STUDIES ON FLAT CORDIC IMPLEMENTATION

IN FIELD PROGRAMMABLE GATE ARRAYS (FPGA)

MEERA SUBRAMANIAM

FACULTY OF COMPUTER SCIENCE & INFORMATION
TECHNOLOGY
UNIVERSITY OF MALAYA
KUALA LUMPUR

JANUARY 2004

STUDIES ON FLAT CORDIC IMPLEMENTATION

IN FIELD PROGRAMMABLE GATE ARRAYS (FPGA)

MEERA SUBRAMANIAM

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF COMPUTER SCIENCE

FACULTY OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY
UNIVERSITY OF MALAYA
KUALA LUMPUR

JANUARY 2004

ABSTRACT

The CORDIC algorithm has been widely researched as an efficient hardware algorithm
for the computation of trigonometric, hyperbolic and transcendental functions. It is an
iterative process of rotations that are carried out through simple shift and addition
operations. These operations map well onto hardware, and CORDIC is used in a
multitude of signal processing applications. The iterative nature of CORDIC is a
drawback, and a technique known as Flat CORDIC was introduced to eliminate the
iterations, making the design largely combinatorial. The latest advances in VLSI
technology have made it possible to produce series of FPGAs that have large numbers
of gates at relatively low costs. This work focuses on FPGA implementation of the Flat
CORDIC scheme to efficiently compute trigonometric functions. The successive
replacement of the basic CORDIC equations to generate the parallelized Flat CORDIC
ones requires that the direction of all the rotations be pre-computed. This work presents
a modification to the previous Signed Digit (SD) Generation algorithm and a
comparison with the previous method. The second major component is the mapping of
the Flat CORDIC equations using these SDs. An architecture is proposed for effective
combination of these SDs for sine/cosine generation. Pipelining methods are
investigated to increase design speed. The architectures for 9, 12, 15, 18, 21 and 24 bit
Flat CORDIC are simulated using XILINX ISE WebPack 5.2i. The functionally
simulated designs are synthesized onto SPARTAN FPGAs. Some relevant comparisons
are made with other designs in literature. It is found that if properly pipelined, Flat
CORDIC on FPGAs can achieve high speeds of up to 43 MHz for 20 bit accuracy. In
terms of area, however, the largely combinatorial design is a drawback for FPGA
implementation. In summary, the main contribution of this thesis is a study on the

effectiveness of mapping Flat CORDIC onto FPGAs

This Work Is Dedicated
To My Beloved Parents

ACKNOWLEDGEMENTS

I would like, first and foremost, to extend my sincere gratitude to my supervisor, Prof.
Dato’ Ir. Dr. Mashkuri Haji Yaacob, for his endless support throughout the duration of
my project.

For the father of Flat CORDIC, Dr. C. T. Clarke, whose boundless enthusiasm
in my work has kept me going, | have the deepest regard. My thanks go to him for all
the hours spent explaining things to me, and for all the brilliant ideas.

My sincere thanks to Dr Srikanthan who has been a great source of inspiration to
me. The dedication and commitment of all the people in CHIPES at NTU has been a
huge motivation for me to do my very best.

To the Head of Department of Electrical Engineering, Assoc. Prof Dr. Nasrudin
Abd Rahim, for his support and help in obtaining the tutorship during my postgraduate
study and the previous Head of Department Dr. Kaharudin Dimyati, for his support, my
sincere thanks. Also to all the staff in the department, it has been a pleasure knowing
and working with them all.

My dearest parents have given me so much encouragement and have been by my
side, ready to help me in any way they could... 1 would like to take this opportunity to
tell them how much | appreciate their love.

To the rest of my family, and to all my wonderful friends, who have stood by
me, and have shared many precious moments, | would like to extend my deepest love.

And to Bhagavan Sri Sathya Sai Baba, who has been a beacon, shining brightly

always and showing me the way — my humble pranams at Your Lotus Feet.

TABLE OF CONTENTS

ABSTRACT
DEDICATION
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
PUBLICATIONS

LIST OF TABLES

LIST OF FIGURES

GLOSSARY OF ACRONYMS AND TERMS

CHAPTER 1: INTRODUCTION

1.1 Motivation
1.2 Research Objectives
1.3 Main Contributions

1.4 Thesis Outline

CHAPTER 2 : THE CORDIC ALGORITHM

2.1 Introduction

2.2 The CORDIC Equations

2.3 CORDIC Operation Modes
2.3.1 Rotation Mode CORDIC
2.3.2 Vector Mode CORDIC

2.4 Literature Review: Modifications of CORDIC

Xii

Xiv

10

12

2.4.1 Redundant CORDIC
2.4.2 Double Rotation CORDIC Method
2.4.3 The Correcting Rotation Method CORDIC
2.4.4 Differential CORDIC
2.5 CORDIC Implementations on FPGA
2.5.1 Iterative CORDIC
2.5.1.1 Bit-Parallel Design
2.5.1.2 Bit-Serial Design

2.5.1 On-Line CORDIC

CHAPTER 3 : FLAT CORDIC

3.1 Introduction to Flat CORDIC
3.2 The Flat CORDIC Equations
3.3 Generation of SDs

3.3.1 Theorem 1

3.3.2 Theorem 2

3.4 Combination of SDs and Addition

CHAPTER 4 : SIGNED DIGIT GENERATION

4.1 The Signed Digit Algorithm (SDA)
4.1.1 Most Significant Signed Digits (MSSDs)
4.1.2 Least Significant Signed Digits (LSSDs)
4.2 Implementation of the SDA
4.2.1 Algorithm for MSSD

4.2.2 Generation of z

12

15

16

18

19

19

20

21

22

24

24

24

26

27

28

30

33

33

36

36

39

39

40

Vi

4.2.3 Binary- Bipolar Conversion and LSSD
Generation

4.3 Modification Of The SDA

Chapter 5 Signed Digit Combination & Pipelining

5.1 Signed Digit Combination

5.2 Ripple Method

5.3 Implementation of the Ripple Method
5.3.1 Layer One
5.3.2 Remaining Layer Modules

5.4 Pipelining Flat CORDIC

5.5 Scaling of Final Values

5.6 Field Programmable Gate Arrays (FPGAS)

5.6.2 Spartan Il CLB

Chapter 6 Results & Discussion

6.1 Introduction
6.2 Flat CORDIC on FPGA
6.3 Signed Digit Generation
6.3.1 Signed Digit Algorithm (SDA) — Encoder
Method
6.3.2 Signed Digit Algorithm — Comparator Method
6.3.3 Comparison of Design
6.4 Combination of Signed Digits and Addition
6.4.1 Pipelining The C&A Section

6.5 Comparison of Flat CORDIC against Other Methods

40

43

45

45

46

48

49

50

56

59

59

60

63

63

64

66

66

66

69

71

73

78

vii

6.5.1 Implementation of Iterative CORDIC
Architecture
6.5.2 Implementation of Direct Sine/Cosine
Generation
6.5.3 C++ CORDIC Sine/Cosine Generation

6.5.4 C++ math.h Sine/Cosine Generation

Chapter 7 Conclusions & Future Work

7.1 Conclusions

7.2 Suggestions for Future Work

REFERENCES

APPENDIX

78

79

82

82

84

84

85

88

91

viii

PUBLICATIONS

1. Meera Subramaniam and lIbrahim A. Abdul Razak : ‘FPGA Implementation of
CORDIC Algorithm’, Proceesings of First Technical Postgraduate Symposium, KL,

page(s) 387 — 390, October 2002.

LIST OF TABLES

Table

4.1:

4.2 :

43:

4.4 .

51:

5.2:

53:

54:

6.1:

6.2:

6.3:

6.4:

6.5:

6.6:

6.7 :

6.8:

6.9:

Pair-Wise Equality of Signed Digits for Size N =24
Z.., For MSBs of Z, for Size N =24

Z,., For MSBs of Z for Size N =9

(Zrem —Zo 15) for MSBs of Z, for size N =9

Example of Ripple for N =9
Inputs and Output of Module PAIR
Inputs and Outputs of Module BLUE

Inputs and Outputs of Module ORANGE

Flat CORDIC Speed and Gate Count

Changes in Gate Count and Speed for SD Generation with Size (N)
Changes in Gate Count and Speed with Size (N)

Maximum Frequency and Gate Count for C&A Module

C&A Module as Part of Flat CORDIC Architecture

Improvement in Latency With Additional Pipeline Stages, N =9
Improvement in Latency With Additional Pipeline Stages, N = 12
Improvement in Latency With Additional Pipeline Stages, N = 15

Improvement in Latency With Additional Pipeline Stages, N = 18

6.10 : Improvement in Latency With Additional Pipeline Stages, N = 21

6.11 : Improvement in Latency With Additional Pipeline Stages, N = 24

Page

35

38

43

44

48
49
o1

52

65
67
69
72
73
75
75
75

76

6.12:

6.13:

6.14 :

6.15:

Latency and Gate Count of Flat CORDIC and Conventional
CORDIC Architectures

Number of Terms using Direct Sine/Cosine Generation

Latency and Gate Count of Flat CORDIC and Direct Sine/Cosine
Generation Architectures

Maximum Operating Frequencies For Sine/Cosine Computation

(Hardware Versus Software)

79

80

80

83

Xi

LIST OF FIGURES

Figure

2.1

2.2

2.3

24:

2.5:

3.1:

3.2:

4.1:

4.2 :

4.3:

51:

5.2:

5.3:

54:

55:

5.6:

5.7:

6.1:

6.2:

CORDIC Rotation

: Decomposition of Angle

: Bit-Parallel Iterative CORDIC

Bit-Serial Iterative CORDIC

Unrolled CORDIC Processor

Signed Digit Combinations and Positional Value

Graph Number of Combinational Terms Versus Size (N)

Signed Digit Generation for Size N = 24
MSSD Generation Algorithm for Size N = 24

LSSD Generation Algorithm for Size N = 24

Module PAIR for Layer One

Module BLUE

Module GREEN and ORANGE

Flowchart for Ripple Method, Size (N)
Implementation of Ripple

2-Stage Pipeline Implementation for C&A Module

Spartan Il CLB Slice

Flat CORDIC Pipeline Stages

Graph Flat CORDIC Gate Count Versus Size (N)

Page

10

13

20

21

23

30

31

34

39

42

49

51

52

54

55

58

62

64

65

Xii

6.3:

6.4:

6.5:

6.6 :

6.7 :

6.8:

6.9:

Graph Flat CORDIC Maximum Operating Frequency Versus Size (N)
Graph SD Generation Gate Count Versus Size (N)

Graph SD Generation Maximum Operating Frequency Versus Size (N)
Graph SD Generation Latency Versus Size (N)

Graph Flat CORDIC Gate Count Versus Size (N) for Different SD
Generation Methods

Graph Flat CORDIC Maximum Frequency Versus Size (N) for Different
SD Generation Methods

Graph Maximum Frequency Versus Size (N) for C&A Module

6.10 : Graph Gate Count Versus Size (N) for C&A Module

6.11 : Graph Flat CORDIC Latency for Unpipelined, & Ideal Designs Versus

Size (N)

6.12 : Latency of Flat CORDIC, Conventional CORDIC And Power Series

Architectures

6.13 : Gate Count for Flat CORDIC, Conventional CORDIC And Power Series

Architectures

65

67

68

68

69

70

72

72

77

81

81

Xiii

Glossary of Acronyms and Terms

ASIC Application Specific Integrated Circuit
C&A Combination & Addition

Civ Cumulative Index Value

FPGA Field Programmable Gate Array

LSB Least Significant Bit

LSC Least Significant Channel

LSSD Least Significant Signed Digit

MSB Most Significant Bit

MSC Most Significant Channel

MSSD Most Significant Signed Digit

P&R Place & Route

PWL Pair-Wise Linear

RM Rotation Mode

ROM Read Only Memory

SBNR Signed Binary Number Representation
SD Signed Digit

SDA Signed Digit Algorithm

SRAM Static Random Access Memory

VLSI Very Large Scale Integration

VM Vector Mode

Xiv

Chapter 1 : Introduction

CHAPTER 1 : INTRODUCTION

1.1 Motivation

The rapid technological advances in VLSI have made it possible to market high
performance logic devices which can accommodate large amounts of logic at low cost.
Field Programmable Gate Arrays (FPGAs) are among the class of programmable logic
devices that have benefited tremendously from these advances, allowing them to reach
gate counts large enough to allow complex applications to be programmed onto them.
They can also operate at increasingly higher frequencies. FPGAs in recent times have
come to rival ASICs with their short development time and lower costs. The availability
of Synthesis as well as Place and Route (P&R) tools has made it easier to create and test
designs. In addition, SRAM FPGAs also have unlimited reprogrammability that allow

design upgrades without having to replace the hardware (Skahill, K. 1997).

The CORDIC algorithm is well known as a hardware-efficient algorithm for
performing trigonometric, hyperbolic and transcendental functions (Walther, 1971).
There is an increasing need for huge amounts of rapid calculations in the fields of signal
and image processing and robotics, to name a few, and hardware components to execute
these calculations have been taking over their software counterparts in recent times
(Wang et al, 1997). Research into CORDIC and its applications have been extensive,
and many methods have been proposed and implemented to eliminate or minimize its
drawbacks. Among them is the Flat CORDIC algorithm (Clarke, 1995) that aims to
completely eliminate the iterative nature of CORDIC through a parallelization of the

CORDIC equations, and thereby decrease the latency.

Chapter 1 : Introduction

1.2 Research Objectives

This thesis focuses on the FPGA implementation of Flat CORDIC. A method for
generating the iteration directions (Signed Digits, or SDs) is studied. In
conventional CORDIC, one SD is generated per iteration. In Flat CORDIC,
which is a parallelization of the original CORDIC equations through repeated
replacement into successive iterative equations, all the SDs need to be known
beforehand, because the overall Flat CORDIC equation is completely expressed
in term of all these SDs.

Gisuthan (2000) designed a Signed Digit Algorithm (SDA) using encoders. This
work will attempt a detailed examination of the relationship between the input
angle values and their corresponding SDs. All possible input values and their
corresponding SDs could be examined to see if there is a pattern between them,
and identify this pattern. The SD generation could then be synthesized and
simulated using VHDL and then compared against results using conventional
programming like C++.

This work will also focus on implementation of the Flat CORDIC equations.
The equations for the cosine and sine of an N-bit input angle are made up of
many terms, with the number of terms increasing sharply with N. Each term is
made up of two parts — the combinational part, which is the product of different
sets of SDs, and the positional value part, which is in the form of 27, that, in
binary, is simply a right shift i times. For each specific positional value, there are
a number of combinational sets of values that need to be shifted by that

positional value.

Chapter 1 : Introduction

A method could be looked into that combines all these terms in a unique manner
that eliminates the need for multiple adders to get the sum of all the
combinations. This method would involve the design of specific modules that
are then repeatedly generated. In addition, the final summation of all the
combinational terms with their shifts could be reduced to one single addition.
Here again, the detailed input and output data for cosine and sine generation
would be generated in C++.

The full design with all the modules would subsequently be written in VHDL,
then functionally simulated and synthesized. The results of these simulations
could be compared against the C++ data files mentioned earlier.

The proposed architecture is organized in a matrix structure of repeated
instances. The design is largely combinatorial, and in certain positions, the data
has to run through many layers of logic that cause large delays. Studies could
then be performed on the possibilities of pipelining the design to reduce the
amount of logic per cycle.

The improvement in circuit frequency with additional pipeline stages would then
be compared with the effect of the additional cycles on the overall latency of the
design. The results will show whether an improvement is seen if the circuit is
correctly pipelined, and whether there are any limits to the benefit of the
additional stages (ie. there is an ideal number of extra pipeline stages, beyond

which adding them decreases performance).

Chapter 1 : Introduction

1.3 Main Contributions

The primary goals of this thesis are to investigate and design architecture for Flat
CORDIC on FPGAs. The thesis provides insight into the internal patterns for SD
Generation and combinations. Based on the above goals, the key contributions of this
thesis include
e A complete analysis on the relationship between input angles and corresponding
SDs
e A newly designed combination scheme for piecing together the Flat CORDIC
basic equations in a simple and organized manner
e A detailed study on the design issues of implementing the scheme, and the

possibilities for improving the design

1.4 Thesis Outline

This work is organized as follows. In Chapter 2, the CORDIC algorithm is presented,
and its operation modes are explained. The various modifications of the algorithm are

summarized. Implementations of this algorithm on FPGAs are presented.

In Chapter 3, the Flat CORDIC Algorithm is introduced. The design is
subdivided into several parts, and these are outlined. The pair-wise linear patterns found

between the input angle bits and the Signed Digits are highlighted.

Chapter 1 : Introduction

Chapter 4 is dedicated to a detailed description of the Signed Digit Generation
methods and algorithm. The method for utilizing the unique pattern is examined, and a

comparison is made with the previous generation method.

The combination and channeling of the SDs is shown in Chapter 5. A method
for rippling the channel results using combinatorial logic, to avoid the use of many
adders is presented. A method to pipeline the design for higher throughput is discussed.
Also included is a general description of FPGAs, and specifically the one used in this

work.

Chapter 6 presents the synthesis results of Flat CORDIC and its individual

components. A comparison is made with other implementation methods.

Chapter 7 concludes the thesis with a summary of the results. Suggestions for

future work in this area are also presented.

Chapter 2 : CORDIC

CHAPTER 2 : CORDIC

2.1 The CORDIC Algorithm

The CORDIC (COordinate Rotation DIgital Computer) Algorithm is widely used as a
powerful and flexible generic architecture to implement many algorithms that involve
non-trivial arithmetic functions. It is a versatile algorithm for computing trigonometric,
hyperbolic and transcendental functions by performing a rotation of a 2-dimensional
vector in linear, circular and hyperbolic coordinate systems. This rotation is the result of
an iterative series of simple shift and addition operations, which are easy to incorporate

in VLSI technology.

The original trigonometric CORDIC algorithm was developed by Volder (1959)
as a digital solution for real-time navigation problems. This version was used to
calculate trigonometric functions, multiplication, division and datatype conversion
functions, and plane rotations. Extensions to CORDIC theory by Walther (1971)
enabled calculation of hyperbolic functions, the results of which could be exploited to

generate other transcendental functions.

CORDIC currently forms the integral macro in computer arithmetic.
Applications of modern digital signal and image processing, which involve massive
computations, exhibit an increasing need for the efficient implementation of complex
arithmetic operations, and widely use CORDIC. Other compute-intensive applications
include matrix computations, which involve calculation of angles and their use in
rotation, for example matrix triangularization, and singular value decomposition

6

Chapter 2 : CORDIC

(Symansky et al., 1987). These have benefited tremendously in speed through the
incorporation of CORDIC. It is also used widely in the fields of dynamic system
modeling, control, robotics, computer graphics, filtering and virtual reality (Wang et al.,

1997).

2.2 The CORDIC Equations

The CORDIC Algorithm performs the rotation of a vector (Xi, Y;) with magnitude M
and phase P by means of a sequence of micro-rotations, each one over a fixed
elementary angle ¢,, as shown below:

Xi,, = X;cosg =Y, sing, (2.1)
Y,,, =Y;cosg, + X;sing, (2.2)
For the i iteration, as indicated above, the vector prior to rotation is (X, Yi) and the
rotated intermediate vector is (Xi+1, Yi+1)

With the rotation angle restricted such that ¢ =+tan* 2" (the +sign indicates that the
rotation direction is variable), the micro-rotation can be reduced to simple shift-and-add
operations :

X =KX, =s¥27) and Y, =K(Y,+5X,27)

The direction of the micro-rotation is indicated by s;i (+1 for anticlockwise rotation, and
-1 for clockwise rotation). It is to be noted here that each successive rotation is not a
pure rotation, but a rotation-extension, where the length of the resultant vector is

modified by a factor of K, = Lt

~ |cosg]
In their generalized form, the CORDIC equations are given as :

X, =X; —msY, 2" (2.3)

Chapter 2 : CORDIC

Y, =Y, +sX,2" (2.4)
1 .

Z., =2, ———s. tan{mym2- 2.5

=2, s tan H(mm2) (25)

With the selection of an appropriate value for the parameter m, different coordinate
systems can be achieved (+1 for circular, -1 for hyperbolic). Zi is the overall rotation
angle accumulator.

The final output vector after N iterations is (Xn, Yn), and is scaled by a constant scale

factor K, which is a combination of the scaling from all the iterations, and is given by

N

K= ﬁ . A multiplication by 1/K is introduced at the end to correct (Xn, Yn). TO
i1 [cos ¢,

satisfy an N-bit precision CORDIC operation, N iterations are required. In addition, the

length of the datapath to compute the X and Y variables has to be (N + log2N + 2) bits

(Gisuthan et al., 2000).

2.3 CORDIC Operation Modes

There are two basic modes of operation for CORDIC; the Rotation Mode (RM) and the
Vector Mode (VM). The rotation mode rotates the input vector by a specified input
angle (or argument), and the vector mode rotates the input vector towards the X-axis,
while recording the total angle movement. Implementation of these methods is
characterized by suitable control of the direction of successive micro-rotations, which

force either the Y- or the Z- components to 0.

Chapter 2 : CORDIC

2.3.1 Rotation Mode CORDIC

The rotation mode is usually used to compute trigonometric functions since/cosine,
hyperbolic functions sinh/cosh, and then extended to transform polar coordinates to

Cartesian coordinates. The angle accumulator Z is initialized with the desired rotation

angle 6. In sine/cosine computations:

X=X, —sY, 2" (2.6)
Y., =Y, +sX,2" (2.7)
Z,, =2 —stan(27) (2.8)

Chapter 2 : CORDIC

Y
A
//
Yi+1 777\ /
— ,
~— /
—
L
B /
T /
~
e = ; [N (Xis1, Yier)
/ 1
1
// !
/ 1
/ 1
// ! i
-k
Yi / : Z,=0- Z 5,2
| ! ! \ k=1
/ 1 N i
/ 1 B
i+ 1 \ Z =0- i 2 .
// Ri+1 i \\ \\ s 9_k%§k ok _szf(.ﬂ)
// 1 \ \ k=1
/ 1 \ \
/ :_ \ \
D A P~ ' (Xi,Yi)
/ 1 A \
/ _ . 1
! Zw=Zi-tan 2+ . A \

! ! A \

/ R ! v \

£ : - : o \

, \z. > tant 27 , v |

/ ! ' ro \

1 . ‘ ‘

0 v v | . X
Xi+1 Xi

Fig. 2.1 CORDIC Rotation

The initial vector (Xo, Yo) is aligned along the X-axis, with magnitude 1, ie (1,0)

At the end of the N iterations, the final vector (Xn, Yn) = (Kncos 0, Knsin 0)

2.3.2 Vector Mode CORDIC

This mode is usually used to calculate magnitudes and angles of given input vectors,

and also arctangent values. For a given input vector, Z is initialized to 0, and the vector

is rotated until it is aligned along the X-axis. The angle accumulator will now show the

total traversed angle, (Zn), and the magnitude of the original vector is the (Xi)

10

Chapter 2 : CORDIC

component. This magnitude, as mentioned earlier, is scaled. For the Vector Mode, the

characteristic equations are :

X;

. =X, +sign(Y;)27, (2.9)
Y., =Y, —sign(Y,)27 X, (2.10)
, =2, +sign(Y,)tan*(27) (2.11)

Zi+

Despite its architectural and algorithmic simplicity, the CORDIC algorithm has several

drawbacks:

1)

2)

3)

4)

Each successive iteration can only be performed after the previous one, since the
sign bit that determines the rotation direction is produced by the previous
iteration

It is slow because the recurrences involve carry-propagation addition and
variable shifting

It is area-consuming because of the use of variable shifters and the ROM storing
the arctangent values

The area complexity and circuit latency are roughly proportional to the accuracy
of the desired output. Therefore, the speed of execution becomes restricted with

the size

11

Chapter 2 : CORDIC

2.4 Literature Review : Modifications of CORDIC

In general, modifications to the CORDIC algorithm aim to either increase the speed of
the iterations, or to reduce the total number of iterations. Among the methods used to
increase the speed of the iterations are the redundant (or on-line) number representations
and redundant adders, which can perform Most Significant Digit (MSD)- first additions.

For reduction of the number of iterations, higher radix techniques are used.

2.4.1 Redundant CORDIC

In redundant CORDIC, the X, Y, and Z values are coded using redundant number
representation. Introducing this into the iterative computation eliminates the carry-
propagate from the addition/subtraction operations, thereby allowing them to be carried
out MSD first. The signed digit in this case is selected from the range {-1, 0, 1}, as is
explained: In the redundant form of representation, the Most Significant Digit, MSD of
the value does not necessarily contain the sign of the value. The signed digit (si) has to
be estimated from the inspection of a few of the MSDs. However, when all the
inspected digits are 0, the proper value of si cannot be determined without knowledge of
the remaining digits, and here it would seem that the best strategy would be to assign
the value 0 to si. This move, however, freezes the iteration. Since the final scaling
factor, Ky depends on the actually performed iterations, freezing the iteration causes the

final scaling factor to become variable.

Ercegovac and Lang (1988, 1990) developed special purpose CORDIC modules

which take an input vector (a, b) as an input, and first determine the angle (vectoring

12

Chapter 2 : CORDIC

mode), tan*(2) in decomposed form (in the form of the signed bits), and then proceed to

calculate the sine and cosine of the input angle (rotation mode, circular coordinates).
The highlights of their work are :
1) The conventional CORDIC module is modified so that on-line addition is used.
Area-consuming shifters are replaced by area-efficient delays
2) An implementation of the computation of the variable scale factor is developed
3) After the angle 0 is obtained, it is transmitted in decomposed form to be used in

the rotation mode

ANGLE MODULE L

0 =tan (%) si ROTATION
» MODULE

4

Yo=0

Fig. 2.2 Decomposition of Angle

Partl:
The two modifications that improve the CORDIC implementation are :
1) Elimination of the shifter :
We let W[j]=21Y,[j] (2.12)

So, from (1) to (3), we now have

Xa[i+1]=X,[i]+s;2*w(j] (2.13)
W(j+1]=2W[jl-s;X,[i]) (2.14)
Z,li+1=2,[j]+s, tan*(27) (2.15)

Withsi={+l ?fW[?]ZO} (2.16)
-1 if W[j]<O0

13

Chapter 2 : CORDIC

From this, we see that one shifter has been eliminated, and also, iterations when

j >4 do not affect X[n] for N bit precision

2) Replacing carry propagation by redundant addition :

Here, sj is allowed to take values from the set {-1, 0, 1} instead of {-1, 1} as follows

+1 if W[jl>1
Withsi= {0 if W[j]=0 (2.17)
—1 i W[j]<-2

Where V\7[j] is an estimation of W[j] with a precision of 1 fractional bit (usually the

3 MSB of W[j])

Part 2
Following this, to calculate, for example, the sine/cosine values of the original
vector (Xo, Yo), the angle 6, which was produced in decomposed form [from Part 1]
is now rotated using the decomposed bits as the signed bits as follows :

Xy =X, +5,27, (2.18)

Yia=Yi =5, 27 X (2.19)

Where X, = 1 and Y, = 0. The final values of X and Y will yield the scaled cosine
and sine values of (Xo,Y,o). This CORDIC operation is partial because it uses the
angle produced by another CORDIC operation in decomposed form. In addition, the
si bits are passed in series (most significant bit first) so that the rotation can be

overlapped with the angle calculation.

14

Chapter 2 : CORDIC

The drawback here is that the scale factor becomes variable due to the iteration
where no rotation is performed, and has to be calculated during computation. In
addition, the s;i value is an estimate, and should the estimate be inaccurate, the
convergence behavior would possibly be disturbed. Finally, the simple adders of

conventional CORDIC are traded for the more complex online adders.

Later, Takagi et al. (1991) developed two new modifications of the redundant

addition scheme which have constant scale factors. These methods are the Double

Rotation Method, and the Correcting Rotation Method.

2.4.2 Double Rotation Method CORDIC

In the Double Rotation Method (Takagi et al., 1991), every rotation-extension is
carried out by a combination of 2 subrotation-extensions. Here again, the redundant
binary representation is used, with the digit set {-1, 0, 1}, and s; taking values in the
same set. A negative rotation, a positive rotation and a non rotation are respectively
produced by two negative subrotations, two positive subrotations, and one negative
and one positive subrotation.

The corresponding equations are:

X;=X,,—-0;27Y,, - p;2787%X (2.20)
Y, =Y, -2 0 X, - p 270y (2.21)
z,=2,,-2q,tan*(2777) (2.22)

Equations (2.20 — 2.22) are obtained through a combination of two sets of equations

which describe the rotation-extensions with the angle tan™27 /. X;j and Y; are
represented using redundant binary numbers, and Z; by a redundant binary fraction,

the most significant digit of which is located in the j™ binary position. The direction

15

Chapter 2 : CORDIC

of rotation is determined by evaluating the three most significant digits of Zj.1. (q;
denotes the direction of the j™ rotation).
@y if [z J_l,zl]<o
gj and pj are obtained using (qJ .)_ (O, 1) if [z 02,2 J] 0 (2.23)
W) if [z7tzi,2]>0

2.4.3 The Correcting Rotation Method CORDIC

This method has one rotation-extension per iteration. Here, the signed digit, s; is
restricted to £1. The error introduced by constraining s; is taken care of with extra

correcting iterations every m steps, where m is an arbitrary integer.

For iteration i:

When i mod m = 0 X;=X,-02"Y,, (2.24)
Yo=Y, +0,27 X, (2.25)
Z,=2,,-qtan*(27) (2.26)

where g; is obtained by evaluating the (m-h+3) MSDs of Z, ; (h= jmodm)

When i mod m =0 X;=X,—-02"Y, (2.27)
Y, =Y, +0;27 X, (2.28)

Z,=7,,-qtan*(2") (2.29)

followed by X, =X, -q27Y, (2.30)

Y, =Y, +q,;27 X, (2.31)

Z,=2 —q tan(27) (2.32)

where @, is obtained by evaluating the (m+2) MSDs of Z._,

16

Chapter 2 : CORDIC

The two major advantages of employing this scheme are that, not only is the scale factor

incorporated into the iterations, it is also taken care of in such a way that the final value

does not need to be scaled.

However, the number of MSDs to be examined here to determine the direction

of rotation is higher than in other methods. In addition this method also yields more

iterations than normal, although not as many as in the Double Rotation Method.

Later, Timmerman (1992) tried to develop a scheme for determining the SDs and

carrying out the iterations in parallel. This scheme maintains the scale factor at a

constant value without an increase in the number of iterations. This is done by dividing

the entire process into 3 separate parts and carrying them out as follows:

i)

The first X2 jterations are carried out as normal, with s; restricted to the set
{-1, +1}.

For iterations 22 to &2 | if si = +1, then again the iterations are carried out
as normal. If, however, si = 0, then no rotation is performed. This, as we
know, would result in a non-constant scale factor. To keep the scale factor
constant, at this point, instead of a rotation, the vector is simply extended by
the same amount as it would have been had the rotation been performed. The
modification to the iterations is thus :

Xy =X, +m27%7 X, (2.33)
Y., =Y, +m2727ty, (2.34)
In the final set of iterations, i > %1, it is assumed that the change in the scale

factor is negligible, and therefore can be neglected in the cases of si = 0.
17

Chapter 2 : CORDIC

2.4.4 Differential CORDIC

Differential CORDIC (Dawid and Meyr, 1996) is made up of a sequence of absolute

value computations, in addition to the normal additions, subtractions and shifts typical
of CORDIC. The iterationZ,,, = Z, —s, tan "2 can be interpreted in the following way

: The rotation direction is chosen which leads to a smaller absolute value of the new Z

component. Therefore, the conventional iteration is transformed into an iteration that

involves only the absolute value of the new 2i variable.

In the rotation mode, the original recurrence of Z as stated above, is transformed

to |Pia| =|Pi =Hf)i|—tan‘12“‘, where p, is the predicted value of pi. Even though

only the absolute value |f)i+l

appears in the transformed equations, we still require the
sign of p,,, which is given by sign(p,,,)=sign(p,)sign(p,,). This means,
sign(p,,,)can be recursively calculated given sign(po) and sign(p,.,). This is what is

seen as a type of differential decoding, which gives DCORDIC its name. Following
this, the carry behavior of the additions of two operands was studied (Timmerman et al.,
1998, and Wassatsch et al., 1998), where one operand is increasingly shifted right
(made smaller). Special adder cells were then developed and used along with the regular
adder cells. The special cells (which are much more compact in size and area) are used
for the MSDs, when they are known to be 0’s, and the normal adder cells for the rest of
the bits. As the iterations progressed to bigger numbers, the total number of special cells

increased, thus producing significant savings in terms of the area.

18

Chapter 2 : CORDIC

2.5 CORDIC Implementations on FPGA

CORDIC can be mapped onto architecture in a variety of ways. These different methods
of implementation provide a variety of options, where the best tradeoff can be chosen
among circuit complexity, clock cycle time, latency and throughput, depending on the
application requirements (Vladimirova and Tiggeler). The following is an examination

of several different architectures as implemented on FPGAs.

2.5.1 Iterative CORDIC

There are two types of Iterative CORDIC implemented. One is the Bir-Parallel
Architecture, and the other is the Bit-Serial Architecture (Andraka, 1998).

19

Chapter 2 : CORDIC

2.5.1.1 Bit-Parallel Design

Xo ‘ ‘
y

register >

— >>N

>>n >

sgn(yi) +—— —T W

register >

¢

yo—1 1

ROM >

¢+ Vv

—T— nn

sgn(zi) «——
register >

¢

Z ot

-\ VY

Fig. 2.3 Bit-Parallel Iterative CORDIC

Early FPGAs were not able to implement a parallel CORDIC algorithm due to limited
chip size and the impossibility of routing the hard-wired shifters. Consequently, it has
been performed in several FPA-based DSP applications (Meyer-Base et al., 1994, Dick,
1996, Meyer-Base et al., 1998, Mayosky et. al., 1998). There are 3 registers, one each
for storing the X, Y and Z components (Andraka, 1998). There are 3 adder-subtractors
for performing the additions. Depending on the mode of operation, the signed bit for the
following iteration is determined. This can be seen in Figure 2.3. In each iteration, the
ROM is incremented t provide the appropriate angle for the Z-adder, and the shifters are
modified to select the correct degree of shift. When N iterations have been completed,

the results can be directly read from the X and Y registers.

20

Chapter 2 : CORDIC

On FPGAs, the variable parallel shift registers do not map too well due to the high fan-
in. The signal ends up passing through a number of FPGA cells because the shifters

require several layers of logic.

2.5.1.2 Bit Serial Design

Serial
[T [}—o .
o TTTII33T111] ——[adder- | x
|
\.
Yo tt1ttttttttt

Serial Yn
llllllllllllllllll_'adQer- >

Serial
HEEEEEREREREEEEEE >

adder- zn
Serial ROM r

Fig. 2.4 Bit-Serial Iterative CORDIC

A more compact version is implemented with bit-serial arithmetic (Andraka, 1998).
This design uses 3-bit serial adder-subtractors, 3 shift registers and a serial ROM. The

length of the shift registers is N bits. The design is shown in Fig. 2.4.

Once the data is loaded into the registers (parallel/serial), the data is shifted bit
by bit through the adder-subtractors and the resultant values are returned to the registers
(this takes N clock cycles). The arctangent constants in the ROM for the Z-component
is loaded serially. When the i iteration is complete, the signed bit for the next iteration
is determined. After the N cycle of the N™ iteration, the process is complete and the

results can be directly read from the X and Y registers.

21

Chapter 2 : CORDIC

Size-wise, this design is more compact than the bit-parallel architecture. The number of
clock cycles to complete the entire CORDIC process is large, but it can be compensated

for by the fact that extreme bit clock frequencies can be used.

2.4.2 On-Line CORDIC

This is an example of a CORDIC processor that is combinatorial (Andraka, 1998).
Instead of using clocked registers, the entire CORDIC processor is unrolled to produce
an array of interconnected adder-subtractors. Two distinct advantages of this
arrangement are that the shifters are not variable-bit shifters, but hardwired shifters,
each one performing a fixed shift. The second is that the look-up values for the angle
accumulator are distributed as constants to each adder in the angle accumulator chain.
The delay through this huge amount of combinatorial logic is large, but the processing
time is reduced compared to the iterative circuit. However, such a large combinatorial

design is not suited to FPGAs.

The unrolled process can be easily pipelined by adding registers between the

adder-subtractors.

22

Chapter 2 : CORDIC

Fig. 2.5 Unrolled CORDIC Processor

In addition, Valls et al. (2002) studied the suitability of redundant arithmetic operators
in full custom based CORDIC implementations. It was found that while these methods

yielded improvements in speed, the resultant area became close to 4 or 5 times larger

than the conventional 2’s complement method.

23

Chapter3 : Flat CORDIC

Chapter 3 : FLAT CORDIC

3.1 Introduction to Flat CORDIC

Flat CORDIC is a revolutionary manipulation of the conventional CORDIC algorithm
that has produced immense savings in both area and speed. It was put forth by Clarke
(1995). Despite all the improvements of the previous modifications of CORDIC, the
characteristic iterative process has always remained a bottleneck. Flat CORDIC is the
first method to eliminate these iterations to allow for a new level of refinement and
optimization. In this method, the results are completely expressed in terms of the
original input vector. This is achieved through successive substitution of the original

vector in each iterative equation.

3.2 The Flat CORDIC Equations

From Chapter 2, the main CORDIC equations are as stated below :
X, =X; —msY,2" (3.1)

Yia =Y, +sixi2_i (3.2)

where (Xi, Yi) is the original vector, and (Xi+1, Yi+1) is the rotated vector. In the next

iteration,
Xi-¢—2 = Xi+l - msi+lYi+12_(i+l) (33)
Yi+2 :Yi+l + Si+lX i+127(i+l) (34)

24

Chapter3 : Flat CORDIC
Substituting (3.1) and (3.2) in (3.3) and (3.4), we get

X, = X;(l-ms;s,, 27270)—mY (5,2, +5,,27) (3.5)

iYi+l i+1

Y, =Y ([L-ms;s;,272°0)4 X, (5,2, +5,,27) (3.6)

i+2 iYi+l i+1

The results of this second rotation are given directly in terms of the original vector (Xi,
Yi). Proceeding in this manner, successive substitution gives us a generalized Flat

CORDIC equation that is completely flattened and parallelized :

N-1 N) N-3 N-2 N-1 o
= X{l—z doss;2270 4>y Y Zss 5,5,27'271272" —}

i=1 j=i+l i=1 j=i+k=j+11=k+1
N-2 N-1 o N-4 N-3 N-2 N-1 o
—-mY, ZS 27 -3 Zs 5;5,2727727 + > Zs $;5.55,2'27727 272" —
i=1l j=i+k=j+2 i=1 j=i+k=j+11=k+1m=Il+1
3.7)
N-1 N N=3N-2 N-1 N o
N =YD D 85,2727 Y N Y N ss s, 527270272 -
i=1 j=i+l i=1 j=i+k=j+11=k+1
N-2 N-1 N Q. N-4N-3N-2 N1 N o
+X, Zs 27 =3 Y s 272727 + D 5i5;5,5,5,2727127 272" —
i=1l j=i+k=j+2 i=1 j=i+k=j+11=k+1m=I+1
(3.8)

To calculate sine/cosine functions, rotation mode CORDIC is used in circular

coordinates. The initial vector is (1,0). The Flat CORDIC Equations now become

N-1 N N-3 N-2 N-1 . .
Xy=1-> Y5522 +> > > 23 5;5,82'271272" (3.9)
i=1l j=i+l i=1 j=i+lk=j+11=k+1

N N-2 N-1 N N-4 N-3 N-2 N-1 N o
Yy=2.52") > Yss;s, 2727027 + Y D 588,558,227 127K 22
i=1 i=1 j=i+k=j+2 i=1 j=i+k=j+1l1=k+1m=I+1
(3.10)
(X .Yy)= (K, cos@,K, sing) (3.11)

25

Chapter3 : Flat CORDIC

A quick glance shows that firstly, an efficient implementation would require prior
knowledge of the polarity of the micro-rotation (the signed digits, or SDs). Secondly,
the number of combinations of SDs would very quickly become huge as the size N

increases.

3.3 Generation of SDs

Conventionally, each CORDIC iteration generates one SD from the equation
Z.,=2Z —s tan"t2"
(3.12)

The sign of the following iteration, s, ,comes from the most significant bit (MSB) of

i+1

z Now, suppose we could make the approximationtan™2"' ~27'. Then,

i
Z,,=2Z,—s2", and we would be able to directly generate all the SDs from the
original input angle. For small values of i, this approximation is not valid. Alternatively,
we assume tan2" =2~ for i > M (Gisuthan, 2000). If we can identify a value for M,
then we need only carry out M iterations. Then, all the SDs can be obtained directly
from the remaining angle after M iterations.

Theorem 1 shows that the value of M that validates our assumption for N-bit size is N/3.

Theorem 2 shows that the remaining SDs can be obtained directly from Zw.

26

Chapter3 : Flat CORDIC

3.3.1 Theorem 1

Theorem 1 : For N-bit CORDIC, tan 2" =2 for i=1to [—N_Iggz 3}

Proof : The expansion of tan~ x for |x| <1 is

3 5 7 9
tan‘l(x):x—x?+%—x7+%—... (3.13)

=3i -5i —7i -9i
For x=2", tanif2i)=2' -2 42" 2, 2" (3.14)
3 5 7 9

For N-bit accuracy, the necessary conditions for obtaining the minimum value of i for

which the expression tan™ 2~ =27 is valid is that the error due to the i bit must be

<27V That is: e =2"—tan"2" <2 (3.15)
=3i —5i —7i -9i =3i -5i —7i -9i

Butei=2 _2 +2 _2 +... < 2- 2 +2 _2 +... (3.16)
3 5 7 9 3 3 3 3

=3i
The next condition to obtain the minimum value of i is : = <2 (3.17)
: . N-log, 3
_3i—log,3<-N .. |>% (3.18)

I is an integer, therefore i is the smallest integer that is equal to or larger than

w. If N is a multiple of 3, then Equation (3.18) is true for i :%
N
Now, we need to show that the accumulated error, Zei <2
i=N/3
N N 273i/3 N)
From (3.16) >'e = —-< Y 2¥3<2™ (3.19)
i=N/3 i-n/3l+2 i=N/3

It has been verified that for the first 4 —1 bits, the arctangent value of each bit

(tan ’1(2’i)) is not equal to the positional value of the corresponding bit in the normal

27

Chapter3 : Flat CORDIC

binary representation (24), whereas for bits ¥ to N, they are equal for N-bit accuracy.

Due to this discrepancy, it is not possible to directly precompute the SDs corresponding

to the first & —1 bits.

3.3.2 Theorem 2

Theorem 2 : In N-bit CORDIC, the first 5 —1 signed digits (SDs) cannot be pre-
computed
Proof : Let s, be the SD of the i iteration. It carries a weight of tan™ 2" which

represents an angle measured in radians. Let ax be the k'™ bit of the angle remaining after

i iterations and A(i) be the angle remaining after the i" iteration.

A(i) = A(0)- > s, tan™* 21 where A(0)is the input angle for rotation. (3.20)

j=1
It is assumed that angles are represented in (1,-1)format, so after i iterations have been

performed, s,, =a, ,. After i iterations, the Signed Binary Number Representation

(SBNR) of A(i) must have the first i bits as zeros and the remaining bits strictly non-
zeros.

In all these cases, it is assumed only one SD per iteration is considered. If m (1 <m <
N) SDs are considered at the (i +1)"iteration, then A(i +1)holds the following inequality

(Walther, 1971).

[AG+m)=|A()- D s, tan™" 27| < tan*(2-0+™) (3.21)
j=i+l
It must now be shown that this inequality fails if there exists a situation in which the

computation of more than 1 SD results in an error.

Consider a case where ai+1 = 1 and aj+2 = -1

28

Chapter3 : Flat CORDIC

Then, Sis1=landsi+2=-1
i+2
And [Aii+1) = |AG)- Y5, tan* 27| < tan (270+2)) (3.22)
j=i+l
N
But A(i)= > 2"a, (3.23)
k=i+1
ie.,

i+1 i+2 i+2

i(Z‘k ak)+(a 27 4 a 2‘(”2’)—(5i+1 tan‘l(Z‘(””)Jrs tan‘l(Z‘(”z)) <tant 270
k=i+3

(3.24)

Maximising A(i) by setting all ax values to 1 for (i+3)<k <N,

A(i)max _ ‘(2—(i+2) _oN)+ (2—(i+l) _2—(i+2)1 _ ‘2—(i+1) _o-N ‘ < 2D (3.25)
ie. A(i +1) — H(Z—(nl) _o-N)_ (tan 1o+ _tan?t 2—(i+2)1 < 27(i+2) (3.26)
and so, 20 _tan~t 270 L 7N (3.27)

but this condition is only satisfied when i >4
Therefore, the inequality (3.21) is not valid up to N4 —1iterations, and it is not possible
to predict more than 1 SD per iteration until the ("4 —1)™ iteration is performed.

However this does not prove that it is possible to predict more than 1 SD per iteration

beyond N4 —1literations.
In order to ascertain that all SDs beyond N4 —1 iterations can be pre-computed in

parallel, we must first prove that the bits of A(%—l) which has the value
N .
Z/: a, tan™ 277 {where the first bits of A("4—1)are 0°s} are the SDs.

For this to be true, the following must be valid:
N

dYa;2'-Ys;tant27) <2" (3.28)
% %

29

Chapter3 : Flat CORDIC

Theorem 1 proves that for N-bit accuracy, tan "2~ =27 for i="4 to N (3.29)
Therefore, (3.15) is valid, which implies that after N4 iterations, the remaining SDs can

be pre-computed in parallel

3.4 Combination of SDs and Addition

After the signed digits have been pre-computed, the evaluation of the Flat CORDIC
equation involves the summation of the positional valued products of the signed digits
in different combinations. Each term consists of two parts, namely the signed digit

combination part, and the positional value part, as seen in Fig. 3.1.

S152S3 2127223 — 5152532 1+2+3)
= 515,532

Signed Digit ~ Positional
Combination Value Part
Part

Fig. 3.1 Signed Digit Combinations and Positional Value

For the example shown in Fig. 3.1, the cumulative index value (CIV) is the sum
of the negative indices (the total binary shift). As previously mentioned, the number of
combinations increases sharply with the size N. To reduce this, exhaustive error analysis
has shown that any term with a cumulative index value (CIV) greater than the value En,
does not affect the results of Xn and Y, and can be left out. For N-bit CORDIC, EN =N

+ log2N + 2. For Flat CORDIC, En = N + logzN.

Graph 3.2 depicts the rise in the number of combinations for each size N, using En = N
+ log2N. These terms are taken for Xn calculation. The difference in the number of

terms between Xy and Y calculation is not very significant.

30

Chapter3 : Flat CORDIC

800

00
600—-
00]
200-

300+

Numb