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EFFECT OF FEEDBACK CONTROL WITH LINEAR AND NON-LINEAR 

TEMPERATURE GRADIENTS TO SOME CONVECTION PROBLEMS 

ABSTRACT 

In many engineering and industrial applications such as crystallization growth process 

industries, nuclear reactors, solar heating devices and welding of steels, the onset of 

instability of convection plays a major role in resulting the satisfactory end-products. 

The linear stability analysis regarding the non-Newtonian convective flow in electro 

convection and ferrofluids convection in the presence of feedback control strategy is 

studied by using single-term Galerkin technique. In the case of Bénard–Marangoni 

electro convection, the presence of feedback control is analysed using the classical 

linear stability analysis. Linear, parabolic and inverted parabolic temperature profiles 

are chosen to investigate in this study. For the case of Rayleigh–Bénard–Marangoni 

ferrofluids convection, the presence of feedback control is analysed and the influence 

of various parameters on onset is discussed. In the both non-Newtonian fluid, various 

value of feedback control and other parameters on onset are tested to examine the 

presence of feedback control on the onset of convection. The results obtained under 

the limiting conditions compare well with the previous studied. The numerical results 

obtained are presented graphically and the influences of various parameters are 

discussed in detail. The results indicate that the value of critical Marangoni number 

and other parameters affected in the presence of feedback control which delaying the 

onset of instabilities. 

 

Keyword: Linear stability analysis; Feedback control strategy; Galerkin technique; 

Bénard–Marangoni electro convection; Rayleigh–Bénard–Marangoni ferrofluids. 
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KESAN KEHADIRAN KAWALAN SUAPBALIK BESERTA KESAN 

KECERUNAN PROFIL SUHU LINEAR DAN PROFIL SUHU BUKAN LINEAR 

TERHADAP BEBERAPA MASALAH OLAKAN                                                                                 

ABSTRAK 

Dalam pelbagai aplikasi kejuruteraan dan industri seperti industri proses pertumbuhan 

kristal, reaktor nuklear, pembuatan alat pemanasan solar dan pengimpalan besi, 

permulaan ketakstabilan olakan memainkan peranan yang penting untuk memberikan 

kualiti hasil yang memuaskan. Analisis kestabilan linear berkenaan aliran olakan 

bukan Newtonian dalam olakan elekro dan olakan bendalir ferro dengan kehadiran 

kawalan suapbalik dikaji dengan menggunakan teknik sebutan tunggal Galerkin. 

Dalam kes bagi olakan elekro Bénard–Marangoni, kehadiran kawalan suapbalik 

dianalisis menggunakan analisis kestabilan linear klasik. Profil suhu linear, parabola 

dan parabola berbalik digunakan dalam kajian ini. Bagi kes olakan bendalir ferro 

Rayleigh–Bénard–Marangoni, kehadiran kawalan suapbalik dianalisis dan pengaruh 

semua parameter ke atas tercetusnya olakan dibincangkan. Dalam kedua-dua bendalir 

bukan Newtonian, pelbagai nilai kawalan suapbalik dan parameter lain telah diuji 

untuk mengkaji kesan kehadiran kawalan suapbalik terhadap tercetusnya olakan. 

Keputusan kajian yang diperolehi di bawah syarat terhad dibandingkan dengan hasil 

kerja penyelidik sebelum ini. Keputusan berangka yang terhasil dipersembahkan 

secara grafik dan pengaruh pelbagai parameter dibincangkan secara terperinci. Hasil 

kajian menunjukkan bahawa perubahan nombor Marangoni genting dan begitu juga 

pelbagai parameter lain telah dipengaruhi dengan adanya kawalan suapbalik iaitu 

kawalan suapbalik memperlahankan permulaan olakan yang tidak stabil.  
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Kata kunci: Analisis kestabilan linear; Kawalan suapbalik; Teknik sebutan tunggal 

Galerkin; Olakan elekro Bénard–Marangoni; Bendalir ferro Rayleigh–Bénard–

Marangoni.  
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CHAPTER 1:  

INTRODUCTION 

 

1.1 Preliminary  

Heat transfer (or heat) can be defined as trade of thermal energy by dissipating heat, 

between two systems or part of two systems depending on a spatial temperature 

difference (Incropera et al., 2007). Whenever there exists changing of mechanical 

energy, heat flows from hot objects to cold objects, just like how water flows, it goes 

from high surface to low surface. When heat is transferred, it is pulled from hotter 

objects into colder objects. 

Heat transfer has broad applications in numerous manufacturing activities such as, in 

packaging materials, pasteurization of food, integrated generator engines, air pollution 

mitigation, biology processes, biomass and biofuel. In these activities, heat transfer 

efficiency increases which takes place via several heat transfer devices. These devices 

such as heat sinks, hydro coolers, blast chillers and refrigeration evaporators are 

desirable to minimize the volume.  

Conduction or diffusion, convection, and radiation are mainly classified as modes of 

heat transfer. When the hot dishes stirred with a metal utensil, instantaneously, the end 

of the utensil become very warm and a pot holder is needed. The heat energy from the 

end of the utensil in the hot dishes passes through to the end of human hand. This 

energy is known as conduction. Meanwhile, convection is the phenomenon of 

successive motion of electrons, atoms and molecules in fluids called a current. For 

example, the convection cycle continued from the bottom of the dishes, diffuses and 

becomes less dense and then, the denser, warm part dishes go upward. The upper 
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surface of the dishes continued denser, spreads out and less warm. After that, the heat 

cycle continues where the cooler, high dense dishes go down to the below part and 

begin to float after received the heat. Oppositely during radiation, the energy is 

transferred by electromagnetic radiation where indirect contact between an item and 

heat source. Radiation means the energy is passes through vacuum medium or empty 

space. Basically, we can easily illustrate the mode of heat transfer in boiling water, 

melting ice and drying of clothes. But then, in this thesis, we will be discussed briefly 

only on convection in a layer of fluid. 

 

1.2 Convective Heat Transfer   

 The heated fluid (liquid or gas) is transfer from one medium to another is called 

convection. The movement of heated fluid occurs because the change of the heat. 

Generally, convection also known as convective heat transfer means the process of 

heat transfer that arises from fluid flow either over or through cold or hot surfaces and 

the fluid flow acts as an energy carrier.  

The heat transfer devices of working fluid is to minimize the associated energy 

consumption which take place through a vertical, horizontal and inclined cylinder. But 

then, for this thesis, we only focus on convection in a horizontal plane heated from 

below which are steady Bénard–Marangoni convection. 

 

1.2.1 Types of Convection 

The story begins when Bénard demonstrated a definitive and systematic manner of 

convection in a thin fluid layer in his earliest experiments, 1900 (Chandrasekhar, 1961). 
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However, he made false conclusion by saying that the results of the hexagonal shaped is 

due to buoyancy force. 

Rayleigh (1916) tried to explain the phenomenon seen by Bénard through 

mathematical theory. In 1956, Block has made systematically experiment and finally 

succeeded to explain that the real force in fluid that caused convection was surface 

tension force. This result confirmed by theory of mathematics for the first time proposed 

by Pearson (1958). Since then, many researchers repaired and extended experiments and 

the classical theory to understand the phenomenon of convection in more complex and 

realistic situations.  

Convection due to buoyancy force is called Bénard convection proposed by Bénard, 

(1900). Meanwhile, convection due to surface tension force is known as Marangoni 

convection. Whereas some other researchers studied the convective instabilities due to 

combined buoyancy force and surface tension force called on Bénard–Marangoni 

convection.  

 

1.2.2 Applications of Convection   

Convection is a great deal factor in mixing of water masses for sea water. On the 

other side, for weather, convection is main influence for prediction of the weather at 

small interval scales and a great deal factor of climate prediction at substantial length 

scales. Application of convection also involving in industries that are crystallization 

growth process, nuclear reactors, solar heating devices and welding steels.  

As stated by Koschmieder (1993), before 1900 means before Bénard get interest on 

thermal convection in fluid, convection in shallow fluid layers have been recognized 

and described by several observers. Early observations are kind of historical interest as 

there are no scientific investigations made under controlled condition. In 1897, 
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Guebhard made an observation, namely as observation of polygonal vortex motions in 

an abandon bath of film developer. This observation then accidentally observed by 

Bénard and induced Bénard’s spirit to take a thorough look at convection himself.  He 

demonstrated first systematic and definitive investigation of convection warm up from 

below in a shallow layer of fluid. The outcomes of his doctoral thesis are from these 

studies which the published article namely “Les tourbillons cellulaires dans une nappe 

liquid - Méthodes optiques d’observation et d’enregistrement” (Bénard, 1900) and a 

subsequent paper in 1901. 

The first person to give a conclusive experimental demonstration on the role of 

surface tension in the formation of hexagonal cells is by Block (1956). Then, Pearson 

(1958) is the pioneer theoretical investigation of convection caused by surface tension 

gradients using linear stability analysis. The hydrodynamic instability in a freely flow 

substance is caused by surface gradient force. There given also many factors to cause 

the instability include the adequate magnitude of proper sense or temperature and 

concentration tension across the fluid surface. However, the most significant limitation 

of Pearson’s (1958) work is consideration of only the free surface with non- deformable 

form of study which heated from below corresponding to strong limit of the gradient. 

On the other hand, if the fluid surface deformed, it will lead to the change of the 

boundary conditions on top of the layer. 

But then, this thesis only focuses on a steady Rayleigh–Bénard–Marangoni 

convection in the horizontal plane which is heated downside.  

 

1.3 Types of Fluid 

Do we really know what fluid is it? Blood flowing in our body or the air we inhaled 

or exhaled daily is a fluid. Fluid can be state in the form of liquids, gases, plasmas or 
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plastic solids which is essential in our life. There are widely number of engineering 

applications in fluids such as turbines, engines, windmills, airplanes, jets and sprinklers. 

To provide great improvement for wide theoretical and experimental work, it is 

important to study the fluid flow. The prediction of the fluid flow processes help 

engineers to study practical applications and producing advanced materials, hence 

produce high quality of the products and in the same time will reduces the conduction of 

costly works. 

In physics, fluid known as a substance that continuously flow as long as the shear 

stress applied. Mathematically, Amer–Nordin (1995) defined fluid as continuum 

substances. In other words, the fluid said to be flows and deforms continuously with 

resulting of shear stress. When in states of no shear stress, the fluid said to be at rest.  

Basically, fluids can be grouped into a few classes known as ideal fluid, Newtonian 

fluid, non-Newtonian fluid and real fluid. A kind of liquid which has zero viscosity 

property with no stress element, τ and cannot be compressed falls in the category of 

ideal fluid. Ideal fluid cannot be found in reality or actual practice and can be said as 

imaginary fluid due to assumptions that all existing fluid in the environment has some 

viscosity property. Most of real fluid is viscous, means that the viscosity property 

cannot be ignored at all such as water, oil and air (White, 2008). 

Generally, the shear strain is directly proportional to the gradient of velocity known 

as the Newton's law of viscosity. The real fluid said to be Newtonian fluid which obeys 

the relation, with linearly proportional to the local strain rate. In experimental 

calculations, water, air and most types of liquids and gases, can be said as Newtonian. 

Meanwhile, a kind of fluid which did not obey this constitutive law called non-

Newtonian fluid. Many salt solutions, molten polymers and most commonly form 
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substances like jam, yogurt, corn starch, paint and mayonnaise are examples of non-

Newtonian fluids.   

 

1.4 Micropolar Fluid 

Eringen (1966, 1972) studied the theory of micropolar fluid which plays its role 

whenever the behavior of fluid flow cannot be explained in the basis of Newtonian 

fluid. These micropolar fluid described by Eringen consist of suspended particles in a 

viscous medium and move regularly with a definite volume. Diverse applications of 

micropolar fluid can be found in industrial colloidal fluids, polymeric suspension and 

liquid subtances.  

According to Eringen (2001), magnetic fluids, dielectric fluids, muddy fluids and 

biological fluids are some other possible substances that can be modelled by applying 

the theory of micropolar fluid. Besides, another application in our daily life that using 

these modeled of micropolar fluid dynamic include blood flow in arteries and capillaries 

and the presence of dust in the air. Hence, the importance to study the behavior of fluid 

flows increasing especially involving the theory of micropolar fluid. 

Electro convection is an example of natural convection involving the movements of 

fluid in an electric field. Some of the effects of electric fields are control the motion in 

fluids, lower values of conductivity and directly converted into the kinetic energy. 

The analysis of convection in magnetic fluids called ferroconvection has a 

temperature that depends on magnetic moment. In a non-electrically conducting carrier 

fluid like water, kerosene, hydrocarbon and so on, ferrofluids are electrically non-

conducting colloidal suspensions of tiny particles of solid ferromagnetic material. 

Ferrofluids also called the magnetic fluid due to the factor of the fluid magnetization. 

Univ
ers

iti 
Mala

ya



7 

Ferrofluids are artificially synthesized and has many important applications in cool 

down the rate of cooling in loudspeakers, with motors in space and others equipment to 

enhance convective cooling although not naturally exist. In the electrically conducting 

nanofluid, continuous strips and filaments are drawn so that the rate of cooling is 

controlled (Rosmila et al., 2012). In the conventional base fluids, some other 

compounds containing iron, Magnetite, Hematite, or Cobalt Ferrite are such type of 

electrically colloidal suspensions in which nanoparticles are suspended known as 

ferrofluid. 

 

1.5 Control Strategy 

What we want to control actually in this study? The control strategy is needed for the 

system whether it can suppress or augment the onset of convection. Generally, the 

naturally convective flow patterns may not be able to optimize the process.  So, it is 

important in many technological sciences area to control the complex flow.   

Here, are several physical mechanism we can applied for to control the convective 

instabilities effectively such as by applying electric field, by using controller gain 

parameter, or by maintaining temperature profile, or by applying magnetic field or using 

rotation. 

Importantly, control the complex convective patterns needed to make sure the 

process going to be the optimal ones. For example in material processing, it helps 

produce good ends products and to attain significant savings. But what will happen if 

the convective instabilities become uncontrolled? Will resulting the poor quality in the 

production of crystals and poor quality in the penetration welding steels.  
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1.6 Problem Statements 

The lists of the problem statements are: 

1. Analysing the onset in the presence of feedback control on Bénard–

Marangoni electro convection in a micropolar fluid with parabolic 

temperature profile. 

2. Analysing the presence of feedback control strategy on Rayleigh–Bénard–

Marangoni ferrofluids convection. The stability of the onset which is 

influenced by using linear temperature profile and some various 

parameters will be studied. 

3. Analysing the effects of feedback control with non-uniform temperature 

profiles for Rayleigh–Bénard–Marangoni ferrofluids. Parabolic and 

inverted parabolic temperature profiles are chosen to investigate in this 

problem. 

 

1.7 Research Questions 

The some of the research questions are: 

1. How the mathematical model of linear stability is derived and analysed 

and what the boundary conditions applied for both cases of dielectric 

micropolar layer and ferrofluids layer? 

2. What are the effects of feedback control on Bénard–Marangoni electro 

convection in a micropolar fluid and the effect of feedback control to other 

parameters such as critical Marangoni number, ,cM   Rayleigh number, R, 

coupling parameter, ,1N  couple stress parameter, 3N  and parameter of 

micropolar heat conduction, 5N  with the basic state temperature profiles? 
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3. What are the effects of feedback control on Rayleigh–Bénard–Marangoni 

ferrofluids convection and the effect of feedback control to other 

parameters such as critical Marangoni number, ,cM   Rayleigh number, R, 

and magnetic Rayleigh number, N with the basic state temperature 

profiles? 

 

1.8 Research Objectives and Scopes 

The aims of this research are: 

1. to develop and extend the mathematical model of electro convection for 

micropolar fluid investigated by Azmi and Idris (2014) and the 

mathematical model of ferrofluids convection reported by Shivakumara et 

al. (2002) by including feedback control in the boundary condition.  

2. to develop a numerical code to predict the onset of convection for 

objective 1. 

3. to analyse the numerical results of the problem statements. 

4. to compare the output with previous study and make a conclusion / 

suggestion for the present study. 

The scope of this work is to analyse the onset of non-Newtonian flow patterns in 

electro convection and ferrofluids convection in the presence of feedback control 

strategy. Basic temperature gradients and also with the effect of others parameters are 

investigated on the onset. Linear, parabolic and inverted parabolic temperature profile 

are chosen to study. Hence, the numerical code developed is to predict whether the 

parameter involved in our study will suppress or augment the onset of convection. 
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1.9 Thesis Organization 

Basically this thesis consists of seven chapters. The first chapter presents the 

introductory chapter that includes some background about convective heat transfer in 

fluid and types of fluid. Basic mechanism for convection and applications related the 

current study will be described accordingly. Then, follow by the research objectives and 

the scopes of the current work. 

The next, Chapter 2 presented the literature review about earlier studied. The 

literature review survey from the previous study in well-known journal, past thesis, 

book and also conference proceeding. The related aspects to current investigation also 

stated in this chapter.  

Furthermore, in Chapter 3 described the mathematical formulation and derivation of 

the governing equations of the model problem. In addition, the method on the problem 

solution for case of non-Newtonian fluid which is include linear stability analysis and 

single-term Galerkin method will be discussed here. Thus, in Chapter 4, consists of the 

completion of the mathematical formulation by the concept of boundary conditions and 

feedback control strategies applied for both cases of dielectric micropolar layer and 

ferrofluids layer. 

All the verification of the accuracy of numerical finding on effects of the presence of 

feedback control in micropolar fluid and ferrofluids convection with non-uniform 

temperature gradients will be presented in Chapter 5. Then, in Chapter 6, the numerical 

results of the effects of parameters on the onset of Rayleigh–Bénard–Marangoni 

convection in electroconvection and ferrofluids will be presented graphically. Besides, 

the solutions of eigenvalues subject to each boundary condition will be discussed as 

well. 

Univ
ers

iti 
Mala

ya



11 

The final chapter, Chapter 7 summarizes and concludes all the results from the 

previous chapters. Also this last chapter presented the proposed on advanced research 

which can be extended from existing work and some recommendations will be suggest. 
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CHAPTER 2:  

LITERATURE REVIEW 

 

This section provides some literature survey on related current work in various 

aspects. Particularly, there are a few sections consists of general discussion on 

convective instabilities, non-Newtonian fluid which are dielectric micropolar fluid and 

ferrofluids and the discussion topic on various control strategies used in convective 

instabilities. 

 

2.1   Convective Instabilities  

Convection is found all over the earth. That is how when the sea and land breezes are 

form (see Figure 2.1) and also causes the plates to move in earth mantle. Besides, in 

geophysics, convection is a great deal influence in occurring of oceanic and atmospheric 

structure. On the other side, convective instabilities are the main factor for the formation 

of the continental surfaces. Application of convection also involving in industries that 

are crystallization growth process, nuclear reactors, solar heating devices and welding 

steels. In other context of types of convection, the first one is heat transfer, the other two 

are known as conduction and radiation. Convection has freely movement of molecules 

as example in the liquid medium form like fluid and also in the medium of gases. 

Besides, convection can be formed when material with different densities interacted. 

Means that, when the less dense material was rising and more dense material was 

sinking. For example in our environment, warm air were rises because of less dense 

than cold air. Such movement is referred to Rayleigh–Bénard convection when there is 

heated downside on a horizontal fluid layer. 
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  Figure 2.1: Convection currents cause sea breeze and land breeze 
Source: https://thattheoreticalphysicist.files.wordpress.com/2014/09/wind_draft1.jpg 

A natural type of convection; Rayleigh–Bénard convection which is heated downside 

in a plane of horizontal fluid layer. The popular commonly studied of convective 

instabilities by Getling (1998) on Rayleigh–Bénard convection. In 1900, an experiment 

on convection cells in a thin liquid layer performed by Henri Bénard observed that there 

existed spontaneous pattern formation. In other words, the convection was seen to 

organize itself into hexagonal cells throughout the entire domain, as shown in Figure 

2.2. The appearance of convection cells is due to the effect of buoyancy. Hence, the 

initial movement gravity causes the higher fluid density go upside to the upper layer. 

The cells of convection which is Bénard cells had a regular pattern form 

(Chandrasekhar, 1961). The false conclusion made by Bénard saying that the formation 

of hexagonal pattern because of buoyancy force existed. 

 

Figure 2.2: Bénard cells convection under free surface 
Source:https://upload.wikimedia.org/wikipedia/ Bénard _cells_convection.jpg 
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The transfer of thermal energy by the fluid flow either over or through cold or hot 

surfaces is called convection state by Koschmieder (1993) and Mohammed et al. (2013). 

Mohammed et al. (2013) has studied a research on natural type of heat transfer include 

the flows from the top and the bottom of inclined cylinder including the cross sections 

with different parts of vented enclosure at steady state. But then, for this research work 

we only focus on steady Rayleigh–Bénard–Marangoni convection heated downside in a 

plane of horizontal layer. Convection has the most commonly researched of higher 

attention because of the mathematics and analytical accessibility. Convection may be 

produced either by buoyancy forces (Bénard convection) studied by Bénard in year 

1900 and Rayleigh (1916) or surface tension forces (Marangoni convection) by Pearson 

(1958) or both buoyancy and surface tension gradient (Bénard–Marangoni convection) 

by Nield (1964). The Bénard–Marangoni instability problem has received higher 

attention of research works of Davis and Homsy (1980), Perez-Garcia and Carneiro 

(1991), Medale and Cerisier (2002) and Giangi et al. (2002). Recently, the convective 

instabilities problems have studied by many researchers such as Shivakumara et al. 

(2015) and Arratia et al. (2018). For micropolar fluid convection, Idris et al. (2009) 

conducted a research on the onset of Bénard–Marangoni about the influence of feedback 

control. 

 

2.2   Dielectric Micropolar Fluid 

The theory of micropolar fluid described by Eringen (1966, 1972) has diverse 

applications in industrial fluids. That theory described the presence of particles by 

taking into account particle motions and thermal effects in the fluid (Pranesh and Kiran, 

2010). In industrially fluids, the theory and the applications of micropolar fluid have 

become great field of study by Eringen (1966), and Lukaszewicz (1999). We indicated 

several possible applications of the theory to suspensions which are liquid crystals, 
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polymeric fluids, certain anisotropic fluids, animal blood, and turbulence (Eringen, 

1966, 1972).  The problem of the convective instabilities of a micropolar fluid has been 

studied in the area of heat conducting by Rama Rao (1974), geophysics by Walzer 

(1976), rotation by Sastry and Ramamohan (1983) and by Qin and Kaloni (1992) and in 

the factor of electric field by Char and Chiang (1994), Douiebe et al. (2002), El-Sayed 

(2008), and also Rudraiah and Gayathri (2009). Electroconvection is involving the 

movements of fluid in an electric field and is an example of convection in natural 

phenomenon. Some of the effects of electric fields are control the motion in fluids, 

lower values of conductivity and directly converted into the kinetic energy stated by 

Roberts (1969), Pranesh and Baby (2012) and also Azmi and Idris (2014). In addition, 

the presence of various numbers of controllers will suppress or augment the onset of 

convection had been done (Idris and Hashim, 2010; Mahmud et al., 2010).  

 

2.3 Ferrofluids 

The analysis of ferroconvection has many important applications in cool down the 

rate of cooling in loudspeakers and others equipment to enhance convective cooling. 

Ferrofluids has a temperature that depends on magnetic moment also called the 

magnetic fluid and artificially synthesized. In a conducting carrier fluid and non-

electrically fluid like hydrocarbon, kerosene and water, the tiny particles of solid 

ferromagnetic material of electrically non-conducting colloidal suspensions also called 

as ‘ferrofluids’. The reviews by Rosensweig (1985), Bashtovoy et al. (1988) and 

Berkovsky et al. (1993) in the aspect of the body couple and the force of polarization on 

different ordinary fluid. A body force distribution can change depend on any variation 

of magnetic field, temperature and density aspect in the fluid. In the presence of a 

gradient magnetic field in pure fluids, the rise to ferroconvection analogous to 

Rayleigh–Bénard convection obtained from Chandrasekhar (1961). 
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Many researchers focusing on theory of linear stability on Rayleigh–Bénard 

ferroconvection such as Finlayson (1970), Das Gupta and Gupta (1979), Gotoh and 

Yamada (1982), Rudraiah and Sekhar (1991), Venkatasubramanian and Kaloni (1994) 

Meanwhile, Lalas and Carmi (1971) and Straughan (1991) applied the perturbation 

theory to studied the non-linear stability of ferroconvection. Marangoni ferroconvection 

has offers new deals for application in microgravity environment studied by Rudraiah et 

al. (2002), Nanjundappa et al. (2010), Gireesha (2016) and Azmi and Idris (2015). 

Many researchers such as Qin and Kaloni (1994), Weilepp and Brand (1996), 

Hennenberg (2005) and Nanjundappa et al. (2013) are attracted to the instability of 

ferroconvection on the onset in the factor of combined buoyancy forces and surface 

tension (Rayleigh–Bénard–Marangoni ferroconvection). 

 

2.4 Control Strategies in Convective Instabilities 

The control strategy is needed for the industrial process whether it can enhance or 

delay the convective instability. Generally, the naturally convective flow patterns may 

not be able to optimize the process.  So, it is important in many technological processes 

had ability to control the complex flow. In spite of that, a lot of researches have be done 

controlled the flow patterns by applying feedback control strategies. Having a simple 

way of stabilize non-stable states in Rayleigh–Bénard–Marangoni convection, would be 

desirable to the critical stage. Controlling the onset of instability and to reduce drag, the 

characteristics have been analyzed by Gad-el Hak (1994), Choi et al. (1994) and also 

Bewley and Moin (1994) by applying turbulent channel flow. The experiment of using 

the neural network and linear control in water tunnel, Jacobson and Reynolds (1995) 

studied intentionally to induce vorticities. In boundary data, the experiment effected 

small perturbations to delay the onset of Marangoni convection by Pearson (1958) and 

Takashima (1970), extended by Bau (1999) who included a feedback control strategy. 
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Singer and Bau (1991), Yuen and Bau (1996, 1998) and Bau (1999) have been 

investigated in all kinds of characteristics using of linear and nonlinear control strategies 

to manageable the chaos. Eventually, with the help of controller proposed by Howle 

(1997a, 1997b, 2000) the flow showed significantly delay. The research on Rayleigh–

Bénard–Marangoni problem, Or and Kelly (2001) reported the basic state stabilization 

can be achieved by using linear feedback control. In spite of that, nonlinear proportional 

feedback control can altered the weakly nonlinear flow properties. The application of 

large controller lead to suppress oscillatory Rayleigh–Bénard convection showed by Or 

et al. (2001). In the application of proportional feedback control, Tang and Bau (1998) 

placed the sensors at the heated of the bottom surface which is known as the thermal 

actuators. Regardless from its conductive, the purpose is to recognize any changes of 

the temperature at the surface of the fluid. Therefore, the temperature between upper 

and lower thermal boundaries will be modified using a proportional relationship. Hence, 

at the heated of the bottom surface, the actuators will directly to make a progressed 

regardless the unwanted disturbances. Besides that, the instabilities of Marangoni–

Bénard convection has been proved by Or et al. (1999) that by the aid of feedback 

control, the long wavelength shown stabilized motion. Further research by Bau (1999) 

investigated on a linear basis with no-slip conditions at the bottom boundary 

theoretically showed with helped of feedback control suppressed the convective 

instabilities of Marangoni–Bénard convection. Due to this great important of controlled 

the flow patterns, a lot of researches have be done using feedback control such as by 

Siri and Hashim (2008, 2009a, 2009b), Kechil and Hashim (2008), Siri et al. (2009), 

Idris and Hashim (2010), Hashim et al. (2010), Loodts et al. (2014) and also Budroni et 

al. (2017). 

In spite of the feedback control strategies used, Morton (1957), Lick (1965) and 

Foster (1965) proposed non-uniform temperature gradient on the ferroconvection 
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pertains to buoyancy force. Ultimately, the presence of temperature gradient effectively 

delaying or enhance the onset of convection studied by Rudraiah and Chandna (1986) 

and Currie (1967). Rudraiah et. al (1986) performed the similar research using a suitable 

temperature gradient pertains to Bénard–Marangoni ferroconvection. The problem of 

combined buoyancy and surface tension forces of ferroconvection has been studied by 

Shivakumara et al. (2002) by adding the effect of basic temperature profiles and studied 

by Ravisha et al. (2017). However, magnetic field is the other factors that are added up 

by Hennenberg et al. (2005) on the problem of Rayleigh–Bénard–Marangoni 

ferroconvection to view the effect on the onset while acted normal to the boundaries. 

Further research on the onset of Marangoni ferroconvection, with the aim of 

understanding control of convection, Shivakumara and Nanjundappa (2006) and 

Shivakumara et al. (2014, 2015) applied various initial temperature profiles. Due to its 

important in space studies, Siddheshwar and Pranesh (1998) performed the non-uniform 

temperature profiles with the aid of internal heat source.  
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CHAPTER 3:  

MATHEMATICAL FORMULATION AND METHOD OF SOLUTIONS 

 

In this chapter, the derivation on the mathematical models of linear stability will be 

explained. Then, follow by the concept of Boussinesq approximation and classical 

linear stability theory. In the next section, the derivation on the mathematical 

formulation specifically for each fluid case, basic condition for that fluid at the rest state 

and also the analysis for linear stability theory to solve the problem will be discussed. 

Then, follow by the discussions on the boundary conditions for both cases of dielectric 

micropolar layer and ferrofluids layer. Finally, the completion of the chapter by the 

concept of feedback control strategies applied to the system.  

 

3.1   General Model Linear Stability Convection 

Generally, a fluid layer of infinite horizontal length in the direction of x and y, heated 

from below and bounded with two horizontal plane boundaries at 0=z  and dz =  in 

Figure 3.1 is considered. Temperature at the rigid surface represents by 1T  and 

temperature at the free surface represents by 2T . This research study based on non-

Newtonian fluid, and will be focused on dielectric micropolar fluid and ferrofluid layer. 

Figure 3.1: Schematic general physical model of the problem 

   

 =2 
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 z  
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The boundary conditions for each type of fluid were selected from these models. The set 

of hydrodynamic equations basically derived from the statement of Bénard–Marangoni 

convection problem using the Boussinesq approximations. Based on Chandrasekhar 

(1961), a fluid density,   from Boussinesq approximation has been proven linearly 

dependent with reference temperature, 0T  also known as equation of state, as equation 

below: 

( ) ,1 00 TT −−=   (3.1.1) 

where the coefficient of thermal expansion as   and assumed to be small. Also, 

assuming small influence of the material characteristics in the considered problem of the 

fluid, such as kinematic viscosity, ,  thermal conductivity, k  and coefficient   itself. 

Hence, the density and these characteristics will assume to be constant on all terms in 

momentum equations. But for the density variation which has been multiplied by 

gravity acceleration term, ,g  the relating term on convection’s phenomenon must be 

retained in terms of buoyancy force. In spite of that, we can negligible the heat release 

found from the loss of viscosity. 

The Boussinesq equations can be written as follow based on stated assumption; 

Continuity formulation: 

,0= q  (3.1.2) 

Conservation of energy: 

,2TTq
t
T

=+





  

 

 

(3.1.3) 

Momentum equation: 

( ) ,2
0 qpqq

t
q 


++−=







+




 g  

(3.1.4)      
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where 













+




+




= 2

2

2

2

2

2

zyx
 is the Laplace operator, the velocity as ( )wvuq  ,,= ,  

the pressure as p, the fluid density at reference temperature as 0 ,  the density as  , 

( )0,0,-gg =  is the gravity acceleration, the time as  t , T  is the temperature, and   is 

the thermal conductivity. 

Generally, the governing equations for Newtonian fluids are also known as in 

equations (3.1.2) to (3.1.4). Whereas, these Boussinesq equations (3.1.3) and (3.1.4) for 

non-Newtonian fluids are slightly different expressions depends on considered type of 

fluids.  

Therefore, in this thesis, we consider non-Newtonian fluids that are dielectric 

micropolar fluid and ferrofluid convection. Discussion on governing equations for 

momentum and energy will be given separately based on the research problem. 

Before we start discussing in details about mathematical formulation for the model 

problem, here will be discussed a basic about the theory of linear stability 

(Chandrasekhar, 1961) that given to solve the linear convective problem. By assuming 

that the initial flow is in steady state, then based on classical linear stability theory, 

some physical variables that explaining on the flow are assumed to increase in very 

small quantities (infinitesimal). So, it is important to get the governing equations for 

these increments. To get these equations (increment equations) from relevant motion 

equations, all multiplication and power higher than the first will be ignored for the 

increments. So, only linear terms will be considered. The linear stability theory is the 

theory derived on the basis of such linearised equations. In contrast, finite amplitudes of 

the perturbations are used for non-linear theories. Stability that defined here is stability 

with respect to all possible disturbances (infinitesimal). To complete the investigation 
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on stability, we must examine the reaction of the system to all possible disturbances. 

The details on linear stability theory can be found in Appendix. 

 

3.2  Mathematical Formulation for Electroconvection in a Micropolar fluid 

We noted that the Boussinesq fluid in a layer of infinite horizontal with depth d 

which has electrically conducting fluid. The layer is subject to a uniform electric field 

act normal to it and parallel to gravity .g
  We let the origin with a system of Cartesian 

coordinate (x, y, z) at the bottom of the boundaries with the direction of vertical z-axis 

goes upwards and subject to a temperature drop .T  We assume the micro-rotation is 

vanished at the surfaces.   

The relevant governing expressions for Rayleigh–Bénard–Marangoni 

electroconvection consist of the conservation equation of linear momentum, angular 

momentum conservation equation, energy conservation equation, dielectric constant 

equation, Faraday’s law and polarization field equation following Baby and Pranesh 

(2012) and Azmi and Idris (2014), are as follow: 

Conservation of linear momentum: 

( ) ( ) ( ) ( ) ,2ˆ 2
0 Epqpqq

t
q 


++++−−=







+




 kg  

(3.2.1) 

Angular momentum conservation equation: 

( ) ( ) ( ) ( ) ( ),22
0 







−+++=















+



 qq
t

I  
(3.2.2) 

Energy conservation equation: 

,2

0

TT
C

q
t
T

v

=







−+








   
(3.2.3) 
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Dielectric constant equation: 

( ) ( ),1 0TTeer −−+=   (3.2.4) 

Faraday’s law: 

,

,0

−=

=

E

E




 
(3.2.5) 

Polarization field equation: 

( )
( ) ,1

,0

0

0

EP

PE

r





−=

=+




 

(3.2.6) 

where the density of the fluid as 0  at reference temperature, the velocity as 

( )wvuq  ,,= , t is the time, the temperature as T , 













+




+




= 2

2

2

2

2

2

zyx
 is the Laplace 

operator, the pressure as  p, the density as  , g
  is the gravity acceleration, the unit 

vector in the direction of z as k̂ ,   is the coefficient of coupling  viscosity or vortex 

viscosity, the coefficient of shear kinematic viscosity as  , the spin as 


, the inertia 

moment as I


, the coefficient of bulk spin viscosity as  , the coefficient of shear spin 

viscosity as  ,the specific heat as vC , the thermal conductivity as  , the thermal 

susceptibility as e , the electric field as E


, the electrostatic potential as  , the free 

state of electric permeability as 0 , the dielectric polarization as P


, and the dielectric 

constant as r . 

At rest, the electrically conducting Boussinesq fluid with depth d which the uniform 

electrical field acting normal to the infinite horizontal layer with non-deformable free 

surface, the expression of the basic state given by Azmi and Idris (2014): 
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(3.2.7) 

The basic temperature gradients, f(z), non-dimensional and monotonic satisfies the 

condition 1)(
1

0

= dzzf  which is non-negative,.  

For basic state, equations (3.1.1), (3.1.2) and (3.2.1)–(3.2.6) specified by equation 

(3.2.7) and can be written in the form: 
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(3.2.8) 

The stability of considered fluid will be analyzed by performing the linear stability 

theory. The instability and the superposed of infinitesimal perturbations on the quiescent 

basic state is analyzed. Hence, the following perturbations will be introduced: 
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(3.2.9) 

where we assumed the small and perturbed ones as the primed quantities while the basic 

state value represented by subscripts ‘b’. 

By linearized equation (3.2.6), we get: 

.

.2,1for ,

00303

0

TEeEP

iEP

e

iei

−=
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
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(3.2.10) 

Linear terms are only taken from linearization equations governing the perturbed 

ones by using linear stability theory. Substituting equation (3.2.9) into equations (3.1.1), 

(3.1.2) and (3.2.1)–(3.2.6) and by using equation (3.2.8), the derivation as follows: 

From equation (3.1.1): Perturbed, 

( ) 

( )  ( ) 

( )  ( ) 

( )  ( )  ,11

,11

,11

,1

00000

0000

0000

00

TTTTT

TTTTT

TTTTT

TTT

bb

bb

bb

bb

−−−=+−−

−−−=+−−

+−−=+−−

−+−=+









 

 

Then, we get: 

.0 T −=   (3.2.11) 

From equation (3.1.2): Perturbed, 

( )

( ) ( ),0,0,0,,
,0

,0

==

=+

=+

bbbb

b

b

wvuq
qq

qq






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Then, we get: 

.0= q  (3.2.12)          

From equation (3.2.1): Perturbed, 

( ) ( )( )( ) ( ) ( )

( ) ( ) ( )( )

( )( )( )
( ) ( )

( ) ( ) ( )( )

( )( ),
2

ˆ

,

2

ˆ

2

2

0

bb

bb

bb

bb

bb

bbbb
b

EEPP

qq

pp

EEPP

qq

ppqqqq
t

qq














+++

+++++

+−+−=

+++

+++++

+−+−=







+++



+









kg

kg

 

 

Then, we get: 

( ) ( ) ( ) ( ) .2ˆ 2
0 bb EPEPqp

t
q 


+++++−−=











 kg  

(3.2.13) 

From equation (3.2.2): Perturbed, 

( ) ( )( )( ) ( ) ( )( ) ( )( )

( ) ( )( ),2

2
0








+−++

++++=







+++



+






bb

bbbb
b

qq

qq
t

I
 

 

Then, we get: 

( ) ( ) ( ).22
0 


 −+++=











 


q
t

I  
(3.2.14) 

From equation (3.2.3): Perturbed, 

( ) ( ) ( ) ( ) ( ),2

0

TTTT
C

qq
t

TT
bbb

v
b

b +=+









+−++



+




   
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Then, we get: 

( ) ( ) ( ).2

0

TTTT
C

q
t

TT
bb

v

b +=+









−+



+




   
(3.2.15) 

From equation (3.2.4): Perturbed, 

( ) ( ) ( ) ( )
( ) ( )( )

,0
,

,11

00

00

Te
TTTeTTe

TTTeTTe

bb

bebe

−=

−−−=−−
−−−+=−−+ 

 
 

Assume ,0
0

=




  

Then, ,
0

Te −=




  

Hence, we get: 

.0 Te −=   (3.2.16) 

From equation (3.2.5): can be implied as: 

,−=E


 (3.2.17) 

where   is the perturbed electric scalar potential. 

From equation (3.2.6): Perturbed, 

( ) ( )( ) ,00 =+++ PPEE bb


   

Then, we get: 

( ) .00 =+ PE


  (3.2.18) 
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The following definition used by non-dimensional equations (3.2.11)–(3.2.18): 

( )

( )

,

,

1

,

,,

,,,,,,

3

0

2









=












+



=




=









=











=











=







=









d

w

TdeET
TT

d
tt

d

d

WW
d
z

d
y

d
xzyx

e




















 

 

 

(3.2.19) 

The equation (3.2.11) substitute into equation (3.2.13) and taking the resulting equation 

curl twice by using the definition (3.2.19): 

( ) ( ) ( ) ( )

( ) ,

2ˆ 2
00

b

b

EP

EPqTpqq
t
q






+

+++++−=







+




 kg

 

(3.2.20) 

Taking curl once to eliminate the pressure: 

( )  ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
( ) ,

2ˆ

,

2ˆ

2
00

2
00

b

b

bb

EP

EPqT
t

q
EPEP

qTpqq
t

q











+

++++=












+++

+++−=







+











kg

kg
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Taking curl once again: 

( ) ( )( ) ( )

( ) ( )
( )  ( ) ( ) ( ) 

( )  ( ) ( ) 

( ) ( )  ,

2ˆ2

,

2ˆ

2

22

42
0

2

0

2
00

b

b

bb

EPP

EEP

qqTT
t

qq

EPEP

qT
t

q













−+

−+−+

−++




 −=











−

++

+++=


















kg

kg

 

 

Hence, we get: 

( ) ( ) ( ) ( )

( ) ,

2ˆ

2

2242
0

2

0

b

b

EP

PEqT
t

q






+

++++=











 kg

 

(3.2.21) 

The equation (3.2.21) will become as follow, after considering the steady convection: 

( ) ( ) ( ) ( ) ,02ˆ 22242
0 =+++++ bb EPPEqT


 kg  (3.2.22) 

Then, by using definition from equation (3.2.19), the equation (3.2.22) reduced into 

non-dimensional equations: 

( )

( )( ) ( )( ) ( )

( )

( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ,0)(
1

)(
1

,0)(
1

)(
1

,0)(
1

)(
1

2

2
1

222
0

2
02

1

222
0

2
0

2244
2

2

2

23
0

2
1

222
0

2
02

1

222
0

2
0

2244
2

2

2

23
0

2
1

222
0

2
02

1

222
0

2
0

2
54

4

4

4

4

4
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2

2

2

2
0

=




++


−
++


−


+

+
+

++
+

+











+





+


=




++


−
++


−

+++++











+





=




++


−
++


−

+











+




+




++












+















































zf
z

dTEe
zTf

dTEe

WWW
y
T

x
TTd

zf
z

dTEe
zTf

dTEe

WWW
y
T

x
TTd

zf
z

dTEe
zTf

dTEe

dz
w

y
v

x
u

dy
T

x
T

d
T

ee

ee

ee

























































g

g

g






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( ) ( ) ,0)()(1 2
1

2
1

2
1

2
1

4
1

2
1 =




++++++ zf

z
LzTfLNWNWNTR z   (3.2.23) 

For equation (3.2.14), taking curl once and by using definition from equation (3.2.19), 

the resulting equation reduced into non-dimensional equation: 

( ) ( ) ( )( ) ( )
( )( )

( ) ( )
( )  ( )

( ) ,012

,02

,02
,02

,2

2
2

2

3
2

3
2

22

22

2
0

=








+







−−



=







−








−


























=−−

=−−

−+

++=







+



































W
d

dd
W

d

W
q

q

q
t

I










 

 

Dropped out the asterisk: 

,02 1
2

1
2

3 =−− zz NWNN  (3.2.24) 

 

Next, by using definition from equation (3.2.19), the equation (3.2.15) reduced into non-

dimensional equations: 

( )( ) ( ) ( )  ( )

( )( ) ( ) ( ) ( ) ( )
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
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




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
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 
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
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


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



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
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+++=+
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T
d

kzf
ddC
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d

TW

Tkzf
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d
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kTT
dz
djTT
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diTT
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b






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  ,0)(5
2 =−− zfNWT  (3.2.25) 

For equation (3.2.18), by using equations (3.2.10), (3.2.17) and definition from equation 

(3.2.23), substitute the resulting equation with equation (3.2.8) and reduced into non-

dimensional equation: 

( ) 

( )( )  ( )
( )( )  ( )

( ) ( )
( )

( )

( ) ( )
( )

( ) ( )

( ) ( ) 
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1
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,01
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2
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00
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0
00

0
0
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0

0
0000

=−


=−

=−

















++
+

−
+

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=−











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

























++

+
−−+

=−−−+

=−−+

=−+







T
TdeE

TdTeETdeE

TTeE
Te

ETdeE

TeE

h
Te

E

TeEE
TeEEE

TEeE

e

e

e
e

z
e

e
e

be

be

e
























 

Dropped out the asterisk: 

,02 =



−

z
T

  (3.2.26) 

where, 2

2

2

2
2
1 yx 


+




= is the two-dimensional Laplace operator.  
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After neglecting the asterisks, the non-dimensional parameter defined as in Table 3.1: 

Table 3.1: Non-Dimensional Parameter of Dielectric Micropolar Convection 

Symbol Definition Parameter 
1N  10, 1 

+
N



  
Coupling 

3N  
( ) mN

d


+ 32 0,


  
Couple stress 

5N  nN
dCv

 52
0

0,


  Micropolar heat conduction 

R 
( )



+
 3

0 Tdg


 
Rayleigh number 

M 


 TdT   
Marangoni number 

L 
( )( )



++


e

dTEe
1

222
0

2
0  

Electric number 

 

Performing the dependent variables of the normal mode expansion (Chandrasekhar, 

1961) in the form: 

( ) ,

)(
)(
)(
)(

nylxiz e

z
z
zG
zW

T

w

+



















=



























 

 

(3.2.27) 

where ,)(,)(,)(,)( zzzGzW   are respectively, the amplitude of perturbation velocity 

of z-component, perturbation rotation, perturbation temperature, perturbation 

electrostatic potential with l and n, wave number a , in the directions of x and y 

respectively. 

The equation (3.2.27) substitute into equations (3.2.23)–(3.2.26), we obtain: 

( )( ) ( ) ,0)()(1 2222
1

2222
1 =+−−+−−+ zfLDazfLaGaDNRaWaDN   (3.2.28) 

( ) ( ) ,02 1
22

1
22

3 =−−−− GNWaDNGaDN  (3.2.29) 

( ) ( ) ,0)(5
22 =−+− zfGNWaD   (3.2.30) 

( ) ,022 =−−  DaD  (3.2.31) 
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where the differential operator as 
dz
dD =  and the overall horizontal wavenumber as

22 mla += . 

The non-dimensional and perturbed variables had the boundary conditions that take the 

form as follow: 

,0zat 0 ==



===

z
DWW 

  (3.2.32) 

and  

,1at 022 ====+= zDDaMWDW   (3.2.33) 

and 

,0)1()0( =+  K  (3.2.34) 

where the Marangoni number as 


 TdM T 
=  and the feedback control as K. 

 

3.3   Mathematical Formulation for Ferrofluids Convection 

Consider a Boussinesq ferromagnetic fluid which has electrically non-conducting 

fluid in a layer of infinite horizontal with depth d. The layer is subject to a uniform 

magnetic field 0H


 act normal to it and parallel to gravity .g
  The lower rigid boundary 

0=z  is at rigid surface condition, while the upper non-deformable layer dz =  

assumed to be free. The vertically direction of z-axis goes upwards and the system of 

Cartesian co-ordinate (x, y, z) is taken with the origin at the bottom boundaries. Then, 

the boundaries subject to a temperature drop T  and assume the surface tension   

linearly dependent with temperature as TT −=  0 , where the unperturbed denoted 

as 0 , value and the rate of change of surface tension with the temperature as T− . 
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 The relevant governing expressions of Rayleigh–Bénard–Marangoni 

ferroconvection, following Rosenswig (1985) and Shivakumara et al. (2002) are as 

follow: 

Equation of state and continuity equation is the same as equation (3.1.1) and (3.1.2). 

Linear momentum conservation equation: 

( ) ( ) ,2
00 qHMpqq

t
q 


+++−=







+




 g  

(3.3.1) 

,2

,
0

,
0,0 T

Dt
HD

T
MT

Dt
DT

T
MHC

HVHV
HV =

















+
































− 




 
(3.3.2) 

( )HMB


+= 0 ,  (3.3.3) 

( ),,THM
H
HM



=  

(3.3.4) 

( ) ( ),00 aTTKHHMM −−−+=   (3.3.5) 

,0= B


 (3.3.6a) 

,0= H


 (3.3.6b) 

where 













+




+




= 2

2

2

2

2

2

zyx
 is the Laplace operator, the velocity as ( )wvuq  ,,= , the 

density of the fluid at reference temperature as 0 , the time as t,  p is the pressure, the 

density as  , the acceleration due to gravity as g , the magnetic permeability as 0 , the 

magnetization as M


,  the coefficient of thermal expansion as  , the magnetic field as 

H


, the temperature as T , the average temperature as aT , the specific heat at constant 

volume and magnetic field as HVC , , the thermal conductivity as  , the magnetic 
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induction as B


, the magnetic susceptibility as 
aTHH

M

,0













= , the pyromagnetic 

coefficient as 
aTHT

MK
,0













= , and ( )aTHMM ,00 = . 

At rest, ferromagnetic fluid layer with depth, d that has electrically non-conducting 

fluid with non-deformable free surface is subject to a uniform magnetic field act normal 

to the layer, basic state of the fluid followed as Shivakumara et al. (2002): 

( ) ( )
,ˆ

1
,ˆ

1

,)(,)(,0

00 k
TTK

MMk
TTK

HH

zf
dz

dT
zppqq

ab
b

ab
b

b
bb










+
−

−=








+
−

+=

=−===







 

(3.3.7) 

where the unit vector k̂  in the z-direction and non-dimensional, monotonic basic 

temperature gradients f(z) satisfies the condition 
d
Tdzzf

d


=
0

)( . 

The following perturbations had been analyzed from the basic state stability are as 

follow: 

.)(

,)(,)(

,)(,

MzMM

HzHHTzTT

pzppqqq

b

bb

bb

+=

+=+=

+=+=







 

(3.3.8) 

The primes () represents the quantities are infinitesimal thermal perturbations and 

they are predicted to be small while the subscript ‘b’ represents the value at the basic 

state. 

By using equation (3.3.3), substituting equation (3.3.8) into equations (3.3.4) and (3.3.5) 

yields: 

,2,1,1
0

0 =








+=+ iH

H
MMH iii  

(3.3.9) 
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( ) ,1 333 TKHMH −+=+   (3.3.10) 

where assumed ( ) ab TTK − « ( ) ,1 0H+  

From equation (3.3.6b) can be implied as:  

,=H  (3.3.11) 

where the perturbed magnetic potential as  .  

Substituting the principle of linear stability equations (3.3.7) and (3.3.8) into 

equations (3.3.1) till (3.3.3), the derivation as follows: 

From equation (3.1.2): Perturbed, 

( )

( ) ( ),0,0,0,,
,0

,0

==

=+

=+

bbbb

b

b

wvuq
qq

qq







 

Then, we get: 

,0= q  (3.3.12) 

From equation (3.1.1): Perturbed, 

( ) 
( )  ( ) 
( )  ( ) 
( )  ( )  ,11

,11
,11

,1

00000

0000

0000

00

TTTTT
TTTTT

TTTTT
TTT

bb

bb

bb

bb

−−−=+−−

−−−=+−−

+−−=+−−
−+−=+









 

Then, we get: 

,0 T −=   (3.3.13) 
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From equation (3.3.3): Perturbed, 

( )
( )

( ) ( )
,ˆ

1
ˆ

1

,

,

000

0

0














++









+
−

++








+
−

−=

+++=

+++=

HMk
TTK

Hk
TTK

M

HMHM

HHMMB

abab

bb

bb














 

Then, we get: 

( )( ),ˆ
000 HMkHMB +++=


  (3.3.14) 

From equation (3.3.1): Perturbed, 

( ) ( )( )( ) ( ) ( ) ( )

( )( )( )
( ) ( ) ( )

( )( ) ,

,

0

2

0

2
0

HHMM

qqpp

HHMM

qqppqqqq
t

qq

bb

bbb

bb

bbbbb
b

+++

+++++−=

+++

+++++−=







+++



+


















g

g

Then, we get: 

( ) ( ) ,2
0 bb HMHMqp

t
q 


++++−=











 g  

(3.3.15) 

Taking the resulting equation curl twice after substituting equation (3.3.13) into 

equation (3.3.15): 

( ) ( ) ( ) ,2
00 bb HMHMqTpqq

t
q 


++++−=







+




 g  

Taking curl once to eliminate the pressure: 

( )  ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ,ˆ

,

2
00

2
00

bb

bb

HMHMqT
t

q

HMHM

qTpqq
t

q









+++=












++

++−=







+









kg

g
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Taking curl once again: 

( ) ( )

( ) ( ) ,

ˆ 2
00

bb HMHM

qT
t

q






++

+=











 kg

 

( )  ( )  ( ) 

( ) ( ) 

( ) ( )  ,2

2

422
0

2

0

b

b

HMM

HHM

qqTT
t

qq








−+

−+

−+−=










−
 g

 

( ) ( ) ( ) 

( ) ( ) 

( ) ( ) 

( ) ( )( ) ( )  ( )

( ) ,

,

2

22
0

222
0

2

2

2
0

4
2

0

b

b

b

b

HM

HMTTqq
t

HMM

HHM

TTq
t

q












+

+−=−




−+

−+

−=−












g

g





 

After considering the steady convection and neglecting the primes for simplicity, we 
obtained: 

( ) .
1

)(
)( 2

1

2
02

10
2
10

22
0 T

zfK
z

zKfTgw
t


+

+



−=








−








  

(3.3.16) 
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With the notation of the standard linear stability analysis, computing equation (3.3.2) by 

using equations (3.3.7) and (3.3.8), we obtained: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ).)()(
1

,

,

2
00

2
00

000

2

,

0

0,0

2

,

0

,

0,0

TTzwfCzwf
KT

HH
tt

TT
K

t
TT

C

TT
Dt

HHD
T

MM
TT

Dt
TTD

KHH
Dt

TTD
C

TT
Dt

HHD
T

MM
TT

Dt
TTD

T
MM

HHC

b

b
bb

b
b

HV

b
b

b
b

b
HV

b
b

HV

b
b

b

HV

b
bHV

+=












−

+
+

+






+
−



+

+=
+

















+
++

+
+−

+

+=
+

















+
++

+































+
+−



























 

After considering the steady convection and neglecting the primes for simplicity, we 

get: 

,)(
1

0
2

0
0000

2
00 zwf

TK
C

zt
KTT

t
TC 














+
−=
















−−











  

(3.3.17) 

Next, for equation (3.3.10), with the notation of the standard linear stability analysis, by 

substituting equations (3.3.7) and (3.3.8):  

( ) ,011 3
0

0 =−++










+ TKHH

H
M

  
(3.3.18) 
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After neglecting the primes for simplicity, we considered the steady convection as 

follows: 

( ) ,011 2

2
2
1

0

0 =



−












++










+

z
TK

zH
M 

  
(3.3.19) 

where, 

,

,

,

2

2

2

2
2
1

2

2

00,000

yx

z
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A normal mode solution is permitted in the form:  
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(3.3.20) 

where the amplitude of perturbation velocity of z-component as ,)(zW  the perturbation 

temperature as ,)(z the perturbation magnetization as )(z  while the growth rate as 

,  and the horizontal components of the wave number a , are l and n respectively. 
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By replacing equation (3.3.20) into the equation (3.3.16): 
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We simplified the resulting equation as follow: 
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(3.3.21) 
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By substituting equation (3.3.20) into equations (3.3.17): 
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We simplified the resulting equation as follow: 
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(3.3.22) 

By substituting equation (3.3.20) into equations (3.3.18):  
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We simplified the resulting equation as follow: 
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(3.3.23) 

where,    

dz
dD =  is the differential operator, 
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and the overall horizontal wavenumber as 22 nla += . 

Next, non-dimensional equation definition is setting as follow: 
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(3.3.24) 

 

  

Univ
ers

iti 
Mala

ya



44 

Considering the exchange principle of the stability is true and the equations (3.3.21) 

rendered to non-dimensional form by using definition from equation (3.3.24): 
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Then, the asterisk is dropped out, to get the non-dimensional equation: 
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Next, by operating the equations (3.3.22) to non-dimensional form by using definition 

from equation (3.3.24): 
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
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
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v
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d
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
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
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
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Then, the asterisk is dropped out to get the non-dimensional equation: 

( ) ( ) ,)(1 2
22 zWfMaD −−=−   (3.3.26) 

For equation (3.3.23), by substituting definition from equation (3.3.24):  

( ) ( ) ( ) ,0
1

1
1
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22

0

0
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
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
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
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


+


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


vd
d
DKvdK

d
a

H
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
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
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( ) ,0
1

1
20

0

2
=−





















+









+

−  


Da
H
M

D  

Then, the asterisk is dropped out to reduce into non-dimensional equation: 

( ) ,03
22 =−−  DMaD  (3.3.27) 

Thus, for simplicity, we defined the non-dimensional parameter as in Table 3.2: 

Table 3.2: Non-Dimensional Parameter of Ferrofluids 

Symbol Definition Parameter 
R 



 4dg


 
Rayleigh number 

N  

( )



+1

422
0 dK

 
Magnetic Rayleigh number 

2M  

( ) 00

0
2

0

1 C
TK





+
 

Negligibly small non-
dimensional parameter 

3M  

( )+











+

1

1
0

0

H
M

 

Non-linearity of 
magnetization 

M 


 TdT   
Marangoni number 

f(z) 1)(
1

0
= dzzf  Non-dimensional parameter 

variables 

The perturbed non-dimensional parameter of the boundary conditions in term of: 

,0zat 0 ===



== 



z
DWW  (3.3.28) 

and   

,1at 022 ====+= zDDWDaMW   (3.3.29) 

and 

,0)1()0( =+  K  (3.3.30) 

where the Marangoni number, 


 TdM T 
=  and the feedback control as K . 
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3.4 Boundary Conditions 

Let us now assume that both cases of dielectric micropolar layer and ferrofluids layer 

are subject to the combination of boundary conditions which is bounded by rigid and 

isothermal boundary condition from below and bounded by adiabatic non-deformable 

upper free of surface condition (Idris and Hashim, 2010). 

Boundary condition on velocity at the free surface given as: 

,,0 2
12

2

=



= M

z
ww  

(3.4.1) 

Boundary condition on velocity at the rigid surface given as: 

,0=



=

z
ww  (3.4.2) 

Isothermal boundary condition given as: 

,0=  (3.4.3) 

Adiabatic boundary condition given as: 

,0=




z
  (3.4.4) 

Boundary condition for electric/ magnetic potential given as: 

,0=




z
  (3.4.5) 

The perturbed non-dimensional variables of the boundary conditions in the term of: 

,0zat ,0)1()0( ==



=+=




=

z
K

z
wW 

  (3.4.6) 

and   

,1at ,02
12

2

==



=




=+




= z

zz
M

z
wW 

  
(3.4.7) 
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where, the Marangoni number, 


 TdM T 
=  and the feedback control as K. 

 

3.5 Feedback Control 

The feedback control strategy parameter on convective instabilities first proposed by 

Bau (1999) stated that by using proportional feedback control will delay or suppress the 

onset. In spite of that, by using this feedback control mechanism, the actuators are 

located at the surface heated from below and then the sensors used as a detection of the 

conductive conditions of the temperature at the surface. Furthermore, the control 

determination of a )(tq  depending on the controller of the proportional-integral 

differential (PID) as suggested by Bau in the form of: 

  ,)()( cteKtq +=  (3.5.1) 

and 

,)()(ˆ)( tntnte −=  (3.5.2) 

with 

,
0

P

t

ID KdtK
dt
dKK ++=   

(3.5.3) 

where, c  is the control calibration, )(te  is the deviation or an error from the state 

measurement, )(ˆ tn is the desired value, or ,)(tn  value of the reference, with the integral 

gain, IK ,  the differential gain, DK  and the corresponding gain, PK . 
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Besides, the perturbation fields suggested by Bau (1999), the actuator will modified 

the temperature of the heated surface depending on a corresponding dependent 

relationship of the upper ( )uz=z  thermal boundaries and lower ( )lz=z  boundaries 

based on equations (3.5.1) and (3.5.2) in term of: 

 ,),,(),,,(),,(),,,( uull zyxtzyxKzyxtzyx  −−=−  (3.5.4) 

or equivalently, 

),,,(ˆ),,,(ˆ tzyxKtzyx ul  −=  (3.5.5) 

which ̂  represented the deviation of the fluid temperature from the conductive value. 

Hence, we validated the uncontrolled system done by Baby and Pranesh (2012) when 

the controller gain parameter absence at .0=K  For this research, we will be focused 

for the case when K > 0. Thus, the perturbed non-dimensional variables of the boundary 

conditions in term of: 

.0zat ,0)1()0( ===+==  DKDWW  

 

 

 

  

 

(3.5.6) 
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CHAPTER 4: 

PROBLEM FORMULATION AND SOLUTION PROCEDURE 

 

4.1  Introduction 

In this chapter, the mathematical formulation and method of solutions for the effects 

of feedback control on electroconvection in a micropolar fluid and ferrofluids will be 

presented. The classical analysis of linear stability is used to analyse the influence of 

feedback control on the onset of the convection and also the effect of various 

parameters. The critical solution for these problems is obtained by using a single-term 

Galerkin method.  

 

4.2 The Onset Of Bénard–Marangoni Electroconvection In A Micropolar 

Fluid With The Presence Of Feedback Control And Non–Linear 

Temperature Profiles 

In this section, the mathematical formulations and the solution procedure for the 

effects of feedback control on the onset with non-uniform temperature profiles on 

Bénard–Marangoni electroconvection will be discussed. Parabolic and inverted 

parabolic temperature profiles are chosen to investigate the problem. 

The dimensionless equations given by Azmi and Idris (2014) are as in chapter 3 

which are equation (3.2.28) to equation (3.2.34). 

In order to find the solution, single term Galerkin expansion procedure is used, which 

gives reasonable results based on report from Azmi and Idris (2014). By using MAPLE 
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software, 4 by 4 matrix is used to calculate the relevant parameters. Then, follow by the 

approximated eigenvalue.  

Constitute together the equations (3.2.28)–(3.2.31) with the boundary conditions 

(3.2.32)–(3.2.34) providing the approximated eigenvalue with R or M as an eigenvalue. 

Accordingly the variables are take the form of trial functions written as: 

.)()(  and

,)()(

,)()(

,)()(

1

1

1

1

zEz

zCz

zBGzG

zAWzW





=

=

=

=

 

   

(4.2.1) 

Meanwhile, for the case of rigid isothermal lower boundary and perfectly insulating of 

non-deformable upper boundary, the selected trial functions written as: 

,
2

3
2

5 23
4 zzzW +−=  

  

(4.2.2) 

( ),1 zzG −=  (4.2.3) 

( ),2 zz −=  (4.2.4) 

and 

( ).232 zz −=  (4.2.5) 

 ,,,GW  are trials functions satisfied all the respective boundary conditions in 

(3.2.32)–(3.2.34), except the one written as: 

.1 at 022 ==+ zaMWD   (4.2.6) 

However, the residual from the differential equations is added as the residual from this 

equation while the constants denoted as A, B, C and E. 
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By substituting equation (3.2.34) into equations (3.2.28)–(3.2.31), the resulting 

momentum equation multiplied by ,)(1 zW  spin equation by ,)(1 zG  energy equation by 

)(1 z  and the electric scalar equation by .)(1 z  Next, operating the integration by parts 

in the respect of z from 0 to 1 and the constants: A, B, C and E are all eliminated from 

the solution equations. After that, by applying the boundary conditions (3.2.32)–(3.2.34) 

into the operating equations, then, obtained an eigenvalue Marangoni number, M as 

follows: 

 ( ) 

( ) ,
)1()1(1

)1(

3
2

1

43
2

3
2

1
222





DWaN

LaWRaKaD
M

+

++++−
=  

(4.2.7) 

where, 

( ) ( ) ( ) ( ) ( ) ,21 22222
12

242222
11 WaDGGaDWNWaDWaWDN −−++++= 

( ) ,2 2
11

222
32 GNGaDGN −+=  

( ) ,)()( 2
22

513  WzfGzfWaDGNN −−=  

and    
( )

.
)(

)(
2224






aD

WDzfD
Wzf

+
−=  

The basic temperature distributions and the nature of boundaries determined the 

value of M. The symbol of angle bracket,   presenting the integration by parts in the 

respect of z  from 0=z  to .1=z  In this research, the rigid isothermal of lower 

boundary and the perfectly insulating non-deformable upper boundary will be 

performed with different basic temperature gradients as given in Table 4.1. 
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Table 4.1: Reference State Basic Temperature Profiles 

Model Reference State Basic 
Temperature Profiles 

)(zf  

1 Linear =)(zf 1 
2 Parabolic zzf 2)( =  
3 Inverted Parabolic ( )zzf −= 12)(  

 

4.3 Feedback Control Of Linear Temperature Profile On Rayleigh–Bénard–

Marangoni Convection In Ferrofluids 

In this section, the study of Rayleigh–Bénard–Marangoni convection in ferrofluids 

will be analyzed using the classical analysis of linear stability with the presence of 

feedback control. Linear temperature profile is chosen to investigate the problem. The 

mathematical formulation of the present study based on the equations shown by 

Shivakumara et al. (2002) together with Bau’s feedback control as follows: 

( ) ,)()( 222222  zfNaDzfNaRaWaD +−=−  (4.3.1) 

( ) ( ) ,)(1 2
22 zWfMaD −−=−   (4.3.2) 

( ) ,03
22 =−−  DMaD  (4.3.3) 

where,  



 4dR g


=  is Rayleigh number,  

( )



+
=

1

422
0 dKN  is magnetic Rayleigh number,  

( ) 00

0
2

0
2 1 C

TKM




+
=  is negligibly small non-dimensional parameter,  

Univ
ers

iti 
Mala

ya



54 

( )+









+

=
1

1
0

0

3

H
M

M  is non-linearity of magnetization,  

and 1)(
1

0
= dzzf  is non-dimensional parameter profile. 

The perturbed non-dimensional equations of boundary conditions written in terms of: 

  ,0at 0 ==



=== z

z
DWW 

  (4.3.4) 

and  

,1at  022 ====+= zDDaMWDW     

(4.3.5) 

                          

together with Bau (1999) feedback control condition: 

,0)1()0( =+  K    

(4.3.6) 

where the Marangoni number denoted as 


 TdM T 
=  and the feedback control 

parameter denoted as K. 

In order to find the solution, single term Galerkin expansion procedure is used, which 

gives reasonable results based on report from Shivakumara et al. (2002). By using a 

MAPLE software, 3 by 3 matrix is used to calculate the relevant parameters. Then, 

follow by the approximated eigenvalue.  

Since the Galerkin technique is based on the equations of linear system. Constitute 

together the equations (4.3.1)–(4.3.3) with the boundary conditions (4.3.4)–(4.3.6) 

providing the approximated eigenvalue with R or M as an eigenvalue. Accordingly the 

variables are take the form of trial functions written as: 
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.)()( and

,)()(

,)()(

1

1

1

zCz

zBz

zAWzW





=

=

=

 

(4.3.7) 

Meanwhile, the chosen trial functions for rigid isothermal lower boundary and perfectly 

insulating of non-deformable upper boundary, written as: 

,
2

3
2

5 23
4 zzzW +−=  

(4.3.8) 

( ),2 zz −=  (4.3.9) 

and  

( ).232 zz −=  (4.3.10) 

The chosen trial functions satisfied all the respective boundary conditions in (4.3.4)–     

(4.3.6), except the one namely as: 

.1 at 022 ==+ zaMWD   (4.3.11) 

However, the residual from the differential equations is added as the residual from this 

equation while the constants denoted as A, B and C. From equation (4.3.1)–(4.3.3), after 

substituting equation (4.3.7), the resulting energy equation multiplied by )(1 z , 

momentum equation by )(1 zW , and the magnetic potential equation by )(1 z . Then, the 

equations are integrated in the respect of z  from z=0 to z=1 and from the resulting 

equations; all the constants A, B and C are eliminated. Lastly for the resulting equations, 

by applying the boundary conditions (4.3.4)–(4.3.6) then obtained the Marangoni 

number, M written as follows: 

( )  ( ) ( )

( )

,
)(

)(

)(

2)1(

)1()1(
1

3
222

2
22

242222222

2























+
+++

++++−

=

MaD
WDzfDNa

WzfNaWRa

Wzf

WaDWaWDKaD

DWa
M












 

 

(4.3.12)

) 
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where, the symbol of angle bracket,   presenting the integration by parts in the respect 

of z  from 0=z  to .1=z  The basic temperature distributions and the nature of 

boundaries determined the value of M. From this research, the rigid isothermal of lower 

boundary and the perfectly insulating non-deformable upper boundary will be 

considered with linear model of basic temperature gradient of 1)( =zf . 

 

4.4 Feedback Control Of Non-Linear Temperature Profiles On Rayleigh–

Bénard–Marangoni Convection In Ferrofluids 

In this section, the effects of feedback control on the onset with non-uniform 

temperature profiles on Rayleigh–Bénard–Marangoni convection in ferrofluids will be 

studied. The comparisons on the Marangoni number for the different effects of various 

physical parameters are analysed using classical analysis of linear stability. Non-linear 

temperature gradients such are parabolic and inverted parabolic temperature profiles are 

considered. Then, the mathematical formulation will be formulated. 

Consider the mathematical formulations and the solution procedure as equation 

(4.3.1)–(4.3.3) as stated in Section 4.3. The perturbed non-dimensional equations of 

boundary conditions written in terms of: 

,0at  0 ==



=== z

z
DWW 

  (4.4.1) 

and 

,1at  022 ====+= zDDaMWDW   (4.4.2)   

together with Bau (1999) feedback control condition: 

,0)1()0( =+  K  (4.4.3) 
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where the Marangoni number denoted as 


 TdM T 
=  and the feedback control 

parameter denoted as K. 

By using a MAPLE software, 3 by 3 matrix is used to calculate the relevant 

parameters. Since the Galerkin technique is based on the equations of linear system. 

Then, the approximated eigenvalue is calculated.  

In order to find the solution, single term Galerkin expansion procedure is used, which 

gives reasonable results based on report from Shivakumara et al. (2002).  

Constitute together the equations (4.3.1)–(4.3.3) together with the boundary 

conditions (4.4.1)–(4.4.3) providing the approximated eigenvalue with R or M as an 

eigenvalue. Accordingly the variables are take the form of trial functions written as: 

.)()( and

,)()(

,)()(

1

1

1

zCz

zBz

zAWzW





=

=

=

 

  

(4.4.4) 

Meanwhile, the chosen trial functions for rigid isothermal lower boundary and perfectly 

insulating of non-deformable upper boundary, written as: 

,
2

3
2

5 23
4 zzzW +−=  

 (4.4.5) 

( ),2 zz −=  (4.4.6) 

and  

( ).232 zz −=  (4.4.7) 

The trials function,  ,,W  satisfied all the respective boundary conditions in (4.4.1)–

(4.4.3), except the one written as follow: 
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.1 at 022 ==+ zaMWD   (4.4.8) 

However, the residual from the differential equations is added as the residual from this 

equation while the constants denoted as A, B and C. From equation (4.3.1)–(4.3.3), after 

substituting equation (4.4.4), the resulting energy equation multiplied by )(1 z , 

momentum equation by )(1 zW , and the magnetic potential equation by )(1 z . Then, the 

equations are integrated in the respect of z  from z=0 to z=1 and from the resulting 

equations; all the constants A, B and C are eliminated. Lastly for the resulting equations, 

by applying the boundary conditions (4.4.1)–(4.4.3) then obtained the Marangoni 

number, M written as follows: 

( )  ( ) ( )

( )

,
)(

)(

)(

2)1(

)1()1(
1

3
222

2
22

242222222

2























+
+++

++++−

=

MaD

WDzfDNa
WzfNaWRa

Wzf

WaDWaWDKaD

DWa
M












 

   

(4.4.9)

) 

where, the symbol of angle bracket,   presenting the integration by parts in the respect 

of z  from 0=z  to .1=z  The basic temperature distributions and the nature of 

boundaries determined the value of M. From this research, the rigid isothermal of lower 

boundary and the perfectly insulating non-deformable upper boundary will be 

performed with other basic temperature profiles as present in Table 4.2. 

Table 4.2: Reference Basic State Temperature Profiles 

Model Reference Basic State 
Temperature Profiles 

)(zf  

1 Parabolic zzf 2)( =  
2 Inverted Parabolic ( )zzf −= 12)(  
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CHAPTER 5:   

CODE VALIDATION 

 

5.1  Introduction 

In this chapter, the results of the study on Rayleigh–Bénard–Marangoni convection 

in electroconvection and ferrofluids will be analyzed and compared well with the 

previous work. The comparisons on the Marangoni number for the different effects of 

various physical parameters are analysed.  

The objective of the research in Section 5.2 is to extend the work of Azmi and Idris 

(2014) on influences of the combination of surface tension gradient and buoyancy force 

(Nield, 1964), the parabolic and inverted parabolic temperature gradients as considered 

by Rudraiah and Siddheshwar (2000) and an additional of controller gain parameter 

(Bau, 1999) together with micronsized suspended particles in the micropolar fluid 

(Eringen, 1972) and electrical forces (Roberts, 1969) on the onset of convection. 

However, the main objective of the research in Section 5.3 is to study the presence of 

controller gain parameter (Bau, 1999) with extending the work of Shivakumara et al. 

(2002) on the Rayleigh–Bénard–Marangoni instability (Nield, 1964). Linear 

temperature gradients as considered by Qin and Kaloni (1994), and the magnetic forces 

(Rudraiah et al., 1986) on onset of convection in ferrofluids will be studied. Then, the 

critical solution is obtained by using the single-term Galerkin method on the onset of 

convection. 

Furthermore, on the Section 5.4, the analysis on the effect of controller gain 

parameter (Bau, 1999) in magnetic fluids (Rudraiah et al., 1986) called ferroconvection 
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will be studied on the Rayleigh–Bénard–Marangoni convection (Nield, 1964). The 

present research by following the work that has been done by Shivakumara et al. (2002) 

based on the different forms of non-uniform temperature gradients which are parabolic 

temperature and inverted parabolic temperature profile.  

 

5.2 The Onset Of Bénard–Marangoni Electroconvection In A Micropolar 

Fluid With The Presence Of Feedback Control And Non–Linear 

Temperature Profiles 

In this section, a verification of the accuracy of the numerical results will be 

conducted for Bénard–Marangoni electroconvection in the case of an absence of the 

controller gain parameter (K=0) and no buoyancy case (R=0) for Marangoni 

electroconvection. Therefore, to make sure the numerical code is predict a good 

approximations, the problem is tested for steady marginal stability curve reported by 

Azmi and Idris (2014) for K=0, R=0 and L=100 for linear temperature profile as shown 

in Figure 6.1 (a). Besides, from the present study, we also recovered the results of Azmi 

and Idris (2014) as a limiting case when K=0, R=0, L≠0, 1N =0.1, 3N =2.0, 5N =1.0 as 

illustrates in Figure 6.4 for linear temperature profile. 

 

5.3 Feedback Control Of Linear Temperature Profile On Rayleigh–Bénard–

Marangoni Convection In Ferrofluids 

In order to verify the accuracy of the method solution, the present results are 

compared with the existing work written by Shivakumara et al. (2002). Hence, the data 

showed an excellent agreement by comparing the values of the critical Marangoni 

number, cM  for the absence of the controller gain parameter (K=0) and the absence of 
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the magnetic Rayleigh number (N=0) as tabulated in Table 5.1 for linear temperature 

profile.  

Table 5.1: Comparison of Values of cM  For Different Values of R with Results of 
Shivakumara et al. (2002) When K=0 and N=0 

R 
Values of Mc 

Present Shivakumara et al. (2002) 
0 79.000383 79.00 

100 67.571811 67.57 
200 56.143240 56.14 
300 44.714669 44.71 
400 33.286097 33.29 
500 21.857526 21.86 
600 10.428954 10.43 
669 2.543240 2.54 

691.25 0.000383 0.00 
691.253349 0.000000 N/A 

 

5.4 Feedback Control Of Non-Linear Temperature Profiles On Rayleigh–

Bénard–Marangoni Convection In Ferrofluids 

The current analysis is compared with the results reported by Shivakumara et al. 

(2002) for K=0 and N=0 to achieve the outcome of the good results. Therefore, the 

result showed there has a good agreement between them as tabulated in Table 5.2 for 

the parabolic temperature profile and Table 5.3 for the inverted parabolic temperature 

profile.  

Table 5.2: Comparison of Values of cM  of Parabolic Temperature Profile For 
Different Values of R With Results of Shivakumara et al. (2002) When 
K=0 and N=0 

R 
Values of Mc 

Present Shivakumara et al. (2002) 
0 65.379627 65.379 

572.071 0.000084 0.000 
572.071737 0.000000 N/A 

Univ
ers

iti 
Mala

ya



62 

 
 

 
 
Table 5.3: Comparison of Values of cM  of Inverted Parabolic Temperature Profile 

For Different Values of R With Results of Shivakumara et al. (2002) 
When K=0 and N=0 

R 
Values of Mc 

Present Shivakumara et al. (2002) 
0 99.789957 99.7898 

873.161 0.000129 0.0001 
873.162126 0.000000 N/A 
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CHAPTER 6:  

RESULT AND DISCUSSIONS 

 

6.1   Introduction 

In this chapter, the analysis on the numerical results about the effects of feedback 

control on the onset on Rayleigh–Bénard–Marangoni convection in electroconvection 

and ferrofluids will be discussed. The comparisons on the Marangoni number for the 

different effects of various physical parameters are analysed using classical analysis of 

linear stability. The numerical results obtained will be discussed and analysed. The 

numerical results for section 6.2 will be displayed graphically in terms of: 

i. Marangoni number, M as a function of wave number, a, 

ii. critical Marangoni number, cM  as a function of feedback control, K,  

iii. critical Marangoni number, cM  as a function of Rayleigh number, R, and 

iv. critical Marangoni number, cM  as a function of coupling parameter, ,1N

couple stress parameter, 3N  and micropolar heat conduction parameter, 

,5N respectively, for different non-uniform temperature profiles. 

Then, the numerical results obtained in section 6.3 will be discussed which will be 

displayed graphically in terms of: 

i. Marangoni number, M as a function of wave number, a, 

ii. critical Marangoni number, cM  as a function of feedback control, K, 

iii. critical Marangoni number, cM  as a function of Rayleigh number, R.  
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Meanwhile, the numerical results for section 6.4 will be displayed graphically in 

terms of:  

i. Marangoni number, M as a function of wave number, a for parabolic 

temperature profile for several values of feedback control, K, 

ii. Marangoni number, M as a function of wave number, a for inverted 

parabolic temperature profile for several values of feedback control, K,  

iii. critical Marangoni number, cM  as a function of feedback control, K, for 

parabolic and inverted parabolic temperature profiles for different cases of 

magnetic Rayleigh number, N and Rayleigh number, R, 

iv. critical Marangoni number, cM  as a function of Rayleigh number, R for 

parabolic and inverted parabolic temperature profiles with several values of 

feedback control, K, and different cases of magnetic Rayleigh number, N, 

v. critical Marangoni number, cM  as a function of normalize Rayleigh number, 

CR
R  for parabolic and inverted parabolic temperature profiles with several 

values of feedback control, K, and different cases of magnetic Rayleigh 

number, N. 
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6.2 The Onset Of Bénard–Marangoni Electroconvection In A Micropolar 

Fluid With The Presence Of Feedback Control And Non–Linear 

Temperature Profiles 

In this section, the effects of the presence of feedback control on the onset with 

parabolic and inverted parabolic temperature gradients of the Bénard–Marangoni 

electroconvection will be discussed. The minimum of the global minima of each 

marginal stability curve is definition of the critical Marangoni number for a given set of 

parameters on the onset of convection. Noted that, the corresponding critical wave 

number as ,ca  the value of critical Marangoni number as ,cM  the Rayleigh number as 

R, the feedback control by K, coupling parameter as ,1N  couple stress parameter as 3N

and micropolar heat conduction parameter by .5N  

The plot of result obtained by Azmi and Idris (2014) as illustrates in Figure 6.1 (a) 

for linear temperature profile at K=0 means that in the absence of the controller and no 

buoyancy case, R=0. Figure 6.1 represents marginal stability curve for various cases of 

temperature profiles for several values of K and R. From the observation, cM  will 

increases rapidly when K increases for all of the chosen basic temperature profiles. The 

plot showed dramatic increasing of cM  and ca  when K is applied to the system. In the 

observation for the critical wavenumber, ca  the increasing trend for ca  are not so 

significant when increasing the value of K. In spite of that, the critical Marangoni 

number, cM  showed significantly increases when the value of K increased. 

Consequently, the size of the convection cells is reducing because the effect of 

increasing in the both value of cM  and ca .  
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However, noted that when compared to the linear and parabolic temperature profiles, 

the inverted parabolic temperature gradient shows more value of cM  and ca  when 

providing the additional value of K. Means that, the onset of the convection will be 

delay with the presence of feedback control strategy for all of the chosen basic 

temperature profiles. In spite of that, the system is most unstable for the case of 

parabolic type of basic temperature profile when gives smaller value of cM  and .ca  

This is due to the condition nearer the less restrictive of free surface when changing in 

the temperature occurs. Oppositely, the system becomes stable for the inverted 

parabolic type of basic temperature profile. Hence, in the presence of feedback control 

strategy, the onset of Bénard–Marangoni electroconvection is possibly control 

effectively in spite of using different forms of basic temperature profiles.  

Furthermore, in the case of R≠0, the value of cM  always less than the cM  value 

when R=0 for all temperature profiles. Hence, increasing the value of R, decreases the 

critical Marangoni number. This is because the presence of R will increase the intensity 

of Bénard–Marangoni electroconvection. Thus, R is destabilizing factor of the 

convection since added the more value of R into the system, will resulting unstable to 

the system. Oppositely, when K is applied into the system, cM  will increases as K 

increases. The same phenomenon can be found for ca . Hence, K can delay the onset of 

the convection for both cases R=0 and R≠0 with all considered temperature profiles. 
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Figure 6.1: M as a function of a for (a) linear temperature (b) parabolic temperature and 
(c) inverted parabolic temperature profile, for the case of R=0 (left) and 
R=300 (right) for several values of K  
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On the other hand, Figure 6.2 depicts the effects of controller gain, K on the critical 

Marangoni number .cM  Clearly observed that, as the value of K increased, the value of 

cM  shows gradually increased. As well as when K applied to the system for the cases of 

R=0 and R≠0, the value of cM  increased. Thus, the onset of convection will be 

suppressed as K increased. Additionally, compared to the value of cM  for linear and 

parabolic temperature gradients, the inverted parabolic temperature gradient always 

results bigger value of cM  even though when K or R had been applied to the system. 

The outcome showed the most stabilizing temperature profile that being compared to 

linear and parabolic temperature profiles is the inverted parabolic temperature gradient. 

On top of that, clearly observed that the line for different temperature gradients are 

intersecting each other as depicted in Figure 6.2. This can be seen for the case of R=0 

for linear temperature gradient and R=300 due to inverted parabolic temperature 

gradient. Moreover, noted also there are also the intersection line between parabolic 

temperature profile for the cases R=0 for and R=300 for linear temperature profile. 

Hence, at a certain point of the controller at K=2 and at K=6, there are equal value of 

cM  although different case temperature profiles are performed. Consequently, when 

performed the feedback control strategy on the Bénard–Marangoni electroconvection, 

the instabilities of the onset effectively controlled with the presence of various basic 

temperature gradient.  

Meanwhile, Figure 6.3 illustrates the plot of the critical Marangoni number cM as a 

function of Rayleigh number, R with different values of feedback control and with 

different temperature gradients. Clearly observed, as the value of R increased, the value 

of cM  gradually decreased. On the contrary, when applied the feedback control, K will 

resulting higher value of cM  on the plot. Thus, there is adverse effect on the value of 
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cM  by performing the various cases of instability parameter which are R and K. Means, 

R gives destabilizing effect to the system but K gives stabilizing effect to the system. 

 
 

Figure 6.2: Mc as a function of K for the case of R=0 and R=300 for different 
temperature profiles 

 

 
Figure 6.3: Mc as a function of R for the case of K=0 and K=4 for different temperature 

profiles 
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Further inspection of Figure 6.3, reveals that R will reached it’s critical point as the 

value of R increased further, which means there exist a critical point of Rayleigh 

number, cR . The value of cM  tend to become zero value when reached the point of 

.cR  Consequently, we can say that as R increase, the value of cM  decrease until the 

buoyancy is predominant on the system of convection. Hence, the zero value of cM  can 

be said that there is negligible effect of surface tension and the convection system 

dominated by buoyancy force. The various case of basic temperature profile affects the 

decrease of surface tension effect because of R. In addition, Figure 6.3 showed the 

comparison of the value cM  that is always lower for linear and parabolic temperature 

gradients than the cM  value of the inverted parabolic temperature gradient which is 

always greater when R had been applied to the system. As stated before, the most 

stabilizing profile is the inverted parabolic temperature profile compared to the other 

considered temperature profiles on the research.  

From the present study plotted in Figure 6.4, for linear temperature profile,  

recovered the following result of Azmi and Idris (2014) as a limiting case of K=0, R=0, 

L≠0, 1N =0.1, 3N =2.0, and 5N =1.0. Figure 6.4 shows the variation of the critical 

Marangoni number cM as a function of 1N , 3N and 5N , respectively, for various form 

non-uniform temperature profiles. Hence, the results indicate that the value cM  is 

generally show increasing exponential function of coupling parameter, 1N  but 

oppositely show decreasing exponential function of couple stress parameter, 3N . On 

top of that, the increasing value of 1N  indicates that the biggest part of the energy is 

consume by the microelements. Hence, causes the concentration of these microelements 

of the system increases. However, increasing value of 3N  causes the couple stress 

dropped. Ultimately, get the Newtonian value when the stress of the fluid levels off. 
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Hence, results the microrotation decreases. However, from the Figure 6.4 (c),  observed 

that the plot shows a slightly increases of cM  with increasing the parameter of 

micropolar heat conduction, 5N  for all cases of temperature gradients. This is due to 

the reducing of the heat transfer from top to bottom boundaries as 5N  increases and the 

microelements increase. The results of increases the critical Marangoni number, cM  

along increasing 1N  and 5N  showing that these elements have the stabilizing effect but 

are in difference of the Newtonian results of 3N  for different cases of basic temperature 

profiles. In spite of that, observed that the value of cM  increased as feedback control, K 

applied to the system for various function of 1N , 3N and 5N  parameter. Gradually 

increases in the value of K showing that this control K is responsible for suppressing the 

onset with different cases of temperature gradients. Moreover, Figure 6.4 reveals that 

the most destabilizing among these considered cases of non-uniform basic temperature 

profiles is the parabolic temperature gradient as the value of cM  is the lowest compared 

than the value of cM  for the inverted parabolic gradient which is the most stabilizing 

one.  

The research in a micropolar fluid on Bénard–Marangoni convection with imposed 

of the feedback control with non-uniform basic temperature profiles has been analysed 

theoretically. The influence of vertical electric field with non-uniform basic temperature 

profiles of Bénard–Marangoni instability has been investigated. In spite of that, as the 

feedback control, K increases, cM  increases monotonically, shows that for all wave 

numbers, the feedback control is stabilizing the no-motion state. Meanwhile, the 

presence of buoyancy force, R promotes the onset of convection. On top of that, R leads 

to a more unstable system. Ultimately, when adding up the micron-sized suspended 

particles have been act as stabilizing effect to the system along increasing the value of 
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1N  and .5N  Contrary with the Newtonian results of 3N  which act as destabilizing 

effect for different cases of basic temperature profiles. To sum up, the model of inverted 

parabolic temperature gradient is showed to be the most stabilizing from those three 

cases temperature profiles, as shown in the arrangement value of the critical Marangoni 

number; ( )ParaboliccM < ( )LinearcM < ( )ParabolicInvertedcM . The above results indicated that there 

is possibility to delay the convective instability by imposed the basic state temperature 

profile. Inverted parabolic is the most stabilizing one compared to linear and parabolic 

temperature profiles. On the other hand, there is no significant changing in the value of 

ca  for adding any value of R. It is showed the value of ca  are not being affecting at all 

in the presence of parameter R. However, the value of ca  is increase drastically as 

increasing the K. Firmly conclude that for the convective instabilities, the feedback 

control K, is a stabilizing factor to suppress the onset. 
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Figure 6.4: Mc as a function of (a) N1 (b) N3 (c) N5 for the case of K=0 and K=8 for 

different temperature profiles 
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6.3 Feedback Control Of Linear Temperature Profile On Rayleigh–Bénard–

Marangoni Convection In Ferrofluids 

In this section, the influences of linear temperature gradient on Rayleigh–Bénard–

Marangoni convection together with a feedback control on the onset of ferrofluids 

convection will be discussed. The effects of various parameters on the convective 

instabilities such as Rayleigh number R, and magnetic Rayleigh number N, have been 

studied using the linear stability analysis.  

First and foremost, the effects of the parameters K, R and N on the Marangoni 

number, M with wave number a are portrayed in Figure 6.5 for linear temperature 

profile. The critical Marangoni number, cM  of marginal stability curve as shown in 

Figure 6.5 is the minimum point of each curve. Then, the validation on the numerical 

result obtained by Shivakumara et al. (2002) represents graphically in Figure 6.5 (a) in 

the absence of the controller at K=0 when N=0 and R=0. From observation, when K is 

added up into the system, the graph showed rapidly increased in the value of cM . This 

can be proven by looking at the comparison between the value of the M number 

recorded between K=4 and K=6 and the big difference shown in the M number recorded 

between K=0 and K=4. Besides, the value of cM  is increasing whenever the value of K 

increase along various cases of R and N. The cases are as follow; N=0 when R=300, and 

N=100 when R=0 and R=300. As a result, the presence of feedback control along the 

increase in the K number gives the increases in the critical Marangoni number with 

decrease the intensity of Bénard–Marangoni ferrofluids convection. Therefore, for all 

cases of R and N with effect of linear temperature profiles on the onset of convection, K 

can be said to be a stabilizing factor which is with the imposed of feedback control 

strategy will delaying the onset. However, from the observation for the case of N=0 as 

illustrate in Figure 6.5, the value of cM  is higher than the value of cM  for the case of 
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N=100. Similarly, noted that when R is added up into the system, cM  is decreasing. 

Hence, R and N promote instability as the value of cM  decreased. Means, the system 

became unstable when adding more value of R and N.  

The graph of critical Marangoni number, cM  as a function of feedback control, K is 

portrayed in Figure 6.6. Evidently showed that as increased the value of K, the value of 

cM  increased steadily for both cases of N=0 and N=100. Similarly, for the cases of R=0 

and R=300, yield the same phenomenon when increasing cM , increases K. Therefore, 

the effect of imposed K to the system is to delay the onset. In spite of that, for the study 

case of magnetic Rayleigh number, N for linear temperature profile, the value of cM  

always shows higher for the case of N=0, compared the value of cM  for the cases of 

N=100. Meanwhile, imposing the Rayleigh number to the system, for the case of 

R=300, gives a lower value of cM  compared than R=0. Obviously, we can see the 

results showed increasing N and R, decreases cM . Therefore, the instability parameter 

N and R implying a destabilizing effect due to the changing value of cM . 

Meanwhile, the graph of cM  as a function of Rayleigh number, R is plotted in Figure 

6.7. It is clearly observed that when increasing the value of R and the value of N, cM  

steadily decreasing. Contrastively, adding up the value of K gives the increases in the 

.cM  Thus, performing the varying of instability parameter N and K on the system will 

giving the opposite effect to .cM  Further, we identified that as the value of R increase 

further, R will reached it’s critical point, namely critical point of Rayleigh number, cR . 

Consequently, the value of cM  approaches a zero value which is the surface tension 

effects on the onset of convection has vanished at a point of .cR  

Univ
ers

iti 
Mala

ya



76 

 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 

  
Figure 6.5: M as a function of a (a) when N=0 and (b) when N=100, for the case of R=0 

(left) and R=300 (right) for several values of K 
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of Rayleigh number, cR . Consequently, as R increase, the value of cM  decrease until 

the buoyancy is predominant on the system of convection. Hence, the zero value of cM  

can be said that there is negligible effect of surface tension and the convection system 

dominated by buoyancy force. The various case of magnetic Rayleigh number, N affects 

the decrease of surface tension effect because of R. The value of cM  tend to become 

zero value when reached the point of cR . Therefore, R and N is a destabilizing factor to 

enhance the convective instabilities of Rayleigh–Bénard–Marangoni ferroconvection. 

For additional information, the value of ca  is increase but only at a small value as K 

increased. Ultimately, the imposed of the feedback control K, delay the onset of 

convective instabilities and thus act as a stabilizing factor to the system. On the other 

hand, there is no significant changing in the value of critical wavenumber ca  by adding 

any value of N and R. Evidently, the value of ca  are not being affecting at all in the 

presence of parameter N and R. Hence, the size of the convection cells will not 

decreases. 

 
Figure 6.6: Mc as a function of K for the case of N=0 and N=100 when R=0 and R=300 
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Figure 6.7: Mc as a function of R for for the case of N=0 and N=100 when K=0 and 
K=4  
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each curve known as the critical Marangoni number, cM  and the critical wave number, 

ca . From the observation in Figure 6.8 and Figure 6.9, cM  will increases rapidly when 

K is applied to the system. The graph showed dramatic rising of cM  and ca  when K 

increases. Accordingly, for the critical wavenumber, ca  the increasing trend for ca  are 

not so significant when added the value of K. However, the increasing trend for critical 

Marangoni number, cM  gives dramatic increases in the presence of K. Consequently, 

the size of the convection cells is reducing because the effect of increasing in the both 

value of cM  and ca . However, noted that there are a big difference shown in the M 

number recorded between K=0 and K=4 compared than the M number recorded between 

K=4 and K=6. This is because whenever providing the additional value of K, the graph 

showed rapidly increased in the value of cM . Furthermore, from both temperature 

gradients can observe the increasing value of cM  whenever increase the value of K 

along the various cases of R and N. The cases are as follow; N=0 when R=300, and 

N=100 when R=0 and R=300. In spite of that, the presence of feedback control along the 

increase in the K number gives the increases in the critical Marangoni number with 

decrease the intensity of Bénard–Marangoni ferrofluids convection. This can be proved 

that K is a stabilizing factor for the system to become stable as discussed in Section 6.3. 

Oppositely, in the case of R=300 from Figure 6.8 and 6.9, the value of cM  always less 

than the cM  value when R=0 for each temperature profile. Similarly, increasing the 

value of N, decreases the critical Marangoni number. This is because the presence of R 

and N will increase the intensity of Bénard–Marangoni ferroconvection because the 

present of the magnetic field. Thus, R and N are destabilizing factor of the convection 

since added the more value of R or N into the system, will causing unstable system. In 

addition from Figure 6.8 and 6.9, even though when K and other parameter are added up 
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into the system, the graph showed greater increased in the value of cM  and ca  for 

inverted parabolic temperature profile compared to parabolic temperature profile.  

Because, at the maximum level of energy and level of momentum, the change in 

temperature is concentrated near the free surface with low restrictive. Therefore, the 

effect of the each parameter performed on the critical Marangoni number is greater 

pronounced on the onset with an inverted parabolic temperature gradient. It means, the 

most stabilizing temperature profile is the inverted parabolic temperature gradient as 

performing the feedback control strategy on the system will suppressing the onset 

compared than parabolic temperature gradient.  

On the other hand, in Figure 6.10 portrayed the critical Marangoni number, cM  as a 

function of feedback control, for different value of magnetic Rayleigh number, N which 

are when N=0 and N≠0 with both temperature profiles. From observation, in the cases 

of N=0, N=100; when increases the value of K, will steadily rising the value of cM . 

Moreover, for each temperature profiles observed that whenever the value of K added 

into the system, cM  rising rapidly. Hence, K helping in suppressing the onset and can 

be said as stabilizing effect on the system. However, the value of cM  oppositely 

decreasing when adding the R from zero Rayleigh number, R=0 (no buoyancy effect) to 

R=300 (with buoyancy effect). Means that whenever the buoyancy forces become 

predominant on the system, the surface tension effect attend to become negligible. 
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Figure 6.8: M as a function of a for parabolic temperature profile (a) when N=0 and (b) 
when N=100 for the case of R=0 (left) and R=300 (right) for several values 
of K 
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Figure 6.9: M as a function of a for inverted parabolic temperature profile (a) when 

N=0 and (b) when N=100 for the case of R=0 (left) and R=300 (right) for 
several values of K 
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Same phenomenon applied for each temperature gradients with the case of N=100, 

the value of cM  less than cM  when the cases of zero magnetic effect, N=0. 

Consequently, the mechanisms of N or R can be said to be the effect of destabilizing 

because of the decreases cM  value whenever added the N and R value on the system. In 

other means, the growth rates increases for unstable modes which the layer become not 

stabilize since the R or N value increases. 

Next, the comparison between cM  value of parabolic temperature profile which is 

always less than the cM  value of inverted parabolic temperature profile in Figure 6.10. 

Nevertheless, there exist the intersection line between both temperature gradients which 

is the line of R=300 for inverted parabolic temperature gradient and the line of R=0 for 

parabolic temperature gradient for the case of N=0. In spite of this, the result shows that 

without the controller at K=0 and without the magnetic effect at N=0, there exist the 

equal tension forces at the beginning, but oppositely the tension effect change whether 

increase or decrease as K increase or N increase. Clearly we can observe the effect from 

the next plot in Figure 6.11. 

Therefore, from Figure 6.11 depicted the plot of cM  as a function of Rayleigh 

number, R. The plot showed dramatic decreasing of cM  when R is increase and N 

added to N=100. Despite that, the value of cM  keep increases when adding K into the 

system. Whenever increase the value of K, the value of cM  increases for both profiles, 

hence act as a stabilizing effect to the system. Oppositely, whenever increase the value 

of R and N, the value of cM  decrease, hence act as destabilizing effect to the system. 

Further inspection, R reached it’s critical point of Rayleigh number, cR  as increases its 

value and at that point the cM  reached the zero value. Consequently, the value of cM  

keep decrease as R increase till the buoyancy is predominant on the system of 
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convection. Therefore, the zero value of cM  indicate that the negligible effect of 

surface tension and the convection system dominated by buoyancy force. The both 

cases of basic temperature profiles affected the decrease of surface tension effect 

because of R. Moreover, when R had been applied to the system, observed that the value 

of  cM  always lower for parabolic temperature gradient compared than the cM  value of 

the inverted parabolic temperature gradient. As stated before, the most stabilizing 

profile is the inverted parabolic temperature profile compared to the other considered 

temperature profile on the research.  

In addition, the plot of cM  as a function of 
cR

R  depicted in Figure 6.12 where 
cR

R  is 

the normalize Rayleigh number, R when the maximum value of R is 1. From the 

observation, when N is added up into the system from N=0 increase to N=100, and 

increased the value of 
cR

R ,  the graph showed steadily decreased in the value of cM . 

However, adding the value of K=4 for example, will rapidly increase the value of .cM  

Consequently, performing the instability mechanisms of K and N give opposite effect to 

the system whether delay or hasten the onset of instability for both temperature 

gradients. Furthermore, inverted parabolic temperature profile shown the most 

stabilizing effect on the system when the value of cM  is always higher on the plot 

compared than parabolic temperature gradient for the cases of N=0 and N=100. Hence, 

Model 2 which is inverted parabolic temperature profile decreased the intensity of 

Bénard–Marangoni ferrofluids convection better. 

As a summarization, first and foremost, the results published by Shivakumara et al. 

(2002) for parabolic and inverted parabolic temperature gradients for K=0, R=0 and N=0 

provided an excellent agreement with the present study. The influence of feedback 
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control, K, magnetic field, N and Rayleigh number, R with non-uniform basic 

temperature gradients of Bénard–Marangoni ferroconvection has been studied. The 

results showed rapidly increased on the value of cM  as K is added onto the system. 

Therefore, with the presence basic temperature gradients and K, shows that for all wave 

numbers, the feedback control is stabilizing the no-motion state and delaying the onset 

of instabilities. K can be said as a factor of stabilizing. Nevertheless, the instabilities 

mechanisms of R or/and N decreased the cM . In other words, R and N can be acted as a 

factor of destabilizing. The influence of increasing the value of R and N are to hasten 

and reinforce together the instabilities of ferroconvection. Moreover, from observation, 

cM  value of inverted parabolic temperature gradient is greater than cM  value of 

parabolic temperature gradient. Hence, inverted parabolic temperature gradient leads to 

a most stabilizing temperature gradient and good simulated microgravity environment 

for material processing in industries.  
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Figure 6.10: Mc as a function of K for the case of (a) N=0 and (b) N=100 for parabolic 

and inverted parabolic temperature profiles when R=0 and R=300 
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Figure 6.11: Mc as a function of R for parabolic and inverted parabolic temperature 

profiles when K=0 and K=4 for the case of (a) N=0 and (b) N=100 
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Figure 6.12: Mc as a function of 
cR

R  for parabolic and inverted parabolic temperature 

profiles when K=0 and K=4 for the case of (a) N=0 and (b) N=100 
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CHAPTER 7:  

CONCLUSION AND ADVANCED RESEARCH 

 

Conclusions about the present research problems will be summarized in this chapter. 

In spite of that, the advanced research that will be conducted as an improvement for the 

previous results and to extend the method used in other fields will be suggested here. 

 

7.1   Summary 

The study on the buoyancy-driven flows is of great deal for a wide area of 

phenomenon prediction, physics and medical applications. The reaction towards the 

convective instabilities for the case of electro convection in a micropolar fluid and for 

the case of ferrofluids convection has been analysed in the presence of feedback control 

and non-uniform temperature profiles. The main components of this research are to 

investigate the influence of feedback control and the effect of various parameters on the 

onset of convective instabilities. The fluid flow studied in this research is non-

Newtonian fluids which are dielectric micropolar fluid and ferrofluids. The upper non-

deformable boundary with perfectly insulating is considered in this study. Meanwhile, 

different basic temperature gradients had been considered for the rigid and isothermal of 

the lower part of the boundary. 

The first chapter, Chapter 1 presented some literature background on fluid flow and 

general introduction on convective heat transfer in fluid. Besides, there are several 

mechanisms of control strategy also presented in this chapter. Then, follow by the 

research scopes and objectives of the study. 
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Next, Chapter 2 presented the literature survey on the earlier studied and the related 

aspects to current investigation. The literature review survey from the previous study in 

well-known journal, past thesis, book and also conference proceeding.  

The mathematical formulation and derivation of the governing equations of the 

model problems are described in Chapter 3. In addition, the problem solution of case for 

non-Newtonian fluids which is including linear stability analysis and single-term 

Galerkin method is discussed in details. Then, follow by the discussions on the 

boundary conditions for the both cases of dielectric micropolar layer and ferrofluids 

layer. Finally, the completion of the chapter by the concept of feedback control 

strategies applied to the system. 

In Chapter 4, the classical analysis of linear stability is used to analyse the effects of 

feedback control on electroconvection in a micropolar fluid and ferrofluids. The related 

dimensionless variables for the governing equations and the applied of the boundary 

conditions also presented. Then, the critical solution for the influence of feedback 

control on the onset of the convection and also the effect of various parameters is 

obtained by using a single-term Galerkin method. In order to verify the model and also 

as an approaching of solving problem, the linear case is chosen to study and the 

validation results for both cases are presented in Chapter 5.  

Then, the numerical data obtained are discussed and presented using the suitable 

graphical representations in Chapter 6. The influence of various parameters such as 

Coupling parameter, Electric number parameter, Couple stress parameter, Micropolar 

heat conduction parameter and Rayleigh number on the onset of Bénard–Marangoni 

electroconvection is discussed. In spite of that, the effect for non-linear case; parabolic 

and inverted parabolic temperature gradients are also investigated in this problem. 

Furthermore, the studied of Rayleigh–Bénard–Marangoni ferrofluids convection in the 
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presence of feedback control is presented in this chapter. The effect of various 

parameters such as Rayleigh number, and magnetic Rayleigh number for suppressing or 

augmenting the onset of convection is analyzed in details. Besides, the solutions of 

eigenvalues subject to each boundary condition and the simulations data obtained will 

be presented as well. 

Last but not least, it is available on the list of publications and papers which are 

written papers published in the proceedings and submitted in the ISI international 

journal for the two problems studied.  

 

7.2  Conclusions 

We begin our first problem of interests studied the onset about the influences of 

feedback control on Bénard–Marangoni electro convective instability with imposed of 

non-uniform basic temperature profiles. The linear case is chosen to study in order to 

verify the model and also as an approaching of solving problem. From this research, 

some conclusions are presented: 

1. We recovered the results of steady marginal stability curve by Azmi and Idris 

(2014) for K=0, R=0 and L=100 for linear temperature profile with the critical 

point (2.0700, 74.31637572).  

2. For the case of K = 0, that is the absence of feedback control, we also recovered 

the numerical analysis performed by Siddheshwar and Pranesh (1998) for the 

inverted parabolic temperature gradient.  

3. For the present research, the results of Turnbull (1968) are recovered when L ≠ 

0, 1N  = 0, f(z) = 1 for a very limiting case. 

4. The no-movement state for all wave numbers become stabilizes with the help of 

feedback control. As the feedback control, K, increases, cM  increases 
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monotonically. The presence of feedback controller can be significantly 

influential in suppressing the onset. 

5. The presence of buoyancy force, R promotes the onset of convection and results 

to a more unstable system.  

6. When the value of 1N  and 5N   increase, cM  increases. Means, the added up of 

suspended micron-sized particles have act as stabilizing effect to the system. 

7. The Newtonian results of 3N which act contrarily from 1N  and 5N  with act as 

destabilizing effect for different cases of basic temperature profiles.  

8. From those three temperature gradients we had applied, the model of inverted 

parabolic temperature profile is shown the most stabilizing for all the considered 

temperature profiles. 

9. ( )ParaboliccM < ( )LinearcM < ( )ParabolicInvertedcM . The possible results to suppress more 

the onset of convection in the presence of the inverted parabolic basic 

temperature gradient compared to linear and parabolic temperature profiles. 

Further researched of the presence of feedback control K, on the onset of Rayleigh–

Bénard–Marangoni ferrofluids convection have been observed. Other various 

parameters such as Rayleigh number R, magnetic Rayleigh number N, also have been 

analysed on the onset. Linear, parabolic and inverted parabolic temperature gradients 

are analysed using the analysis of linear stability. Some of the conclusions can be 

briefly drawn as:  

1. We recovered the results published by Shivakumara et al. (2002) for K=0, R=0 

and N=0 for linear temperature profile as in Chapter 5, parabolic and inverted 

parabolic temperature gradients are studied. 

2. The value of cM  increased steadily, when applying the feedback control to the 

system. Hence, K is shown a stabilizing factor when added to the system. Means 
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that, the onset of convection can be delay in the presence of K. Thus, K can act as 

a good insulator and will give a good quality in the material processing and 

during the crystallization process. 

3. Oppositely, the effect of parameter R or/and N to the system are decreasing the 

cM  value. Therefore, R and N can be destabilizing factor to augment the onset of 

Rayleigh–Bénard–Marangoni ferrofluids convection.  

4. Strongly conclude that for the convective instabilities, the feedback control K, is 

a stabilizing factor to suppress the onset. The value of ca  is increasing but only 

on small values with increase the value of K.  

5. Since there is no significant change in the value of ca  when there exist the value 

on N and R. Then, it can be proved that the parameter N and R will not affect the 

resulting value of ca .  

6. The inverted parabolic temperature gradient is indicated as the most stabilizing 

temperature gradient to suppress the onset of Rayleigh–Bénard–Marangoni 

ferrofluids convection. This can be shown from those two temperature profiles, 

the value of cM  for the inverted parabolic temperature gradient is greater than 

value of cM  for the parabolic temperature gradient.  

 

7.3   Advanced Research 

The study on the stability of convection is of great deal for a wide area of 

phenomenon prediction, biology and industries applications. We extremely hope that by 

using the Galerkin method, the research on the effect of feedback control with others 

non-uniform temperature gradients on micropolar fluid or ferrofluids can be 

investigated. Besides, the research on binary fluid about influences of non-uniform 
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temperature profiles can be investigated. Research from no-motion state to motion state 

by using the Galerkin method can be extended by including higher number of controller 

gain parameter to examine either increasing number of controller gain parameter will 

give positive effects or negative effects on onset of convection. Further research on 

convective instabilities can be advanced by adding the influence of another parameter 

such as radiation, evaporation and heat flux. 
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