TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
</tr>
</tbody>
</table>

1. INTRODUCTION ... 1

1.1. BACKGROUND ON CHILLI .. 1

1.2. THE IMPORTANCE OF CHILLIES ... 3

1.3. CHILLI INDUSTRY IN MALAYSIA ... 4

1.3.1. CONSTRAINTS OF DRIED CHILLI PRODUCTION IN MALAYSIA 9

1.4. BASIS OF THE STUDIES ... 10

2. LITERATURE REVIEW .. 12

2.1. TAXONOMY AND BASIC BIOLOGY OF CAPSICUM 12

2.1.1 CLASSIFICATION .. 12

2.1.2 BASIC BIOLOGY OF CAPSICUM ANNUUM L 13

2.1.2.1. Species characteristics ... 13

2.1.2.2. Breeding system .. 13

2.1.2.3. Chemical composition and nutritive elements in chilli 14

a) Capsaicinoids .. 14

b) Colour .. 17

c) Vitamins ... 18

d) Other nutritive and essential elements 19

-
2.2. THE IMPORTANCE OF CHILLI .. 20
 2.2.1. ECONOMIC AND NUTRITIVE IMPORTANCE 20
 2.2.2. WORLD PRODUCTION OF CHILLI 23
 2.2.3. CHILLI PRODUCTION IN MALAYSIA 26

2.3. MAJOR PROBLEMS OF CHILLI PRODUCTION 27
 2.3.1. PESTS AND DISEASES .. 27
 2.3.2. INFERIOR VARIETIES... 28
 2.3.3. ALLELOPATHIC EFFECTS OF RED CHILLI (CAPSICUM ANNUUM L.) ... 29

2.4. FACTORS AFFECTING THE QUALITY OF DRY CHILLI 29
 2.4.1. GENETIC FACTORS ... 30
 2.4.2. ENVIRONMENTS .. 31
 2.4.2.1. Geographical areas ... 31
 2.4.2.2. Temperature .. 31
 2.4.2.3. Rainfall (Water availability) 32
 2.4.2.4. Growing conditions ... 32
 2.4.2.5. Shading (Light intensity) 33
 2.4.2.6. Disease ... 33

 2.4.3. HARVESTING STAGE OR MATURITY AGE............................. 33

 2.4.4. POST HARVEST HANDLING .. 34
 2.4.4.1. Drying ... 34
 2.4.4.2. Storage .. 35

2.5. GENETIC AND BREEDING STUDIES FOR CHILLI IMPROVEMENT 35
 2.5.1.GERmplASM EVALUATION ... 35
 2.5.2. GENETIC STUDIES .. 36
 2.5.3. CORRELATION STUDIES .. 39
 2.5.4. GENOTYPE ENVIRONMENTAL INTERACTION STUDIES ON YIELD AND QUALITY OF CHILLI 41

 2.5.5. BREEDING STRATEGIES ... 42
 2.5.5.1. Heterosis .. 43
 2.5.5.2. Wide-crosses .. 43
 2.5.5.3. Biotechnology ... 44

2.6. GENETIC X ENVIRONMENT INTERACTION 46
 2.6.1. INTERPRETATION OF G x E 47
 2.6.2. SIGNIFICANT OF G x E .. 50
 2.6.3. ANALYSIS OF G x E INTERACTION 51
a) Yield, yield component and fruit characters .. 102
b) Agronomic characters ... 106
c) Quality factor .. 108

4.1.3. CORRELATION STUDIES ... 113

4.2. MULTI-LOCATION TRIALS .. 118
 4.2.1. CHARACTERISTICS OF THE ENVIRONMENT 118
 4.2.2. DRYING METHOD ... 120
 4.2.3. PERFORMANCE OF THE G x E TRIALS 122
 4.2.3.1. ANOVA by environment .. 122
 4.2.3.2. Mean performance of genotype and environment 126
 a) Yield and yield component ... 126
 b) Agronomic characters .. 130
 c) Quality characters .. 133
 4.2.3.3. Combined analysis of variance 148
 4.2.3.3.1. Combined ANOVA over macro-environments 151
 4.2.3.3.2. Combined ANOVA over locations and planting-seasons .. 153
 4.2.3.4. Variance components .. 155
 4.2.3.4.1. Variance components over macro-environments 155
 4.2.3.4.2. Variance components over locations and planting-seasons .. 157

 4.2.3.5. Genotypic coefficients of variation and heritability estimates 160
 4.2.3.6. Correlation studies among characters in different environments .. 164
 a) Relationship between yield and other traits 164
 b) Relationship between yield components and other traits 166
 c) Relationship between quality characters and other traits 167

4.3. ESTIMATE OF STABILITY PARAMETERS 180
 4.3.1. GENOTYPE GROUPING BASED ON MEAN AND CV OF GENOTYPES 181
 4.3.1.1. Yield and yield components 181
 4.3.1.2. Agronomic characters ... 183
 4.3.1.3. Quality characters .. 184

 4.3.2. REGRESSION AND DEVIATION .. 198
 4.3.2.1. Yield and yield components 199
 4.3.2.2. Agronomic characters ... 200
4.3.2.3. Quality characters ... 201
4.3.3. CROSS-OVER AND NON CROSS-OVER EFFECTS 206
 4.3.3.1. Yield and yield components 206
 4.3.3.2. Agronomic characters 207
 4.3.3.3. Quality characters 208
4.3.4. RANKING METHODS ... 221
 4.3.4.1. Yield and yield components 221
 4.3.4.2. Agronomic characters 222
 4.3.4.3. Quality characters 223

5. DISCUSSION .. 226
 5.1. INTRODUCTION ... 230
 5.2. GENETIC X ENVIRONMENTAL STUDIES 231
 5.2.1. YIELD AND COMPONENTS 231
 5.2.2. OTHER AGRONOMIC CHARACTERS 238
 5.2.3. QUALITY DETERMINING CHARACTERS 240
 5.3. THE RELATIVE IMPORTANCE OF GENOTYPE,
 ENVIRONMENTAL AND GENOTYPE-ENVIRONMENTAL EFFECTS 243
 5.3.1. GENOTYPIC EFFECTS .. 243
 5.3.2. ENVIRONMENTAL EFFECTS 244
 5.3.3. GENOTYPIC AND ENVIRONMENTAL INTERACTION 245
 5.4. HERITABILITY AND GENETIC COEFFICIENT OF VARIATION ... 246
 5.5. CORRELATION .. 247
 5.6. STABILITY ANALYSIS .. 252
 5.6.1. STABILITY BY CHARACTERS 253
 5.6.2. STABILITY BY VARIETIES 258
 5.6.3. SIMULTANEOUS SELECTION OF VARIETIES 266
 5.6.4. DELINEATING SUITABLE AREAS FOR CHILLI PRODUCTION ... 272
 5.7. CONCLUDING REMARKS .. 273

6. SUMMARY .. 283

7. REFERENCES .. 287
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Description</th>
<th>Pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Chilli consumption in Malaysia (tons)</td>
<td>5</td>
</tr>
<tr>
<td>1.2.</td>
<td>Areas of chilli cultivation in Peninsular Malaysia (ha)</td>
<td>6</td>
</tr>
<tr>
<td>1.3.</td>
<td>Statistics of chilli imports in Malaysia</td>
<td>8</td>
</tr>
<tr>
<td>2.1.</td>
<td>Comparative pungency ratings for chillies from different geographical regions</td>
<td>17</td>
</tr>
<tr>
<td>2.2.</td>
<td>Chemical compositions of chilli ((Capsicum annuum L.))</td>
<td>20</td>
</tr>
<tr>
<td>2.3.</td>
<td>Commercial uses of chilli according to pungency level</td>
<td>22</td>
</tr>
<tr>
<td>3.1.</td>
<td>Origins and characteristics of 64 varieties of chilli</td>
<td>70</td>
</tr>
<tr>
<td>3.2.</td>
<td>Meteorological data and soil conditions of selected sites for G x E study</td>
<td>74</td>
</tr>
<tr>
<td>3.3.</td>
<td>Analysis of variance and expected mean squares for the analysis of Method A: over macro-environments with planting-season and location effects combined</td>
<td>88</td>
</tr>
<tr>
<td>3.4.</td>
<td>Analysis of variance and expected mean squares for the analysis of Method B: over planting-season and location effects separated</td>
<td>90</td>
</tr>
<tr>
<td>3.5.</td>
<td>Partition of G x E interaction for each genotype into regression and deviation components</td>
<td>97</td>
</tr>
<tr>
<td>4.1.</td>
<td>Mean square values (df. within parenthesis) for the various traits of chilli in the preliminary evaluation trials</td>
<td>101</td>
</tr>
<tr>
<td>4.2.</td>
<td>Mean values of some chilli characteristics measured in the preliminary trial evaluated in Jalan Kebun</td>
<td>110</td>
</tr>
<tr>
<td>4.3.</td>
<td>Simple correlation coefficients among various chilli characteristics measured in the preliminary evaluation trial</td>
<td>117</td>
</tr>
</tbody>
</table>
4.4. The air temperature (°C), the relative humidity, evaporation rate, solar radiation, sunshine and the rainfall distribution during the crop cycle ... 119

4.5. Mean squares for yield/plant, no. of fruits/plant, mean of fruit weight and dry yield of 22 genotypes for each of the 14 environments ... 123

4.6. Mean squares for days to harvest, days to dry, dry weight, conversion rate and plant height of 22 genotypes for each of the 14 environments ... 124

4.7. Mean squares for % of bleaching, light transmission and capsaicin content of 22 genotypes for each of the 14 environments ... 125

4.8. Mean values of yield (g/plant) for genotypes grown in different environments ... 137

4.9. Mean values of number of fruits/plant for genotypes grown in different environments ... 138

4.10. Mean values of mean fruit weight (g/fruit) for genotypes grown in different environments ... 139

4.11. Mean values of dry yield (g/plant) for genotypes grown in different environments ... 140

4.12. Mean values of days to harvest for genotypes grown in different environments ... 141

4.13. Mean values of plant height (cm) for genotypes grown in different environments ... 142

4.14. Mean values of days to dry for genotypes grown in different environments ... 143

4.15. Mean values of conversion rate (solid content as percentage of fresh) for genotypes grown in different environments ... 144

4.16. Mean values of percentage of bleaching for genotypes grown in different environments ... 145
Means values of light transmission for genotypes grown in different environments .. 146

Mean values of capsaicin for genotypes grown in different environments ... 147

Bartlett’s test for homogeneity of error variance over over 14 environments ... 150

Mean squares values for agronomic and quality character in a combined analysis over 14 environments 152

Mean squares values for combined ANOVA over locations and planting-seasons for some chilli traits 154

Variance components and standard error in parenthesis for some chilli characters over different macro-environments ... 156

Variance components and standard error of the estimates in parenthesis for each parameter over locations and planting-seasons ... 159

Genotypic and phenotypic variance, genotypic coefficients of variation and heritability estimates for 12 characters from ANOVA over macro-environments ... 162

Genotypic and phenotypic variance, genotypic coefficients of variation and heritability estimates for 12 characters from ANOVA over locations and planting-seasons ... 163

Correlation coefficients between yield (g/plant) against other traits by environments ... 168

Correlation coefficients between mean fruit weight (g/fruit) against other traits by environments ... 169

Correlation coefficients between number of fruits/plant against other traits by environments ... 170

Correlation coefficients between dry yield and other traits by environments ... 171

Correlation coefficients between plant height and other traits by environments ... 172
4.23.6. Correlation coefficients between days to harvest and other traits by environments ... 173
4.23.7. Correlation coefficients between days to dry and other traits by environments .. 174
4.23.8. Correlation coefficients between dry weight against other traits by environments .. 175
4.23.9. Correlation coefficients between conversion rates against other traits by environments 176
4.23.10. Correlation coefficients between percentage of bleaching against other traits by environments 177
4.23.11. Correlation coefficients between light transmission and other traits by environments .. 178
4.23.12. Correlation coefficients between capsaicin content and other traits by environments ... 179
4.24.2. Estimates of regression coefficients and stability variance for some agronomic characters in chilli 204
4.24.3. Estimates of regression coefficients and stability variance for some quality characters in chilli 205
4.25.1. Ranking and stability rating (according to Kang 1991a) for yield and yield components of chilli 225
4.25.2. Ranking and stability rating (according to Kang 1991a) for dry yield of chilli ... 226
4.26.1. Ranking and stability rating (according to Kang 1991a) for plant height and days to harvest of chilli 227
4.26.2. Ranking and stability rating (according to Kang 1991a) For days to dry, dry weight and conversion rates of chilli 228
4.27. Ranking and stability rating (according to Kang 1991a) for product colour, percentage of bleaching and capsaicin content of chilli ... 229
5.1. Stability estimates of 22 varieties of chilli with respect to yields, some agronomic and quality characters ... 265

5.2. Stability estimates for yield (g/plant) and overall scores of 22 varieties of hot pepper varieties evaluated at 14 environments ... 271
LIST OF FIGURES

Figures

1.1. Distribution of chilli cultivation in Peninsular Malaysia .. 7

3.1. Location of the trial sites ... 73

3.2.1. Distribution of temperature, rainfall and sunshine at Cameron Highlands 78

3.2.2. Distribution of temperature, rainfall and sunshine at Bertam 79

3.2.3. Distribution of temperature, rainfall and sunshine at Gajah Mati 80

3.2.4. Distribution of temperature, rainfall and sunshine at Jalan Kebun 81

3.2.5. Distribution of temperature, rainfall and sunshine at Kuala Linggi 82

3.2.6. Distribution of temperature, rainfall and sunshine at Telong 83

3.2.7. Distribution of temperature, rainfall and sunshine at Kundang 84

4.1.1. Distribution of means of yield per plant and coefficients of variance of 22 varieties of chilli .. 186

4.1.2. Distribution of means of mean fruit weight (g/fruit) coefficients of variance of 22 varieties of chilli ... 187

4.1.3. Distribution of means of no. of fruits/plant and coefficients of variance of 22 varieties of chilli .. 188

4.1.4. Distribution of means of dry yield and coefficients of variance of 22 varieties of chilli .. 189

4.1.5. Distribution of means of days to harvest and coefficients of variance of 22 varieties of chilli ... 190
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Distribution of chilli cultivation in Peninsular Malaysia</td>
<td>7</td>
</tr>
<tr>
<td>3.1. Location of the trial sites</td>
<td>73</td>
</tr>
<tr>
<td>3.2.1. Distribution of temperature, rainfall and sunshine at Cameron Highlands</td>
<td>78</td>
</tr>
<tr>
<td>3.2.2. Distribution of temperature, rainfall and sunshine at Bertam</td>
<td>79</td>
</tr>
<tr>
<td>3.2.3. Distribution of temperature, rainfall and sunshine at Gajah Mati</td>
<td>80</td>
</tr>
<tr>
<td>3.2.4. Distribution of temperature, rainfall and sunshine at Jalan Kebun</td>
<td>81</td>
</tr>
<tr>
<td>3.2.5. Distribution of temperature, rainfall and sunshine at Kuala Linggi</td>
<td>82</td>
</tr>
<tr>
<td>3.2.6. Distribution of temperature, rainfall and sunshine at Telong</td>
<td>83</td>
</tr>
<tr>
<td>3.2.7. Distribution of temperature, rainfall and sunshine at Kundang</td>
<td>84</td>
</tr>
<tr>
<td>4.1.1. Distribution of means of yield per plant and coefficients of variance of 22 varieties of chilli</td>
<td>186</td>
</tr>
<tr>
<td>4.1.2. Distribution of means of mean fruit weight (g/fruit) coefficients of variance of 22 varieties of chilli</td>
<td>187</td>
</tr>
<tr>
<td>4.1.3. Distribution of means of no. of fruits/plant and coefficients of variance of 22 varieties of chilli</td>
<td>188</td>
</tr>
<tr>
<td>4.1.4. Distribution of means of dry yield and coefficients of variance of 22 varieties of chilli</td>
<td>189</td>
</tr>
<tr>
<td>4.1.5. Distribution of means of days to harvest and coefficients of variance of 22 varieties of chilli</td>
<td>190</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>4.1.6.</td>
<td>Distribution of means of plant height and coefficients of variance of 22 varieties of chilli</td>
</tr>
<tr>
<td>4.1.7.</td>
<td>Distribution of means of days to dry and coefficients of variance of 22 varieties of chilli</td>
</tr>
<tr>
<td>4.1.8.</td>
<td>Distribution of means of dry weight (g) and coefficients of variance of 22 varieties of chilli</td>
</tr>
<tr>
<td>4.1.9.</td>
<td>Distribution of means of conversion rate (%) and coefficients of variance of 22 varieties of chilli</td>
</tr>
<tr>
<td>4.1.10.</td>
<td>Distribution of means of percentage of bleaching and coefficients of variance of 22 varieties of chilli</td>
</tr>
<tr>
<td>4.1.11.</td>
<td>Distribution of means of light transmission and coefficients of variance of 22 varieties of chilli</td>
</tr>
<tr>
<td>4.1.12.</td>
<td>Distribution of means of capsaicin content (mg/g) and coefficients of variance of 22 varieties of chilli</td>
</tr>
<tr>
<td>4.2.1.</td>
<td>Plot of regression lines of individual genotypes against environmental index for yield</td>
</tr>
<tr>
<td>4.2.2.</td>
<td>Plot of regression lines of individual genotypes against environmental index for mean fruit weight</td>
</tr>
<tr>
<td>4.2.3.</td>
<td>Plot of regression lines of individual genotypes against environmental index for no. of fruits/plant</td>
</tr>
<tr>
<td>4.2.4.</td>
<td>Plot of regression lines of individual genotypes against environmental index for dry yield</td>
</tr>
<tr>
<td>4.2.5.</td>
<td>Plot of regression lines of individual genotypes against environmental index for days to harvest</td>
</tr>
<tr>
<td>4.2.6.</td>
<td>Plot of regression lines of individual genotypes against environmental index for plant height</td>
</tr>
<tr>
<td>4.2.7.</td>
<td>Plot of regression lines of individual genotypes against environmental index for days to dry</td>
</tr>
<tr>
<td>4.2.8.</td>
<td>Plot of regression lines of individual genotypes against environmental index for dry weight (g)</td>
</tr>
</tbody>
</table>
4.2.9. Plot of regression lines of individual genotypes against environmental index for conversion rates 217

4.2.10. Plot of regression lines of individual genotypes against environmental index for percentage of bleaching 218

4.2.11. Plot of regression lines of individual genotypes against environmental index for light transmission at 490 nm 219

4.2.12. Plot of regression lines of individual genotypes against environmental index for capsaicin content 220

5.1. Yield as influenced by climatic factors (rainfall, sunshine, temperature and humidity) during growing period 278
LIST OF PLATES

Plates

1. Modified conventional dryer.
 Left: Fresh chilli placed on plastic insulated wire netting
 ready to be solar dried.
 Right: Solar dried chilli still inside the drier
 Bottom: Modified solar dryer: iron angled frame with
 Plastic coated wire netting as the base.
 Detachable cover made of UV treated
 plastic (see inset) 121

2. Variety Brebes (V44): A medium size plant, above
 average yielder with good quality attribute and most stable
 variety with stability in twelve characters 279

3. Variety purple chilli (V16) selected for characters:
 days to dry (stable), pungency (stable), fruit number (stable),
 conversion rate, good colour (stable), high colour
 retention (stable) on drying and yield (stable).
 Stability in 9 characters. .. 280

4. Variety MC 11 selected for good fruit size(stable), optimum
 Height (stable), high yield (stable), pungency(stable), conversion
 rate (stable), no of fruits/plant(stable), days to dry(stable).
 Stability in 11 characters. MC11 is a double purpose chilli.
 The glossy bright red (solar dried) and very intent red
 colour (oven dried) of MC11.. 281

5. Variety Ch388 (V57) selected for characters: yield (stable),
 pungency (stable), fruit number (stable), conversion rate(stable)
 and long attractive fruits (stable) suitable for fresh consumption
 and as raw material. Stability in 11 characters.................. 282
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix I:</td>
<td>Typical growth habit of chilli plant as in IPBGR descriptor list</td>
<td>310</td>
</tr>
<tr>
<td>Appendix II:</td>
<td>Temperatures (°C) pattern under solar dryer against air temperatures at various time of the day (31.1.90 - 17.2.90)</td>
<td>311</td>
</tr>
</tbody>
</table>