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ABSTRACT 

 

The CORDIC algorithm has been widely researched as an efficient hardware algorithm 

for the computation of trigonometric, hyperbolic and transcendental functions. It is an 

iterative process of rotations that are carried out through simple shift and addition 

operations. These operations map well onto hardware, and CORDIC is used in a 

multitude of signal processing applications. The iterative nature of CORDIC is a 

drawback, and a technique known as Flat CORDIC was introduced to eliminate the 

iterations, making the design largely combinatorial. The latest advances in VLSI 

technology have made it possible to produce series of FPGAs that have large numbers 

of gates at relatively low costs. This work focuses on FPGA implementation of the Flat 

CORDIC scheme to efficiently compute trigonometric functions. The successive 

replacement of the basic CORDIC equations to generate the parallelized Flat CORDIC 

ones requires that the direction of all the rotations be pre-computed. This work presents 

a modification to the previous Signed Digit (SD) Generation algorithm and a 

comparison with the previous method. The second major component is the mapping of 

the Flat CORDIC equations using these SDs. An architecture is proposed for effective 

combination of these SDs for sine/cosine generation. Pipelining methods are 

investigated to increase design speed. The architectures for 9, 12, 15, 18, 21 and 24 bit 

Flat CORDIC are simulated using XILINX ISE WebPack 5.2i. The functionally 

simulated designs are synthesized onto SPARTAN FPGAs. Some relevant comparisons 

are made with other designs in literature. It is found that if properly pipelined, Flat 

CORDIC on FPGAs can achieve high speeds of up to 43 MHz for 20 bit accuracy. In 

terms of area, however, the largely combinatorial design is a drawback for FPGA 

implementation. In summary, the main contribution of this thesis is a study on the 

effectiveness of mapping Flat CORDIC onto FPGAs 
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CHAPTER 1 : INTRODUCTION 

 

1.1 Motivation 

 

The rapid technological advances in VLSI have made it possible to market high 

performance logic devices which can accommodate large amounts of logic at low cost. 

Field Programmable Gate Arrays (FPGAs) are among the class of programmable logic 

devices that have benefited tremendously from these advances, allowing them to reach 

gate counts large enough to allow complex applications to be programmed onto them. 

They can also operate at increasingly higher frequencies. FPGAs in recent times have 

come to rival ASICs with their short development time and lower costs. The availability 

of Synthesis as well as Place and Route (P&R) tools has made it easier to create and test 

designs. In addition, SRAM FPGAs also have unlimited reprogrammability that allow 

design upgrades without having to replace the hardware (Skahill, K. 1997). 

 

The CORDIC algorithm is well known as a hardware-efficient algorithm for 

performing trigonometric, hyperbolic and transcendental functions (Walther, 1971). 

There is an increasing need for huge amounts of rapid calculations in the fields of signal 

and image processing and robotics, to name a few, and hardware components to execute 

these calculations have been taking over their software counterparts in recent times 

(Wang et al, 1997). Research into CORDIC and its applications have been extensive, 

and many methods have been proposed and implemented to eliminate or minimize its 

drawbacks. Among them is the Flat CORDIC algorithm (Clarke, 1995) that aims to 

completely eliminate the iterative nature of CORDIC through a parallelization of the 

CORDIC equations, and thereby decrease the latency.  
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1.2 Research Objectives 

 

• This thesis focuses on the FPGA implementation of Flat CORDIC. A method for 

generating the iteration directions (Signed Digits, or SDs) is studied. In 

conventional CORDIC, one SD is generated per iteration. In Flat CORDIC, 

which is a parallelization of the original CORDIC equations through repeated 

replacement into successive iterative equations, all the SDs need to be known 

beforehand, because the overall Flat CORDIC equation is completely expressed 

in term of all these SDs.  

• Gisuthan (2000) designed a Signed Digit Algorithm (SDA) using encoders. This 

work will attempt a detailed examination of the relationship between the input 

angle values and their corresponding SDs. All possible input values and their 

corresponding SDs could be examined to see if there is a pattern between them, 

and identify this pattern. The SD generation could then be synthesized and 

simulated using VHDL and then compared against results using conventional 

programming like C++. 

• This work will also focus on implementation of the Flat CORDIC equations. 

The equations for the cosine and sine of an N-bit input angle are made up of 

many terms, with the number of terms increasing sharply with N. Each term is 

made up of two parts – the combinational part, which is the product of different 

sets of SDs, and the positional value part, which is in the form of 2-i, that, in 

binary, is simply a right shift i times. For each specific positional value, there are 

a number of combinational sets of values that need to be shifted by that 

positional value.  

Univ
ers

iti 
Mala

ya



Chapter 1 : Introduction 

  
3 

• A method could be looked into that combines all these terms in a unique manner 

that eliminates the need for multiple adders to get the sum of all the 

combinations. This method would involve the design of specific modules that 

are then repeatedly generated. In addition, the final summation of all the 

combinational terms with their shifts could be reduced to one single addition. 

Here again, the detailed input and output data for cosine and sine generation 

would be generated in C++.  

• The full design with all the modules would subsequently be written in VHDL, 

then functionally simulated and synthesized. The results of these simulations 

could be compared against the C++ data files mentioned earlier. 

• The proposed architecture is organized in a matrix structure of repeated 

instances. The design is largely combinatorial, and in certain positions, the data 

has to run through many layers of logic that cause large delays. Studies could 

then be performed on the possibilities of pipelining the design to reduce the 

amount of logic per cycle.  

• The improvement in circuit frequency with additional pipeline stages would then 

be compared with the effect of the additional cycles on the overall latency of the 

design. The results will show whether an improvement is seen if the circuit is 

correctly pipelined, and whether there are any limits to the benefit of the 

additional stages (ie. there is an ideal number of extra pipeline stages, beyond 

which adding them decreases performance).  Univ
ers

iti 
Mala

ya



Chapter 1 : Introduction 

  
4 

 

1.3 Main Contributions 

 

The primary goals of this thesis are to investigate and design architecture for Flat 

CORDIC on FPGAs. The thesis provides insight into the internal patterns for SD 

Generation and combinations. Based on the above goals, the key contributions of this 

thesis include 

• A complete analysis on the relationship between input angles and corresponding 

SDs 

• A newly designed combination scheme for piecing together the Flat CORDIC 

basic equations in a simple and organized manner 

• A detailed study on the design issues of implementing the scheme, and the 

possibilities for improving the design 

 

1.4 Thesis Outline 

 

This work is organized as follows. In Chapter 2, the CORDIC algorithm is presented, 

and its operation modes are explained. The various modifications of the algorithm are 

summarized. Implementations of this algorithm on FPGAs are presented. 

 

In Chapter 3, the Flat CORDIC Algorithm is introduced. The design is 

subdivided into several parts, and these are outlined. The pair-wise linear patterns found 

between the input angle bits and the Signed Digits are highlighted.  
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Chapter 4 is dedicated to a detailed description of the Signed Digit Generation 

methods and algorithm. The method for utilizing the unique pattern is examined, and a 

comparison is made with the previous generation method.  

 

The combination and channeling of the SDs is shown in Chapter 5. A method 

for rippling the channel results using combinatorial logic, to avoid the use of many 

adders is presented. A method to pipeline the design for higher throughput is discussed. 

Also included is a general description of FPGAs, and specifically the one used in this 

work. 

 

Chapter 6 presents the synthesis results of Flat CORDIC and its individual 

components. A comparison is made with other implementation methods. 

 

Chapter 7 concludes the thesis with a summary of the results. Suggestions for 

future work in this area are also presented. 

Univ
ers

iti 
Mala

ya



Chapter 2 : CORDIC 

 6 

 

CHAPTER 2 : CORDIC 

 

2.1 The CORDIC Algorithm 

 

The CORDIC (COordinate Rotation DIgital Computer) Algorithm is widely used as a 

powerful and flexible generic architecture to implement many algorithms that involve 

non-trivial arithmetic functions. It is a versatile algorithm for computing trigonometric, 

hyperbolic and transcendental functions by performing a rotation of a 2-dimensional 

vector in linear, circular and hyperbolic coordinate systems. This rotation is the result of 

an iterative series of simple shift and addition operations, which are easy to incorporate 

in VLSI technology.  

 

The original trigonometric CORDIC algorithm was developed by Volder (1959) 

as a digital solution for real-time navigation problems. This version was used to 

calculate trigonometric functions, multiplication, division and datatype conversion 

functions, and plane rotations. Extensions to CORDIC theory by Walther (1971) 

enabled calculation of hyperbolic functions, the results of which could be exploited to 

generate other transcendental functions.  

 

CORDIC currently forms the integral macro in computer arithmetic. 

Applications of modern digital signal and image processing, which involve massive 

computations, exhibit an increasing need for the efficient implementation of complex 

arithmetic operations, and widely use CORDIC. Other compute-intensive applications 

include matrix computations, which involve calculation of angles and their use in 

rotation, for example matrix triangularization, and singular value decomposition 
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(Symansky et al., 1987). These have benefited tremendously in speed through the 

incorporation of CORDIC. It is also used widely in the fields of dynamic system 

modeling, control, robotics, computer graphics, filtering and virtual reality (Wang et al., 

1997). 

 

2.2 The CORDIC Equations 

 

The CORDIC Algorithm performs the rotation of a vector (Xi, Yi) with magnitude M 

and phase P by means of a sequence of micro-rotations, each one over a fixed 

elementary angle iφ , as shown below: 

iiiii YXX φφ sincos1 −=+                        (2.1) 

iiiii XYY φφ sincos1 +=+                       (2.2) 

For the ith iteration, as indicated above, the vector prior to rotation is (Xi, Yi) and the 

rotated intermediate vector is (Xi+1, Yi+1)  

With the rotation angle restricted such that i1
i 2tan −−±=φ  (the ± sign indicates that the 

rotation direction is variable), the micro-rotation can be reduced to simple shift-and-add 

operations : 

( )i
iiiii YsXKX −

+ −= 21   and  ( )i
iiiii XsYKY −

+ += 21  

The direction of the micro-rotation is indicated by si (+1 for anticlockwise rotation, and 

–1 for clockwise rotation). It is to be noted here that each successive rotation is not a 

pure rotation, but a rotation-extension, where the length of the resultant vector is 

modified by a factor of 
i

iK
φcos

1
=  

In their generalized form, the CORDIC equations are given as : 

i
iiii YmsXX −

+ −= 21                        (2.3) 
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i
iiii XsYY −

+ += 21                        (2.4) 

( )i
iii mms

m
ZZ −−

+ −= 2tan1 1
1                      (2.5) 

With the selection of an appropriate value for the parameter m, different coordinate 

systems can be achieved (+1 for circular, -1 for hyperbolic). Zi is the overall rotation 

angle accumulator. 

The final output vector after N iterations is (XN, YN), and is scaled by a constant scale 

factor K, which is a combination of the scaling from all the iterations, and is given by 

∏
=

=
N

i i

K
1 cos

1
φ

. A multiplication by 1/K is introduced at the end to correct (XN, YN). To 

satisfy an N-bit precision CORDIC operation, N iterations are required. In addition, the 

length of the datapath to compute the X and Y variables has to be (N + log2N + 2) bits 

(Gisuthan et al., 2000).  

 

2.3 CORDIC Operation Modes 

 

There are two basic modes of operation for CORDIC; the Rotation Mode (RM) and the 

Vector Mode (VM). The rotation mode rotates the input vector by a specified input 

angle (or argument), and the vector mode rotates the input vector towards the X-axis, 

while recording the total angle movement. Implementation of these methods is 

characterized by suitable control of the direction of successive micro-rotations, which 

force either the Y- or the Z- components to 0. 
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2.3.1 Rotation Mode CORDIC 

 

The rotation mode is usually used to compute trigonometric functions since/cosine, 

hyperbolic functions sinh/cosh, and then extended to transform polar coordinates to 

Cartesian coordinates. The angle accumulator Z is initialized with the desired rotation 

angle θ. In sine/cosine computations:  

i
iiii YsXX −

+ −= 21                        (2.6) 

i
iiii XsYY −

+ += 21                        (2.7) 

( )i
iii sZZ −−

+ −= 2tan 1
1                       (2.8)  
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The initial vector (Xo, Yo) is aligned along the X-axis, with magnitude 1, ie  (1,0) 

At the end of the N iterations, the final vector (XN, YN) = (KNcos θ, KNsin θ) 

 

2.3.2 Vector Mode CORDIC 

 

This mode is usually used to calculate magnitudes and angles of given input vectors, 

and also arctangent values. For a given input vector, Z is initialized to 0, and the vector 

is rotated until it is aligned along the X-axis. The angle accumulator will now show the 

total traversed angle, (ZN), and the magnitude of the original vector is the (XN) 

Xi+1 Xi 

(Xi,Yi) 

(Xi+1,Yi+1) 

Yi 

Yi+1 

X 

Y 

∑ −−−=
i

i
iZ

1

1 2tanθ  

Z i+1=Zi-tan-12-(i+1) 

∑
=

−−=
i

k

k
ki sZ

1

2θ  

∑
=

−−=
i

k

k
ki sZ

1

2θ  ( )1
1

1
1 22 +−

+
=

−
+ −−= ∑ i

i

i

k

k
ki ssZ θ  

θ 

Ri+1 

R 

Fig. 2.1 CORDIC Rotation 
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component. This magnitude, as mentioned earlier, is scaled.  For the Vector Mode, the 

characteristic equations are :  

( ) i
i

iii YYsignXX −
+ += 21                                (2.9) 

 ( ) i
i

iii XYsignYY −
+ −= 21                    (2.10) 

( ) ( )i
iii YsignZZ −−

+ += 2tan 1
1                   (2.11) 

 

Despite its architectural and algorithmic simplicity, the CORDIC algorithm has several 

drawbacks:  

 

1) Each successive iteration can only be performed after the previous one, since the  

sign bit that determines the rotation direction is produced by the previous 

iteration 

2) It is slow because the recurrences involve carry-propagation addition and 

variable shifting 

3) It is area-consuming because of the use of variable shifters and the ROM storing 

the arctangent values 

4) The area complexity and circuit latency are roughly proportional to the accuracy 

of the desired output. Therefore, the speed of execution becomes restricted with 

the size  
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2.4 Literature Review : Modifications of CORDIC 

 

In general, modifications to the CORDIC algorithm aim to either increase the speed of 

the iterations, or to reduce the total number of iterations. Among the methods used to 

increase the speed of the iterations are the redundant (or on-line) number representations 

and redundant adders, which can perform Most Significant Digit (MSD)- first additions. 

For reduction of the number of iterations, higher radix techniques are used. 

 

2.4.1 Redundant CORDIC 

 

In redundant CORDIC, the X, Y, and Z values are coded using redundant number 

representation. Introducing this into the iterative computation eliminates the carry-

propagate from the addition/subtraction operations, thereby allowing them to be carried 

out MSD first. The signed digit in this case is selected from the range {-1, 0, 1}, as is 

explained: In the redundant form of representation, the Most Significant Digit, MSD of 

the value does not necessarily contain the sign of the value. The signed digit (si) has to 

be estimated from the inspection of a few of the MSDs. However, when all the 

inspected digits are 0, the proper value of si cannot be determined without knowledge of 

the remaining digits, and here it would seem that the best strategy would be to assign 

the value 0 to si. This move, however, freezes the iteration. Since the final scaling 

factor, KN depends on the actually performed iterations, freezing the iteration causes the 

final scaling factor to become variable. 

 

Ercegovac and Lang (1988, 1990) developed special purpose CORDIC modules 

which take an input vector (a, b) as an input, and first determine the angle (vectoring 
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mode), ( )a
b1tan −  in decomposed form (in the form of the signed bits), and then proceed to 

calculate the sine and cosine of the input angle (rotation mode, circular coordinates). 

The highlights of their work are :  

1) The conventional CORDIC module is modified so that on-line addition is used. 

Area-consuming shifters are replaced by area-efficient delays 

2) An implementation of the computation of the variable scale factor is developed 

3) After the angle θ is obtained, it is transmitted in decomposed form to be used in 

the rotation mode 

 

 

 

 

 

Part 1 :  

The two modifications that improve the CORDIC implementation are :  

1) Elimination of the shifter :  

We let [ ] [ ]jYjW a
j2=                   (2.12) 

So, from (1) to (3), we now have   

[ ] [ ] [ ]jWsjXjX j
jaa

221 −+=+                  (2.13) 

[ ] [ ]( )jXsjWjW aj−=+ ][21                  (2.14) 

[ ] [ ] ( )j
jaa sjZjZ −−+=+ 2tan1 1                 (2.15) 

With si = 








<−
≥+

0][1
0][1

jWif
jWif

                  (2.16)

  

ANGLE MODULE 

( )a
b1tan −=θ  ROTATION 

MODULE 
si 

Xo=1 

Yo=0 

Fig. 2.2 Decomposition of Angle 

Univ
ers

iti 
Mala

ya



Chapter 2 : CORDIC 

 14 

From this, we see that one shifter has been eliminated, and also, iterations when 

2
Nj >  do not affect X[n] for N bit precision 

 

2) Replacing carry propagation by redundant addition : 

Here, si is allowed to take values from the set {-1, 0, 1} instead of {-1, 1} as follows  

With si = 
















−≤−
=

≥+

2
1

2
1

][1
0][0

][1

jWif
jWif
jWif

                  (2.17) 

 

Where ][ˆ jW  is an estimation of W[j] with a precision of 1 fractional bit (usually the 

3 MSB of W[j]) 

 

Part 2  

Following this, to calculate, for example, the sine/cosine values of the original 

vector (Xo, Yo), the angle θ, which was produced in decomposed form [from Part 1] 

is now rotated using the decomposed bits as the signed bits as follows :  

i
i

iii YsXX −
+ += 21                   (2.18) 

i
i

iii XsYY −
+ −= 21                   (2.19) 

 

Where Xo = 1 and Yo = 0. The final values of X and Y will yield the scaled cosine 

and sine values of (Xo,Yo). This CORDIC operation is partial because it uses the 

angle produced by another CORDIC operation in decomposed form. In addition, the 

si bits are passed in series (most significant bit first) so that the rotation can be 

overlapped with the angle calculation. 
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The drawback here is that the scale factor becomes variable due to the iteration 

where no rotation is performed, and has to be calculated during computation. In 

addition, the si value is an estimate, and should the estimate be inaccurate, the 

convergence behavior would possibly be disturbed. Finally, the simple adders of 

conventional CORDIC are traded for the more complex online adders.  

 

Later, Takagi et al. (1991) developed two new modifications of the redundant 

addition scheme which have constant scale factors. These methods are the Double 

Rotation Method, and the Correcting Rotation Method. 

 

2.4.2 Double Rotation Method CORDIC 

 
In the Double Rotation Method (Takagi et al., 1991), every rotation-extension is 

carried out by a combination of 2 subrotation-extensions. Here again, the redundant 

binary representation is used, with the digit set {-1, 0, 1}, and si taking values in the 

same set. A negative rotation, a positive rotation and a non rotation are respectively 

produced by two negative subrotations, two positive subrotations, and one negative 

and one positive subrotation. 

The corresponding equations are:  

1
22

11 22 −
−−

−
−

− −−= j
j

jj
j

jjj XpYqXX                 (2.20) 

 1
22

11 22 −
−−

−
−

− −−= j
j

jj
j

jjj YpXqYY                  (2.21) 

 ( )11
1 2tan2 −−−

− −= j
jjj qZZ                   (2.22) 

Equations (2.20 – 2.22) are obtained through a combination of two sets of equations 

which describe the rotation-extensions with the angle  11 2tan −−− j . Xj and Yj are 

represented using redundant binary numbers, and Zj by a redundant binary fraction, 

the most significant digit of which is located in the jth binary position. The direction 
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of rotation is determined by evaluating the three most significant digits of Zj-1. (qj 

denotes the direction of the jth rotation). 

qj and pj are obtained using ( )
[ ]
[ ]

[ ] 

















>

=

<

=

−
−
−

−
−
−

−
−
−

0,,)1,1(

0,,)1,0(

0,,)1,1(

,

1
1
1

1
1
1

1
1
1

j
j

j
j

j
j

j
j

j
j

j
j

j
j

j
j

j
j

jj

zzzif

zzzif

zzzif

pq              (2.23) 

 

2.4.3 The Correcting Rotation Method CORDIC 

 

This method has one rotation-extension per iteration. Here, the signed digit, si is 

restricted to ±1. The error introduced by constraining si is taken care of with extra 

correcting iterations every m steps, where m is an arbitrary integer.  

 

For iteration i: 

When 0mod ≠mi  11 2 −
−

− −= i
i

iii YqXX                 (2.24) 

     11 2 −
−

− += i
i

iii XqYY                 (2.25) 

    ( )i
iii qZZ −−

− −= 2tan 1
1                (2.26) 

where iq  is obtained by evaluating the (m-h+3) MSDs of 1−iZ  ( mjh mod= ) 

When 0mod =mi  11
' 2 −

−
− −= i

i
iii YqXX                 (2.27) 

     11
' 2 −

−
− += i

i
iii XqYY                 (2.28) 

    ( )i
iii qZZ −−

− −= 2tan 1
1

'                (2.29) 

 followed by  ''' 2 i
i

iii YqXX −−=                 (2.30) 

     ''' 2 i
i

iii XqYY −+=                    (2.31) 

    ( )i
iii qZZ −−−= 2tan 1''                (2.32) 

 where '
iq  is obtained by evaluating the (m+2) MSDs of 1−iZ  
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The two major advantages of employing this scheme are that, not only is the scale factor 

incorporated into the iterations, it is also taken care of in such a way that the final value 

does not need to be scaled. 

 

 However, the number of MSDs to be examined here to determine the direction 

of rotation is higher than in other methods. In addition this method also yields more 

iterations than normal, although not as many as in the Double Rotation Method.  

 

Later, Timmerman (1992) tried to develop a scheme for determining the SDs and 

carrying out the iterations in parallel. This scheme maintains the scale factor at a 

constant value without an increase in the number of iterations. This is done by dividing 

the entire process into 3 separate parts and carrying them out as follows: 

  

i) The first 4
3−N iterations are carried out as normal, with si restricted to the set 

{-1, +1}. 

ii) For iterations 4
3−N  to 2

1+N , if si = ±1, then again the iterations are carried out 

as normal. If, however, si = 0, then no rotation is performed. This, as we 

know, would result in a non-constant scale factor. To keep the scale factor 

constant, at this point, instead of a rotation, the vector is simply extended by 

the same amount as it would have been had the rotation been performed. The 

modification to the iterations is thus : 

i
i

ii XmXX 12
1 2 −−

+ +=                   (2.33) 

i
i

ii YmYY 12
1 2 −−

+ +=                   (2.34) 

iii) In the final set of iterations, 2
1+> Ni , it is assumed that the change in the scale 

factor is negligible, and therefore can be neglected in the cases of si = 0. 
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2.4.4 Differential CORDIC 

 
Differential CORDIC (Dawid and Meyr, 1996) is made up of a sequence of absolute 

value computations, in addition to the normal additions, subtractions and shifts typical 

of CORDIC. The iteration i
iii sZZ −−

+ −= 2tan 1
1  can be interpreted in the following way 

: The rotation direction is chosen which leads to a smaller absolute value of the new Z 

component. Therefore, the conventional iteration is transformed into an iteration that 

involves only the absolute value of the new iẐ  variable. 

 

 In the rotation mode, the original recurrence of Z as stated above, is transformed 

to i
iii ppp −−

++ −== 2tanˆˆ 1
11 , where ip̂  is the predicted value of pi. Even though 

only the absolute value 1ˆ +ip  appears in the transformed equations, we still require the 

sign of 1+ip , which is given by ( ) ( ) ( )11 ˆ ++ = iii psignpsignpsign . This means, 

( )1+ipsign can be recursively calculated given sign(po) and ( )1ˆ +ipsign . This is what is 

seen as a type of differential decoding, which gives DCORDIC its name. Following 

this, the carry behavior of the additions of two operands was studied (Timmerman et al., 

1998, and Wassatsch et al., 1998), where one operand is increasingly shifted right 

(made smaller). Special adder cells were then developed and used along with the regular 

adder cells. The special cells (which are much more compact in size and area) are used 

for the MSDs, when they are known to be 0’s, and the normal adder cells for the rest of 

the bits. As the iterations progressed to bigger numbers, the total number of special cells 

increased, thus producing significant savings in terms of the area.  

 

 

Univ
ers

iti 
Mala

ya



Chapter 2 : CORDIC 

 19 

 

2.5 CORDIC Implementations on FPGA 

 

CORDIC can be mapped onto architecture in a variety of ways. These different methods 

of implementation provide a variety of options, where the best tradeoff can be chosen 

among circuit complexity, clock cycle time, latency and throughput, depending on the 

application requirements (Vladimirova and Tiggeler). The following is an examination 

of several different architectures as implemented on FPGAs. 

 

2.5.1 Iterative CORDIC  

 
There are two types of Iterative CORDIC implemented. One is the Bir-Parallel 

Architecture, and the other is the Bit-Serial Architecture (Andraka, 1998). 
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2.5.1.1 Bit-Parallel Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

Early FPGAs were not able to implement a parallel CORDIC algorithm due to limited 

chip size and the impossibility of routing the hard-wired shifters. Consequently, it has 

been performed in several FPA-based DSP applications (Meyer-Base et al., 1994, Dick, 

1996, Meyer-Base et al., 1998, Mayosky et. al., 1998). There are 3 registers, one each 

for storing the X, Y and Z components (Andraka, 1998). There are 3 adder-subtractors 

for performing the additions. Depending on the mode of operation, the signed bit for the 

following iteration is determined. This can be seen in Figure 2.3. In each iteration, the 

ROM is incremented t provide the appropriate angle for the Z-adder, and the shifters are 

modified to select the correct degree of shift. When N iterations have been completed, 

the results can be directly read from the X and Y registers.  

>>n 

>>n 

register 

register 

± 
-msi 

± 
si 

xn 

yn 

± 
-si 

ROM 

register 
zn sgn(zi) 

sgn(yi) 

zo 

yo 

xo 

Fig. 2.3 Bit-Parallel Iterative CORDIC 
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On FPGAs, the variable parallel shift registers do not map too well due to the high fan-

in. The signal ends up passing through a number of FPGA cells because the shifters 

require several layers of logic. 

 

2.5.1.2 Bit Serial Design 

 

 

 

 

 

 

 

 

 

 

 

A more compact version is implemented with bit-serial arithmetic (Andraka, 1998). 

This design uses 3-bit serial adder-subtractors, 3 shift registers and a serial ROM. The 

length of the shift registers is N bits. The design is shown in Fig. 2.4. 

  

 Once the data is loaded into the registers (parallel/serial), the data is shifted bit 

by bit through the adder-subtractors and the resultant values are returned to the registers 

(this takes N clock cycles). The arctangent constants in the ROM for the Z-component 

is loaded serially. When the ith iteration is complete, the signed bit for the next iteration 

is determined. After the Nth cycle of the Nth iteration, the process is complete and the 

results can be directly read from the X and Y registers.  

Serial 
adder-

b
 

xo xn 

Serial 
adder-

b
 

yo yn 

Serial 
adder-

b
 

zo zn 
Serial ROM 

Fig. 2.4 Bit-Serial Iterative CORDIC 
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Size-wise, this design is more compact than the bit-parallel architecture. The number of 

clock cycles to complete the entire CORDIC process is large, but it can be compensated 

for by the fact that extreme bit clock frequencies can be used.  

 

2.4.2 On-Line CORDIC 

 

This is an example of a CORDIC processor that is combinatorial (Andraka, 1998). 

Instead of using clocked registers, the entire CORDIC processor is unrolled to produce 

an array of interconnected adder-subtractors. Two distinct advantages of this 

arrangement are that the shifters are not variable-bit shifters, but hardwired shifters, 

each one performing a fixed shift. The second is that the look-up values for the angle 

accumulator are distributed as constants to each adder in the angle accumulator chain. 

The delay through this huge amount of combinatorial logic is large, but the processing 

time is reduced compared to the iterative circuit. However, such a large combinatorial 

design is not suited to FPGAs.  

  

The unrolled process can be easily pipelined by adding registers between the 

adder-subtractors. 
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In addition, Valls et al. (2002) studied the suitability of redundant arithmetic operators 

in full custom based CORDIC implementations. It was found that while these methods 

yielded improvements in speed, the resultant area became close to 4 or 5 times larger 

than the conventional 2’s complement method. 

 
 
 

± 

>>2 

± 

>>2 const 

± 

sign 

± 

>>1 

± 

>>1 const 

± 

sign 

± 

>>0 

± 

>>0 const 

± 

sign 

± 

>>4 

± 

>>4 const 

± 

sign 

± 

>>3 

± 

>>3 const 

± 

sign 

xo yo 

xn yn zn 

Fig. 2.5 Unrolled CORDIC Processor 
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Chapter 3 : FLAT CORDIC 

 

3.1 Introduction to Flat CORDIC 

 

Flat CORDIC is a revolutionary manipulation of the conventional CORDIC algorithm 

that has produced immense savings in both area and speed. It was put forth by Clarke 

(1995). Despite all the improvements of the previous modifications of CORDIC, the 

characteristic iterative process has always remained a bottleneck. Flat CORDIC is the 

first method to eliminate these iterations to allow for a new level of refinement and 

optimization. In this method, the results are completely expressed in terms of the 

original input vector. This is achieved through successive substitution of the original 

vector in each iterative equation. 

 

3.2 The Flat CORDIC Equations 

 

From Chapter 2, the main CORDIC equations are as stated below : 

i
iiii YmsXX −

+ −= 21                        (3.1) 

i
iiii XsYY −

+ += 21                        (3.2) 

where (Xi, Yi) is the original vector, and (Xi+1, Yi+1) is the rotated vector. In the next 

iteration,   

( )1
1112 2 +−
++++ −= i

iiii YmsXX                       (3.3) 

( )1
1112 2 +−
++++ += i

iiii XsYY                       (3.4) 
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Substituting (3.1) and (3.2) in (3.3) and (3.4), we get 

( )( ) ( )( )1
1

1
12 22221 +−

+−
+−−

++ +−−= i
iiii

ii
iiii ssmYsmsXX                    (3.5) 

( )( ) ( )( )1
1

1
12 22221 +−

+−
+−−

++ ++−= i
iiii

ii
iiii ssXsmsYY                   (3.6) 

The results of this second rotation are given directly in terms of the original vector (Xi, 

Yi). Proceeding in this manner, successive substitution gives us a generalized Flat 

CORDIC equation that is completely flattened and parallelized :  
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                        (3.7) 
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               (3.8) 

To calculate sine/cosine functions, rotation mode CORDIC is used in circular 

coordinates. The initial vector is (1,0). The Flat CORDIC Equations now become  

∑ ∑ ∑ ∑ ∑∑
−

=

−

=

−

+=

−

+= +=

−−−−

+=

−− +−=
1

1

3

1
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1

1 11
2222221

N

i

N

i

N

ij

N

jk

N

kl

lkji
lkji

N

ij
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jiN ssssssX      (3.9) 

∑ ∑ ∑ ∑ ∑ ∑∑ ∑∑
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                      (3.10) 

( ) ( )θθ sin,cos, NNNN KKYX =                    (3.11) 
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A quick glance shows that firstly, an efficient implementation would require prior 

knowledge of the polarity of the micro-rotation (the signed digits, or SDs). Secondly, 

the number of combinations of SDs would very quickly become huge as the size N 

increases. 

 

3.3 Generation of SDs 

 

Conventionally, each CORDIC iteration generates one SD from the equation  

i
iii sZZ −−

+ −= 2tan 1
1               

(3.12) 

The sign of the following iteration, 1+is comes from the most significant bit (MSB) of 

1+iZ . Now, suppose we could make the approximation ii −−− ≈ 22tan 1 . Then, 

i
iii sZZ −

+ −= 21 , and we would be able to directly generate all the SDs from the 

original input angle. For small values of i, this approximation is not valid. Alternatively, 

we assume ii −−− ≈ 22tan 1  for i > M (Gisuthan, 2000). If we can identify a value for M, 

then we need only carry out M iterations. Then, all the SDs can be obtained directly 

from the remaining angle after M iterations. 

Theorem 1 shows that the value of M that validates our assumption for N-bit size is N/3. 

Theorem 2 shows that the remaining SDs can be obtained directly from ZM.  
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3.3.1 Theorem 1 

 

Theorem 1 : For N-bit CORDIC, ii −−− ≠ 22tan 1  for 






 −
=

3
3log

1 2N
toi  

Proof : The expansion of x1tan − for 1≤x  is 

( ) −+−+−=−

9753
tan

9753
1 xxxxxx                       (3.13) 

For ix −= 2 , ( ) −+−+−=
−−−−

−−−

9
2

7
2

5
2

3
222tan

9753
1

iiii
ii               (3.14) 

For N-bit accuracy, the necessary conditions for obtaining the minimum value of i for 

which the expression ii −−− = 22tan 1  is valid is that the error due to the ith bit must be 

N−< 2 . That is: Nii
ie −−−− <−= 22tan2 1                  (3.15) 

But +−+−=
−−−−

9
2

7
2

5
2

3
2 9753 iiii

ie   <  +−+−
−−−−

3
2

3
2

3
2

3
2 9753 iiii

             (3.16) 

The next condition to obtain the minimum value of i is : N
i

−
−

< 2
3

2 3

              (3.17) 

Ni −<−− 3log3 2    
3

3log 2−
>∴

N
i                  (3.18) 

i is an integer, therefore i is the smallest integer that is equal to or larger than 

3
3log2−N . If N is a multiple of 3, then Equation (3.18) is true for 

3
Ni =  

Now, we need to show that the accumulated error, N
N

Ni
ie −

=

<∑ 2
3/

 

From (3.16)  ∑∑∑
=

−−

=
−

−

=

<<
+

=
N

Ni

Ni
N

Ni
i

iN

Ni
ie

3/

3

3/
2

3

3/
232

21
32                (3.19) 

 

It has been verified that for the first 13 −
N  bits, the arctangent value of each bit 

( )( )i−− 2tan 1  is not equal to the positional value of the corresponding bit in the normal 
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binary representation ( )i−2 , whereas for bits 3
N  to N, they are equal for N-bit accuracy. 

Due to this discrepancy, it is not possible to directly precompute the SDs corresponding 

to the first 13 −
N  bits. 

 

3.3.2 Theorem 2 

 

Theorem 2 : In N-bit CORDIC, the first 13 −
N  signed digits (SDs) cannot be pre-

computed 

Proof : Let is  be the SD of the ith iteration. It carries a weight of i−− 2tan 1  which 

represents an angle measured in radians. Let ak be the kth bit of the angle remaining after 

i iterations and A(i) be the angle remaining after the ith iteration.  

∑
=

−−−=
i

j

j
jsAiA

1

1 2tan)0()( where )0(A is the input angle for rotation.              (3.20) 

It is assumed that angles are represented in ( )1,1 − format, so after i iterations have been 

performed, 11 ++ = ii as . After i iterations, the Signed Binary Number Representation 

(SBNR) of ( )iA  must have the first i bits as zeros and the remaining bits strictly non-

zeros.  

In all these cases, it is assumed only one SD per iteration is considered. If m (1 < m < 

N) SDs are considered at the ( )thi 1+ iteration, then ( )1+iA holds the following inequality 

(Walther, 1971). 

( ) ( ) ( )( )mi
mi

ij

j
jsiAmiA +−−

+

+=

−− <−=+ ∑ 2tan2tan 1

1

1                 (3.21) 

It must now be shown that this inequality fails if there exists a situation in which the 

computation of more than 1 SD results in an error. 

Consider a case where ai+1 = 1 and ai+2 = -1 
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Then,     si+1 = 1 and si+2 = -1 

And ( ) ( ) ( )( )21
2

1

1 2tan2tan1 +−−
+

+=

−− <−=+ ∑ i
i

ij

j
jsiAiA                (3.22) 

But ( ) ∑
+=

−=
N

ik
k

k aiA
1
2                 (3.23) 

ie., 

( ) ( ) ( ) ( )( ) )1(1)2(1
2

)1(1
1

3

)2(
2

)1(
1 2tan2tan2tan222 +−−+−−

+
+−−

+
+=

+−
+

+−
+

− <+−++∑ ii
i

i
i

N

ik

i
i

i
ik

k ssaaa

                 

(3.24) 

Maximising A(i) by setting all ak values to 1 for ( ) Nki ≤≤+ 3 , 

( ) ( ) )1()1()2()1()2(
max 2222222)( +−−+−+−+−−+− <−=−+−= iNiiiNiiA               (3.25) 

ie.   ( ) ( ) )2()2(1)1(1)1( 22tan2tan22)1( +−+−−+−−−+− <−−−=+ iiiNiiA         (3.26) 

and so,  Nii −+−−+− <− 22tan2 )1(1)1(                   (3.27) 

but this condition is only satisfied when 3
Ni ≥  

Therefore, the inequality (3.21) is not valid up to 13 −N iterations, and it is not possible 

to predict more than 1 SD per iteration until the ( 13 −N )th iteration is performed. 

However this does not prove that it is possible to predict more than 1 SD per iteration 

beyond 13 −N iterations. 

In order to ascertain that all SDs beyond 13 −N  iterations can be pre-computed in 

parallel, we must first prove that the bits of ( )13 −NA  which has the value 

∑ −−
N

j
j

N

a
3

2tan 1  {where the first bits of ( )13 −NA are 0’s} are the SDs. 

For this to be true, the following must be valid:  

∑∑ −−−− <−
N

Nj
j

N
j

j
NN

sa
33

22tan2 1                   (3.28) 
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Theorem 1 proves that for N-bit accuracy, ii −−− = 22tan 1  for 3
Ni =  to N               (3.29) 

Therefore, (3.15) is valid, which implies that after 3
N  iterations, the remaining SDs can 

be pre-computed in parallel 

 

3.4 Combination of SDs and Addition 

 

After the signed digits have been pre-computed, the evaluation of the Flat CORDIC 

equation involves the summation of the positional valued products of the signed digits 

in different combinations. Each term consists of two parts, namely the signed digit 

combination part, and the positional value part, as seen in Fig. 3.1.  

 

 

 

 

For the example shown in Fig. 3.1, the cumulative index value (CIV) is the sum 

of the negative indices (the total binary shift). As previously mentioned, the number of 

combinations increases sharply with the size N. To reduce this, exhaustive error analysis 

has shown that any term with a cumulative index value (CIV) greater than the value EN, 

does not affect the results of XN and YN, and can be left out. For N-bit CORDIC, EN = N 

+ log2N + 2. For Flat CORDIC, EN = N + log2N. 

 

Graph 3.2 depicts the rise in the number of combinations for each size N, using EN = N 

+ log2N. These terms are taken for XN calculation. The difference in the number of 

terms between XN and YN calculation is not very significant. 

2-12-22-3 s1s2s32-(1+2+3) 

= s1s2s32-6 
 
 

s1s2s3 

Fig. 3.1 Signed Digit Combinations and Positional Value 

Signed Digit 
Combination  
Part 

Positional  
Value Part 
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The number of terms increases sharply with size (N). Since both the XN as well as the 

YN equations need to be calculated, a complete set has almost double the number of 

combinations/terms indicated in Fig. 3.2. 

 

 

For a hardware implementation of Flat CORDIC, equations 3.9 and 3.10 are rewritten as 
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and 
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Figure 3.2  Graph Number of Combinational Terms 
Versus Size (N) 
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This divides all the combinations into a set of channels. The terms are assigned to their 

respective channels by their CIV. The sum of all the combinations is then shifted 

accordingly. After all the channel sums have been collected and shifted, these values are 

added together to get the final unscaled XN and YN values.  

 

The final simplification comes from limiting the input angle so 0>θ radians. Then, the 

first rotation is always anti-clockwise, and so the first SD (s1) is fixed as +1. Now, all 

the terms with s1 can be simplified to produce Equations 3.32 and 3.33. 
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Although this seems more complex, the range of i is: 2≥i , which reduces the number of 

gates required for the combinations. 
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CHAPTER 4 : SIGNED DIGIT GENERATION 

 

4.1 The Signed Digit Algorithm (SDA) 

 

Due to the discrepancy between the values of i−− 2tan 1  and i−2 , as seen earlier, the 

polarity of all the micro-rotations or Signed Digits (SDs), cannot be pre-computed. 

Theorem 2 however showed that it is only the first N/3 SDs (for N-bit Flat CORDIC) 

that cannot be pre-computed; the following 2N/3 SDs can be generated in parallel. 

Then, Bimal (2000) discovered the Signed Digit Algorithm (SDA), a ROM-less 

algorithm to generate all the SDs.  

 

Here, the input angle (represented in radians) is restricted to the range 45<θ (so 

that the angle value is always smaller than 1 radian). The input angles outside this range 

are suitably manipulated. The N-bit input angle, Zo, is then divided into two parts : the 

first N/3 bits (the Most Significant Bits, MSBs) and the remaining 2N/3 bits (Least 

Significant Bits, LSBs). The MSBs are then channeled into a unit that generates the first 

N/3 SDs (Most Significant Signed Digits, MSSDs). The MSSDs are also used to 

generate an angle, '
remZ  which is explained later. 

 

The LSBs are combined with '
remZ  and the result is used to generate the rest of 

the SDs (Least Significant Signed Digits, LSSDs). 
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MSB of Zo, bits 1 - 8 LSB of Zo, bits 9 - 24 
 

MSSD 
Generator 

Remaining Angle Generator, Z’
rem 

Sign Value 

8 

1 

17 

16 

7 

16 

7 critical signed digits 
(s2, s3, .., s8) 

Last 17 signed digits 
(s8rept, s9, .., s8) 

Adder 

Binary to Bipolar 
Converter 

Figure 4.1 Signed Digit Generation for Size N = 24 

s1=1 
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4.1.1 Most Significant Signed Digit (MSSD) Generation 

 

For N-bit Flat CORDIC, for the 32 N  combinations of MSBs of Zo, the resulting MSSDs 

were observed. A striking pattern, known as the pair-wise linearity (PWL) relationship 

was seen. Each consecutive pair of MSBs share a common set of MSSDs. For the 

smaller sizes of N, this pattern was unbroken. As N got bigger, however, there were 

some breakpoints that divided the entire set into several regions, in each of which the 

pair-wise linear pattern was seen. This relationship is illustrated in Table 4.1. 

Table 4.1 Pair-Wise Equality of Signed Digits for Size N = 24 
 

Region Zo  (radians) MSB of Zo MSSDs (s1 to s8) MSSDs in decimal 
ONE 0.00000000 00000000 01111100 124 

0.00390625 00000001 01111011 
01111011 

123 
123 0.00781250 00000010 

0.01171875 00000011 01111010 
01111010 

122 
122 0.01562500 00000100 

0.01953125 00000101 01111001 
01111001 

121 
121 0.02343750 00000110 

…..  
 

  

0.20703125 00110101 01100001 
01100001 

97 
97 0.21093750 00110110 

0.21484375 00110111 01100000 96 
TWO 0.21875000 00111000 01011111 

01011111 
95 
95 0.22265625 00111001 

…..  
 

  

0.45312500 01110100 01000001 
01000001 

65 
65 0.45703125 01110101 

0.46093750 01110110 01000000 64 
THREE 0.46484375 01110111 00111111 63 

0.46875000 01111000 00111110 
00111110 

62 
62 0.47265625 01111001 

…..  
 

  

0.77343750 11000110 00010111 
00010111 

23 
23 0.77734375 11000111 

0.78125000 11001000 00010110 
00010110 

22 
22 0.78515625 11001001 

 
 
In the case of N = 24, there are 2 breakpoints, which divide the range of values into 3 

regions. The SD value ‘1’ represents anticlockwise rotation, and the ‘0’ represents 
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clockwise rotation. The PWL mentioned can be seen in the table above. Within the 

regions, each pair of Zo values share a common set of MSSDs. 

 

4.1.2 Least Significant Signed Digit (LSSD) Generation 

 

If the first N/3 iterations were really performed, the remaining angle after these 

iterations would be: 

( )3

3
2tan2tan2tan2tan 131

3
21

2
11

1
N

NssssZZ orem
−−−−−−−− ++++−=                  (4.1) 

 

Suppose we separate Zo into two parts, MSBoZ ,  and LSBoZ , , each one with the size N bits. 

MSBoZ , is made up of the MSBs of the original Zo, followed by a string of 0’s 

LSBoZ , is made up of 3
N  0’s, followed by the LSB of the original Zo  

Then, 

 

( )[ ] LSBoMSBorem ZssssZZ N

N ,
131

3
21

2
11

1,
3

3
2tan2tan2tan2tan +++++−= −−−−−−−−   

        LSBoremrem ZZZ ,
' +=                       (4.2) 

The first 3
N  iterations, as we know, are carried out to obtain the MSSDs. Section 4.1.1 

has shown a definite pattern for obtaining the MSSDs without the need for these 

iterations by its association with MSBoZ ,  (as will be explained in detail in Section 4.2.1). 

However, if these iterations are not carried out, we will not have the '
remZ  value.  

This led to an inspection of the '
remZ  values with the corresponding MSBs of Zo as 

shown in Table 4.2. Here too a pattern was found : 

1) The sign of '
remZ  alternated between +1 and –1 for each consecutive MSBoZ , value 

(represented by 0 and 1) 

first iteration (N/3)th iteration second iteration 
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2)  the value of '
remZ  was found to exhibit the pair-wise linearity (PWL) 

relationship much the same as for the MSSDs. 

3) This pattern is seen to break at the same places where the MSSD PWL is broken 

The alternating sign of '
remZ is explained by considering the following two angles, 

MSBoZ ,  and ( )32,
N

MSBoZ −+ . Since MSBoZ , is an N-bit angle defined only by the first 3
N  

bits, to 3
N -bit accuracy, the two angles are considered adjacent. 

As defined by the convergence property of CORDIC, 32; N

remZ −< . For the first angle, 

( ) ( ) 33

3

3

3

3

22tan2tan2tan 111
1

2

1

1
,

NN

N

N

N

N

sssZo
i

i
iMSB

−−−−−−
−

−

=

−− <







++− ∑                 (4.3) 

If the value within these absolute limits is negative, then the convergence property will 

be followed for the same SDs as: 

( ) ( ) ( ) 33

3

3

3

3
3 22tan2tan2tan2 111

1

2

1

1
,

NN

N

N

N

N
N sssZo

i

i
iMSB

−−−−−−
−

−

=

−−− <







++−+ ∑ , which 

will be positive 

Therefore, it can be expected that the sign of '
remZ  would alternate from one value of 

MSBoZ ,  to the next. The values of the remaining bits of '
remZ  were observed with relation 

to the MSBs of Zo. A PWL relationship was seen in exactly the same regions, with the 

same breakpoints. Generating '
remZ  therefore can be done with an encoder.  

Table 4.2  shows the values of '
remZ  and the MSBs of Zo Univ
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Table 4.2 '
remZ  for MSBs of Zo for size N = 24 

 
Region Zo  (radians) MSB of Zo '

remZ  
Sign Value 

ONE 0.00000000 00000000 0 1101010011111011 
0.00390625 00000001 1  

0 
1101010100100000 
1101010100100000 0.00781250 00000010 

0.01171875 00000011 1 
0 

1101010100100000 
1101010100100000 0.01562500 00000100 

0.01953125 00000101 1 
0 

1101010100100101 
1101010100100101 0.02343750 00000110 

…..  
 

  

0.20703125 00110101 1 
0 

1110000100011110 
1110000100011110 0.21093750 00110110 

0.21484375 00110111 1 1110000100011111 
TWO 0.21875000 00111000 1 

0 
0010100110000000 
0010100110000000 0.22265625 00111001 

…..  
 

  

0.45312500 01110100 1 
0 

0011010110101001 
0011010110101001 0.45703125 01110101 

0.46093750 01110110 1 0011010110101010 
THREE 0.46484375 01110111 0  0110011100011101 

0.46875000 01111000 1 
0 

0110011100011110 
0110011100011110 0.47265625 01111001 

…..  
 

  

0.77343750 11000110 1 
0 

1011110011111101 
1011110011111101 0.77734375 11000111 

0.78125000 11001000 1 
0 

1011110011111110 
1011110011111110 0.78515625 11001001 

 

The value of Z’
rem is added to the LSB of the original input angle to generate the Zrem 

value of Equation 4.1. The sum goes through a binary to bipolar converter to generate 

all the LSSDs in parallel. This is further explained in Section 4.2.2. 
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4.2 Implementation of the SDA 

 

4.2.1 Algorithm for MSSD 

 

Table 4.1 shows that the breakpoints that bound the 3 regions occur at “00110111” and 

“01110111”. A simple algorithm is used to classify the regions, and generate the 

MSSDs, as shown below :  

inp_msb[0:7] denotes the MSBs of Zo, and mssd_out represents the SDs(s2 → s8) 

 

 

 

 

 

 

 

 

 
If inp_msb [1 to 8]     >= “01110111”  
      mssd_out = “0111010” – inp_msb[1 to 7]; 
      region <= “11”;          (Region 3) 
else if inp_msb[1 to 8] >= “00110111”  
      mssd_out = “0111010” – inp_msb[1 to 7]; 
      region <= “10”;           (Region 2) 
else if inp_msb[8] = ‘0’ 
      mssd_out = “01111100” – inp_msb[1 to 7]; 
      Region <= “00”;             (Region 1) 
else      mssd_out ‘ “01111011” – inp_msb[1 to 7]; 
      region <= “00”;             (Region 1) 
 

Figure 4.2 MSSD Generation Algorithm for Size N = 24 
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4.2.2 Generation of Z’
rem 

 

i) In Region One, the sign bit follows inp_msb[0]; in the other regions, it is the 

opposite 

ii) In all regions, with the exception of the sign bit, the '
remZ  values occur in 

pairs. In Region One, the '
remZ  pairs are odd-even, whereas in Regions Two 

and Three, they are even-odd. 

iii) For Region One, the odd values of the Zo,MSB are incremented before feeding 

the encoder. This is due to the odd-even nature of the pair. A 5-16 bit 

encoder is used to encode the remaining angle Z’rem 

iv) For Regions Two and Three, 5-16 bit and 6-16 bit encoders are used 

respectively  

v) We know that ( )1' 32 −−<
N

remZ , and that ( ) N
LSBo

N

Z −−− −< 22 1
,

3  Since both of these 

values are ( )132 −−<
N

, the result of their addition becomes constrained by 

( )232 −− N

 

Therefore, 2
,

' 32 +−<+
N

LSBorem ZZ  This means, the result requires an extra bit to 

represent it, which makes a total of ( )13
2 +N bits 

 

4.2.3 Binary - Bipolar Conversion and LSSD Generation 

 

Zrem can either be a positive or a negative value, depending on its sign bit. Just as the 

MSSDs are represented in Signed Binary Number Representation (SBNR), Zrem also 

needs to be converted to SBNR. The conversion is as follows: 
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i) if Zrem is positive, the first signed digit repeatNs ,3
 is ‘0’. The next signed digit, 

13 +
Ns  is ‘1’ if the next bit of remZ  is 0, and ‘0’ otherwise. This is carried on 

until all the rest of the signed digits are obtained (ie. until Ns ) 

ii) if Zrem is negative, the first signed digit repeatNs ,3
 is ‘1’. The next signed digit, 

13 +
Ns  is ‘1’ if the next bit of remZ  is 0, and ‘0’ otherwise. This is carried on 

until all the rest of the signed digits are obtained (ie. until Ns ) 

Fig. 4.3 depicts the LSSD Generation as it is implemented in VHDL.
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Region Identifier 
5,1, oo ZtoZ  Region One 

7,3, oo ZtoZ  
5-16 encoder 

Region Two 
7,3, oo ZtoZ  

5-16 encoder 

Region Three 
7,2, oo ZtoZ  

6-16 encoder 

Multiplexer 

Adder 

xor 

repeatNs ,3
 Nss N ,,13


+

 

 
 

8,7,6,5,4,3,2,1, oooooooo ZZZZZZZZ
    

2 

1 sign 

region 

16 

16 

17 

LSBoZ ,  

17 

1 

1 16 

not 

MSB of Zo LSB of Zo 

Fig. 4.3 : LSSD Generation for Size N = 24 

'
remZ  

Binary to 
Bipolar 
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4.3 Modification Of The SDA 
 

A detailed examination of the SDs for all the possible MSSDs and LSSDs for N-bit 

input angle however, yielded some interesting results. Compared to the method outlined 

earlier, which examines 32 N variants of Zo and the corresponding SDs, a set of N2  

possible values of Zo were observed, which showed that while the PWL relationship of 

the MSSDs and '
remZ  do exist, their changing points do not fall exactly at the places 

where the MSBs of Zo transition.  

 

 The example of 9-bit Flat CORDIC is considered. For this size, there are no 

breakpoints. The PWL of the MSSDs and '
remZ  are seen in Table 4.3.  

Table 4.3: '
remZ  for MSBs of Zo,  size N = 9 

 

 

 

 

 

A more detailed examination considers the first N/3 iterations performed on values of 

Zo. The MSSDs and the encoder angle ( )LSBorem ZZ ,−  are shown in Table 4.4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MSB of 
Zo 

MSSD '
remZ  

Sign Value 
000 011 1 001111 

001111 001 011 0 
010 010 1 010000 

010000 011 010 0 
100 001 1 010100 

010100 101 001 0 
110 000 1 010101 
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Table 4.4: ( )LSBorem ZZ ,−  for MSBs of Zo for size N = 9 

 

 

 

 

 

 

 

 

 

 

 

Investigations of the SDs of different sizes showed similar results. Both the MSSDs and 

( )LSBorem ZZ ,−  transition simultaneously, but not at the places where the MSBs of Zo 

change. This implies that the SD generation could not be implemented as simply as with 

the previously mentioned algorithm.  

  

An alternative method for generating the SDs was still possible, that can also 

exploit the unique PWL properties of the MSSDs and LSSDs.Using C++, the exact 

transition points for sizes N = 9, 12, 15, 18, 21 and 24 were identified. These points 

were used to design comparators for each size, which use the actual transition values to 

assign the corresponding MSSD and ( )LSBorem ZZ ,−  values. However, use of the 

comparator increases the size of the design. The results of the comparison between these 

two methods are given in Chapter 6. Included in the Appendix is the full set of values of 

SDs at the transition points for N = 24. 

# Zo MSSD ( )LSBorem ZZ ,−  
value 

Expected 
Transition 

Actual 
Transition 

Sign Value 
0 000_000000 011 1 001111   
63 000_111111 011 1 001111   
64 001_000000 011 0 001111   
111 001_101111 011 0 001111   
112 001_110000 010 0 010000  ☼ 
127 001_111111 010 0 010000   
128 010_000000 010 1 010000 ☼  
191 010_111111 010 1 010000   
192 011_000000 010 0 010000   
237 011_101101 010 0 010000   
238 011_101110 001 0 010100  ☼ 
255 011_111111 001 0 010100   
256 100_000000 001 1 010100 ☼  
319 100_111111 001 1 010100   
320 101_000000 001 0 010100   
362 101_101010 001 0 010100   
363 101_101011 000 0 010101  ☼ 
383 101_111111 000 0 010101   
384 110_000000 000 1 010101 ☼  
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CHAPTER 5 : SIGNED DIGIT COMBINATION & PIPELINING 

 

5.1 Signed Digit Combination 

 

Once the SDs have been pre-computed, the next step is to combine them according to 

the equations (5.1) and (5.2):  
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               (5.2) 

Here, the SD combinations are segregated into the channels in which they belong. A 

channel refers to the positional value of the term (how much it has to shift).  
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Suppose we consider a particular channel, ch, for XN. The sum for that channel 

(sumx[ch]) would be the total of the combinational parts of all the terms in the channel.  

We denote the number of terms in channel ch of XN as comx[ch].  

Then, sumx[ch] is bounded by the range ][][ chcomxchsumx <= .                (5.3) 

∑
=

−⋅−=
NE

ch

ch
N chsumxX

3
2][1           (5.4) 

After obtaining the sums of each of the channels, these sumx[ch] values are shifted to 

the right (ch times) to obtain chchsumx −⋅ 2][ . Then, all these values are added together.  

1) This method requires adders to get the sum for each channel. The size of these 

adders have to be able to accommodate the range 

][][][ chcomxchsumxchcomx <<−   

2) This method requires shifters to position the sums of the respective channels 

3) Since the desired accuracy is EN, the size of the registers containing the value of  

chchsumx −⋅ 2][  has to be EN bits  

 

5.2 Ripple Method 

 

This shifting and addition process could be made much simpler if sumx[ch] could be 

restricted such that 1][ ≤chsumx  for channels 1 through EN. (ie. sumx[ch] = 0,±1, 

which is represented with 2 bits).  

This can be achieved by rippling the values of sumx[ch] from the channel with the 

higher negative indices to the channels with the lower negative indices. The concept of 

this can be seen in Eqs.. (5.5) and (5.6). 

chchch termtermtermterm −−− ⋅+=⋅+⋅ 2)21(2221                   (5.5) 

      ( ) 1212122 1 ±==⋅±=⋅±= −−− termtermwherechch      Case 1 
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  or,          )2(1020 termtermwherech −==⋅= −         Case 2 

 

 For Case 1, the ripple into channel (ch-1) is ±1, and in Case 2, the ripple is 0. A 

VLSI-efficient implementation of the combination and addition process has been 

realized based on this concept. Basically, the entire equation is represented in a grid of 

cells. The columns represent the channel sums sumx[ch], and the rows are the layers. 

The cells are filled in the following manner:  

1) The first row values are filled first, their ranges bound by ][chcomx  

2) The cells are then filled vertically, from top to bottom, and from the Least 

Significant Channel (LSC, or channel with value NE−2 ) to the Most Significant 

Channel (MSC) 

 

 For the first row (Layer 1), the values for each channel, ch, are simply bound by 

the range of comx[ch]. The values of comx[ch] are divided by 2, and the result of the 

division repples into the next channel, cell[ch-1, Layer 2].  The remainder drops down 

the same channel to cell[ch, Layer 2]. This is illustrated in Fig. 5.1. 

 

 For each column, the aim is to terminate the layer as quickly as possible, the 

moment when the range of sumx[ch] is restricted by 1][ ≤chsumx . For any particular 

cell, for example cell[ch, Layer L], the two inputs into it are the previous sum from 

cell[ch, Layer L-1], and the ripple from cell[ch+1, Layer L-1]. The total of these two 

inputs is divided by 2 as before, the ripple traveling to the next channel, and the 

remainder to the next layer. 

 

 If the total input into that given cell is (0, ±1), and there are no ripples in at any 

lower layer, the channel is terminated. The termination layer is TLch. 
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Example :  

 Take the case of N = 9, and EN = 12 

 Following the Signed Digit Generation as outlined in Chapter 4 produces 10 SDs (s1 

through s10).  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )542632758493102

10
5326574839210

10
4326473829

10
5463728

9
53627

8
43526

7
425

6
324

5
3

4
2

3
9

22
222

222221

ssssssssssssssssssssssssss
ssssssssssssssssssssss

sssssssssssssX

++−−−−++−−−−−+

+−−−−+−−−−+−−−

+−−−+−−+−−+−+−+=

−−

−−−

−−−−−

             (5.6) 

 For the case of θ = 30°, Zo = 100001100 (0.5234375 radians) 

The SDs are : 1 1 -1 -1 1 -1 -1 -1 -1 1 

 

 Ch 0 1 2 3 4 5 6 7 8 9 10 11 12 
Comx[ch] 1 0 0 1 1 2 2 3 3 4 5 6 6 
Sumx[ch]·2-ch 

LAYER 1 
2-0 0 0 -2-3 2-4 2·2-5 

=2-5 
0·2-6 -2-7 

 
3·2-8 

=2-8 
+2-7 

2·2-9 

=2-8 
1·2-10 2·2-11 

=2-10 
-2·2-12 

=-2-11 + 

0·2-12 
LAYER 2 
previous sum + 
ripple 

1·2-0 
TL0 

0·2-1 
TL1 

0·2-2 
TL2 

-1·2-3 
TL3 

1·2-4 
TL4 

1·2-5 
TL5 

0·2-6 
TL6 

-1·2-7 

 
2-8 

+2-8 

=2-7 

0·2-9 2-10 

+2-10 

=2-9 

0·2-11 

- 2-11 

=-2-11 

0·2-12 
TL12 

LAYER 3 
previous sum + 
ripple 

       -1·2-7 

+ 2-7 

=0 

0·2-8 
TL8 

1·2-9 
TL9 

0·2-10 
TL10 

-2-11 
TL11 

 

LAYER 4 
previous sum + 
ripple 

       0·2-7 
TL7 

     

 

 

5.3 Implementation of The Ripple Method 

 

For the implementation of this method, modules are designed to fit into the cells. For 

any given cell, the module is chosen based on the number of inputs into the cell. An 

extra simplification to the combination of terms described above is given in Section 

5.3.2. 

Table 5.1 Example of Ripple for N = 9 
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5.3.1 Layer One 

 
For the first layer, the inputs are the combinational terms of the SDs, which are ±1. For 

each pair of inputs, one instance of module PAIR is created, that follows Equation 5.5. 

 

  

 

 

 

 

 

 

 

 

Each instance of Module PAIR generates the ripple as shown in Table 5.2. 

 

in 1 in 2 Ripple 
+1 +1 +1 
+1 -1 0 
-1 -1 -1 
-1 +1 0 

 

 

 

 
 
 
 
 
 
 
 

ch 

sum 

ch-1 

Layer 1 

Layer 2 

1 

comx[ch] is odd 

comx[ch]/2 
modules of 

PAIR 

comx[ch]  

2
comx[ch]  

ripple 

ch-1 

Layer 1 

Layer 2 

comx[ch] is even 

comx[ch]/2 
modules of 

PAIR 

comx[ch]  

2
comx[ch]  

ripple 

Figure 5.1 : Module PAIR for Layer One 

Table 5.2: Inputs and Output of Module PAIR 
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5.3.2 Remaining Layer Modules 

 

For all the rest of the cells, they are filled by considering the total number of inputs into 

the cells. These are divided into the following categories :  

 

 

Case 1: Number of Inputs ≥ 3 

 

An extra simplification of the combination of terms is incorporated here, by combining 

the terms in groups of three.  

( ) chchchch termtermtermtermtermterm −−−− ⋅++=⋅+⋅+⋅ 2321232221  

                      ( ) ( ) ( ) chch −−− ±+±= 21,021,0 1                (5.7) 

Assuming the number of inputs into the cell is 3g + h, where g ≥ 1, and h = 1,2. Here, 

(g-1) sets of module blue_0 are generated, and one of either blue_1 or blue_2, 

depending on the value of h.  

blue_0 takes in 3 inputs and produces one ripple value for cell[ch-1,layer+1]  and one 

sum value for cell[ch,layer+1] 

blue_1 and blue_2 take in 4 and 5 inputs respectively. 3 of them are used to produce 

one ripple value and one sum value. The extra inputs bypass the cell, and go into the 

cell directly below : cell[ch,layer+1]. 
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This design is implemented onto the FPGA using case statements. 

 

in 1 in 2 in 3 total ripple sum 
-1 -1 -1 -3 -1 -1 
-1 -1 0 -2 -1 0 
-1 0 -1 -2 -1 0 
-1 0 0 -1 0 -1 
0 -1 -1 -2 -1 0 
0 -1 0 -1 0 -1 
0 0 -1 -1 0 -1 
0 0 0 0 0 0 
0 0 1 1 0 1 
0 1 0 1 0 1 
0 1 1 2 1 0 
1 0 0 1 0 1 
1 0 1 2 1 0 
1 1 0 2 1 0 
1 1 1 3 1 1 
1 1 -1 1 0 1 
1 -1 1 1 0 1 
1 -1 -1 -1 0 -1 

-1 1 1 1 0 1 
-1 1 -1 -1 0 -1 
-1 -1 1 -1 0 -1 

+1 is coded in binary as “01”, -1 as “10” and 0 as “00” 

 

 

 

 

blue_0/1/2 

sum ripple 

ch-1 ch 

layer 

layer + 1 

1 
1 

3/4/5 

 

Figure 5.2 Module BLUE 

Table 5.3 : Inputs and output of Module BLUE 
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Case 2: Number of Inputs = 2 

 

When the number of inputs is 2, the lower layers are checked to see if there are any 

more ripples coming into the channel. If there are, then the inputs are just passed 

through to the subsequent layer (GREEN module). If not, the inputs are added, to get a 

ripple value for cell[ch-1,layer+1] and, and a sum value for cell[ch,layer+1] (ORANGE 

module). 

 

 

 

 

 

 

 
 
 
 
 
 

Table 5.4 : Inputs and output of Module ORANGE 
 

in 1 in 2 total ripple sum 
-1 -1 -2 -1 0 
-1 1 0 0 0 
-1 0 -1 0 -1 
0 0 0 0 -1 
0 -1 -1 0 -1 
0 1 1 0 1 
1 -1 0 0 0 
1 1 2 1 0 
1 0 1 0 1 

+1 is coded in binary as “01”, -1 as “10” and 0 as “00” 

 

 

 

 

ORANGE 

sum ripple 

ch-1 ch 

layer 

layer + 1 

1 1 

     2 

green 

sum 

ch-1 ch 

layer 

layer + 1 

2 

     2 

Figure 5.3 : Modules GREEN and ORANGE 
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Case 3 :  Number of Inputs =1 

 

When the number of inputs is 1, a check is performed on the lower layers to see if there 

are any more ripples coming into the channel. If there are, then the inputs are just passed 

through to the subsequent layer. If not, the channel is terminated. 
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Terminate 
this channel  
stop[ch] = 
layer 

Send the 
input value 
of channel 
down to next 
layer 

Has the RLS 
terminated at 
this layer? 

NO YES 

Module : 
blue 
input[ch 
layer]/3  
modules of 
blue_0 
created, 
each giving 
a ripple and 
a sum 

Module : blue 
input[ch 
layer]/3-1 
modules of 
blue_0 and 
one module of 
either blue_1 
or blue_2 
created to get 
the sums and 
ripples 

input[ch 
layer]% 3 = 0? 

NO YES 

Comx[ch] = 
even? 

Let the last term 
go down to layer 2 

Module : 
orange.  
Add the input 
values – ripple 
the carry to the 
LMS and the 
sum down to 
the next layer 

Module : 
green.  
Send the 
input 
straight 
down to the 
next layer 

Has the RLS 
terminated at 
this layer? 

NO YES 

Channel = EN (start at the 
top right hand corner cell) 

Layer = 1 

Send the pairs of terms to the next 
layer of the LMS channel 

layer = layer + 1 
(go down to the next cell) 

number of inputs into cell : input[ch, layer] =  
Down value from previous layer + ripple value 
from RLS channel 

n = n-1 

n = 0? 

STOP 
YES 

NO 

Figure 5.4 Flowchart for Ripple Method, size N 
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 2  2 3 3    4    5    6   6 

 

 

 

We now have 13 sets of 2-bit output values. If we designate 13-bit variables : 

answer_0 which is [sumx0(0) to sumx12(0)], and answer_1 which is [sumx0(1) to 

sumx12(1)], then 1_0_ answeranswerX N −=  

 

 

Figure 5.5 Implementation of Ripple Method for N = 9 
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5.4 Pipelining Flat CORDIC 

 

As the size N gets bigger, the total number of combinations increases sharply. This is 

shown in Figure 3.2. The result is a huge increase in the number of modules generated. 

This increase in combinational circuitry causes the combinatorial path delay to increase, 

thereby reducing the maximum operating frequency of the circuit.  

  

 A method that can be used to boost the frequency is to pipeline the design. The 

circuit is divided into two or more sections (depending on the number of pipeline 

stages), and each part is performed on a separate clock cycle. The output of each stage is 

sent to the input of the next stage through a register. The matrix structure of the design 

lends itself particularly well to pipelining. The pipeline stages are drawn horizontally 

across the diagram. 

 

 At the transition point from one stage to the next, a new module/VHDL file is 

created. The vertical lines that cut across from one stage to the next become the input 

lines feeding into the next stage. These inputs are tied to the clock signal. 

 

  For the 2-stage pipeline, the maximum increase in frequency is double the 

original value. This is assuming the division of the stages equally divides the entire 

design into two equal halves. Additional pipeline stages can potentially increase the 

frequency many times more, but at the cost of the latency of the circuit. With the 

exception of the first additional stage, which increases the latency by 2 cycles, each 

additional stage increases the latency  
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by one clock cycle. Pipelining is only a worthwhile measure if the critical path of the 

circuit is affected by this combinational delay. 

A 2-stage pipeline implementation for size N = 9 is shown in Fig. 5.6. 

Univ
ers

iti 
Mala

ya



Chapter 5 : Signed Digit Combination & Pipelining 

  
58 

  

ch   0 1 2  3  4  5  6 7 8    9  10  11 12 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 1  1 

`fs 

 2  2 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3    4    5    6   6 

 

 

 

 

 

 

 

 

1 1 2 2 2 

1 3 2 1 1 3 1 1 

2 3 3 3 1 2 2 1 1 

1 3 1 

2 1 

1  1  

2 1 

3 1 

1  1  1  1  

2 

3 1 

s 
u 
m 
x 
0 

s 
u 
m 
x 
8 

s 
u 
m 
x 
3 

s 
u 
m 
x 
4 

s 
u 
m 
x 
5 

s 
u 
m 
x 
6 

s 
u 
m 
x 
7 

s 
u 
m 
x 
9 

s 
u 
m 
x 
10 

s 
u 
m 
x 
11 

s 
u 
m 
x 
12 

s 
u 
m 
x 
1 

s 
u 
m 
x 
2 

“01” “00” “00” 

Figure 5.6 Two Stage Pipeline for Ripple Method 
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5.5 Scaling of Final Values 

 
 
Each rotation in CORDIC, and by extension in Flat CORDIC as well, is not a pure-

rotation, but a rotation-extension. The scaling factor is roughly the same. For each bit-

size that was tested, a thorough analysis was performed using C++ to determine the 

precise scaling factor values. These values were then incorporated into the Flat 

CORDIC architectures with fixed multipliers, of length EN = N + log2N for bit size N. 

 

5.6 Field Programmable Gate Arrays (FPGAs) 

 

The advent of VLSI technology has made it possible to produce high-density 

programmable logic devices, and resulted in the increased popularity of Field 

Programmable Gate Arrays (FPGAs). Huge amounts of logic, up to hundreds of 

thousands of gates can be fitted onto single devices. FPGAs are now even taking over 

ASICs in high performance applications due to the additional flexibility in design time 

and design upgrades that can be performed without hardware replacement. 

 

An FPGA is generally made up of a matrix of cells arranged in rows and 

columns. The cells are interconnected via programmable elements. These elements also 

connect the cells to the Input/Output blocks (IOs). The logic cells and exact routing 

designs differ from one system to another. 

  

There are 2 main technologies used for FPGA – SRAM and antifuse. SRAM 

(SRAM FPGAs are generally less dense, because the physical dimensions are an order 

of magnitude larger than the antifuse ones. However, due to larger chip sizes, SRAM 
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FPGAs hold more gates. These FPGAs also have unlimitted reprogrammability unlike 

antifuse FPGAs, since the interconnect elements are not physically altered during the 

programming. For this reason, SRAM FPGAs are volatile, and need to have the design 

loaded into them via external PROMs on startup. Antifuse FPGAs on the other hand, 

are One Time Programmable (OTP) devices.  

 

 The SPARTAN II, 2.5V FPGAs used in this work, are a low cost family of 

devices that contain abundant logic resources, ranging from 15,000 gates in the XC2S15 

to 200,000 gates in the XC2S200. The matrix elements are Configurable Logic Blocks 

(CLBs), surrounded by a perimeter of programmable IOBs. There are 4 Delay Lock 

Loops (DLLs), one on each corner of the die, and 2 columns of block RAM on opposite 

sides of the die. Webs of versatile routing channels run through the matrix connecting 

these elements.  

 

5.6.1 Spartan II CLB 
 
 
CLBs are the basic building blocks of the FPGA. The Spartan II CLB contains 4 Logic 

Cells (LCs) arrainged in pairs on 2 slices. Each LC contains a 4-input function generator 

carry logic and a storage element.  

 

Function Generator 
 
The function generator in the LC is basically a 4-input Look Up Table (LUT) that can 

double up to provide 16-bit synchronous RAM. The 2 LUTs in a slice can be used to 

create  

a 16x2-bit or a 32x1-bit synchronous RAM. The LUT can also be used as a 16-bit shift 

register, or alternatively, to store data. 
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Storage Element 
 
 

The storage element in each LC can either be used as a level sensitive latch or an edge-

triggered D flip-flop. When used as a D flip-flop, the input to the flip-flop can either be 

driven by the fuction generator or directly from the inputs into the slices. 

 
Additional Logic 
 
 

Each pair of LCs additionally has an extra multiplexer that can be used in combination 

with both the function generator outputs of one slice to produce a 5-input function 

generator, or with both the slice outputs to generate a 9-input function. The Spartan II 

CLB also has dedicated carry logic that enables high-speed arithmetic functions to be 

carried out. Fig. 5.7 illustrates a Spartan II CLB Slice. 
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Chapter 6 : Results & Discussion 

 

6.1 Introduction 

 

This chapter focuses on the results of Flat CORDIC simulation and synthesis onto 

Spartan FPGAs. The simulations were performed using ModelSim XE v5.6e and the 

resultant binary data files compared against expected results from corresponding data 

files generated using C++.  

 

The first part concentrates on Flat CORDIC size and speed results. The increase 

in circuit size and drop in frequency for increasing values of N is observed. The next 

part focuses on the SD Generation. A comparison is made between the SD Algorithm as 

proposed by Bimal (2000) which uses an encoder, with the newly designed comparator 

method. The impact of these two designs as part of the entire Flat CORDIC structure is 

also considered.  

 

The combination of all the generated SDs and their subsequent addition is 

examined in detail. The specially designed instances that make up the backbone of the 

design are shown. The implementation of the Combination and Addition (C&A) section 

is seen in terms of the number of gates used, and the speed of operation. Ideal pipeline 

results for additional number of stages are examined, and the implementation results of 

one extra pipeline stage are shown. 

 

The C&A part produces output values that are scaled using multipliers. The size 

of the multipliers as part of the entire architecture is shown. Finally, a comparison is 
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made between the Flat CORDIC design and two other sine/cosine generation 

implementations on FPGA. The computer processor internal sine/cosine calculation 

speed as carried out using C++ is also compared with the Flat CORDIC speed. 

 

6.2 Flat CORDIC on FPGA 

 

The Flat CORDIC module takes 4 clock cycles to produce the sine/cosine values of a 

given input angle. 

 

SD 
Combination 

& Ripple 

Adder 
Unit for 
Cosine 

N+log2N 

Multiplier 

N+log2N 

cos(Zo) 

N+log2N 
(MSB) 

N+log2N 
(LSB) 

SD 
Combination 
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Figure 6.1 Flat CORDIC Pipeline Stages 
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Table 6.1 and Figs. 6.2 and 6.3 show the overall circuit size and speed.  

 

Size (bits) Max 
Frequency 

(MHz) 

Total eq. gate 
count 

9 30.58 6,238 
12 20.58 11,325 
15 15.29 21,389 
18 13.32 37,281 
21 11.34 61,669 
24 9.94 104,690 
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Table 6.1: Flat CORDIC Speed and Gate Count 

Figure 6.2 Graph Flat CORDIC Gate Count Versus Size (N)  

Figure 6.3 Graph Flat CORDIC Maximum Operating  
    Frequency Versus Size (N) 
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Due to the increased complexity, the maximum operating frequency reduces with N. 

The size of the design increases in a non-linear manner with N. This is because the 

number of terms in the Flat CORDIC equation, the number of SDs to generate, and the 

size of the adders and multipliers increase considerably with N. 

 

6.3 Signed Digit Generation 

 

This section deals with a comparison between the two methods of generating the Signed 

Digits (SDs).  

 

6.3.1 Signed Digit Algorithm (SDA) – Encoder Method (Bimal) 

 

In the SDA, a simple algorithm is used to generate the MSSDs and encoders for the 

remaining angle generation. As outlined in Chapter 4, the MSSD transition points are 

taken as corresponding to the input MSB changes. For each of the regions identified by 

the break in the PWL pattern, the relationship between the MSBs and the MSSDs is 

used to incorporate simple shift-addition operation to directly obtain the MSSDs. 

Depending on the total number of variations in each region, special encoders are used to 

generte the remaining angle, which is then processed to obtain the LSSDs. 

 

6.3.2 Signed Digit Algorithm – Comparator Method 

 

Using C++, the exact transition points of the MSSDs and remaining angles for the entire 

range of N-bit values are examined. It was verified that both the MSSDs as well as the 

remaining angles transition at exactly the same points. The transition points were used 
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to create the comparators that simultaneously generate both the MSSDs and the 

remaining angle values.  

Included in the Appendix is the detailed data of the input angles and the transition 

points, along with the corresponding MSSDs and remaining angles for 24-bit Flat 

CORDIC. The highlighted portions indicate the transition points. 

 

Size Frequency (MHz) Gate Count 
 Encoder Comparator Encoder Comparator 

9 62.6 83.7 180 309 
12 60.4 69.7 228 537 
15 32.1 52.8 562 1,249 
18 26.1 51.0 789 4,714 
21 26.7 47.0 1,048 10,208 
24 22.4 40.9 1,736 23,418 
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Figure 6.4 Graph SD Generation Gate Count Versus Size (N) 

 Table 6.2: Changes in Gate Count and Speed for SD Generation with Size N) 
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Figure 6.4 gives an estimate of the size of SD generation using the two methods. Even 

for smaller values of N, the comparator method takes up almost twice the area of the 

encoder method. As the values of N increase, this difference increases dramatically, 

with the comparator taking almost 12 times as many gates as the encoder for size N = 

24 bits.  

The results of Figure 6.5 and 6.6 show that the SD generation using the comparator 

method is faster compared with the encoder, using roughly 2/3 the total amount of time 

Figure 6.6 Graph SD Generation Latency Versus Size (N) 
 

Figure 6.5 Graph SD Generation Maximum Operating Frequency Versus  
                      Size (N) 
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to generate all the SDs. The benefits of this improvement in time will be seen in the 

final design only if the SD generation lies in the critical path of the design. 

 

6.3.3 Comparison of Design  

 

The two different SD Generation modules were incorporated into the full Flat CORDIC 

design and implemented. Table 6.3 shows the maximum frequencies obtainable for the 

designs, and the total number of gates. 

 

Size 
(bits) 

Max Frequency (MHz) Gate Count 

 Encoder Comparator Encoder Comparator 
9 30.4 30.6 6,217 6,238 

12 24.0 20.6 10,010 11,325 
15 15.3 15.3 21,388 21,839 
18 13.2 13.3 33,739 37,281 
21 11.3 11.3 57,235 61,669 
24 10.1 10.0 85,182 104,690 
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Table 6.3: Changes in Gate Count and Speed with Size (N) 

Figure 6.7 Graph Flat CORDIC Gate Count Versus Size (N) 
                    For Different SD Generation Methods 
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Section 6.3.1 showed that the gate count of the Comparator Method is significantly 

bigger than that of the Encoder Method. Fig. 6.7, however, indicates that once 

incorporated into the Flat CORDIC architecture, the difference ceased to be so 

significant.  

Fig. 6.8 shows that for the most part, once incorporated into the fuill Flat CORDIC 

architecture, the speed benefits of the Comparator Method are no longer seen. This is 

due to the fact that the SD Generation Module is not in the critical path. 

   

Figure 6.8 Graph Flat CORDIC Maximum Frequency Versus Size (N) 
            For Different SD Generation Methods 
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6.4 Combination of SDs and Addition 

 

The combination of all the SDs and their routing into the respective channels, followed 

by the implementation of the Ripple Method makes up the bulk of the Flat CORDIC 

module. This design is almost entirely combinatorial. The signals have to go through 

many instances of three specially designed modules, as explained in detail in Chapter 5. 

These three modules are referred to as PAIR, BLUE and ORANGE 

Module PAIR takes in pairs of SDs (each being a 1-bit value representing ±1), and 

returns a carry to the next channel. It requires 2 sets of 4-input LUTs, and occupies 1 

slice (0.5 CLB). The number of gates required is 12. 

 

Module BLUE takes in three SDs (each being a 1-bit value representing ±1), and 

returns a carry to the next channel, and a sum. It requires 11 sets of 4-input LUTs, and 

occupies 6 slices (3 CLBs). The number of gates required is 66. 

Module ORANGE takes in two SDs (each being a 1-bit value representing ±1), and 

returns a carry to the next channel, and a sum. It requires 4 sets of 4-input LUTs , and 

occupies 2 slices (1 CLB). The number of gates required is 24. 

 

The regular design of the Combination and Addition (C&A) module takes two 

clock cycles. The first cycle combines the SDs, goes through the channels (and all the 

instances of the above-mentioned modules) and provides the input to the final adder 

(N+log2N bits). In the next cycle, the addition is performed. From the Flat CORDIC 

Equation, the result of the X-channels gives the unscaled cosine of the input angle, and 

the result of the Y-channels gives the unscaled sine value.  
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Table 6.4 and Fig. 6.9 show the increase in the size of the design and also the 

maximum frequency for the X- and Y- parts respectively:  

 

Size 
(bits) 

Speed (MHz) Number of gates 

 Cosine 
(X) 

Sine  
(Y) 

Cosine 
(X) 

Sine  
(Y) 

9 31.6 30.1 1,648 1,411 
12 22.0 21.4 3,706 4,181 
15 16.0 17.8 9,368 8,877 
18 13.9 13.6 12,597 12,523 
21 12.2 11.8 22,789 23,225 
24 10.8 10.4 38,745 39,359 

 

9 12 15 18 21 24

10

15

20

25

30

35

Sp
ee

d 
(M

Hz
)

Size (N)

 Cosine
 Sine

 

9 12 15 18 21 24
0.0

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

3.0x104

3.5x104

4.0x104

G
at

e 
Co

un
t

Size (N)

 Cosine
 Sine

 

Table 6.4: Maximum Frequency and Gate Count for C&A Module 

Figure 6.10 Graph Gate Count Versus Size (N) for C&A Module 

Figure 6.9 Graph Maximum Frequency Versus Size (N) for C&A Module 
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Fig. 6.9 indicates that the speed of the sine/cosine calculation drops significantly as the 

size (N) increases. Fig. 6.10 shows that the gate count for both the sine as well as the 

cosine generation increases significantly with N. These results coincide with the non-

linear increase in the number of terms for the existing as well as additional channels 

when N increases. Fig. 6.10 also indicates that the number of gates required for sine and 

cosine calculation is almost the same. 

 

The C&A Module to generate the pre-scaled sine/cosine values is seen as a 

percentage of the overall Flat CORDIC architecture in the table below: 

 

Size 
(bits) 

C&A 
Gate Count 

Flat CORDIC 
Gate Count 

Percentage of 
whole (%) 

9 3,059 6,238 49 
12 7,887 11,325 70 
15 18,245 21,839 84 
18 25,120 37,281 67 
21 46,014 61,669 75 
24 78,104 104,690 75 

 

Even at its smallest, this part still takes up almost half the entire design, for bit size N = 

9. This is when the multipliers for the final scaling are at a comparable size. For the rest 

of the designs, the C&A Module takes up a higher portion of the architecture.  

 

6.4.1 Pipelining The C&A Section  

 

It was indicated in Section 6.1 and later shown that the maximum operating frequency 

and therefore the minimum time to obtain results is determined during the SD 

Combination cycle. The second longest delay path is in the SD Generation cycle. This 

uneven distribution of logic per cycle can be balanced out through the addition of 

Table 6.5: C&A Module as Part of Flat CORDIC Architecture 
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pipeline stages to split up the critical path logic to be carried out over extra cycles. With 

a smaller amount of logic per cycle, the critical path delay can be considerably reduced. 

The organized structure of the C&A section lends itself particularly well to pipelining. 

The structure can be divided into sections which each run on separate clock cycles. As 

illustrated in Chapter 5, horizontal lines are drawn across the matrix structure to 

separate the pipeline sections.  

 

Assume that the time taken for the entire combination and ripple process is TCR. 

Taken into consideration are the setup and hold times of the FPGA. The setup time, TS, 

is the time relative to a clock event during which the data input to a latch or flip-flop 

must remain stable in order to guarantee that the latched data is correct. The hold time, 

TH, is the time following a clock event during which the data input remains stable for 

the same reason. SPARTAN FPGAs have a TS value of 5 ns, and TH value of 0 ns. 

 

Each additional pipeline stage increases the circuit latency by 1 clock cycle 

(except for the first stage, as explained later). Therefore, in a given module, each extra 

stage can potentially cut the delay by close to half (exact 50% reduction is not possible 

due to non-zero hold time). The optimum place to set up the pipeline is at a point that 

divides the entire circuit into equal parts, and each extra stage is added until the module 

no longer lies in the critical path of the entire design.  

 

From the data, the second biggest delay comes from the SD Generation 

comparator section, TSDG. The following table shows the potential improvement in 

circuit latency for additional pipeline stages. These are ideal figures, assuming the 

divisions occur exactly at the right places. The number of stages are added until TCR,P is 

less than or equal to TSDG, where TCR,P is the new delay for each clock.  
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Size 
(bits) 

# 
stages 

Delay per 
Cycle, TCR,P 

(ns) 

Max 
Frequency 

(MHz) 

Time to 
Match, 

TSDG 
(ns)  

Total # 
Cycles 

Circuit 
Latency 

(ns) 

Savings in 
Time 

9 1 70.32=+ CRs TT  
70.27=CRT  

30.58 11.94 4 131 - 

2 85.18
2

=+ S
CR T

T  53.05 11.94 6 113 14% 

3 23.14
3

=+ S
CR TT  70.26 11.94 7 100 23% 

4 93.11
4

=+ S
CR TT   

 

Size 
(bits) 

# 
stages 

Delay per 
Cycle, TCR,P 

(ns) 

Max 
Frequency 

(MHz) 

Time to 
Match, 

TSDG 
(ns)  

Total # 
Cycles 

Circuit 
Latency 

(ns) 

Savings in 
Time  

15 1 42.65=+ CRs TT  
42.60=CRT  

16.56 18.94 4 262 - 

2 21.35
2

=+ S
CR T

T  28.40 18.94 6 211 19% 

3 14.25
3

=+ S
CR TT  39.78 18.94 7 176 33% 

4 11.20
4

=+ S
CR TT   

Size 
(bits) 

# 
stages 

Delay per 
Cycle, TCR,P 

(ns) 

Max 
Frequency 

(MHz) 

Time to 
Match, 

TSDG 
(ns)  

Total # 
Cycles 

Circuit 
Latency 

(ns) 

Savings in 
Time  

12 1 60.48=+ CRs TT  
60.43=CRT  

20.58 14.36 4 194 - 

2 80.26
2

=+ S
CR T

T  37.30 14.36 6 161 17% 

3 53.19
3

=+ S
CR TT  51.20 14.36 7 137 29% 

4 90.15
4

=+ S
CR TT  62.89 14.36 8 127 35% 

5 72.13
5

=+ S
CR T

T   

Table 6.6: Improvement in Latency With Additional Pipeline Stages, N = 9 

Table 6.7: Improvement in Latency With Additional Pipeline Stages, N = 12 

Table 6.8: Improvement in Latency With Additional Pipeline Stages, N = 15 
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Size 
(bits) 

# 
stages 

Delay per 
Cycle, TCR,P 

(ns) 

Max 
Frequency 

(MHz) 

Time to 
Match, 

TSDG 
(ns)  

Total # 
Cycles 

Circuit 
Latency 

(ns) 

Savings in 
Time 

18 1 09.75=+ CRs TT  
09.70=CRT  

13.32 19.63 4 280 - 

2 05.40
2

=+ S
CR T

T  24.97 19.63 6 240 14% 

3 36.28
3

=+ S
CR TT  35.26 19.63 7 199 29% 

4 52.22
4

=+ S
CR TT  44.40 19.63 8 180 36% 

5 02.19
5

=+ S
CR TT       

Size 
(bits) 

# 
stages 

Delay per 
Cycle, TCR,P 

(ns) 

Max 
Frequency 

(MHz) 

Time to 
Match, 

TSDG 
(ns)  

Total # 
Cycles 

Circuit 
Latency 

(ns) 

Savings in 
Time 

21 1 21.88=+ CRs TT  
21.83=CRT  

11.34 21.29 4 353 - 

2 61.46
2

=+ S
CR T

T  21.46 21.29 6 280 21% 

3 74.32
3

=+ S
CR TT  26.73 21.29 7 262 26% 

4 80.25
4

=+ S
CR TT  38.76 21.29 8 206 42% 

5 64.21
5

=+ S
CR TT  46.21 21.29 9 195 45% 

6 87.18
6

=+ S
CR TT   

Size 
(bits) 

# 
stages 

Delay per 
Cycle, TCR,P 

(ns) 

Max 
Frequency 

(MHz) 

Time to 
Match, 

TSDG 
(ns)  

Total # 
Cycles 

Circuit 
Latency 

(ns) 

Savings in 
Time (%) 

24 1 59.100=+ CRs TT  
59.95=CRT  

9.94 24.47 4 402 - 

2 80.52
2

=+ S
CR T

T  18.94 24.47 6 317 21% 

3 86.36
3

=+ S
CR TT  27.13 24.47 7 258 36% 

4 90.28
4

=+ S
CR TT  24.61 24.47 8 231 43% 

5 12.24
5

=+ S
CR TT   

Table 6.10: Improvement in Latency With Additional Pipeline Stages, N = 21 

Table 6.9: Improvement in Latency With Additional Pipeline Stages, N = 18 
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For every size (N), ideal additional pipeline stages can be seen to improve the 

overall latency. The number of extra pipeline stages is limited by the SD Generation 

delay, and also by the setup time, Ts.  

 

With the potential frequency/time improvements in mind, an extra pipeline stage was 

implemented. 
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The results in Fig. 6.11 show that the implemented pipeline stage improves the latency 

for some values of N, while increasing the latency for others. The two factors that could 

cause the deterioration for some sizes with this addition of an extra pipeline stage are : 

• The uneven distribution of combinational logic in the extra cycles result in very 

small savings in time per cycle 

• The fact that the first additional pipeline stage increases the number of cycles by 

2, combined with the factor above  

 

Table 6.11: Improvement in Latency With Additional Pipeline Stages, N = 24 

     Figure 6.11  Graph Flat CORDIC Latency for Unpipelined, 
                           Pipelined & Ideal Designs Versus Size (N) 
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6.5 Comparison of Flat CORDIC against Other Methods 

 

The performance of the Flat CORDIC module was compared against other 

implementations of sine/cosine generating functions in both VHDL as well as internal 

computer processing speeds in C++.  

 

6.5.1 Implementation of Iterative CORDIC Architecture 

 

The iterative architecture for CORDIC can be implemented directly from the CORDIC 

equations as given in Chapter 2. The design uses 3 registers, one each for X, Y and Z 

values. The micro-rotation direction is driven by the sign of either the Y or the Z 

register, depending on whether vector mode or rotation mode CORDIC is used. 

 

First, the initial values are loaded into the X, Y and Z registers. (Xo : 1, Yo : 0, Zo 

: input angle). Then, on each of the N clock cycles, the values from the registers are 

passed through the shifters and adder-subtractors, and the results placed back in the 

registers. The ROM address is incremented so that the appropriate elementary angle is 

presented to the Z-adder-subtractor. The shifters are modified to cause the desired shift 

for the iteration.  

  

 To standardize the comparison, the number of iterations for conventional 

CORDIC was chosen in such a way that the error range matched that of the Flat 

CORDIC results. For the most part, the latency is N+1 cycles (one extra for the final 

scaling). For sizes N = 15 and 18 however, the latency is N+2 cycles. It uses word-wide 

datapaths (N+log2N bits). The speed and size results are shown in the Table 6.12. 

 Table 6.12: Max. Frequency and Gate Count of Flat CORDIC and Conventional CORDIC Architectures 
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Size 
(bits) 

Accuracy Max Frequency 
(MHz) 

Latency (ns) Gate Count 

Flat 
CORDIC 

CORDIC Flat 
CORDIC 

CORDIC Flat 
CORDIC 

CORDIC 

9 2-9 30.58 53.66 130.8 186.4 6,238 6,103 
12 2-12 20.58 50.04 194.4 255.7 11,325 7,253 
15 2-15 15.29 41.99 261.7 404.9 21,389 13,553 
18 2-18 13.32 43.72 300.4 457.5 37,281 13,733 
21 2-19 11.34 43.12 352.8 510.2 61,669 15,561 
24 2-20 9.94 43.45 402.4 575.3 104,690 17,289 
 

 

6.5.2 Implementation of Direct Sine/cosine Generation 

 

The basic definitions for sine and cosine are as given below :  

( ) ( )∑
∞

=

−+=+−+−=
1

2642

!2
11

!6!4!2
1)cos(

k

k
k

k
zzzzz                    (6.1) 

( ) ( )∑
∞

=

+

+
−=+−+−=

0

12753

!12
1

!7!5!3
)sin(

k

k
k

k
zzzzzz                    (6.2) 

where z is an angle in radians 

This was implemented in VHDL. The design utilizes a ROM to store the inverse 

factorial values and multipliers to generate the values of zi, as well as multiply these 

values by the ones stored in the ROM. The designs were implemented for sizes N = 9, 

12, 15 and 18 using the standardized EN bits (EN = N + log2N) to match the Flat 

CORDIC module. The number of terms for each size N was determined by the 

maximum error (this also standardized to match the Flat CORDIC error results). 

 

 

Size 
(bits) 

Cos # 
terms 

Sin # 
terms 

9 
!4!2

1
42 zz

+−  
3 

!5!3

53 zzz +−  
3 

Table 6.13: Number of Terms using Direct Sine/cosine Generation 
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12 
!4!2

1
42 zz

+−  
3 

!5!3

53 zzz +−  
3 

15 
!6!4!2

1
642 zzz

−+−  
4 

!7!5!3

753 zzzz −+−  
4 

18 
!6!4!2

1
642 zzz

−+−  
4 

!7!5!3

753 zzzz −+−  
4 

 

 

 

Size 
(bits) 

Accuracy Max Frequency 
(MHz) 

Latency (ns) Gate Count 

Flat 
CORDIC 

Power 
Series 

Flat 
CORDIC 

Power 
Series 

Flat 
CORDIC 

Power 
Series 

9 2-9 30.58 32.07 130.8 187.1 6,238 8,410 
12 2-12 20.58 26.53 194.4 226.1 11,325 15,451 
15 2-15 15.29 24.76 261.7 282.7 21,389 37,978 
18 2-18 13.32 24.06 300.4 290.9 37,281 52,500 

 

Table 6.14: Max. Frequency, Latency and Gate Count of Flat CORDIC and Conventional CORDIC 
Architectures 
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Fig. 6.12 shows that even the unpipelined Flat CORDIC can generate the sine/cosine 

values a lot faster than conventional CORDIC for size N = 9, it is roughly 100 ns faster. 

For sizes N = 15 and above, there is approximately a 200 ns difference between the two 

methods. There is roughly a 30% savings in time using the Flat CORDIC architecture. 

Fig. 6.12 also shows that the Flat CORDIC executes faster than the Power Series for 

small values of N (9, 12, 15). However, as N increases, the Power Series method of 

Figure 6.12: Latency of Flat CORDIC, Conventional CORDIC 
                      And Power Series Architectures 

Figure 6.13: Gate Count for Flat CORDIC, Conventional CORDIC 
                      And Power Series Architectures 
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calculation appears to yield results faster as can be seen in the intersection of the lines in 

Fig. 6.12. 

 

Fig. 6.13 however indicates that while the gate count for conventional CORDIC 

increases very gradually, that for Flat CORDIC increases a lot more. The increase in 

gate count for the Power Series Method is even more drastic, due to the many 

increasingly large multipliers that are required. 

 

6.5.3 C++ Implementation of CORDIC Sine/cosine Generation 

 

The simple addition and shifting process of CORDIC [with a final multiplication for 

scaling factor compensations] was written into C++ code to test the computer processor 

speed. The processor is an Intel Pentium ® 4 chip, operating at 2.40 GHz, with 256 MB 

RAM. An inbuilt clock function was incorporated in the program to find the average 

speed of sine/cosine value generation.  

 

6.5.4 C++ Implementation of MATH.H Sine/cosine Generation 

 

The sine/cosine values generated using the math.h inbuilt function was also examined to 

get the average sine/cosine computation of the computer processor. For both these 

methods, the accuracy was standardized with the Flat CORDIC results. 
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It was mentioned earlier that in high-speed operations, hardware solutions are being 

favored to their software counterpart. The results displayed in Table 6.15 are an 

indication of the vast difference in calculation speeds when making use of software 

solutions compared with hardware solutions. 

 

 

Size 
(bits) 

Max Frequency (MHz) 
Flat CORDIC C++ 

CORDIC 
C++ Internal 
Calculation 

9 30.58 0.252 1.186 
12 20.58 0.181 1.123 
15 15.29 0.119 0.704 
18 13.32 0.104 0.736 
21 11.34 0.097 0.615 
24 9.94 0.101 0.587 

Table 6.15: Maximum Operating Frequencies For Sine/cosine 
Computation (Hardware Versus Software) 
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CHAPTER 7 : CONCLUSIONS AND FUTURE WORK 
 
 
7.1 Conclusions 
 
  

This thesis has concentrated on the implementation of Flat CORDIC on FPGAs. 

Specifically, Flat CORDIC has been utilized to perform the specific trigonometric 

functions of sine/cosine generation. The proposed implementation has also been 

compared with existing sine/cosine generation methods in literature in terms of speed of 

operation and circuit size. 

 

 The first part of this research focuses on the derivation of the Flat CORDIC 

equations and the subsequent simplifications to make it suitable for implementation. 

The existing algorithm for generating the SDs required for the Flat CORDIC equations 

has been tested and its accuracy checked. An alternative to the existing encoder method 

was proposed that yielded more accurate results was synthesized and analyzed. The two 

methods were implemented in the full Flat CORDIC design, and the synthesis results of 

these were also examined. 

 

 From the results obtained, the proposed comparator method produces more 

accurate results than its encoder counterpart. The speed of SD Generation is also higher. 

However, the comparator method utilizes a much larger number of gates. Once 

integrated into the full Flat CORDIC design, the improvements in speed of the 

comparator method could no longer be seen. This is due to the SD Generation Module 

not being the bottleneck in the overall design. The increase in size using the comparator 

method, however, ceased to be very significant when integrated into the main 
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architecture. This is because the SD Generation portion by itself constitutes a small 

percentage of the full design. 

 

 The next part of the thesis focuses on designing a new method to combine the 

SDs to correspond with the Flat CORDIC equations and generate the pre-scaled 

sine/cosine values (the C&A Module). The proposed architecture is a matrix of cells, 

each seating one of a selection of specially designed modules. The choice of the module 

filling each cell depends on the number of inputs into the cell. The outputs of the cell 

were designed to ripple through to the next column and layer to effectively produce 

left/right shifts.  

 

 Simulations were performed to check that the C&A Module produced the 

expected results. Synthesis results indicated that this portion took up a big part of the 

Flat CORDIC architecture and also that the amount of combinational logic was quite 

large, resulting in delays that limited the maximum operating frequency.  

 

 The following part explored the possibilities of speeding up the design by 

pipelining the C&A Module. Calculations were performed to estimate the savings in 

time. The maximum possible number of extra pipeline stages for increased performance 

was extrapolated assuming ideal pipeline implementation. An extra pipeline stage was 

also implemented to check the synthesis results. 

  

 It was seen that the maximum savings in time could reach a high of 46%. The 

number of additional stages for bit sizes 9 through 24 ranged between 3 and 5. The 

implementation results, however, indicated that an extra stage could potentially cause a 

decrease in performance if not implemented in the right place. This was due to a 
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combination of the uneven logic distribution per cycle and also the fact that the first 

extra pipeline stage increased the circuit latency by 2 cycles.  

 

 Finally, a comparison was made with other methods in literature. Flat CORDIC 

was found to be much faster than the conventional bit-parallel CORDIC as well as the 

power series sine/cosine generation method. The Flat CORDIC size (gate count) was 

also smaller than that of the power series generation method. However, while the 

conventional CORDIC gate count increase was seen to be very gradual with the 

increase in N, the Flat CORDIC gate counts were not only larger, but they increased at a 

higher rate as well. It was also seen in a comparison against software sine/cosine 

generation, that the Flat CORDIC speed was several orders of magnitude larger. This 

supports the increasing trend towards hardware methods for high-speed and massive 

compute-intensive processes.  

 

7.2 Suggestions for Future Work 

 

 This work has presented a detailed study of Flat CORDIC Sine/Cosine in 

Rotation Mode. Among the other topics of interest as an extension would be an 

extension into the hyperbolic coordinate system to generate sinh/cosh values. The main 

difference in the characteristic equations for these two coordinate systems is the value 

of m, which is either +1 or -1. The sine/cosine generating module can be modified with 

sign-changing units like xor gates to include this difference. 

  

 It is seen that the major bottleneck in the design, and also the largest part of the 

design is the C&A Section. It would be worthwhile to investigate this ripple architecture 

further, to find ways to simplify it by combining more units to make the design more 
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compact. It is also seen that the BLUE module in this architecture is instantiated many 

times, and forms a core of the ripple architecture. As the bit-size (N) increases, the 

number of combinational terms increases and the number of BLUE modules also 

increases. An optimization of this unit in terms of delay could improve the area/time 

measurements of the Flat CORDIC design. 

 

 Another potential area of interest would be to extend Flat CORDIC to Vectoring 

Mode CORDIC. The simplification of Xo = 1 and Yo = 1 would no longer be applicable 

in this case, due to the fact that the initial vector is specified, and will not coincide with 

the X-axis. Suitable modifications to the equations to accommodate this mode of 

operation could be studied. 
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