

STUDIES ON FLAT CORDIC IMPLEMENTATION

IN FIELD PROGRAMMABLE GATE ARRAYS (FPGA)

MEERA SUBRAMANIAM

FACULTY OF COMPUTER SCIENCE & INFORMATION

TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

JANUARY 2004

Univ
ers

iti
Mala

ya

STUDIES ON FLAT CORDIC IMPLEMENTATION

IN FIELD PROGRAMMABLE GATE ARRAYS (FPGA)

MEERA SUBRAMANIAM

THESIS SUBMITTED IN FULFILMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF COMPUTER SCIENCE

FACULTY OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

JANUARY 2004

Univ
ers

iti
Mala

ya

ii

ABSTRACT

The CORDIC algorithm has been widely researched as an efficient hardware algorithm

for the computation of trigonometric, hyperbolic and transcendental functions. It is an

iterative process of rotations that are carried out through simple shift and addition

operations. These operations map well onto hardware, and CORDIC is used in a

multitude of signal processing applications. The iterative nature of CORDIC is a

drawback, and a technique known as Flat CORDIC was introduced to eliminate the

iterations, making the design largely combinatorial. The latest advances in VLSI

technology have made it possible to produce series of FPGAs that have large numbers

of gates at relatively low costs. This work focuses on FPGA implementation of the Flat

CORDIC scheme to efficiently compute trigonometric functions. The successive

replacement of the basic CORDIC equations to generate the parallelized Flat CORDIC

ones requires that the direction of all the rotations be pre-computed. This work presents

a modification to the previous Signed Digit (SD) Generation algorithm and a

comparison with the previous method. The second major component is the mapping of

the Flat CORDIC equations using these SDs. An architecture is proposed for effective

combination of these SDs for sine/cosine generation. Pipelining methods are

investigated to increase design speed. The architectures for 9, 12, 15, 18, 21 and 24 bit

Flat CORDIC are simulated using XILINX ISE WebPack 5.2i. The functionally

simulated designs are synthesized onto SPARTAN FPGAs. Some relevant comparisons

are made with other designs in literature. It is found that if properly pipelined, Flat

CORDIC on FPGAs can achieve high speeds of up to 43 MHz for 20 bit accuracy. In

terms of area, however, the largely combinatorial design is a drawback for FPGA

implementation. In summary, the main contribution of this thesis is a study on the

effectiveness of mapping Flat CORDIC onto FPGAs

Univ
ers

iti
Mala

ya

 iii

This Work Is Dedicated
To My Beloved Parents

Univ
ers

iti
Mala

ya

iv

ACKNOWLEDGEMENTS

I would like, first and foremost, to extend my sincere gratitude to my supervisor, Prof.

Dato’ Ir. Dr. Mashkuri Haji Yaacob, for his endless support throughout the duration of

my project.

For the father of Flat CORDIC, Dr. C. T. Clarke, whose boundless enthusiasm

in my work has kept me going, I have the deepest regard. My thanks go to him for all

the hours spent explaining things to me, and for all the brilliant ideas.

My sincere thanks to Dr Srikanthan who has been a great source of inspiration to

me. The dedication and commitment of all the people in CHiPES at NTU has been a

huge motivation for me to do my very best.

To the Head of Department of Electrical Engineering, Assoc. Prof Dr. Nasrudin

Abd Rahim, for his support and help in obtaining the tutorship during my postgraduate

study and the previous Head of Department Dr. Kaharudin Dimyati, for his support, my

sincere thanks. Also to all the staff in the department, it has been a pleasure knowing

and working with them all.

My dearest parents have given me so much encouragement and have been by my

side, ready to help me in any way they could… I would like to take this opportunity to

tell them how much I appreciate their love.

To the rest of my family, and to all my wonderful friends, who have stood by

me, and have shared many precious moments, I would like to extend my deepest love.

And to Bhagavan Sri Sathya Sai Baba, who has been a beacon, shining brightly

always and showing me the way – my humble pranams at Your Lotus Feet.

Univ
ers

iti
Mala

ya

v

TABLE OF CONTENTS

ABSTRACT …………… ii

DEDICATION …………… iii

ACKNOWLEDGEMENTS …………… iv

TABLE OF CONTENTS …………… v

PUBLICATIONS …………… ix

LIST OF TABLES …………… x

LIST OF FIGURES …………… xii

GLOSSARY OF ACRONYMS AND TERMS …………… xiv

CHAPTER 1 : INTRODUCTION …………… 1

1.1 Motivation …………… 1

1.2 Research Objectives …………… 2

1.3 Main Contributions …………… 4

1.4 Thesis Outline …………… 4

CHAPTER 2 : THE CORDIC ALGORITHM …………… 6

2.1 Introduction …………… 6

2.2 The CORDIC Equations …………… 7

2.3 CORDIC Operation Modes …………… 8

 2.3.1 Rotation Mode CORDIC …………… 9

 2.3.2 Vector Mode CORDIC …………… 10

2.4 Literature Review: Modifications of CORDIC …………… 12

Univ
ers

iti
Mala

ya

vi

 2.4.1 Redundant CORDIC …………… 12

 2.4.2 Double Rotation CORDIC Method …………… 15

 2.4.3 The Correcting Rotation Method CORDIC …………… 16

 2.4.4 Differential CORDIC …………… 18

2.5 CORDIC Implementations on FPGA …………… 19

 2.5.1 Iterative CORDIC …………… 19

 2.5.1.1 Bit-Parallel Design …………… 20

 2.5.1.2 Bit-Serial Design …………… 21

 2.5.1 On-Line CORDIC …………… 22

CHAPTER 3 : FLAT CORDIC …………… 24

3.1 Introduction to Flat CORDIC …………… 24

3.2 The Flat CORDIC Equations …………… 24

3.3 Generation of SDs …………… 26

 3.3.1 Theorem 1 …………… 27

 3.3.2 Theorem 2 …………… 28

3.4 Combination of SDs and Addition …………… 30

CHAPTER 4 : SIGNED DIGIT GENERATION …………… 33

4.1 The Signed Digit Algorithm (SDA) …………… 33

 4.1.1 Most Significant Signed Digits (MSSDs) …………… 36

 4.1.2 Least Significant Signed Digits (LSSDs) …………… 36

4.2 Implementation of the SDA …………… 39

 4.2.1 Algorithm for MSSD …………… 39

 4.2.2 Generation of '
remZ …………… 40

Univ
ers

iti
Mala

ya

vii

 4.2.3 Binary- Bipolar Conversion and LSSD

 Generation

…………… 40

4.3 Modification Of The SDA …………… 43

Chapter 5 Signed Digit Combination & Pipelining …………… 45

5.1 Signed Digit Combination …………… 45

5.2 Ripple Method …………… 46

5.3 Implementation of the Ripple Method …………… 48

 5.3.1 Layer One …………… 49

 5.3.2 Remaining Layer Modules …………… 50

5.4 Pipelining Flat CORDIC …………… 56

5.5 Scaling of Final Values …………… 59

5.6 Field Programmable Gate Arrays (FPGAs) …………… 59

 5.6.2 Spartan II CLB …………… 60

Chapter 6 Results & Discussion …………… 63

6.1 Introduction …………… 63

6.2 Flat CORDIC on FPGA …………… 64

6.3 Signed Digit Generation …………… 66

 6.3.1 Signed Digit Algorithm (SDA) – Encoder

 Method

…………… 66

 6.3.2 Signed Digit Algorithm – Comparator Method …………… 66

 6.3.3 Comparison of Design …………… 69

6.4 Combination of Signed Digits and Addition …………… 71

 6.4.1 Pipelining The C&A Section …………… 73

6.5 Comparison of Flat CORDIC against Other Methods 78

Univ
ers

iti
Mala

ya

viii

 6.5.1 Implementation of Iterative CORDIC

 Architecture

…………… 78

 6.5.2 Implementation of Direct Sine/Cosine

 Generation

…………… 79

 6.5.3 C++ CORDIC Sine/Cosine Generation …………… 82

 6.5.4 C++ math.h Sine/Cosine Generation …………… 82

Chapter 7 Conclusions & Future Work …………… 84

7.1 Conclusions …………… 84

7.2 Suggestions for Future Work …………… 85

REFERENCES …………… 88

APPENDIX …………… 91

Univ
ers

iti
Mala

ya

ix

PUBLICATIONS

1. Meera Subramaniam and Ibrahim A. Abdul Razak : ‘FPGA Implementation of

CORDIC Algorithm’, Proceesings of First Technical Postgraduate Symposium, KL,

page(s) 387 – 390, October 2002.

Univ
ers

iti
Mala

ya

 x

LIST OF TABLES

Table Page

4.1 : Pair-Wise Equality of Signed Digits for Size N = 24 35

4.2 : '
remZ For MSBs of oZ for Size N = 24 38

4.3 : '
remZ For MSBs of oZ for Size N = 9 43

4.4 : ()LSBorem ZZ ,− for MSBs of Zo for size N = 9 44

5.1 : Example of Ripple for N = 9 48

5.2 : Inputs and Output of Module PAIR 49

5.3 : Inputs and Outputs of Module BLUE 51

5.4 : Inputs and Outputs of Module ORANGE 52

6.1 : Flat CORDIC Speed and Gate Count 65

6.2 : Changes in Gate Count and Speed for SD Generation with Size (N) 67

6.3 : Changes in Gate Count and Speed with Size (N) 69

6.4 : Maximum Frequency and Gate Count for C&A Module 72

6.5 : C&A Module as Part of Flat CORDIC Architecture 73

6.6 : Improvement in Latency With Additional Pipeline Stages, N = 9 75

6.7 : Improvement in Latency With Additional Pipeline Stages, N = 12 75

6.8 : Improvement in Latency With Additional Pipeline Stages, N = 15 75

6.9 : Improvement in Latency With Additional Pipeline Stages, N = 18 76

6.10 : Improvement in Latency With Additional Pipeline Stages, N = 21 76

6.11 : Improvement in Latency With Additional Pipeline Stages, N = 24 77

Univ
ers

iti
Mala

ya

xi

6.12 : Latency and Gate Count of Flat CORDIC and Conventional

 CORDIC Architectures

79

6.13 : Number of Terms using Direct Sine/Cosine Generation 80

6.14 : Latency and Gate Count of Flat CORDIC and Direct Sine/Cosine

 Generation Architectures

80

6.15 : Maximum Operating Frequencies For Sine/Cosine Computation

 (Hardware Versus Software)

83

Univ
ers

iti
Mala

ya

xii

LIST OF FIGURES

Figure Page

2.1 : CORDIC Rotation 10

2.2 : Decomposition of Angle 13

2.3 : Bit-Parallel Iterative CORDIC 20

2.4 : Bit-Serial Iterative CORDIC 21

2.5 : Unrolled CORDIC Processor 23

3.1 : Signed Digit Combinations and Positional Value 30

3.2 : Graph Number of Combinational Terms Versus Size (N) 31

4.1 : Signed Digit Generation for Size N = 24 34

4.2 : MSSD Generation Algorithm for Size N = 24 39

4.3 : LSSD Generation Algorithm for Size N = 24 42

5.1 : Module PAIR for Layer One 49

5.2 : Module BLUE 51

5.3 : Module GREEN and ORANGE 52

5.4 : Flowchart for Ripple Method, Size (N) 54

5.5 : Implementation of Ripple 55

5.6 : 2-Stage Pipeline Implementation for C&A Module 58

5.7 : Spartan II CLB Slice 62

6.1 : Flat CORDIC Pipeline Stages 64

6.2 : Graph Flat CORDIC Gate Count Versus Size (N) 65

Univ
ers

iti
Mala

ya

xiii

6.3 : Graph Flat CORDIC Maximum Operating Frequency Versus Size (N) 65

6.4 : Graph SD Generation Gate Count Versus Size (N) 67

6.5 : Graph SD Generation Maximum Operating Frequency Versus Size (N) 68

6.6 : Graph SD Generation Latency Versus Size (N) 68

6.7 : Graph Flat CORDIC Gate Count Versus Size (N) for Different SD

 Generation Methods

69

6.8 : Graph Flat CORDIC Maximum Frequency Versus Size (N) for Different

 SD Generation Methods

70

6.9 : Graph Maximum Frequency Versus Size (N) for C&A Module 72

6.10 : Graph Gate Count Versus Size (N) for C&A Module 72

6.11 : Graph Flat CORDIC Latency for Unpipelined, & Ideal Designs Versus

 Size (N)

77

6.12 : Latency of Flat CORDIC, Conventional CORDIC And Power Series

 Architectures

81

6.13 : Gate Count for Flat CORDIC, Conventional CORDIC And Power Series

 Architectures

81

Univ
ers

iti
Mala

ya

 xiv

Glossary of Acronyms and Terms

A ASIC Application Specific Integrated Circuit

C C&A Combination & Addition
 CIV Cumulative Index Value

F FPGA Field Programmable Gate Array

L LSB Least Significant Bit
 LSC Least Significant Channel
 LSSD Least Significant Signed Digit

M MSB Most Significant Bit
 MSC Most Significant Channel
 MSSD Most Significant Signed Digit

P P&R Place & Route
 PWL Pair-Wise Linear

R RM Rotation Mode
 ROM Read Only Memory

S SBNR Signed Binary Number Representation
 SD Signed Digit
 SDA Signed Digit Algorithm
 SRAM Static Random Access Memory

V VLSI Very Large Scale Integration
 VM Vector Mode

Univ
ers

iti
Mala

ya

Chapter 1 : Introduction

1

CHAPTER 1 : INTRODUCTION

1.1 Motivation

The rapid technological advances in VLSI have made it possible to market high

performance logic devices which can accommodate large amounts of logic at low cost.

Field Programmable Gate Arrays (FPGAs) are among the class of programmable logic

devices that have benefited tremendously from these advances, allowing them to reach

gate counts large enough to allow complex applications to be programmed onto them.

They can also operate at increasingly higher frequencies. FPGAs in recent times have

come to rival ASICs with their short development time and lower costs. The availability

of Synthesis as well as Place and Route (P&R) tools has made it easier to create and test

designs. In addition, SRAM FPGAs also have unlimited reprogrammability that allow

design upgrades without having to replace the hardware (Skahill, K. 1997).

The CORDIC algorithm is well known as a hardware-efficient algorithm for

performing trigonometric, hyperbolic and transcendental functions (Walther, 1971).

There is an increasing need for huge amounts of rapid calculations in the fields of signal

and image processing and robotics, to name a few, and hardware components to execute

these calculations have been taking over their software counterparts in recent times

(Wang et al, 1997). Research into CORDIC and its applications have been extensive,

and many methods have been proposed and implemented to eliminate or minimize its

drawbacks. Among them is the Flat CORDIC algorithm (Clarke, 1995) that aims to

completely eliminate the iterative nature of CORDIC through a parallelization of the

CORDIC equations, and thereby decrease the latency.

Univ
ers

iti
Mala

ya

Chapter 1 : Introduction

2

1.2 Research Objectives

• This thesis focuses on the FPGA implementation of Flat CORDIC. A method for

generating the iteration directions (Signed Digits, or SDs) is studied. In

conventional CORDIC, one SD is generated per iteration. In Flat CORDIC,

which is a parallelization of the original CORDIC equations through repeated

replacement into successive iterative equations, all the SDs need to be known

beforehand, because the overall Flat CORDIC equation is completely expressed

in term of all these SDs.

• Gisuthan (2000) designed a Signed Digit Algorithm (SDA) using encoders. This

work will attempt a detailed examination of the relationship between the input

angle values and their corresponding SDs. All possible input values and their

corresponding SDs could be examined to see if there is a pattern between them,

and identify this pattern. The SD generation could then be synthesized and

simulated using VHDL and then compared against results using conventional

programming like C++.

• This work will also focus on implementation of the Flat CORDIC equations.

The equations for the cosine and sine of an N-bit input angle are made up of

many terms, with the number of terms increasing sharply with N. Each term is

made up of two parts – the combinational part, which is the product of different

sets of SDs, and the positional value part, which is in the form of 2-i, that, in

binary, is simply a right shift i times. For each specific positional value, there are

a number of combinational sets of values that need to be shifted by that

positional value.

Univ
ers

iti
Mala

ya

Chapter 1 : Introduction

3

• A method could be looked into that combines all these terms in a unique manner

that eliminates the need for multiple adders to get the sum of all the

combinations. This method would involve the design of specific modules that

are then repeatedly generated. In addition, the final summation of all the

combinational terms with their shifts could be reduced to one single addition.

Here again, the detailed input and output data for cosine and sine generation

would be generated in C++.

• The full design with all the modules would subsequently be written in VHDL,

then functionally simulated and synthesized. The results of these simulations

could be compared against the C++ data files mentioned earlier.

• The proposed architecture is organized in a matrix structure of repeated

instances. The design is largely combinatorial, and in certain positions, the data

has to run through many layers of logic that cause large delays. Studies could

then be performed on the possibilities of pipelining the design to reduce the

amount of logic per cycle.

• The improvement in circuit frequency with additional pipeline stages would then

be compared with the effect of the additional cycles on the overall latency of the

design. The results will show whether an improvement is seen if the circuit is

correctly pipelined, and whether there are any limits to the benefit of the

additional stages (ie. there is an ideal number of extra pipeline stages, beyond

which adding them decreases performance). Univ
ers

iti
Mala

ya

Chapter 1 : Introduction

4

1.3 Main Contributions

The primary goals of this thesis are to investigate and design architecture for Flat

CORDIC on FPGAs. The thesis provides insight into the internal patterns for SD

Generation and combinations. Based on the above goals, the key contributions of this

thesis include

• A complete analysis on the relationship between input angles and corresponding

SDs

• A newly designed combination scheme for piecing together the Flat CORDIC

basic equations in a simple and organized manner

• A detailed study on the design issues of implementing the scheme, and the

possibilities for improving the design

1.4 Thesis Outline

This work is organized as follows. In Chapter 2, the CORDIC algorithm is presented,

and its operation modes are explained. The various modifications of the algorithm are

summarized. Implementations of this algorithm on FPGAs are presented.

In Chapter 3, the Flat CORDIC Algorithm is introduced. The design is

subdivided into several parts, and these are outlined. The pair-wise linear patterns found

between the input angle bits and the Signed Digits are highlighted.

Univ
ers

iti
Mala

ya

Chapter 1 : Introduction

5

Chapter 4 is dedicated to a detailed description of the Signed Digit Generation

methods and algorithm. The method for utilizing the unique pattern is examined, and a

comparison is made with the previous generation method.

The combination and channeling of the SDs is shown in Chapter 5. A method

for rippling the channel results using combinatorial logic, to avoid the use of many

adders is presented. A method to pipeline the design for higher throughput is discussed.

Also included is a general description of FPGAs, and specifically the one used in this

work.

Chapter 6 presents the synthesis results of Flat CORDIC and its individual

components. A comparison is made with other implementation methods.

Chapter 7 concludes the thesis with a summary of the results. Suggestions for

future work in this area are also presented.

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 6

CHAPTER 2 : CORDIC

2.1 The CORDIC Algorithm

The CORDIC (COordinate Rotation DIgital Computer) Algorithm is widely used as a

powerful and flexible generic architecture to implement many algorithms that involve

non-trivial arithmetic functions. It is a versatile algorithm for computing trigonometric,

hyperbolic and transcendental functions by performing a rotation of a 2-dimensional

vector in linear, circular and hyperbolic coordinate systems. This rotation is the result of

an iterative series of simple shift and addition operations, which are easy to incorporate

in VLSI technology.

The original trigonometric CORDIC algorithm was developed by Volder (1959)

as a digital solution for real-time navigation problems. This version was used to

calculate trigonometric functions, multiplication, division and datatype conversion

functions, and plane rotations. Extensions to CORDIC theory by Walther (1971)

enabled calculation of hyperbolic functions, the results of which could be exploited to

generate other transcendental functions.

CORDIC currently forms the integral macro in computer arithmetic.

Applications of modern digital signal and image processing, which involve massive

computations, exhibit an increasing need for the efficient implementation of complex

arithmetic operations, and widely use CORDIC. Other compute-intensive applications

include matrix computations, which involve calculation of angles and their use in

rotation, for example matrix triangularization, and singular value decomposition

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 7

(Symansky et al., 1987). These have benefited tremendously in speed through the

incorporation of CORDIC. It is also used widely in the fields of dynamic system

modeling, control, robotics, computer graphics, filtering and virtual reality (Wang et al.,

1997).

2.2 The CORDIC Equations

The CORDIC Algorithm performs the rotation of a vector (Xi, Yi) with magnitude M

and phase P by means of a sequence of micro-rotations, each one over a fixed

elementary angle iφ , as shown below:

iiiii YXX φφ sincos1 −=+ (2.1)

iiiii XYY φφ sincos1 +=+ (2.2)

For the ith iteration, as indicated above, the vector prior to rotation is (Xi, Yi) and the

rotated intermediate vector is (Xi+1, Yi+1)

With the rotation angle restricted such that i1
i 2tan −−±=φ (the ± sign indicates that the

rotation direction is variable), the micro-rotation can be reduced to simple shift-and-add

operations :

()i
iiiii YsXKX −

+ −= 21 and ()i
iiiii XsYKY −

+ += 21

The direction of the micro-rotation is indicated by si (+1 for anticlockwise rotation, and

–1 for clockwise rotation). It is to be noted here that each successive rotation is not a

pure rotation, but a rotation-extension, where the length of the resultant vector is

modified by a factor of
i

iK
φcos

1
=

In their generalized form, the CORDIC equations are given as :

i
iiii YmsXX −

+ −= 21 (2.3)

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 8

i
iiii XsYY −

+ += 21 (2.4)

()i
iii mms

m
ZZ −−

+ −= 2tan1 1
1 (2.5)

With the selection of an appropriate value for the parameter m, different coordinate

systems can be achieved (+1 for circular, -1 for hyperbolic). Zi is the overall rotation

angle accumulator.

The final output vector after N iterations is (XN, YN), and is scaled by a constant scale

factor K, which is a combination of the scaling from all the iterations, and is given by

∏
=

=
N

i i

K
1 cos

1
φ

. A multiplication by 1/K is introduced at the end to correct (XN, YN). To

satisfy an N-bit precision CORDIC operation, N iterations are required. In addition, the

length of the datapath to compute the X and Y variables has to be (N + log2N + 2) bits

(Gisuthan et al., 2000).

2.3 CORDIC Operation Modes

There are two basic modes of operation for CORDIC; the Rotation Mode (RM) and the

Vector Mode (VM). The rotation mode rotates the input vector by a specified input

angle (or argument), and the vector mode rotates the input vector towards the X-axis,

while recording the total angle movement. Implementation of these methods is

characterized by suitable control of the direction of successive micro-rotations, which

force either the Y- or the Z- components to 0.

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 9

2.3.1 Rotation Mode CORDIC

The rotation mode is usually used to compute trigonometric functions since/cosine,

hyperbolic functions sinh/cosh, and then extended to transform polar coordinates to

Cartesian coordinates. The angle accumulator Z is initialized with the desired rotation

angle θ. In sine/cosine computations:

i
iiii YsXX −

+ −= 21 (2.6)

i
iiii XsYY −

+ += 21 (2.7)

()i
iii sZZ −−

+ −= 2tan 1
1 (2.8)

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 10

The initial vector (Xo, Yo) is aligned along the X-axis, with magnitude 1, ie (1,0)

At the end of the N iterations, the final vector (XN, YN) = (KNcos θ, KNsin θ)

2.3.2 Vector Mode CORDIC

This mode is usually used to calculate magnitudes and angles of given input vectors,

and also arctangent values. For a given input vector, Z is initialized to 0, and the vector

is rotated until it is aligned along the X-axis. The angle accumulator will now show the

total traversed angle, (ZN), and the magnitude of the original vector is the (XN)

Xi+1 Xi

(Xi,Yi)

(Xi+1,Yi+1)

Yi

Yi+1

X

Y

∑ −−−=
i

i
iZ

1

1 2tanθ

Z i+1=Zi-tan-12-(i+1)

∑
=

−−=
i

k

k
ki sZ

1

2θ

∑
=

−−=
i

k

k
ki sZ

1

2θ ()1
1

1
1 22 +−

+
=

−
+ −−= ∑ i

i

i

k

k
ki ssZ θ

θ

Ri+1

R

Fig. 2.1 CORDIC Rotation

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 11

component. This magnitude, as mentioned earlier, is scaled. For the Vector Mode, the

characteristic equations are :

() i
i

iii YYsignXX −
+ += 21 (2.9)

 () i
i

iii XYsignYY −
+ −= 21 (2.10)

() ()i
iii YsignZZ −−

+ += 2tan 1
1 (2.11)

Despite its architectural and algorithmic simplicity, the CORDIC algorithm has several

drawbacks:

1) Each successive iteration can only be performed after the previous one, since the

sign bit that determines the rotation direction is produced by the previous

iteration

2) It is slow because the recurrences involve carry-propagation addition and

variable shifting

3) It is area-consuming because of the use of variable shifters and the ROM storing

the arctangent values

4) The area complexity and circuit latency are roughly proportional to the accuracy

of the desired output. Therefore, the speed of execution becomes restricted with

the size

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 12

2.4 Literature Review : Modifications of CORDIC

In general, modifications to the CORDIC algorithm aim to either increase the speed of

the iterations, or to reduce the total number of iterations. Among the methods used to

increase the speed of the iterations are the redundant (or on-line) number representations

and redundant adders, which can perform Most Significant Digit (MSD)- first additions.

For reduction of the number of iterations, higher radix techniques are used.

2.4.1 Redundant CORDIC

In redundant CORDIC, the X, Y, and Z values are coded using redundant number

representation. Introducing this into the iterative computation eliminates the carry-

propagate from the addition/subtraction operations, thereby allowing them to be carried

out MSD first. The signed digit in this case is selected from the range {-1, 0, 1}, as is

explained: In the redundant form of representation, the Most Significant Digit, MSD of

the value does not necessarily contain the sign of the value. The signed digit (si) has to

be estimated from the inspection of a few of the MSDs. However, when all the

inspected digits are 0, the proper value of si cannot be determined without knowledge of

the remaining digits, and here it would seem that the best strategy would be to assign

the value 0 to si. This move, however, freezes the iteration. Since the final scaling

factor, KN depends on the actually performed iterations, freezing the iteration causes the

final scaling factor to become variable.

Ercegovac and Lang (1988, 1990) developed special purpose CORDIC modules

which take an input vector (a, b) as an input, and first determine the angle (vectoring

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 13

mode), ()a
b1tan − in decomposed form (in the form of the signed bits), and then proceed to

calculate the sine and cosine of the input angle (rotation mode, circular coordinates).

The highlights of their work are :

1) The conventional CORDIC module is modified so that on-line addition is used.

Area-consuming shifters are replaced by area-efficient delays

2) An implementation of the computation of the variable scale factor is developed

3) After the angle θ is obtained, it is transmitted in decomposed form to be used in

the rotation mode

Part 1 :

The two modifications that improve the CORDIC implementation are :

1) Elimination of the shifter :

We let [] []jYjW a
j2= (2.12)

So, from (1) to (3), we now have

[] [] []jWsjXjX j
jaa

221 −+=+ (2.13)

[] []()jXsjWjW aj−=+][21 (2.14)

[] [] ()j
jaa sjZjZ −−+=+ 2tan1 1 (2.15)

With si =








<−
≥+

0][1
0][1

jWif
jWif

 (2.16)

ANGLE MODULE

()a
b1tan −=θ ROTATION

MODULE
si

Xo=1

Yo=0

Fig. 2.2 Decomposition of Angle

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 14

From this, we see that one shifter has been eliminated, and also, iterations when

2
Nj > do not affect X[n] for N bit precision

2) Replacing carry propagation by redundant addition :

Here, si is allowed to take values from the set {-1, 0, 1} instead of {-1, 1} as follows

With si =
















−≤−
=

≥+

2
1

2
1

][1
0][0

][1

jWif
jWif
jWif

 (2.17)

Where][ˆ jW is an estimation of W[j] with a precision of 1 fractional bit (usually the

3 MSB of W[j])

Part 2

Following this, to calculate, for example, the sine/cosine values of the original

vector (Xo, Yo), the angle θ, which was produced in decomposed form [from Part 1]

is now rotated using the decomposed bits as the signed bits as follows :

i
i

iii YsXX −
+ += 21 (2.18)

i
i

iii XsYY −
+ −= 21 (2.19)

Where Xo = 1 and Yo = 0. The final values of X and Y will yield the scaled cosine

and sine values of (Xo,Yo). This CORDIC operation is partial because it uses the

angle produced by another CORDIC operation in decomposed form. In addition, the

si bits are passed in series (most significant bit first) so that the rotation can be

overlapped with the angle calculation.

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 15

The drawback here is that the scale factor becomes variable due to the iteration

where no rotation is performed, and has to be calculated during computation. In

addition, the si value is an estimate, and should the estimate be inaccurate, the

convergence behavior would possibly be disturbed. Finally, the simple adders of

conventional CORDIC are traded for the more complex online adders.

Later, Takagi et al. (1991) developed two new modifications of the redundant

addition scheme which have constant scale factors. These methods are the Double

Rotation Method, and the Correcting Rotation Method.

2.4.2 Double Rotation Method CORDIC

In the Double Rotation Method (Takagi et al., 1991), every rotation-extension is

carried out by a combination of 2 subrotation-extensions. Here again, the redundant

binary representation is used, with the digit set {-1, 0, 1}, and si taking values in the

same set. A negative rotation, a positive rotation and a non rotation are respectively

produced by two negative subrotations, two positive subrotations, and one negative

and one positive subrotation.

The corresponding equations are:

1
22

11 22 −
−−

−
−

− −−= j
j

jj
j

jjj XpYqXX (2.20)

 1
22

11 22 −
−−

−
−

− −−= j
j

jj
j

jjj YpXqYY (2.21)

 ()11
1 2tan2 −−−

− −= j
jjj qZZ (2.22)

Equations (2.20 – 2.22) are obtained through a combination of two sets of equations

which describe the rotation-extensions with the angle 11 2tan −−− j . Xj and Yj are

represented using redundant binary numbers, and Zj by a redundant binary fraction,

the most significant digit of which is located in the jth binary position. The direction

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 16

of rotation is determined by evaluating the three most significant digits of Zj-1. (qj

denotes the direction of the jth rotation).

qj and pj are obtained using ()
[]
[]

[] 

















>

=

<

=

−
−
−

−
−
−

−
−
−

0,,)1,1(

0,,)1,0(

0,,)1,1(

,

1
1
1

1
1
1

1
1
1

j
j

j
j

j
j

j
j

j
j

j
j

j
j

j
j

j
j

jj

zzzif

zzzif

zzzif

pq (2.23)

2.4.3 The Correcting Rotation Method CORDIC

This method has one rotation-extension per iteration. Here, the signed digit, si is

restricted to ±1. The error introduced by constraining si is taken care of with extra

correcting iterations every m steps, where m is an arbitrary integer.

For iteration i:

When 0mod ≠mi 11 2 −
−

− −= i
i

iii YqXX (2.24)

 11 2 −
−

− += i
i

iii XqYY (2.25)

 ()i
iii qZZ −−

− −= 2tan 1
1 (2.26)

where iq is obtained by evaluating the (m-h+3) MSDs of 1−iZ (mjh mod=)

When 0mod =mi 11
' 2 −

−
− −= i

i
iii YqXX (2.27)

 11
' 2 −

−
− += i

i
iii XqYY (2.28)

 ()i
iii qZZ −−

− −= 2tan 1
1

' (2.29)

 followed by ''' 2 i
i

iii YqXX −−= (2.30)

 ''' 2 i
i

iii XqYY −+= (2.31)

 ()i
iii qZZ −−−= 2tan 1'' (2.32)

 where '
iq is obtained by evaluating the (m+2) MSDs of 1−iZ

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 17

The two major advantages of employing this scheme are that, not only is the scale factor

incorporated into the iterations, it is also taken care of in such a way that the final value

does not need to be scaled.

 However, the number of MSDs to be examined here to determine the direction

of rotation is higher than in other methods. In addition this method also yields more

iterations than normal, although not as many as in the Double Rotation Method.

Later, Timmerman (1992) tried to develop a scheme for determining the SDs and

carrying out the iterations in parallel. This scheme maintains the scale factor at a

constant value without an increase in the number of iterations. This is done by dividing

the entire process into 3 separate parts and carrying them out as follows:

i) The first 4
3−N iterations are carried out as normal, with si restricted to the set

{-1, +1}.

ii) For iterations 4
3−N to 2

1+N , if si = ±1, then again the iterations are carried out

as normal. If, however, si = 0, then no rotation is performed. This, as we

know, would result in a non-constant scale factor. To keep the scale factor

constant, at this point, instead of a rotation, the vector is simply extended by

the same amount as it would have been had the rotation been performed. The

modification to the iterations is thus :

i
i

ii XmXX 12
1 2 −−

+ += (2.33)

i
i

ii YmYY 12
1 2 −−

+ += (2.34)

iii) In the final set of iterations, 2
1+> Ni , it is assumed that the change in the scale

factor is negligible, and therefore can be neglected in the cases of si = 0.

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 18

2.4.4 Differential CORDIC

Differential CORDIC (Dawid and Meyr, 1996) is made up of a sequence of absolute

value computations, in addition to the normal additions, subtractions and shifts typical

of CORDIC. The iteration i
iii sZZ −−

+ −= 2tan 1
1 can be interpreted in the following way

: The rotation direction is chosen which leads to a smaller absolute value of the new Z

component. Therefore, the conventional iteration is transformed into an iteration that

involves only the absolute value of the new iẐ variable.

 In the rotation mode, the original recurrence of Z as stated above, is transformed

to i
iii ppp −−

++ −== 2tanˆˆ 1
11 , where ip̂ is the predicted value of pi. Even though

only the absolute value 1ˆ +ip appears in the transformed equations, we still require the

sign of 1+ip , which is given by () () ()11 ˆ ++ = iii psignpsignpsign . This means,

()1+ipsign can be recursively calculated given sign(po) and ()1ˆ +ipsign . This is what is

seen as a type of differential decoding, which gives DCORDIC its name. Following

this, the carry behavior of the additions of two operands was studied (Timmerman et al.,

1998, and Wassatsch et al., 1998), where one operand is increasingly shifted right

(made smaller). Special adder cells were then developed and used along with the regular

adder cells. The special cells (which are much more compact in size and area) are used

for the MSDs, when they are known to be 0’s, and the normal adder cells for the rest of

the bits. As the iterations progressed to bigger numbers, the total number of special cells

increased, thus producing significant savings in terms of the area.

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 19

2.5 CORDIC Implementations on FPGA

CORDIC can be mapped onto architecture in a variety of ways. These different methods

of implementation provide a variety of options, where the best tradeoff can be chosen

among circuit complexity, clock cycle time, latency and throughput, depending on the

application requirements (Vladimirova and Tiggeler). The following is an examination

of several different architectures as implemented on FPGAs.

2.5.1 Iterative CORDIC

There are two types of Iterative CORDIC implemented. One is the Bir-Parallel

Architecture, and the other is the Bit-Serial Architecture (Andraka, 1998).

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 20

2.5.1.1 Bit-Parallel Design

Early FPGAs were not able to implement a parallel CORDIC algorithm due to limited

chip size and the impossibility of routing the hard-wired shifters. Consequently, it has

been performed in several FPA-based DSP applications (Meyer-Base et al., 1994, Dick,

1996, Meyer-Base et al., 1998, Mayosky et. al., 1998). There are 3 registers, one each

for storing the X, Y and Z components (Andraka, 1998). There are 3 adder-subtractors

for performing the additions. Depending on the mode of operation, the signed bit for the

following iteration is determined. This can be seen in Figure 2.3. In each iteration, the

ROM is incremented t provide the appropriate angle for the Z-adder, and the shifters are

modified to select the correct degree of shift. When N iterations have been completed,

the results can be directly read from the X and Y registers.

>>n

>>n

register

register

±
-msi

±
si

xn

yn

±
-si

ROM

register
zn sgn(zi)

sgn(yi)

zo

yo

xo

Fig. 2.3 Bit-Parallel Iterative CORDIC

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 21

On FPGAs, the variable parallel shift registers do not map too well due to the high fan-

in. The signal ends up passing through a number of FPGA cells because the shifters

require several layers of logic.

2.5.1.2 Bit Serial Design

A more compact version is implemented with bit-serial arithmetic (Andraka, 1998).

This design uses 3-bit serial adder-subtractors, 3 shift registers and a serial ROM. The

length of the shift registers is N bits. The design is shown in Fig. 2.4.

 Once the data is loaded into the registers (parallel/serial), the data is shifted bit

by bit through the adder-subtractors and the resultant values are returned to the registers

(this takes N clock cycles). The arctangent constants in the ROM for the Z-component

is loaded serially. When the ith iteration is complete, the signed bit for the next iteration

is determined. After the Nth cycle of the Nth iteration, the process is complete and the

results can be directly read from the X and Y registers.

Serial
adder-

b

xo xn

Serial
adder-

b

yo yn

Serial
adder-

b

zo zn
Serial ROM

Fig. 2.4 Bit-Serial Iterative CORDIC

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 22

Size-wise, this design is more compact than the bit-parallel architecture. The number of

clock cycles to complete the entire CORDIC process is large, but it can be compensated

for by the fact that extreme bit clock frequencies can be used.

2.4.2 On-Line CORDIC

This is an example of a CORDIC processor that is combinatorial (Andraka, 1998).

Instead of using clocked registers, the entire CORDIC processor is unrolled to produce

an array of interconnected adder-subtractors. Two distinct advantages of this

arrangement are that the shifters are not variable-bit shifters, but hardwired shifters,

each one performing a fixed shift. The second is that the look-up values for the angle

accumulator are distributed as constants to each adder in the angle accumulator chain.

The delay through this huge amount of combinatorial logic is large, but the processing

time is reduced compared to the iterative circuit. However, such a large combinatorial

design is not suited to FPGAs.

The unrolled process can be easily pipelined by adding registers between the

adder-subtractors.

Univ
ers

iti
Mala

ya

Chapter 2 : CORDIC

 23

In addition, Valls et al. (2002) studied the suitability of redundant arithmetic operators

in full custom based CORDIC implementations. It was found that while these methods

yielded improvements in speed, the resultant area became close to 4 or 5 times larger

than the conventional 2’s complement method.

±

>>2

±

>>2 const

±

sign

±

>>1

±

>>1 const

±

sign

±

>>0

±

>>0 const

±

sign

±

>>4

±

>>4 const

±

sign

±

>>3

±

>>3 const

±

sign

xo yo

xn yn zn

Fig. 2.5 Unrolled CORDIC Processor

Univ
ers

iti
Mala

ya

Chapter3 : Flat CORDIC

24

Chapter 3 : FLAT CORDIC

3.1 Introduction to Flat CORDIC

Flat CORDIC is a revolutionary manipulation of the conventional CORDIC algorithm

that has produced immense savings in both area and speed. It was put forth by Clarke

(1995). Despite all the improvements of the previous modifications of CORDIC, the

characteristic iterative process has always remained a bottleneck. Flat CORDIC is the

first method to eliminate these iterations to allow for a new level of refinement and

optimization. In this method, the results are completely expressed in terms of the

original input vector. This is achieved through successive substitution of the original

vector in each iterative equation.

3.2 The Flat CORDIC Equations

From Chapter 2, the main CORDIC equations are as stated below :

i
iiii YmsXX −

+ −= 21 (3.1)

i
iiii XsYY −

+ += 21 (3.2)

where (Xi, Yi) is the original vector, and (Xi+1, Yi+1) is the rotated vector. In the next

iteration,

()1
1112 2 +−
++++ −= i

iiii YmsXX (3.3)

()1
1112 2 +−
++++ += i

iiii XsYY (3.4)

Univ
ers

iti
Mala

ya

Chapter3 : Flat CORDIC

25

Substituting (3.1) and (3.2) in (3.3) and (3.4), we get

()() ()()1
1

1
12 22221 +−

+−
+−−

++ +−−= i
iiii

ii
iiii ssmYsmsXX (3.5)

()() ()()1
1

1
12 22221 +−

+−
+−−

++ ++−= i
iiii

ii
iiii ssXsmsYY (3.6)

The results of this second rotation are given directly in terms of the original vector (Xi,

Yi). Proceeding in this manner, successive substitution gives us a generalized Flat

CORDIC equation that is completely flattened and parallelized :









−+−−









−+−=

∑ ∑ ∑ ∑ ∑ ∑∑ ∑∑

∑ ∑∑ ∑ ∑∑
−

=

−

=

−

+=

−

+=

−

+= +=

−−−−−
−

+= +=

−−−

=

−

−

=

−

=

−

+=

−

+= +=

−−−−

+=

−−

2

1

4

1

3

1

2

1

1

1 1

1

1 21

1

1

3

1

2

1

1

1 11

222222222

2222221

N

i

N

i

N

ij

N

jk

N

kl

N

lm

mlkji
mlkji

N

ij

N

jk

kji
kji

N

i

i
io

N

i

N

i

N

ij

N

jk

N

kl

lkji
lkji

N

ij

ji
jioN

sssssssssmY

ssssssXX





 (3.7)









−+−+









−+−=

∑ ∑ ∑ ∑ ∑ ∑∑ ∑∑

∑ ∑∑ ∑ ∑∑
−

=

−

=

−

+=

−

+=

−

+= +=

−−−−−
−

+= +=

−−−

=

−

−

=

−

=

−

+=

−

+= +=

−−−−

+=

−−

2

1

4

1

3

1

2

1

1

1 1

1

1 21

1

1

3

1

2

1

1

1 11

222222222

2222221

N

i

N

i

N

ij

N

jk

N

kl

N

lm

mlkji
mlkji

N

ij

N

jk

kji
kji

N

i

i
io

N

i

N

i

N

ij

N

jk

N

kl

lkji
lkji

N

ij

ji
jioN

sssssssssX

ssssssYY





 (3.8)

To calculate sine/cosine functions, rotation mode CORDIC is used in circular

coordinates. The initial vector is (1,0). The Flat CORDIC Equations now become

∑ ∑ ∑ ∑ ∑∑
−

=

−

=

−

+=

−

+= +=

−−−−

+=

−− +−=
1

1

3

1

2

1

1

1 11
2222221

N

i

N

i

N

ij

N

jk

N

kl

lkji
lkji

N

ij

ji
jiN ssssssX (3.9)

∑ ∑ ∑ ∑ ∑ ∑∑ ∑∑
−

=

−

=

−

+=

−

+=

−

+= +=

−−−−−
−

+= +=

−−−

=

− +=
2

1

4

1

3

1

2

1

1

1 1

1

1 21
222222222

N

i

N

i

N

ij

N

jk

N

kl

N

lm

mlkji
mlkji

N

ij

N

jk

kji
kji

N

i

i
iN sssssssssY

 (3.10)

() ()θθ sin,cos, NNNN KKYX = (3.11)

Univ
ers

iti
Mala

ya

Chapter3 : Flat CORDIC

26

A quick glance shows that firstly, an efficient implementation would require prior

knowledge of the polarity of the micro-rotation (the signed digits, or SDs). Secondly,

the number of combinations of SDs would very quickly become huge as the size N

increases.

3.3 Generation of SDs

Conventionally, each CORDIC iteration generates one SD from the equation

i
iii sZZ −−

+ −= 2tan 1
1

(3.12)

The sign of the following iteration, 1+is comes from the most significant bit (MSB) of

1+iZ . Now, suppose we could make the approximation ii −−− ≈ 22tan 1 . Then,

i
iii sZZ −

+ −= 21 , and we would be able to directly generate all the SDs from the

original input angle. For small values of i, this approximation is not valid. Alternatively,

we assume ii −−− ≈ 22tan 1 for i > M (Gisuthan, 2000). If we can identify a value for M,

then we need only carry out M iterations. Then, all the SDs can be obtained directly

from the remaining angle after M iterations.

Theorem 1 shows that the value of M that validates our assumption for N-bit size is N/3.

Theorem 2 shows that the remaining SDs can be obtained directly from ZM.

Univ
ers

iti
Mala

ya

Chapter3 : Flat CORDIC

27

3.3.1 Theorem 1

Theorem 1 : For N-bit CORDIC, ii −−− ≠ 22tan 1 for 






 −
=

3
3log

1 2N
toi

Proof : The expansion of x1tan − for 1≤x is

() −+−+−=−

9753
tan

9753
1 xxxxxx (3.13)

For ix −= 2 , () −+−+−=
−−−−

−−−

9
2

7
2

5
2

3
222tan

9753
1

iiii
ii (3.14)

For N-bit accuracy, the necessary conditions for obtaining the minimum value of i for

which the expression ii −−− = 22tan 1 is valid is that the error due to the ith bit must be

N−< 2 . That is: Nii
ie −−−− <−= 22tan2 1 (3.15)

But +−+−=
−−−−

9
2

7
2

5
2

3
2 9753 iiii

ie < +−+−
−−−−

3
2

3
2

3
2

3
2 9753 iiii

 (3.16)

The next condition to obtain the minimum value of i is : N
i

−
−

< 2
3

2 3

 (3.17)

Ni −<−− 3log3 2
3

3log 2−
>∴

N
i (3.18)

i is an integer, therefore i is the smallest integer that is equal to or larger than

3
3log2−N . If N is a multiple of 3, then Equation (3.18) is true for

3
Ni =

Now, we need to show that the accumulated error, N
N

Ni
ie −

=

<∑ 2
3/

From (3.16) ∑∑∑
=

−−

=
−

−

=

<<
+

=
N

Ni

Ni
N

Ni
i

iN

Ni
ie

3/

3

3/
2

3

3/
232

21
32 (3.19)

It has been verified that for the first 13 −
N bits, the arctangent value of each bit

()()i−− 2tan 1 is not equal to the positional value of the corresponding bit in the normal

Univ
ers

iti
Mala

ya

Chapter3 : Flat CORDIC

28

binary representation ()i−2 , whereas for bits 3
N to N, they are equal for N-bit accuracy.

Due to this discrepancy, it is not possible to directly precompute the SDs corresponding

to the first 13 −
N bits.

3.3.2 Theorem 2

Theorem 2 : In N-bit CORDIC, the first 13 −
N signed digits (SDs) cannot be pre-

computed

Proof : Let is be the SD of the ith iteration. It carries a weight of i−− 2tan 1 which

represents an angle measured in radians. Let ak be the kth bit of the angle remaining after

i iterations and A(i) be the angle remaining after the ith iteration.

∑
=

−−−=
i

j

j
jsAiA

1

1 2tan)0()(where)0(A is the input angle for rotation. (3.20)

It is assumed that angles are represented in ()1,1 − format, so after i iterations have been

performed, 11 ++ = ii as . After i iterations, the Signed Binary Number Representation

(SBNR) of ()iA must have the first i bits as zeros and the remaining bits strictly non-

zeros.

In all these cases, it is assumed only one SD per iteration is considered. If m (1 < m <

N) SDs are considered at the ()thi 1+ iteration, then ()1+iA holds the following inequality

(Walther, 1971).

() () ()()mi
mi

ij

j
jsiAmiA +−−

+

+=

−− <−=+ ∑ 2tan2tan 1

1

1 (3.21)

It must now be shown that this inequality fails if there exists a situation in which the

computation of more than 1 SD results in an error.

Consider a case where ai+1 = 1 and ai+2 = -1

Univ
ers

iti
Mala

ya

Chapter3 : Flat CORDIC

29

Then, si+1 = 1 and si+2 = -1

And () () ()()21
2

1

1 2tan2tan1 +−−
+

+=

−− <−=+ ∑ i
i

ij

j
jsiAiA (3.22)

But () ∑
+=

−=
N

ik
k

k aiA
1
2 (3.23)

ie.,

() () () ()())1(1)2(1
2

)1(1
1

3

)2(
2

)1(
1 2tan2tan2tan222 +−−+−−

+
+−−

+
+=

+−
+

+−
+

− <+−++∑ ii
i

i
i

N

ik

i
i

i
ik

k ssaaa

(3.24)

Maximising A(i) by setting all ak values to 1 for () Nki ≤≤+ 3 ,

() ())1()1()2()1()2(
max 2222222)(+−−+−+−+−−+− <−=−+−= iNiiiNiiA (3.25)

ie. () ())2()2(1)1(1)1(22tan2tan22)1(+−+−−+−−−+− <−−−=+ iiiNiiA (3.26)

and so, Nii −+−−+− <− 22tan2)1(1)1((3.27)

but this condition is only satisfied when 3
Ni ≥

Therefore, the inequality (3.21) is not valid up to 13 −N iterations, and it is not possible

to predict more than 1 SD per iteration until the (13 −N)th iteration is performed.

However this does not prove that it is possible to predict more than 1 SD per iteration

beyond 13 −N iterations.

In order to ascertain that all SDs beyond 13 −N iterations can be pre-computed in

parallel, we must first prove that the bits of ()13 −NA which has the value

∑ −−
N

j
j

N

a
3

2tan 1 {where the first bits of ()13 −NA are 0’s} are the SDs.

For this to be true, the following must be valid:

∑∑ −−−− <−
N

Nj
j

N
j

j
NN

sa
33

22tan2 1 (3.28)

Univ
ers

iti
Mala

ya

Chapter3 : Flat CORDIC

30

Theorem 1 proves that for N-bit accuracy, ii −−− = 22tan 1 for 3
Ni = to N (3.29)

Therefore, (3.15) is valid, which implies that after 3
N iterations, the remaining SDs can

be pre-computed in parallel

3.4 Combination of SDs and Addition

After the signed digits have been pre-computed, the evaluation of the Flat CORDIC

equation involves the summation of the positional valued products of the signed digits

in different combinations. Each term consists of two parts, namely the signed digit

combination part, and the positional value part, as seen in Fig. 3.1.

For the example shown in Fig. 3.1, the cumulative index value (CIV) is the sum

of the negative indices (the total binary shift). As previously mentioned, the number of

combinations increases sharply with the size N. To reduce this, exhaustive error analysis

has shown that any term with a cumulative index value (CIV) greater than the value EN,

does not affect the results of XN and YN, and can be left out. For N-bit CORDIC, EN = N

+ log2N + 2. For Flat CORDIC, EN = N + log2N.

Graph 3.2 depicts the rise in the number of combinations for each size N, using EN = N

+ log2N. These terms are taken for XN calculation. The difference in the number of

terms between XN and YN calculation is not very significant.

2-12-22-3 s1s2s32-(1+2+3)

= s1s2s32-6

s1s2s3

Fig. 3.1 Signed Digit Combinations and Positional Value

Signed Digit
Combination
Part

Positional
Value Part

Univ
ers

iti
Mala

ya

Chapter3 : Flat CORDIC

31

9 12 15 18 21 24
0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f T
er

m
s

Size (N)

The number of terms increases sharply with size (N). Since both the XN as well as the

YN equations need to be calculated, a complete set has almost double the number of

combinations/terms indicated in Fig. 3.2.

For a hardware implementation of Flat CORDIC, equations 3.9 and 3.10 are rewritten as

()
()

() 














































⋅⋅⋅⋅⋅+⋅⋅⋅−⋅+

+

⋅⋅⋅⋅⋅+⋅⋅⋅−⋅+

⋅⋅⋅⋅⋅+⋅⋅⋅−⋅

−=

∑ ∑∑

∑ ∑∑
∑ ∑∑

=+++++=+++=+

−

=+++++=+++=+

−

=+++++=+++=+

−

NNN

N

EnmlkjinmlkjiElkjilkjiEjiji
E

nmlkjinmlkjilkjilkjijiji

nmlkjinmlkjilkjilkjijiji

N

ssssssssssss

ssssssssssss

ssssssssssss

X

2

2

2

1 444
4

333
3



 (3.30)

and

()
()
()

()




























⋅⋅⋅⋅+⋅⋅−+

+

⋅⋅⋅⋅+⋅⋅−+

⋅⋅⋅⋅+⋅⋅−+

⋅⋅⋅⋅+⋅⋅−

=

∑ ∑

∑ ∑
∑ ∑

∑ ∑

=++++=++

−

=++++=++

−

=++++=++

−

=++++=++

−

NN

N

EmlkjimlkjiEkjikji
E

mlkjimlkjikjikji

mlkjimlkjikjikji

mlkjimlkjikjikji

N

ssssssss

sssssssss

sssssssss

sssssssss

Y

2

2

2

2

34324
3

222
2

111
1



 (3.31)

Figure 3.2 Graph Number of Combinational Terms
Versus Size (N)

Univ
ers

iti
Mala

ya

Chapter3 : Flat CORDIC

32

This divides all the combinations into a set of channels. The terms are assigned to their

respective channels by their CIV. The sum of all the combinations is then shifted

accordingly. After all the channel sums have been collected and shifted, these values are

added together to get the final unscaled XN and YN values.

The final simplification comes from limiting the input angle so 0>θ radians. Then, the

first rotation is always anti-clockwise, and so the first SD (s1) is fixed as +1. Now, all

the terms with s1 can be simplified to produce Equations 3.32 and 3.33.































































































⋅⋅⋅⋅⋅+⋅⋅⋅⋅+

⋅⋅⋅−⋅⋅−⋅+
+

















⋅⋅⋅⋅⋅+⋅⋅⋅⋅+

⋅⋅⋅−⋅⋅−⋅+
+

















⋅⋅⋅⋅⋅+⋅⋅⋅⋅+

⋅⋅⋅−⋅⋅−⋅+

−=

∑∑
∑∑∑∑

∑∑
∑∑∑∑

∑∑
∑∑∑∑

=+++++=+++++

=+++=+++=+=+−

=+++++=+++++

=+++=+++=+=+−

=+++++=+++++

=+++=+++=+=+−

NN

NNNN

EnmlkjinmlkjiEmlkjimlkji

ElkjilkjiEkjilkjEjijijj
E

nmlkjinmlkjimlkjimlkji

lkjilkjikjilkjjijijj

nmlkjinmlkjimlkjimlkji

lkjilkjikjilkjjijijj

N

sssssssssss

ssssssssss

sssssssssss

ssssssssss

sssssssssss

ssssssssss

X

1

131

441

4414414

331

3313313

2

.......

2

2

1

 (3.32)





















































−⋅⋅⋅⋅+

⋅⋅⋅+⋅⋅−⋅−
+

















−⋅⋅⋅⋅+

⋅⋅⋅+⋅⋅−⋅−
+

















−⋅⋅⋅⋅+

⋅⋅⋅+⋅⋅−⋅−

=

∑
∑∑∑

∑
∑∑∑

∑
∑∑∑

=++++

=++++=++=++−

=++++

=++++=++=++−

=++++

=++++=++=++−

...

1
2

.......

...

1
2

...

1
2

11

2

212212

1

111111

N

NNN
N

Emlkjimlkji

EmlkjmlkjEkjikjiEkjkj
E

mlkjimlkji

mlkjmlkjkjikjikjkj

mlkjimlkji

mlkjmlkjkjikjikjkj

N

sssss

sssssssss

sssss

sssssssss

sssss

sssssssss

Y

 (3.33)

Although this seems more complex, the range of i is: 2≥i , which reduces the number of

gates required for the combinations.

Univ
ers

iti
Mala

ya

Chapter 4 : Signed Digit Generation

33

CHAPTER 4 : SIGNED DIGIT GENERATION

4.1 The Signed Digit Algorithm (SDA)

Due to the discrepancy between the values of i−− 2tan 1 and i−2 , as seen earlier, the

polarity of all the micro-rotations or Signed Digits (SDs), cannot be pre-computed.

Theorem 2 however showed that it is only the first N/3 SDs (for N-bit Flat CORDIC)

that cannot be pre-computed; the following 2N/3 SDs can be generated in parallel.

Then, Bimal (2000) discovered the Signed Digit Algorithm (SDA), a ROM-less

algorithm to generate all the SDs.

Here, the input angle (represented in radians) is restricted to the range 45<θ (so

that the angle value is always smaller than 1 radian). The input angles outside this range

are suitably manipulated. The N-bit input angle, Zo, is then divided into two parts : the

first N/3 bits (the Most Significant Bits, MSBs) and the remaining 2N/3 bits (Least

Significant Bits, LSBs). The MSBs are then channeled into a unit that generates the first

N/3 SDs (Most Significant Signed Digits, MSSDs). The MSSDs are also used to

generate an angle, '
remZ which is explained later.

The LSBs are combined with '
remZ and the result is used to generate the rest of

the SDs (Least Significant Signed Digits, LSSDs).

Univ
ers

iti
Mala

ya

Chapter 4 : Signed Digit Generation

34

MSB of Zo, bits 1 - 8 LSB of Zo, bits 9 - 24

MSSD
Generator

Remaining Angle Generator, Z’
rem

Sign Value

8

1

17

16

7

16

7 critical signed digits
(s2, s3, .., s8)

Last 17 signed digits
(s8rept, s9, .., s8)

Adder

Binary to Bipolar
Converter

Figure 4.1 Signed Digit Generation for Size N = 24

s1=1

Univ
ers

iti
Mala

ya

Chapter 4 : Signed Digit Generation

35

4.1.1 Most Significant Signed Digit (MSSD) Generation

For N-bit Flat CORDIC, for the 32 N combinations of MSBs of Zo, the resulting MSSDs

were observed. A striking pattern, known as the pair-wise linearity (PWL) relationship

was seen. Each consecutive pair of MSBs share a common set of MSSDs. For the

smaller sizes of N, this pattern was unbroken. As N got bigger, however, there were

some breakpoints that divided the entire set into several regions, in each of which the

pair-wise linear pattern was seen. This relationship is illustrated in Table 4.1.

Table 4.1 Pair-Wise Equality of Signed Digits for Size N = 24

Region Zo (radians) MSB of Zo MSSDs (s1 to s8) MSSDs in decimal
ONE 0.00000000 00000000 01111100 124

0.00390625 00000001 01111011
01111011

123
123 0.00781250 00000010

0.01171875 00000011 01111010
01111010

122
122 0.01562500 00000100

0.01953125 00000101 01111001
01111001

121
121 0.02343750 00000110

…..

0.20703125 00110101 01100001
01100001

97
97 0.21093750 00110110

0.21484375 00110111 01100000 96
TWO 0.21875000 00111000 01011111

01011111
95
95 0.22265625 00111001

…..

0.45312500 01110100 01000001
01000001

65
65 0.45703125 01110101

0.46093750 01110110 01000000 64
THREE 0.46484375 01110111 00111111 63

0.46875000 01111000 00111110
00111110

62
62 0.47265625 01111001

…..

0.77343750 11000110 00010111
00010111

23
23 0.77734375 11000111

0.78125000 11001000 00010110
00010110

22
22 0.78515625 11001001

In the case of N = 24, there are 2 breakpoints, which divide the range of values into 3

regions. The SD value ‘1’ represents anticlockwise rotation, and the ‘0’ represents

Univ
ers

iti
Mala

ya

Chapter 4 : Signed Digit Generation

36

clockwise rotation. The PWL mentioned can be seen in the table above. Within the

regions, each pair of Zo values share a common set of MSSDs.

4.1.2 Least Significant Signed Digit (LSSD) Generation

If the first N/3 iterations were really performed, the remaining angle after these

iterations would be:

()3

3
2tan2tan2tan2tan 131

3
21

2
11

1
N

NssssZZ orem
−−−−−−−− ++++−=  (4.1)

Suppose we separate Zo into two parts, MSBoZ , and LSBoZ , , each one with the size N bits.

MSBoZ , is made up of the MSBs of the original Zo, followed by a string of 0’s

LSBoZ , is made up of 3
N 0’s, followed by the LSB of the original Zo

Then,

()[] LSBoMSBorem ZssssZZ N

N ,
131

3
21

2
11

1,
3

3
2tan2tan2tan2tan +++++−= −−−−−−−− 

 LSBoremrem ZZZ ,
' += (4.2)

The first 3
N iterations, as we know, are carried out to obtain the MSSDs. Section 4.1.1

has shown a definite pattern for obtaining the MSSDs without the need for these

iterations by its association with MSBoZ , (as will be explained in detail in Section 4.2.1).

However, if these iterations are not carried out, we will not have the '
remZ value.

This led to an inspection of the '
remZ values with the corresponding MSBs of Zo as

shown in Table 4.2. Here too a pattern was found :

1) The sign of '
remZ alternated between +1 and –1 for each consecutive MSBoZ , value

(represented by 0 and 1)

first iteration (N/3)th iteration second iteration

Univ
ers

iti
Mala

ya

Chapter 4 : Signed Digit Generation

37

2) the value of '
remZ was found to exhibit the pair-wise linearity (PWL)

relationship much the same as for the MSSDs.

3) This pattern is seen to break at the same places where the MSSD PWL is broken

The alternating sign of '
remZ is explained by considering the following two angles,

MSBoZ , and ()32,
N

MSBoZ −+ . Since MSBoZ , is an N-bit angle defined only by the first 3
N

bits, to 3
N -bit accuracy, the two angles are considered adjacent.

As defined by the convergence property of CORDIC, 32; N

remZ −< . For the first angle,

() () 33

3

3

3

3

22tan2tan2tan 111
1

2

1

1
,

NN

N

N

N

N

sssZo
i

i
iMSB

−−−−−−
−

−

=

−− <







++− ∑ (4.3)

If the value within these absolute limits is negative, then the convergence property will

be followed for the same SDs as:

() () () 33

3

3

3

3
3 22tan2tan2tan2 111

1

2

1

1
,

NN

N

N

N

N
N sssZo

i

i
iMSB

−−−−−−
−

−

=

−−− <







++−+ ∑ , which

will be positive

Therefore, it can be expected that the sign of '
remZ would alternate from one value of

MSBoZ , to the next. The values of the remaining bits of '
remZ were observed with relation

to the MSBs of Zo. A PWL relationship was seen in exactly the same regions, with the

same breakpoints. Generating '
remZ therefore can be done with an encoder.

Table 4.2 shows the values of '
remZ and the MSBs of Zo Univ

ers
iti

Mala
ya

Chapter 4 : Signed Digit Generation

38

Table 4.2 '
remZ for MSBs of Zo for size N = 24

Region Zo (radians) MSB of Zo '

remZ
Sign Value

ONE 0.00000000 00000000 0 1101010011111011
0.00390625 00000001 1

0
1101010100100000
1101010100100000 0.00781250 00000010

0.01171875 00000011 1
0

1101010100100000
1101010100100000 0.01562500 00000100

0.01953125 00000101 1
0

1101010100100101
1101010100100101 0.02343750 00000110

…..

0.20703125 00110101 1
0

1110000100011110
1110000100011110 0.21093750 00110110

0.21484375 00110111 1 1110000100011111
TWO 0.21875000 00111000 1

0
0010100110000000
0010100110000000 0.22265625 00111001

…..

0.45312500 01110100 1
0

0011010110101001
0011010110101001 0.45703125 01110101

0.46093750 01110110 1 0011010110101010
THREE 0.46484375 01110111 0 0110011100011101

0.46875000 01111000 1
0

0110011100011110
0110011100011110 0.47265625 01111001

…..

0.77343750 11000110 1
0

1011110011111101
1011110011111101 0.77734375 11000111

0.78125000 11001000 1
0

1011110011111110
1011110011111110 0.78515625 11001001

The value of Z’
rem is added to the LSB of the original input angle to generate the Zrem

value of Equation 4.1. The sum goes through a binary to bipolar converter to generate

all the LSSDs in parallel. This is further explained in Section 4.2.2.

Univ
ers

iti
Mala

ya

Chapter 4 : Signed Digit Generation

39

4.2 Implementation of the SDA

4.2.1 Algorithm for MSSD

Table 4.1 shows that the breakpoints that bound the 3 regions occur at “00110111” and

“01110111”. A simple algorithm is used to classify the regions, and generate the

MSSDs, as shown below :

inp_msb[0:7] denotes the MSBs of Zo, and mssd_out represents the SDs(s2 → s8)

If inp_msb [1 to 8] >= “01110111”
 mssd_out = “0111010” – inp_msb[1 to 7];
 region <= “11”; (Region 3)
else if inp_msb[1 to 8] >= “00110111”
 mssd_out = “0111010” – inp_msb[1 to 7];
 region <= “10”; (Region 2)
else if inp_msb[8] = ‘0’
 mssd_out = “01111100” – inp_msb[1 to 7];
 Region <= “00”; (Region 1)
else mssd_out ‘ “01111011” – inp_msb[1 to 7];
 region <= “00”; (Region 1)

Figure 4.2 MSSD Generation Algorithm for Size N = 24

Univ
ers

iti
Mala

ya

Chapter 4 : Signed Digit Generation

40

4.2.2 Generation of Z’
rem

i) In Region One, the sign bit follows inp_msb[0]; in the other regions, it is the

opposite

ii) In all regions, with the exception of the sign bit, the '
remZ values occur in

pairs. In Region One, the '
remZ pairs are odd-even, whereas in Regions Two

and Three, they are even-odd.

iii) For Region One, the odd values of the Zo,MSB are incremented before feeding

the encoder. This is due to the odd-even nature of the pair. A 5-16 bit

encoder is used to encode the remaining angle Z’rem

iv) For Regions Two and Three, 5-16 bit and 6-16 bit encoders are used

respectively

v) We know that ()1' 32 −−<
N

remZ , and that () N
LSBo

N

Z −−− −< 22 1
,

3 Since both of these

values are ()132 −−<
N

, the result of their addition becomes constrained by

()232 −− N

Therefore, 2
,

' 32 +−<+
N

LSBorem ZZ This means, the result requires an extra bit to

represent it, which makes a total of ()13
2 +N bits

4.2.3 Binary - Bipolar Conversion and LSSD Generation

Zrem can either be a positive or a negative value, depending on its sign bit. Just as the

MSSDs are represented in Signed Binary Number Representation (SBNR), Zrem also

needs to be converted to SBNR. The conversion is as follows:

Univ
ers

iti
Mala

ya

Chapter 4 : Signed Digit Generation

41

i) if Zrem is positive, the first signed digit repeatNs ,3
 is ‘0’. The next signed digit,

13 +
Ns is ‘1’ if the next bit of remZ is 0, and ‘0’ otherwise. This is carried on

until all the rest of the signed digits are obtained (ie. until Ns)

ii) if Zrem is negative, the first signed digit repeatNs ,3
 is ‘1’. The next signed digit,

13 +
Ns is ‘1’ if the next bit of remZ is 0, and ‘0’ otherwise. This is carried on

until all the rest of the signed digits are obtained (ie. until Ns)

Fig. 4.3 depicts the LSSD Generation as it is implemented in VHDL.

Univ
ers

iti
Mala

ya

Chapter 4 : Signed Digit Generation

42

Region Identifier
5,1, oo ZtoZ Region One

7,3, oo ZtoZ
5-16 encoder

Region Two
7,3, oo ZtoZ

5-16 encoder

Region Three
7,2, oo ZtoZ

6-16 encoder

Multiplexer

Adder

xor

repeatNs ,3
 Nss N ,,13


+

8,7,6,5,4,3,2,1, oooooooo ZZZZZZZZ

2

1 sign

region

16

16

17

LSBoZ ,

17

1

1 16

not

MSB of Zo LSB of Zo

Fig. 4.3 : LSSD Generation for Size N = 24

'
remZ

Binary to
Bipolar

Conversion

Univ
ers

iti
Mala

ya

Chapter 4 : Signed Digit Generation

43

4.3 Modification Of The SDA

A detailed examination of the SDs for all the possible MSSDs and LSSDs for N-bit

input angle however, yielded some interesting results. Compared to the method outlined

earlier, which examines 32 N variants of Zo and the corresponding SDs, a set of N2

possible values of Zo were observed, which showed that while the PWL relationship of

the MSSDs and '
remZ do exist, their changing points do not fall exactly at the places

where the MSBs of Zo transition.

 The example of 9-bit Flat CORDIC is considered. For this size, there are no

breakpoints. The PWL of the MSSDs and '
remZ are seen in Table 4.3.

Table 4.3: '
remZ for MSBs of Zo, size N = 9

A more detailed examination considers the first N/3 iterations performed on values of

Zo. The MSSDs and the encoder angle ()LSBorem ZZ ,− are shown in Table 4.4.

MSB of
Zo

MSSD '
remZ

Sign Value
000 011 1 001111

001111 001 011 0
010 010 1 010000

010000 011 010 0
100 001 1 010100

010100 101 001 0
110 000 1 010101

Univ
ers

iti
Mala

ya

Chapter 4 : Signed Digit Generation

44

Table 4.4: ()LSBorem ZZ ,− for MSBs of Zo for size N = 9

Investigations of the SDs of different sizes showed similar results. Both the MSSDs and

()LSBorem ZZ ,− transition simultaneously, but not at the places where the MSBs of Zo

change. This implies that the SD generation could not be implemented as simply as with

the previously mentioned algorithm.

An alternative method for generating the SDs was still possible, that can also

exploit the unique PWL properties of the MSSDs and LSSDs.Using C++, the exact

transition points for sizes N = 9, 12, 15, 18, 21 and 24 were identified. These points

were used to design comparators for each size, which use the actual transition values to

assign the corresponding MSSD and ()LSBorem ZZ ,− values. However, use of the

comparator increases the size of the design. The results of the comparison between these

two methods are given in Chapter 6. Included in the Appendix is the full set of values of

SDs at the transition points for N = 24.

Zo MSSD ()LSBorem ZZ ,−
value

Expected
Transition

Actual
Transition

Sign Value
0 000_000000 011 1 001111
63 000_111111 011 1 001111
64 001_000000 011 0 001111
111 001_101111 011 0 001111
112 001_110000 010 0 010000 ☼
127 001_111111 010 0 010000
128 010_000000 010 1 010000 ☼
191 010_111111 010 1 010000
192 011_000000 010 0 010000
237 011_101101 010 0 010000
238 011_101110 001 0 010100 ☼
255 011_111111 001 0 010100
256 100_000000 001 1 010100 ☼
319 100_111111 001 1 010100
320 101_000000 001 0 010100
362 101_101010 001 0 010100
363 101_101011 000 0 010101 ☼
383 101_111111 000 0 010101
384 110_000000 000 1 010101 ☼

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

45

CHAPTER 5 : SIGNED DIGIT COMBINATION & PIPELINING

5.1 Signed Digit Combination

Once the SDs have been pre-computed, the next step is to combine them according to

the equations (5.1) and (5.2):































































































−⋅⋅⋅⋅⋅+⋅⋅⋅⋅+

⋅⋅⋅−⋅⋅−⋅+
+

















−⋅⋅⋅⋅⋅+⋅⋅⋅⋅+

⋅⋅⋅−⋅⋅−⋅+
+

















−⋅⋅⋅⋅⋅+⋅⋅⋅⋅+

⋅⋅⋅−⋅⋅−⋅+

−=

∑∑
∑∑∑∑

∑∑
∑∑∑∑

∑∑
∑∑∑∑

=+++++=+++++

=+++=+++=+=+−

=+++++=+++++

=+++=+++=+=+−

=+++++=+++++

=+++=+++=+=+−







NN

NNNN

EnmlkjinmlkjiEmlkjimlkji

ElkjilkjiEkjilkjEjijijj
E

nmlkjinmlkjimlkjimlkji

lkjilkjikjilkjjijijj

nmlkjinmlkjimlkjimlkji

lkjilkjikjilkjjijijj

N

sssssssssss

ssssssssss

sssssssssss

ssssssssss

sssssssssss

ssssssssss

X

1

131

441

4414414

331

3313313

2

.......

2

2

1

 (5.1)

and





















































−⋅⋅⋅⋅+

⋅⋅⋅+⋅⋅−⋅−
+

















−⋅⋅⋅⋅+

⋅⋅⋅+⋅⋅−⋅−
+

















−⋅⋅⋅⋅+

⋅⋅⋅+⋅⋅−⋅−

=

∑
∑∑∑

∑
∑∑∑

∑
∑∑∑

=++++

=++++=++=++−

=++++

=++++=++=++−

=++++

=++++=++=++−

...

1
2

.......

...

1
2

...

1
2

11

2

212212

1

111111

N

NNN
N

Emlkjimlkji

EmlkjmlkjEkjikjiEkjkj
E

mlkjimlkji

mlkjmlkjkjikjikjkj

mlkjimlkji

mlkjmlkjkjikjikjkj

N

sssss

sssssssss

sssss

sssssssss

sssss

sssssssss

Y

 (5.2)

Here, the SD combinations are segregated into the channels in which they belong. A

channel refers to the positional value of the term (how much it has to shift).

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

46

Suppose we consider a particular channel, ch, for XN. The sum for that channel

(sumx[ch]) would be the total of the combinational parts of all the terms in the channel.

We denote the number of terms in channel ch of XN as comx[ch].

Then, sumx[ch] is bounded by the range][][chcomxchsumx <= . (5.3)

∑
=

−⋅−=
NE

ch

ch
N chsumxX

3
2][1 (5.4)

After obtaining the sums of each of the channels, these sumx[ch] values are shifted to

the right (ch times) to obtain chchsumx −⋅ 2][. Then, all these values are added together.

1) This method requires adders to get the sum for each channel. The size of these

adders have to be able to accommodate the range

][][][chcomxchsumxchcomx <<−

2) This method requires shifters to position the sums of the respective channels

3) Since the desired accuracy is EN, the size of the registers containing the value of

chchsumx −⋅ 2][has to be EN bits

5.2 Ripple Method

This shifting and addition process could be made much simpler if sumx[ch] could be

restricted such that 1][≤chsumx for channels 1 through EN. (ie. sumx[ch] = 0,±1,

which is represented with 2 bits).

This can be achieved by rippling the values of sumx[ch] from the channel with the

higher negative indices to the channels with the lower negative indices. The concept of

this can be seen in Eqs.. (5.5) and (5.6).

chchch termtermtermterm −−− ⋅+=⋅+⋅ 2)21(2221 (5.5)

 () 1212122 1 ±==⋅±=⋅±= −−− termtermwherechch Case 1

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

47

 or,)2(1020 termtermwherech −==⋅= − Case 2

 For Case 1, the ripple into channel (ch-1) is ±1, and in Case 2, the ripple is 0. A

VLSI-efficient implementation of the combination and addition process has been

realized based on this concept. Basically, the entire equation is represented in a grid of

cells. The columns represent the channel sums sumx[ch], and the rows are the layers.

The cells are filled in the following manner:

1) The first row values are filled first, their ranges bound by][chcomx

2) The cells are then filled vertically, from top to bottom, and from the Least

Significant Channel (LSC, or channel with value NE−2) to the Most Significant

Channel (MSC)

 For the first row (Layer 1), the values for each channel, ch, are simply bound by

the range of comx[ch]. The values of comx[ch] are divided by 2, and the result of the

division repples into the next channel, cell[ch-1, Layer 2]. The remainder drops down

the same channel to cell[ch, Layer 2]. This is illustrated in Fig. 5.1.

 For each column, the aim is to terminate the layer as quickly as possible, the

moment when the range of sumx[ch] is restricted by 1][≤chsumx . For any particular

cell, for example cell[ch, Layer L], the two inputs into it are the previous sum from

cell[ch, Layer L-1], and the ripple from cell[ch+1, Layer L-1]. The total of these two

inputs is divided by 2 as before, the ripple traveling to the next channel, and the

remainder to the next layer.

 If the total input into that given cell is (0, ±1), and there are no ripples in at any

lower layer, the channel is terminated. The termination layer is TLch.

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

48

Example :

 Take the case of N = 9, and EN = 12

 Following the Signed Digit Generation as outlined in Chapter 4 produces 10 SDs (s1

through s10).

() () () () ()
() () ()
() ()542632758493102

10
5326574839210

10
4326473829

10
5463728

9
53627

8
43526

7
425

6
324

5
3

4
2

3
9

22
222

222221

ssssssssssssssssssssssssss
ssssssssssssssssssssss

sssssssssssssX

++−−−−++−−−−−+

+−−−−+−−−−+−−−

+−−−+−−+−−+−+−+=

−−

−−−

−−−−−

 (5.6)

 For the case of θ = 30°, Zo = 100001100 (0.5234375 radians)

The SDs are : 1 1 -1 -1 1 -1 -1 -1 -1 1

 Ch 0 1 2 3 4 5 6 7 8 9 10 11 12
Comx[ch] 1 0 0 1 1 2 2 3 3 4 5 6 6
Sumx[ch]·2-ch

LAYER 1
2-0 0 0 -2-3 2-4 2·2-5

=2-5
0·2-6 -2-7

3·2-8

=2-8
+2-7

2·2-9

=2-8
1·2-10 2·2-11

=2-10
-2·2-12

=-2-11 +

0·2-12
LAYER 2
previous sum +
ripple

1·2-0
TL0

0·2-1
TL1

0·2-2
TL2

-1·2-3
TL3

1·2-4
TL4

1·2-5
TL5

0·2-6
TL6

-1·2-7

2-8

+2-8

=2-7

0·2-9 2-10

+2-10

=2-9

0·2-11

- 2-11

=-2-11

0·2-12
TL12

LAYER 3
previous sum +
ripple

 -1·2-7

+ 2-7

=0

0·2-8
TL8

1·2-9
TL9

0·2-10
TL10

-2-11
TL11

LAYER 4
previous sum +
ripple

 0·2-7
TL7

5.3 Implementation of The Ripple Method

For the implementation of this method, modules are designed to fit into the cells. For

any given cell, the module is chosen based on the number of inputs into the cell. An

extra simplification to the combination of terms described above is given in Section

5.3.2.

Table 5.1 Example of Ripple for N = 9

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

49

5.3.1 Layer One

For the first layer, the inputs are the combinational terms of the SDs, which are ±1. For

each pair of inputs, one instance of module PAIR is created, that follows Equation 5.5.

Each instance of Module PAIR generates the ripple as shown in Table 5.2.

in 1 in 2 Ripple
+1 +1 +1
+1 -1 0
-1 -1 -1
-1 +1 0

ch

sum

ch-1

Layer 1

Layer 2

1

comx[ch] is odd

comx[ch]/2
modules of

PAIR

comx[ch]

2
comx[ch]

ripple

ch-1

Layer 1

Layer 2

comx[ch] is even

comx[ch]/2
modules of

PAIR

comx[ch]

2
comx[ch]

ripple

Figure 5.1 : Module PAIR for Layer One

Table 5.2: Inputs and Output of Module PAIR

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

50

5.3.2 Remaining Layer Modules

For all the rest of the cells, they are filled by considering the total number of inputs into

the cells. These are divided into the following categories :

Case 1: Number of Inputs ≥ 3

An extra simplification of the combination of terms is incorporated here, by combining

the terms in groups of three.

() chchchch termtermtermtermtermterm −−−− ⋅++=⋅+⋅+⋅ 2321232221

 () () () chch −−− ±+±= 21,021,0 1 (5.7)

Assuming the number of inputs into the cell is 3g + h, where g ≥ 1, and h = 1,2. Here,

(g-1) sets of module blue_0 are generated, and one of either blue_1 or blue_2,

depending on the value of h.

blue_0 takes in 3 inputs and produces one ripple value for cell[ch-1,layer+1] and one

sum value for cell[ch,layer+1]

blue_1 and blue_2 take in 4 and 5 inputs respectively. 3 of them are used to produce

one ripple value and one sum value. The extra inputs bypass the cell, and go into the

cell directly below : cell[ch,layer+1].
Univ

ers
iti

Mala
ya

Chapter 5 : Signed Digit Combination & Pipelining

51

This design is implemented onto the FPGA using case statements.

in 1 in 2 in 3 total ripple sum
-1 -1 -1 -3 -1 -1
-1 -1 0 -2 -1 0
-1 0 -1 -2 -1 0
-1 0 0 -1 0 -1
0 -1 -1 -2 -1 0
0 -1 0 -1 0 -1
0 0 -1 -1 0 -1
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 1 0 1
0 1 1 2 1 0
1 0 0 1 0 1
1 0 1 2 1 0
1 1 0 2 1 0
1 1 1 3 1 1
1 1 -1 1 0 1
1 -1 1 1 0 1
1 -1 -1 -1 0 -1

-1 1 1 1 0 1
-1 1 -1 -1 0 -1
-1 -1 1 -1 0 -1

+1 is coded in binary as “01”, -1 as “10” and 0 as “00”

blue_0/1/2

sum ripple

ch-1 ch

layer

layer + 1

1
1

3/4/5

Figure 5.2 Module BLUE

Table 5.3 : Inputs and output of Module BLUE

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

52

Case 2: Number of Inputs = 2

When the number of inputs is 2, the lower layers are checked to see if there are any

more ripples coming into the channel. If there are, then the inputs are just passed

through to the subsequent layer (GREEN module). If not, the inputs are added, to get a

ripple value for cell[ch-1,layer+1] and, and a sum value for cell[ch,layer+1] (ORANGE

module).

Table 5.4 : Inputs and output of Module ORANGE

in 1 in 2 total ripple sum
-1 -1 -2 -1 0
-1 1 0 0 0
-1 0 -1 0 -1
0 0 0 0 -1
0 -1 -1 0 -1
0 1 1 0 1
1 -1 0 0 0
1 1 2 1 0
1 0 1 0 1

+1 is coded in binary as “01”, -1 as “10” and 0 as “00”

ORANGE

sum ripple

ch-1 ch

layer

layer + 1

1 1

 2

green

sum

ch-1 ch

layer

layer + 1

2

 2

Figure 5.3 : Modules GREEN and ORANGE

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

53

Case 3 : Number of Inputs =1

When the number of inputs is 1, a check is performed on the lower layers to see if there

are any more ripples coming into the channel. If there are, then the inputs are just passed

through to the subsequent layer. If not, the channel is terminated.

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

54

Terminate
this channel
stop[ch] =
layer

Send the
input value
of channel
down to next
layer

Has the RLS
terminated at
this layer?

NO YES

Module :
blue
input[ch
layer]/3
modules of
blue_0
created,
each giving
a ripple and
a sum

Module : blue
input[ch
layer]/3-1
modules of
blue_0 and
one module of
either blue_1
or blue_2
created to get
the sums and
ripples

input[ch
layer]% 3 = 0?

NO YES

Comx[ch] =
even?

Let the last term
go down to layer 2

Module :
orange.
Add the input
values – ripple
the carry to the
LMS and the
sum down to
the next layer

Module :
green.
Send the
input
straight
down to the
next layer

Has the RLS
terminated at
this layer?

NO YES

Channel = EN (start at the
top right hand corner cell)

Layer = 1

Send the pairs of terms to the next
layer of the LMS channel

layer = layer + 1
(go down to the next cell)

number of inputs into cell : input[ch, layer] =
Down value from previous layer + ripple value
from RLS channel

n = n-1

n = 0?

STOP
YES

NO

Figure 5.4 Flowchart for Ripple Method, size N

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

55

ch

0

1

2

 3

 4

 5

 6

7

 8

 9

 10

 11

12

 1 1

 2 2 3 3 4 5 6 6

We now have 13 sets of 2-bit output values. If we designate 13-bit variables :

answer_0 which is [sumx0(0) to sumx12(0)], and answer_1 which is [sumx0(1) to

sumx12(1)], then 1_0_ answeranswerX N −=

Figure 5.5 Implementation of Ripple Method for N = 9

1 1

2 1

3 1

1 1 1 1

2

1 1 2 2 2

1 3 2 1 1 3 1 1

2 3 3 3 1 2 2 1 1

3 1

1 3 1

2 1

s
u
m
x
0

s
u
m
x
8

s
u
m
x
3

s
u
m
x
4

s
u
m
x
5

s
u
m
x
6

s
u
m
x
7

s
u
m
x
9

s
u
m
x
10

s
u
m
x
11

s
u
m
x
12

s
u
m
x
1

s
u
m
x
2

“01” “00” “00”

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

56

5.4 Pipelining Flat CORDIC

As the size N gets bigger, the total number of combinations increases sharply. This is

shown in Figure 3.2. The result is a huge increase in the number of modules generated.

This increase in combinational circuitry causes the combinatorial path delay to increase,

thereby reducing the maximum operating frequency of the circuit.

 A method that can be used to boost the frequency is to pipeline the design. The

circuit is divided into two or more sections (depending on the number of pipeline

stages), and each part is performed on a separate clock cycle. The output of each stage is

sent to the input of the next stage through a register. The matrix structure of the design

lends itself particularly well to pipelining. The pipeline stages are drawn horizontally

across the diagram.

 At the transition point from one stage to the next, a new module/VHDL file is

created. The vertical lines that cut across from one stage to the next become the input

lines feeding into the next stage. These inputs are tied to the clock signal.

 For the 2-stage pipeline, the maximum increase in frequency is double the

original value. This is assuming the division of the stages equally divides the entire

design into two equal halves. Additional pipeline stages can potentially increase the

frequency many times more, but at the cost of the latency of the circuit. With the

exception of the first additional stage, which increases the latency by 2 cycles, each

additional stage increases the latency

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

57

by one clock cycle. Pipelining is only a worthwhile measure if the critical path of the

circuit is affected by this combinational delay.

A 2-stage pipeline implementation for size N = 9 is shown in Fig. 5.6.

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

58

ch 0 1 2 3 4 5 6 7 8 9 10 11 12

 1 1

`fs

 2 2 3

3 4 5 6 6

1 1 2 2 2

1 3 2 1 1 3 1 1

2 3 3 3 1 2 2 1 1

1 3 1

2 1

1 1

2 1

3 1

1 1 1 1

2

3 1

s
u
m
x
0

s
u
m
x
8

s
u
m
x
3

s
u
m
x
4

s
u
m
x
5

s
u
m
x
6

s
u
m
x
7

s
u
m
x
9

s
u
m
x
10

s
u
m
x
11

s
u
m
x
12

s
u
m
x
1

s
u
m
x
2

“01” “00” “00”

Figure 5.6 Two Stage Pipeline for Ripple Method

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

59

5.5 Scaling of Final Values

Each rotation in CORDIC, and by extension in Flat CORDIC as well, is not a pure-

rotation, but a rotation-extension. The scaling factor is roughly the same. For each bit-

size that was tested, a thorough analysis was performed using C++ to determine the

precise scaling factor values. These values were then incorporated into the Flat

CORDIC architectures with fixed multipliers, of length EN = N + log2N for bit size N.

5.6 Field Programmable Gate Arrays (FPGAs)

The advent of VLSI technology has made it possible to produce high-density

programmable logic devices, and resulted in the increased popularity of Field

Programmable Gate Arrays (FPGAs). Huge amounts of logic, up to hundreds of

thousands of gates can be fitted onto single devices. FPGAs are now even taking over

ASICs in high performance applications due to the additional flexibility in design time

and design upgrades that can be performed without hardware replacement.

An FPGA is generally made up of a matrix of cells arranged in rows and

columns. The cells are interconnected via programmable elements. These elements also

connect the cells to the Input/Output blocks (IOs). The logic cells and exact routing

designs differ from one system to another.

There are 2 main technologies used for FPGA – SRAM and antifuse. SRAM

(SRAM FPGAs are generally less dense, because the physical dimensions are an order

of magnitude larger than the antifuse ones. However, due to larger chip sizes, SRAM

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

60

FPGAs hold more gates. These FPGAs also have unlimitted reprogrammability unlike

antifuse FPGAs, since the interconnect elements are not physically altered during the

programming. For this reason, SRAM FPGAs are volatile, and need to have the design

loaded into them via external PROMs on startup. Antifuse FPGAs on the other hand,

are One Time Programmable (OTP) devices.

 The SPARTAN II, 2.5V FPGAs used in this work, are a low cost family of

devices that contain abundant logic resources, ranging from 15,000 gates in the XC2S15

to 200,000 gates in the XC2S200. The matrix elements are Configurable Logic Blocks

(CLBs), surrounded by a perimeter of programmable IOBs. There are 4 Delay Lock

Loops (DLLs), one on each corner of the die, and 2 columns of block RAM on opposite

sides of the die. Webs of versatile routing channels run through the matrix connecting

these elements.

5.6.1 Spartan II CLB

CLBs are the basic building blocks of the FPGA. The Spartan II CLB contains 4 Logic

Cells (LCs) arrainged in pairs on 2 slices. Each LC contains a 4-input function generator

carry logic and a storage element.

Function Generator

The function generator in the LC is basically a 4-input Look Up Table (LUT) that can

double up to provide 16-bit synchronous RAM. The 2 LUTs in a slice can be used to

create

a 16x2-bit or a 32x1-bit synchronous RAM. The LUT can also be used as a 16-bit shift

register, or alternatively, to store data.

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

61

Storage Element

The storage element in each LC can either be used as a level sensitive latch or an edge-

triggered D flip-flop. When used as a D flip-flop, the input to the flip-flop can either be

driven by the fuction generator or directly from the inputs into the slices.

Additional Logic

Each pair of LCs additionally has an extra multiplexer that can be used in combination

with both the function generator outputs of one slice to produce a 5-input function

generator, or with both the slice outputs to generate a 9-input function. The Spartan II

CLB also has dedicated carry logic that enables high-speed arithmetic functions to be

carried out. Fig. 5.7 illustrates a Spartan II CLB Slice.

Univ
ers

iti
Mala

ya

Chapter 5 : Signed Digit Combination & Pipelining

62

I4

I3

I2

I1

O

Look- Up
Table

Carry
and

Control
Logic

D

CK

EC
R

S
Q

COUT

YB

Y

YQ

G4

G3

G2

G1

F5IN

BY
SR

I4

I3

I2

I1

O

Look- Up
Table

Carry
and

Control
Logic

D

CK

EC
R

S

Q

XB

X

XQ

F4

F3

F2

F1

BX
CIN
CLK
CE

Fig. 5.7 Spartan II CLB Slice Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

63

Chapter 6 : Results & Discussion

6.1 Introduction

This chapter focuses on the results of Flat CORDIC simulation and synthesis onto

Spartan FPGAs. The simulations were performed using ModelSim XE v5.6e and the

resultant binary data files compared against expected results from corresponding data

files generated using C++.

The first part concentrates on Flat CORDIC size and speed results. The increase

in circuit size and drop in frequency for increasing values of N is observed. The next

part focuses on the SD Generation. A comparison is made between the SD Algorithm as

proposed by Bimal (2000) which uses an encoder, with the newly designed comparator

method. The impact of these two designs as part of the entire Flat CORDIC structure is

also considered.

The combination of all the generated SDs and their subsequent addition is

examined in detail. The specially designed instances that make up the backbone of the

design are shown. The implementation of the Combination and Addition (C&A) section

is seen in terms of the number of gates used, and the speed of operation. Ideal pipeline

results for additional number of stages are examined, and the implementation results of

one extra pipeline stage are shown.

The C&A part produces output values that are scaled using multipliers. The size

of the multipliers as part of the entire architecture is shown. Finally, a comparison is

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

64

made between the Flat CORDIC design and two other sine/cosine generation

implementations on FPGA. The computer processor internal sine/cosine calculation

speed as carried out using C++ is also compared with the Flat CORDIC speed.

6.2 Flat CORDIC on FPGA

The Flat CORDIC module takes 4 clock cycles to produce the sine/cosine values of a

given input angle.

SD
Combination

& Ripple

Adder
Unit for
Cosine

N+log2N

Multiplier

N+log2N

cos(Zo)

N+log2N
(MSB)

N+log2N
(LSB)

SD
Combination

& Ripple

Adder
Unit for

Sine

N+log2N

Multiplier

N+log2N

sin(Zo)

N+log2N
(MSB)

N+log2N
(LSB)

N+1

Signed Digit (SD) Generation

Input Angle, Zo

N

First Cycle

Second Cycle

Third Cycle

Fourth Cycle

Figure 6.1 Flat CORDIC Pipeline Stages

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

65

Table 6.1 and Figs. 6.2 and 6.3 show the overall circuit size and speed.

Size (bits) Max
Frequency

(MHz)

Total eq. gate
count

9 30.58 6,238
12 20.58 11,325
15 15.29 21,389
18 13.32 37,281
21 11.34 61,669
24 9.94 104,690

9 12 15 18 21 24
0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

G
at

e
Co

un
t

Size (N)

9 12 15 18 21 24

10

15

20

25

30

M
ax

 F
re

qu
en

cy
 (M

Hz
)

Size (N)

Table 6.1: Flat CORDIC Speed and Gate Count

Figure 6.2 Graph Flat CORDIC Gate Count Versus Size (N)

Figure 6.3 Graph Flat CORDIC Maximum Operating
 Frequency Versus Size (N)

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

66

Due to the increased complexity, the maximum operating frequency reduces with N.

The size of the design increases in a non-linear manner with N. This is because the

number of terms in the Flat CORDIC equation, the number of SDs to generate, and the

size of the adders and multipliers increase considerably with N.

6.3 Signed Digit Generation

This section deals with a comparison between the two methods of generating the Signed

Digits (SDs).

6.3.1 Signed Digit Algorithm (SDA) – Encoder Method (Bimal)

In the SDA, a simple algorithm is used to generate the MSSDs and encoders for the

remaining angle generation. As outlined in Chapter 4, the MSSD transition points are

taken as corresponding to the input MSB changes. For each of the regions identified by

the break in the PWL pattern, the relationship between the MSBs and the MSSDs is

used to incorporate simple shift-addition operation to directly obtain the MSSDs.

Depending on the total number of variations in each region, special encoders are used to

generte the remaining angle, which is then processed to obtain the LSSDs.

6.3.2 Signed Digit Algorithm – Comparator Method

Using C++, the exact transition points of the MSSDs and remaining angles for the entire

range of N-bit values are examined. It was verified that both the MSSDs as well as the

remaining angles transition at exactly the same points. The transition points were used

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

67

to create the comparators that simultaneously generate both the MSSDs and the

remaining angle values.

Included in the Appendix is the detailed data of the input angles and the transition

points, along with the corresponding MSSDs and remaining angles for 24-bit Flat

CORDIC. The highlighted portions indicate the transition points.

Size Frequency (MHz) Gate Count
 Encoder Comparator Encoder Comparator

9 62.6 83.7 180 309
12 60.4 69.7 228 537
15 32.1 52.8 562 1,249
18 26.1 51.0 789 4,714
21 26.7 47.0 1,048 10,208
24 22.4 40.9 1,736 23,418

9 12 15 18 21 24
102

103

104

G
at

e
Co

un
t

Size (N)

 Encoder
 Comparator

Figure 6.4 Graph SD Generation Gate Count Versus Size (N)

 Table 6.2: Changes in Gate Count and Speed for SD Generation with Size N)

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

68

9 12 15 18 21 24

20

30

40

50

60

70

80

90

M
ax

 F
re

qu
en

cy
 (M

Hz
)

Size (N)

 Encoder
 Comparator

9 12 15 18 21 24
10

15

20

25

30

35

40

45

La
te

nc
y

(n
s)

Size (N)

 Encoder
 Comparator

Figure 6.4 gives an estimate of the size of SD generation using the two methods. Even

for smaller values of N, the comparator method takes up almost twice the area of the

encoder method. As the values of N increase, this difference increases dramatically,

with the comparator taking almost 12 times as many gates as the encoder for size N =

24 bits.

The results of Figure 6.5 and 6.6 show that the SD generation using the comparator

method is faster compared with the encoder, using roughly 2/3 the total amount of time

Figure 6.6 Graph SD Generation Latency Versus Size (N)

Figure 6.5 Graph SD Generation Maximum Operating Frequency Versus
 Size (N)

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

69

to generate all the SDs. The benefits of this improvement in time will be seen in the

final design only if the SD generation lies in the critical path of the design.

6.3.3 Comparison of Design

The two different SD Generation modules were incorporated into the full Flat CORDIC

design and implemented. Table 6.3 shows the maximum frequencies obtainable for the

designs, and the total number of gates.

Size
(bits)

Max Frequency (MHz) Gate Count

 Encoder Comparator Encoder Comparator
9 30.4 30.6 6,217 6,238

12 24.0 20.6 10,010 11,325
15 15.3 15.3 21,388 21,839
18 13.2 13.3 33,739 37,281
21 11.3 11.3 57,235 61,669
24 10.1 10.0 85,182 104,690

9 12 15 18 21 24
0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

G
at

e
Co

un
t

Size (N)

 Encoder
 Comparator

Table 6.3: Changes in Gate Count and Speed with Size (N)

Figure 6.7 Graph Flat CORDIC Gate Count Versus Size (N)
 For Different SD Generation Methods

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

70

9 12 15 18 21 24

10

15

20

25

30

M
ax

 F
re

qu
en

cy
 (M

Hz
)

Size (N)

 Encoder
 Comparator

Section 6.3.1 showed that the gate count of the Comparator Method is significantly

bigger than that of the Encoder Method. Fig. 6.7, however, indicates that once

incorporated into the Flat CORDIC architecture, the difference ceased to be so

significant.

Fig. 6.8 shows that for the most part, once incorporated into the fuill Flat CORDIC

architecture, the speed benefits of the Comparator Method are no longer seen. This is

due to the fact that the SD Generation Module is not in the critical path.

Figure 6.8 Graph Flat CORDIC Maximum Frequency Versus Size (N)
 For Different SD Generation Methods

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

71

6.4 Combination of SDs and Addition

The combination of all the SDs and their routing into the respective channels, followed

by the implementation of the Ripple Method makes up the bulk of the Flat CORDIC

module. This design is almost entirely combinatorial. The signals have to go through

many instances of three specially designed modules, as explained in detail in Chapter 5.

These three modules are referred to as PAIR, BLUE and ORANGE

Module PAIR takes in pairs of SDs (each being a 1-bit value representing ±1), and

returns a carry to the next channel. It requires 2 sets of 4-input LUTs, and occupies 1

slice (0.5 CLB). The number of gates required is 12.

Module BLUE takes in three SDs (each being a 1-bit value representing ±1), and

returns a carry to the next channel, and a sum. It requires 11 sets of 4-input LUTs, and

occupies 6 slices (3 CLBs). The number of gates required is 66.

Module ORANGE takes in two SDs (each being a 1-bit value representing ±1), and

returns a carry to the next channel, and a sum. It requires 4 sets of 4-input LUTs , and

occupies 2 slices (1 CLB). The number of gates required is 24.

The regular design of the Combination and Addition (C&A) module takes two

clock cycles. The first cycle combines the SDs, goes through the channels (and all the

instances of the above-mentioned modules) and provides the input to the final adder

(N+log2N bits). In the next cycle, the addition is performed. From the Flat CORDIC

Equation, the result of the X-channels gives the unscaled cosine of the input angle, and

the result of the Y-channels gives the unscaled sine value.

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

72

Table 6.4 and Fig. 6.9 show the increase in the size of the design and also the

maximum frequency for the X- and Y- parts respectively:

Size
(bits)

Speed (MHz) Number of gates

 Cosine
(X)

Sine
(Y)

Cosine
(X)

Sine
(Y)

9 31.6 30.1 1,648 1,411
12 22.0 21.4 3,706 4,181
15 16.0 17.8 9,368 8,877
18 13.9 13.6 12,597 12,523
21 12.2 11.8 22,789 23,225
24 10.8 10.4 38,745 39,359

9 12 15 18 21 24

10

15

20

25

30

35

Sp
ee

d
(M

Hz
)

Size (N)

 Cosine
 Sine

9 12 15 18 21 24
0.0

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

3.0x104

3.5x104

4.0x104

G
at

e
Co

un
t

Size (N)

 Cosine
 Sine

Table 6.4: Maximum Frequency and Gate Count for C&A Module

Figure 6.10 Graph Gate Count Versus Size (N) for C&A Module

Figure 6.9 Graph Maximum Frequency Versus Size (N) for C&A Module

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

73

Fig. 6.9 indicates that the speed of the sine/cosine calculation drops significantly as the

size (N) increases. Fig. 6.10 shows that the gate count for both the sine as well as the

cosine generation increases significantly with N. These results coincide with the non-

linear increase in the number of terms for the existing as well as additional channels

when N increases. Fig. 6.10 also indicates that the number of gates required for sine and

cosine calculation is almost the same.

The C&A Module to generate the pre-scaled sine/cosine values is seen as a

percentage of the overall Flat CORDIC architecture in the table below:

Size
(bits)

C&A
Gate Count

Flat CORDIC
Gate Count

Percentage of
whole (%)

9 3,059 6,238 49
12 7,887 11,325 70
15 18,245 21,839 84
18 25,120 37,281 67
21 46,014 61,669 75
24 78,104 104,690 75

Even at its smallest, this part still takes up almost half the entire design, for bit size N =

9. This is when the multipliers for the final scaling are at a comparable size. For the rest

of the designs, the C&A Module takes up a higher portion of the architecture.

6.4.1 Pipelining The C&A Section

It was indicated in Section 6.1 and later shown that the maximum operating frequency

and therefore the minimum time to obtain results is determined during the SD

Combination cycle. The second longest delay path is in the SD Generation cycle. This

uneven distribution of logic per cycle can be balanced out through the addition of

Table 6.5: C&A Module as Part of Flat CORDIC Architecture

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

74

pipeline stages to split up the critical path logic to be carried out over extra cycles. With

a smaller amount of logic per cycle, the critical path delay can be considerably reduced.

The organized structure of the C&A section lends itself particularly well to pipelining.

The structure can be divided into sections which each run on separate clock cycles. As

illustrated in Chapter 5, horizontal lines are drawn across the matrix structure to

separate the pipeline sections.

Assume that the time taken for the entire combination and ripple process is TCR.

Taken into consideration are the setup and hold times of the FPGA. The setup time, TS,

is the time relative to a clock event during which the data input to a latch or flip-flop

must remain stable in order to guarantee that the latched data is correct. The hold time,

TH, is the time following a clock event during which the data input remains stable for

the same reason. SPARTAN FPGAs have a TS value of 5 ns, and TH value of 0 ns.

Each additional pipeline stage increases the circuit latency by 1 clock cycle

(except for the first stage, as explained later). Therefore, in a given module, each extra

stage can potentially cut the delay by close to half (exact 50% reduction is not possible

due to non-zero hold time). The optimum place to set up the pipeline is at a point that

divides the entire circuit into equal parts, and each extra stage is added until the module

no longer lies in the critical path of the entire design.

From the data, the second biggest delay comes from the SD Generation

comparator section, TSDG. The following table shows the potential improvement in

circuit latency for additional pipeline stages. These are ideal figures, assuming the

divisions occur exactly at the right places. The number of stages are added until TCR,P is

less than or equal to TSDG, where TCR,P is the new delay for each clock.

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

75

Size
(bits)

stages

Delay per
Cycle, TCR,P

(ns)

Max
Frequency

(MHz)

Time to
Match,

TSDG
(ns)

Total #
Cycles

Circuit
Latency

(ns)

Savings in
Time

9 1 70.32=+ CRs TT
70.27=CRT

30.58 11.94 4 131 -

2 85.18
2

=+ S
CR T

T 53.05 11.94 6 113 14%

3 23.14
3

=+ S
CR TT 70.26 11.94 7 100 23%

4 93.11
4

=+ S
CR TT

Size
(bits)

stages

Delay per
Cycle, TCR,P

(ns)

Max
Frequency

(MHz)

Time to
Match,

TSDG
(ns)

Total #
Cycles

Circuit
Latency

(ns)

Savings in
Time

15 1 42.65=+ CRs TT
42.60=CRT

16.56 18.94 4 262 -

2 21.35
2

=+ S
CR T

T 28.40 18.94 6 211 19%

3 14.25
3

=+ S
CR TT 39.78 18.94 7 176 33%

4 11.20
4

=+ S
CR TT

Size
(bits)

stages

Delay per
Cycle, TCR,P

(ns)

Max
Frequency

(MHz)

Time to
Match,

TSDG
(ns)

Total #
Cycles

Circuit
Latency

(ns)

Savings in
Time

12 1 60.48=+ CRs TT
60.43=CRT

20.58 14.36 4 194 -

2 80.26
2

=+ S
CR T

T 37.30 14.36 6 161 17%

3 53.19
3

=+ S
CR TT 51.20 14.36 7 137 29%

4 90.15
4

=+ S
CR TT 62.89 14.36 8 127 35%

5 72.13
5

=+ S
CR T

T

Table 6.6: Improvement in Latency With Additional Pipeline Stages, N = 9

Table 6.7: Improvement in Latency With Additional Pipeline Stages, N = 12

Table 6.8: Improvement in Latency With Additional Pipeline Stages, N = 15

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

76

Size
(bits)

stages

Delay per
Cycle, TCR,P

(ns)

Max
Frequency

(MHz)

Time to
Match,

TSDG
(ns)

Total #
Cycles

Circuit
Latency

(ns)

Savings in
Time

18 1 09.75=+ CRs TT
09.70=CRT

13.32 19.63 4 280 -

2 05.40
2

=+ S
CR T

T 24.97 19.63 6 240 14%

3 36.28
3

=+ S
CR TT 35.26 19.63 7 199 29%

4 52.22
4

=+ S
CR TT 44.40 19.63 8 180 36%

5 02.19
5

=+ S
CR TT

Size
(bits)

stages

Delay per
Cycle, TCR,P

(ns)

Max
Frequency

(MHz)

Time to
Match,

TSDG
(ns)

Total #
Cycles

Circuit
Latency

(ns)

Savings in
Time

21 1 21.88=+ CRs TT
21.83=CRT

11.34 21.29 4 353 -

2 61.46
2

=+ S
CR T

T 21.46 21.29 6 280 21%

3 74.32
3

=+ S
CR TT 26.73 21.29 7 262 26%

4 80.25
4

=+ S
CR TT 38.76 21.29 8 206 42%

5 64.21
5

=+ S
CR TT 46.21 21.29 9 195 45%

6 87.18
6

=+ S
CR TT

Size
(bits)

stages

Delay per
Cycle, TCR,P

(ns)

Max
Frequency

(MHz)

Time to
Match,

TSDG
(ns)

Total #
Cycles

Circuit
Latency

(ns)

Savings in
Time (%)

24 1 59.100=+ CRs TT
59.95=CRT

9.94 24.47 4 402 -

2 80.52
2

=+ S
CR T

T 18.94 24.47 6 317 21%

3 86.36
3

=+ S
CR TT 27.13 24.47 7 258 36%

4 90.28
4

=+ S
CR TT 24.61 24.47 8 231 43%

5 12.24
5

=+ S
CR TT

Table 6.10: Improvement in Latency With Additional Pipeline Stages, N = 21

Table 6.9: Improvement in Latency With Additional Pipeline Stages, N = 18

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

77

For every size (N), ideal additional pipeline stages can be seen to improve the

overall latency. The number of extra pipeline stages is limited by the SD Generation

delay, and also by the setup time, Ts.

With the potential frequency/time improvements in mind, an extra pipeline stage was

implemented.

9 12 15 18 21 24
100

150

200

250

300

350

400

450

500

La
te

nc
y

(n
s)

Size (N)

 Unpipelined
 Pipelined
 Ideal

The results in Fig. 6.11 show that the implemented pipeline stage improves the latency

for some values of N, while increasing the latency for others. The two factors that could

cause the deterioration for some sizes with this addition of an extra pipeline stage are :

• The uneven distribution of combinational logic in the extra cycles result in very

small savings in time per cycle

• The fact that the first additional pipeline stage increases the number of cycles by

2, combined with the factor above

Table 6.11: Improvement in Latency With Additional Pipeline Stages, N = 24

 Figure 6.11 Graph Flat CORDIC Latency for Unpipelined,
 Pipelined & Ideal Designs Versus Size (N)

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

78

6.5 Comparison of Flat CORDIC against Other Methods

The performance of the Flat CORDIC module was compared against other

implementations of sine/cosine generating functions in both VHDL as well as internal

computer processing speeds in C++.

6.5.1 Implementation of Iterative CORDIC Architecture

The iterative architecture for CORDIC can be implemented directly from the CORDIC

equations as given in Chapter 2. The design uses 3 registers, one each for X, Y and Z

values. The micro-rotation direction is driven by the sign of either the Y or the Z

register, depending on whether vector mode or rotation mode CORDIC is used.

First, the initial values are loaded into the X, Y and Z registers. (Xo : 1, Yo : 0, Zo

: input angle). Then, on each of the N clock cycles, the values from the registers are

passed through the shifters and adder-subtractors, and the results placed back in the

registers. The ROM address is incremented so that the appropriate elementary angle is

presented to the Z-adder-subtractor. The shifters are modified to cause the desired shift

for the iteration.

 To standardize the comparison, the number of iterations for conventional

CORDIC was chosen in such a way that the error range matched that of the Flat

CORDIC results. For the most part, the latency is N+1 cycles (one extra for the final

scaling). For sizes N = 15 and 18 however, the latency is N+2 cycles. It uses word-wide

datapaths (N+log2N bits). The speed and size results are shown in the Table 6.12.

 Table 6.12: Max. Frequency and Gate Count of Flat CORDIC and Conventional CORDIC Architectures

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

79

Size
(bits)

Accuracy Max Frequency
(MHz)

Latency (ns) Gate Count

Flat
CORDIC

CORDIC Flat
CORDIC

CORDIC Flat
CORDIC

CORDIC

9 2-9 30.58 53.66 130.8 186.4 6,238 6,103
12 2-12 20.58 50.04 194.4 255.7 11,325 7,253
15 2-15 15.29 41.99 261.7 404.9 21,389 13,553
18 2-18 13.32 43.72 300.4 457.5 37,281 13,733
21 2-19 11.34 43.12 352.8 510.2 61,669 15,561
24 2-20 9.94 43.45 402.4 575.3 104,690 17,289

6.5.2 Implementation of Direct Sine/cosine Generation

The basic definitions for sine and cosine are as given below :

() ()∑
∞

=

−+=+−+−=
1

2642

!2
11

!6!4!2
1)cos(

k

k
k

k
zzzzz  (6.1)

() ()∑
∞

=

+

+
−=+−+−=

0

12753

!12
1

!7!5!3
)sin(

k

k
k

k
zzzzzz  (6.2)

where z is an angle in radians

This was implemented in VHDL. The design utilizes a ROM to store the inverse

factorial values and multipliers to generate the values of zi, as well as multiply these

values by the ones stored in the ROM. The designs were implemented for sizes N = 9,

12, 15 and 18 using the standardized EN bits (EN = N + log2N) to match the Flat

CORDIC module. The number of terms for each size N was determined by the

maximum error (this also standardized to match the Flat CORDIC error results).

Size
(bits)

Cos #
terms

Sin #
terms

9
!4!2

1
42 zz

+−
3

!5!3

53 zzz +−
3

Table 6.13: Number of Terms using Direct Sine/cosine Generation

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

80

12
!4!2

1
42 zz

+−
3

!5!3

53 zzz +−
3

15
!6!4!2

1
642 zzz

−+−
4

!7!5!3

753 zzzz −+−
4

18
!6!4!2

1
642 zzz

−+−
4

!7!5!3

753 zzzz −+−
4

Size
(bits)

Accuracy Max Frequency
(MHz)

Latency (ns) Gate Count

Flat
CORDIC

Power
Series

Flat
CORDIC

Power
Series

Flat
CORDIC

Power
Series

9 2-9 30.58 32.07 130.8 187.1 6,238 8,410
12 2-12 20.58 26.53 194.4 226.1 11,325 15,451
15 2-15 15.29 24.76 261.7 282.7 21,389 37,978
18 2-18 13.32 24.06 300.4 290.9 37,281 52,500

Table 6.14: Max. Frequency, Latency and Gate Count of Flat CORDIC and Conventional CORDIC
Architectures

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

81

9 12 15 18 21 24
100

200

300

400

500

600

La
te

nc
y

(n
s)

Size (N)

 Flat CORDIC
 CORDIC
 Power Series

9 12 15 18 21 24
0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

G
at

e
Co

un
t

Size (N)

 Flat CORDIC
 CORDIC
 Power Series

Fig. 6.12 shows that even the unpipelined Flat CORDIC can generate the sine/cosine

values a lot faster than conventional CORDIC for size N = 9, it is roughly 100 ns faster.

For sizes N = 15 and above, there is approximately a 200 ns difference between the two

methods. There is roughly a 30% savings in time using the Flat CORDIC architecture.

Fig. 6.12 also shows that the Flat CORDIC executes faster than the Power Series for

small values of N (9, 12, 15). However, as N increases, the Power Series method of

Figure 6.12: Latency of Flat CORDIC, Conventional CORDIC
 And Power Series Architectures

Figure 6.13: Gate Count for Flat CORDIC, Conventional CORDIC
 And Power Series Architectures

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

82

calculation appears to yield results faster as can be seen in the intersection of the lines in

Fig. 6.12.

Fig. 6.13 however indicates that while the gate count for conventional CORDIC

increases very gradually, that for Flat CORDIC increases a lot more. The increase in

gate count for the Power Series Method is even more drastic, due to the many

increasingly large multipliers that are required.

6.5.3 C++ Implementation of CORDIC Sine/cosine Generation

The simple addition and shifting process of CORDIC [with a final multiplication for

scaling factor compensations] was written into C++ code to test the computer processor

speed. The processor is an Intel Pentium ® 4 chip, operating at 2.40 GHz, with 256 MB

RAM. An inbuilt clock function was incorporated in the program to find the average

speed of sine/cosine value generation.

6.5.4 C++ Implementation of MATH.H Sine/cosine Generation

The sine/cosine values generated using the math.h inbuilt function was also examined to

get the average sine/cosine computation of the computer processor. For both these

methods, the accuracy was standardized with the Flat CORDIC results.

Univ
ers

iti
Mala

ya

Chapter 6 : Results & Discussion

83

It was mentioned earlier that in high-speed operations, hardware solutions are being

favored to their software counterpart. The results displayed in Table 6.15 are an

indication of the vast difference in calculation speeds when making use of software

solutions compared with hardware solutions.

Size
(bits)

Max Frequency (MHz)
Flat CORDIC C++

CORDIC
C++ Internal
Calculation

9 30.58 0.252 1.186
12 20.58 0.181 1.123
15 15.29 0.119 0.704
18 13.32 0.104 0.736
21 11.34 0.097 0.615
24 9.94 0.101 0.587

Table 6.15: Maximum Operating Frequencies For Sine/cosine
Computation (Hardware Versus Software)

Univ
ers

iti
Mala

ya

Chapter 7 : Conclusions and Future Work

84

CHAPTER 7 : CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This thesis has concentrated on the implementation of Flat CORDIC on FPGAs.

Specifically, Flat CORDIC has been utilized to perform the specific trigonometric

functions of sine/cosine generation. The proposed implementation has also been

compared with existing sine/cosine generation methods in literature in terms of speed of

operation and circuit size.

 The first part of this research focuses on the derivation of the Flat CORDIC

equations and the subsequent simplifications to make it suitable for implementation.

The existing algorithm for generating the SDs required for the Flat CORDIC equations

has been tested and its accuracy checked. An alternative to the existing encoder method

was proposed that yielded more accurate results was synthesized and analyzed. The two

methods were implemented in the full Flat CORDIC design, and the synthesis results of

these were also examined.

 From the results obtained, the proposed comparator method produces more

accurate results than its encoder counterpart. The speed of SD Generation is also higher.

However, the comparator method utilizes a much larger number of gates. Once

integrated into the full Flat CORDIC design, the improvements in speed of the

comparator method could no longer be seen. This is due to the SD Generation Module

not being the bottleneck in the overall design. The increase in size using the comparator

method, however, ceased to be very significant when integrated into the main

Univ
ers

iti
Mala

ya

Chapter 7 : Conclusions and Future Work

85

architecture. This is because the SD Generation portion by itself constitutes a small

percentage of the full design.

 The next part of the thesis focuses on designing a new method to combine the

SDs to correspond with the Flat CORDIC equations and generate the pre-scaled

sine/cosine values (the C&A Module). The proposed architecture is a matrix of cells,

each seating one of a selection of specially designed modules. The choice of the module

filling each cell depends on the number of inputs into the cell. The outputs of the cell

were designed to ripple through to the next column and layer to effectively produce

left/right shifts.

 Simulations were performed to check that the C&A Module produced the

expected results. Synthesis results indicated that this portion took up a big part of the

Flat CORDIC architecture and also that the amount of combinational logic was quite

large, resulting in delays that limited the maximum operating frequency.

 The following part explored the possibilities of speeding up the design by

pipelining the C&A Module. Calculations were performed to estimate the savings in

time. The maximum possible number of extra pipeline stages for increased performance

was extrapolated assuming ideal pipeline implementation. An extra pipeline stage was

also implemented to check the synthesis results.

 It was seen that the maximum savings in time could reach a high of 46%. The

number of additional stages for bit sizes 9 through 24 ranged between 3 and 5. The

implementation results, however, indicated that an extra stage could potentially cause a

decrease in performance if not implemented in the right place. This was due to a

Univ
ers

iti
Mala

ya

Chapter 7 : Conclusions and Future Work

86

combination of the uneven logic distribution per cycle and also the fact that the first

extra pipeline stage increased the circuit latency by 2 cycles.

 Finally, a comparison was made with other methods in literature. Flat CORDIC

was found to be much faster than the conventional bit-parallel CORDIC as well as the

power series sine/cosine generation method. The Flat CORDIC size (gate count) was

also smaller than that of the power series generation method. However, while the

conventional CORDIC gate count increase was seen to be very gradual with the

increase in N, the Flat CORDIC gate counts were not only larger, but they increased at a

higher rate as well. It was also seen in a comparison against software sine/cosine

generation, that the Flat CORDIC speed was several orders of magnitude larger. This

supports the increasing trend towards hardware methods for high-speed and massive

compute-intensive processes.

7.2 Suggestions for Future Work

 This work has presented a detailed study of Flat CORDIC Sine/Cosine in

Rotation Mode. Among the other topics of interest as an extension would be an

extension into the hyperbolic coordinate system to generate sinh/cosh values. The main

difference in the characteristic equations for these two coordinate systems is the value

of m, which is either +1 or -1. The sine/cosine generating module can be modified with

sign-changing units like xor gates to include this difference.

 It is seen that the major bottleneck in the design, and also the largest part of the

design is the C&A Section. It would be worthwhile to investigate this ripple architecture

further, to find ways to simplify it by combining more units to make the design more

Univ
ers

iti
Mala

ya

Chapter 7 : Conclusions and Future Work

87

compact. It is also seen that the BLUE module in this architecture is instantiated many

times, and forms a core of the ripple architecture. As the bit-size (N) increases, the

number of combinational terms increases and the number of BLUE modules also

increases. An optimization of this unit in terms of delay could improve the area/time

measurements of the Flat CORDIC design.

 Another potential area of interest would be to extend Flat CORDIC to Vectoring

Mode CORDIC. The simplification of Xo = 1 and Yo = 1 would no longer be applicable

in this case, due to the fact that the initial vector is specified, and will not coincide with

the X-axis. Suitable modifications to the equations to accommodate this mode of

operation could be studied.

Univ
ers

iti
Mala

ya

88

REFERENCES

1. Andraka, R. “A Survey of CORDIC Algorithms for FPGAs,” Proceedings of the

1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate

Arrays (FPGA’98), Monterey, CA, Feb 22 – 24, pp. 191 – 200.

2. Clarke, C. T. (1995). “Unravelling CORDIC”, Proc. ISIC-95, Singapore, Sept. 1996.

3. Dawid, H., and Meyr, H. (1996). “The Differential CORDIC Algorithm: Constant

Scale Factor Redundant Implementation without Correcting Iterations,” IEEE

Transactions on Computers, Vol. 45, No. 3, March 1996, pp. 307 – 318.

4. Dick, C. (1996). “Computing the Discrete Fourier Transform on FPGA Based

Systolic Arrays,” ACM/SIGDA Int. Symp. On Field Programmable Gate Arrays,

Feb 1996, pp. 129 – 135.

5. Ercegovac, M. D. and Lang, T. (1988). “Implementation of Fast Angle Calculation

and Rotation Using On-line CORDIC,” ISCAS’88, pp. 2703 – 2706.

6. Ercegovac, M. D. and Lang, T. (1990). “Redundant and On-Line CORDIC :

Application to Matrix Triangularization and SVD,” IEEE Trans. Computers, vol. 39,

No.6, pp. 725 – 740, June 1990.

7. Gisuthan, B., Srikanthan, T., Asari, K. V. (2000). “A High Speed Flat CORDIC

Based Neuron with Muli-Level Activation Function for Robust Pattern

Recognition,” Proc. Of Fifth IEEE International Workshop on Computer

Architectures for Machine Perception (CAMP’00).

8. Gisuthan, B. (2000). “A Unified Architecture for Flat CORDIC,” M. A. Sc. Thesis,

School of Computer Engineering, Nanyang Technological University, Singapore.

9. Mayosky, M.A., Battaiotto, P. E. and Toccaceli, G. M. (1998). “A CORDIC

Architecture for Vector Control,” Proc. Of the Int. Conf. on Signal Processing

Applications and Technology.

Univ
ers

iti
Mala

ya

89

10. Meyer-Base, U., Meyer-Base, A. and Hilberg, W. (1994). “Coordinate Rotation

DIgital Computer (CORDIC) Synthesis for FPGA,” 4th International Workshop on

Field Programmable Logic and Applications (FPL’94), Prag, Czech Republic.

11. Meyer-Base, U., Meyer-Base, Mellott, J., and Taylor, F. (1998). “A Fast Modified

CORDIC- Implementation of Radial Basis Neural Networks,” Journal of VLSI

Signal Processing, vol. 20, pp. 211 – 218.

12. Symanski, J. J., Henderson, T., Shirasago, J., Celto, J., and Drake, B. (1987).

“SLAPP : A special purpose multiprocessor array for signal processing and linear

algebra,” SPIE : Advanced Algorithms and Architectures for Signal Processing II,

vol. 826, pp. 232 – 239.

13. Takagi, N., Asada, T., and Yajima, S. (1991). “Redundant CORDIC Methods with a

Constant Scale Factor for Sine and Cosine Computation,” IEEE Trans. Computers,

vol. 40, no. 9, pp. 989-995, Sept .1991.

14. Timmermann D., Hahn H., Hosticka B. (1992). “A Low Latency Time CORDIC

Algorithm with Increased Parallelism,” IEEE Transactions on Computers, Vol. 41,

No. 8, pp. 1010 – 1015, 1992

15. Timmermann D., Dolling S. (1997). “Unfolded Redundant CORDIC VLSI

Architectures With Reduced Area and Power Consumption,” VLSI ’97, Gramado,

Brasilien, Aug. 1997.

16. Valls, J., Kuhlmann, M. and Parhi, K. K. (2002). “Evaluation of CORDIC

Algorithms for FPGA Design,” Journal of VLSI Signal Processing, vol. 32, pp. 207

– 222.

17. Vladimirova, T. and Tiggeler, H. (1999). “FPGA Implementation of Sine and Cosine

Generators Using the CORDIC Algorithm,” MAPLDCon’99.

18. Walther, John S. (1971). “A Unified Algorithm For Elementary Functions,” Spring

Joint Computer Conference Proceedings, Vol. 38, 1971, pp. 379 – 385.

Univ
ers

iti
Mala

ya

90

19. Wang, S., Piuri, V., Swartzlander, Earl E. Jr. (1997). “Merged Scaling Multiplication

CORDIC Algorithm,” IEEE International Symposium on Circuits and Systems,

Hong Kong, June 9 – 12.

20. Wassatsch A., Dolling S., Timmermann D. (1998). “Area Minimization of

Redundant CORDIC Pipeline Architectures,” ICCD’98, Intl. Conference on

Computer Design.

Univ
ers

iti
Mala

ya

	6_table_contents.pdf
	 2.4.1 Redundant CORDIC
	 2.4.2 Double Rotation CORDIC Method
	 2.4.3 The Correcting Rotation Method CORDIC

	 2.4.4 Differential CORDIC
	 2.5.1 Iterative CORDIC
	 2.5.1.1 Bit-Parallel Design
	 2.5.1.2 Bit-Serial Design
	 2.5.1 On-Line CORDIC
	 5.3.1 Layer One

	 5.3.2 Remaining Layer Modules

	10_glossary.pdf
	Glossary of Acronyms and Terms

	11_Chapter_1.pdf
	CHAPTER 1 : INTRODUCTION

	12_Chapter_2.pdf
	CHAPTER 2 : CORDIC
	Fig. 2.1 CORDIC Rotation
	2.4.1 Redundant CORDIC
	Part 2
	2.4.2 Double Rotation Method CORDIC
	2.4.3 The Correcting Rotation Method CORDIC

	Fig. 2.2 Decomposition of Angle
	2.4.4 Differential CORDIC
	Fig. 2.5 Unrolled CORDIC Processor

	13_Chapter_3.pdf
	Chapter 3 : FLAT CORDIC

	14_Chapter_4.pdf
	Figure 4.1 Signed Digit Generation for Size N = 24
	Sign
	Figure 4.2 MSSD Generation Algorithm for Size N = 24
	not
	xor
	Adder

	Region Three
	Region Two
	Region One
	Sign

	15_Chapter_5.pdf
	Table 5.1 Example of Ripple for N = 9
	5.3.1 Layer One
	5.3.2 Remaining Layer Modules
	Table 5.4 : Inputs and output of Module ORANGE

	comx[ch] is odd
	comx[ch] is even
	Figure 5.1 : Module PAIR for Layer One
	Table 5.2: Inputs and Output of Module PAIR

	Table 5.3 : Inputs and output of Module BLUE
	5.6.1 Spartan II CLB
	Function Generator
	Storage Element
	Additional Logic
	Fig. 5.7 Spartan II CLB Slice

	16_Chapter_6.pdf
	Chapter 6 : Results & Discussion
	Third Cycle
	Second Cycle
	First Cycle
	For Different SD Generation Methods
	For Different SD Generation Methods
	Table 6.5: C&A Module as Part of Flat CORDIC Architecture
	Table 6.6: Improvement in Latency With Additional Pipeline Stages, N = 9
	Table 6.8: Improvement in Latency With Additional Pipeline Stages, N = 15
	Table 6.7: Improvement in Latency With Additional Pipeline Stages, N = 12
	Table 6.10: Improvement in Latency With Additional Pipeline Stages, N = 21
	Table 6.9: Improvement in Latency With Additional Pipeline Stages, N = 18
	Table 6.11: Improvement in Latency With Additional Pipeline Stages, N = 24
	Table 6.12: Max. Frequency and Gate Count of Flat CORDIC and Conventional CORDIC Architectures
	Accuracy
	Table 6.13: Number of Terms using Direct Sine/cosine Generation
	Table 6.14: Max. Frequency, Latency and Gate Count of Flat CORDIC and Conventional CORDIC Architectures
	Accuracy
	Figure 6.13: Gate Count for Flat CORDIC, Conventional CORDIC
	And Power Series Architectures
	Figure 6.12: Latency of Flat CORDIC, Conventional CORDIC
	And Power Series Architectures
	Table 6.15: Maximum Operating Frequencies For Sine/cosine Computation (Hardware Versus Software)

