimated using machine learning techniques. The 

designed communication protocol should determine whether to forward data or to 

refrain from transmission based on the available network resources. 
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1.3 Problem Statement 

The first problem concerns the estimation of sensor lifetime within the deployed 

sensing field (terrain). The major prospective associated with sensor node lifetime is 

energy. Two criterions in a wireless sensor network can cause energy holes. The first 

criterion is cluster head selection process and uniform cluster sizes. The second criterion 

is when the sink is static. In the first criterion clustering: The elected cluster head 

acquires data from cluster members and it curtails the direct transmission from cluster 

members to sink thus reducing the number of transmissions. Cluster head node due to 

subsequent transmission may drain its resources of energy and bandwidth faster. Hence 

an alternate cluster node as a cluster head has to be nominated at each round to retain 

the connectivity. Usage of identical size clusters in the network may cause energy 

drainage of those clusters near the static sink due to continuous forwarding of data. 

Hence addressing the issues of cluster head selection and uniform cluster sizes in the 

network is very important. The second criterion is usage of static sink. By using 

multihop –communication all the cluster head nodes forward their data to the static sink. 

Consequently, all the nodes near to the sink deplete their battery level resulting in 

hotspot problem. Usage of mobile sink along with static sink can subsequently increase 

the network lifetime. An efficient cluster head selection process with unequal clustering 

and dual sink can significantly reduce the energy consumption in the network. 

The second problem focuses on acquisition of sensed data, data forwarding and 

recovery at the sink. In the previous work data aggregation is performed based on the 

Nyquist sampling theorem. The data aggregation method suggests, sampling frequency 

should be twice as greater as the largest frequency at source for proper recovery of the 

signal. This process results in redundant data to be produced. Hence the further 

algorithms focus on compressive sensing to reduce the redundant data or data 

aggregation cost. The sensor node generates a huge amount of sensor readings and the 
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readings have to be transferred to the sink. In compressive sensing process the network 

data generated can be represented in a sparse manner using the spatial and temporal 

coordinates. Thus the sensed sparse data with fewer measurements obtained by the 

process of compressive sensing can be exactly recovered at the sink without any losses. 

Once compressive sensing is performed the problem occurs during data forwarding 

when all the co-located sensors transmit simultaneously leading to collisions. The 

process burdens the wireless network. So the proposed algorithm should focus on data 

forwarding from source node to any one of the neighbor nodes based on correlation 

thereby reducing collisions and number of transmissions.   

The third problem focus on the reduction in observational cost using 

compressive sensing. It also emphasizes on reduction in transmission cost by 

considering the link capacity of intermediate nodes and network resources during data 

forwarding.  Each sensor node has several intermediate forwarders capable of relaying 

the networked data to the subscribed sink. The magnitude of data at the intermediate 

forwarder changes the feasibility of route and its data forwarding capability. The link 

quality is one of the significant metrics, ensuring the packet forwarding from the sensor 

to the intermediate forwarder and from the intermediate forwarder to the sink. Any 

packet loss will burden the recovery process causing deviation from the conventional 

route. Hence the proposed algorithm should analyze the link capacity of intermediate 

nodes and the available network resources for data forwarding.  
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1.4 Research Aims and Objectives 

The main aim of this research is to design an energy efficient data acquisition 

and transmission methods in wireless sensor networks. To fulfill the aim we have drawn 

the following objectives for this work. 

1. To design energy efficient unequal clustering algorithm with dual sink to 

improve the network lifetime of sensor nodes within the entire topology of 

the sensing field. The reduction in transmission burden on the sensors is 

achieved by suitable cluster head selection and the operation of dual sink. 

Mobile sink acquires data at appropriate intervals reducing the energy 

overhead incurred during transmission.   

2. To develop an intelligent compressive sensing-based algorithm to reduce the 

number of transmissions and attain energy efficiency in sensors. The co-

located sensor transfers data when carrier sensing threshold of 

communicating entities exceeds the desired value of spatial and temporal 

coordinates. Thus faulty links are denied from transmission. 

3. To design a unified framework of compressive sensing with perceptron-

based forwarding to attain energy efficiency. Data transmission is based on 

the available network resources and forwarding capability of intermediate 

nodes. 
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1.5 Contributions 

The contribution of clustering algorithm is the formation of unequal size 

clusters, cluster head election process and usage of static and mobile sink (Dual sink) in 

the network. The unequal size clusters and dual sink reduces the energy holes being 

created. The cluster head election is based on the energy of sensors nodes thus 

achieving load balancing. On the whole clustering and dual sink improves the lifetime 

of the sensors.    

The second contribution is reduction in transfer volume of sensed data without 

compromising its Quality of Service (QoS) and attaining energy efficiency. The focus 

of this algorithm is mainly on data forwarding from source node to the present 

forwarder nodes. The data forwarding process is associated with the correlation 

coefficient, spatial and temporal coordinates of source and forwarder nodes. Formation 

of Rademacher matrix using information of spatial and temporal coordinates and data 

forwarding from source node to forwarder node is based on the Rademacher matrix 

values. This framework preserves energy consumption providing scant transmissions. 

The third contribution is to reduce the observation cost and transmission cost. 

This is achieved by compressive sensing and through efficient data forwarding 

techniques respectively. In the proposed framework data forwarding is completed 

bearing in mind the network status and congested links. The framework tackles two 

scenarios for data forwarding: when the network resources are abundant and scarce. In 

both the scenarios data forwarding from source to sink through intermediate nodes is 

executed depending on the desired data forwarding threshold. The fusion rules for 

forwarding in order to overcome channel impairment are processed at the intermediate 

nodes using perceptron-based forwarding. For concreteness, in transmissions inference 

is made by the source node as to whether to forward or not to forward. 
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1.6 Outline of the Thesis 

This thesis is divided into six main sections comprising of: i) introduction; ii) 

literature review; iii) Clustering algorithms with dual sink; iv) Intelligent Neighbor 

Aided Compressive Sensing – INACS v) Compressive Sensing with Perceptron based 

forwarding v) Conclusions  

Chapter 1 INTRODUCTION: This chapter provides an overview of the research. The 

motivations and problem statements are discussed. The problem statement leading to 

research aims and research objectives are detailed. Finally the contributions are 

clarified. 

Chapter 2 LITERATURE REVIEW: A wide range of literature review is presented in 

this chapter. The thesis deals with basic aspects of wireless sensor networks, energy 

consumption in WSN, data gathering strategies, Data acquisition in networks, impact of 

transmission cost and traffic intensity in available network resources, influence on 

network lifetime, data prediction approaches, compressive sensing  techniques, sparsity 

and recovery in compressive sensing, channel estimation in compressive sensing, 

routing protocols in compressive sensing and finally computation capability of 

compressive sensing are discussed.  

Chapter 3 CLUSTERING ALGORITHMS WITH DUAL SINK: This chapter 

examines the two-energy efficient unequal clustering algorithms with dual sink. In line 

with research objective 1). The chapter examines the two protocols developed where 

efficient clustering of sensors and sink operations are performed to acquire data. ECH-

DUAL focus on inter-cluster and intra-cluster routing using dual sink. EAUC-DUAL is 

the further extended algorithm describing a new cluster head selection method with dual 

sink. Previous works on clustering algorithms, mobile sinks and static sinks are also 

presented. Simulation of the two protocols is performed using MATLAB. The number 
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of alive nodes, number of dead nodes and average residual energy are evaluated. Further 

the results of simulation are validated using Cox regression analysis.  

Chapter 4 INACS - INTELLIGENT NEIGHBOUR AIDED COMPRESSIVE 

SENSING: This chapter explains compressive sensing and data forwarding method 

from source to sink in line with objective 2). The proposed INACS algorithm addresses 

compressive sensing, data forwarding and recovery at the sink. The algorithm elaborates 

the process of data forwarding based on correlation to achieve reduction in number of 

transmissions thereby preserving the energy of nodes. Previous works on compressive 

sensing techniques are discussed. Simulations are carried out to analyze number of 

transmissions, energy consumption and reconstruction error of the algorithm. The 

results are validated using time series analyses (ARIMA model) and Generalized Linear 

Model (GLM). 

Chapter 5 COMPRESSIVE SENSING WITH PERCEPTRON BASED 

FORWARDING: This chapter explores compressive sensing, data transfer and 

recovery at sink satisfying objective 3) The proposed perceptron-based framework 

decides on data forwarding considering the link capacity of intermediate nodes and 

available network resources. In the framework POR data forwarding process is opted 

for high traffic intensity and PRMTI data forwarding is chosen for low traffic intensity. 

Previous works on machine learning techniques and traffic intensity are also elaborated. 

Simulations are performed on residual energy, energy consumption, number of 

transmissions, number of hops and sensing periods. The MATLAB results obtained are 

validated using time series analysis and expert modeler analysis.  

Chapter 6: The overall summary of this work is concluded in this section and future 

works are discussed.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Fundamentals of Sensor Networks 

This chapter presents previous work on data acquisition and data transmissions 

to sink in WSN. The sensor networks emphasis on the sensing range, the 

communication range, and the estimation of network resources, based on which the 

channel estimation, energy consumption and sensor lifetime is analyzed. The 

communication architecture of sensors deployed within an area known as sensing field 

should detect the event and transfer the information to the sink. The first step of 

transmission is sensing followed by communication and finally the processing of data 

(Akyildiz et al., 2002). Sensor observations with spatial and temporal patterns have 

been obtained in two ways: via a single location with a single sensor or by monitoring 

multiple locations with several sensors, being deployed to monitor the sensing field. In 

the case of multiple sensors depending on the application used redundant observation 

can be curtailed from transmissions (Vuran et al., 2004). 

Sensing rate is discussed to achieve reliability in monitoring an area within the 

sensing field. The sensing rate is determined by the “signal dimension” divided by the 

“number of sensors within the sensing field”. A signal dimension has been estimated for 

continuous and discrete models in order to determine the sensing capacity with minimal 

distortion (Aeron et al., 2006). Network data processing architecture can be divided into 

two types depending on the target phenomena. The first is distributed sensing followed 

by in-network data processing (Chen et al., 2006). The second is distributed sensing 

from sensors processed at a fusion center or sink, known as centralized processing 

(Cetin et al., 2006). Sensors obtain information about particular phenomena and report it 

to the observer based on the desired application. The transfer path between sensor and 

observer is through a network protocol.  
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2.1.1 Data Gathering and Transmission Strategies  

  

 

 

 

 

 

 

 

     Figure 2.1: Communication model with networking of sensed data 

Two communication models to satisfy the network protocols are the 

“cooperative model” and the “non-cooperative model” (Tilak et al., 2002). The 

cooperative model facilitates the sharing of information (sensed data) among sensor 

nodes. The non-cooperative model restricts the sharing of information. Figure 2.1 shows 

the communication model involving the transfer of data, as discussed in (Tilak et al., 

2002). In our work co-operative sensors are used in all the proposed protocols. 

Model-driven data acquisition explains the non-uniform cost incurred in the 

transfer of sensed data to the sink. For nodes nearer to the sink the acquisition cost is 

less when compared to nodes farther away from sink. The discussion reveals, rather 

than increasing the amount of expensive radio transmissions, appropriate storage and 

querying should be used to curtail the communication cost (Deshpande et al., 2004). 

The two most widely used models for data aggregation are “push” and “pull” (Romer & 

Renner, 2008). In the scenario of “push” process, reporting is made to the sink only 

when there is a deviation from the expected phenomena. “Push” disseminates 

information analogous to a broadcast. Pull-based operations acquire data from sensors 

using anchor nodes and transmit the data to the sink.  
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The performance of both the data aggregation mechanisms varies with topology 

and the associated traffic patterns (Romer & Renner 2008). The taxonomy of gathering 

data in a wireless sensor network for data fusion has been classified as “routing-driven”, 

“fusion-driven” and “coding-driven” (Luo et al., 2009). Routing-driven approaches 

involve the aggregation of data for delivery to the sink with an emphasis of various 

performance metrics. Coding-driven approaches encompass the compression of data 

(source coding). Fusion-driven approaches perform redundancy removal in sensed data 

being denoted by an average value (Luo et al., 2009). The fusion rule for sensor 

networks with multi-hop strategies has been discussed using complete knowledge and 

incomplete knowledge of the channel status (Lin al., 2005). The likelihood ratio-based 

fusion rule is feasible for a low signal-to-noise ratio (SNR) environment. The 

information transmission is performed using the decision rule and channel statistics to 

achieve optimal performance (Lin et al., 2005). 

2.1.2 Energy Consumption 

The distribution of energy is a significant metric and can be analyzed by using 

the first order radio model (Heinzelman et al., 2000). Free space or multi-path fading 

channel models are utilized based on the distance between transmitter and receiver. The 

cluster member and primary cluster head (PCH) nodes consume ���  amount of energy 

to transmit l bits of packet over distance d with ���  amount of energy for reception 

where ����� is the dissipated energy in a circuit and 	
� �� 	�� are the free space and 

multi-path fading parameters respectively. The d0 denotes the distance at the intermediate 

node. 

The energy dissipation model is defined in equation 2.1 and 2.2. 

�����, �� =  � ������ +  �	
���, � < �������� +  �	����, � ≥ ��              (2.1) 

������ =  ������                                                     (2.2) 
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Systematic power analysis is an important factor in determining the bottlenecks 

in sensor nodes (Raghunathan et al., 2002). In addition to sensing and communication 

process, sensors also perform the operation of forwarding data from other nodes to 

reach the sink. Any energy drainage will lead to discontinuity in transfer of information. 

Wireless sensor nodes with limited energy and communication range usually exchange 

information with nearby nodes. Therefore by decreasing the volume of transmissions, 

minimal depletion of energy has been achieved (Mahfoudh & Minet, 2008). The long-

time operation of wireless sensors requires proper execution of an energy budget. The 

energy operation can be classified based on the sensing subsystem or the network 

subsystem (Anastasi et al., 2009). The sensing subsystem signifies the number of 

samples it obtains for the event. The network subsystem emphasizes on the operation of 

nodes and the design of protocols for data gathering and transfer. 

This thesis focuses upon both sensing and network subsystems. In the sensing 

subsystem the obtained data can be represented in a sparse manner for recovery. 

Network subsystem focuses on reduction in the transmission of sensors during data 

transfer.  

 

 

 

 

 

 

 

 

 

 

Univ
ers

iti 
Mala

ya



15 

 

2.2 Data Acquisition in Sensor Networks 

In distributed sensor networks the transfer of sensed data can be managed in a 

centralized manner, distributed manner or a combination of both hybrid approaches 

(Chong & Kumar, 2003). Distributed sensing yields a higher SNR compared to 

centralized sensing when the signal of interest is unknown (Estrin et al., 2001). 

However in most scenarios the sensed data is transferred from distributed sensors for 

processing at the sink. Data dissemination with direct diffusion has been discussed 

(Intanagonwiwat et al., 2003). The first step is concerned with data dissemination where 

the sink propagates the desired data of interest to the sensors and is aware of the 

application. Secondly a gradient setup has been initiated where based on the interest 

neighbors perform local interaction. Finally a path reinforcement policy is realized and 

periodically updated for the transfer of data. In sensor data collection process, there are 

three states namely: deployment stage, control message dissemination state and data 

delivery state.  The deployment stage ensures the coverage and connectivity measures 

of sensors. The control message dissemination state tries to reduce the transmissions 

and maintain the residual energy. The data delivery model defines the transfer 

mechanism between the sensor and the sink with no compromise on the metrics Quality 

of Service (QoS) (Wang & Liu, 2010). The relationship between coverage and 

connectivity in states’ transmission range (Rt) should be greater than or equal to two 

times the sensing range (Rs) as in equation 2.3 (Zhang & Hou, 2005).  

    ��  ≥   2 ��                                       (2.3) 

In-network data aggregation refers to the process of sensing (gathering of 

information) and routing in multi-hop communication, where intermediate nodes 

subsequently reduce the resources consumed resulting in elongation of lifetime (Fasolo 

et al., 2007). This can be coarsely divided with the objective of size reduction in the 

transmission of information or without size reduction in transfer of information. 
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Figure 2.2: In-network data aggregation process 

Figure 2.2 presents the description used for network data aggregation as in 

(Fasolo et al., 2007). Figure 2.3 presents the description used for data centric approach. 

In the data-centric approach data coming from multiple sources are aggregated at an 

intermediate node and transferred to the sink (Krishnamachari et al., 2002).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Data centric approach for information transfer 
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This approach relies on topology and information from sources. The sources can 

transfer identical information, non-identical information and non-deterministic 

information by imposing a burden on the intermediate forwarder in order to discriminate 

data. In this dissertation an emphasis on sensing the network data is performed in two 

ways: performance of data acquisition at sampling rate and performance of data 

acquisition below the sampling rate using compressive sensing technique. 

The greedy aggregation mechanism suggests prior estimation followed by 

aggregation, based on the topology provides better path sharing and considerable energy 

consumption (Intanagonwiwat et al., 2002). The aggregation process has been discussed 

based on queries. Depending on the sensory data values Structured Query Language 

(SQL) queries are assigned an aggregation function (Madden et al., 2002). In the 

sensory network query system the adaptive sample rate and query lifetime depends on 

the nature of the application. In addition the query processing workload hang on the 

routing tree for optimization. (Gehrke & Madden, 2004).  

Model-driven data acquisition explains. the locally computed sensor data can be 

reported depending on its predictions of the model. However when there is a deviation 

due to an event in the sensing field it should be reported in an appropriate interval (Raza 

et al., 2012). Network stack cross-layer approach uses a data link layer and a network 

layer to improve the network lifetime metrics of sensor networks through tuning 

appropriate parameters. Tuning parameters mainly are based on segregating the control 

operation and the data traffic (Raza et al., 2015). Literature review of sensing ranges 

and impact of routing protocols have been discussed in 2.2.1  

2.2.1 Sensing Ranges and Network Lifetime   

Adjustable Range Set Covers (ARSCs) have been proposed for duty cycle 

operations. ARSCs avoid redundancy while sensing a target in centralized and 

decentralized topologies thereby elongating network lifetime. The sensing range 
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adjustment should be coupled with the communication range for attaining energy 

efficiency. The transmission range depends on the frequency of data transmission in a 

specified time period of rounds (Cardei et al., 2005). However the discussion is suitable 

for discrete targets within the sensing field (Lu et.al 2009). The distributed lifetime 

coverage optimization (DiLCO) protocol where a subset of sensors alone is activated in 

the sensing phase has been proposed. The leader node located within the sensing field 

determines the over-coverage and the under-coverage areas (Idrees et al., 2006). As the 

problem with selecting a leader within the sub-region is difficult the duty cycle 

operation needs to be incorporated for monitoring the activity status of nodes. 

The sensor coverage depends on the type of application (critical or non-critical) 

and the connectivity depends on reporting interval. Specific attention has been given to 

the use of a queuing model ensuring connectivity between source and destination (He et 

al., 2011). Full-area coverage optimization has been discussed for extending the lifetime 

with energy metrics (Yang et al., 2014). The minimum weight value for covering the 

full area is transformed into a discrete coverage ensuring the sensing threshold based on 

the sensor location. The attribute used for the sensing threshold is based on the 

approximation ratio (the rate of data aggregation divided by the rate of optimality) 

2.2.2 Data Aggregation with Queries 

In the clustered aggregation technique (CAG) within a sensing subfield only one 

value is transmitted by the cluster to decrease the number of transmissions. The error 

threshold is provided by the cluster for calculating the accuracy (Yoon & Shahabi, 

2005). Improvements to the cluster aggregation scheme have been proposed where the 

spatial and temporal coordinates are considered in (Yoon & Shahabi, 2007). Two modes 

have been discussed according to environmental conditions namely “interactive” and 

“streaming”. In the interactive mode, one set of responses has been provided for a single 

query suitable for dynamic topologies and varying data rates. The streaming mode is 
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provided by the cluster head for a query suitable for static networks with no abnormal 

readings (Yoon & Shahabi, 2007). The curve query-based approach has been developed 

to monitor the continuous change occurring in the environment. It has been 

accomplished with a time-continuous curve associated with the retrieval of data. 

Depending on user needs the query is initiated and data may be procured for processing 

(Cheng et al., 2014). 

2.2.3 Data Gathering via Sensors with Spatial Correlation 

This subsection focuses on the extent of network data correlation in spatially 

correlated sensors. Distributed source coding (DSC) (Cristescu et al., 2005) exploits 

spatial correlation denoting the transmission structure to be optimized. The underlying 

transmission structure depends on the production rate of information and path weight. 

The coding module used in DSC is based on Slepian-Wolf coding. Distributed 

transform coding with wavelets is discussed in sensor networks (Wagner et al., 2006). 

The tree-based wavelet suggests, “breakeven points” are important for the 

transformation of communication cost. These breakeven points depend on network 

configuration parameters such as the number of sensors and transmission ranges 

determining the multi-scale transformation.  

Bit hop metrics is proposed with regard to spatially correlated sensors and graph 

theory to calculate the number of bits transmitted per cycle (Pattem et al., 2008). The 

discussion highlights the joint need for compression and routing. The in-network 

modeling of sensory data is discussed with kernel-based regression. The behavior of 

spatial-temporal processing through correlated data can be predicted and 

communication cost can be reduced (Guestrin et al., 2004).    
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2.3 Discussions on Network Resources   

This section deals with the usage of network resources from transmission cost to 

traffic intensity in line with energy consumption and network lifetime of sensor nodes. 

The impact of sensor nodes on a single radio channel requiring bandwidth usage is 

critical. Thus reducing the redundancy of sensor reading in a distributed manner is vital 

(Pradhan et al., 2002). Spatial techniques focus on working with a group of sensors 

within the sensing field while temporal techniques concentrate on individual sensors 

and their time domain. 

2.3.1 Impact of Transmission Cost 

Distributed computing in wireless sensor network communication occurs at the 

wireless interface by determining the choice between forwarding or not based on 

available bandwidth. Hence the communication protocol developed should meet the 

requirements of communication bandwidth meant to be scarce, long and incoherent with 

an enormous data rate produced by the sensors (Yick et al., 2008). The wireless channel 

exhibits power law decaying factors such as reflection, scattering and diffraction leading 

to attenuation. This causes the channel impulse response to be sparse.  

The recovery of such signals in a channel is especially difficult (Choi et al., 

2017). The pseudo probabilistic model has been discussed in terms of reducing the 

communication cost (Singh et al., 2018). It explains, within a sensing field the joint 

sensing probability is much higher than the predefined threshold. The detection 

probability decreases as the SNR increases. However the approach is difficult due to the 

topology of sensor nodes and the formation of the Johnson circle with a minimal failure 

point. 
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2.3.2 Impact of Traffic Intensity 

Fairness in transmissions is computed in wireless sensor networks for one to 

many communications. In this case fairness denotes an equal number of packets to be 

transmitted towards the destination (Ee & Bajcsy, 2004). This is achieved with 

probabilistic selection or epoch-based proportional selection depending on the 

calculations of the available bandwidth and the size of the sub-tree (Ee & Bajcsy, 2004). 

Probabilistic selection based on equal probability has been allocated to all nodes. 

Epoch-based proportional selection relies on time epochs for transmitting an equal 

number of packets. 

The QoS in wireless sensor network based on the application requirement has 

been classified into two types (Chen & Varshney, 2004). It may be end to end (observed 

data processed at the sink) or not end to end (intermediate nodes perform the 

processing) or it may even be tolerant to delay or intolerant to delay. The optimality that 

the flow of information to sinks in wireless sensor networks can be either based on 

reliability or timeliness is stated in (Felemban et al., 2006). The discussion explains, 

local decision criteria are needed at intermediate nodes in order to obtain the desired 

QoS. Two models for characterizing traffic in wireless sensor nodes with latency are 

discussed namely: regular data reports (RDRs) and urgent event notifications (UENs) 

(Wang & Wei, 2016). In the first scenario of RDR sensors transmission from source to 

sink occurs periodically at a constant rate where latency is permissible. In the second 

scenario of UEN, sensors transmission from source is unusual and unexpected and the 

reporting interval should match in terms of the appropriate latency. 

Regular reporting of link losses between wireless sensor nodes and the sink can 

consume more overheads. Hence segregating certain links with high loss and providing 

end-to-end transmission are important for sensors pertaining to local conditions 

(Nguyen & Thiran, 2006). Time-varying networks with Oseledec’s theorem denoting 
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the convergence speed of the algorithm is discussed (Denantes et al., 2008). The 

discussion reveals the contraction rate depends on the metrics of energy consumption 

and the number of transmitted messages (Denantes et al., 2008). In priority-based link 

scheduling the major constituents of priority in scheduling are traffic load, the number 

of nodes attached to the parent node and finally the hop count with regard to the sink 

(Huang & Soong, 2017).  

2.3.3 Sensor Centric Approaches 

The sensor-centric approach is proposed where nodes decide to “send” or “not to 

send” based on the informative observation obtained within the sensing interval (Rago 

et al., 1996). Similar approach has been discussed considering the reduction in 

communication cost. The work focuses on peripheral sensor nodes in small-scale fading 

channels within the sensing field (Jiang & Chen, 2005). Transmission in wireless 

sensors discussed along with mutual information rates and censoring scheme can reduce 

the observation cost and transmission cost by appropriately scheduling the censoring 

approach and the probability of sleeping (Yamasaki & Ohtsuki, 2005). A reduction in 

data volume within the sensing field using a subset of sensors is discussed where certain 

sensors provide transmissions to the fusion center based on two criteria: the maximum 

likelihood estimate (MLE) for deterministic networks and the maximum posterior 

probability for random networks (Msechu & Giannakis, 2011). 

2.3.4 Influence of Energy Consumption 

The radio frequency (RF) component used in sensor nodes for information flow 

defines, the interference rejection is lesser for short-range transmission with a lower 

duty cycle and a lower data rate (Bult et al., 1996). It is necessary to analyze the power 

consumption using a step-by-step approach after which optimization can be performed 

(Raghunathan et al., 2002). The two pivotal components involved in power 

consumption are RF components and electronics components. RF components 
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characterize the metrics of transmission distance and the type of modulation used. 

Electronics components deal with the consumed power during circuit operations 

(Raghunathan et al., 2002). Communication energy is discussed considering the data 

link layer and the physical layer (Shih et al., 2001). The computation of communication 

energy explains, a consolidated sum of energy is needed to transmit data by radio in 

addition to the energy needed to encode and decode data (Shih et al., 2001). In general 

network-wide energy has multiple dimensions where individual sensor contributions are 

high. 

Energy efficiency in sensor networks is a consolidated metric involving all of 

the open system interconnect (OSI) layers (Jones et al., 2001). It also ensures, there 

should be no bias towards communication or computation components when seeking to 

achieve the desired energy (Jones et al., 2001). Two levels of efficiency in wireless 

sensor nodes have been discussed namely the best-effort model and the reliability 

model. In the best-effort model there is no guarantee of data delivery whereas the 

reliability model guarantees it. The energy per bit discussion was made in relation to 

these two models with an emphasis on the data link and network layers (Cao et al., 

2006).  

Systematic power consumption has been realized in small-scale fading 

(Khojastepour & Aazhang, 2004). Fading channel capacity explains the average power 

and peak power to be calculated in order to achieve a certain data rate. This depends on 

fading coefficients with gradually increasing transmissions from zero power to constant 

power (Khojastepour & Aazhang, 2004). The impact of energy consumption is higher in 

fading channels compared to non-fading channels (Fazel et al., 2013). Maximum 

equivalent power consumed by a power amplifier for a single and multi-hop 

communication has been discussed where the radio environment, the drainage 

characteristic of the power amplifier is to be considered for minimal power usage 
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(Wang et al., 2006). Bidirectional Medium Access Control (B-MAC) comes with a 

bidirectional interface configured according to the workload condition (Polastre et al., 

2004). BMAC uses multi-hop routing typified by the signal strength from middleware 

(Tiny OS). Energy consumption prediction has been performed with network-wide 

synchronization of all nodes (Polastre et al., 2004).  Energy preserving has been 

discussed in association with communication and computation (Kumar & Lu, 2010). 

The energy saved in offloading can be denoted by below equation 2.4 as in (Kumar & 

Lu, 2010). 

�!

�!"#$%& = '($ −  *+, -        (2.4) 

The terminologies Ci denote the communication data and D denotes the amount 

of instructions in transfer of data to the sink. Bw denotes the bandwidth. Finally α and β 

represents power consumption which is a constant value of the node and sink or cloud. 

Five different taxonomies have been proposed for energy efficiency (Rault et al., 2014). 

The first is radio optimization deals with assigning suitable transmission power, antenna 

design and suitable modulation techniques. The second is data reduction either in the 

transmission or in the acquisition of signals. The third is the sleep-wake scheduling of 

nodes and MAC protocols. The fourth is energy-efficient routing via clustering and 

mobile sinks. The fifth involves battery repletion using energy-harvesting schemes. 

2.3.5 Energy Harvesting 

Harvesting architecture is an energy transfer process between the environment 

and the sensor nodes. The modelling approach can be at high level or at low level. The 

high level indicates the system module as a whole circuit with all its modules. The low 

level indicates the specific modules used for recharging an electronic circuit (Bader et 

al., 2014). The general taxonomy of energy harvesting system with wireless sensor node 

has been discussed. The three main components are harvesting source, harvesting 

system and load. The major sources of harvesting are solar, thermal, wind, radio 
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frequency and Electromagnetic waves. Harvesting system provides storage and power 

management capability. Harvesting Load denotes the sensors and its transceiver used 

for data transfer (Sherazi et al., 2018). Energy harvesting schemes rely on surrounding 

environment. The diurnal changes of solar radiation cause alterations in transmission 

radius of sensor networks. Energy Conserving Transmission Radius Adaptive (ECTRA) 

has been proposed where nodes can alter their transmission radius depending on the 

environment. Thus hot spot due to energy imbalance are reduced near the sink and 

reduced network delay has been achieved (Ju et al., 2018).  

2.3.6 Influence of Network Lifetime 

A node is said to be alive when it performs two operations. The first is sensing 

by sensors and reporting to the sink while the second is simply relaying information 

where the node is active but performs neither sensing nor relaying (Bhardwaj et al., 

2001). On the contrary a node is defined to be dead or inactive when it loses the 

coverage. Source nodes should characterize the feature of minimal energy in forwarding 

to the relay or the sink. Lifetime can be estimated by two means. The first is when 

sensor nodes run out of energy. The second is when a fraction of sensors run out of 

energy or while a network partition occurs during forwarding. The most significant 

factor lies in the underlying network model being deployed (Chen & Zhao, 2005). 

According to discussions in (Shah & Rabaey, 2002) the low energy path may not be 

ideal for prolonging network lifetime. Hence alternate paths from a node must be 

designed without the saturation of resources (Shah & Rabaey, 2002). Network lifetime 

states, the metrics for maximizing the lifetime should also match the maximization of 

the information flow. The intermediate node has a vertex capacity for forwarding to its 

neighbor in the vicinity or directly to the sink. However the simulation in this work 

considers a slice model with equal distance (Jarry et al., 2009). The issue of network 

lifetime with varying transmission ranges depending on their location has been 
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discussed (Perillo et al., 2004). In this scenario the farthest nodes in the sensing field 

communicate via multi-hops imposing a burden on midfield and nearer nodes. Thus it 

causes an imbalance in network-wide energy leading to drainage of the energy from 

nearer nodes (Perillo et al., 2004). The network lifetime and deployment strategies is 

discussed in (Cheng et al., 2008). The main focus of the deployment scenario concerns 

traffic type (uniform or non-uniform), sensors (homogenous or heterogeneous), energy 

(uniform or non-uniform) and increasing the number of sinks (static or mobile). Hence 

the corroboration of extended lifetime is contingent with varying metrics and 

applications.  

The ageing problem of sensor nodes in sparse and dense networks has been 

discussed. In a sparse network an increase in hop level mainly leads to a reduction in 

network lifetime. In a dense network depletion of energy occurs due to high workload 

involved in forwarding at the first hop node (Lee et al., 2008). The impact of traffic load 

associated with the radio model and its proximity to the sink has been discussed using 

per node traffic. The discussion on the energy budget states, the maximum amount of 

energy incurred during transmission reduces the operational lifetime of sensor nodes 

(Chen et al., 2009). Extending lifetime is discussed by assigning a weight value to an 

individual node and calculating the residual energy (He et al., 2011). Accordingly a 

subset of sensors with minimal energy activation is selected in order to prolong network 

lifetime. The work discusses on reducing data by correlating the spatial and temporal 

properties of sensor nodes in a sensing field, thus preventing the drainage of energy (He 

et al., 2011). 

2.3.7 Data Prediction Approaches  

Wireless sensor network performance with data mining approaches has been 

discussed (Mahmood et al., 2013). The traditional data mining cannot be incorporated in 

wireless sensor nodes because the data type is dynamic (changing fast in nature), the 
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data flow is continuous and the response time does not complement the real-time 

application. There are several data prediction approaches depending on the application 

and the time interval deciding on the next data points (Dias et al., 2016). The major 

taxonomy of predictions has been classified into single predictions and dual predictions. 

Both schemes focus on generating the prediction model either at the cluster head or at 

the sensor nodes. 
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2.4 Compressive Sensing 

In compressive sensing objects (signals) are represented by vectors and can be 

reconstructed with fewer measurements using near-optimal algorithms (Donoho, 2006). 

The process of transmission for a sampled signal with fewer measurements and 

recovery needs can be obtained with compressive sensing (Candes et al., 2007). This is 

because two of the proposed works are concerned with compressive sensing involving 

the acquisition of sensed data and it varies from the conventional data acquisition. The 

preliminary stage of compressive sensing is discussed in the following sections. 

2.4.1 Preliminaries in Compressive Sensing 

The characteristics needed for compressive sensing at the source node are sparse 

bases, the representation of measurements and a sensing matrix. From the receiver 

recovery viewpoint we should follow the Restricted Isometry Property (RIP) and 

minimal reconstruction errors. This communication methodology at the source and the 

receiver should match the dynamic environmental conditions prevailing between the 

source and the sink. The main principles behind compressive sensing are sparsity and 

incoherence (Candès & Wakin, 2008). The term sparsity in the case of a sensor has 

been represented in two ways: the first concerns the sensor’s topological coordinates 

while the second concerns the estimated sparsity of sensed data in sensing field 

(Marvasti et al., 2012).  

In this research exploiting sparsity is executed by estimating it within the 

sensing field rather than the location coordinates of the topology. The signal must be 

sparse enough to enable compressive sensing. Sparsity of a vector states, the number of 

non-zero entities is smaller than the original dimension of the vector. Generally the l0 

norm or l1 is used to check sparsity of the signal (Candes et al., 2006). The sparsity has 

been discussed with the equation 2.5 with l1 norms.  

    . ≥ 40             (2.5) 

Univ
ers

iti 
Mala

ya



29 

 

It states the number of measurements (m) should be greater than or equal to four 

times the non-zero coefficients (s) (Candes et al., 2008). Maximal incoherence should 

be present between the sensing matrix and the sparsity basis (Candès & Wakin, 2008). 

The property of coherence in compressive sensing suggests, the two columns’ 

correlation is high. If this is the case it is difficult to analyze the energy from where the 

signal has come (Candes et al., 2011). Hence to reduce the burden of post processing it 

is necessary to address the property of incoherence. The relationship between sparsity 

and incoherence indicates the process of reconstruction for a sparse signal cannot be 

achieved with a fixed measurement matrix (Candes & Romberg, 2007). The discussion 

states, sparsity is a varying factor and it could be natural; otherwise transformation 

technique needs to be applied to achieve sparsity (Candes & Romberg, 2007). 

2.4.2 Sparsity and Measurement Matrix  

Compressive sensing with single and multiple measurement vectors is addressed 

in (Tropp et al., 2006). Single measurement vector denotes the combination of basic 

signals where the sparsity can be linear in nature. In multiple measurements the sparsity 

varies and is not found to be linear in nature. In some scenarios the signals themselves 

are sparse and compressive sensing can be incorporated easily (Duarte et al., 2005). 

Two such models have been discussed: Joint Sparsity Model-1 (JSM-1) and Joint 

Sparsity Model-2 (JSM-2). In the case of JSM-1 there are two types of signals those 

with a common sparse part and those with no identical parts. Signals change smoothly 

in spatial and temporal domains with high correlation exhibit the property of JSM-1. In 

the case of JSM-2 a vector basis is used to provide the same sparse support while the 

non-zero coefficients are different (Duarte et al., 2005). 

Model-based compressive sensing has the advantage of structured sparsity in 

recovery (Baraniuk et al., 2008). Firstly it implies, the number of measurements can be 

considerably reduced if structured sparsity is incorporated. Secondly structured sparsity 
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discriminates true signal from artifacts. The sparsity of signals has a time-varying 

feature which changes as the signal travels from the source sensor to another sensor. 

The transaction probabilities of signals from slow to fast variations has been discussed 

along with multiple measurement vectors (MMVs) and least squares methods (Bawane 

& Kannu, 2019).  The results reveal a change in the measurement vector together with 

its corresponding transaction probability achieving a higher gain. 

According to the measurement matrix discussion the transformation of the 

sparse representation in order to recover a signal occurs through the encoding matrix. 

This measurement matrix can be deterministic or random. The deterministic matrix 

satisfies the incoherence criterion for all the signals. The random matrix satisfies the 

incoherence criterion for certain signals (Arjoune et al., 2018). The advantages of the 

deterministic matrix are desirable structure, minimal storage and can be used for fast 

implementation (Nguyen & Shin, 2013). However it requires prior information about 

the signal. Performance analysis of wavelet-based sensing matrix in one dimension has 

been discussed in (Yang et al., 2010). Compression ratio and sparsity level can be 

obtained by equation 2.6 and equation 2.7. The “k" in equation 2.7 denotes number of 

non-zero entity. 

Compression ratio =  <=         (2.6) 

The “Nl” denotes length of signal, “m” denotes the measurement acquired. The N 

denotes the dimension of the signal to be compressed at source. 

Sparsity level= kCD ×  100           (2.7) 

2.4.3 Reconstruction Accuracy in Compressive Sensing 

Incorporating a suitable measurement matrix can improve the information’s 

theoretical limits during recovery (Wang et al., 2010). The three pivotal terms involved 

in determining the lower bound of sparsity for recovery are as follows: “dimension of 

the signal with its represented function”, “sparsity of signals” and “sparsity of 
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measurement” (Wang et al., 2010).  The wireless channel exhibits power law decaying 

factors such as reflection, scattering and diffraction leading to attenuation. This causes 

the channel impulse response to be sparse. The recovery of signals in such a channel 

scenario is very difficult to be achieved (Choi et al., 2017). Thus the challenge lies in 

capturing the network resources and designing a proper matrix in order to ensure data 

recovery at the receiver. 

The sparse distribution of the unknown signal should be decentralized in an 

adaptive and distributive manner for recovery (Di Lorenzo & Sayed, 2012). The vector 

considers the sparsity pattern changes overtime and has to be tracked. Hence sparsity 

regularization was discussed in relation to the l0 norm indicating the number of non-zero 

entities to be restricted with an upper bound and known prior for recovery. Two 

versions of sparse signal recovery have been proposed for saturation errors namely 

“saturation rejection” and “saturation consistency” (Laska et al., 2011). Saturation 

rejection denies saturation errors and performs compressive sensing recovery. 

Saturation consistency implies, the recovery can be attained using convex inequalities. 
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2.5 Compressive Sensing in Wireless Sensor Networks 

Compressive sensing can be incorporated for a single wireless sensor node or for 

a group of nodes (Sarvotham et al., 2005). The process usually involves a group of 

nodes is known as distributed compressive sensing (DCS). DCS is implemented with a 

multi-signal in order to reveal the joint sparsity characteristics of individual signals. A 

multitude of wireless communications such as channel fading and sensor node 

properties can lead to adverse effects. To counter these effects a proper design using the 

available resources are necessary. Compressive sensing is an approach for a networking 

community where storage, transmission and retrieval take place without prior 

knowledge of the signal (Haupt et al., 2008). The two features of compressive sensing 

are “universal sampling” and “encoding in a decentralized way”. 

The sampling rate in compressive sensing depends on the content of information 

of a signal (Mishali & Eldar, 2012). In traditional sampling the sampling rate relies on 

the signal bandwidth. Hence there is a considerable reduction in the acquisition of 

signals. The sampling process explains the union of subsets can be used in order to 

minimize the resources (Mishali & Eldar, 2012). The three major components used for 

achieving this are the analog-to-digital converter (ADC), the digital signal processing 

(DSP) toolbox and the digital-to-analog converter (DAC). The ADC converts the analog 

signal to a union sequence, the DSP toolbox performs the required signal processing 

tasks, and the DAC is used for the reconstruction of the signal from the received 

samples. 

Sparse sensing explains the signal required for processing does not need to be 

sparse for recovery; however the compressive sensing signal needs to be sparse for 

recovery (Chepuri & Leus, 2016). Sparse sensing and compressive sensing both focus 

on data reduction. The process involved in sparse sensing is as follows: “estimation”, 

“filtering” and “detection” which incur complexity in processing due to perturbation of 
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the signal in the sampling space (Chepuri & Leus, 2016). Compressive sensing data are 

quantized uniformly and transferred to the sink. A resourceful sink achieves high 

reconstruction accuracy based on processing capability, rate distortion and appropriate 

quantization intervals. The network infrastructure and estimating the transfer 

capabilities of individual sensors through an awareness of the wireless environment are 

mandatory (Felipeda Rocha Henriques et al., 2019). 

2.5.1 Channel Estimation in Compressive Sensing 

The estimation of channel features is insufficient to form the channel matrix 

required for the process of compressive sensing. The basic pursuit method exploits the 

features of time-invariant channels so as to attain minimal error in compressive sensing 

(Berger et al., 2010). The recovery of noisy signals has been discussed in relation to 

compressive sensing using two sensing channels namely: independent and identically 

Gaussian observations, correlated observations (Aeron et al., 2008). Sparsity has been 

defined as the smallest number of observations with minimal distortion and the same 

signal can be recovered within the sensing channel. 

2.5.2 Data Aggregation in Compressive Sensing 

The minimal approximation error has been obtained in compressive sensing by 

selectively querying certain sensors. The selection of the queried sensors depends on the 

coefficients of the data collected. Thus the communication cost is reduced in per packet 

transmission (Wang et al., 2007). The scalability of sensors with common sparsity has 

been discussed (Duarte et al., 2009). The results show, as the measurements of network 

data increase per sensor, recovery accuracy can still be attained without increasing the 

compressive sensing measurements. Sensor perception for recovery describes the “event 

of interest for recovery” and the “sampling function” are the two criteria used to 

measure the physical event (Yang et al., 2010). 

Univ
ers

iti 
Mala

ya



34 

 

Compressive sensing has been proposed with aggregation of data and arbitrary 

topologies using compressive data aggregation (CDA). In CDA sparsity is achieved 

with diffusion wavelets. Incorporating network partition results in spatial and matching 

temporal coordinates where the former achieves high fidelity in reconstruction (Xiang et 

al., 2013). The work discusses compressive sensing of sensed data in relation to the 

autoregressive (AR) model and through it the sparsity is determined (Wang et al., 2012). 

Based on the reconstructed data and their recovery errors, the sparsity parameters are 

tuned. The data gathering process discriminates between “critical” or “non-critical” data 

and accordingly the transmissions to the sink take place (Rao et al., 2019). In the case of 

critical data the prediction-based model is incorporated and for non-critical data 

compressive sensing is used. 
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2.6 Energy Consumption in Compressive Sensing 

Compressive sensing varies from the general signal processing architecture used 

for data acquisition. Hence the energy consumption model for procuring sensed data 

also varies as has been discussed with regard to data acquisition and compressive 

sensing (DACS) (Karakus et al., 2013). 

EIJKLMNI = NPε<R + MTNPɛVWW + MTε<X         (2.8) 

Energy required for Sensor processing = E_` Energy required for DACS = ELMNI Energy dissipation for memory reading =  ε<R Energy dissipation for memory writing =  ε<X Energy required for addition = εVWW No denotes original signal acquired and Mc denotes compressed signal.  
 

A potential physical layer for censoring and compressive sensing has been 

proposed (Wu et al., 2018). The sensor node decides whether to send or to refrain from 

transmissions using partially available knowledge of the signal. A homogenous 

environment has been considered for simulations and accuracy is obtained in low and 

medium environments.  

2.6.1 Routing Protocols in Compressive Sensing 

Compressive in-network data processing (CIDPS) achieves balanced network 

traffic in wireless sensor nodes. A load balancing feature has been achieved at 

intermediate nodes, considering the link status and the compression ratio. A threshold 

value is assigned based on the traffic scenarios (Singh & Kumar, 2018). 

On-demand explosion-based compressive sensing (ODECS) has been proposed 

where the procedure works within the sensing field aimed at adaptation to the 

occurrence of events (Singh et al., 2019). ODECS mainly exploits the change in data 

rate for events incorporating compressive sensing and data gathering. In ODECS a 

protracted network lifetime is achieved rather than in hybrid compressive sensing.  It 
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also eliminates the bottleneck load near to the sink. Compressive Sensing-based Path 

Reconstruction (CSPR) collates the length of the routing path and the network size in 

order to find feasible routes. CSPR exploits sparse paths using compressive sensing 

while the reconstruction is performed at each path with a small packet. Further a 

suitable path with minimal loss is chosen (Liu et al., 2016).  

Compressive Sensing based on Packet Loss Matching (CS-PLM) discusses the 

packet loss reducing the postprocessing accuracy of the gathered data. Since the packet 

transmitted might belong to a transmission super-imposed by several nodes a multi-path 

backup scheme is proposed. It combines traditional forwarding and compressive sensing 

(Sun et al., 2018). Clustered compressive sensing (CCS) incorporates clustering and 

compressive sensing (Sun et al., 2018). It uses two methods for direct communication 

between the cluster head and the sink (D-CS) and multi-hop communication between 

the cluster head and the sink (I-CS). The block diagonal measurement (BDM) matrix 

determines the cluster size within the sensing field in CCS achieving a reduction in 

power consumption (Nguyen et al., 2016). 

In energy consumption and optimized compressive sensing (ECO-CS) an 

appropriate measurement matrix with a suitable size of measurements can reduce the 

unwanted sampling rate and hence achieve energy efficiency. The collector node which 

transfers data to the sink denies transmission to the sink, if reconstruction accuracy is 

not guaranteed by a stopping rule (Yang & Wang, 2018). 

2.6.2 Computational Capability of Compressive Sensing 

Hierarchical data aggregation and compressive sensing (HDACS) has been 

proposed and assigning varying compression thresholds depending on the size of the 

cluster and data aggregation mechanisms are discussed (Xu et al., 2015). Considerable 

energy consumption is achieved with radio and processor models using cluster specified 

parameters.  
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Forwarding Tree Construction and Link Scheduling (FTCS) states, apart from 

data gathering process the sensor node decides whether or not to schedule its 

transmission in a decentralized way. The decentralized method relies on the physical 

interference model associated with its local neighbor (Ebrahimi & Assi, 2015). 

Topology-aware data aggregation (TADA) in static scenarios uses information topology 

to reconstruct the data with accuracy. A weight coding procedure converts raw sensor 

readings into corresponding orthogonal vectors using topological information involving 

minimal energy consumption. Minimal energy consumption is achieved with short 

weight vectors (Wang et al., a, 2019). Vandermonde matrix-based scalable data 

aggregation (VSDA) discusses, when the new nodes are added the measurement matrix 

can be reconfigured depending on topological changes. VSDA also involves a 

framework in where the measurement matrix can be extended based on the prior matrix 

(Wang et al., b, 2019). 

To maximize the computational and communication aspects of compressive 

sensing two algorithms were proposed namely: compressive data storage probabilistic 

broadcasting (CStorage PB) and compressive data storage alternate branching 

(CStorage AB) (Talari & Rahnavard, 2016). In the first protocol the data collector or 

source node queries certain nodes in the transmission range in order to acquire its 

measurement vector. Then the pursuit method is used for compression and transmission 

takes place. The limitation of CStorage PB is, it depends on network topology and is 

prone to failure with any small changes. Meanwhile CStorage AB determines the 

number of next-hop forwarding nodes (two-hop) in order to contend with the network 

changes. This process ensures successful delivery for varying transmission ranges. 
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2.6.3 Wireless Network and Embedded Processing 

The important aspect of wireless sensor node is sensitive operation of reporting 

an event within the time interval. Hence this section deals with practical implementation 

including control timing performance. Real time control system with MATLAB and 

Simulink can be extended using embedded processors. It has been discussed in the 

algorithms namely “Jitterbug” and “Truetime”. Jitterbug considers packet delay and 

provides subsequent compensation. Truetime incorporates a feature where transmission 

time can be assigned randomly or based on the input data (Cervin et al., 2003). 

Response to external events and handling the event with respect to time has been 

discussed with “Harvard event driven approach” where lightweight events are handled 

directly without the aid of software handler.  The hardware systems with intelligent 

operation of circuits can provide minimal power than the general-purpose controllers. 

(Hempstead et al., 2008). 

The transition from simulation software to high level abstraction named as 

Middleware approaches hides the complexity in hardware (Mascolo et al., 2005). The 

Middleware in wireless sensor node has to support the “programming abstraction”, 

followed by “system level abstraction”, “runtime support” and “Quality of Service” 

mechanism (Wang et al., 2008). Quality of Service denotes the wireless resource 

management and reporting. This thesis entirely focuses on the simulation of wireless 

sensor networks using clustering and compressive sensing algorithms. 
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CHAPTER 3: CLUSTERING ALGORITHMS WITH DUAL SINK 

3.1 Introduction 

Clustering is a significant process improving network lifetime and energy 

efficiency of WSN. Several techniques have been proposed in WSN so as to improve 

network lifetime. Compared with flat routing protocols, cluster based (hierarchical) 

protocols efficiently manage the sensor nodes to afford a better available route. Cluster 

based network reduces the overhead of communication by involving intra-cluster and 

inter-cluster communication. Two conditions in a wireless sensor network can cause 

energy holes. The first condition is when the clusters are identical. The second condition 

is when the sink is static. The existing LEACH algorithm uses identical clusters and a 

static sink. All the clusters in the network transmit their data through the cluster nearest 

to the static sink. So those clusters closer to the static sink become reduced in their 

energy level and experience the so-called hot spot problem. The same concept is applied 

when the sink is static. By using multi-hop communication all the nodes forward their 

data to the static sink. Consequently, all the nodes near to the sink deplete their battery 

level resulting in hotspot problem. Due to equal cluster sizes and presence of static sink, 

hot spot area is created. The clusters farther away are incapable to transmit to the static 

sink, crossing the hot spot area though they possess significant energy. To mitigate this 

hot spot problem mobile sink is introduced along with static sink (dual sink) for data 

collection in EAUC-DUAL algorithm.  In the further extended ECH-DAUL algorithm 

in addition to dual sink, a novel cluster head selection method is proposed for unequal 

clustering. Thus, the two criteria of hot spot problem namely unequal cluster size with 

novel cluster head selection process and sink mobility are addressed in ECH-DUAL 

algorithm.  
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3.2 Previous Work on Sink Mobility and Clustering 

Clustering can be an ideal solution for reduction in energy as well as reduction 

in transfer of messages causing problems at the cluster head node. Clustering with 

localizing capabilities explains the routing table reduction ensuring network scalability. 

However, assigning the cluster head in a predefined manner for the transfer of data can 

lead to node disconnection or energy imbalance (Abbasi & Younis, 2007). In the case of 

a single sink with a small-scale fading channel such as Rayleigh and additive white 

Gaussian noise (AWGN) there is a high varying non-uniform data flow from the nearer 

nodes to the sink. Hence protocol development should focus on the application needed 

to curtail the death of sensors nearer the sink (Haenggi, 2003). The nodes those can 

deliver data via a single hop to the sink are subjected to fast energy drainage. Hence an 

appropriate transmission power for delivering data from the single hop node is 

necessary for communication (Haenggi, 2004). Two data transport capacity metrics for 

reliable transfer to a single sink have been discussed (Marco et al., 2003). The first is 

the total transfer capability of all nodes to a sink while the second is per node transfer 

capability (Marco et al., 2003). Thus a single sensor death due to energy depletion can 

drastically affect the transfer capability.  

Energy-Balanced Data Gathering (EBDG) has been discussed in (Zhang & 

Shen, 2008). The sensing field is divided (corona) in such way, the location of the sink 

is centered in the sensing field. Energy consumption within the corona (intra) is based 

on the amount of data within the corona and the depleted energy in its time slot. 

Subsequently inter-corona communication takes place in order to balance energy 

consumption. The problem of EBDG is the distribution of data involving dynamic 

metrics depending upon the application. Routing with a mobile sink can prolong sensor 

lifetime more than with a static sink (Luo & Hubaux, 2005). Hence a promising solution 

is to interpret the appropriate mobility pattern of the sink for data gathering. Path 
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traversal and data transfer analysis in the network topology with a single sink within a 

sensing field causes the sensor nodes to run out of energy. As such the conjunction of 

mobile and static sinks within the same sensing field alleviates sensor node death (Luo 

& Hubaux, 2005). Mobility pattern prediction can be introduced within the network 

infrastructure in a suitable environment to decrease the communication cost 

(Chakrabarti et al., 2003).  The challenge faced by wireless sensor nodes with mobile 

elements is, shortage of contact detection duration due to a limited transmission range. 

Thus the sensor has to reliably transfer within the duration of contact detection to the 

mobile element. In terms of controlled mobility this should be established with a 

suitable path and appropriate node speed (Di Francesco et al., 2011). The sink mobility 

changes the process of communication by focusing on sensor nodes within a circular 

sensing field. Nodes within the periphery are considered for transmission (Luo & 

Hubaux, 2005). A mobile sink due to its movement has to establish network-wide 

synchronization with nodes for transfer efficiency. A dual sink - where there is a static 

sink and a mobile sink achieves better efficiency and the mobile sink only controls a 

subset of nodes (Wu & Chen, 2007). The problem with a mobile sink is it incurs more 

overheads through control packets due to its broadcast nature. 

The gathering of data in a real-time wireless sensor networks is classified into 

“sink relocation” and “data dissemination to the mobile sink” (Nayak & Stojmenovic, 

2007). In the process of sink relocation shorter paths have to be taken by focusing on 

the features of load balancing and energy scenarios. Load balancing indicates the 

storage of accumulated data and the receipt of new data. The dissemination of data is a 

combination of localization and routing. In this process the mobile sink informs its 

navigation pattern and sensor route data (Nayak & Stojmenovic, 2007). The criterion of 

clustering in wireless sensor nodes using time coordinates has been discussed in (Abbasi 

& Younis, 2007).  
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Figure 3.1: Clustering with temporal coordinates 

The taxonomy of clustering is based on variable and fixed convergence time. 

These two forms are mainly associated with the clustering process, cluster head 

capabilities and clustering properties. Figure 3.1 shows time coordinates of clustering as 

in (Abbasi & Younis, 2007). The operational cost of transmission is high in non-

clustered networks compared with clustered networks (Vlajic & Xia, 2006). In non-

clustered networks transmission cost is a function of message length, the number of bits 

and the number of sensors deployed. In a clustered network transmission, cost is a 

function of the number of cluster heads. Hence cluster head selection, inter-hop distance 

and reduction in transmission should be achieved in clustering (Vlajic & Xia, 2006). 

Optimal cluster size depends on the following factors: the number of source sensors, the 

distance to the sink, and the spatial correlation existing between them (Pattem et al., 

2008). In the Dynamic Clustering Mobile Data Collector (DCMDC) the network cluster 

is made optimal along with the division of the sensing field into appropriate subzones 

(Abuarqoub et al., 2017). The discussion on DCMDC discusses about the smaller 

clusters having the tendency of buffer overflow. Hence to achieve load balancing 

optimal cluster size is needed.  
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Synchronizing cluster heads with gateway communication achieves appropriate 

load balancing. This load balancing strategy has been obtained for varying data 

generation with equal and unequal loads (Kuila & Jana, 2014). However estimating the 

traffic load prior to cluster formation is a complex task in wireless networks. The 

discussion on cluster radius suggests, the remaining energy consumption and cluster 

head rotation are not the only metrics needed for extending network lifetime. Further it 

is noted, due to the impact of network lifetime on unequal clustering, clusters close to 

the sink should have a smaller size compared to clusters away from the sink (Liu et al., 

2010). The Arbutus protocol calculates the energy consumed depending on the load. 

The channel state information used in Arbutus is as follows: “bottleneck link quality” is 

a measurement associated with link status, hop count and load. It is calculated as the 

ratio of relaying locally generated data within the desired timeslot (Puccinelli & 

Haenggi, 2008). Thus the cost incurred is calculated and premature bottleneck links are 

eradicated. However load disruption occurs in varying rates and cannot be easily 

calculated in sensors.  

Minimum Transmission Energy (MTE) in forwarding might not provide an 

optimal solution for transmission energy (Chang & Tassiulas, 2004). The information 

generation rate is either fixed or arbitrary and the link capacity consisting of number of 

routed packets are pivotal factors in network lifetime. In the case of application-specific 

low-power routing, the implementation of network lifetime is confined to the purpose of 

application where the sensors are deployed (Shokouhifar & Jalali, 2015). Tuning the 

parameters of energy consumption using a genetic algorithm and simulated annealing 

shows the improvement in network lifetime.  

Incorporating machine learning for attaining energy efficiency with the MAC 

layer has been proposed (Galzarano et al., 2014). The learning agent determines the 

duty cycle operation where the node is either powered on or goes to sleep with its 
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corresponding time slot. Depending on the application a connected correlated domain 

set captures the correlation of sensors located within a sensing field (Gupta et al., 2008). 

Hyper-graph capture correlation takes place among sensors and connectivity is 

established with correlation edges. Thus energy efficiency has been achieved by 

reducing the number of transmissions. 

3.2.1 Practical Implementation of Clustering Algorithm 

The IEEE 802.15.4 communication through fieldbus can lead to channel outage 

probability and interference. Energy transceiver operation tends to be low, hence to 

provide consistency, functionality retransmission has to be reduced (Willig et al., 2005). 

Data fusion in sensor nodes has been discussed with “Tenet architecture” consisting of 

motes where sensor data is generated locally and gathered and processed at master or 

sink. Information transfer takes place within the network diameter to the master based 

on the task requirements (Gnawali et al., 2006). Large network diameter will result in 

wastage of wireless resources due redundant sensing and interference of 

communication. Hence small network diameter of sensor within a sensing area is 

preferred. 

Application of wireless sensors using real time test bed discusses the necessity 

of time period (delivery delay of data) to perform embedded computing and 

optimization (Hoang et al., 2013). The optimal solution of achieving energy efficiency 

through clustering can be classified as software based and hardware based. In addition, 

the real time and non-real time reporting phenomena are also the metrics aiding the 

quality of service (QoS) (Amjad et al., 2017).  Using clustering process cascading 

solutions to balance the network load has been discussed. It suggests, the cluster size is 

an important metrics to determine the reboot time of sensors and resist cascading 

failures (Fu et al., 2019). 
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3.3. EAUC-DUAL - Energy Aware Unequal Clustering Algorithm with Dual 

Sink  

The proposed protocol Energy Aware Unequal Clustering algorithm with Dual 

sink focuses on unequal clustering and transmits data to the base station using dual sink. 

EAUC- DUAL algorithm uses a static sink and a mobile sink for transmission of data to 

the base station. “SS” denotes the static sink and “MS” denotes the mobile sink in figure 

3.2. The work proposes smaller-sized clusters around the static sink and increased 

cluster sizes farther away from the sink. The nodes or cluster heads in the network only 

transmit their data to their nearest static or mobile sink. Cluster heads are elected in two 

phases, the primary cluster head selection (PCH) phase followed by secondary cluster 

head selection phase (SCH). The data is transmitted from SCH of each cluster to static 

or mobile sink by intra-cluster or inter-cluster routing process. 
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Figure 3.2: Network model of EAUC-DUAL 
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Each process is detailed in the following sections. Simulation results confirm, 

EAUC-DUAL outperforms LEACH with a static sink and LEACH with a dual sink in 

terms of network lifetime and energy consumption. Figure 3.2 illustrates the network 

model. The sensor network consists of lot of sensor nodes deployed in a square area. 

Unequal clustering approach is used where network is partitioned into different cluster 

sizes. Each cluster has a unique primary cluster head and certain number of clusters 

members. The following are the criteria made about the wireless sensor nods and 

clusters. 

 There is a static sink and mobile sink located in the sensor network field. 

Static sink is positioned at the center of the network and mobile sink is 

moving in a linear pattern.  

 Primary cluster heads and cluster members are stationary after deployment. 

The significance of the sensor network is to collect data on a continuous basis 

and send to the static or mobile sink by wireless way. 

 Each primary cluster head and cluster member is assigned a unique identifier 

(ID). To recharge the batteries of sensor nodes is impossible. There is energy 

depletion only due to frequent transmission 

 The cluster members and primary cluster head can adjust the power levels 

dynamically. 

 Cluster members and primary cluster head do not have GPS equipment and 

cannot get the global position. The relative distance can be computed using 

the received signal strength. 

 Mobile and static sink nodes are aware of the location they are currently 

present.  
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The main purpose of this work is to study the performance of dual sink strategies 

with wireless sensor networks transmissions in terms of energy consumption, network 

lifetime and also to mitigate hot spot problem. A traditional network is modelled as a 

graph e�f, g� where S is the set of primary cluster heads and cluster members and L is 

the set of all links �h, i�. Here i and j are neighbor nodes. The amount of energy 

consumed by the cluster head while aggregating data is �jk (nJ/bit/signal). The radio 

energy model described in Low-Energy Adaptive Clustering Hierarchy (LEACH) 

protocol (Heinzelman, 2000) is used in EAUC-DUAL. EAUC – DAUL protocol 

balances dissipation of energy among the sensor nodes and prolongs the network 

lifetime. The below sections present the details of EAUC – DUAL protocol. 

3.3.1 Cluster Head Selection 

Secondary cluster head selection is similar to the LEACH mechanism (Heinzelman, 

2000). The secondary cluster heads are randomly selected using a threshold value. Each 

sensor node chooses a random value between 0 and 1. If the number chosen by the 

sensor node is less than or equal to the threshold value then the respective sensor node is 

selected as a secondary cluster head. Equation 3.1 defines the threshold equation. 

T�i� = m INnoKINn×pqPrsW <PW tuv           if  i ∈ NSCH                            0                            otherwise       (3.1) 

 
SCH is the desired percentage of the secondary cluster head nodes, Round is the 

current round number and zf({ is the set of non-secondary cluster head nodes in the 

last 
o|}~ rounds. Depending on the Round either the SCH or NSCH is chosen. This is 

denoted by two random values 0 and 1. Secondary cluster heads compete to become 

primary cluster heads depending on their competition range, residual energy, and node 

ID. This work focus on dual sink but the competition range is computed based only on 

the position of the static sink.  
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Each sensor node computes its distance d to the location of the static sink node 

and find its minimum distance ��$% and the maximum distance ��"�  to the static sink. 

On this root, the sensor node calculates its competition range RR in order to form 

clusters of unequal sizes. The competition range �� is predefined in 3.2. 

�� = p1 − � #���K#�|�,|�"�$� |$%��#���K#��� v ��                (3.2) 

Here �� is the maximum competition range and � is a constant between 0 and 1. 

we can observe the competition range RR decreases as the distance to the static sink 

node decreases. Each secondary cluster head has to broadcast a message including its 

competition range and its residual energy to its neighbour secondary cluster head. Those 

secondary cluster heads within the limits of the competition range �� are defined as the 

neighbor secondary cluster heads. At the end of the competition only one primary 

cluster head is tolerable in each competition range. Figure 3.3 shows an arrangement of 

secondary cluster heads. The circles represent different competition ranges of secondary 

cluster heads. In Figure 3.3 both C1 and C2 could become primary cluster heads.  

 

 

Figure 3.3: Selection of Primary Cluster Heads 
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The secondary cluster heads C3 and C4 cannot become primary cluster heads at 

the same time. Based on residual energy the secondary cluster head C3 and C4 compete 

with each other to become the primary cluster head. Secondary cluster head has a higher 

amount of residual energy and would be selected as the primary cluster head. If C3 and 

C4 secondary cluster heads have equal residual energy then the secondary cluster head 

with a slighter ID would be elected as the primary cluster head. The non-cluster head 

nodes will link itself to the nearest primary cluster heads. 

3.3.2 Dual Sink Mobility Model 

 The usage of dual sink is supportive for continuous monitoring applications and 

also reduces hot spot problem. In our work we use linear path mobile sink along with 

static sink at the centre to collect data from primary cluster heads and cluster members. 

The mobile sink node moves along the linear path back and forth and gathers data 

packets from primary cluster head or cluster member during Intra-cluster routing or 

Inter-cluster routing phase. Assume x and y to be the coordinates of the initial position 

of mobile sink and the mobile sink node (MS) moves with a velocity of 10 metres per 

round. The next round position of the mobile sink node is determined in 3.3 and 3.4. 

                           �f���o� = �f� + �����h��                            (3.3)                                       

                �f���o� = �f� + �����h��                            (3.4) 

3.3.2.1 Intra-Cluster Single Hop Communication Using Dual Sink 

In this proposed routing algorithm each cluster member node compares the 

distance to static sink ��(�, ff� and mobile sink ��(�, �f� along with the distance to 

its corresponding primary cluster head ��(�, �({�. The cluster member node �(�� 

will send its data to its corresponding primary cluster head ��({�. In case if the 

distance to the mobile sink ��f� or static sink �ff� is lesser compared to the distance of 

its corresponding primary cluster head then the cluster member transmits its data 
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directly to mobile sink. The data transmission to the primary cluster head is given in 

equation 3.5.  

Data Transmission to PCH =  d�CM, PCH� < ��CM, MS� < ��(�, ff�    (3.5) 

For intra – cluster routing using dual sink each cluster member transmits data 

directly to the sink node (static or mobile) or to its corresponding cluster head based on 

its distance. Since mobile sink and static sink are deployed, in practice some cluster 

member may consume less energy through sending direct data to the sink than to its 

primary cluster head. The cluster members are generally close to their corresponding 

cluster heads and therefore implementation of Intra – Cluster routing could minimize 

delay latency. 

3.3.2.2 Inter-Cluster Multi-Hop Communication Using Dual Sink 

Each primary cluster head node will compare the distance to mobile sink node 

���({, �f� and distance to static sink node ���({, ff�, and then transmit the data 

packet to the mobile sink node only if the distance to the mobile sink node is lesser than 

the distance to static sink node. Otherwise the aggregated data packet will be 

transmitted either directly or indirectly through neighbour primary cluster head nodes 

�z�({� to the static sink node �ff�. Equation 3.6 illustrates the data transmission to 

mobile sink. 

-��� ���0.h00h� �� �f = ���({, �f� < ���({, ff�               (3.6) 

Hence based on the shortest distance, each primary cluster head transmits data to 

the mobile sink or to the neighbour primary cluster head node. Certain primary cluster 

heads might be positioned far away from either sinks hence implementation of Inter-

cluster routing protocol not only diminishes energy consumption but also makes this 

proposed algorithm advisable and relevant for large scale wireless sensor networks. 
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3.3.2.3 Algorithm for Inter- Cluster and Intra-Cluster Routing 

  Step 1: 

 Initialize the network setup 
 
 Step 2: 

 
 Selection of secondary cluster head 
 Selection of primary cluster head 
 Formation of unequal cluster sizes 
 
 Step 3: 

 

   Intra cluster Routing 
 To send the data from Cluster Member, compare distance between Primary Cluster Head, Static  
 sink and Mobile. 

  h� �h0������ff < �({��� �ff < �f�� ���� ���0.h���� �� ff 

  h� �h0�������f < �({�����f < ff�� ���� �h�� �� 0�� �� �f 

  h� �h0�������f > �({��� �ff > �({������ �h�� �� 0�� �� �({ 

Step 4: 

  Inter cluster Routing 
 To send the data from Primary Cluster Head, distance between Mobile Sink and Static Sink are  
 compared 

  h� �h0�������f < z�({��� ��f < ff�� ���� ���0.h���� �� �f ���. �({ 

  h� �h0������ff < z�({��� ��f > z�({�� ���� ���0.h���� �� ff ���. �({ 

  h� �h0������z�({ < ff��� �z�({ < f�� ���� ���0.h���� �� z�({ ���. �({, �ℎ� 

  h� �h0������z�({ < ff��� �z�({ > �f�� ���� ���0.h���� �� ff ���. z�({ 
   Repeat the above step until data packet is transmitted to the sink 

Step 5: 

Next round, repeat step 2. 

 

LEACH protocol selects cluster head in a random manner leading to maximum 

energy availability at the specific instant of time. The protocol assumption is made in 

such a way where all nodes can transfer data to sink. However, the long detour paths 

involved in data transfer of alternate cluster head consumes more energy and decreases 

the network lifetime. In EAUC-DUAL the data transfer takes place considering 

computational capability of sensor nodes in choosing the primary cluster heads and also 

based on distance to sink.  
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3.4 Results and Discussion of EAUC-DUAL  

EAUC-DUAL for continuous monitoring of applications in wireless sensor 

networks combines an unequal clustering algorithm with dual sink in order to improve 

network performance by reducing energy consumption, prolonging network lifetime and 

mitigating hotspot problems. The operation of the proposed routing algorithm is divided 

into rounds. There are 100 sensor nodes dispersed in a 300m × 300m homogeneous 

wireless sensor network with a static sink node placed in the center of the network as 

well as a mobile sink node moving along the linear path back and forth at 10 m per 

round. Cluster member nodes transmit a 4,000-bit data packet using an intra-cluster 

routing protocol to either their corresponding PCH nodes or the sink node depending on 

the minimum distance. PCH nodes aggregate data packets from cluster members and 

transmit them using the inter-cluster routing protocol to either the static or the mobile 

sink node depending on the minimum distance. The performance of Dual Sink based - 

Energy Aware Unequal Clustering Routing Algorithm (EAUC-DUAL) is evaluated 

using MATLAB simulations. Simulation parameters are specified in table 3.1.  

Table 3.1: Simulation parameters of clustering algorithms 

Parameter Values 

 

Network Field 300 m×300 m 

Number of Sensor Nodes, Ns 100 

Initial Energy, E� 0.5 Joules 

Electronics Energy, E���T  50 nJ/bit 
Data Aggregation Energy, EDA 5 nJ/bit 

Transmit amplifier free space propagation model, ∈¡_ 10 pJ/bit/m� 

Transmit amplifier two-ray ground propagation space 

model, ε<` 

0.0013 pJ/bit/m� 

Percentage of Secondary cluster heads, SCH 0.2 

Maximum competition range, R0 40 m 

Data Packet Size 4000 bits 
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Figure 3.4: Number of Alive Nodes 

Table 3.2: Comparison of Network Lifetime  

 

Algorithms Network Lifetime 

(Rounds) 

LEACH 220 

LEACH using Both Static Sink and Mobile Sink (Linear Path 

Mobility Pattern) (LEACH-DUAL) 

242 

Energy Aware Unequal Clustering Routing Algorithm using 

Both Static Sink and Mobile Sink (Linear Path Mobility 

Pattern) (EAUC-DUAL) 

 

513 

 
The performance of the proposed clustering routing algorithm is compared with 

LEACH using static sink and LEACH using both static sink and mobile sink (LEACH – 

DUAL). Simulation results are shown in figure 3.4. From the graph it is clear EAUC – 

DUAL has increased number of rounds than LEACH and LEACH-DUAL. Table 3.2 

shows the network lifetime comparison between LEACH, LEACH- DUAL and EAUC-

DUAL. We define the network lifetime as the time period until the first node depletes 

its own energy. As seen from table 3.2, there is an obvious increase in network lifetime 

of the proposed clustering routing algorithm as compared to other routing algorithms. 

The network lifetime of the proposed clustering routing algorithm (513 rounds) is 

longer than LEACH (220 rounds) and LEACH using both static sink and mobile sink 

(242 rounds). 
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3.5 ECH-DUAL - An Energy based Cluster Head Selection Unequal Clustering 

Algorithm with Dual Sink. 

In the previous algorithm EAUC - DUAL the sensing field is small of 300m × 

300 m and hence clustering and transfer of data to sink has been effective. An ECH-

DUAL algorithm is proposed in this section where the sensing field is increased and 

further cluster head selection method is modified to enhance the energy consumption. In 

the scenario of ECH DUAL, sensing field is increased to 1000 m ×1000 m hence the 

distance between sensors increases and simultaneously the energy consumption of 

nodes also increases. So to counter the issues of energy consumption a novel procedure 

for election of tentative cluster head followed by final cluster head is proposed. In 

addition to static sink in the network, mobile sink also navigates with awareness to 

alleviate hotspots. Figure 3.5 illustrates the overall flow of ECH-DUAL algorithm. The 

network is initialized.  

 

Figure 3.5: Illustration of Energy based Cluster Head Selection Unequal 

Clustering with DUAL sink (ECH-DUAL) 
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Inter Cluster 
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(Static sink and Mobile sink) 
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The network lifetime of sensor nodes from the initialization to the transfer of 

data is determined by appropriate clustering of sensor nodes. The clustering and cluster 

head selection criteria based on energy metrics increases the network lifetime of nodes. 

Cluster Head selection is one of the crucial parameters balancing both energy and delay 

parameters when associating to its cluster members (Thakkar & Kotecha, 2006). Hence 

selection of cluster heads cannot be fixed and tends to be varying. A novel cluster head 

selection process is explained involving two stages namely tentative cluster head 

selection and final cluster head selection. In this algorithm tentative cluster heads are 

selected based on the energy-based timer (EBT) and the trust value (TV). The final 

cluster head selection approach is based on competition range, sensor energy and node 

ID. Thus unequal size clusters are formed. Data transmission takes place using dual 

sink. One of the sinks is positioned at the center of the topography while the other sink 

moves in a linear path back and forth in a linear pattern. The sinks collect data from 

final cluster head through inter-cluster and intra-cluster routing.  

Figure 3.6 represents the network model of ECH-DUAL. This model consists of 

many clusters of unequal sizes. The clusters near the sink is smaller than those clusters 

farther away so as to reduce the hot spot problem. The final cluster head is formed in 

each round depending on the signal strength and radio range. The static and mobile 

sinks are located at networks center path and its function is to gather the data from the 

final cluster heads. In the network center the static sink is fixed and mobile sink moves 

in a straight line on the network region. The nodes are clustered in each round and the 

data is collected by static and mobile sink. If the static sink is nearer to the CH the 

collected data will be transferred to the static sink. Meanwhile if the mobile sink is 

nearer to the CH the collected data will be transferred to the mobile sink.  
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Figure 3.6: Network model of ECH-DUAL 
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The same technique is applied to all clusters for effective communication 

thereby reducing the communication cost and increased network lifetime. Thus, the 

proposed ECH – DUAL algorithm emphasis on cluster head selection and routes the 

data from the final cluster head to static or mobile sink. The protocol overcomes the 

funneling effect and hotspot problems of sensor nodes by means of dual sink and also 

by incorporating unequal clustering using novel cluster head selection method. 

3.5.1 Tentative Cluster Head Selection 

Cluster head selection is based on two processes namely: Temporary Cluster 

Head (TCH) selection and Final Cluster Head (FCH) selection. Cluster Head is selected 

using tentative cluster head selection process based on Energy Based Timer (EBT) and 

Trust Value (TV). The timer is assigned to the node to choose the TCH and trust values 

are computed based on node’s overall Trust value. Node possessing highest trust value 

and Energy is chosen as TCH. In addition to this final cluster head selection is based on 

competition range, node degree and head count. The sensor nodes are assigned to timer 

based on each node’s energy. The waiting time assigned to the nodes is based on 

energy. The waiting time is assigned by using two criteria: the nodes with higher energy 

will be assigned lesser waiting time and the nodes with lower energy will be assigned 

higher waiting time.  

The node whose timer value expires first would be selected as the Tentative 

Cluster Head (TCH). This process promotes high energy nodes as the next tentative 

cluster head. Otherwise the same node of highest transmission energy acts as the cluster 

head. This energy-based timer has the following model description. Suppose for a 

node h there are £ neighbor nodes and each node can calculate the average energy value 

of their neighboring nodes: f$ = {ho,   h�,   h¥,   … h% … . h�,   } and h% denotes the �ℎ 

neighbor node. The following equation gives the average energy of node h:              
¨����©� ���©��h� = �o� ∑ ���©��h%��%«o    £ > 00                                     £ = 0 (3.7) 
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TCH is selected from the sensor nodes using the Energy based timer. For any 

sensor node ID f$ , energy-based waiting time value can be obtained from the equation 

3.8. The waiting time decreases as the energy of the node increases. The node with 

higher energy will be assigned less waiting time. This node is selected as the tentative 

Cluster Head. The selected tentative CH broadcast tentative CH message in its 

broadcast range and other sensor nodes exits the cluster head selection upon receiving 

this message before the arrival of its waiting time. 

            ¬�h��h.� �0$� =  k��"&� ®%��&� !
��C�$&¯°!�%!#�®%��&�!
|�  (3.8) 

Trust Value (TV) is used to detect the node behavior, node quality and node 

services. It is also used for data aggregation, reconfiguring and routing of sensor nodes. 

It provides a quantitative way to evaluate the trustworthiness of sensor nodes (Rajaram 

et al., 2014). Trust value is used to collect data and monitor different events in the node. 

Along with Energy based Timer (EBT) the trust value is used to find the tentative 

cluster head. Tentative CH selection follows two approaches (EBT and TV) to optimize 

best cluster head selection efficiency. The following equation 3.9 is used to calculate the 

trust value of nodes.  

��±0� ²��±���²�%!#�� = C³´Cµ¶·                    (3.9) 

Where NFD denotes number of forwarded packets and NREC denotes number of 

received packets. The trust values of the individual node are computed and the node 

with highest trust value is selected as temporary cluster head. Finally, the EBT and the 

TV returns the result of TCH selection. After this process, final CH selection is 

performed. 
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3.5.2 Final Cluster Head Selection 

TCH compete to become FCH based on parameters such as competition range, 

residual energy, node degree and head count. Based on the sensor node’s energy 

consumption dead and alive nodes of the cluster are identified. Final Cluster head is 

selected based on the following process. Number of edges incident on a node is called 

the node degree (Bettstetter, 2002). 

The average node degree of N is denoted by: 

���"%�z� = o% ∑ ���C%«o                                 (3.10) 

Where d (n) is the degree of a node, ‘n’ is the number of neighbors of node 

(links). A node of degree 0 has no neighbors. The minimum node degree of a network 

‘N’ is defined as: 

��$%�z� = .h∀%∈C{���}                      (3.11) 

The dmin and dmean gives efficient results compared to EAUC with dual sink. 

Node whose degree is higher is elected as CH. Node degree reduces the overall 

communication cost for cluster-head selection and thus it increases overall lifetime of 

the network. Each normal node belongs to only one cluster. Minimizing number of 

clusters maximizes average cluster size. The advance nodes deployed in dense areas are 

selected as cluster head. The competition range among tentative cluster heads is shown 

in figure 3.7. With respect to the chosen TCH, FCH are selected using following 

process. Consider S1, S2, S3, S4, S5 are selected as five tentative cluster heads. Each 

TCH will compute the competition range Ri, using the following formulae: 

Case 1: Competition range for tentative cluster head (S1) 

f1���o = p1 − � #���K#�|t ,|�"�$� |$%��#���K#��� v ��            (3.12) 
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Figure 3.7: Competition range of Tentative Cluster Heads 

Case 2: Competition range for tentative cluster head (S2) 

f2���� = p1 − � #���K#�|¹,|�"�$� |$%��#���K#��� v ��         (3.13) 

Case 3: Competition range for tentative cluster head (S3) 

f3���¥ = p1 − � #���K#�|º,|�"�$� |$%��#���K#��� v ��         (3.14) 

Case 4: Competition range for tentative cluster head (S4) 

f4���� = p1 − � #���K#�|»,|�"�$� |$%��#���K#��� v ��              (3.15) 

Case 5: Competition range for tentative cluster head (S5) 

          f5���¼ = p1 − � #���K#�|½,|�"�$� |$%��#���K#��� v ��                     (3.16)  

As the distance d�S¾, Static Sink� increases the competition range R¾ of the 

tentative cluster head also increases and vice versa. For example, S3 is nearer to the 

static sink and hence the distance between static sink and S3, {d (S3, static sink)} is 

small. Hence the competition radius S3�R�¥ will also be small. Thus the communication 

range of S3 will be small. Hence the sensor nodes in the respective small range join S3 

creating a small cluster, with S3 as the final cluster head as there is no other tentative 
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CH overlapping in the same range. Similarly S1 and S2 calculate the competition range. 

The range is decided based on the distance to the sink. As S1 and S2 are far from sink 

their competition range should be larger than the S3. They do not have competition or 

overlap as no other tentative CH is present in their range. Hence S1 and S2 become 

FCH. The nodes in the competition range of S1 and S2 join them as cluster members. In 

another case the TCH’s S4 and S5 overlap in a cluster. S4 and S5 compete to become 

FCH. S4 can hear the broadcast message of S5 and vice versa as their ranges overlap. 

The competition between S4 and S5 to become Final CH is explained below: 

 If S5 belongs to S4�f5 ¿f4�. S4 compares its energy with the energy of 

S5 

 E (S4> f5� then S4 broadcast itself as final CH. S4 receives a quit 

election message from S5. S4 removes S5 from its overlap region. Thus 

S4 will become the FCH for the cluster in transmission range. Other 

sensor nodes in S4 range will join S4 as its cluster members  

 E (S5>S4) then S5 sends FCH message to S4. After S4 receives the 

message from S5 it gives up and sends a quit election message to the 

nodes in overlap region. Hence S5 will be the final CH for the cluster in 

its range. All nodes in S5 range will join S5 as its cluster members. 

 If the energy of S4 and S5 are equal (tie) then the node with smallest id 

will become the final cluster head.  

The pseudo-code for CH selection in unequal clustering algorithm provides an 

efficient energy balance in the network. Figure 3.8 explains the Pseudo code for 

tentative CH selection and final CH selection. The Energy Based Timer (EBT) and trust 

value are used to choose TCH. The FCH is selected based on the node degree, 

competition range, residual energy and head count. 
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Figure 3.8: Pseudo code for Tentative CH and Final CH selection 

 

 

 

 

 

¨�© ���©� �h� = À1£ Á ���©��h
£

=1 �   £ > 0
0                                  £ = 0Â 

dmean �N� = 1n ∑ d�n�Nn=1��� ��� ��0� ����  

R i = Ã1 − c dmax − d�Si , Static Sink�dmax − dmin Å R0 

Pseudo-code for Tentative CH and Final Cluster Head Selection 

Initialization: 

Energy (E), Temp_CH(Sj), Total Energy (Etotal), Forwarded packets (NFD), 

Total Number of Packets (NREC), non-cluster set of nodes (G), 
Number of Node (N) 

Case 1: Tentative CH Selection  node (i)∈ [Within Network Region] 
energy(i)Energy level of node i 

initialize timer (i)‘k’, neighbor node, h  nth neighbor node with sensor node Si 
elect cluster head as ‘n’ 

if n become the cluster head 
process checks the cluster distance of 

dmax= max (dmax, distance) and dmin=min(dmin, distance) 
Calculate the average energy 

until end of the node in non-cluster set of nodes (G) 

Wait Time (Si)=  (Average Energy of Si  Neighbor node)/(Energy of Si ) 

repeat process to reach successive tentative Cluster Heads with high probability 
Case 2: depends on the Random node (n) and non-cluster set of nodes (G) 

if ‘n’ sends advertisement and join request to G 
Non-cluster set of nodes checks and verifies the cluster head 

dmax and dminwith the total energy Etotal=Etotal+ E 
else 

Create cluster head (CH) for new cluster 
form the remaining non-cluster set of nodes 

perform case 1: and case 2: 
calculate the trust value, (TV)nodes=NFD/NREC 

Result: tentative cluster head selection 
Case 3: find final cluster head selection 

compute the node degree by dmin = min∀n∈N{d�n�} , average node degree by 

Calculate competition range of tentative cluster head by 

If distance d�Si , Static Sink� is increases 
Competition range Ri increases 

else if distance d�Si , Static Sink� is decrease 
Competition range Ri decrease 

Condition 1:  cluster size w.r.t. sink by near  small 
Condition 2:  cluster size w.r.t. sink by far  large 

Select the CH as FCH; 
Result:FCH selection Univ
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3.5.3 Energy Consumption  

The Residual Energy (RE) of proposed algorithm is measured in each round 

starting from the current Round, Round+1 and Round+ 2 until final node is reached. 

The energy consumption rate of proposed system is shown in equation 3.17 to 3.20. The 

energy consumption measured in various rounds is as follows: 

In current round the energy consumed by CH is given in equation 3.17. 

��0h�±�����©� = �� + f�h� ∗ �                       (3.17) 

From this the average residual energy (ARE) is calculated using, 

¨�����±� + 1� = �®��!Ê%#�o��                                    (3.18) 

The Total Energy Consumption (TEC) on each round are calculated using the following 

equation. 

��(���±� + 1� =  �� ∗  − �����±� + 1�           (3.19) 

In case there are ‘n’ layers available in the network the average energy consumption of 

node can be defined as: 

¨�(���±� + 1� = �®}��!Ê%#�o�%              (3.20) 

The AEC is calculated with respect to the total energy consumption. TEC consists of the 

average of all transmitted energy, received energy, idle energy and sleep mode energy. 

3.5.4 Static and Mobile Sink in Network Model 

The proposed dual sink used for aggregated data transmission network model is 

based on the static and mobile sink. At the center of the network the static sink is fixed 

to collect data from nearby CH and mobile sink moves in a linear path on the network 

region towards the static sink. The CHs gather data from their cluster members. This 

data can be sent directly or through intermediate CHs to the static sink. As a result, the 

static path is created and hot spot problem may occur due to energy dissipation in WSN. 

Hence mobile sink is also used to collect data so as to avoid hotspot problem. The 

coordinates of static sink are given by equation 3.21 and 3.22. The mobile sink travels 
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along a straight path across the entire network preventing premature death of sensor 

nodes. The coordinates of mobile sink are given by equation 3.23 and 3.24. 

fh£. Ë�hÌ�� = 0.5 ∗ Ë.                                           (3.21) 

fh£. Í�hÌ�� = 0.5 ∗ Í.                                 (3.22) 

fh£. Ë.��h�� = 0.5 ∗ Ë.                                 (3.23) 

fh£. Í.��h�� = 0 ∗ Í.                                 (3.24) 

In equation 3.21 Xm denotes the x coordinates of the sink in topography. In equation 

3.22 Ym denotes the y coordinates of the sink in topography. The figure 3.9 depicts the 

flowchart for inter cluster communication where the cluster head decides to 

communicate to static or mobile sink based on the distance.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Flow chart for Inter cluster communication 

Figure 3.8 Shows communication between cluster head and 

sink using ECH DUAL 
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3.6 Results and Discussion of ECH-DUAL 

The characteristics of each node in the network and its performance are analyzed 

based on efficient cluster head selection and data transmission using dual sink. The 

proposed methodology is tested using MATLAB. In this work the terrain area of 1000 

m ×1000 m is simulated with 100 nodes. The Maximum competition range (R0) 40m is 

assumed as the network region. 

The proposed ECH –DUAL is compared with EAUC algorithm. In addition the 

experiments are conducted to determine the number of alive nodes, dead nodes, residual 

energy, average residual energy, total energy consumption, average energy consumption 

and the network lifetime. The simulation iteration rounds vary from round 1 to 4250. 

The simulation is carried out by using the parameters given in table 3.3. 

Table 3.3: Simulation parameters of ECH-DUAL and EAUC-DUAL 

Parameters Values 

Network Field 1000 m ×1000 m 

X dimension of topography 1000m 

Y dimension of topography 1000 m 

Number of Sensor Nodes, N 100 

Initial Energy, E� 0.5 Joules 

Electronics Energy, E���T  50 nJ/bit 
Data Aggregation Energy, EDA 5 nJ/bit 

Transmit amplifier two-ray ground propagation 

space model, Î<` 

0.0013 pJ/bit/m� 

Percentage of tentative cluster heads, PCH 0.2 

Maximum competition range, R0 40 m 

Data Packet Size 4000 bits 

Antenna Model Omni Antenna 

Simulation time 200s (Minimum:200s, 

Maximum:10000s) 
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EEUC - Energy Efficient Unequal Clustering (Li et al., 2005) is used for 

comparisons. In EEUC protocol unequal clustering occurs based on competition range.  

range. The size of clusters increases monotonically for nodes further away from static 

sink. The work uses two sinks (static and mobile). Euler approach has been used in 

static sink (data is collected at a point in space at the same instance of time) and 

Lagrangian approach has been used in mobile sink. The outcome produces less energy 

consumption and increases network lifetime and also avoids hot spot problem. At the 

time of simulation each node has its own power or energy. The energy is used to 

communicate with the neighbor node for data transmission. This type of nodes is called 

as the Alive Nodes. Alive nodes are identified based on balanced energy distribution 

and nodes lifetime. When the energy of a node become empty the node becomes dead. 

The alive nodes with 4250 randomly selected rounds are shown in figure 3.10. The 

proposed ECH-DUAL is compared with the EAUC-DUAL. The proposed algorithm 

maintains the alive node count high until the system reaches 4250 rounds. 

 

 

 

 

 

 

 

 

 

                        Figure 3.10: Number of Alive Nodes versus Rounds 
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Table 3.4: Comparison on Number of Alive nodes. 

Rounds Number of Alive Nodes 

ECH – DUAL (Proposed) 

Number of Alive Nodes 

EAUC– DUAL 

250 100 nodes are alive 100 nodes are alive 

500 100 nodes are alive 100 

1000th 100 nodes are alive 28 

1120th 99 nodes alive (1st node dies) 6 

1500 70 nodes are alive 4 

2000 12 nodes are alive 3 

2500 5 nodes are alive 1 

4250 0 nodes 0 

 

Figure 3.11 reveals the number of dead nodes for different number of rounds and 

the dead node count is low for proposed system. The first node dies at 1120 rounds and 

it is related to the network lifetime. Table 3.4 shows the comparison on number of alive 

nodes at different rounds.  

 

 

 

 

 

 

 

 

Figure 3.11: Number of Dead Nodes versus Rounds  
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                           Table 3.5: Comparison of Number of Dead Nodes 

Rounds Number of Dead Nodes 

ECH DUAL – (Proposed) 

Number of Dead 

Nodes 

EAUC- DUAL 

250 0 nodes 0 

500 0 nodes 0 

1000th 0 nodes 72 

1120th 1 node dies 94 

1500 30 nodes die 96 

2000 88 nodes die 97 

2500 95 nodes die 99 

4250 100 - All nodes die 100 

 

Table 3.5 depicts the number of dead nodes at different rounds. Figure 3.12 

provides the average residual energy of each node with 4250 randomly selected rounds. 

The proposed ECH-DUAL is compared with EAUC-DUAL and the proposed system 

maintains less average energy consumption compared to the existing system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Average Residual Energy with respect to Rounds 
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Table 3.6: Comparison on Average Residual Energy 

Rounds Average Residual Energy – 

ECH DUAL (Proposed) 

Average Residual Energy 

– EAUC DUAL 

250 0.9 Joules 0.37 Joules 

500 0.7 Joules 0.22 Joules 

1000th 0.4 Joules 0.02 Joules 

1120th 0.37 Joules 0.01 Joules 

1500 0.10 Joules 0 Joules 

2000 0.04 Joules 0 Joules 

2500 0.01 Joule 0 Joules 

4250 0 Joule 0 Joules 

 

Table 3.7: Comparison on Network Lifetime  

Algorithms 
Network Lifetime 

(Rounds) 

EAUC-DUAL 513 

PROPOSED - ECH-DUAL 1120 

 

Table 3.6 shows the average residual energy of sensors nodes obtained at 

different rounds. The Network lifetime for EAUC-DUAL and ECH-DUAL is given in 

table 3.7 and it is observed ECH-DUAL method returns higher network lifetime. Figure 

3.13 shows comparison of lifetime of network (energy consumption) for the two 

algorithms with fixed dimension of 1000m ×1000m. From figure 3.13 the proposed 

ECH-DUAL achieves high network lifetime when compared to EAUC-DUAL. 
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           Figure 3.13: Comparison of Network Lifetime in terms of Rounds 

3.6.1 Scalability of Nodes 

In CAST WSN (Baradaran & Navi, 2017) initially the cluster density is chosen 

as 3 and the cluster size is gradually increased to 10 based on the distance coordinates. 

New position coordinates are being determined by using the energy center and cluster 

heads. Quality index of a cluster decides whether to reinitiate clustering or not. In CAST 

WSN two sinks are positioned and they are static in nature. ECH-DUAL positions a 

static and mobile sink. Table 3.8 and table 3.9 shows the simulation parameters of ECH-

DUAL and CAST WSN with increased number of nodes and increased network area.  

Table 3.8: Simulation parameters of CAST WSN 

 
Protocol 

Name 

Number 

of nodes 

Initial energy Total energy Number 

of 

clusters 

Monitoring 

area Minimal Maximal Minimal Maximal 

CAST 
WSN 

500 0.4 0.7 200 350 10 1000 m× 
1000 m 

 
Table 3.9: Simulation parameters of ECH-DUAL  

 
Protocol 

Name 

Number 

of nodes 

Initial energy Total energy Sink Monitoring 

area  
0.5 J 

 
250 

One static 
sink 

ECH 
DUAL 

500 One mobile 
sink 

1000 m × 
1000m 
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Figure 3.14: Average Residual Energy versus Rounds  

 

Figure 3.14 and table 3.10 shows the average residual energy with respect to 

rounds for ECH-DUAL and CAST WSN. The average residual energy is higher in the 

case of ECH-DUAL due to rotation of cluster heads and mobility of one sink. The 

rotation and selection of Final Cluster Head in ECH-DUAL comprises of various 

metrics as discussed in the above section. The energy consumption is increased in 

CAST WSN due to static center and cluster head selection process is based only on the 

distance metrics. The simulation parameters of ECH-DUAL and EAUC-DUAL are 

shown in table 3.11. The network area is increased to 2000 m×2000 m. Also 1000 

sensor nodes are used for simulation in the network area.  

Table 3.10: Comparison of Average Residual Energy  

                ECH-DUAL and CAST WSN 

 

Rounds Average Residual Energy 

ECH-Dual 

Average Residual Energy 

CAST WSN 

250 0.9 0.8 

500 0.7 0.6 

1000 0.4 0.3 

1250 0.2 0.1 
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Table 3.11: Simulation parameters – Increased network area 

 

Parameter Values 

Network Field 2000 m×2000 m 

Number of Sensor Nodes, Ns 1000 

Initial Energy, E� 1 Joules 

Electronics Energy, E���T  50 nJ/bit 
Data Aggregation Energy, EDA 5 nJ/bit 

Transmit amplifier free space propagation model, ∈¡_ 

10 pJ/bit/m� 

Transmit amplifier two-ray ground propagation 

space model, ε<` 

0.0013 pJ/bit/m� 

Percentage of Secondary cluster heads, SCH 0.2 

Maximum competition range, R0 40 m 

Data Packet Size  1000 bits to 4000 bits 

 

 
 

Figure 3.15: Residual Energy versus Data packet size. 

In figure 3.15 the residual energy of sensor nodes is measured by gradually 

increasing the packet size. Residual Energy decays in both protocols with increasing 

packet size. ECH-DUAL achieves better energy utilization with clustering compared to 

conventional EAUC-DUAL.  
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 Table 3.12: Comparison on Data Packet Size and Residual Energy 

Data Packet Size 
Residual Energy ECH 

DUAL (Proposed) 

Residual Energy – EAUC 

DUAL 

125 B                  0.991 J                  0.809 J 

250 B                  0.939 J                  0.711 J 

375 B                  0.823 J                  0.531 J 

500 B                  0.739 J                   0.456 J 

625 B                  0.591 J                   0.309 J 

 

 

Figure 3.16: Packet Drop Rate versus Data Packet Size 

Table 3.12 shows the comparison values on data packet size and residual energy. 

Trade- off between Data packet size and packet drop rate is shown in table 3.13 and 

figure 3.16.  Both the protocols exhibit increased drop rate due to faulty links, hence are 

unable to route the packets. ECH-DUAL has reduced drop rate when compared to 

conventional EAUC-DUAL. 

Table 3.13: Comparison on Packet Drop Rate 

 

Data Packet Size 
Packet Drop rate-ECH 

DUAL (packets/second) 

Packet Drop rate-EAUC 

DUAL (packets/second) 

125 B 140 181 
250 B 235 278 
375 B 341 386 
500 B 428 484 
625 B 561 602 
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Figure 3.17: Network Lifetime versus Data Packet Size 

Network lifetime is a function defined when first nodes run out of energy and 

refrains from forwarding. In figure 3.17 a decrease in network lifetime is observed with 

increasing packet size. ECH-DUAL has longer connectivity ensuring higher network 

lifetime than the EAUC-DUAL. Table 3.14 shows the comparison of data packet size 

and network lifetime of ECH-DUAL and EAUC-DUAL.  

   Table 3.14: Comparison of Data Packet Size and Network Lifetime 

Data Packet Size 
Network lifetime -ECH 

DUAL (seconds) 

Network lifetime -EAUC 

DUAL (seconds) 

125 B 7521  6843 

250 B 7005 6407 

375 B 6456 5924 

500 B 5321 4939 

625 B 4881 4237 
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3.7 Cox Regression Analysis 

Cox regression denotes the occurrence of an event at a time. The survival rate 

prior and posterior to an event with respect to time is denoted as hazard ratio. This 

research work figures out the numerical values of hazard ratio for the proposed protocol. 

The impact of the results obtained and its numerical deviation from its conventional 

protocol is significant. SPSS has been used for numerical interpretation and there are 

prior works analyzing the results obtained and also depicts the relationship between 

signal strength and energy consumption (Xu et al., 2010). Impact of data generation 

with the metrics of delivery has been analyzed linearly with regression using the results 

obtained. Similarly traffic volume analysis is performed for clustering using SPSS tool 

for the raw data provided to form appropriate clusters (Kanget al., 2019).  

Data analysis is performed on the results obtained from ECH-DUAL and 

EAUC- DUAL using Cox regression. The parameters used for analysis of the two 

algorithms are alive nodes and average residual energy. The data analysis using Cox 

regression is performed in order to validate the obtained simulation results of ECH-

DUAL and EAUC-DUAL. Statistical analysis is also performed to prove the alternate 

hypothesis. Table 3.15 depicts the overall result of alive nodes. 

          Table 3.15: Overall results of Alive Nodes - MATLAB  

 

  Rounds ECH – DUAL_A 

(Proposed) 

ECH – DUAL   

(Status) 

EAUC– 

DUAL_A 

EAUC– DUAL 

(Status) 

250 100 0 100 0 

500 100 0 100 0 

1000 100 0 28 1 

1120 99 1 6 1 

1500 70 1 4 1 

2000 12 1 3 1 

2500 5 1 1 1 

4250 0  1 0 1 
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Null Hypothesis: There is no impact of dead nodes and average energy consumption 

with increase in rounds. 

Alternate Hypothesis: There is an impact on number of dead nodes and average energy 

consumption with increase in rounds. The round indicates the time the simulation is 

being run. The hazard ratio is the death of node denoted by Exp (B) in table 3.20 and 

table 3.27. 

Dependant variable: Rounds  

Covariates: Alive nodes and average residual energy. 

In table 3.8 the status 1 indicates the node is dead, the status 0 indicates the alive 

nodes. A single node death can partition the sensing field in a network. 

3.7.1 Cox Regression of ECH_DUAL_A 

ECH_DUAL_A represents the alive nodes in the algorithm. Table 3.16 shows 

the case processing summary where the total number of rounds is 8. In this case 3 

rounds are censored wherein death of node has not occurred. The corresponding 

percentage of event occurred or not occurred is also tabulated. “a” in the table denotes 

the parameter “rounds” and it is a dependant variable.  

      Table 3.16: Case processing summary of ECH_DUAL_A  

 

 
Case processing summary 

Ns Percentage (%) 

 

Cases 

available 

in analysis 

Eventa 5 62.5 

Censored 0 0 

Total 5 - 

Cases with missing values 0 0 

Cases with negative time 0 0 

Cases 

dropped 

Censored cases before the earliest 

event in a stratum 

3 37.5 

0 0 

Total 3 - 

Overall Total 8 100 
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                Table 3.17: Omnibus test for model coefficients of ECH_DUAL_A 

-2 Log Likelihood 

9.575 

 

                Table 3.18: Iteration historyb of ECH_DUAL_A 

-2 Log Likelihooda Coefficient 

ECH_DUAL_A 

3.513 .049 

2.613 .079 

1.791 .135 

 

Table 3.17 shows the model coefficient for ECH_DUAL_A at the beginning of 

the block with no predictors. The value of initial log likelihood function denoted for 

stratification by -2 Log likelihood is 9.575. The iteration history in table 3.18 indicates 

the change beginning from the initial estimates to last three iterations. In this table “a” 

denotes the beginning block number 0 and “b” denotes the iteration values to check 

whether at least one coefficient tends to infinity after 3 iterations. 

The chi square change shown in table 3.19 indicates the predictors denoted in 

terms of -2 Log Likelihood times the model at previous stage and current stage. “a” 

denotes the beginning block number 1. From table 3.19 the test is statistically 

significant with Sig value less than 0.05. Hence the test of null hypothesis can be 

rejected and alternate hypothesis is proved. 

Table 3.19: Omni bus test for model coefficientsa of ECH_DUAL_A 

.  

 

 

 

 

-2 Log 

Likelihood 

Overall (score) Change from 

Previous Step 

Change from Previous 

Block 

Chi-

Square 

df Sig Chi-

Square 

df Sig Chi-

Square 

df Sig 

1.791 5.853 1 .016 7.784 1 .005 7.784 1 .005 
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The confidence of estimates (survival function) is shown in table 3.20 where 

estimate of the hazard is denoted by Exp (B). The hazard ratio is 1.144.  The “B” 

denotes the Regression coefficient, SE denotes standard Error, df denotes degree of 

freedom. CI denotes the Confidence interval. The Wald can be calculated by using 

p +|®v�
. The mean of covariates is shown in table 3.21. The covariates indicate the mean 

of alive nodes. The figure 3.18 shows the survival function for ECH_DUAL_A 

signifying the life time table decrease with increase in rounds. 

Table 3.20: Variables of ECH_DUAL_A 

 

ECH_DUAL_A 
 

B 

 

SE 

 

Wald 

 

df 

 

Sig. 

 

Exp(B) 

95.0% CI Exp(B) 

Lower Upper 

.135 .151 .799 1 .371 1.144 .852 1.537 

 

                              Table 3.21: Covariates mean of ECH_DUAL_A 

 

ECH_DUAL_A 

Mean 

37.200 

 

 

 

 

 

 

 

 

 

 

Figure 3.18:  Survival Function of ECH_DUAL_A 
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Figure 3.19: Hazard Function of ECH_DUAL_A 

 

The figure 3.19 shows the Hazard function for ECH_DUAL_A signifying the 

risk factor increase with increase in rounds. The occurrence of risk factor is nearer to 

1120. 

3.7.2 Cox Regression of ECH_DUAL_AE 

ECH_DUAL_AE represents the average residual energy in the algorithm. The 

table 3.22 indicates the simulation results obtained for both the proposed protocol and 

conventional protocol and the status of surviving nodes. Table 3.23 shows the case 

processing summary where the total number of rounds is 8. In this case 3 rounds are 

censored wherein death of node has not occurred. The corresponding percentage of 

event occurred or not occurred is also tabulated. “a” in the table denotes rounds as a 

dependent variable. 
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Table 3.22: Overall results of Average Residual Energy - MATLAB  

 

  Rounds ECH _DUAL_AE 

(Proposed) 

ECH_DUAL   

(Status) 

EAUC– 

DUAL_AE 

EAUC– DUAL 

(Status) 

250 0.9 0 0.37  0 

500 0.7 0 0.22  0 

1000 0.4 0 0.02  1 

1120 0.37 1 0.01  1 

1500 0.10 1 0  1 

2000 0.04 1 0  1 

2500 0.01 1 0  1 

4250 0 1 0  1 

 

        Table 3.23: Case processing summary of ECH_DUAL_AE  

 

 Case processing summary Ns Percentage % 

Cases 

available 

in analysis 

Eventa 5 62.5 

Censored 0 0 

Total 5 - 

Cases with missing values 0 0 

Cases with negative time 0 0 

Cases 

dropped 

Censored cases before the earliest 

event in a stratum 

3 37.5 

0 0 

Total 3 - 

Overall Total 8 100 

 

Table 3.24 shows the model coefficient for ECH_DUAL_AE at the beginning of 

block with no predictors. The value of initial Log Likelihood function denoted by -2 

Log likelihood is 9.575.  

            Table 3.24: Omnibus test for model coefficients of ECH_DUAL_AE 

-2 Log Likelihood 

9.575 

 

 

Univ
ers

iti 
Mala

ya



81 

 

             Table 3.25: Iteration historyb of ECH_DUAL_AE 

-2 Log Likelihooda Coefficient 

ECH_DUAL_AE 

3.854 17.208 

2.374 34.749 

1.367 61.283 

 

 

           Table 3.26: Omni bus test model coefficientsa of ECH_DUAL_AE 

 

The iteration history in table 3.25 indicates the change beginning from the initial 

estimates to last three iterations. In this table “a” denotes the beginning block number 0 

and “b” denotes the iteration values to check whether at least one coefficient tends to 

infinity after 3 iterations. The chi square change shown in table 3.26 indicates the 

predictors denoted in terms of -2 Log Likelihood times the model at previous stage and 

current stage. “a” denotes the beginning block number 1. From table 3.26 the test is 

statistically significant with Sig value less than 0.05. Hence the test of null hypothesis 

can be rejected and alternate hypothesis is proved. The “B” denotes the Regression 

coefficient, SE denotes standard Error, df denotes degree of freedom. The confidence of 

estimates (survival function) is shown in table 3.27 where in estimate of the hazard is 

denoted by Exp (B). The hazard ratio is 4.118E+26.  

                    Table 3.27: Variables of ECH_DUAL_AE 

 

ECH_DU

AL_AE 

 

B 

 

SE 

 

Wald 

 

Df 

 

Sig. 

 

Exp(B) 

95.0% CI Exp(B) 

Lower Upper 

 
61.283 

 
54.088 

 
1.284 

 
1 

 
.257 

 
4.118E+26 

.000 4.511E+072 

 

-2 Log 

Likelihood 

Overall (score) Change from Previous 

Step 

Change from Previous 

Block 

Chi-

Square 

df Sig Chi-

Square 

df Sig Chi-

Square 

df Sig 

1.367 6.140 1 .013 8.208 1 .004 8.208 1 .004 
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The mean of covariates is shown in table 3.28. The covariate in this work 

indicates the average energy consumption of nodes. The figure 3.20 shows the survival 

function for ECH_DUAL_AE signifying the life time table decrease with increase in 

rounds. The figure 3.21 shows the Hazard function of ECH_DUAL_AE signifying the 

risk factor increases with increasing rounds. The occurrence of risk factor is nearer to 

1120. 

                                  Table 3.28: Covariates mean of ECH_DUAL_AE 

 

ECH_DUAL_AE 

Mean 

37.200 

 

 

 

 

 

 

 

 

 

Figure 3.20: Survival Function of ECH_DUAL_AE 

 

 

 

 

 

 

 

 

 

 

Figure 3.21: Hazard Function of ECH_DUAL_AE 

 

 

Univ
ers

iti 
Mala

ya



83 

 

3.7.3 Cox Regression of EAUC_DUAL_A 

EAUC_DUAL_A represents the alive nodes in the algorithm. The table 3.15 

shows the summary of alive and dead nodes of EAUC_DUAL_A. Using this the case 

processing summary for the algorithm is developed in table 3.29. The total number of 

rounds in table 3.29 is 8. The 2 rounds are censored wherein death of node has not 

occurred. The corresponding percentage of event occurred or not occurred are also 

shown. “a” represents the rounds as a dependent variable. 

Table 3.30 shows the model coefficient of ECH_DUAL_A at the beginning of 

the block without any predictors. The value of initial Log Likelihood function denoted 

by -2 Log likelihood is 13.159. The iteration history in table 3.31 indicates the change 

beginning from the initial estimates to last three iterations. In this table “a” denotes the 

beginning block number 0 and “b” denotes the iteration values to check whether at least 

one coefficient tends to infinity after 3 iterations.   

           Table 3.29: Case processing summary of EAUC_DUAL_A  

 

 Case processing summary Ns Percentage % 

Cases 

available 

in 

analysis 

Eventa 6 75 

Censored 0 0 

Total 6 - 

Cases with missing values 0 0 

Cases with negative time 0 0 

Cases 

dropped 

Censored cases before the earliest 

event in a stratum 

2 25 

0 0 

Total 2 - 

Overall Total 8 100 

 

            Table 3.30: Omnibus test for model coefficients of EAUC_DUAL_A 

-2 Log Likelihood 

13.159 
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                  Table 3.31: Iteration historyb of EAUC_DUAL_A 

 

-2 Log Likelihooda Coefficient 

EAUC_DUAL_A 

6.137 .281 

2.935 .750 

1.336 1.319 

 

The chi square change shown in table 3.32 indicates the predictors denoted in 

terms of -2 Log Likelihood times the model at previous stage and current stage. “a” 

denotes the beginning block number 1. The confidence of estimates (survival function) 

is shown in table 3.33. The estimate of the hazard is denoted by Exp (B). The hazard 

ratio is 3.739.  From table 3.32 the test is significant as the Sig value is less than 0.05. 

Hence the test of null hypothesis is rejected. The mean of covariates is shown in table 

3.34. The covariate in this work indicates the alive nodes.  

      Table 3.32: Omni bus test for model coefficientsa of EAUC_DUAL_A 

 

                 Table 3.33: Variables of EAUC_DUAL_A 

 

 

EAUC_DU

AL_A 

 

B 

 

SE 

 

Wald 

 

df 

 

Sig. 

 

Exp(B) 

95.0% CI Exp(B) 

Lower Upper 

 

1.319 

. 

873 

 

2.281 

 

1 

 

.131 

 

3.739 
.675 20.701 

 

Table 3.34: Covariates mean of EAUC_DUAL_A 

 

EAUC_DUAL_A 

Mean 

7.000 

 

 

 

 

-2 Log 

Likelihood 

Overall (score) Change from Previous 

Step 

Change from 

Previous Block 

Chi-

Square 

df Sig Chi-

Square 

df Sig Chi-

Square 

d

f 

Sig 

1.336 7.978 1 .005 11.822 1 .001 11.822 1 .001 
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             Figure 3.22: Survival Function of EAUC_DUAL_A 

 

 

 

 

 

 

 

 

 

               Figure 3.23: Hazard Function of EAUC_DUAL_A 

 

The figure 3.22 shows the survival function for EAUC_DUAL_A signifying the 

network life time decrease with increase in rounds. The figure 3.23 shows the hazard 

function of EAUC_DUAL_A signifying the risk factor increase with increase in rounds. 

The occurrence of risk factor is nearer to 1000. 
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3.7.4 Cox Regression of EAUC_DUAL_AE 

 

       Table 3.35: Case processing summary of EAUC_DUAL_AE 

 

 Case processing summary Ns Percentage % 

Cases 

available 

in analysis 

Eventa 6 75 

Censored 0 0 

Total 6 - 

Cases with missing values 0 0 

Cases with negative time 0 0 

Cases 

dropped 

Censored cases before the earliest 

event in a stratum 

2 25 

0 0 

Total 2 - 

Overall Total 8 100 

 
      Table 3.36: Omnibus test for model coefficients of     

                                  EAUC_DUAL_AE 

-2 Log Likelihood 

13.159 

 

EAUC_DUAL_AE represents the average residual energy in the algorithm. The 

table 3.22 specifies the simulation results obtained for both the proposed protocol and 

conventional protocol and the status of surviving nodes. Table 3.35 shows the case 

processing summary in where the total number of rounds is 8. The 2 rounds are 

censored wherein the death of node has not occurred. The corresponding percentage of 

event occurred or not occurred are also shown. Table 3.36 shows the model coefficient 

of EAUC_DUAL_AE at the beginning of the block without any predictors. The value of 

initial Log Likelihood function denoted by -2 Log likelihood is 13.159.  

The iteration history in table 3.37 indicates the change beginning from the initial 

estimates to last three iterations. In this table “a” denotes the beginning block number 0 

and “b” denotes the iteration values to check whether at least one coefficient tends to 

infinity after 3 iterations 
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                  Table 3.37: Iteration historyb of EAUC_DUAL_AE 

-2 Log Likelihooda Coefficient 

EAUC_DUAL_AE 

6.794 309.417 

6.512 415.092 

6.412 517.583 

 

 

       Table 3.38: Omni bus test for model coefficientsa of EAUC_DUAL_AE 

 

Table 3.39: Variables of EAUC_DUAL_AE 

 

EAUC_D

UAL_AE 

 

B 

 

SE 

 

Wal

d 

 

df 

 

Sig. 

 

Exp(B) 

95.0% CI Exp(B) 

Lower Upper 

517.583 600.731 .742 1 .389 6.076E+224 .000 - 

 

                                 Table 3.40: Covariates mean of EAUC_DUAL_AE 

 

EAUC_DUAL_A 

Mean 

.005 

 
The chi square change shown in table 3.38 indicates the predictors denoted in 

terms of -2 Log Likelihood times the model at previous stage and current stage. “a” 

denotes the beginning block number 1. The confidence of estimates (survival function) 

is shown in table 3.39. The estimate of the hazard is denoted by Exp (B). The hazard 

ratio is 6.076E+224.  From table 3.39 the test is statistically significant as the Sig value 

is less than 0.05. Hence the test of null hypothesis can be rejected. The mean of 

covariates is shown in table 3.40. The covariate in this work indicates the average 

energy consumption of nodes. The figure 3.24 shows the survival function of 

EAUC_DUAL_AE signifying the network life time decrease with increase in rounds. 

-2 Log 

Likelihood 

Overall (score) Change from Previous 

Step 

Change from Previous 

Block 

Chi-

Square 

df Sig Chi-

Square 

df Sig Chi-

Square 

df Sig 

6.412 7.117 1 .008 6.746 1 .009 6.746 1 .009 
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The figure 3.25 shows the Hazard function of EAUC_DUAL_AE signifying the 

risk factor increases with increase in rounds. The occurrence of risk factor is nearer to 

1000. From the cox regression analysis, it is clearly evident where the null hypothesis is 

rejected and alternate hypothesis is proved in both the cases (parameters) of 

ECH_DUAL. Comparing the two protocols the ECH_DUAL proves better than the 

EAUC_DUAL in terms of Hazard ratio denoted by Exp (B). 

 

 

 

 

 

 

 

 

 

Figure 3.24: Survival Function of EAUC_DUAL_AE 

 

 

 

 

 

 

 

 

 

 

Figure 3.25: Hazard Function of EAUC_DUAL_AE 
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3.8 Conclusion  

Energy Aware Unequal Clustering with Dual Sink, EAUC-DUAL suggests dual 

sink deployed in the network to gather data and prolong the lifetime of sensor nodes. 

The protocol minimized the delay and hotspot problems by integrating the advantages 

of unequal clustering and the data processing features of static and mobile sinks. 

EAUC-DUAL achieved load balancing among clusters with the formation of smaller-

sized clusters near to the static sink while larger sized clusters farther away from static 

sink. Load balancing was also achieved with fixed and dynamic paths. By means of 

intra-cluster and inter-cluster routing approaches aggregated data were transmitted to 

the appropriate sink. EAUC-DUAL enhanced network lifetime and reduced energy 

consumption. The proposed protocol was found to perform better than the LEACH 

protocol with Static sink and LEACH protocol with DUAL sink. 

 A larger sensing filed with uneven clustering and a new cluster head selection 

method is proposed in ECH-DUAL to improve the network lifetime of WSN. An 

unbiased opportunity for cluster members to become cluster heads has been proposed in 

ECH-DUAL. The ECH-DUAL algorithm proposed tentative cluster head selection and 

final cluster head selection procedures to reduce the energy consumption. The rotation 

of tentative cluster heads and selection of final cluster heads yields a superior 

performance. Tentative cluster head is chosen based on energy-based timer and trust 

value. From the tentative CH final cluster head is selected using node degree, 

competition range and residual energy. The uneven clustering method with dual sink is 

employed to balance the energy consumed by cluster heads and improve node lifetime 

in wireless sensor networks. The sensor nodes communicate within the sensing field to 

transfer data to the static or mobile sink thereby providing increased network lifetime. 

The transmission from the cluster head to the sink through static or mobile sink based 

on the distance reduces interference. The simulation results of ECH-DUAL have been 
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compared with EAUC-DUAL in terms of the number of alive nodes, energy efficiency 

and network lifetime. The scalability of EAUC-DUAL and ECH-DUAL was tested for 

varying network sizes.  Using Cox regression the obtained results are analyzed so as to 

interpret the energy consumption and the number of alive nodes. The results of the data 

analysis prove the alternate hypothesis is valid and there is a strong relation between 

energy consumption and alive nodes. In addition the hazard ratio is better in the case of 

ECH-DUAL compared to EAUC-DUAL. 
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CHAPTER 4: INACS - INTELLIGENT NEIGHBOUR AIDED COMPRESSIVE 

SENSING  

4.1 Introduction 

Compressive sensing technique samples the signal at a rate much below the 

Nyquist sampling rate by trusting on the sparsity of the signal. Signals can have sparse 

or compressible representation in original domain or in a transformed domain. Also the 

reconstruction algorithms of compressive sensing can devotedly reconstruct the original 

signal back from lesser compressive measurements. Thus physical data acquisition can 

be achieved below the sampling rate by incorporating sparsity in sensed physical data. 

Compressive sensing reduces the sensing rate enormously in dense wireless sensor 

nodes deployed within a sensing field. This is done by means of exploiting the sparsity 

of the signal and it provides fewer measurements during data transfer and also proper 

recovery of the original signal is achieved using the same fewer measurements. Once 

compressive sensing is performed the limitation occurs during data forwarding when all 

the spatial co-located sensors presume to sense the occurrence of an event and 

simultaneously transmit leading to collision. This process burdens the network 

resources.  

The proposed Intelligent Neighbour Aided Compressive Sensing Algorithm 

(INACS) decides which sensor has to transmit the data to the immediate node within the 

sensing field thereby reducing the collisions and the burden of network resources. Data 

forwarding takes place in INACS using Pearson’s correlation coefficient. This 

coefficient is formed based on spatial and temporal coordinates (intra-signal 

propagation time) of neighbor nodes. Thus when there is more than one neighbour node 

during forwarding then the sensor node simply sends readings within the sensing period 

to a uniquely selected neighbor based on the highest correlation.  
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In this algorithm the number of transmissions does not monotonically increase 

when the time period of sensing increases. INACS has been compared with compressive 

wireless sensing (CWS) technique. Time series analysis is also performed to validate 

the simultaneous association between the number of transmissions and the time period.  
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4.2 Previous Work on Compressive Sensing 

 In traditional compression techniques signals are obtained at the full Nyquist 

rate and then compressed for suitable representation. On the contrary compressive 

sensing with sub-Nyquist criteria explains, a small number of linear measurements with 

non-zero coefficients can provide signal recovery by satisfying the conditions of 

incoherence and the Restricted Isometry Property (RIP) (Chen et al., 2012). In the 

process of event monitoring to reduce the communication cost the vector representation 

corresponds to the magnitude of the event and the position coordinates (Tropp et al., 

2006). Hence two algorithms are discussed: the first is the partial consensus algorithm 

obtaining data corresponding to its event; the second is the Jacobi-based approach 

describing the event monitoring with regard to its own position (Tropp et al., 2006). 

Thus to reduce the communication cost in a wireless environment with spatial and 

temporal characteristics sparsity in data along with recovery is a significant metric. 

Sparsity-driven decomposition has been classified into two types namely: “cluster 

coherence” and “cluster sparsity” (Donoho & Kutyniok, 2013). Cluster coherence does 

not depend on the arrangement of non-zero entities whereas there is a focus on the RIP 

and coherence. The cluster sparsity arrangement of non-zero entities also plays a role in 

recovery process. 

4.2.1 Network Cost Incurred in Compressive Sensing 

Reducing observational cost and transmission cost is a pivotal task. The large-

scale sensor deployment and transfer of data have been achieved by dividing the entire 

monitoring area into smaller regions of appropriate transmission ranges (Fan et al., 

2009). The capacity of transmission associated with compressive sensing in wireless 

sensor networks is discussed in lower and upper bounds (Zhang et al., 2009). Lower 

capacity and upper bound are denoted by the following formulas by (Zhang et al., 

2009). 
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g���� ���0.h00h� ���� Ï�� ±h� ���h±0 =  ɵ pÑÒÓÒv   

 eÏÏ�� ���0.h00h� ���� Ï�� ±h� ���h±0 =  ɵ Ô √%ÑÒÓÒÖ�P× %Ø   

Where “Mc” denotes compressed signal “Wc” channel bandwidth.  and “n” 

number of nodes (Zhang et al., 2009). Compressive sensing reduces the sampling rate 

by 25% if a full probabilistic Bayesian framework and a sparse event detection process 

are used in wireless sensor networks (Meng et al., 2009). The two criteria considered for 

sparse events are the ratio of active sensors to total sensors deployed and the nature of 

the event occurring due to the simultaneously superimposition of the signal (Meng et 

al., 2009). 

Localizing a sparse target within a sensing field and incorporating compressive 

sensing provide high reconstruction accuracy. Sparse targets located at different 

positions result in varying energy decay factors; hence the measurement matrix can 

satisfy the RIP. The novel greedy matching pursuit ensures sparse recovery with target 

counting (Zhang et al., 2011). Sparsity is obtained during the process of sensing by 

turning off some sensors during the iteration. This is done by determining the signal 

strength between neighbor sensors using a consensus-based algorithm (Ling & Tian, 

2010). Each active sensor has its own measurement and it makes the recovery process 

difficult while assigning the desired communication range based on nodal density. 

Iterative hard thresholding (IHT) in compressing sensing is used to guarantee recovery 

with minimal errors and a fixed number of iterations (Blumensath & Davies, 2009). The 

IHT process is established with a sampling operator and its transpose function. The two 

versions of distributed computing with IHT are discussed: one for a static network and 

the other for a time-varying dynamic network. Static networks use the local 

computation represented by projection vector followed by global computation.  
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In dynamic networks the inexact computation of values is obtained and it is 

refined using a consensus-based algorithm with a weight function, thereby reducing 

computational time and bandwidth (Patterson et al., 2014). The sparse binary matrix 

considers the spatial coordination between sensors in data gathering (Lv et al., 2019). A 

numerical sparsity-based binary matrix achieves better recovery performance than 

conventional transforms such as discrete cosine transform (DCT) and discrete Fourier 

transform (DFT). It is also suitable for certain applications assuming that, time 

complexity involved in achieving numerical sparsity is high. 

4.2.2 Reduction of Transmissions in Compressive Sensing 

Minimum Energy Compressed Data Aggregation (MECDA) is for small and 

large-scale wireless sensor networks. In MECDA after assigning aggregation, routing 

provides an optimal solution in terms of energy efficiency (Xiang et al., 2011). The 

topology is configured to the aggregation set and the forwarding set. The non-uniform 

compressive sensing (NCS) method exploits heterogeneity in the transmission energy of 

sensors and non-uniform sampling. NCS delivers signal accuracy and a reduction in 

energy consumption by reducing the number of samples more effectively than 

conventional compressive sensing (Shen et al., 2013). Reducing the communication cost 

in wireless sensor networks has been achieved with spatially available sensory data (Wu 

et al., 2014). In other words the sparest solution of the measurement matrix should 

complement the requirement of the sensors resulting in considerable energy savings in 

wireless senor networks. The reduction in energy consumption is central to Adaptive 

Non-uniform Compressive Sampling (ANCS). It focuses on the corresponding 

coefficient of sensing energy. It achieves minimal error when sparse representation is 

available on a canonical basis (Zaeemzadeh et al., 2017). Reducing the number of 

transmissions has also been achieved with a proper measurement matrix using a Markov 

chain and compression probability (Huang & Soong, 2019). 
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4.2.3 Compressive Sensing and Joint Routing Capabilities 

Compressive Data Gathering (CDG) together with compressive sensing has been 

proposed. CDG is centered on the partial transfer of data using the weighted sum of 

sensor readings. It as well considers the topology between the parent and the child 

nodes for forwarding while imposing a burden on specific nodes leading to hotspots 

(Luo et al., 2009). Distributed data gathering and compressive sensing have been 

discussed in relation to Principal Component Analysis (PCA) (Masiero et al., 2009). 

The significant role of PCA is the transformation matrix provided with an appropriate 

sparsity level. Sample mean and covariance matrix are the two terms considered for 

reconstruction quality in PCA. A Spatial Temporal Compressive Data Gathering 

scheme (STCDG) has been proposed to achieve a reduction in traffic levels. The 

recovery accuracy is higher due to the methodology of using stability in a short time 

along with a low-rank matrix. This approach is better than one-dimensional 

compression (Cheng et al., 2013). Incorporating fuzzy-based routing with CDG, 

localization and a geographic routing technique has been discussed (Ghaderi, et al., 

2019).   

Fuzzy logic is used in the selection of cluster heads and also involved in the 

decisions of the routing table to determine the hop count. Therefore the metrics for 

reduction in energy consumption and improved lifetime have been achieved by 

increasing the sensing field more effectively than conventional geographical routing. 

Compressive sensing with single sink and multiple sink architecture has been discussed. 

The capacity depends on two main metrics: data rate and random projections. A pipeline 

scheduling scheme is considered in the case of a single sink. In scenarios with multiple 

sink a single random projection is chosen out of a number of sensors within a session 

and thus capacity for gathering data is determined (Zheng et al., 2013). Hybrid 

Compressive Sensing (HCS) uses topological information to reduce the intra- and inter-
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sensor communication to the sink. The cluster members transfer the data to the cluster 

head without compressive sensing, whereas the cluster head incorporates compressive 

sensing and transfers the data. The projection is calculated in HCS by the cluster head 

using a number of sensor nodes with the desired sparsity level as explained in (Xie & 

Jia, 2013). A sparse hybrid compressive sensing method has been proposed. In this 

approach the sink communicates the seed vector to the cluster head. The cluster head 

then generates a sparse matrix to communicate the measurement value to the sink. This 

method achieves the desired sparsity level and energy consumption. (Zhang et al., 

2018). 

4.2.4 Spatial and Temporal Compressive Sensing 

The three-step process for compressive sensing with a discussion on the 

measurement matrix is presented in (Arjoune et al., 2018). The foremost step is sparse 

representation followed by linear encoding of collected measurements. The last step is 

the sparse recovery of signals by non-linear encoding. A data loss pattern in wireless 

sensor networks has been modeled with an environmental matrix incorporating missing 

values (Kong et al., 2014). This permits for higher reconstruction accuracy to be 

achieved with temporal stability when similarities in sensor readings are prevalent 

(Kong et al., 2014). A sensing matrix with a chaotic stream matrix using the features of 

zone matching and feedback control has also been discussed. A sensing matrix with a 

chaotic stream provides sampling efficiency with minimal complexity. Meanwhile a 

Topologically Conjugate Chaotic System (TCCS) achieves higher reconstruction 

accuracy in noisy environments (Gan et al., 2018). A Structurally Randomized Matrix 

(SRM) has been proposed where the signal is pre-randomized followed by fast 

transform and finally sub-sampling of measurements is performed (Do et al., 2012). 

Distributed source coding and compressive sensing is discussed involving two-sensor 

system. The distortion rate has been optimized with vector quantization by segregating 
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the noise component. It achieves a reduction in the mean square error during signal 

reconstruction (Wang et al., 2012). Neighbor-Aided Compressive Sensing (NACS) has 

been proposed with spatio-temporal correlation in wireless sensor networks (Quan et al., 

2016). However NACS is a centralized approach relying on a single transform matrix. 

The impact of MAC layer spatial correlation and distortion rate has been 

discussed (Vuran & Akyildiz, 2016). Two version of MAC protocols were being 

analyzed namely: event MAC and network MAC. In the case of the event MAC 

protocol the distance from source to event simultaneously increases the distortion rate, 

while the network MAC protocol prioritizes the packets during transmission depending 

on the occurrence of the event. Data Density Correlation Degree (DDCD) refers to the 

clustering of the sensor based on the amount of correlated data. Hence if high 

correlation is exhibited data can be grouped in the same cluster or grouped in different 

clusters (Yuan et al., 2013). The imputation of missing sensor readings has been 

performed with spatial-temporal processing (Li & Parker. 2014). Durbin Watson 

analysis is used to interpret whether or not time correlations were exhibited between 

sensors and Pearson’s correlation revealed the spatial correlations between sensors.  

Inter-node distance-based similarity in data measures has been discussed with 

regard to Euclidean distance, cosine similarity and Pearson’s correlation. The results 

suggest, based on the application of sensors energy conservation can be achieved 

(Dhimal & Sharma, 2015). As the sensed signal is found to be higher in space and time 

it becomes enormous and has to be compressed. Temporal compression mostly relies on 

the network topology usually preferred for real time applications (Duarte et al., 2012). 

Link quality with transitional regions does not depend on distance; rather it is 

unpredictable and unreliable (Baccour et al., 2012). In a short time span the reception 

rate may be higher or lower due to constructive or destructive interference respectively. 

Weighted Spatial-Temporal Compressive Sensing (WST-CS) has been discussed and 
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found to ensure reconstruction quality by using weight vectors. The weight values lie 

between “0” and “1” where 0 indicates a small value of similarity and 1 indicates a high 

value of similarity. WST-CS ensures an increase in wireless sensor lifetime and 

accuracy (Mehrjoo & Khunjush, 2018). Coalition-based data gathering as well as a 

coalition coordinator is discussed in (Masoum et al., 2018). Certain sensors adjust the 

sampling rate during the local compressive sensing based on the coalition index as 

provided by the coalition coordinator. Reconstruction accuracy is achieved using two-

step belief propagation-based recovery. Exhibiting sparsity in both temporal and spatial 

domains has been investigated (Wang et al., 2016). A data matrix sparse in both 

domains has higher reconstruction accuracy and improves the lifetime of the sensor 

network.  

4.2.5 Transforms Deployed in Communication 

Two categories of network data transform for wireless sensor networks have 

been stated (Shen et al., 2009). The first depends on the nature of data and is referred to 

as data-dependent while the other is termed as structure-dependent. In Data-dependent 

the network is adaptive and involves a learning rate while structure-dependent denotes 

the network is transformed into a non-adaptive one and does not involve a learning rate. 

“Invertible en-route in-network transform” has been discussed in relation to wireless 

sensor networks with unidirectional transmission (Shen & Ortega, 2010). In this process 

the source transmits the compressed data and the intermediate node decodes and adds its 

own data. However the initialization and scheduling of nodes make the process tedious. 

In the linear transform network a compression estimation matrix is formed based on the 

correlated signal flow between the source and relay (Goela & Gastpar, 2012). Network 

communication cost is reduced with approximate reconstruction. A cut in set bounds is 

obtained based on the factors of convex optimization and information theory. 
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4.2.6 Impact of Sampling on Compressive Sensing 

In compressive sampling the appropriate classification of the signal and its 

subclass is mandatory to ensure reconstruction (Haupt et al., 2006). Sensing, 

Compression and Recovery through online Estimation (SCORE) has also been 

discussed whereby the raw signal transmitted at the source after random sampling is 

recovered at the destination at a data collection point. Depending on the estimated error, 

feedback is provided to align the random sampling rate (Quer et al., 2012). Distributed 

Adaptive Compressive Sensing (DASS) was proposed describing the design of an 

optimal sensing process using a temporal pattern. The process learns the signal statistics 

from past data. This is done by adjusting the pattern of sampling according to the signal 

statistics and finally confining the samples associated with these statistics. It achieves 

better efficiency than traditional compressive sensing in terms of spatial and temporal 

coordinates (Chen et al., 2012). Cost-Aware Compressive Sensing (CACS) interprets 

the sample cost and its associated recovery. Recovery guarantees are assured by using 

the Regularized Column Sum (RCS), specifying the lowest cost for recovery. Thus the 

cost of sampling is incorporated based on network resources (Xu et al., 2015).   

A decentralized Bayesian Compressive Sensing (BCS) with a joint sparsity 

model is discussed along with intra and inter signal characteristics to reduce the burden 

at the fusion center (Chen & Wassell, 2015). The algorithm works by splitting the 

output into common and innovative components when the set of signals is given to a 

dictionary. The Frechet mean approach for calculating sparsity is performed using the 

signal weight. The non-zero position is a significant factor obtained with (PMP) 

Precognition Matching Pursuit (Chen et al., 2012). Meanwhile using a Sampling Rate 

Indicator (SRI) in the course of examining compressive sensing in wireless sensor 

networks was found to reduce the number of samples by 25% more than the 

conventional sampling method used in wireless sensor networks. This is achieved in 
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compressive sensing because the sampling frequency relies on characteristics of the 

signal rather than its bandwidth (Chen & Wassell, 2015). However compressive sensing 

is confined to the deployment of a wireless sensor network. Graph theory-based 

compressive sensing suggests, for reconstructing the signal vector for “n” connected 

nodes with a “k” sparse link the following equation can be used: O (k log (n)) (Xu et al., 

2011). Reducing the sampling rate of individual sensors can be achieved based on 

spatial correlation and by using data prediction models at the sink. The lifetime of 

sensor networks can be increased by subsequently reducing the data transmission 

volume (Tayeh et al., 2019). 

4.2.7 Network Model and Preliminaries 

The network model deployed in this work uses a single sink with multi-hop 

communication. It is the responsibility of the sink to gather the information within the 

sensing period from the sensors. All the sensors have a transmission range identical with 

sensor nodes connected to one another. Observed data from a wireless sensor may be 

obtained at infrequent or frequent intervals and may require multiple dimensions 

depending on the sample rate (Duarte et al., 2012). But the enormous amount of data 

has to be considerably reduced due to the process of compression performed below the 

Nyquist rate. What is especially appealing is, spatial and temporal coordinates 

associated with varying sensors’ data generation rate should sufficiently match with the 

session for transmission. Spatial coordinates indicate the position of the node, its 

transmission range and the intermediate forwarders. Temporal coordinates indicate the 

channel characteristics at an instant of forwarding taking into consideration the time 

interval needed to compress the observed sensory data. Designing a suitable structure in 

the current traffic scenario exhibits sparsity and recovery approximation is essential for 

compressive sensing in wireless sensors. 
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INACS considers unidirectional transmissions to avoid path mergers. Hence the 

work on INACS is compared with similar unidirectional transmission protocol called 

CWS (Bajwa et al., 2006). CWS considers source and channel communication in order 

to avoid path mergers in large-scale fading channels. The simulation of CWS has been 

performed by incorporating the same time period as INACS and as well using a large-

scale fading channel. 
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4.3 INACS – Intelligent Neighbor Aided Compressive Sensing 

In the previous work ECH- DUAL data aggregation is performed based on the 

Nyquist sampling theorem. This implies the sampling frequency should be twice as 

greater as the largest frequency at source for proper recovery of the signal. This process 

results in redundant data to be produced.  Hence further algorithms on data gathering 

and data transfer will incorporate compressive sensing and it tends to reduce the data 

aggregation cost. INACS performs compressive sensing at the source and recovers the 

signal at the receiver using fewer measurements. The primary contribution of INACS is 

load balancing across the link during data forwarding. Proper routing coordinates are 

provided for each node to transmit data to the selected immediate node, based on 

correlation. This is achieved by an intelligent framework with a linear combination of 

two nodes (current forwarder and neighbor). The metrics taken are based on spatial and 

temporal coordinates (intra-signal propagation time) using Pearson’s correlation 

coefficient.  

At the source node the Rademacher matrix is formed based on Pearson’s 

correlation with intertwined factors of spatial-temporal coordinates within the topology 

of routing. During the forwarding of compressed data when the source node has more 

than one neighbor node then it uses a criterion for selection of a neighbor node for 

routing. The criterion of selection is based on the neighbor node linearly associating 

with the present forwarder (source node) of highest correlation. Finally the usage of 

convex method improves the reconstruction accuracy of INACS at the receiver. The 

algorithm assumes for no abnormal reading affecting data fidelity. Secondly INACS 

considers the sparsity of the signal to be minimal with sensor nodes synchronized with 

the sink.  
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      Figure 4.1: Flow chart of Intelligent Neighbor Aided Compressive sensing 

Figure 4.1 shows the step by step process of initialization, signal generation, 

data forwarding, signal recovery and computation of Intelligent Neighbor Aided 

Compressive Sensing Algorithm (INACS). Thus the first step is to generate a sparse 

signal before the compressive sensing process. The second process after compressive 

sensing is data forwarding. This process generates the correlation coefficient “R” 

between the source node and each of its neighbor node. Using the correlation coefficient 
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a Rademacher matrix is formed at the source node. Thus the correlation information of 

itself (source node) and each of its neighbor node is made available at the source node. 

The source node can also be termed as “present forwarder”.  Now the source node 

decides to choose one of the neighbor nodes with highest correlation for forwarding the 

compressed data and rejects the transmission to other neighbor nodes. This eventually 

reduces the number of transmissions and hence overall the energy is saved in the 

network. The final process after data forwarding is signal recovery at sink. For the exact 

reconstruction at the receiver the sensing matrix and observation matrix should be 

incoherent. If this condition is not satisfied then the sample obtained at the destination 

will be rejected. Once the In-coherent condition is satisfied then the signal recovery is 

guaranteed. The number of transmissions per time period is computed.  

4.3.1 INACS Algorithm for Gathering at Source 

INACS employs an intelligent framework within a time period for correlating 

the spatial and temporal coordinates in the transmission of data to the sink. The “x” is 

an unknown signal with N dimension. It has to be compressed and transmitted. 

�Û = Ü�Ì̅                                                           (4.1) 

For compressing “x” equation 4.1 can be used. Ì̅ denotes the sparse signal. The 

signal “x” denotes the spatial and temporal coordinates for the data, �Û denotes the 

observation matrix and Ü� denotes the sensing matrix. 

Þ �o���ÓÞ =  Þ ÜoÜ�ÜÓÞ ÞÌoÌ�ÌCÞ                                           (4.2) 

M denotes the number of measurements. N denotes dimensions of the unknown signal. 

Signal correlation can be obtained for unknown signal using R 

ß =  ∑�àáKàâ��ãáKãâ �ä∑�àáKàâ�åÖ�ãáKãâ�å                                   (4.3) 
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Here in this work l1 norm is used and enforces sparsity. Signal correlation can be 

obtained for unknown signal as in equation 4.3. The correlation measure (R) shows the 

association among and between spatial and temporal coordinates of nodes. Spatial 

coordinates are denoted by Ai, represented as the distance between the nodes (current 

forwarder and neighbor), and temporal coordinates (intra signal propagation time) are 

denoted by Bi. The value of ¨̅ is the mean of spatial coordinates. The value of æÛ  denotes 

the mean of temporal coordinates. 

The value of Equation 4.3 lies between -1 and +1. A positive value indicates 

higher correlation and a negative value indicates a lower correlation. A Rademacher 

matrix is formed by rounding off to +1 and -1 based on the value obtained in equation 

4.3. The significance of the Rademacher matrix is, the coefficients are uniformly 

sampled between +1 and -1. Thus a sparse representation of the signal is obtained for 

forwarding with the highest association. Enabling a pairwise coefficient of spatial-

temporal coordinates with routing results in higher reconstruction accuracy. Figure 4.2 

depicts the scenario where sensors communicate to the sink via a multi-hop involving 

spatial and temporal routing. 

 

 

 

 

 

 

 

 

Figure 4.2: A scenario of sensor forwarding data to the sink 
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The source node is “A” and the eligible forwarders are B, D and E, as they are 

within the transmission range of A. The source node A prefers the B node due to a 

higher correlation coefficient. Simultaneously it suppresses the transmissions to other 

forwarders. Compressive sensing with structured random matrices provides higher 

accuracy with l1 normalization (Blanchard et al., 2011). Thus the random signal “x” is 

made symmetrical to the values of “+1” and “-1” for the desired sparsity level thereby 

ensuring recovery. 

4.3.2 Recovery Structure 

The recovery structure for under-sampled rate and oversampled measurements is 

provided by the RIP (Blanchard et al., 2011). The orthogonal matrix as in the case of 

linear algebra states the real entries of rows and columns are orthogonal vectors and can 

be represented by an identity matrix (I) (Abo - Zahhad et al., 2015). 

                                                ¨�¨ = ¨¨� = ç                                           (4.4) 

Enforcing sparsity can be done as in equation 4.5. Equation 4.5 can also be written in 

epigraph. Since, it comes under convex optimization technique.   

                                            .h‖Ì‖o                                                    (4.5) 

The measurement matrix incoherence can be written by equation 4.6. ψs denotes the 

basis matrix. 

                                           ¨ = Ü�Ý�                                                           (4.6) 

Thus the above equation is rewritten as in equation 4.7 

                                          �Û = Ü�Ý�ɵ                                                          (4.7) 
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4.4 Results and Discussions 

Simulation has been done with MATLAB software where in 50 sensor nodes are 

associated with transfer of data to single sink. The increase in dimension of wireless 

communication causes an increase in complexity. So implementation of simulation has 

been carried out till 10000 periods. Further statistical analysis has been made with time 

series analysis for associating the reduction in transmission cost achieved over the 

specific duration in section 4.5. Table 4.1 and table 4.2 depicts the numerical values of 

packets transmitted in CWS and INACS for varying transmission period or sensing 

period. The reduction in number of transmissions for each period of time is represented 

in percentage in table 4.2. 

Table 4.1: Transmitted Packets versus Transmission Period of CWS 

Protocol Transmissions in 

1000 periods 

Transmissions in 

5000 periods 

Transmissions in 

10000 periods 

 
CWS 

 
0.476 × 106 

 
1.467 × 106 

 
2.192 × 106 

 
         Table 4.2: Transmitted Packets versus Transmission Period of INACS 

Protocol Transmissions in 

1000 periods 

Transmissions in 

5000 periods 

Transmissions 

in 10000 

periods 

 
INACS 

 
0.179 × 106 

 
0.902 × 106 

 
1.079 × 106 

Percentage of 
reduction in 
transmissions  

2.659 1.626 2.031 
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Figure 4.3: Number of Packets versus Protocol Transmission Period 

Figure 4.3 shows the number of packets and the corresponding transmission 

periods. The number of transmissions for each period in INACS is reduced compared to 

CWS. Thus the energy consumption is reduced in INACS than in CWS enhancing the 

network lifetime. The simulation values of energy consumption are tabulated against 

scalability (number of nodes) as shown in table 4.3. 

               Table 4.3: Numerical values of Number of Nodes versus              

               Energy Consumption 

 

Number of 

Nodes 

Energy consumption  

INACS 

Energy consumption 

CWS 

10 4.02 J 4.31 J 

20 5.47 J 6.32 J 

30 6.72 J 8.26 J 

40 8.72 J 9.97 J 

50 10.32 J 12.02 J 
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           Figure 4.4: Number of Nodes versus Energy Consumption 

Figure 4.4 shows the energy consumption for varying number of nodes. The 

energy consumption of INACS is considerably reduced than the conventional CWS.  

The figure 4.5 and table 4.4 shows the compression ratio and reconstruction error. The 

reconstruction accuracy of INACS is considerably higher than the conventional CWS. 

Number of packets generated at a source sensor at a particular time instance is denoted 

by Si and the recovery of data at sink is denoted by Sd. 

Reconstruction error has been calculated as in equation 4.8 

����0��±��h� ����� =  f$ − f#                      (4.8) 

Table 4.4: Compression Ratio versus Reconstruction Error 

 

Compression  

Ratio 

Reconstruction Error 

 INACS 

Reconstruction Error 

CWS 

0.2 1 2 

0.4 4 6 

0.6 5 7 

0.8 7 9 

1.0 8 9 
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       Figure 4.5: Compression Ratio versus Reconstruction Error 

4.4.1 Scalability of INACS  

Simulation has been done with MATLAB software where in 100 sensor nodes 

are associated with transfer of data to single sink for the algorithm INACS. The increase 

in dimension of wireless sensor network causes an increase in complexity. So 

implementation of simulation has been carried out till 10000 periods. The terrain size is 

also increased to 2000 m × 2000m. The transmission radius is varied from 20m to 

100m. Thus the network size, the number of sensor nodes and the transmission radius is 

increased as in table 4.5 and the results are analyzed.  

          Table 4.5: Simulation Parameters with increased network size – INACS 

 

Parameters Values 

Number of sensor nodes 100 

Transmission radius 20 m to 100 m 

Initial energy of sensor nodes 2 J 

Terrain 2,000 m × 2,000m 

Total duration of sensing periods 10,000 s 
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Figure 4.6: INACS - Number of Transmissions versus Time Duration. 

 

Figure 4.6 shows the number of transmissions versus time period in seconds. 

Transmission radius is gradually increased for INACS. For smaller transmission radius 

the proximity of forwarding nodes is less and reduced transmission occurs. Larger 

transmission radius reduces the channel outage and increases the number of 

transmissions. Table 4.6 depicts the number of transmissions occurring for varying time 

period and varying transmission radius for INACS.  

Table 4.6: Comparison on Number of Transmissions for varying 

Transmission Radius and Time Duration of INACS 

Time 

duration in 

seconds 

Number of Transmissions  

(TR=20)  (TR=60)  (TR=100) 

10000 168410 189100 234010 

20000 279000 292000 364010 

30000 374010 436000 514500 

40000 494845 574300 664800 

50000 694845 734300 814845 
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Figure 4.7: Energy Consumption versus Number of Nodes 

 

Figure 4.7 shows the energy consumption versus number of nodes ensuring 

scalability. The transmission radius is gradually increased in INACS and more energy is 

consumed with increased number of nodes. Balancing energy efficiency is achieved 

using suitable transmission power in INACS. Table 4.7 depicts the energy consumed for 

varying transmission radius and varying number of nodes for INACS.  

Table 4.7: Comparison on Energy Consumption for varying Transmission Radius        

Nodes of INACS 

 

Number of Nodes 

Energy Consumption  

(TR=20)  (TR=60)  (TR=100) 

20 3.46 J 4.03 J 5.21 J 

40 6.72 J 5.87 J 6.46 J 

60 7.96 J 8.82 J 9.23 J 

80 9.71 J 10.27 J 10.44 J 

100 11.38 J 12.01 J 13.22 J 
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4.5 Data Analysis of INACS and CWS 

Time series forecasting is used for estimating the influence of position 

coordinates in localization using auto regressive moving average (Liu et al., 2015). 

However in this approach sink provides the previous target position where in the next 

target position is being calculated. The necessity of outlier detection for sensor local 

reading is analyzed to identify the model fits the data (Tulone & Madden, 2006). In 

several works obtaining the training data has been found to be tedious and thus 

achieving analytical performance for the obtained results is mandatory. 

Monotonically decreasing energy consumption analysis has been done in time 

intervals using Auto regressive Integrated Moving average (ARIMA) model in SPSS 

forecasting. The hypothesis used indicates the information rate and energy consumption 

(Anand & Titus, 2017). There are several algorithms used for statistical signal 

processing with different applications such as the bootstrap method (Zoubir & 

Iskandler, 2007). However in this work data obtained via simulations are analyzed in 

order to interpret the simulation results. The efficiency of INACS is validated using a 

time series algorithm and Generalized Linear Model (GLM). The significance of the 

analysis is, it simultaneously associates the dependent and independent variables. The 

number of transmissions and energy consumption is analyzed using time series analysis 

and GLM analysis respectively.  

4.5.1 Evaluation of ARIMA for INACS 

The purpose of this ARIMA is to forecast the information relating to regression 

on itself to the series (number of transmissions versus time period). The first step is 

identification checking whether the series is stationary or not stationary. In the 

identification step if the series is stationary the process can be found with Auto 

Correlation Function (ACF) and Partial Auto Correlation Function (PACF).  If the data 

is not stationary the differencing will make the non-stationary data to become 
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stationary. ARIMA (p, d, q) represents the number of lags of dependant variable.  P 

indicates the number of transmissions. Number of times the variable is differentiated is 

denoted by (d), number of lags in error term is denoted by (q). 

Null hypothesis: There is no relationship between the time duration and the reduction 

in the number of transmissions. 

Alternate hypothesis: There is a relationship between the time duration and the 

reduction in the number of transmissions. 

Dependant variable: Number of transmissions 

Independent variable: Time period 

The table 4.8 shows the values taken from simulation results for data analysis 

using SPSS (Statistical Package for Social Sciences).  Table 4.9 denotes the appropriate 

model for Auto Regressive Integrated Moving Average. Table 4.10 shows the model fit 

statistics. The optimal order of differencing can be found with Root Mean Square Error 

(RMSE).  Diagnostic checking can be done with Bayesian Information criteria (BIC), 

Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Maximum 

Absolute Percentage Error (MaxAPE), Maximum Absolute Error (MaxAE). 

Table 4.8: Time Period versus Number of Transmissions 

 

Time duration in seconds 

INACS 

Number of Transmissions 

INACS 

10000 179000 

50000 902000 

100000 1079000 

  

Table 4.9: Model description for numerical evaluations of INACS 

Model Description 

           Model id Number of transmissions    Model Type ARIMA (0,0,0) 

Table 4.10: Model fit statistics for Number of Transmissions in INACS 

Number of 

Transmissions 

Model 

RMSE MAPE MAE Max-

APE 

MaxAE Normalized 

BIC 

263187.414 33.056 142967.213 6.558 214450.820 25.694 
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Table 4.11: Residual ACF summary of INACS 

Lag Mean 

Lag 1 -.664 

Lag 2 0.164 

 

Table 4.12: Residual PACF Summary of INACS 

Lag Mean 

Lag 1 -.664 

Lag 2 0.495 

 

Residual value with ACF and PACF summary states the model fits is 

appropriate with white noise. The Auto Correlation Function (ACF) denotes the simple 

correlation between the current observation and the observation “p” period from current 

observation. It is shown in table 4.11. The Partial Auto Correlation Function (PACF) 

denotes the degree of association between the current observation and the observation 

“p” period from current observation. It is shown in table 4.12. The number of lags 

considered when developing a model can be demonstrated using the Residual ACF as in 

table 4.13 or Residual PACF as in table 4.14. Standard Error (SE) happening across the 

lag is also shown in Residual ACF and Residual PACF. 

Table 4.13: Residual Auto Correlation Function for two lags in INACS 

 

Number of 

transmissions_Model_1 

 Lag 1 Lag 2 

ACF -.664 0.164 

SE 0.577 0.792 

 

Table 4.14: Residual Partial Auto Correlation Function for two lags in 

INACS 

 

 

Number of 

transmissions_Model_1 

 Lag 1 Lag 2 

ACF -.664 -.495 

SE 0.577 0.577 
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Table 4.15: Predicted value of transmission using ARIMA model for INACS. 

Time duration in 

seconds 

Number of 

Transmissions 

Predicted Number 

of transmissions 

10000 179000 298139.34 

50000 902000 687549.18 

100000 1079000 1174311.48 

 

The SPSS predicts the number of transmissions with the base line model. The 

actual number of transmissions are compared with these predicted number of 

transmissions as shown in table 4.15. Table 4.15 explains the actual number of 

transmissions and predicted number of transmissions for each assigned time duration 

using ARIMA model for INACS. 

4.5.2 Evaluation of ARIMA for CWS 

The number of transmissions incurred for CWS within the time period is shown 

in table 4.16. Table 4.17 denotes the appropriate model with the data obtained for Auto 

Regressive Integrated Moving Average (ARIMA). The goodness of fit measure can be 

found using table 4.18.  

Table 4.16: Time Period versus Number of Transmissions 

Time duration in seconds 

CWS 

Number of Transmissions 

CWS 

10000 476000 

50000 1467000 

100000 2192000 

 

Table 4.17: Model description for numerical evaluations of CWS 

Model Description 

Model id Number of transmissions Model Type ARIMA (0,0,0) 

 

Table 4.18: Model fit statistics for Number of Transmissions in CWS 

Number of 

Transmissions 

Model 

RMSE MAPE MAE Max-

APE 

MaxAE Normalized 

BIC 

186050.958 10.367 101065.574 17.694 151598.361    25.000 
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                    Table 4.19: Residual ACF summary of CWS 

 

Lag Mean 

Lag 1 -.664 

Lag 2 0.164 
 

Table 4.20: Residual PACF Summary of CWS 

Lag Mean 

Lag 1 -.664 
Lag 2 0.495 

 

Table 4.21: Residual Autocorrelation Function for two lags in CWS 

 

Number of 

transmissions_Model_1 

 Lag 1 Lag 2 

ACF -.664 0.164 
SE 0.577 0.792 
 

           Table 4.22: Residual Partial Autocorrelation Function for two lags in CWS 

 

Number of 

transmissions_Model_1 

 Lag 1 Lag 2 

ACF -.664 -.495 

SE 0.577 0.577 

 

        Table 4.23: Predicted value of transmission using ARIMA model for CWS 

Time duration in 

seconds 

Number of 

Transmissions 

Predicted Number 

of transmissions 

10000 476000 560221.31 
50000 1467000 1315401.64 
100000 2192000 2259377.05 

 

Table 4.19 shows the percentile of ACF of the residual with all the estimated 

models. Table 4.20 shows the percentile of PACF of the residual with all the estimated 

models. The residual autocorrelation function upon two lags is shown in table 4.21. 

Similarly the residual partial autocorrelation function for two lags is shown in table 4.22. 

From the numerical evaluations it is clearly evident where INACS yields a correlation 

indicating, alternate hypothesis is proved. The number of transmissions is reduced in 

compressive sensing with INACS than with CWS. We can see the reduced predicted 

number of transmissions for INACS in table 4.15 is better than the predicted number of 

transmissions of CWS as in table 4.23. 
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4.5.3 Generalized Linear Model for INACS 

Null hypothesis: There is no significant difference between number of nodes and 

energy consumption.  

Alternate hypothesis: There is a significant difference between number of nodes and 

energy consumption.  

When the number of nodes within a sensing field is less the protocol consumes 

less energy. If scalability of sensor nodes is increased then the impact of energy 

consumption also increases. To interpret the scalability and energy consumption 

Generalized Linear model (GLM) is used. The numerical values obtained with 

MATLAB simulations in table 4.24 are used in GLM. EC_INACS: Energy 

consumption for Intelligent Neighbor Aided Compressive sensing. EC_CWS: Energy 

consumption for Compressive Wireless Sensing. The model information used is given 

in table 4.25 and the probability distribution in this case is normal with central mean. 

The link function is identity where dependant variable is not transformed and link can 

be used with any distribution.  

         Table 4.24: Number of Nodes versus Energy Consumption  

 

Number of Nodes 

 

Energy consumption  

INACS 

Energy consumption 

CWS 

10 4.02  4.31  

20 5.47  6.32  

30 6.72  8.26  

40 8.72  9.97  

50 10.32  12.02  

 

Table 4.25: Model information of EC_INACS 

Dependant variable EC_INACS 

Probability distribution Normal 

Link Function Identity 
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The case processing summary is given in table 4.26 and it indicates the number 

of cases used. Table 4.27 shows the continuous variable information in order to check 

for no outlier in the data. Table 4.28 shows the deviation and scaled deviation for data 

values of EC_INACS and the Intercept model. Smaller value indicates better fit of AIC, 

BIC, CAIC. EC_INACS denotes the dependant variable. Intercept model is used. “a” 

represents the information criteria in smaller better form. “b” is the full log likelihood 

function displayed and it is used in computing information criteria. In table 4.29 the 

analysis type used for model effect is type III, generally applicable and does not need 

predictor variable. The dependant variable is EC-INACS with intercept model. 

Table 4.26: Case processing summary of EC_INACS 

Total number of variables in case processing summary 5 

 

Table 4.27: Continuous variable information of EC_INACS 

Variable Value 

N 5 

Minimum 4.02 

Maximum 10.32 

Mean 7.0500 

Standard deviation 2.51336 

 

Table 4.28: Goodness of fita of EC_INACS 

Parameter Value df Value/df 

Deviance 25.268 4 6.317 

Scaled Deviance 5.000 4 - 

Pearson Chi-Square 25.268 4 6.317 

Scaled Pearson Chi-Square 5.000 4 - 

Log Likelihoodb -11.145 - - 

Akaike's Information Criterion (AIC) 26.290 - - 

Finite Sample Corrected AIC (AICC) 32.290 - - 

Bayesian Information Criterion (BIC) 25.509 - - 

Consistent AIC (CAIC) 27.509 - - 

 

              Table 4.29: Tests of model effects of EC_INACS 

 

 Type III 

Source Wald Chi-Square df sig 

Intercept 49.175 1 .000 
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       Table 4.30: Parameter estimates of EC_INACS 

 
Parameter B SE 95% Wald CI Hypothesis Test Exp(B) 95% Wald CI for 

Exp(B) 

Lower Upper Wald-

Chi-

Square 

df Sig. Lower Upper 

Intercept 7.050 1.0053 5.080 9.020 49.175 1 .00 
 

1152.859 160.703 8270.427 

Scale 5.054a 3.1962 1.463 17.456 - - - - - - 

 

In table 4.30 the test statistics of parameter estimates are shown. Fixed effects 

are observed from Wald test Confident Interval (CI) considering the parameters of 

covariance matrix. The dependant variable used in EC_INACS. “a” represents the 

maximum likelihood estimate 

4.5.4 Generalized Linear Model for CWS 

The model information used has been given in table 4.31. The link function is 

identity. In this model the dependant variable is not transformed and link can be used 

with any distribution.  The distribution in this case is normal with central mean. The 

case processing summary has been given in table 4.32 indicates the number of cases 

used. Continuous variable information has been given in table 4.33 in order to check for 

no outlier present in data. 

Table 4.31: Model information of EC_CWS 

Dependant variable EC_CWS 

Probability distribution Normal 

Link Function Identity 

 

            Table 4.32: Case processing summary of EC_CWS 

Total number of variables in case processing summary 5 

 

Table 4.33: Continuous variable information of EC_CWS 

Variable Value 

N 5 
Minimum 4.31 
Maximum 12.02 

Mean 8.1760 
Standard deviation 3.01631 
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Table 4.34: Goodness of fita of EC_CWS 

 

 

 

 

 

 

 

 

In table 4.34 goodness of fit is shown. The smaller values indicate better fit in 

AIC, AICC, BIC and CAIC. The data interpretation using AIC emphasis on good 

predictions when the type of error is likely to be over fitting.  BIC and CAIC can be 

used when the type of error likely to be under fitting. “a” represents the information 

criteria are in smaller better form. “b” is the full log likelihood function displayed and it 

is used in computing information criteria. The dependant variable is EC_CWS with 

model intercept.  

In table 4.35 the analysis type used for model effect is type III. It is generally 

applicable and does not need predictor variable. Type III sum of squares is used as the 

default model to evaluate hypothesis.  

                  Table 4.35: Tests of model effects of EC_CWS 

 

 Type III 

Source Wald Chi-Square df sig 

Intercept 45.921 1 .000 

 

 

 

 

 

Parameter Values df Value/df 

Deviance 36.393 4 9.098 

Scaled Deviance 5.000 4 - 

Pearson Chi-Square 36.393 4 9.098 

Scaled Pearson Chi-Square 5.000 4 - 

Log Likelihoodb -12.057 - - 

Akaike's Information Criterion (AIC) 28.114 - - 

Finite Sample Corrected AIC (AICC) 34.114 - - 

Bayesian Information Criterion (BIC) 27.333 - - 

Consistent AIC (CAIC) 29.333 - - 
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                  Table 4.36: Parameter estimates of EC_CWS 

 
Parameter B SE 95% Wald CI Hypothesis Test Exp(B) 95% Wald CI for Exp(B) 

Lower Upper Wald-

Chi-

Square 

df Sig. Lower Upper 

Intercept 
8.176 1.2065 5.811 10.541 

 

45.921 
1 .00 

 
3554.608 334.038 37825.702 

Scale 
7.279a 4.6033 2.107 25.141 - - - - - - 

 

In table 4.36 the corresponding test statistics with its confident interval along 

with exponential parameters are shown.  The dependant variable used is EC_INACS. 

“a” represents the maximum likelihood estimate. In both the proposed protocols 

alternate hypothesis is proved. It shows the strong correlation with number of nodes and 

energy consumption. 
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4.6 Conclusion 

INACS focus on achieving reduction in sensing and transmission cost. The 

ability to capture the characteristics of sensor data and design of measurement matrix 

mapping using the spatial and temporal coordinates is established in INACS. Recovery 

performance is facilitated by convex optimization. In addition INACS emphasize on 

data forwarding. The Rademacher matrix is formed using Pearson’s correlation 

coefficient and this matrix is used to analyze the correlation between nodes for data 

forwarding. The data forwarding from source node to one of the neighbor nodes happen 

based on highest correlation. The proposed data-driven approach based on compression 

at the source, data forwarding and recovery at the destination achieves a greater 

reduction in the number of transmissions than CWS. The significant results of INACS is 

achieved by load balancing features of internetworking indicating superiority in terms 

of reduction in the number of transmissions, energy efficiency and reconstruction 

accuracy. The scalability of the INACS algorithm is analyzed by varying the metrics 

such as transmission radius, number of nodes and time duration. The number of 

transmissions and the energy consumed is studied based on these metrics. Time series 

analysis has been used for characterizing the multivariate behavioral pattern between 

the number of transmissions and the time period. In addition the forecast is also made 

on energy consumption and the scalability of nodes within the sensing field revealing 

the strong relationship between both the metrics using Generalized Linear Model 

(GLM).  
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CHAPTER 5: COMPRESSIVE SENSING WITH PERCEPTRON BASED 

FORWARDING 

5.1 Introduction 

Compressive sensing with data acquisition in wireless sensor networks has 

overcome the rigid sampling procedure to acquire sensor data. In the wireless network 

the efficiency of data transmission is considerably reduced due to congested links. In 

order to ensure efficient transmission from source to sink through intermediate 

forwarding nodes a desired data forwarding threshold has to be established. Initially the 

physical data has to be made sparse by using Discrete Wavelet Transform. The data 

forwarding threshold needs to be estimated for the sparse physical data when it begins 

its transmission. This process of assigning threshold values for data forwarding would 

save the energy consumption of the overall network.  

In the framework of INACS compressive sensing at source and reconstruction at 

sink has been performed. The co-located sensor performs sensing using spatial and 

temporal process thereby reducing redundancy in sensing and transmission. In INACS 

the transmission capacity of intermediate nodes within a wireless channel has not been 

analyzed. Analyzing the bandwidth resources, updating the status of wireless links is not 

performed in INACS. To resolve these issues machine learning techniques can be 

incorporated. A dynamic framework is proposed analyzing the bandwidth, traffic 

intensity or capacity of forwarding nodes for transmission. The framework 

accommodates the transmission from source to sink via intermediate forwarding nodes 

depending on the desired data forwarding threshold.  This process has been incorporated 

by using Single Layer perceptron considering two scenarios. For scarce network 

resources communication is established when the target response (Threshold) exactly 

matches between two source nodes and intermediate node.  
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The input values should neither be lesser nor exceed but should exactly match 

the target value. For networks of surplus bandwidth communication is established if any 

one of the source nodes associated with intermediate node just exceeds the data 

forwarding threshold. 
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5.2 Previous Work on Distributed Compressing Scheme 

In a wireless environment the transfer of information plays a vital role in 

determining the available resources. An information-driven approach with compressive 

sensing is used to show the logical mapping of sensory data can conserve energy 

resources and bandwidth in multi-hop networks (Dang et al., 2007). In On-route 

compressive sensing, rather than compression at source and decompression at the 

destination intermediate relays or powerful nodes are deployed for compression 

(Razzaque et al., 2013). Similarly in Distributed Compressed Estimate (DCE) scheme 

rather than considering the entire time duration and compressing the observed data 

intermediate nodes could exchange the measurement matrix with a local estimator (Xu 

et al., 2015). Thus DCE requires minimal bandwidth and achieves a low mean squared 

error (MSE). However, spatially correlated sensors exhibit similar sparsity and a similar 

measurement matrix. Bottleneck link in wireless networks occurs due to varying rate of 

data traffic. It can be measured and estimated using machine learning techniques. 

Recent work on compressive sensing deal with proper utilization of bandwidth. In 

addition it also describes a deep neural network and its significance in a wireless 

environment. The feature extraction layer used in this communication framework 

characterizes the bandwidth, noise and fading characteristics for proper recovery (Lu & 

Bo, 2019). 

The foremost aspect of compressive sensing is sparsity. A signal must be sparse 

in nature and if it is not, a transformation must be performed to ensure it exhibits 

sparsity. A sparse representation of wireless signals with the desired sparsity level is 

predominantly achieved using pursuit methods, dictionary-based methods and channel 

estimation via sensing properties (Qin et al., 2018). In this proposed work a discrete 

wavelet transforms (DWT) is used to ensure sparsity. The significance of DWT is it can 

match the distributed nature of data aggregation and intermittent connectivity occurring 
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during data transmission in wireless sensor communication networks (Acimovic et al., 

2005). Hence discrete data can be recovered through an appropriate transformation 

using the wavelet coefficient. The wavelet transform is well suited for deterministic 

signals. The deterministic signals are correlated by nature. Therefore when there is de-

correlation of signal involved in data-gathering, design of the wavelet coefficients 

should match the number of discontinuities (Acimovic et al., 2005). The discrete 

wavelet transform has been used with a filter bank in one-dimensional wireless sensor 

networks. When there is a subsequent increase in the number of levels of 

decomposition, the local information cost (overhead) between sensors increases 

(Ciancio et al., 2006). Hence the proposed algorithm attempts to compensate for 

overhead in addition to enabling the desired traffic using perceptron-based forwarding. 

Multi-scale analysis has been done with graph wavelets (Crovella & Kolaczyk, 

2003). It can quantify the network traffic with a decision criterion for analyzing the 

traffic intensity. The discussion reveals the impact of network topology and traffic 

characteristics on subsequent data from the sensor nodes. Wavelet transform is suitable 

for irregular structure termed as “point-like singularities” as in with practical sensor 

network (Guo et al., 2009). 

5.2.1 Machine Learning Techniques in Wireless Sensor Networks 

Computational intelligence in wireless sensor networks refers to the property of 

possessing the capability of inputting raw sensor data and producing reliable-timely 

responses with minimal fault tolerance (Kulkarni et al., 2011). Incorporating machine 

learning in wireless sensor networks has been surveyed in terms of both functional and 

non-functional aspects (Alsheikh et al., 2014). Functional aspects include routing and 

analyzing the data link layer operations. Non-functional aspects include security issues 

and the integrity of data (Alsheikh et al., 2014). A Markov decision process can be 

incorporated to achieve better performance although this depends on the application. 
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The applications discussed with regard to wireless sensor nodes are concerned with 

optimal transmission levels, selection of the intermediate relay from the source and data 

aggregation techniques (Alsheikh et al., 2015).  

Multi-dimensional sensing matrix has been proposed along with multi-linear 

dictionary for sparsifying with “Tensor based compressive sensing” (TCS) (Ding et al., 

2017). Multi-dimension projections are made by segregating it into separable and non-

separable entities. This approach using TCS is better than the random sensing matrix. 

The limitation of random sensing matrix is it imposes computational complexity at 

recovery due to unstructured nature (Candes & Romberg, 2007). The survey of 

literature on wireless sensor networks with machine learning reveals, 67% of articles 

use supervised learning approaches (Kumar et al., 2019). Machine learning does not 

produce instant results; rather it takes time to learn from historical data consuming more 

resources in a wireless environment. Thus the incorporation of machine learning should 

complement the reporting interval at the sink (Kumar et al., 2019). In such scenarios a 

hop-by-hop pattern to achieve the desired data rate with minimal distortion in artificial 

neural networks has been used (Alsheikh et al., 2016). 

Wireless sensor node consists of sensing unit, processing unit and power unit. In 

the sensing unit the analog signal is converted to digital form. This conversion process 

is performed below sampling rate to reduce the number of samples. The processing unit 

interfaced with the transceiver transmits the sparse data and can be recovered at sink. 

The data flow between the sensor and sink is modelled using perceptron logic and its 

truth table.  The perceptron consists of single layer of input from each source to an 

intermediate node. The output layer of intermediate node is determined by the source 

node and its weight values. W1 and W2 are the weight values of input 1 and input 2 

respectively as shown in figure 5.1.  
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                      Figure 5.1: Architecture of single layer perceptron 

Figure 5.1 depicts the architecture of single layer perceptron. Transmission is 

performed based on the weight values, analogous to the link in a wireless 

communication. Target threshold is assigned priorly at intermediate nodes and if target 

threshold is not met by the forwarding nodes then subsequent weight values are being 

altered.  

5.2.2 Topological Significance of Compressive Sensing 

The selection of projection nodes (relay nodes) in a random fashion can 

undermine the performance of compressive sensing by increasing the number of 

transmissions (Qiao & Zhang, 2018). Centrality nodes play a major role in transfer of 

data in any communication network. Hence one hop information, localization or 

analyzing the centrality measure has to be known for analyzing the network (Mahyar et 

al., 2018). Hierarchical adaptive spatial-temporal data compression is proposed 

incorporating spatial and temporal compressions. The observed sensory data are 

transformed using the discrete cosine transform where the obtained transform vectors 

are based on the threshold values related to location coordinates in the sensing field. 

The cluster head exploits temporal information using the obtained readings for suitable 

compression and transmission via two-dimensional discrete wavelet transforms (Chen et 

al., 2019). Layered adaptive compressive design for efficient data gathering (LACD-

EDC) is proposed in (Chen et al., 2019).  
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The cluster head exploits spatial correlation with intra-cluster and inter-cluster 

communication. LACD-EDC uses an adaptive dictionary and can process multi-

resolution data achieving significantly better performance than the predefined dictionary 

used for sparsifying databases (Chen et al., 2019). However the process of selecting a 

cluster head or a superior node in transmission should not increase the compression 

ratio and burden of wireless links. Hence the proposed network model in this work uses 

two nodes associated with a relay to forward compressed data. Topology control has 

been proposed wherein the network is being portioned into multiple strips. The strip 

center is responsible for compressive sensing and routing to the sink (Li et al., 2018). 

Random walk based compressive sensing (RWCS) has been proposed to deduce the cost 

in transmission and measurement using ring topology. In RWCS a measurement matrix 

is created based on compensation function (distance to the sink) (Zhang et al., 2018). 

“Link Estimation with Sparse Sampling” (LESS) has been proposed with 

topological and routing changes along with link quality through reduced overhead using 

compressive sensing (Zhou et al., 2018). The tribulation behind the LESS protocol is 

entirely dependent on the sink. It decides compression factor and routing path. Deep 

learning approach with graph wavelet has been used for compressive sensing and 

routing in (Li et al., b, 2018). With minimal training set the maximum magnitude of 

data acquisition and transfer can be obtained. Similarly “Light Weight Compressed Data 

Aggregation” (LWCDA) is proposed for non-overlapping. The compression rate of 

LWCDA is better and cost of transmission is also less in (Amarlingam et al., 2018). 

5.2.3 Traffic Intensity in WSN 

In order to effectively transfer the compressed data there should be minimal 

number of sensors needed to ensure connectivity to the sink. This is termed as 

communication constraint. The cardinality constraint should also be satisfied. The active 

status of a node with its timeslot allocated for transmission should be greater than the 
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required number of timeslots to execute compressive sensing (Du et al., 2018). The 

classification of traffic intensity has been roughly divided into fixed (predetermined 

path) or Markov (random path) classes with maximum likelihood estimation (Vardi 

1996). However in the scenario where the number of samples increases the bias factor 

towards certain nodes causes congestion. Therefore fixed path routing reduces the 

quality of transmissions during data transfer between source and destination due to 

congestion. 

The sparsity-regularized matrix formulation (SRMF) with a compressive sensing 

approach classifies high-rate traffic and low-rate traffic. A deep belief network is used 

for classification of low-rate traffic. Spatial-temporal compressive sensing is used for 

high-rate traffic conditions. The study shows appropriate classification of traffic 

condition reducing the problem of bottleneck bandwidth (Nie et al., 2018). If the 

number of measurement vectors required, matches the sparsity conditions then it 

subsequently burdens the recovery process at the sink. Hence a mixed support model is 

used where the underlying joint sparsity is estimated for obtaining the measurement 

vector. This process is performed by cluster averaging the value of information with a 

suitable measurement vector using Eigen value decomposition (EVD) (Liu et al., 2018). 

The measurement matrix and the sparsity matrix must be incoherent in 

Compressive Sensing (CS). Determined by a known chaos sequence in (Alwan & 

Hussain, 2019). The result shows the known chaos sequence has higher reconstruction 

accuracy than conventional compressive sensing, because the control parameters of the 

chaos sequence are predetermined by the sink (Shekaramiz et al., 2019). Sparse 

Bayesian learning (SBL) has been used for multiple measurement vectors (MMV). The 

sparsity of the signal is achieved using an unknown binary support learning vector. In 

addition a total variation support vector for sparsity is obtained via the sum or difference 

of the signals (Shekaramiz et al., 2019). However the unknown signal rarely exhibits the 
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same non-zero entities in an MMV. Two methods of compressive sensing based on 

channel identification have been used at two different sparsity levels (Van Nguyen et 

al., 2018). The first uses blind compressive sensing identifying the signal-to-noise ratio 

(SNR) metric and assigning the appropriate sparsity level. The second assigns cluster-

level sparsity when the channel characteristics are previously known (Van Nguyen et 

al., 2018). An optimal compression matrix has been obtained in homogeneous sensors 

where the noise covariance can be scaled identically to attain a minimal bound of 

distortion (Zhang et al., 2019). Determining the noise and anisotropic conditions of the 

channel makes it difficult to obtain the parameters of compressive sensing in large-scale 

sensor networks. Expander graphs have been used for identifying the sparsity matrix 

using delay vectors (Firooz & Roy, 2014). However expander graphs are not suitable 

for delay-sensitive applications and identifying the network conditions is challenging. 

This section of traffic analysis deals with internetworking. Mixed integer 

nonlinear programming (MINLP) examines the traffic rate at the upper bound using 

nonlinear programming (NLP) with the help of rank functions. The property of the 

channel in the case of MINLP is a single-step Markov process with Eigen 

decomposition (Zhou et al., 2015). Load balancing has been achieved with stochastic 

routing to eliminate stale routes and to deliver data to the sink. The Markov chain 

specifies the error bound for recovery of compressed data with minimal transmission 

cost (Huang & Soong, 2019). The compressed data must traverse a proper route for 

proper recovery in wireless sensor networks. 

Impact of forwarding nodes “with” and “without cache” using decode and 

forward techniques has been discussed (Xia et al., 2018). It states the content delivery 

diversity and signal strength variations in wireless environment. If relay nodes are 

positioned with cache then the destination can recover the data from relay rather than 

from the source. The discussions of production traffic and consumption traffic with and 
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without data aggregation has been discussed in (Ma et al., 2018). The discussion states 

if the wireless channel is occupied by more packets then subsequently network 

efficiency is reduced in the period. 

5.2.4 Energy Impact of Compressive Sensing Algorithms 

Wireless sensor nodes with limited energy and a limited communication range 

usually exchange information with nearby nodes. By decreasing the volume of 

transmissions minimal depletion of energy can be achieved (Mahfoudh & Minet, 2008). 

In “Compressed Network Coding based Distributed-data Storage” (CNCDS) the data 

transmission and reception consumes almost the same energy for short distance. Thus 

the probability of forwarding has to be adjusted according to the capability of 

intermediate neighbors (Yang et al., 2013). Covariogram-based Compressive Sensing 

(CBCS) was proposed where the underlying signal statistics and correlation are 

determined by online estimation. The energy model used can be classified into the 

following: the energy consumption used in compression, the second is energy 

consumption involved in transmission of information from sensor to sink and energy 

cost used for exchange of control packets (Hooshmand et al., 2015). 

Two-dimensional data-gathering is proposed using a discrete cosine transform 

(DCT) and a discrete Fourier transform (Dolas & Ghosh, 2018). The increasing 

measurements with minimal sparsity results in attaining higher recovery with minimum 

energy consumption and negligible RMSE (Dolas & Ghosh, 2018). Rotating random 

sparse sampling proves the minimal energy consumption achieved by changing sensor 

nodes into sleep mode. The transfer of data in the remaining awake nodes occurs in a 

rotational manner with diverse sampling ratios (Xu et al., 2019). Integrated data and 

Energy gathering protocol (iDEG) was proposed with single hop communication (Jain 

et al., 2019). The iDEG protocol implement “partial canonical matrix” for reducing 

sensing time. In addition it balances energy inefficiency using energy harvesting at 
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specific nodes. The discussion of balancing energy efficiency and recovery is done with 

temporal and spatial redundancy. The process of reducing temporal redundancy has 

been done considering different clusters of wireless sensor network.  Spatial redundancy 

is obtained with hybrid compressive sensing to attain the minimal projection for 

reconstruction (Zhou et al., 2019). 
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5.3 The Framework - Perceptron-based Optimal Routing (POR) and 

Perceptron-based Routing with Moderate Traffic Intensity (PRMTI) 

The motivation behind this work is development of routing protocols 

considering the network resources. Perceptron based Optimal Routing (POR), 

Perceptron based Routing with Moderate Traffic Intensity (PRMTI) is proposed. POR 

and PRMTI transmission protocol can be used for scarce and surplus bandwidths 

respectively. POR consumes lesser energy, decreases transmission cost but the 

convergence time is delayed. PRMTI shows increased energy consumption, increases 

transmission cost and convergence time is quicker. The objective of the proposed 

framework is to perform compressive sensing using a discrete wavelet transform and to 

transfer data with the aid of perceptron. The proposed protocols are designed in a 

network model with a decision criterion for forwarding where two nodes are associated 

with a relay node. In this work the following two assumptions are made. Compressive 

sensing is performed, where sparse vectors are quantified on an absolute scale. The 

decision to forward or not forward is translated into a linear separable problem based 

upon the network resources. The topology is designed with a sink at the center. Data 

transfer occurs from a pair of sensors through the relay to the sink.  

The physical data is compressed and our work focuses on data forwarding from 

source to intermediate forwarder after estimating the network resources. The 

intermediate forwarder can also be termed as relay node.   The method of data 

forwarding is formulated into two perceptron techniques depending on bandwidth or 

network resources. The first criterion: POR is proposed when the network resources are 

not abundant. It uses a bipolar logic and a target value at the relay node for data 

forwarding. If the target response at the relay node matches with the input values of the 

source nodes then data is transmitted from the source node to the relay node. If there is a 

mismatch then the weight updates are performed iteratively until the incoming data 
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meets the target response and data is forwarded after the iterations. The second 

criterion: PRMTI is proposed when the network resources are abundant. PRMTI 

forwards data from source node to the relay node when the link capacity exceeds the 

defined data-forwarding threshold at the relay node. If the input value at one of the 

sources does not exceed the target or threshold value then the weights and error 

calculations are continuously updated until the condition of PRMTI is satisfied for data 

forwarding.   

Assuming, the two source nodes forward data to the relay node. The POR 

algorithm transmits data only when it finds the exact match between the two source 

nodes and target value at relay node. The input values and target values should not be 

lesser nor higher but must be equal for data forwarding to take place. But in PRMTI the 

relay accepts the data even if any one of the source nodes exceeds the target value. It 

means the input value at source and target value at the relay need not be exactly same. 

Once the input values exceed above threshold (target value) the data can be transmitted. 

Hence any one of the algorithms is used for data forwarding to the relay node based on 

the availability of network resources. The final process is signal recovery obtained by 

using in-coherence property of sensing and observation matrix. The signal generation, 

data forwarding logics of POR and PRMTI, model calculations and signal recovery are 

explained in the following sections. The simulations results show that the number of 

transmissions to be higher in PRMTI than compared to POR. Data analysis is also 

performed on the simulation results to validate the results of POR and PRMTI. Figure 

5.2 explains the framework of POR and PRMTI. The network is initialized and 

configured. 
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Figure 5.2: Illustration of POR and PRMT framework 

5.3.1 Generation of Signal  

Let Ì̅ be the unknown data procured from sensor network represented by 

Ì̅ = éÌoÌ�ÌCê                                                   (5.1) 

N denotes an N-dimensional signal vector. M denotes the number of observations. Then 

� âdenotes observation matrix. The sensing matrix is denoted byÜ�. 

�Û = é �o���Óê                                                   (5.2) 
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Ü� = ëÜo�Ü��ÜÓ�
ì                                                (5.3) 

The recovery of unknown data can be obtained from equation 5.4. 

�Û = Ü�Ì̅                                (5.4) 

For any data obtained yi is the projection of xi on sensing matrix ϕsi. The number 

of observations M should be greater than or equal to N. The following process after 

signal generation is data forwarding where POR or PRMTI algorithm would be used 

based on network resources. The two algorithms are explained in detail as below. 

5.3.2 POR - Data Forwarding  

The development of Perceptron based Optimal Routing (POR) considers a 

scenario where network resources are scarce. Therefore POR protocol tries to minimize 

the cost of transmissions. An example scenario of a node based on weight updation with 

bipolar inputs is shown in figure 5.3. Its truth table is shown in table 5.1. rin is the 

current status of forwarding inputs. A1 and A2 represent two nodes with weight values 

w1R and w2R. The binary inputs of forwarding and not forwarding is represented as a1 

and a2 along with weight values w1R andw2R. The target value is denoted by t. 

 

 

 

 

 

 

 

 

    Figure 5.3: POR- Intermediate forwarding at relay node 
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Table 5.1: Permutations of routing with optimal traffic intensity-POR. 

 
 a1 a2 t 

    Logic 1 1 1 1 

    Logic 2 1 -1 -1 

    Logic 3 -1 1 -1 

    Logic 4 -1 -1 -1 

 

���$%� =  m1               �$% ≥ 0 0              �$% = 0−1            �$% ≤ 0                                     (5.5) 

The probability of node forwarding is governed by an activation function as in 

equation 5.5. Initially �o� = 0, ��� = 0 and b=0. “b” denotes the bias weight. The first 

input permutation is taken for updating weights [1, 1, 1] as in logic 1. Substituting the 

values in equation 5.6. 

îáï = � + �o��o + �����                                        (5.6) 

                                îáï = 0 + 0 × 1 + 0 × 1 
                                 îáï = 0 
 ß =  ���$%� = 0                                                           (5.7) 
 

For forwarding equation 5.8 should be satisfied. 

���$%� =  �                                                                     (5.8) 
 ���$%� ≠ �in the first case hence forwarding does not take place.  

In the next step updating of weights has to be done as in equation 5.9 to 5.11. 
 
Updating weight for the first link between A1 and R gives: 
 �o��%�ñ� = �o��!�#� + '��o                               (5.9) 
 
Updating weight for the link between A2 and R gives: 
 ����%�ñ� = ���!�#� + '���                                         (5.10) 

 
Where the value of α represents learning rate (α=1). ��%�ñ� = ��!�#� +  '�                                                    (5.11) 

 
Updating and bias values changes the weights as �o = 1, �� = 1 and b =1. Logic 2 

input patterns are [1, -1, -1]. Substituting these values in equation 5.6. 
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   îáï = 1 + 1 × 1 + 1 × −1                              îáï = 1                ß =  ���$%� = 1                                                      (5.12) 

                            1 ≠ −1 ∶  ���$%� ≠ �. Forwarding does not take place.  

Updating weight and bias values changes the weights as �o = 0, �� = 2, b =0. The 

third input pattern is [-1, 1, -1]. Substituting the values in equation 5.6. 

                           îáï = 0 + 0 × −1 + 2 × 1 

           îáï = å             ß =  ���$%� = 1                                                         (5.13) 

                         1 ≠ −1: ���$%� ≠ �. Forwarding does not take place.  

Updating weight and bias values changes the weights as �o = 1,  �� = 1, b = -1. The 

fourth input pattern is [-1, -1, -1]. Substituting the values in equation 5.6. 

                        îáï = −1 + 1 × −1 + 1 × −1 
                         îáï = −3           ß =  ���$%� = −1                                                        (5.14) 

                     −ô = −1 ∶  ���$%� = �. Forwarding takes place. 

Hence for the first three permutations the data transmission is denied and the 

condition is satisfied only for the fourth permutation. In POR the forwarding nodes are 

named as a1 and a2. The capability of forwarding is determined by associated 

intermediate node with target value (t). The weight values are analogous to the link 

capacity and are initially set as zero to provide sufficient time for compressive sensing. 

Simultaneously if the target is not met by the forwarding nodes then updating weight 

values takes place. After substituting and updating the weights only logic 4 has a 

threshold value enabling forwarding. When the criterion for forwarding between two 

nodes and its relay matches the target output then the transmission is initiated using 

POR. The advantage of POR is, it is suitable in events where the network resources are 

scarce. However the reporting interval to the sink in POR is long. 
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In case of POR the weight values can alter the target function of nodes for 

forwarding the data. Initially the weight values are set to zero to provide sufficient time 

to compress the data. Then if the target response does not match the corresponding truth 

table new weights are calculated using equations 5.9 to 5.11. These new weights are 

applied to the next values of the corresponding columns in the truth table. If this 

matches the target response the corresponding forwarding occurs otherwise 

transmission does not occur. 

5.3.3 PRMTI - Data Forwarding  

The motivation behind the development of the PRMTI protocol is its quick 

convergence. Hence the reporting interval in the transfer of data to the sink is short. 

Consider the example scenario for data-forwarding shown in figure 5.4 and its truth 

table in table 5.2. 

      Table 5.2: Permutations of routing with optimal traffic intensity–PRMTI 

 

 a1 a2 a1 AND a2 

    Logic 1 0 0 0 

    Logic 2 0 1 0 

    Logic 3 1 0 0 

    Logic 4 1 1 1 

 

 

 

 

 

 

 

 

 

                  Figure 5.4: PRMTI - Intermediate forwarding at relay node 
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The threshold value of the forwarding node R is assigned in such a way, if it 

exceeds the data-forwarding value, then forwarding occurs. 

� = ���$%� =  õ1.5               �$% ≥ 00                  �$% ≤ 0                        (5.15) 

Incoming signal = Sum�node value × weight of link�               (5.16) 

Error=�Right value-Actual value�2                     (5.17) 

Range of error values are determined by the actual value. In all cases the error term 

should be less than the actual value being denoted as forwarding threshold. The weight 

is updated using equation 5.18. 

¬%�ñ  =¬!�#+ �çÏ±� × ����� × ����h© �����                       (5.18) 

The feed forward architecture of PRMTI is explained. Initially the weight values 

are w1R=2 and w2R=0. The output threshold for forwarding is R=1.5. Hence according to 

table 5.2 logic 3 and logic 4 provide forwarding since multiplying the weight gives a 

value exceeding the threshold of R. The PRMTI protocol does not use the criterion of 

matching the target response for forwarding. Hence if the relay node exceeds the 

forwarding threshold for any one of the associated senders it transmits data. The 

advantage of PRMTI is its quick convergence time. The PRMTI protocol consumes 

more energy due to subsequent forwarding. In the second case of PRMTI if any of the 

weight values exceed the activation threshold then forwarding criterion is satisfied. If 

the threshold value is lower, then forwarding occurs by updating the weights using 

equation 5.21 depending on the error terms learning rate and the input function. The 

entire topology of the feed-forward neural network is shown with an example in figure 

5.3. The data initialization path and routing path from the source nodes are shown in 

figure 5.5. An example is also shown in figure 5.6 where the weight value of the link 

between node 1 and node 3 is w13.Similarly the weight value of the link between node 2 

and node 3 is w23.The decision criterion of node 3 depends on node 1 and node 2.  
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                   Figure 5.5: PRMTI - Fully connected feed-forward architecture  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: PRMTI - Illustration of intermediate forwarding at relay node  

Similarly the weight value of the link between node 4 and node 6 is w46 and the 

weight value of the link between node 5 and node 6 is w56. The decision criterion based 

on node 6 depends on node 4 and node 5. Finally node 3 associates itself with node 6 in 

forwarding to S. An example of intermediate forwarding in PRMTI is explained. Sensed 

data is made sparse with the help of a Discrete Wavelet Transform (DWT) and is ready 

for transmission from source. However, the condition of data flow to sink is based on 

two logics namely the forwarding capability of intermediate node and the link 
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availability from source node to intermediate node. In this case forwarding ability is 

determined by minimum processing capability (value) of the respective node and its 

associated metrics as in table 5.2.  

Figure 5.6 depicts the illustration of intermediate forwarding. In this case we 

assume the minimum processing capability of intermediate forwarder as 5 or we can say 

the minimal weight value or forwarding capability of sensor is 5. Hence sensor 1 starts 

its transmission if the weight value exceeds 5 or it refrains from transmission. The 

weight assigned depends on link capacity and data rate generated. Similarly sensor 2 

starts its transmission if the weight value exceeds 5 or it refrains from transmission. It 

can also be stated as when the combination of weights exceeds the threshold value at the 

source nodes. 

� = ���$%� =  õ5               �$% ≥ 00               �$% ≤ 0                               (5.19) 

The weight is updated using equation 5.18. Initially the weight values of w1R= 6, 

and weight vale of w2R= 0. As per logic 3 in table 5.2 if the incoming relay node 

exceeds the forwarding threshold for any one of the associated senders it transmits data. 

In the second case the weight value of w1R= 2 and weight vale of w2R= 2, a1=1, a2=0. In 

this scenario the weight values are less than the data forwarding threshold at the relay 

node hence updating of weight takes place as below:  

Updating weight w1r: 

                             Incoming signal = �1 × 2�  

                             Incoming signal = 2 

                             Error=�Right value-Actual value�2                      (5.20)  

                             Error=�5-2�2   

                             Error=9   
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   ¬o%�ñ  = ¬o!�#+ �çÏ±� × ����� × ����h© �����  

                             ¬o%�ñ  = 2+ �1 × 9 × 0.5�  

¬o%�ñ  =6.5                                                         (5.21) 

Updating weight w2rcan be done as below. 

                            Incoming signal = �0 × 2�  

                            Incoming signal = 0 

¬�%�ñ  =0                                                         (5.22) 

Hence forwarding happens from node a1 to the intermediate node R after 

updating of weight W1r.The weight of W2r is not updated as the incoming signal does 

not satisfy the data forwarding threshold value. The weight values for the subsequent 

iteration will provide faster transmission until the intermediate node is susceptible to 

transmit. Once the intermediate node is unable to transfer it refrains of transmissions 

from senders changing its R value. At source Discrete Wavelet Transform is performed 

and recovery at sink takes place using Inverse Discrete Wavelet Transform. 

5.3.4 Reconstruction Phase 

Sparsity can be enforced according to equation 5.23. 

.h‖Ì‖�                                                                          (5.23) 

Maximal incoherence should occur between the sensing matrix and sparsity basis. Ì̅ = Ý�ɵ                                                                   (5.24) 

Whereψ_ is a basis matrix.ɵ denotes non-zero entries. 

Thus the equation can be rewritten as in Equation 5.25. 

yÛ = ϕ_ψ_ɵ                                                                       (5.25) 

Thus the process of signal compression, data forwarding using POR and PRMTI, signal 

recovery is explained in this section 5.3. 
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5.4 Results and Discussion 

In both proposed algorithms compression is performed using discrete wavelet 

transform and transmissions from source leverage on communication resources. The 

machine learning algorithm with perceptron-based data transfer works by associating 

the sensors with one another based on available resources. Distributed computing in 

wireless sensor network occurs at the wireless interface determining the choice between 

forwarding or not based on available bandwidth. Hence the communication protocol 

developed should meet the requirements of communication bandwidth which is scarce 

long and in-coherent with an enormous data rate produced by the sensors (Yick et al., 

2008). Initial weight values are assigned based on the coverage and location coordinates 

of node to its forwarders. Data forwarding threshold values in POR is assigned based on 

carrier sensing inputs matching the target values. 

Data forwarding threshold values in PRMTI is assigned in such way, the carrier 

sensing inputs is greater than forwarding threshold at intermediate nodes. In this work 

the following two assumptions are made. Compressive sensing is performed where 

sparse vectors are quantified on an absolute scale. Then the decision to forward or not 

forward is translated into a linear separable problem based upon the network resources. 

The topology is designed with a sink at the center. Data transfer occurs from a pair of 

sensors through the relay to the sink. Simulation parameters are shown in table 5.3. 

Table 5.3: Simulation parameters of POR, PRMTI and CDG 

Parameters Values 

Number of sensor nodes 50 

Transmission radius 100 m 

Initial energy of sensor nodes 2 J 

Terrain 1,000m × 1,000m 

Total duration of sensing periods 10,000 s 
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5.4.1 Energy-Saving Using Compression 

The energy expenditure in the transfer of data from the source node to the relay 

node can be calculated using equation 5.26. 

Residual Energy=Initial Energy– Node's current energy                (5.26) 
In figure 5.7 the single-hop energy consumption between the source node and its 

relay is shown. Here five different source nodes are used. In figure 5.7 the distance 

between source node and relay is considered. As the distance increases the energy 

consumed also increases. POR consumes less energy with limited number of 

transmission whereas PRMTI consumes more energy with increased transmissions. 

Numerical values obtained by simulation are shown in table 5.4.  

Table 5.4: Residual Energy – POR and PRMTI 

Initiator node Residual Energy - POR Residual Energy - PRMTI 

1 1.80 J 1.71 J 

2 1.74 J 1.54 J 

3 1.58 J 1.35 J 

4 1.42 J 1.21 J 

5 1.31 J 1.10 J 

 

 

 

 

 

 

 

 

 

Figure 5.7: POR and PRMTI - Residual Energy  
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Figure 5.8: POR and PRMTI - Energy Consumption versus Initiator node 

            Table 5.5: Energy Consumption – POR and PRMTI 

Initiator node Energy Consumption 

POR 

Energy Consumption 

PRMTI 

1 10.018 J 10.61 J 

2 8.05 J 8.461 J 

3 6.441 J 7.866 J 

4 5.316 J 6.341 J 

5 4.441 J 5.741 J 

 

Energy consumption associated with number of hops and forwarding nodes is 

calculated from source node. PRMTI due to excessive forwarding consumes more 

energy than POR is shown in figure 5.8. The energy expenditure from source node to 

relay node and its subsequent forwarding of data to the sink is calculated using equation 

5.27. The numerical values of energy consumption are shown in table 5.5. The 

development of POR focuses on the transmission of data when the available wireless 

network resources are sparse. 

Energy consumption = Total energy consumed × Number of hops Number of forwarding sensor nodes          (5.27) 
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Hence sensor nodes forward data only when the activation function matches the 

target response. Thus the number of transmissions is reduced and energy expenditure is 

lower in POR. In PRMTI when the relay node exceeds the forwarding threshold then it 

transfers data. Hence the number of transmissions is increased and there is an increase 

in energy expenditure. In figure 5.9 the number of transmissions in PRMTI is higher 

considering the data forwarding capability. In POR number of transmissions is 

decreased and forwarding happens only if the target response is satisfied. The cost 

incurred for data transmission is calculated using table 5.6. 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: POR and PRMTI – Sensing period versus Number of Transmissions 

Table 5.6: Sensing Period Vs Number of Transmissions - POR and PRMTI  

Protocol Sensing Period (s) Number of Transmissions 

POR 5,000 109,000 

PRMTI 5,000 183,000 

POR 10,000 129,000 

PRMTI 10,000 197,000 
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5.4.2 Interpretation of Energy Consumption  

If the number of transmissions increases there is a sudden depreciation in energy 

consumption due to continuous forwarding. Hence to denote the energy consumption 

two parameters namely residual energy and Energy consumption associated with 

number of hops is considered. In figure 5.10 a similar compression ratio is used in both 

the proposed protocols with two different forwarding criteria. The transmission cost in 

table 5.7 shows the recovery at the sink with the consolidated number of transmissions 

from the sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: POR and PRMTI - Number of Hops versus Number of Transmissions 

Table 5.7: Number of Hops Vs Number of Transmissions - POR and PRMTI  

 

Number of Hops No of Transmissions -

POR 

No of Transmissions - 

PRMTI 

5 98,145 176,943 

6 107,431 188,926 

7 118,974 190,009 

8 129,000 197,000 

 

Sensors have less computational capability in forwarding data. The amount of 

information generated at the source sensor decreases as it approaches sink. Hence the 

number-of-hops metric is shown in figure 5.10 to relate the forwarding capabilities to 

minimal intermittent connectivity and communication void. 
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5.4.3 Comparisons of Proposed Protocols with Existing Protocols 

Performance evaluation of residual energy and number of transmissions of 

proposed protocol (POR & PRMTI) with CDG (Luo et al., 2009) using the simulation 

parameters as in table 5.3 is shown in this section. CDG independently does 

compression followed by routing considering the global traffic with appropriate load in 

transmission and thereby persevering energy efficiency of certain nodes. In figure 5.11 

five different nodes with different distance to sink are considered and the residual 

energy is calculated. The Residual energy of POR is better than CDG after several 

transmissions. Numerical value of residual energy of both protocols is shown in table 

5.8.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Comparison graph POR and CDG - Residual Energy  

          Table 5.8: Residual Energy - POR and CDG 

Initiator node Residual Energy - POR Residual Energy - CDG 

1 1.80 J 1.54 J 

2 1.74 J 1.41 J 

3 1.58 J 1.14 J 

4 1.42 J 1.07 J 

5 1.31 J 0.91 J 
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Figure 5.12: Comparison graph PRMTI and CDG - Residual Energy 

         Table 5.9: Residual Energy - PRMTI and CDG 

Initiator node Residual Energy - PRMTI Residual Energy - CDG 

1 1.71 J 1.54 J 
2 1.54 J 1.41 J 
3 1.35 J 1.14 J 
4 1.21 J 1.07 J 
5 1.10 J 0.91 J 
 

In figure 5.12 five different nodes with different distance to sink are considered 

and their residual energy is calculated. The residual energy of PRMTI has been better 

even with increased number of transmission than CDG after several transmissions. 

Numerical value of residual energy of PRMTI and CDG protocol is shown in table 5.9. 

In figure 5.13 the number of transmissions versus sensing period is shown. The number 

of transmissions is considerably decreased in POR when compared to CDG. In the case 

of POR this is achieved by using intermediate node’s processing capability balancing 

the global traffic. The values obtained with MATLAB simulations are shown in table 

5.10. 
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Figure 5.13: POR and CDG - Number of Transmissions 

Table 5.10: Number of Transmissions - POR and CDG  

Sensing 

period  

POR Protocol 

Number of 

Transmissions 

CDG Protocol 

Number of 

Transmissions 

5,000 1,19,000 1,47,000 

10,000 1,49,000 1,77,000 
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5.5 Data analysis of POR and PRMTI 

In the previous works, the impact of transmissions with spatial and time 

coordinates and its results are inferred in Multinomial Logistic Regression analysis. 

Further results of error rate and energy consumption are statistically analyzed using 

SPSS (Zuhairy & Al., 2018).  There are several works explaining the tabulated 

statistical results. They infer the impact of mobility and connectivity through Analysis 

of Variance (ANOVA) using SPSS (Ahmad et.al., 2018). Analogous to these, in our 

work the number of transmissions is analyzed using time series and residual energy 

consumption using Generalized Linear Model (GLM).  

There are numerous algorithms used for statistical signal processing for different 

applications. However in this work data obtained via simulations are interpreted using 

time series analysis and by expert modeler method. Time series method is used to prove 

the increase in number of transmissions as the sensing period is increased. Expert 

modeler method proves the relationship between residual energy and overall energy 

consumption by interpreting the simulation results. 

5.5.1 POR – Analysis on Number of Transmissions  

The efficiency of POR and PRMTI is validated using a time series algorithm. 

The significance of time series analysis is it simultaneously associates the dependent 

and independent variables.  

Null Hypothesis: There is no relationship between the sensing period and reduction in 

number of transmissions. 

Alternate Hypothesis: There is a relationship between the sensing period and reduction 

in number of transmissions. 
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Table 5.11: Comparison of proposed protocols with Sensing Period 

Sensing period 

(seconds) 

POR PRMTI 

4000 98,145 176,943 

6000 107,431 188,926 

8000 118,974 190,009 

10000 129,000 197,000 

 

Table 5.12: Model description for numerical evaluations - POR. 

Model Description 

           Model id Number of transmissions    Model Type ARIMA (0,0,0) 

  
Table 5.13: Model fit statistics for Number of Transmissions – POR 

 
Number of 

Transmissions 

Model 

Stationary   

R squared 

R squared RMSE MAPE     MAE MaxAPE MaxAE Normalized 

BIC 

0.998 0.998 651.57 0.351 377.400 0.699 751.100 13.652 

 

Table 5.14: Residual ACF summary - POR 

Lag Mean 

Lag 1 -0.669 

Lag 2 0.171 

Lag 3 -0.002 

 

Table 5.15: Residual PACF summary - POR 

Lag Mean 

Lag 1 -0.669 

Lag 2 0.171 

Lag 3 -0.002 

 

Table 5.11 shows the comparison of POR and PRMTI at different sensing 

periods. Table 5.12 denotes the appropriate model for Auto Regressive Integrated 

Moving Average. Table 5.13 shows the following model fit statistics. The optimal order 

of differencing can be found with Root Mean Square Error (RMSE).  Diagnostic 

checking can be done with Bayesian Information criteria (BIC), Mean Absolute Error 

(MAE), Mean Absolute Percentage Error (MAPE), Maximum Absolute Percentage 

Error (MaxAPE), Maximum Absolute Error (MaxAE). Residual value with ACF and 

PACF summary states the model fits is appropriate with white noise.  
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The Auto Correlation Function (ACF) denotes the simple correlation between 

the current observation and the observation is “p” period from current observation. It is 

shown in table 5.14. The Partial Auto Correlation Function (PACF) denotes the degree 

of association between the current observation and the observation is “p” period from 

current observation. It is shown in table 5.15. The figure 5.14 denotes the model fit 

statistics values of stationary R square versus frequency for POR. The figure 5.15 shows 

the model fit statistics values of R squared versus frequency for POR.  

 

                      Figure 5.14: POR - Stationary R squared plot  

 

 

 

 

 

 

 

 

 
                                    Figure 5.15: POR - R squared plot 
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The figure 5.16 denotes the model fit statistics values of RMSE versus 

frequency for POR. The figure 5.17 denotes the model fit statistics values of 

Normalized BIC versus frequency for POR. Table 5.16 shows the predicted, lower and 

upper limits of data interpreted using simulation results of data analysis. This is just an 

association of transmission cost with sensing period obtained with Auto Regressive 

Integrated Moving Average (ARIMA) model for POR. 

 

 

 

 

 

 

 

 

    Figure 5.16: POR - RMSE versus Frequency 

 

 
 

 

 

 

 

 

 

 

Figure 5.17: POR - Normalized BIC versus Frequency 

 

    Table 5.16: Predicted, Lower and Upper Confident Limit – POR 

 

 Predicted  Lower Confident Limit Upper Confident Limit 

97771 94968 100575 

108182 105379 110986 

118593 115789 121396 

129004 126200 131807 
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5.5.2 PRMTI – Analysis on Number of Transmissions 

Table 5.17 denotes the appropriate model of Auto Regressive Integrated Moving 

Average for PRMTI. Table 5.18 shows the model fit statistics values. The Auto 

Correlation Function (ACF) denotes the simple correlation between the current 

observation and the observation is “p” period from current observation. It is shown in 

table 5.19 for PRMTI. The Partial Auto Correlation Function (PACF) denotes the 

degree of association between the current observation and the observation is “p” period 

from current observation. It is shown in table 5.20. 

Table 5.17: Model description for numerical evaluations - PRMTI 

Model Description 

           Model id Number of transmissions    Model Type ARIMA (0,0,0) 

 

Table 5.18: Model fit statistics for Number of Transmissions - PRMTI 

Number of 

Transmissions 

Model 

Stationary   

R squared 

R squared RMSE MAP

E 

    MAE MaxAPE MaxAE Normalized 

BIC 

0.902 0.902 3190.255 1.013 1884.660 1.995 3769.200    16.829 

 

Table 5.19: Residual ACF summary - PRMTI 

Lag Mean 

Lag 1 - 0.597 

Lag 2 0.55 

Lag 3 0.42 

 

Table 5.20: Residual PACF summary - PRMTI 

Lag Mean 

Lag 1 - 0.597 

Lag 2 0.468 

Lag 3 -0.376 
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Figure 5.18: PRMTI – Stationary R-squared 

 

 

 

 

 

 

 

 

 

Figure 5.19: PRMTI- R squared plot  

 

The figure 5.18 denotes the model fit statistics values of stationary R square 

versus frequency for PRMTI protocol. The figure 5.19 denotes the model fit statistics 

values of R square versus frequency for PRMTI protocol. The figure 5.20 denotes the 

model fit statistics values of RMSE square versus frequency for PRMTI. Figure 5.21 

shows the normalized BIC values for PRMTI. The table 5.21 shows the predicted, lower 

and upper limits of data interpreted using simulation results. This is just an association 

of transmission cost with sensing period obtained using Auto Regressive Integrated 

Moving Average (ARIMA) model for PRMTI 
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Figure 5.20: PRMTI - RMSE versus Frequency 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: PRMTI - Normalized BIC versus Frequency 

 

Table 5.21: Predicted, Lower and Upper Confident Limit - PRMTI 

 
Predicted Lower Confident Limit Upper Confident Limit 

179031 165305 192758 

185157 171430 198883 

191282 177556 205009 

197408 183681 211134 
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From the numerical evaluations it is clearly evident, POR yields an association 

indicating the alternate hypothesis is proved. Simulation results of both the protocol 

indicate the decrease in number of transmissions with increase in sensing period.  Since 

sensors are subjected to varying observation cost, determining the transmission cost 

estimation is done in three intervals namely predicted, lower and upper confident limits. 

The development of POR in a resource constrained environment in table 5.16 shows 

lower values when compared to table 5.21 (PRMTI) developed in a resource 

unconstrained environment. 

5.5.3 POR – Analysis on Energy Consumption  

The analysis on energy consumption is performed using Expert Modeler. There 

are two interpretation of energy consumption the first is residual energy of individual 

node and other is the overall energy incurred for transfer of data to sink associated with 

number of hops. The death of an individual sensor node can partition the network into 

two. The values in the above table represents the individual energy of sensor nodes 

denoted as residual energy (RE). The overall energy consumption occurred in 

transmission with respect to the number of hops is denoted as EC. So the overall energy 

consumption is a factor depending on several nodes within the sensing field. The 

residual energy and overall energy consumption of POR and RMTI is shown in table 

5.22. 

   Table 5.22: Energy Consumption analysis using Expert modeler   

Initiator Node POR_RE POR_EC PRMTI_RE PRMTI_EC 

1 1.80 J 10.018  1.71  10.61  
2 1.74 J 8.05  1.54  8.461  
3 1.58 J 6.441  1.35  7.866  
4 1.42 J 5.316  1.21  6.341  
5 1.31 J 4.441  1.10  5.741  
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The variables used in expert modeler are represented as follows POR_RE: 

Residual Energy of Perceptron-based Optimal Routing, POR_EC: Energy consumption 

of Perceptron-based Optimal Routing, PRMTI_RE: Residual Energy of Perceptron-

based Routing with Moderate Traffic Intensity, PRMTI_EC: Energy consumption of 

Perceptron-based Routing with Moderate Traffic Intensity. 

Null Hypothesis: There is no relationship between the residual energy of individual 

node and overall energy consumption. 

Alternate Hypothesis: There is a relationship between the residual energy and overall 

energy consumption. 

The simulations in this work are carried out using expert modeler where only 

dependant variables are used. In this case the dependant variables used are residual 

energy and energy consumption of the proposed protocols. The table 5.23 indicates the 

model description of residual energy of sensor nodes a Holt method is to be performed 

on the described model. Table 5.24 shows the summary of POR_RE with its model fit 

statistics. The Table 5.25 shows the summary of POR_RE with exponential smoothing 

model and it is the best fitting model. 

  Table 5.23: Model description for numerical evaluations - POR_RE 

 

Model Description 

Model id POR_RE   Model_1 Model Type used Holt 

 

                     Table 5.24: Model summary - POR_RE 

Number of 

Transmissi

ons Model 

R squared RMSE MAPE     MAE MaxAPE MaxAE Normalized 

BIC 

0.973 0.039 1.436 0.24 2.686 0.47 -5.834 

 

              Table 5.25: Exponential smoothing model parameters - POR_RE 

 

 
Estimate  SE t Sig 

Alpha (Level) 0.392 0.254 1.545 0.220 

Gamma (Trend) 7.194E-6 
0.105 6.860E-5 1.000 
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           Table 5.26: Predicted, Lower and Upper Confident Limit - POR_RE. 

 
Predicted Lower Confident Limit Upper Confident Limit 

1.838 1.713 1.963 

1.693 1.568 1.818 

1.582 1.457 1.706 

1.451 1.326 1.576 

1.309 1.184 1.434 

 

 

 

 

 

 

 

 

 

 

Figure 5.22: POR_RE - Normalized BIC versus Frequency 

 

 Table 5.27: Model description for numerical evaluations - POR_EC 

 

Model Description 

           Model id POR_EC Model_1 Model Type used Holt 

 
                                       Table 5.28: Model summary - POR_EC 

 

Number of 

Transmissi

ons Model 

R squared RMSE MAPE     MAE MaxAPE MaxAE Normalized 

BIC 

0.978 0.377 4.063 0.219 9.108 0.484 -1.308 

 

The smaller value of normalized BIC in the exponential smoothing table 

indicates the POR_RE values fitting the data considerably. Thus there is minimal 

penalty added with POR_RE. The table 5.26 represents the predicted, lower and upper 

limits of data interpreted using the simulation results. Figure 5.22 denotes the model fit 

statistics values of Normalized BIC versus frequency for POR_RE. Table 5.27 indicates 

the model description of Holt model. The table 5.28 shows the model summary for 

POR_RE with its model fit statistics. 
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Table 5.29 shows the model summary of POR_EC with exponential smoothing 

model and it is the best fitting model. The smaller value of normalized BIC in the 

exponential smoothing table indicates POR_EC values fits the data considerably. Thus 

there is minimal penalty added with POR_EC. The table 5.30 shows the energy 

consumption with upper and lower confidence limits with the values of POR_EC using 

expert modeler. The figure 5.23 denotes the model fit statistics values of normalized 

BIC versus frequency of POR_EC.  

              Table 5.29: Exponential smoothing model parameters - POR_EC 

 

 Estimate  SE T Sig 

Alpha (Level) 1.000 .759 1.318 .279 

Gamma (Trend) 1.000 1.119 .893 .437 

 

Table 5.30: Predicted, Lower and Upper Confident Limit - POR_EC 

 

Predicted Lower Confident Limit Upper Confident Limit 

10.02 8.82 11.22 

8.05 6.85 9.25 

6.08 4.88 7.28 

4.83 3.63 6.03 

4.19 2.99 5.39 
 

 

 

 

 

 

 

 

 

Figure 5.23: POR-EC - Normalized BIC versus Frequency 
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5.5.4 PRMTI- Analysis on Energy Consumption 

Table 5.31 gives the model description of PRMTI_RE. Table 5.32 indicates the 

data of residual energy of sensor nodes performed with Expert modeler. Table 5.32 

shows the model summary of PRMTI_RE with its model fit statistics. Table 5.33 shows 

the summary of PRMTI_RE with exponential smoothing model. Table 5.34 shows the 

predicted, lower and upper limits of data interpreted for PRMTI_RE. This is just an 

association of transmission cost with sensing period obtained with Auto Regressive 

Integrated Moving Average (ARIMA) model for PRMTI.  

Table 5.31: Model description for numerical evaluations - PRMTI_RE  

 
Model Description 

 Model id PRMTI_RE   Model_1 Model Type used Holt 

 
                       Table 5.32: Model summary - PRMTI_RE 

Stationary   

R squared 

R 

squared 

RMSE MAPE     MAE MaxAPE MaxAE Normalized 

BIC 

-0.338 0.985 0.035 1.695 0.021 3.818 0.042 -6.066 

 

Table 5.33: Exponential smoothing model parameters - PRMTI_RE 

 

 Estimate  SE t Sig 

Alpha (Level) 0.490 0.596 0.822 0.471 

Gamma (Trend) 3.283E-7 0.092 3.563E-6 1.000 

 

Table 5.34: Predicted, Lower and Upper Confident Limit - PRMTI_RE 

 
Predicted Lower Confident Limit Upper Confident Limit 

1.704 1.592 1.815 

1.552 1.441 1.663 

1.391 1.280 1.502 

1.216 1.105 1.327 

1.058 0.947 1.169 
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Figure 5.24: PRMTI_RE - Normalized BIC versus Frequency  

 

         Table 5.35: Model description for numerical evaluations - PRMTI_EC 

 

Model Description 

 Model id PRMTI_EC   Model_1 Model Type used Holt 

 
Table 5.36: Model summary - PRMTI_EC 

 

Stationary   

R squared 

R 

squared 

RMSE MAPE     MAE MaxAPE MaxAE Normalized 

BIC 

0.922 0.934 0.570 4.986 0.373 9.480 .802 -0.480 

 

Table 5.37: Exponential smoothing model parameters - PRMTI_EC 

 

 Estimate  SE t Sig 

Alpha (Level) 0.392 0.470 0.835 0.465 

Gamma (Trend) 3.052E-6 0.172 2.03E-5 1.000 

 

Figure 5.24 denotes the model fit statistics values of Normalized BIC versus 

frequency for PRMTI_RE. The table 5.35 indicates the model for energy consumption of 

sensor nodes. Table 5.36 shows the model summary of PRMTI_EC with its model fit 

statistics. The Table 5.37 shows the exponential smoothing model and is proved as the 

best fitting model for PRMTI_EC.  
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        Table 5.38: Predicted, Lower and Upper Confident Limit - PRMTI_EC 

 
Predicted Lower Confident Limit Upper Confident Limit 

10.345 8.530 12.159 

9.263 7.449 11.078 

7.763 5.948 9.577 

6.617 4.803 8.432 

5.323 3.509 7.138 
 

 

 

 

 

 

 

 

 

          Figure 5.25: PRMTI_EC - Normalized BIC versus Frequency  

 

The table 5.38 shows the predicted, lower and upper limits of data interpreted 

using simulation results of PRMTI_EC. This is just an association of transmission cost 

with sensing period obtained using Auto Regressive Integrated Moving Average 

(ARIMA) model for PRMTI. Figure 5.25 depicts the PRMTI_EC - Normalized BIC 

versus Frequency. It denotes the model fit statistics values of Normalized BIC versus 

frequency of PRMTI_EC.  

The smaller value of normalized BIC in the exponential smoothing table 

indicates PRMTI_RE values fits the data considerably. However while comparing both 

PRMTI_RE with lower BIC. There is a strong relationship between the residual energy 

and overall energy consumption. Thus the results indicate alternate hypothesis is 

proved. 
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5.6 Conclusion 

The efficiency of compressive sensing in wireless sensor nodes not only depends 

on sensed data but also on the minimum number of transmissions needed to reach the 

sink. The framework has two protocols with different forwarding strategies in the 

transfer of data to the sink. Both protocols incorporate discrete wavelet transform in 

order to ensure the sparsity of sensed data and recovery at the sink. The framework of 

Perceptron-based Optimal Routing (POR) and Perceptron-based Routing with Moderate 

Traffic Intensity (PRMTI) initiates data forwarding and do not require a long training 

phase. Data transmission subsequently takes place by considering the available 

bandwidth and the concurrent transmission capability of the intermediate node involved 

in forwarding. Hence load balancing is achieved in both the algorithms. POR uses a 

bipolar logic with a target value at the relay node for forwarding. If the target response is not 

satisfactory then weight update is performed iteratively until the incoming data meets the target 

response. PRMTI forwards when the link capacity exceeds the defined data- forwarding 

threshold at the relay node. Thus the transfer of compressed data in unreliable wireless 

links is performed with binary classifiers using the threshold values resulting in a fully 

connected topology. The biasing effect of the framework with its associated metrics for 

data forwarding shows greater transmission efficiency for compressed data in a wireless 

environment. The simulation outcome with regard to residual energy, energy 

consumption and the number of transmissions is estimated for the proposed framework. 

The comparison of the proposed framework has been performed with an existing 

protocol CDG. The frameworks show increased residual energy and reduction in 

number of transmissions than CDG. Time series analysis has been carried out on the 

simulation results of proposed framework in order to ascertain the reduction in the 

number of transmissions within the allocated sensing period. The simulation results on 

energy consumption is validated with expert modeler determining the relationship 

between residual energy of individual nodes and overall energy consumption.   
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

The significance of the thesis is to overcome the constraints involved in sensing 

and communication cost of wireless sensor nodes. The first framework embodies 

solutions for energy efficiency to prolong the lifetime of sensors. Cluster members can 

be elected as cluster head based on the main indices favoring energy. The multi-hop 

communication is performed in varying sensing field and the packet exchange occurs 

either to static or mobile sink based on the nearest distance. The mobile sink preserves 

both, one-hop neighbors of static sink and peripheral nodes within the sensing field.  

The penultimate framework incorporates compressive sensing. It reduces the 

sensing cost by sparse sensed data representation at source and post processing the 

sparse data at sink. Data forwarding from source to neighbor using spatial-temporal 

coordinates and correlation coefficients ensures the minimal transmission and 

reconstruction accuracy being achieved. The sensing cost is reduced by compressive 

sensing and the number of transmissions is reduced during data forwarding through 

correlation coefficients ensuring energy proficiency.  

Final framework ensures reduction in transmission cost and sensing cost. 

Sensing cost is reduced by incorporating compressive sensing however wireless link 

capacity may degrade due to traffic intensity wherein intermediate nodes are unable to 

forward data to sink. Hence channel impairment between source node and intermediate 

nodes are interpreted for forwarding data. To analyze the link capacity and traffic 

intensity single layer perceptron-based framework for data forwarding has been 

incorporated. The framework constitutes two solutions. In the first solution when there 

is a match in data forwarding threshold value between source and intermediate 

forwarder then forwarding happens. This solution suits for resource constrained 

networks.  

Univ
ers

iti 
Mala

ya



171 

 

In the second solution when any of the forwarder exceeds the minimal data 

forwarding threshold value, forwarding happens from source node to intermediate 

forwarder and it is applicable for resourceful networks. 

6.2 Future Work 

Future work will focus on development of algorithm for sensing layer and for 

those nature of applications where wireless sensor nodes is deployed. The sensing layer 

provides better techniques to achieve sparsity and minimal power consumption in data 

acquisition process. The sensing layer in line with communication operation transmits 

the data from sensors, for the post processing process and reconstruction process at sink 

within the estimated time period. Communication operation would be interfaced to IOT 

platforms. The nodal activity and channel response for signal elevation or the de-

elevation strategy would be matched in transmission. Development of alternate path-

based communication prior to sensing can be inferred depending on the application of 

sensor’s sensitive or insensitive to delay. Further direction of research can be obtained 

by exploring the spatial sparsity liable on the application involved in deployment phase. 

This spatial sparsity has to be associated with channel state information ensuring high 

reconstruction accuracy. 

 

 

 

 

 

 

 

 

 

Univ
ers

iti 
Mala

ya



172 

 

REFERENCES 

 

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor 
networks: a survey. Computer networks, 38(4), 393-422. 

 
 
Aeron, S., Zhao, M., & Saligrama, V. (2006). Fundamental trade-offs between sparsity, 

sensing diversity and sensing capacity. In 2006 Fortieth Asilomar Conference on 
Signals, Systems and Computers (pp. 295-299). IEEE. 

 
 
Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation 

in wireless sensor networks: A survey. Ad hoc networks, 7(3), 537-568. 
 
 
Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless 

sensor networks. Computer communications, 30(14-15), 2826-2841. 
 
 
Arjoune, Y., Kaabouch, N., El Ghazi, H., & Tamtaoui, A. (2018). A performance 

comparison of measurement matrices in compressive sensing. International 
Journal of Communication Systems, 31(10). 

 
 
Aeron, S., Zhao, M., & Saligrama, V. (2008). Algorithms and bounds for sensing 

capacity and compressed sensing with applications to learning graphical               
models. In 2008 Information Theory and Applications Workshop (pp. 303-309). 
IEEE. 

 
 
Abuarqoub, A., Hammoudeh, M., Adebisi, B., Jabbar, S., Bounceur, A., & Al-Bashar, 

H. (2017). Dynamic clustering and management of mobile wireless sensor 
networks. Computer Networks, 117, 62-75. 

 
 
Amjad, M., Afzal, M. K., Umer, T., & Kim, B. S. (2017). QoS-aware and 

heterogeneously clustered routing protocol for wireless sensor networks. IEEE 
Access, 5, 10250-10262. 

 
 
Abo-Zahhad, M. M., Hussein, A. I., & Mohamed, A. M. (2015). Compressive sensing 

algorithms for signal processing applications: A survey. International Journal of 
Communications, Network and System Sciences, 8(06), 197. 

 
 
Acimovic, J., Beferull-Lozano, B., &Cristescu, R. (2005). Adaptive distributed 

algorithms for power-efficient data gathering in sensor networks. In 2005 
International Conference on Wireless Networks, Communications and Mobile 
Computing (Vol. 2, pp. 946-951). IEEE. 

 

Univ
ers

iti 
Mala

ya



173 

 

Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless 
sensor networks: Algorithms, strategies, and applications. IEEE 
Communications Surveys & Tutorials, 16(4), 1996-2018. 

 
 
Alsheikh, M. A., Hoang, D. T., Niyato, D., Tan, H. P., & Lin, S. (2015). Markov 

decision processes with applications in wireless sensor networks: A 
survey. IEEE Communications Surveys & Tutorials, 17(3), 1239-1267. 

 
 
Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2016). Rate-distortion balanced data 

compression for wireless sensor networks. IEEE Sensors Journal, 16(12), 5072-
5083. 

 
 
Amarlingam, M., Mishra, P. K., Rajalakshmi, P., Channappayya, S. S., & Sastry, C. S. 

(2018). Novel Light Weight Compressed Data Aggregation using sparse 
measurements for IoT networks. Journal of Network and Computer 
Applications, 121, 119-134. 

 
 
Alwan, N. A., & Hussain, Z. M. (2019). Compressive sensing with chaotic sequences: 

an application to localization in wireless sensor networks. Wireless Personal 
Communications, 105(3), 941-950. 

  
 
Anand, J. V., & Titus, S. (2017). Energy efficiency analysis of effective hydrocast for 

underwater communication. International Journal of Acoustics & Vibration, 
22(1) 44-50. 

 
 
Ahmad, M., Li, T., Khan, Z., Khurshid, F., & Ahmad, M. (2018). A Novel 

Connectivity-Based LEACH-MEEC Routing Protocol for Mobile Wireless 
Sensor Network. Sensors, 18(12), 4278. 

 
 
Bult, K., Burstein, A., Chang, D., Dong, M., Fielding, M., Kruglick, E., & Marcy, H. 

(1996). Low power systems for wireless microsensors. In Proceedings of 1996 
International Symposium on Low Power Electronics and Design (pp. 17-21). 
IEEE. 

 
 
Bader, S., Ma, X., & Oelmann, B. (2014). On the modeling of solar-powered wireless 

sensor nodes. Journal of Sensor and Actuator Networks, 3(3), 207-223. 
 
 
Bhardwaj, M., Garnett, T., & Chandrakasan, A. P. (2001). Upper bounds on the lifetime 

of sensor networks. In ICC 2001. IEEE International Conference on 
Communications. Conference Record (Cat. No. 01CH37240) (Vol. 3, pp. 785-
790). IEEE. 

 

Univ
ers

iti 
Mala

ya



174 

 

Baraniuk, R. G., Cevher, V., Duarte, M. F., &Hegde, C. (2008). Model-based 
compressive sensing. IEEE Transactions on Information Theory 56, (4) 1982 – 
2001. 

 
 
Bawane, P., & Kannu, A. P. (2019). Time varying sparse support recovery. Signal 

Processing, 161, 214-226. 
 
 
Berger, C. R., Wang, Z., Huang, J., & Zhou, S. (2010). Application of compressive 

sensing to sparse channel estimation. IEEE Communications Magazine, 48(11), 
164- 174. 

 
 
Baradaran, A. A., & Navi, K. (2017). CAST-WSN: The presentation of new clustering 

algorithm based on Steiner tree and C-means algorithm improvement in wireless 
sensor networks. Wireless Personal Communications, 97(1), 1323-1344. 

 
 
Bettstetter, C. (2002). On the minimum node degree and connectivity of a wireless 

multihop network. In Proceedings of the 3rd ACM international symposium on 
Mobile ad hoc networking & computing (pp. 80-91). ACM. 

 
 
Blumensath, T., & Davies, M. E. (2009). Iterative hard thresholding for compressed 

sensing. Applied and computational harmonic analysis, 27(3), 265-274. 
 
 
Baccour, N., Koubâa, A., Mottola, L., Zúñiga, M. A., Youssef, H., Boano, C. A., & 

Alves, M. (2012). Radio link quality estimation in wireless sensor networks: A 
survey. ACM Transactions on Sensor Networks (TOSN), 8(4), 34. 

 
 
Bajwa, W., Haupt, J., Sayeed, A., & Nowak, R. (2006). Compressive wireless sensing. 

In Proceedings of the 5th international conference on Information processing in 
sensor networks (pp. 134-142). ACM. 

 
 
Blanchard, J. D., Cartis, C., & Tanner, J. (2011). Compressed sensing: How sharp is the 

restricted isometry property? SIAM review, 53(1), 105-125. 
 
 
Chen, B., Tong, L., & Varshney, P. K. (2006). Channel-aware distributed detection in 

wireless sensor networks. IEEE Signal Processing Magazine, 23(4), 16-26. 
 
 
Cetin, M., Chen, L., Fisher, J. W., Ihler, A. T., Moses, R. L., Wainwright, M. J., & 

Willsky, A. S. (2006). Distributed fusion in sensor networks. IEEE Signal 
Processing Magazine, 23(4), 42-55. 

 

Univ
ers

iti 
Mala

ya



175 

 

Choi, J. W., Shim, B., Ding, Y., Rao, B., & Kim, D. I. (2017). Compressed sensing for 
wireless communications: Useful tips and tricks. IEEE Communications Surveys 
& Tutorials, 19(3), 1527-1550. 

 
 
Chong, C. Y., & Kumar, S. P. (2003). Sensor networks: evolution, opportunities, and 

challenges. Proceedings of the IEEE, 91(8), 1247-1256. 
 
 
Cardei, M., Wu, J., Lu, M., &Pervaiz, M. O. (2005). Maximum network lifetime in 

wireless sensor networks with adjustable sensing ranges. In WiMob'2005), IEEE 
International Conference on Wireless and Mobile Computing, Networking And 
Communications, 2005. (Vol. 3, pp. 438-445). IEEE. 

 
 
Cheng, S., Cai, Z., & Li, J. (2014). Curve query processing in wireless sensor 

networks. IEEE Transactions on Vehicular Technology, 64(11), 5198-5209. 
 
 
Cristescu, R., Beferull-Lozano, B., & Vetterli, M. (2005). Networked Slepian-Wolf: 

theory, algorithms, and scaling laws. IEEE Transactions on Information 
Theory, 51(12), 4057-4073. 

 
 
Chen, D., &Varshney, P. K. (2004). QoS Support in Wireless Sensor Networks: A 

Survey. In International conference on wireless networks (Vol. 233, pp. 1-7). 
 
 
Cao, Q., He, T., Fang, L., Abdelzaher, T., Stankovic, J., & Son, S. (2006). Efficiency 

centric communication model for wireless sensor networks. In Proceedings 
IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer 
Communications (pp. 1-12). IEEE. 

 
 
Chen, Y., & Zhao, Q. (2005). On the lifetime of wireless sensor networks. IEEE 

Communications letters, 9(11), 976-978. 
 
 
Cheng, Z., Perillo, M., & Heinzelman, W. B. (2008). General network lifetime and cost 

models for evaluating sensor network deployment strategies. IEEE Transactions 
on mobile computing, 7(4), 484-497. 

 
 
Chen, Q., Kanhere, S. S., & Hassan, M. (2009). Analysis of per-node traffic load in 

multi-hop wireless sensor networks. IEEE transactions on wireless 
communications, 8(2), 958-967. 

 
 
Candes, E. J., Romberg, J. K., & Tao, T. (2006). Stable signal recovery from incomplete 

and inaccurate measurements. Communications on Pure and Applied 
Mathematics: A Journal Issued by the Courant Institute of Mathematical 
Sciences, 59(8), 1207-1223. 

Univ
ers

iti 
Mala

ya



176 

 

 
Candès, E. J., & Wakin, M. B. (2008). An introduction to compressive sampling a 

sensing/sampling paradigm that goes against the common knowledge in data 
acquisition]. IEEE signal processing magazine, 25(2), 21-30. 

 
 
Candes, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing sparsity by reweighted ℓ 

1 minimization. Journal of Fourier analysis and applications, 14(5-6), 877-905. 
 
 
Candes, E. J., Eldar, Y. C., Needell, D., & Randall, P. (2011). Compressed sensing with 

coherent and redundant dictionaries. Applied and Computational Harmonic 
Analysis, 31(1), 59-73. 

 
 
Candes, E., & Romberg, J. (2007). Sparsity and incoherence in compressive 

sampling. Inverse problems, 23(3), 969. 
 
 
Chepuri, S. P., & Leus, G. (2016). Sparse sensing for statistical    

inference. Foundations and Trends in Signal Processing, 9, (3–4), 233-368. 
 
Cervin, A., Henriksson, D., Lincoln, B., Eker, J., & Arzen, K. E. (2003). How does 

control timing affect performance? Analysis and simulation of timing using 
Jitterbug and True Time. IEEE control systems magazine, 23(3), 16-30. 

 
 
Chakrabarti, A., Sabharwal, A., &Aazhang, B. (2003). Using predictable observer 

mobility for power efficient design of sensor networks. In Information 
Processing in Sensor Networks (pp. 129-145). Springer, Berlin, Heidelberg. 

 
 
Chang, J. H., & Tassiulas, L. (2004). Maximum lifetime routing in wireless sensor 

networks. IEEE/ACM Transactions on networking, 12(4), 609-619. 
 
 
Chen, X., Sobhy, E. A., Yu, Z., Hoyos, S., Silva-Martinez, J., Palermo, S., & Sadler, B. 

M. (2012). A sub-Nyquist rate compressive sensing data acquisition front-
end. IEEE Journal on Emerging and Selected Topics in Circuits and 
Systems, 2(3), 542-551. 

 
 
Cheng, J., Ye, Q., Jiang, H., Wang, D., & Wang, C. (2013). STCDG: An efficient data 

gathering algorithm based on matrix completion for wireless sensor 
networks. IEEE Transactions on Wireless Communications, 12(2), 850-861. 

 
 
Chen, Z., Ranieri, J., Zhang, R., & Vetterli, M. (2015). DASS: Distributed adaptive 

sparse sensing. IEEE Transactions on Wireless Communications, 14(5), 2571-
2583. 

 

Univ
ers

iti 
Mala

ya



177 

 

Chen, W., & Wassell, I. J. (2015). A decentralized Bayesian algorithm for distributed 
compressive sensing in networked sensing systems. IEEE Transactions on 
Wireless Communications, 15(2), 1282-1292. 

 
 
Chen, W., Rodrigues, M. R., & Wassell, I. J. (2012). A frechet mean approach for 

compressive sensing date acquisition and reconstruction in wireless sensor 
networks. IEEE Transactions on wireless communications, 11(10), 3598-3606. 

 
 
Chen, W., & Wassell, I. J. (2012). Energy-efficient signal acquisition in wireless sensor 

networks: a compressive sensing framework. IET wireless sensor systems, 2(1), 
1-8. 

 
 
Ciancio, A., Pattem, S., Ortega, A., & Krishnamachari, B. (2006). Energy-efficient data 

representation and routing for wireless sensor networks based on a distributed 
wavelet compression algorithm. In Proceedings of the 5th international 
conference on Information processing in sensor networks (pp. 309-316). ACM. 

 
 
Crovella, M., & Kolaczyk, E. (2003). Graph wavelets for spatial traffic analysis. 

In IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE 
Computer and Communications Societies (IEEE Cat. No. 03CH37428) (Vol. 3, 
pp. 1848-1857). IEEE. 

 
 
Chen, S., Liu, J., Wang, K., & Wu, M. (2019). A hierarchical adaptive spatio-temporal 

data compression scheme for wireless sensor networks. Wireless 
Networks, 25(1), 429-438. 

 
 
Chen, S., Zhang, S., Zheng, X., & Ruan, X. (2019). Layered adaptive compression 

design for efficient data collection in industrial wireless sensor 
networks. Journal of Network and Computer Applications, 129, 37-45. 

 
 
Deshpande, A., Guestrin, C., Madden, S. R., Hellerstein, J. M., & Hong, W. (2004). 

Model-driven data acquisition in sensor networks. In Proceedings of the 
Thirtieth international conference on Very large data bases-Volume 30(pp. 588-
599). VLDB Endowment. 

 
 
Du, R., Gkatzikis, L., Fischione, C., & Xiao, M. (2018). On maximizing sensor network 

lifetime by energy balancing. IEEE Transactions on Control of Network 
Systems, 5(3), 1206-1218. 

 
 
Denantes, P., Bénézit, F., Thiran, P., & Vetterli, M. (2008). Which distributed averaging 

algorithm should i choose for my sensor network?. In IEEE INFOCOM 2008-
The 27th Conference on Computer Communications (pp. 986-994). IEEE. 

 

Univ
ers

iti 
Mala

ya



178 

 

Dias, G. M., Bellalta, B., & Oechsner, S. (2016). A survey about prediction-based data 
reduction in wireless sensor networks. ACM Computing Surveys 
(CSUR), 49(3), 58. 

 
 
Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on information 

theory, 52(4), 1289-1306. 
 
 
Duarte, M. F., Sarvotham, S., Wakin, M. B., Baron, D., &Baraniuk, R. G. (2005). Joint 

sparsity models for distributed compressed sensing. In Proceedings of the 
Workshop on Signal Processing with Adaptive Sparse Structured 
Representations. IEEE. 

 
 
Di Lorenzo, P., & Sayed, A. H. (2012). Sparse distributed learning based on diffusion 

adaptation. IEEE Transactions on signal processing, 61(6), 1419-1433. 
 
 
Duarte, M. F., Cevher, V., & Baraniuk, R. G. (2009). Model-based compressive sensing 

for signal ensembles. In 2009 47th Annual Allerton Conference on 
Communication, Control, and Computing (Allerton) (pp. 244-250). IEEE. 

 
 
Di Francesco, M., Das, S. K., & Anastasi, G. (2011). Data collection in wireless sensor 

networks with mobile elements: A survey. ACM Transactions on Sensor 
Networks (TOSN), 8(1), 7. 

 
 
Donoho, D., & Kutyniok, G. (2013). Microlocal analysis of the geometric separation 

problem. Communications on Pure and Applied Mathematics, 66(1), 1-47. 
 
 
Do, T. T., Gan, L., Nguyen, N. H., & Tran, T. D. (2012). Fast and efficient compressive 

sensing using structurally random matrices. IEEE Transactions on Signal 
Processing, 60(1), 139-154. 

 
 
Dhimal, S., & Sharma, K. (2015). Energy conservation in wireless sensor networks by 

exploiting inter-node data similarity metrics. International Journal of Energy, 
Information and Communications, 6(2), 23-32. 

 
 
Duarte, M. F., Shen, G., Ortega, A., & Baraniuk, R. G. (2012). Signal compression in 

wireless sensor networks. Philosophical Transactions of the Royal Society A: 
Mathematical, Physical and Engineering Sciences, 370(1958), 118-135. 

 
 
Dang, T., Bulusu, N., & Feng, W. C. (2007). RIDA: A robust information-driven data 

compression architecture for irregular wireless sensor networks. In European 
Conference on Wireless Sensor Networks (pp. 133-149). Springer, Berlin, 
Heidelberg. 

Univ
ers

iti 
Mala

ya



179 

 

Ding, X., Chen, W., & Wassell, I. J. (2017). Joint sensing matrix and sparsifying 
dictionary optimization for tensor compressive sensing. IEEE Transactions on 
Signal Processing, 65(14), 3632-3646. 

 
 
Dolas, P., & Ghosh, D. (2018). Distributed Compressive Data Gathering Framework for 

Correlated Data in Wireless Sensor Networks. Journal of Telecommunication, 
Electronic and Computer Engineering (JTEC), 10(1-6), 153-158. 

 
 
Estrin, D., Girod, L., Pottie, G., & Srivastava, M. (2001). Instrumenting the world with 

wireless sensor networks. In icassp (Vol. 1, pp. 2033-2036). 
 
 
Ee, C. T., & Bajcsy, R. (2004). Congestion control and fairness for many-to-one routing 

in sensor networks. In Proceedings of the 2nd international conference on 
Embedded networked sensor systems (pp. 148-161). ACM. 

 
 
Ebrahimi, D., & Assi, C. (2015). On the interaction between scheduling and 

compressive data gathering in wireless sensor networks. IEEE Transactions on 
Wireless Communications, 15(4), 2845-2858. 

 
 
Fan, Y., Chen, Q., & Yu, J. (2009). Topology control algorithm based on bottleneck 

node for large-scale WSNs. In 2009 International Conference on Computational 
Intelligence and Security (Vol. 1, p. 592-597). IEEE. 

 
 
Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network aggregation 

techniques for wireless sensor networks: a survey. IEEE Wireless 
Communications, 14(2), 70-87. 

 
 
Felemban, E., Lee, C. G., & amp; Ekici, E. (2006). MMSPEED: multipath Multi-

SPEED protocol for QoS guarantee of reliability and. Timeliness in wireless 
sensor networks. IEEE transactions on mobile computing, 5(6), 738-754. 

 
 
Fazel, F., Fazel, M., & Stojanovic, M. (2013). Random access compressed sensing over 

fading and noisy communication channels. IEEE Transactions on Wireless 
Communications, 12(5), 2114-2125. 

 
 
Felipeda Rocha Henriques, F., Lovisolo, L., & Barros da Silva, E. A. (2019). Rate- 

Distortion Performance and Incremental Transmission Scheme of Compressive 
Sensed Measurements in Wireless Sensor Networks. Sensors, 19(2), 266. 

 
 
Fu, X., Yao, H., & Yang, Y. (2019). Modeling and analyzing cascading dynamics of the 

clustered wireless sensor network. Reliability Engineering & System 
Safety, 186, 1-10. 

Univ
ers

iti 
Mala

ya



180 

 

 
Firooz, M. H., & Roy, S. (2014). Link delay estimation via expander graphs. IEEE 

Transactions on Communications, 62(1), 170-181. 
 
 
Gehrke, J., & Madden, S. (2004). Query processing in sensor networks. IEEE Pervasive 

computing, 3(1), 46-55. 
 
 
Guestrin, C., Bodik, P., Thibaux, R., Paskin, M., & Madden, S. (2004). Distributed 

regression: an efficient framework for modeling sensor network data. 
In Proceedings of the 3rd international symposium on Information processing in 
sensor networks (pp. 1-10). ACM. 

 
 
Galzarano, S., Fortino, G., & Liotta, A. (2014). A learning-based mac for energy 

efficient wireless sensor networks. In International Conference on Internet and 
Distributed Computing Systems (pp. 396-406). Springer, Cham. 

 
 
Gupta, H., Navda, V., Das, S., & Chowdhary, V. (2008). Efficient gathering of 

correlated data in sensor networks. ACM Transactions on Sensor Networks 
(TOSN), 4(1), 4. 

 
 
Gnawali, O., Jang, K. Y., Paek, J., Vieira, M., Govindan, R., Greenstein, B., & Kohler, 

E. (2006, October). The tenet architecture for tiered sensor networks. 
In Proceedings of the 4th international conference on Embedded networked 
sensor systems (pp. 153-166). 

 
 
Ghaderi, M. R., Vakili, V. T., & Sheikhan, M. (2019). FGAF-CDG: fuzzy geographic 

routing protocol based on compressive data gathering in wireless sensor 
networks. Journal of Ambient Intelligence and Humanized Computing, 1-23. 

 
 
Gan, H., Xiao, S., & Zhao, Y. (2018). A large class of chaotic sensing matrices for 

compressed sensing. Signal Processing, 149, 193-203. 
   
 
Goela, N., &Gastpar, M. (2012). Reduced-dimension linear transform coding of 

correlated signals in networks. IEEE Transactions on Signal Processing, 60(6), 
3174-3187. 

 
 
Guo, D., Qu, X., Xiao, M., & Yao, Y. (2009). Comparative analysis on transform and 

reconstruction of compressed sensing in sensor networks. In 2009 WRI 
International Conference on Communications and Mobile Computing (Vol. 1, 
pp. 441-445). IEEE. 

 
 

Univ
ers

iti 
Mala

ya



181 

 

Heinzelman, W. R., Chandrakasan, A., &Balakrishnan, H. (2000). Energy-efficient 
communication protocol for wireless microsensor networks. In Proceedings of 
the 33rd annual Hawaii international conference on system sciences (pp. 10-pp). 
IEEE. 

 
 
He, S., Chen, J., Li, X., Shen, X., & Sun, Y. (2011). Leveraging prediction to improve 

the coverage of wireless sensor networks. IEEE Transactions on Parallel and 
Distributed Systems, 23(4), 701-712. 

 
 
Huang, J., & Soong, B. H. (2017). Hybrid compressive sensing for delay-efficient 

sustainable data gathering. In 2017 IEEE 85th Vehicular Technology 
Conference (VTC Spring) (pp. 1-5). IEEE. 

 
 
Haupt, J., Castro, R., Nowak, R., Fudge, G., & Yeh, A. (2006). Compressive sampling 

for signal classification. In 2006 Fortieth Asilomar Conference on 
  Signals, Systems and Computers (pp. 1430-1434). IEEE. 
 
 
Haupt, J., Bajwa, W. U., Rabbat, M., & Nowak, R. (2008). Compressed sensing for 

networked data. IEEE Signal Processing Magazine, 25(2), 92-101. 
 
 
Hempstead, M., Lyons, M. J., Brooks, D., & Wei, G. Y. (2008). Survey of hardware 

systems for wireless sensor networks. Journal of Low Power Electronics, 4(1), 
11-20. 

 
 
Haenggi, M. (2003). Energy-balancing strategies for wireless sensor networks. In IEEE 

International Symposium on Circuits and Systems (No. 4, pp. IV-828). IEEE; 
1999. 

 
 
Haenggi, M. (2004). Twelve reasons not to route over many short hops. In IEEE 60th 

Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 (Vol. 5, pp. 
3130-3134). IEEE. 

 
 
Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. K. (2013). Real-time implementation 

of a harmony search algorithm-based clustering protocol for energy-efficient 
wireless sensor networks. IEEE transactions on industrial informatics, 10(1), 
774-783. 

 
 
Huang, J., & Soong, B. H. (2019). Cost-Aware Stochastic Compressive Data Gathering 

for Wireless Sensor Networks. IEEE Transactions on Vehicular 
Technology, 68(2), 1525-1533. 

 

Univ
ers

iti 
Mala

ya



182 

 

Hooshmand, M., Rossi, M., Zordan, D., &Zorzi, M. (2015). Covariogram-based 
compressive sensing for environmental wireless sensor networks. IEEE Sensors 
Journal, 16(6), 1716-1729. 

 
 
Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., & Silva, F. (2003). 

Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on 
Networking (ToN), 11(1), 2-16. 

 
Intanagonwiwat, C., Estrin, D., Govindan, R., & Heidemann, J. (2002). Impact of 

network density on data aggregate on in wireless sensor networks. 
In ICDCS (Vol. 2, p. 457). 

 
 
Idrees, A. K., Deschinkel, K., Salomon, M., & Couturier, R. (2015). Distributed lifetime 

coverage optimization protocol in wireless sensor networks. The journal of 
supercomputing, 71(12), 4578-4593. 

 
 
Jiang, R., & Chen, B. (2005). Fusion of censored decisions in wireless sensor 

networks. IEEE Transactions on Wireless Communications, 4(6), 2668-2673. 
 
 
Jones, C. E., Sivalingam, K. M., Agrawal, P., & Chen, J. C. (2001). A survey of energy 

efficient network protocols for wireless networks. Wireless networks, 7(4), 343-
358. 

 
 
Ju, X., Liu, W., Zhang, C., Liu, A., Wang, T., Xiong, N. N., & Cai, Z. (2018). An 

energy conserving and transmission radius adaptive scheme to optimize 
performance of energy harvesting sensor networks. Sensors, 18(9), 2885. 

 
 
Jarry, A., Leone, P., Powell, O., & Rolim, J. (2006). An optimal data propagation 

algorithm for maximizing the lifespan of sensor networks. In International 
Conference on Distributed Computing in Sensor Systems (pp. 405-421). 
Springer, Berlin, Heidelberg. 

 
 
Jain, N., Bohara, V. A., & Gupta, A. (2019). iDEG: Integrated Data and Energy 

Gathering Framework for Practical Wireless Sensor Networks Using 
Compressive Sensing. IEEE Sensors Journal, 19(3), 1040-1051. 

 
 
Krishnamachari, B., Estrin, D., & Wicker, S. (2002). Modelling data- centric routing in 

wireless sensor networks. In IEEE infocom (Vol. 2, pp. 39-44). 
 
 
Khojastepour, M. A., &Aazhang, B. (2004). The capacity of average and peak power 

constrained fading channels with channel side information. In 2004 IEEE 
Wireless Communications and Networking Conference (IEEE Cat. No. 
04TH8733) (Vol. 1, pp. 77-82). IEEE. 

Univ
ers

iti 
Mala

ya



183 

 

 
Kumar, K., & Lu, Y. H. (2010). Cloud computing for mobile users: Can off-loading 

computation save energy? Computer, (4), 51-56. 
 
 
Karakus, C., Gurbuz, A. C., & Tavli, B. (2013). Analysis of energy efficiency of 

compressive sensing in wireless sensor networks. IEEE Sensors 
Journal, 13(5),1999-2008. 

 
 
Kuila, P., & Jana, P. K. (2014). Approximation schemes for load balanced clustering in 

wireless sensor networks. The Journal of Supercomputing, 68(1), 87-105. 
 
 
Kong, L., Xia, M., Liu, X. Y., Chen, G., Gu, Y., Wu, M. Y., & Liu, X. (2014). Data loss 

and reconstruction in wireless sensor networks. IEEE Transactions on Parallel 
and Distributed Systems, 25(11), 2818-2828. 

 
 
Kulkarni, R. V., Forster, A., & Venayagamoorthy, G. K. (2010). Computational 

intelligence in wireless sensor networks: A survey. IEEE communications 
surveys & tutorials, 13(1), 68-96. 

 
 
Kumar, D. P., Amgoth, T., & Annavarapu, C. S. R. (2019). Machine learning 

algorithms for wireless sensor networks: A survey. Information Fusion, 49, 1-25. 
 
 
Kang, L., Chen, R. S., Chen, Y. C., Wang, C. C., Li, X., & Wu, T. Y. (2019). Using 

Cache Optimization Method to Reduce Network Traffic in Communication 
Systems Based on Cloud Computing. IEEE Access. Pg 124397 – 124409. 

 
 
Luo, H., Liu, Y., & Das, S. K. (2007). Routing correlated data in wireless sensor 

networks: A survey. IEEE Network, 21(6). 
 
 
Lin, Y., Chen, B., & Varshney, P. K. (2005). Decision fusion rules in multi-hop      

wireless sensor networks. IEEE Transactions on Aerospace and Electronic 
Systems, 41(2), 475-488. 

 
 
Lu, M., Wu, J., Cardei, M., & Li, M. (2009). Energy-efficient connected coverage of 

discrete targets in wireless sensor networks. International Journal of Ad Hoc and 
Ubiquitous Computing, 4(3-4), 137-147. 

 
 
Lee, J. J., Krishnamachari, B., & Kuo, C. C. J. (2008). Aging analysis in large-scale 

wireless sensor networks. Ad Hoc Networks, 6(7), 1117-1133.  
 

Univ
ers

iti 
Mala

ya



184 

 

Laska, J. N., Boufounos, P. T., Davenport, M. A., & Baraniuk, R. G. (2011). 
Democracy in action: Quantization, saturation, and compressive 
sensing. Applied and Computational Harmonic Analysis, 31(3), 429-443. 

 
 
Liu, Z., Li, Z., Li, M., Xing, W., Lu, D., Liu, Z., & Lu, D. (2016). Path reconstruction in 

dynamic wireless sensor networks using compressive sensing. IEEE/ACM 
Transactions on Networking (TON), 24(4), 1948-1960. 

 
 
Luo, J., & Hubaux, J. P. (2005). Joint mobility and routing for lifetime elongation in 

wireless sensor networks. In Proceedings IEEE 24th Annual Joint Conference of 
the IEEE Computer and Communications Societies. (Vol. 3, pp. 1735-1746). 
IEEE. 

 
 
Liu, A. F., Wu, X. Y., Chen, Z. G., & Gui, W. H. (2010). Research on the energy hole 

problem based on unequal cluster-radius for wireless sensor networks. Computer 
communications, 33(3), 302-321. 

 
 
Lv, C., Wang, Q., Yan, W., & Li, J. (2019). Compressive Sensing-based sequential data 

gathering in WSNs. Computer Networks. Vol 154 pp47-59. 
 
 
Li, C., Ye, M., Chen, G., & Wu, J. (2005). An energy-efficient unequal clustering 

mechanism for wireless sensor networks. In IEEE International Conference on 
Mobile Adhoc and Sensor Systems Conference, 2005. (pp. 8-pp). IEEE. 

 
 
Ling, Q., & Tian, Z. (2010). Decentralized sparse signal recovery for compressive 

sleeping wireless sensor networks. IEEE Transactions on Signal 
Processing, 58(7), 3816-3827. 

 
 
Luo, C., Wu, F., Sun, J., & Chen, C. W. (2009). Compressive data gathering for large-

scale wireless sensor networks. In Proceedings of the 15th annual international 
conference on Mobile computing and networking (pp. 145-156). ACM. 

 
 
Li, Y., & Parker, L. E. (2014). Nearest neighbor imputation using spatial–temporal 

correlations in wireless sensor networks. Information Fusion, 15, 64-79. 
 
 
Lu, H., & Bo, L. (2019). WDL Recon Net: Compressive Sensing Reconstruction with 

Deep Learning over Wireless Fading Channels. IEEE Access. Volume 7 Pg 
24440-24451.DOI 10.1109/ACCESS.2019.2900715. 

 
 
Li, Z., Liu, Y., Ma, M., Liu, A., Zhang, X., & Luo, G. (2018). MSDG: A novel green 

data gathering scheme for wireless sensor networks. Computer Networks, 142, 
223-239. 

Univ
ers

iti 
Mala

ya



185 

 

 
Li, Y., & Liang, Y. (2018). Compressed Sensing in Multi-Hop Large-Scale Wireless 

Sensor Networks Based on Routing Topology Tomography. IEEE Access, 6, 
27637-27650. 

 
 
Liu, J., Huang, K., & Yao, X. (2018). Common-Innovation Subspace Pursuit for 

Distributed Compressed Sensing in Wireless Sensor Networks. IEEE Sensors 
Journal, 19(3), 1091-1103. 

 
 
Liu, C., Wu, K., & Tsao, M. (2005). Energy efficient information collection with the 

ARIMA model in wireless sensor networks. In GLOBECOM'05. IEEE Global 
Telecommunications Conference, 2005. (Vol. 5, pp. 5-pp). 

 
 
Mahfoudh, S., & Minet, P. (2008). Survey of energy efficient strategies in wireless ad 

hoc and sensor networks. In Seventh International Conference on Networking 
(icn 2008) (pp. 1-7). IEEE. 

 
 
Mahyar, H., Hasheminezhad, R., Ghalebi, E., Nazemian, A., Grosu, R., Movaghar, A., 

& Rabiee, H. R. (2018). Compressive sensing of high betweenness centrality 
nodes in networks. Physica A: Statistical Mechanics and its Applications, 497, 
166-184. 

 
 
Madden, S., Szewczyk, R., Franklin, M. J., & Culler, D. (2002). Supporting aggregate 

queries over ad-hoc wireless sensor networks. In Proceedings Fourth IEEE 
Workshop on Mobile Computing Systems and Applications (pp. 49-58). IEEE. 

 
 
Msechu, E. J., & Giannakis, G. B. (2011). Sensor-centric data reduction for estimation 

with WSNs via censoring and quantization. IEEE Transactions on Signal 
Processing, 60(1), 400-414. 

 
 
Mahmood, A., Shi, K., Khatoon, S., & Xiao, M. (2013). Data mining techniques for 

wireless sensor networks: A survey. International Journal of Distributed Sensor 
Networks, 9(7), 406316. 

 
 
Marvasti, F., Amini, A., Haddadi, F., Soltanolkotabi, M., Khalaj, B. H., Aldroubi, A., & 

Chambers, J. (2012). A unified approach to sparse signal processing. EURASIP 
journal on advances in signal processing, 2012(1), 44. 

 
 
Mishali, M., & Eldar, Y. C. (2012). Xampling: Compressed sensing for analog signals. 

In Compressed Sensing: Theory and Applications (No. 3). Cambridge 
University Press. Chapter 3 Pg. 88-147. 

 

Univ
ers

iti 
Mala

ya



186 

 

Mascolo, C., Hailes, S., Lymberopoulos, L., Picco, G. P., Costa, P., Blair, G., ... & 
Rónai, M. A. (2005). Survey of middleware for networked embedded 
systems. Project Report: http://www. ist-runes. org/docs/deliverables/D5_01. 
pdf. 

 
 
Marco, D., Duarte-Melo, E. J., Liu, M., & Neuhoff, D. L. (2003). On the many-to-one 

transport capacity of a dense wireless sensor network and the compressibility of 
its data. In Information Processing in Sensor Networks (pp. 1-16). Springer, 
Berlin, Heidelberg. 

 
 
Meng, J., Li, H., & Han, Z. (2009). Sparse event detection in wireless sensor networks 

using compressive sensing. In 2009 43rd Annual Conference on Information 
Sciences and Systems (pp. 181-185). IEEE. 

 
 
Masiero, R., Quer, G., Munaretto, D., Rossi, M., Widmer, J., & Zorzi, M. (2009). Data 

acquisition through joint compressive sensing and principal component analysis. 
In GLOBECOM 2009-2009 IEEE Global Telecommunications Conference (pp. 
1-6). IEEE. 

 
 
Mehrjoo, S., & Khunjush, F. (2018). Accurate compressive data gathering in wireless 

sensor networks using weighted spatio-temporal compressive 
sensing. Telecommunication Systems, 68(1), 79-88. 

 
Masoum, A., Meratnia, N., & Havinga, P. (2018). Coalition Formation Based 

Compressive Sensing in Wireless Sensor Networks. Sensors, 18(7), 2331. 
 
 
Ma, X., Liang, J., Liu, R., Ni, W., Li, Y., Li, R., & Qi, C. (2018). A survey on data 

storage and information discovery in the WSANs-based edge computing 
systems. Sensors, 18(2), 546. 

 
 
Nguyen, H. X., & Thiran, P. (2006). Using end-to-end data to infer lossy links in sensor 

networks. In IEEE Infocom 2006 (No. CONF). 
 
 
Nguyen, T. L., & Shin, Y. (2013). Deterministic sensing matrices in compressive 

sensing: a survey. The Scientific World Journal, 2013, 1-
6.http://dx.doi.org/10.1155/2013/192795. 

 
 
Nguyen, M. T., Teague, K. A., & Rahnavard, N. (2016). CCS: Energy-efficient data 

collection in clustered wireless sensor networks utilizing block-wise 
compressive sensing. Computer Networks, 106, 171-185. 

 
 

Univ
ers

iti 
Mala

ya



187 

 

Nayak, A., & Stojmenovic, I. (2010). Wireless sensor and actuator networks: algorithms 
and protocols for scalable coordination and data communication. John Wiley & 
Sons. Chapter 6. 

 
 
Nie, L., Wang, X., Wan, L., Yu, S., Song, H., & Jiang, D. (2018). Network traffic 

prediction based on deep belief network and spatiotemporal compressive sensing 
in wireless mesh backbone networks. Wireless Communications and Mobile 
Computing, 2018. https://doi.org/10.1155/2018/1260860. 

 
 
Pattem, S., Krishnamachari, B., & Govindan, R. (2008). The impact of spatial 

correlation on routing with compression in wireless sensor networks. ACM 
Transactions on Sensor Networks (TOSN), 4(4), 24. 

 
 
Pradhan, S. S., Kusuma, J., & Ramchandran, K. (2002). Distributed compression in a 

dense microsensor network. IEEE Signal Processing Magazine, 19(2), 51-60. 
 
 
Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless 

sensor networks. In Proceedings of the 2nd international conference on 
Embedded networked sensor systems (pp. 95-107). ACM. 

 
 
Perillo, M., Cheng, Z., & Heinzelman, W. (2004). On the problem of unbalanced load 

distribution in wireless sensor networks. In IEEE Global Telecommunications 
Conference Workshops, 2004. GlobeCom Workshops 2004. (pp. 74-79). IEEE. 

 
 
Puccinelli, D., & Haenggi, M. (2008). Arbutus: Network-layer load balancing for 

wireless sensor networks. In 2008 IEEE Wireless Communications and 
Networking Conference (pp. 2063-2068). IEEE. 

 
 
Patterson, S., Eldar, Y. C., & Keidar, I. (2014). Distributed compressed sensing for 

static and time-varying networks. IEEE Transactions on Signal 
Processing, 62(19), 4931-4946. 

 
 
Quan, L., Xiao, S., Xue, X., & Lu, C. (2016). Neighbor-aided spatial-temporal 

compressive data gathering in wireless sensor networks. IEEE Communications 
Letters, 20(3), 578-581. 

 
 
Quer, G., Masiero, R., Pillonetto, G., Rossi, M., & Zorzi, M. (2012). Sensing, 

compression, and recovery for WSNs: Sparse signal modeling and monitoring 
framework. IEEE Transactions on Wireless Communications, 11(10), 3447-
3461. 

 

Univ
ers

iti 
Mala

ya



188 

 

Qin, Z., Fan, J., Liu, Y., Gao, Y., & Li, G. Y. (2018). Sparse representation for wireless 
communications: A compressive sensing approach. IEEE Signal Processing 
Magazine, 35(3), 40-58. 

 
 
Qiao, J., & Zhang, X. (2018). Compressive Data Gathering Based on Even Clustering 

for Wireless Sensor Networks. IEEE ACCESS, 6, 24391-24410. 
 
 
Romer, K., & Renner, B. C. (2008). Aggregating sensor data from overlapping multi-

hop network neighborhoods: Push or pull?. In 2008 5th International Conference 
on Networked Sensing Systems (pp. 107-110). IEEE. 

 
 
Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. B. (2002). Energy-aware 

wireless microsensor networks. IEEE Signal processing magazine, 19(2), 40-50. 
 
 
Raza, U., Camerra, A., Murphy, A. L., Palpanas, T., & Picco, G. P. (2012). What does 

model-driven data acquisition really achieve in wireless sensor networks?. 
In 2012 IEEE International Conference on Pervasive Computing and 
Communications (pp. 85-94). IEEE. 

 
 
Raza, U., Camerra, A., Murphy, A. L., Palpanas, T., & Picco, G. P. (2015). Practical 

data prediction for real-world wireless sensor networks. IEEE Transactions on 
Knowledge and Data Engineering, 27(8), 2231-2244. 

 
 
Rago, C., Willett, P., & Bar-Shalom, Y. (1996). Censoring sensors: A low-

communication-rate scheme for distributed detection. IEEE Transactions on 
Aerospace and Electronic Systems, 32(2), 554-568. 

 
 
Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. B. (2002). Energy-aware 

wireless microsensor networks. IEEE Signal processing magazine, 19(2), 40-50. 
 
 
Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor 

networks: A top-down survey. Computer Networks, 67, 104-122. 
 
 
Rao, Y., Zhao, G., Wang, W., Zhang, J., Jiang, Z., & Wang, R. (2019). Adaptive Data 

Acquisition with Energy Efficiency and Critical-Sensing Guarantee for Wireless 
Sensor Networks. Sensors, 19(12), 2654. 

 
 
Rajaram, S., Karuppiah, A. B., & Kumar, K. V. (2014). Secure routing path using trust 

values for wireless sensor networks. International Journal on Cryptography and 
Information Security (IJCIS), Vol. 4, No. 2, 27-35.  

 

Univ
ers

iti 
Mala

ya



189 

 

Razzaque, M. A., Bleakley, C., & Dobson, S. (2013). Compression in wireless sensor 
networks: A survey and comparative evaluation. ACM Transactions on Sensor 
Networks (TOSN), 10(1), 5. 

 
 
Singh, V. K., Kumar, M., & Verma, S. (2018). Node scheduling and compressed 

sampling for event reporting in WSNs. IEEE Transactions on Network Science 
and Engineering. pp. 1–1, 2018. 

 
 
Shih, E., Calhoun, B. H., Cho, S. H., & Chandrakasan, A. P. (2001). Energy-efficient 

link layer for wireless microsensor networks. In Proceedings IEEE Computer 
Society Workshop on VLSI 2001. Emerging Technologies for VLSI 
Systems (pp. 16-21). IEEE. 

 
 
Sherazi, H. H. R., Grieco, L. A., & Boggia, G. (2018). A comprehensive review on 

energy harvesting MAC protocols in WSNs: Challenges and tradeoffs. Ad Hoc 
Networks, 71, 117-134. 

 
 
Shah, R. C., & Rabaey, J. M. (2002). Energy aware routing for low energy ad hoc 

sensor networks. In 2002 IEEE Wireless Communications and Networking 
Conference Record. WCNC 2002 (Cat. No. 02TH8609) (Vol. 1, pp. 350-355). 
IEEE. 

 
 
Sarvotham, S., Baron, D., Wakin, M., Duarte, M. F., & Baraniuk, R. G. (2005). 

Distributed compressed sensing of jointly sparse signals. In Asilomar conference 
on signals, systems, and computers (pp. 1537-1541). 

 
 
Singh, V. K., & Kumar, M. (2018). A compressed sensing approach to resolve the 

energy hole problem in large scale WSNs. Wireless Personal 
Communications, 99(1), 185-201. 

 
 
Singh, V. K., Verma, S., & Kumar, M. (2019). ODECS: An On-Demand Explosion-

Based Compressed Sensing Using Random Walks in Wireless Sensor 
Networks. IEEE Systems Journal. 1 – 10. 

 
 
Sun, Z., Tao, R., Xiong, N., & Pan, X. (2018). CS-PLM: Compressive sensing data 

gathering algorithm based on packet loss matching in sensor networks. Wireless 
Communications and Mobile Computing, 2018. 

 
 
Shokouhifar, M., &Jalali, A. (2015). A new evolutionary based application specific 

routing protocol for clustered wireless sensor networks. AEU-International 
Journal of Electronics and Communications, 69(1), 432-441. 

 

Univ
ers

iti 
Mala

ya



190 

 

Shen, Y., Hu, W., Rana, R., & Chou, C. T. (2013). Nonuniform compressive sensing for 
heterogeneous wireless sensor networks. IEEE Sensors journal, 13(6), 2120-
2128. 

 
 
Shen, G., Narang, S. K., & Ortega, A. (2009). Adaptive distributed transforms for 

irregularly sampled wireless sensor networks. In 2009 IEEE International      
Conference on Acoustics, Speech and Signal Processing (pp. 2225-2228). IEEE. 

 
 
Shen, G., & Ortega, A. (2010). Transform-based distributed data gathering. IEEE 

Transactions on Signal Processing, 58(7), 3802-3815. 
 
 
Shekaramiz, M., Moon, T. K., & Gunther, J. H. (2019). Bayesian Compressive Sensing 

of Sparse Signals with Unknown Clustering Patterns. Entropy, 21(3), 247. 
 
 
Tilak, S., Abu-Ghazaleh, N. B., & Heinzelman, W. (2002). A taxonomy of wireless 

micro-sensor network models. ACM SIGMOBILE Mobile Computing and 
Communications Review, 6(2), 28-36. 

 
 
Tropp, J. A., Gilbert, A. C., & Strauss, M. J. (2006). Algorithms for simultaneous sparse 

approximation. Part I: Greedy pursuit. Signal processing, 86(3), 572-588. 
 
 
Talari, A., & Rahnavard, N. (2016). CStorage: Decentralized compressive data storage 

in wireless sensor networks. Ad Hoc Networks, 37, 475-485. 
 
Thakkar, A., & Kotecha, K. (2014). Cluster head election for energy and delay 

constraint applications of wireless sensor network. IEEE sensors Journal, 14(8), 
2658-2664. 

 
 
Tayeh, G. B., Makhoul, A., Perera, C., & Demerjian, J. (2019). A Spatial-Temporal 

Correlation Approach for Data Reduction in Cluster-Based Sensor 
Networks. IEEE Access, 7, 50669-50680. 

 
 
Tulone, D., & Madden, S. (2006). PAQ: Time series forecasting for approximate query 

answering in sensor networks. In European Workshop on Wireless Sensor 
Networks (pp. 21-37). Springer, Berlin, Heidelberg. 

 
 
Vuran, M. C., Akan, Ö. B., &Akyildiz, I. F. (2004). Spatio-temporal correlation: theory 

and applications for wireless sensor networks. Computer Networks, 45(3), 245-
259. 

 
 

Univ
ers

iti 
Mala

ya



191 

 

Vlajic, N., & Xia, D. (2006). Wireless sensor networks: to cluster or not to cluster?. 
In Proceedings of the 2006 International Symposium on on World of Wireless, 
Mobile and Multimedia Networks (pp. 258-268). IEEE Computer Society. 

 
 
Vuran, M. C., & Akyildiz, I. F. (2006). Spatial correlation-based collaborative medium 

access control in wireless sensor networks. IEEE/ACM Transactions on 
Networking, 14(2), 316-329. 

 
 
Vardi, Y. (1996). Network tomography: Estimating source-destination traffic intensities 

from link data. Journal of the American statistical association, 91(433), 365-377. 
 
 
Van Nguyen, T., Quek, T. Q., & Shin, H. (2018). Joint channel identification and 

estimation in wireless network: Sparsity and optimization. IEEE Transactions on 
Wireless Communications, 17(5), 3141-3153. 

 
 
Wang, F., & Liu, J. (2010). Networked wireless sensor data collection: issues, 

challenges, and approaches. IEEE Communications Surveys &amp; 
Tutorials, 13(4), 673-687. 

 
 
Wagner, R. S., Baraniuk, R. G., Du, S., Johnson, D. B., & Cohen, A. (2006). An 

architecture for distributed wavelet analysis and processing in sensor networks. 
In Proceedings of the 5th international conference on Information processing in 
sensor networks (pp. 243-250). ACM. 

 
 
Wang, Y. C., & Wei, C. T. (2016). Lightweight, latency aware routing for data 

compression in wireless sensor networks with heterogeneous traffics. Wireless 
Communications and Mobile Computing, 16(9), 1035-1049. 

 
 
Wang, Q., Hempstead, M., & Yang, W. (2006). A realistic power consumption model 

for wireless sensor network devices. In 2006 3rd annual IEEE communications 
society on sensor and ad hoc communications and networks (Vol. 1, pp. 286-
295). IEEE. 

 
 
Wang, W., Wainwright, M. J., & Ramchandran, K. (2010). Information-theoretic limits 

on sparse signal recovery: Dense versus sparse measurement matrices. IEEE 
Transactions on Information Theory, 56(6), 2967-2979. 

 
 
Wang, W., Garofalakis, M., & amp; Ramchandran, K. (2007). Distributed sparse 

random projections for refinable approximation. In Proceedings of the 6th 
international conference on Information processing in sensor networks (pp. 331-
339). ACM. 

 

Univ
ers

iti 
Mala

ya



192 

 

Wang, J., Tang, S., Yin, B., & Li, X. Y. (2012). Data gathering in wireless sensor 
networks through intelligent compressive sensing. In 2012 Proceedings IEEE 
INFOCOM (pp. 603-611). IEEE. 

 
 
Wu, J. Y., Yang, M. H., & Wang, T. Y. (2018). Energy-efficient sensor censoring for 

compressive distributed sparse signal recovery. IEEE Transactions on 
Communications, 66(5), 2137-2152. 

 
 
Wang, X., Zhou, Q., & Cheng, C. T. (2019). A UAV-assisted topology-aware data 

aggregation protocol in WSN. Physical Communication, 34, 48-57. 
 
 
Wang, X., Zhou, Q., & Tong, J. (2019) b. V-Matrix-Based Scalable Data Aggregation 

Scheme in WSN. IEEE Access, 7, 56081-56094. 
 
 
Wang, M. M., Cao, J. N., Li, J., & Dasi, S. K. (2008). Middleware for wireless sensor 

networks: A survey. Journal of computer science and technology, 23(3), 305-
326. 

 
 
Wu, X., & Chen, G. (2007). Dual-sink: using mobile and static sinks for lifetime 

improvement in wireless sensor networks. In 2007 16th International Conference 
on Computer Communications and Networks (pp. 1297-1302). IEEE. 

 
 
Willig, A., Matheus, K., & Wolisz, A. (2005). Wireless technology in industrial 

networks. Proceedings of the IEEE, 93(6), 1130-1151. 
 
 
Wu, X., Xiong, Y., Yang, P., Wan, S., & Huang, W. (2014). Sparsest random 

scheduling for compressive data gathering in wireless sensor networks. IEEE 
Transactions on Wireless Communications, 13(10), 5867-5877. 

 
 
Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. V. (2015). Hierarchical data 

aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions 
on Sensor Networks (TOSN), 11(3), 45. 

 
 
Xiang, L., Luo, J., & Vasilakos, A. V. (2011). Compressed data aggregation for energy 

efficient wireless sensor networks. In SECON (Vol. 2011, pp. 46-54). 
 
 
Xie, R., &Jia, X. (2013). Transmission-efficient clustering method for wireless sensor 

networks using compressive sensing. IEEE transactions on parallel and 
distributed systems. 25(3) 806-815. 

 
 

Univ
ers

iti 
Mala

ya



193 

 

Xu, L., Hao, X., Lane, N. D., Liu, X., & Moscibroda, T. (2015). Cost-aware 
compressive sensing for networked sensing systems. In Proceedings of the 14th 
international conference on Information Processing in Sensor Networks (pp. 
130-141). ACM. 

 
 
Xu, W., Mallada, E., & Tang, A. (2011). Compressive sensing over graphs. In 2011 

Proceedings IEEE INFOCOM (pp. 2087-2095). IEEE. 
 
 
Xu, S., de Lamare, R. C., & Poor, H. V. (2015). Distributed compressed estimation 

based on compressive sensing. IEEE Signal Processing Letters, 22(9), 1311-
1315. 

 
 
Xia, J., Zhou, F., Lai, X., Zhang, H., Chen, H., Yang, Q., & Zhao, J. (2018). Cache 

aided decode-and-forward relaying networks: From the spatial view. Wireless 
Communications and Mobile Computing, 2018. 

 
 
Xu, Y., Sun, G., Geng, T., & He, J. (2019). Low-Energy Data Collection in Wireless 

Sensor Networks Based on Matrix Completion. Sensors, 19(4), 945. 
 
 
Xu, J., Liu, W., Lang, F., Zhang, Y., & Wang, C. (2010). Distance measurement model 

based on RSSI in WSN. Wireless Sensor Network, 2(08), 606. 
 
 
Xiang, L., Luo, J., &amp; Rosenberg, C. (2013). Compressed data aggregation: Energy-

efficient and high-fidelity data collection. IEEE/ACM Transactions on 
Networking (TON), 21(6), 1722-1735. 

 
 
Yang, Q., He, S., Li, J., Chen, J., & Sun, Y. (2014). Energy-efficient probabilistic area 

coverage in wireless sensor networks. IEEE Transactions on vehicular 
technology, 64(1), 367-377. 

 
 
Yoon, S., & Shahabi, C. (2005). Exploiting spatial correlation towards an energy 

efficient clustered aggregation technique (cag)[wireless sensor network 
applications]. In IEEE International Conference on Communications, 2005. ICC 
2005. 2005 (Vol. 5, pp. 3307-3313). IEEE. 

 
 
Yoon, S., &Shahabi, C. (2007). The Clustered AGgregation (CAG) technique 

leveraging spatial and temporal correlations in wireless sensor networks. ACM 
Transactions on Sensor Networks (TOSN), 3(1), 3. 

 
 
Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network 

survey. Computer networks, 52(12), 2292-2330. 
 

Univ
ers

iti 
Mala

ya



194 

 

Yamasaki, K., & Ohtsuki, T. (2005). Design of energy-efficient wireless sensor 
networks with censoring, on-off, and censoring and on-off sensors based on 
mutual information. In 2005 IEEE 61st Vehicular Technology Conference (Vol. 
2, pp. 1312-1316). IEEE. 

 
 
Yang, A. Y., Gastpar, M., Bajcsy, R., & Sastry, S. S. (2010). Distributed sensor 

perception via sparse representation. Proceedings of the IEEE, 98(6), 1077-
1088. 

 
 
Yang, H., & Wang, X. (2018). ECOCS: Energy consumption optimized compressive 

sensing in group sensor networks. Computer Networks, 146, 159-166. 
 
 
Yuan, F., Zhan, Y., & Wang, Y. (2013). Data density correlation degree clustering 

method for data aggregation in WSN. IEEE Sensors Journal, 14(4), 1089-1098. 
 
 
Yang, X., Tao, X., Dutkiewicz, E., Huang, X., Guo, Y. J., & Cui, Q. (2013). Energy-

efficient distributed data storage for wireless sensor networks based on 
compressed sensing and network coding. IEEE Transactions on Wireless 
Communications, 12(10), 5087-5099. 

 
 
Zhang, H., & Hou, J. C. (2005). Maintaining sensing coverage and connectivity in large 

sensor networks. Ad Hoc & Sensor Wireless Networks, 1(1-2), 89-124. 
 
 
Zhang, H., & Shen, H. (2008). Balancing energy consumption to maximize network 

lifetime in data-gathering sensor networks. IEEE Transactions on parallel and 
distributed systems, 20(10), 1526-1539. 

 
 
Zhang, P., Chen, C., & Liu, M. (2009). The application of compressed sensing in 

wireless sensor network. In 2009 International Conference on Wireless 
Communications & Signal Processing (pp. 1-5). IEEE. 

 
 
Zhang, B., Cheng, X., Zhang, N., Cui, Y., Li, Y., & Liang, Q. (2011). Sparse target 

counting and localization in sensor networks based on compressive sensing. 
In 2011 Proceedings IEEE INFOCOM (pp. 2255-2263). IEEE. 

 
 
Zaeemzadeh, A., Joneidi, M., &Rahnavard, N. (2017). Adaptive non-uniform 

compressive sampling for time-varying signals. In 2017 51st Annual Conference 
on Information Sciences and Systems (CISS) (pp. 1-6). IEEE. 

 
 
Zheng, H., Xiao, S., Wang, X., Tian, X., & Guizani, M. (2013). Capacity and delay 

analysis for data gathering with compressive sensing in wireless sensor 
networks. IEEE Transactions on Wireless Communications, 12(2), 917-927. 

Univ
ers

iti 
Mala

ya



195 

 

 
Zhang, D. G., Zhang, T., Zhang, J., Dong, Y., & Zhang, X. D. (2018). A kind of 

effective data aggregating method based on compressive sensing for wireless 
sensor network. EURASIP Journal on Wireless Communications and 
Networking, 2018(1), 159. 

 
 
Zoubir, A. M., & Iskandler, D. R. (2007). Bootstrap methods and applications. IEEE 

Signal Processing Magazine, 24(4), 10-19. 
 
 
Zhang, P., Wang, J., &Guo, K. (2018). Compressive sensing and random walk-based 

data collection in wireless sensor networks. Computer Communications, 129, 
43-53. 

 
 
Zhou, X., Ji, X., Chen, Y. C., Li, X., & Xu, W. (2018). LESS: Link Estimation with 

Sparse Sampling in Intertidal WSNs. Sensors, 18(3), 747. 
 
 
Zhang, L., Niu, D., Song, E., & Shi, Q. (2019). Closed-Form Solution for Optimal 

Compression Matrix Design in Distributed Estimation. IEEE Access, 7, 5045-
5056. 

 
 
Zhou, Z., Li, C., Yang, S., & Guang, X. (2019). A Practical Inner Codes for BATS 

Codes in Wireless Multi-hop Networks. IEEE Transactions on Vehicular 
Technology, 68(3), 2751-2762. 

 
 
Zhou, Y., Yang, L., Yang, L., & Ni, M. (2019). Novel Energy-Efficient Data Gathering 

Scheme Exploiting Spatial-Temporal Correlation for Wireless Sensor 
Networks. Wireless Communications and Mobile Computing, 2019. 

 
 
Zuhairy, R. M., & Al Zamil, M. G. (2018). Energy-efficient load balancing in wireless 

sensor network: An application of multinomial regression analysis. International 
Journal of Distributed Sensor Networks, 14(3), 1550147718764641. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Univ
ers

iti 
Mala

ya



196 

 

SUPPLEMENTARY 

LIST OF PUBLICATIONS AND PAPERS PRESENTED 

 

[1] Alagirisamy, M., & Chow, C. O. (2018). An energy-based cluster head    
selection unequal clustering algorithm with dual sink (ECH-DUAL) for 
continuous monitoring applications in wireless sensor networks. Cluster 
Computing, 21(1), 91-103.  

 
 
[2] Alagirisamy, M., Chow, C. O., & Noordin, K. A. B. (2018). Dual Sink Based-

Energy Aware Unequal Clustering Routing Algorithm for Continuous 
Monitoring Applications in Wireless Sensor Network. In 2018 IEEE Conference 
on Open Systems (ICOS) (pp. 47-53). IEEE. 
 

 
[3] Mukil Alagirisamy, Chee-Onn Chow, Kamarul Ariffin Bin Noordin, (2019). 

Compressive sensing with perceptron-based routing for varying traffic intensity 
based on capsule networks, Computers & Electrical Engineering, 79,106446, 
ISSN 0045-7906, https://doi.org/10.1016/j.compeleceng.2019.08.008. 

 
 
[4] Alagirisamy, M., Chow, C. & Noordin, K.A.B. Intelligence Framework Based 

Analysis of Spatial–Temporal Data with Compressive Sensing Using Wireless 
Sensor Networks, Wireless Personal Communication 112, 91–103 (2020). 
https://doi.org/10.1007/s11277-019-07017-2. 

 

 
 
 

 

 

 
Univ

ers
iti 

Mala
ya




