
TESTING THE MINIMAL BOUNDED SPACE METHOD  
ON VISION-BASED DRONE NAVIGATION 

 
 
 
 
 

YAP SENG KUANG 

 
 
 
 

 
FACULTY OF COMPUTER SCIENCE AND INFORMATION 

TECHNOLOGY 

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

 
 

  
 
 
 2021

Univ
ers

iti 
Mala

ya



TESTING THE MINIMAL BOUNDED SPACE METHOD 
ON VISION-BASED DRONE NAVIGATION 

 
 
 
 
 
 

YAP SENG KUANG 
 
 
 
 
 

DISSERTATION SUBMITTED IN PARTIAL 
FULFILMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF COMPUTER SICENCE 
 
 

FACULTY OF COMPUTER SCIENCE AND 
INFORMATION TECHNOLOGY  

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

 
 
 

2021 

 
Univ

ers
iti 

Mala
ya



ii 

UNIVERSITY OF MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate: YAP SENG KUANG                                                                       

Matric No: WOA160007

Name of Degree: Master of Computer Science (Applied Computing) 

Title of Dissertation: Testing the Minimal Bounded Space Method on Vision-based 

Drone Navigation 

Field of Study: Robotics 

    I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair

dealing and for permitted purposes and any excerpt or extract from, or
reference to or reproduction of any copyright work has been disclosed
expressly and sufficiently and the title of the Work and its authorship have
been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that
the making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the
copyright in this Work and that any reproduction or use in any form or by any
means whatsoever is prohibited without the written consent of UM having
been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed
any copyright whether intentionally or otherwise, I may be subject to legal
action or any other action as may be determined by UM.

Candidate’s Signature  Date: 

Subscribed and solemnly declared before, 

Witness’s Signature  Date: 

Name: 

Designation: 

24 Mar 2021

20 Mar 2021

Univ
ers

iti 
Mala

ya



iii 

TESTING THE MINIMAL BOUNDED SPACE METHOD ON VISION-BASED 

DRONE NAVIGATION 

ABSTRACT 

The object-based approach is the most common in developing navigation strategies for 

robots. The object-based approach focuses on segmentation, detection, annotation, and 

recognition of objects or markers in the scene. For a drone, this approach is popular 

with the utility of sensors such as laser, vision (mono and stereo), ultrasonic, Kinect, 

and others. To elicit the information required, often, the object-based approach relies on 

these sensors as a hybrid solution. Recently, the availability of the deep learning 

algorithm also encourages the object-based approach for drone navigation. A critical 

gap in the object-based approach is that the computational resources required are 

massive. For a drone, especially a low-cost one, this renders the object-based approach 

to simulation-based only works. The other, less common navigation strategy for robots 

is the space-based approach. In the space-based approach, there is no object learning. 

Without object learning, there is no advanced processing to perform object recognition 

or labeling.  

 

The space-based approach is focused on computing the openings in the surrounding 

space. Recent works have experimented with the space-based approach for robot 

navigation (Azizul, 2013; Azizul & Khanil, 2017). The space-based method used is 

called the Minimum Bounded Space (MBS). The name of the method is obtained from 

trying to bound the spatial openings immediately to the robot. In the earlier work, 

Azizul (2013) tested the MBS on a mobile robot equipped with a laser sensor. There is 

no imaging involved, but the laser sensor does record depth information. The spatial 

openings are derived by analyzing occlusion information from the environment, which 

is available from the depth information. The laser robot is shown to navigate 

Univ
ers

iti 
Mala

ya



iv 

autonomously by moving from one spatial opening to another in an indoor environment. 

In the later work, Azizul & Khanil (2017) experimented with the MBS on a mobile 

robot equipped with a camera. Imaging is involved, but the way they processed the 

image is not the same as the processes involved in object-based works. Floor 

segmentation and analysis become the basis for finding spatial openings immediately to 

the robot. Eliciting the openings in the indoor environment is achieved without depth 

information.  

 

The results shown from these prior works are encouraging as they do not require 

complex processing. Furthermore, they show how MBS is successfully implemented for 

real-time robot experiments. Interestingly, they show the versatility of the MBS method 

for autonomous robot navigation with or without depth information. However, the MBS 

method has not been tested on a flying robot or the outdoor environment. In this work, I 

show how the MBS method is implemented as the navigation strategy for a low-cost 

drone. The drone used in this work is called the Parrot Bebop Drone, which is equipped 

with a camera on board. To complete this task, I have developed a new computer vision 

framework to elicit openings for the MBS. The testing done shows the MBS is useful 

for low-cost drones flying in an indoor and outdoor environment.  

 

Keywords: Cognitive robotics, robot navigation, spatial representation, micro aerial 

vehicle 
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PENGUJIAN METOD MINIMAL BOUNDED SPACE UNTUK NAVIGASI 

DRON VISUAL 

ABSTRAK 

Pendekatan berdasarkan objek adalah pendekatan paling umum dalam mengembangkan 

strategi navigasi robot. Pendekatan berdasarkan objek memfokuskan pada segmentasi, 

pengesanan, anotasi dan pengenalan atau penanda objek dari persekitaran. Pendekatan 

ini popular untuk dron dengan kegunaan sensor-sensor seperti berjenis laser, 

penglihatan (mono dan stereo), ultrasonik, Kinect dan lain-lain. Sering kali pendekatan 

berasaskan objek ini bergantung pada sensor-sensor tersebut sebagai suatu penyelesaian 

hibrid. Baru-baru ini, ketersediaan algoritma deep learning juga telah mendorong 

pendekatan berasaskan objek untuk navigasi dron. Satu jurang penting dalam 

pendekatan berasaskan objek adalah sumber perkomputeran yang diperlukan adalah 

berat. Untuk dron, terutamanya dron berkos rendah, pendekatan berasaskan objek untuk 

navigasi adalah cenderung ke arah penghasilan kerja-kerja bersifatkan simulasi. Strategi 

lain yang kurang popular untuk navigasi robot adalah pendekatan berasaskan ruang. 

Dalam pendekatan berasaskan ruang, tidak ada pembelajaran objek. Ini bermaksud tidak 

ada pemprosesan lanjutan untuk melakukan pengecaman atau pelabelan objek.  

 

Pendekatan berasaskan ruang memfokuskan pada perkomputeran bukaan ruang di 

sekitar robot. Kerja-kerja terkini (Azizul, 2013; Azizul & Khanil, 2017) telah 

bereksperimen dengan pendekatan berasaskan ruang untuk navigasi robot. Kaedah 

berasaskan ruang yang digunakan dipanggil Minimum Bounded Space (MBS). Nama 

kaedah itu diperoleh daripada cubaan untuk menjangka ruang bukaan minimum bagi 

sesuatu robot. Azizul (2013) telah menguji kaedah MBS pada robot mudah alih yang 

dilengkapi dengan sensor berjenis laser. Tidak ada pengimejan yang terlibat tetapi 

sensor berjenis laser tersebut dapat merakam maklumat jarak. Maklumat bukaan ruang 
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adalah diperoleh dengan menganalisa maklumat oklusi yang diekstrak dari maklumat 

jarak. Robot berjenis laser tersebut berupaya melakukan navigasi secara autonomi 

dengan berpindah dari satu ruang terbuka ke ruang terbuka yang lain di dalam satu 

persekitaran dalaman. Azizul & Khanil (2017) pula telah melakukan eksperimen kaedah 

MBS pada robot mudah alih yang dilengkapi dengan kamera. Proses ini melibatkan 

pengimejan tetapi cara mereka memproses imej adalah tidak sama dengan proses yang 

terlibat dalam kerja-kerja yang menggunakan pendekatan berdasarkan objek. 

Segmentasi dan analisis lantai menjadi asas untuk membantu robot mencari bukaan 

ruang. Bukaan ruang di persekitaran dalaman adalah dicapai tanpa maklumat jarak.  

 

Kerja-kerja ini juga telah menunjukkan bagaimana kaedah MBS boleh mejayakan 

eksperimen robot dalam masa nyata. Menariknya, mereka telah menunjukkan 

keupayaan serba boleh bagi kaedah MBS untuk melakukan navigasi robot secara 

autonomi dengan atau tanpa maklumat jarak. Walau bagaimanapun, kaedah MBS 

tersebut belum pernah diuji pada robot terbang mahupun di dalam persekitaran luaran. 

Dalam kerja ini, saya menunjukkan bagaimana kaedah MBS tersebut boleh 

dilaksanakan sebagai strategi navigasi untuk dron berkos rendah. Dron yang digunakan 

dalam kerja ini dinamakan sebagai Parrot Bebop Drone yang dilengkapi dengan kamera. 

Untuk menyelesaikan tugas ini, saya telah mengembangkan satu kerangka penglihatan 

komputer baru untuk mendapatkan bukaan ruang untuk kaedah MBS. Pengujian yang 

dilakukan menunjukkan bahawa kaedah MBS tersebut adalah berguna untuk navigasi 

dron berkos murah di dalam persekitaran dalaman atau luaran. 

 

Kata kunci: Robotik kognitif, navigasi robot, perwakilan ruangan, kenderaan udara 

mikro 
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1 

CHAPTER 1: INTRODUCTION 

1.1 Drone navigation 

Drones are not anymore limited to military applications. A large amount of small drone 

is not available for consumer use. Small flying drones are used for recreational, 

photography, video taking, delivery, construction monitoring, sensing, surveillance, and 

lately for extreme circuit competition. Small flying drones often include GPS units, 

gyroscopes, accelerometers, wireless communication capability, and a camera, making 

them ideal for outdoor applications. Nevertheless, indoor applications such as in-

building delivery, automated inventory, and the search and rescue operations, 

particularly in an accident or a disaster (e.g., fire, flooding, and earthquake), are 

growing in interest. 

 

Most of this small flying drone is not fitted with any global positioning system (GPS) 

and often suffers a frequent signal loss. Therefore, limiting small flying drone to low 

operation range and are usually remotely controlled. An autonomous navigation 

algorithm can allow a small flying drone to avoid crashing into obstacles, especially in a 

situation where a signal loss occurs, and the drone cannot stop instantly. An 

autonomous navigation algorithm can also be designed to reconnect with the remote 

controller when required. Secondly, if a small flying drone has to operate in an 

unstructured and a priori unknown environment, an extra autonomous navigation 

strategy layer on top of a more sophisticated layer, such as simultaneous localization 

and mapping (SLAM), can act as a fail-safe mechanism to help the drone to avoid 

obstacles. 
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In performing autonomous navigation, any robotics platform must first gather all its 

sensor data, interpret them, and make use of the interpretation for decision making. For 

a small flying drone, a monocular camera is one of the most common sensors. A 

monocular sensor is a passive sensor, which does not interfere with other sensors and 

provides the first-person view (FPV) sensation to the operator. From a commercial 

perspective, small drones are prevalent due to its low-cost. Currently, there are millions 

of this type of drone distributed all over the world. Therefore, developing an 

autonomous navigation algorithm for a small flying drone with a monocular camera 

becomes an active research area. 

 

1.2 Motivation from a space-based approach 

Azizul (2013) published a novel method for autonomous robot navigation called the 

minimal bounded space (MBS). The primary feature of this approach is to program a 

robotics platform, with its particular perceptual sensor, to interpret the environment by 

searching for spaces immediately to the robot. Once space is identified, the robot is 

instructed to move into space. The robot then performs exploration of the environment 

by moving into a series of consequent spaces identified by the MBS. Following the 

work, Azizul & Yeap (2015) shows how a mobile robot with a laser sensor performs 

autonomous navigation of an indoor environment using the MBS. The mobile robot 

used is a Pioneer 3DX equipped with a 180 degrees laser scanner with 360 laser beams 

that can achieve up to 30 meters depth accuracy. 

 

In 2017, Azizul & Khanil extended the MBS algorithm by testing on a low-cost mobile 

robot with a single camera. The low-cost mobile robot is called Rovio, a (now 

discontinued) toy remote-controlled car manufactured by WowWee. For 

implementation, the Rovio has been reconfigured with Python and OpenCV to run the 
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MBS algorithm via WiFi connection. With the camera as the perceptual sensor, image 

processing is used to extract spaces from the environment. The Rovio can move into the 

series of spaces identified by the visual-fed MBS performing autonomous navigation in 

an indoor environment. The result shown is similar to the laser robot (Azizul & Yeap, 

2015). However, what made the result significant is, this time, the MBS is performed 

when depth information is not available. Unlike a rangefinder like a laser sensor, the 

mono-camera is not capable of measuring distance.  

 

While it has been encouraging that the MBS method can cross the perceptual sensing 

platform, i.e., performed autonomous navigation when depth is available or not, the 

MBS has never been tested in an outdoor environment. Prior experimental setups could 

not include outdoor testing due to the physical properties of the Rovio, and the 30-meter 

laser sensor range of the Pioneer 3DX robot fell short for outdoor testing. Inspired by 

this gap, the work in this dissertation focuses on testing the MBS in both indoor and 

outdoor environments.  

 

In fulfilling the requirement of testing indoor and outdoor environments, careful 

selection of the appropriate robotics platform is required. From the physical aspect, a 

flying drone is attractive for the task, so long the indoor environment is spacious and 

has a relatively comfortable height for the ceiling. Furthermore, a flying drone is usually 

equipped with a mono-camera. With a mono-camera, flying the drone will require the 

non-depth MBS deployed in Azizul & Khanil (2017) ’s Rovio.  
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The significant difference between this work and the work done in Azizul & Khanil 

(2017) is the visual feed will come from different vantage points. In Rovio, the camera 

is forward-facing and is about 15cm off the ground. At that height, the floor becomes 

significant in the Rovio visual scanning and has value in the decision making. In the 

visual flying drone, the camera is collecting feed at whatever height the drone is 

programmed to fly. The floor may or may not be significant to its visual feed, thus may 

or may not be influential in the decision making. The difference in the visual feed 

means adopting the MBS algorithm from Rovio to the flying drone cannot be 

straightforward. The drone is also susceptible to erratic hovering, unlike Rovio, which is 

stable on the ground. In terms of movement, the Rovio can drive forward, backward, 

and rotate but has only the planar axis to move. On the other hand, the drone can climb, 

hover, and descend, with horizontal and vertical axes to move. These different 

mechanisms of a mono-visual drone are some of the factors that will be taken into 

consideration in implementing the MBS algorithm. 

 

1.3 Problem statement 

The space-based approach, such as the MBS navigation method, shows promising 

results when tested on real-time mobile robots. Interestingly, it is capable of guiding 

robots for autonomous indoor navigation with or without depth information. However, 

the MBS algorithm has not been tested in an outdoor environment. In this work, I am 

interested in testing the MBS method for autonomous navigation in an indoor and 

outdoor environment using a mono-visual flying drone. 
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1.4 Research questions 

The following research questions should be considered for the study: 

1. How can one implement the MBS method on a mono-visual flying drone? 

2. How can one segment spaces from a drone mono-visual feed? 

3. How does the mono-visual drone perform using the MBS navigation method? 

 

1.5 Objectives of the study 

The following objectives are defined to answer the research questions: 

1. To implement the MBS navigation method on a mono-visual drone. 

2. To develop a new segmentation process for the MBS method. 

3. To test the performance of the MBS navigation method on a visual drone. 

 
1.6 Scopes of the study 

The following scopes are described to accommodate the objectives of the study: 

1. The drone must not utilize any depth perceiving sensor 

2. Techniques such as the SLAM method are not considered to estimate the 

position of the drone 

3. The drone height is fixed at 5 feet 

4. Sufficient lighting, natural or artificial, is required during the experiment.  

5. Human-made obstacles are allowed to ease experiment set up. 
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1.7 Significance or relevance of the study 

The utility of flying drones is essential for tasks such as inspection, surveillance, and 

mapping. Although most of these are outdoor tasks, there is an increasing demand for 

indoor operation, particularly in warehouses and factories. For an indoor environment, 

maneuvering through narrow spaces can be challenging for a drone. Various depth 

sensors have been used for accurate obstacle detection and avoidance, such as LIDAR, 

sonar, stereo camera, and infrared. However, these rangefinders are costly in terms of 

load and battery capacity, thus often not found on small drones.  

 

Small drones are usually equipped with mono-camera. Without rangefinders, small 

drones cannot extract depth information. Therefore, a small drone relies heavily on 

accurate feature extraction such as the corner, edge, SIFT, and SURF features. Interest 

point detection is challenging to vision processing because it requires heavy 

computation, which limits the utility of small drone activity in a real-time environment.  

 

Significantly, this work contributes to the first space-based approach for a visual flying 

drone without depth information for an autonomous indoor and outdoor navigation. The 

outcome of this work is described as follows: 

1. A new MBS method implementation for a mono-visual drone navigating 

autonomously without depth information.  

2. A new segmentation process for a mono-visual drone.  
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1.8 Dissertation organization 

This dissertation is divided into five chapters. Chapter 1 includes a background 

overview of the study, a problem statement, and the objectives of the work. Chapter 2 

evaluates the literature relevant to this work. In particular, the review focuses on the 

object-based and the space-based robot navigation approaches. Chapter 3 describes the 

research methodology of this work. In Chapter 4, the results are described and 

discussed. Chapter 5 concludes the work and discuss possible future works. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Overview 

Central to this chapter is the discussion of the object-based and the space-based 

approaches to visual drone navigation. In object-based navigation, various vision-related 

techniques popular to drone navigation are discussed, such as points of interest, depth 

information, deep learning, and extraction of markers. The discussion on the space-

based approach focuses on successful cognitive strategies implemented for robot 

navigation, which some are not vision-centric. For completion, a review of the available 

robot navigation system precedes the chapter.  

 

2.2 The robot navigation system 

Robot navigation is the ability of ground or flying robots to travel through the 

environment. Robot navigation is a procedure to determine the safe and suitable route 

between an initial and an endpoint for a traveling robot. Three classical questions can 

briefly define problems related to navigation: “Where am I” “Where am I going” and 

“How do I get there?” (Leonard & Durrant-White, 1991). The first two questions can be 

answered by a suitable sensory system, while the third requires a practical planning 

system. The navigation systems are directly related to the sensors available on the robot 

and environmental structure. 

 

Robot navigation can be achieved via three systems; behavior-based system, 

coordinates-based system, and hybrid system. A behavior-based system needs the robot 

to recognize the features of an environment through its sensors. The features include the 

robot to recognize, for example, corridors and doors, in searching for the destinations. 

The coordinate-based system depends on metrical maps of an environment to produce 
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routes to guide the robot, while the hybrid-based system mix features of both 

coordinate-and behavioral-based systems. 

 

A sub-task for the robot navigation systems include local navigation or path discovery. 

A local navigation task considers problems such as path following, obstacle avoidance, 

and the method to traverse from a source to a destination within the robot’s field of 

vision. A sound robot navigation system allows the utility of robots for possible 

applications like the search and rescue missions, stunts for action movies and 

photography, aerial inspection of buildings and bridges, military, and construction tasks.  

 

There are three types of navigation, which are map-based, map-building, and mapless 

navigations. The map-based navigation system needs a map and can be subdivided into 

metric map-based and topological map-based systems. A metric map-based system 

requires an entire map of the environment before navigation. A topological map-based 

system consists of nodes that mark the most distinctive places in the environment, and 

the nodes are linked by lines that represent the distance between two consequent nodes. 

The mapless navigation system tracks feature among frames or visual cues derived from 

optical flow and the segmentation of an image. Without a map, there is no universal 

representation of the environment in mapless navigation. The environment is perceived 

as the robot follows certain features or recognized objects.  

 

Currently, there are two systems used for robot navigation, namely satellite-based 

Global Positioning Systems (GPS) and image-based Vision Positioning Systems (VPS). 

The GPS contains twenty-four satellites that transmit encoded radio frequency signals. 

A ground-based receiver can calculate its position through the travel time of three 

satellites’ radio frequency signals, including the satellites’ momentary location 
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information, using an advanced trilateration method. The distance between the ground 

receiver and the three satellites hypothetically allows for the calculation of the 

receiver’s latitude, longitude, and altitude. The GPSs are limited by one, the GPS 

receiver does not work 100 percent when out-of-coverage, and two, the climatic 

conditions and user location can also affect the quality of geolocalization, as the signal 

is not easily accessible when the weather is terrible, or when the user is indoor or 

trapped between tall buildings. 

 

The VPS rises in popularity because of two factors. While one is the failure of many 

robotics applications in a GPS-denied environment, the second is because quality vision 

sensors are getting cheaper. Cheap visual sensing is a game-changer, which motivates 

the robotics community to apply active vision processing for robot navigation. To 

compute the VPS, one must work through the massive data flow created by the vision 

sensors. Furthermore, instead of relying on traditional positioning methods such as the 

dead reckoning, ultrasound, and inertial estimation, the VPS makes use of optical 

sensors to obtain localization. At the core of the VPS system is object detection and 

manipulation. Section 2.3 reviews relevant literature surrounding this visual-object 

approach in developing navigation algorithms for autonomous robots.  

 

2.3 Object-based approach for robot navigation 

Object-based navigation refers to methods of navigations that depend on the 

interpretation and manipulation of objects from the environment. For a human, the 

object here means a material thing that can be seen and touched. For a robot, the object 

here means a material thing from the robot surrounding that the robot can compute 

through its sensors. Partial to the robot processing an object is object segmentation. 

Object segmentation deals with separating an object digitally from its background and 
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sending the raw information of that object to a series of filters for inference. According 

to Fuentes-Pacheco (2015), the inferencing of an object can be achieved in two phases, 

called the detection and description. Detection deals with the image to obtain several 

salient elements, while description deals with feature vectors based on visual 

appearance in the image. The invariance of the descriptor changes the orientation and 

position, which will improve image matches and the data association processes. Table 

2.1 lists the earlier descriptors used as salient descriptors in the literature.  

 

The most commonly used descriptors for object recognition is the histogram-type (SIFT 

descriptor), proposed by Lowe (2004), with qualities such as invariant to rotation, 

translation, scale, partially invariant to lighting, and viewpoint changes. The modified 

version of SIFT is called PCA-SIFT and is proposed by Ke & Sukthankar (2004). The 

modified version is as robust and distinctive as SIFT, with less component vector. These 

descriptors eventually paved the way for recent works in an object-based approach for 

visual drone navigation, particularly in the use of descriptors for obstacle avoidance.  

 

Table 2.1: List of earlier descriptors used as salient detectors 
Reference Salient Detectors 

Artieda et al., 2009 Harris corner 

Rosten & Drummond, 2006 Features from Accelerated Segment Test (FAST) 

Bay et al., 2006 Fast-Hessian used on SURF (Speeded up Robust 
Features 

Lowe, 2004 
The difference of Gaussians (DoG) used on SIFT (Scale 
Invariant Feature Transform) 

Mikolajczyk & Schmid, 2002 Harris-Laplace and Hessian-Laplace points detectors, and 
Harris-Affine and Hessian-Affine 

Matas & Chum, 2002 Maximally Stable Extremal Regions (MSERs) 

Harris & Stephens, 1988 Harris corner 
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Table 2.2: Object-based approach for robot navigation 
Reference Aim of Work Result Gap 

Agrawal et 
al., 2015 

Segment obstacles using 
optical flow’s image 
features, use collision cone 
based guidance law for 
obstacles avoidance 

Improved performance 
compared to existing 
optical flow-based 
obstacle avoidance 
methods 

Simulation in 
MATLAB, simple 
environment, use a 
zig-zag flight pattern 
and difficult to avoid 
frontal obstacle 
avoidance 

Lee et al., 
2011 

Detect the obstacle’s 
outline using MOPS. 
Calculate spatial 
coordinates of feature point 
exist in the internal outline 
of the obstacles through 
SIFT. Combine result from 
both MOPS and SIFT to 
show 3D information of the 
obstacles 

Reconstruct 3D 
information of the 
obstacles with using 
MPOS and SIFT 
feature points 

Matching the MOPS 
and SIFT features 
require two images. 
SIFT matching 
depends on the 
lighting. SIFT points 
are affected by noise 
from a low-resolution 
camera. Gray image 
is used 

Aguilar et 
al., 2017 

Using an onboard 
monocular camera to 
capture images and 
compare images obtained in 
real-time with a database of 
obstacles that must be 
avoided. Using SURF for 
fast obstacle detection. 

Improved successful 
flights ratio compare to 
other algorithms 

Matching is based on 
the vectorial distance 
between descriptors 
of each feature point 
in both images. 
Feature points are 
affected by lighting 

Al-Kaff et 
al., 2017 

Use feature points with 
expansion ratios from the 
convex hull from 
consecutive frames. Decide 
collision by comparing the 
area ratio of the obstacles 
and the position of the 
drone. Performs avoidance 
maneuver. 

Two types of 
experiments were 
conducted - the drone 
moving toward the 
obstacles and vice 
versa. Accuracy of 
obstacle detection is 
97.4% 

The movement 
required to generate 
pairs of feature points 
may not be stable 
from a drone. The 
method is only able 
to detect one obstacle 
at a time.  

Zheng et al., 
2017 

Use optical flow and visual 
odometry with ground 
facing monocular vision to 
evaluate the speed and 
location of the drone. Use 
laser for obstacle 
avoidance.  

Kalman filter 
eliminates high-
frequency noise from 
optical flow. The visual 
odometer produces an 
average error of 0.2m 
and a max error of 
0.5m.  

A predefined 
environment with 
flooring covered with 
a square carpet with a 
side length of 1m. 
Custom build drone 
with Intel NUC i5, 
RPLIDAR, OV2710 
camera module 

Park et al., 
2013 

Build a depth map from 
stereo vision—further 
segment obstacles from the 
image frame. Use the 

Drone able to maneuver 
around a single sphere-
shaped object, and 
multiple rectangular-

The experiment in a 
virtual environment 
where obstacles stand 
out from the 
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collision cone method to 
avoid obstacles.  

shaped objects background 

Ramasamy et 
al., 2016 

Use the LIDAR system to 
generate a 3D 
representation for obstacle 
avoidance and a remote 
pilot to operate drone near 
the ground 

The system detects and 
calculates distances to 
each of the obstacles 
into 3D representation. 
The system modifies 
the original trajectory to 
avoid a collision 

Complex algorithm 
to construct a 3D 
model of the 
environment. High 
computational cost 
with additional 
payload to work with 
commercial drones. 

Nemati et al., 
2015 

Simulate a drone system 
equipped with inertial and 
sonar sensors to enable 
autonomous flight in a 
GPS-denied indoor 
environment with obstacles. 

Detect obstacle using 
sonar sensors and 
generate waypoints for 
navigation 

Require laser and 
Hector SLAM, flight  
around 4m height, 
and a map is 
available before the 
flight 

Tarazona et 
al., 2014 

Control velocity through 
ultrasound sensors, 
accelerometers to detect 
objects, and fuzzy 
controllers to prevent 
collisions in indoor spaces. 

A controller checks the 
velocity and angle 
inclination to prevent a 
collision. The controller 
is deactivated when not 
in use.  

The alarm requires 
accurate depth 
readings from a 
stable/non-hovering 
position. 

Rambabu et 
al., 2015 

Use a Kalman filter to fuse 
sonar and infrared data. 
Cascade PID position and 
velocity controllers. 

The drone maintains at 
60cm distance from the 
obstacles.  

The testing 
environment has 
fixed lighting 
conditions. Infrared 
data is affected by 
sunlight and other 
lighting conditions 

Kouris et al., 
2018 

CNN trained on image 
collected through a drone 
camera and annotated with 
distance measured with an 
ultrasonic sensor  

Improved decision 
making with two-
stream regression 
architectures handling 
high ambiguity cases 
via richer Spatio-
temporal representation  

Only detects trained 
objects, requires 
high-end hardware 
including GPUs to 
train and to execute 
CNN  

Brzozowski 
et al., 2016 

Use the magnetic field map 
to localize the drone. Use 
permanent magnets to 
modify the local magnetic 
field that could work as 
beacons. 

The changing magnetic 
field along the corridor 
at different heights can 
be detected using 
permanent magnets, 
which can create large 
anomalies in the 
previously registered 
magnetic field. 

Electronic types of 
equipment can affect 
the magnetic field. 
Requires prior 
preparation of 
magnetic maps, 
including all its 
anomalies 

 

 

 

Univ
ers

iti 
Mala

ya



14 

There are generally four types of obstacle avoidance methods proposed in the object-

based approach, such as the point of interest, depth information, deep learning, and 

markers. Table 2.2 shows works that address an object-based approach for robot 

navigation.  

 

2.3.1 Point of interest 

An image space contains features that refer to a pattern or unique structure found in an 

image such as a point or edge. They are usually found in small patches in the image 

space and differs distinctly from its immediate surroundings by texture, color, or 

intensity. These small patches are sometimes called blob, corners, or edge pixels and 

usually considered as the point of interest of an image. Detection of point of interest in 

an image space usually has the following characteristics (Lindeberg, 2015): 

a) It can be described through a mathematical formula and can be searched 

repeatedly in the image space under varying illumination or brightness  

b) It has a well-defined position in the image space, with surrounding structure 

supports local information contents 

 

Local features such as corners and edges are great image features for optical flow 

computations because while corners provide accurate movement information to track an 

object in 2D space, edges provide pixel information along one dimension. The SIFT 

(scale-invariant feature transform) is a feature detection algorithm in computer vision to 

detect and describe local features in images. Lowe (2004) proposed the SIFT as an 

image processing technique that creates an image pyramid and extracts features points 

to make it unaffected by size change. It is also relatively unaffected by rotation changes 

because it can extract the orientation of the feature points and generate feature vectors. 
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Due to the challenging nature of detecting local features when face with rotation and 

illumination problems, the SURF (speeded up robust features) is proposed. Even though 

the SURF has better performance in dealing with rotation invariant, blurring, and warm 

transformation, the SIFT still beats the SURF when scaling is required. The SURF has 

higher popularity when computational speed is a factor because the SURF utilizes an 

integral image and box filter, making it three times faster than the SIFT.  

 

In robot navigation, the SIFT and SURF techniques are widely used in tracking 

obstacles. Sometimes, researchers combine the SIFT with the multi-scale-oriented 

patches (MOPS) to reconstruct 3D information of the obstacles. The MOPS is a process 

that identifies the same points among multiple images (Brown et al., 2005). For 

example, Lee et al. (2011) construct 3D information of obstacles by combining 

approximate 3D outlines of obstacles with 3D SIFT feature points. Two consecutive 

images are used to elicit the result. Their steps for each image include:  

• Extract the MOPS feature descriptor using the Harris corner detector. Then 

match the MOPS features between the first and the second images to form 

approximate 3D outlines,  

• Grab internal outline information using SIFT, and match features between the 

two images, and 

• Merge results from the MOPS and SIFT to show the 3D information of the 

obstacles. 
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Combining the SIFT and the MOPS methods is considered efficient to approximate the 

outlines of the obstacles. Further 3D information of the obstacles can be obtained when 

the outlines approximation is combined with the SIFT feature points. However, two 

images are needed for distance estimation using the SIFT and MOPS combination, 

considering the displacement between the two consecutive images. Furthermore, the 

SIFT features depend heavily on the lighting conditions of the environments and also 

the resolution of the camera used. The limitations of the SIFT require Lee et al. (2011) 

to experiment using only gray images and perform in a simulated environment.  

 

Agrawal et al. (2015) use the optical flow of image features to segment obstacles from 

the image. Once the obstacles are segmented, a collision cone-based guidance law is 

proposed for avoidance. By combining the Harris corner features and optical flow 

(Sharmin & Brad, 2012), the optical flows of the corner points are considered for 

segmenting the image. Images are scan from left to right following a window of 5 pixels 

width, to calculate the average optical flow vector. For each window, an average optical 

flow value that is more than a predefined threshold corresponds to an obstacle.  

 

The work by Agrawal et al. (2015) demonstrates the correlation between local interest 

points and the corresponding obstacles. Using optical flow to track a moving obstacle is 

exciting, but not useful when the tracker is the one moving, such as the case with a 

flying drone. Similar to Lee et al. (2011), the experiments by Agrawal et al. (2015) is 

also simulation-based with the environmental setup done in MATLAB. The simulation-

based solution may require further extension before ready to handle feature extraction in 

a real-time drone experiment.  

 

Univ
ers

iti 
Mala

ya



17 

Small, low-cost drones gain popularity in recent research because of its accessibility to 

the public. Aguilar et al. (2017) are among the earlier work using vision from a 

monocular camera onboard a small, low-cost drone for obstacle avoidance. They 

compare the SURF features obtained in real-time from drone images with a reference 

database containing obstacle information. They reported the main drawback of the 

SURF method that it is affected by lighting, especially with the drone’s low-resolution 

imaging, where the SURF loses information if the pixel is too dark. 

 

Al-Kaff et al. (2017) detect the change of size among the detected feature points and 

combine them with the expansion ratio of the convex hull constructed around the 

detected feature points from consecutive frames. Obstacles that have the probability of 

getting closer to the drone are extracted by calculating the area ratio of the obstacle and 

position of the drone. If a collision is decided, the drone is required to perform an 

avoidance maneuver by estimating the obstacle position in the image with the tracked 

waypoints. AL-Kaff et al. (2017) claim that this method mimics the human behavior of 

detecting the collision state of an approaching obstacle. However, similar to other 

feature points methods, two stable consequent images are required to generate pairs of 

feature points for accurate inferences. Obtaining stable consequent images is not 

straightforward with a small, low-cost drone, suffering from hovering instability.  

 

To avoid using consecutive images for inferences, Zheng et al. (2017) propose a method 

to combine monocular vision with laser radar. Monocular vision is used for speed and 

location estimation, while laser radar is utilized for obstacle avoidance. In doing so, 

Zheng et al. (2017) achieve stable navigation with autonomous obstacle avoidance at 

the cost of payload increment. It is motivating that they experimented in real-time, but 

the environment set up includes predefined square carpeted flooring at a fixed length.  
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Table 2.3: Drone navigation with the point of interest 
Reference Aim of Work Result Gap 

Agrawal et al., 2015; 
Lee et al., 2011; 
Aguilar et al., 2017;  
Al-Kaff et al., 2017; 
Zheng et al., 2017;  

Detect image features 
using SURF, SIFT, 
edge, 3D points 
cloud, and segment 
obstacles from the 
background. 
 

The estimated 
distance between 
drone and obstacles 
and perform 
navigation by 
avoiding obstacles. 
Stable movement is 
required to generate 
pairs of feature points 

1. Points are unstable, 
and experiments 
often simulate in a 
computer, not real-
time. 
2. Optical tracking 
between scenes 
requires a stable 
source.  
3. Floating drone 
often gives unstable 
imaging.  
 

 

In summary, the detection of point of interest or local features is useful for tracking 

obstacles when the lighting condition is stable. Besides, the technique is only successful 

for feature tracking when two consecutive images are in use. The technique does not 

consider following the local features when the tracker is in motion. Also, the technique 

has an accuracy issue if the pair of images used are not taken from a stable point of 

view. Table 2.3 shows drone works, which are based on the point of interest.  

 

2.3.2 Depth information 

Depth information describes the measurement of the distance between a range finding 

sensor and a solid object that intersects the sensor signal. There are various sensors to 

extract depth information; the most common are rangefinders like the Light Detection 

and Ranging (LIDAR), laser, and the sonar or ultrasonic sensor. The LIDAR and laser 

are accurate instruments with an unprecedented angular resolution in a wide range of 

incidence angles. The higher cost over laser gives LIDAR a more extended range 

making it an ideal solution for obstacle detection and avoidance in the outdoor 

environment. Although inexpensive compared to the laser and LIDAR, the sonar has 
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many shortcomings, such as specular reflection, foreshortening, cross-talk, and limited 

field of view of 30 degrees.  

 

The sonar limitations were considered by Tarazona et al. (2014) when designing an 

algorithm for a drone to navigate and avoid obstacles in indoor spaces. They added an 

accelerometer to estimate the speed and acceleration of the drone in comparison to its 

surrounding. A fuzzy controller manages input from the accelerometer. These two 

inputs are fused using the Kalman filter for altitude, distance, and acceleration 

estimation. When the sonar’s time-of-flight principle detects obstacles, the fuzzy 

controller evaluates the velocity and the angle inclination that a drone must take to 

reduce linear velocity and prevent a collision. However, the method neglects to consider 

the narrow viewing field of the sensor that may incur false alarm to the fuzzy controller 

due to the drone unstable hover.  

 

While the sonar has broader and more in-depth coverage compared to the infrared, it has 

a lower refresh rate, which is around 13Hz to 20Hz. In comparison, another rangefinder, 

the infrared, has a superior refresh rate of about 100-250Hz, a higher resolution with a 

narrower beamwidth, but has short coverage. These observations help Rambabu et al. 

(2015) improvise by choosing the Kalman filter to fuse the sonar and infrared data to 

obtain reliable depth information for obstacle detection. The combination overcomes the 

sensors’ disadvantages, sonar for the indoor environment, and the infrared for the 

outdoor environment. The sensor has to be calibrated in each environment in which it 

will be used, as reflections magnitude varies in a different environment. The results 

show that the drone can maintain the desired distance of 60cm from the obstacle. 

However, they reported the drone experimented in indoor spaces without sunlight, 

whereas the infrared is heavily affected by sunlight.  
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Passive sensors such as vision can also be utilized to infer depth information. Park & 

Kim (2013) use stereo vision to obtain depth map information to detect obstacles. A 

depth map is an image showing the distance of an object from a viewpoint at the pixel 

level. Obtaining the depth requires the camera’s focal length and baseline, and the 

disparity of the object. The collision cone approach is adopted to avoid collision 

between the drone and the detected obstacle, and the result is validated in numerical 

simulation. The simulation result shows that the drone can maneuver around a single 

sphere-shaped object and multiple rectangular-shaped objects.  

 

In summary, the depth information is considered straightforward when it comes to 

obstacle detection and avoidance. However, extracting depth information requires 

sound-based rangefinders with a broader viewing field, long-ranging signal, and fast 

refresh rate.  When optical-based rangefinders are being considered, one must not 

neglect how lighting condition affects them, and that they can penetrate through 

transparent objects. Stereo vision can extract depth, provided a depth map can be 

generated in real-time. Table 2.4 shows works in drone navigation, which relies on 

depth perception for obstacle avoidance.  

Table 2.4: Drone navigation with depth perception 
Reference Aim of Work Result Gap 

Ramasamy et al., 
2016; Nemati et al., 
2015; Tarazona et 
al., 2014; Rambabu 
et al., 2015; 
Brzozowski et al., 
2016 

Using LIDAR, sonar 
sensors, and infrared 
either alone or with 
fusions, to detect the 
distance between 
drone and obstacles 
and prevent 
collisions  

Drone maintain the 
desire distance from 
obstacles and able to 
maneuver over 
obstacles 

1. Require complex 
algorithm to process 
sonar and infrared 
input  
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2.3.3 Deep learning 

Machine learning’s tremendous advancement has enhanced the capabilities of visual 

navigation, especially Deep Neural Networks, which enable the development of end-to-

end learning approaches. Convolutional Neural Networks, one of the variations of Deep 

Neural Networks, enable feature extraction over a broad set of learnable parameters, in 

place of handcrafted feature selection, since handcrafted feature selection suffers from 

low generalization capabilities. Convolutional Neural Networks act as an enabler for 

visual navigation in real-world environments that inherently demonstrate significant 

variation in visual appearance. 

 

Kouris (2018) introduces a self-supervised convolution neural network (CNN) based 

approach for indoor robot navigation. For dataset generation, three pairs of sonar and 

infra-red sensors are mounted on the drone pointing towards different directions within 

its camera’s field of view, to allow automatic annotation of all data samples. The drone 

is drive manually in a few indoor environments for data collections.  

 

  
Figure 2.1: (a) Two-stream CNN architecture for Spatio-temporal feature extraction on 
regression tasks. (b) An instance of a local motion planner 
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The overall CNN architecture is as shown in Figure 2.1. There are two streams to 

capture the temporal feature (image at time 𝑡 and 𝑡 − 1). Each input image is separated 

into three overlapping rectangular windows, where each window has its’ own distance 

to a possible collision, separately processed by CNN. The CONV layers of the proposed 

network were pre-trained on the imitation learning dataset for indoor navigation to 

enhance the generalization capability. The final result is to regress three distance-to-

collision values. During inferences, these three distance-to-collisions are fed to a custom 

local motion planning algorithm, that concludes into a single control command 

modulating the drone’s yaw and forward linear velocity. The proposed tow-stream 

regression architecture makes a more insightful decision in cases of high ambiguity. For 

example, when dealing with a reduced number of trackable features due to proximity to 

obstacles, by utilizing the learned, richer in information, Spatio-temporal representation 

of the visual input.  

 

Briefly, some of the shortcomings of the experiment are that it is tested in environments 

similar to training data sets, which means that the network is not generalized for 

different indoor environments. Several high-end types of equipment are required for 

Kouris (2018) training and running the proposed network, including a desktop server 

equipped with an Intel Xeon E5-2630, 64GB of RAM, and a GTX1080 GPU used for 

training. To execute the CNN during the experiment, the hardware set up includes a 

laptop with minimal Intel Core i7 – 6700HQ, 16GB of RAM, and a GTX1070 GPU. 
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2.3.4 Markers 

Markers provide visual navigation based on the detection of pre-installed markers. The 

advantage of using a marker is that it does not need prior feature acquisition from any 

objects in the environment other than the marker itself (Huang et al., 2012). Vision 

markers, such as the ArUco, can be quickly analyzed using computer vision (Bacik et 

al., 2017; Sani & Karimian, 2017). ArUco is a minimal library for augmented reality 

applications based exclusively on OpenCV. A virtual environment or scene is developed 

using black and white markers with codes that rely on calling a single function. Figure 

2.2 show some marker examples with ArUco.  

  

 
(a) ArUco + Ogre virtual scene 

 
(b) Single marker detection 
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(c) Markerboard detection 

 
Figure 2.2: The ArUco marker examples 

 

Brzozowski et al. (2016) propose measuring the magnetic field as the primary source of 

information for indoor positioning and navigation. A magnetic field map of the 

specified environment should be previously determined with permanent magnets used to 

modify the local magnetic field that could work as a marker. The idea arises from 

nature, where birds can travel thousands of kilometers and find a way to their 

destination point using the earth’s magnetic field. The advantage of this navigation is 

that each location has a unique signature of its magnetic flux density. The different 

values could be caused by natural or humanmade activity. 

 

Nevertheless, the most important thing is that this anomaly can be detected and 

measured by a magnetometer. A wooden frame, as shown in Figure 2.3, is used for the 

experiment to mimic a drone with three magnetometers. The wooden frame dimension 

is established by considering a drone’s span and the corridor’s width where the testing is 

performed. 
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Figure 2.3: Wooden frame to mimic a drone with M1, M2, and M3 as the location of the 
magnetometers. 
 

 
Figure 2.4: Magnetic field measuring device mounted on a rack 
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Figure 2.4 depicts a platform that functions to measure a magnetic field at different 

heights as it is possible with drone usage. Measurements were made at three different 

heights over the entire length of the corridor to prepare the magnetic map of the 

corridor. After that, permanent neodymium magnets that are made out of N42 material 

is placed on the floor along the corridor. The presence of the magnets is observed to 

correspond with large anomalies in the previously registered magnetic field.  

 

In summary, prior preparation of the magnetic maps is required if one plans to use it for 

actual drone navigation. The preparation includes having two or more drones flying 

inside a building in a leader-follower formation. While the leader carries a range of 

sensors, such as the laser, sonar, and magnetometers, to build the magnetic maps, the 

follower can be furnished just with a magnetic field sensor. The main disadvantage of 

the magnetic field is that it is affected by the presence of electronic equipment, such as 

computers, printers, mobile phones, as well as a drone’s motor. Table 2.5 summarizes 

Kouris & Bouganis (2018) contribution to drone navigation planning using markers.  

Table 2.5: Drone navigation planning using markers 
Reference Aim of Work Result Gap 

Kouris & 
Bouganis, 2018 

CNN trained on 
image collected 
through a drone 
camera and 
annotated with 
distance measured 
with an ultrasonic 
sensor mounted on 
the drone 

Using two-stream 
regression 
architecture 
generally manages 
to make more 
insightful decisions 
in cases of high 
ambiguity utilizing 
the learned, richer 
in information, 
Spatio-temporal 
representation of 
visual input 

1. Not able to 
detect objects that 
are not used in 
training 
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2.3.5 Remarks 

The object-based approach, as per name implied, detects points of interest (features) in 

the image and group these points together to deduce an object, consequently predicting 

distance from the robot. Features can be detected by using classical methods such as 

SIFT, SURF, edge, and 3D points cloud (Agrawal et al., 2015; Lee et al., 2011; Aguilar 

et al., 2017; Kaff et al., 2017; Zheng et al., 2017; Park & Kim, 2013), as well as the 

latest approach using a deep convolution neural network (Kouris & Bouganis, 2018). 

Objects can also be detected using active sensors, such as ultrasound, infrared, LIDAR, 

or marker (Ramasamy et al., 2016; Nemati et al., 2015; Tarazona et al., 2014; Rambabu 

et al., 2015). Other researcher uses a unique marker to learn features and elicit object 

information (Brzozowski, 2016).  

 

2.4 Space-based approach for robot navigation 

The space of navigation helps to guide us as we walk, drive, fly about in the world.  

Elements of the space of navigation include places, which may be rooms, buildings, 

parks, rivers, or oceans, and countries or planets or stars, on yet larger scales. For a 

room, the space of navigation is defined by the walls of the room. One can only move 

about within the boundedness of the room. For an outdoor environment, the space of 

navigation is usually not immediately comparable due to a lack of boundedness. 

However, outdoor spaces are interrelated with other definitions, such as paths or routes 

and other spatial reference frames.  

 

For many years, psychologists and behavioral scientists put much effort into studying 

the behavior of humans and animals in their environment. Their findings show that 

insects, amphibians, reptiles, birds, and mammals, use the space of navigation 

differently from one another to imagine their environment. Building mental imagery of 
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one’s environment is called the cognitive mapping process. The cognitive map in an 

animal’s mind helps one to navigate from one place to another, find one’s way home, 

discover shortcuts, and avoid getting lost. This difference in the cognitive mapping 

pattern is influenced by the fact that each species has a different type of sensors, needs 

for survival, and techniques to move in their environment.  

 

2.4.1 The space of navigation 

Golledge (1999, p. 6) defines wayfinding as “the process of determining and following 

a path or route between an origin and destination.” Briefly, human wayfinding strategies 

can be broken down into four component problems:  

a) Landmark recognition 

b) Path/route decision 

c) Direction decision 

d) Creating an abstract layout of the environmental  

 

Landmark recognition, path/route decision, and direction decision are activities that 

complete human and animal wayfinding daily. Without making a constant evaluation of 

the external environment, humans and animals will not navigate efficiently. When a 

human or animal evaluate their external environment, they will acquire much 

information. For example, the shape of the environment they are in, so they may 

consider a strategy to traverse it. A cluttered environment will require them to avoid 

obstacles nearby. A vast space will most likely be traversed with speed and without 

much maneuvering trouble.  
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Another example is the acquisition of information on landmarks. Landmarks are like 

environmental indexes that mark spaces so a person or animal using it may know their 

current orientation and location in the environment. For this reason, landmark 

identification is considered the most fundamental component in wayfinding. However, 

identifying or extracting distinct objects or features from the environment as landmarks 

is not an easy task and remains the most significant challenge. Low-level landmarks are 

usually well-defined features or patterns abundant and repeating in a space described by 

edges, segments, regions, and intersection points extracted from images (Fuentes-

Pacheco et al., 2015). It is often rigid in size and shape, and well distributed in terms of 

position.  

 

Low-level landmark is also the reason which contributes to the rise of an object-based 

approach in navigation. Figure 2.5 shows the use of junctions as low-level landmarks in 

Tolman’s maze. At a higher level, landmarks can also be defined as a point of reference 

from a structural aspect. They differ from the low-level ones by their cognitive salient 

and prominent features (Duckham et al., 2010). These landmarks are also regularly 

observed and re-observed in external environments, such as a monument or a building 

(Basiri et al., 2014). Figure 2.6 showcases famous landmarks in several countries.  

 

Path planning includes choosing a route to the goal. A path is not a direction but can be 

considered as the step in reaching the target location from a start point. A series of 

places, or waypoints, that will lead to the target location can be referred to as path 

selection. There are many models in cognitive mapping that describe paths as sequences 

of visual landmarks (Gupta et al., 2017; Nazareth et al., 2018). The need for a series of 

reference points in developing path planning puts this activity after landmark extraction 

in human and animal wayfinding.  
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Figure 2.5: Junctions as low-level landmarks in Tolman’s maze (Ciancia, 1991) 
 

 
Figure 2.6: High-level landmarks examples. (a) The Kuala Lumpur Twin Tower, (b) the 
Statue of Liberty, and (c) the Taj Mahal  
 

Figure 2.7 shows the comparison between landmark knowledge and path/route 

knowledge. Landmark knowledge depicts only the scattered location of landmarks 

available for space, but the route knowledge describes how one can achieve the target 

location from the starting point using the landmark knowledge.  
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Figure 2.7: Landmark knowledge vs. route knowledge (Quesnot & Roche, 2015) 

 

Figure 2.8: Path planning with (a) all possible paths from S to B, (b) possible shorter 
paths from S to B, and (c) possible short path from S to B when an obstacle is 
introduced (Chrastil & Warren, 2014) 
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The third strategy in human and animal wayfinding is deciding the direction, intending 

to find the shortest path or best possible path according to the navigation problem. 

When the target location is within a human or animal’s line of sight, the reasonable 

direction to pick would be towards the target’s orientation. For cases where the target 

location is not within the line of sight, the direction selection problem becomes complex 

to handle. A lack of information regarding space causes complexity, as one would have 

to guess the sequent of turns to get to the target location. This uncertainty makes 

direction selection at the starting point of the journey rarely sufficient in guiding the 

entire path planning (Kaplan & Friston, 2018). Figure 2.9 shows how foraging ants find 

their way home. The ants would have an unstructured outbound trajectory until the food 

is found, then return with a straight orientation to home.  

 

 

Figure 2.9: Foraging ants selecting direct orientation to home (Srinivasan, 2015) 
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The acquisition of this external information, landmark knowledge, route knowledge, 

and direction selection is crucial in updating one’s mental imagery. The mental imagery, 

in a cognitive process, is, at most, an abstract overview representing one’s external 

environment. The image is abstract because human and animal cognition does not store 

everything they perceive from the external world (Newcombe, 2018; Lohr, 2019; Irwin 

& Irwin, 2020). A cognitive map is then a representation that can be erroneous to 

describe the external surrounding. Therefore, the cognitive map requires constant 

updating, so it becomes logical to the user for effective wayfinding. Apart from 

behavioral, psychological, and cognitive scientists, robotics researchers have also begun 

to investigate the processes behind cognitive mapping in humans and animals. Their 

idea behind the work is to aim at programming robots with a cognitive map.  

 

2.4.2 The absolute space representation 

A robot essentially cannot have a cognitive map because a robot is not a cognitive 

agent. Nevertheless, robots do have the capacity to execute stochastics and deterministic 

rules, which make them a great platform to test behavioral and cognitive theories about 

human and animal mental maps. For example, Schmidt et al. (2006) and Wong et al. 

(2007) explored how mobile robots equipped with sonar sensors can have their 

cognitive maps. They looked at fuzzy approaches to manage noise that is generated by 

the sonar sensors. The sonar sensors are limited to three meters of depth perception and 

allowed the robot to only move in a zig-zag way in a corridor, due to the sonar’s 

obstacle avoidance algorithm. They show how a primitive behaving mobile robot used a 

fuzzy cognitive map to learn about distances and directions in performing navigation.  
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Central to Schmidt et al. (2006) and Wong et al. (2007) works is the spatial conception 

called an absolute space representation (ASR). The ASR is simply a representation of 

each local space one visited; local space being a loose term used to describe the space 

one is currently in. However, in defining an ASR, Yeap & Jefferies (1999) discussed the 

local space as an enclosed boundary surrounding the human or animal. They also 

discussed the boundary having openings called exits so one can enter or leave a local 

space. To make explicit an ASR, one can derive from following the shape of the 

environment for the ASR boundary, often walls for an indoor environment, and use 

doors to note where the exits are.  

 

For Schmidt et al. (2006) and Wong et al. (2007), their fuzzy cognitive maps are a result 

of their sonar robot traversing from one fuzzy ASR to another. Fuzzy because the three 

meters depth-sensing sonar is noisy in determining the ASR enclosed boundary. 

Regardless, these works mark the first computation of the ASR spatial concept on real-

time robots traversing segmented circular office corridor. An exit is defined at every 

segment of the corridor. They show how rough distance estimation and direction 

selection plays a vital role in determining a robot’s wayfinding. Figure 2.10 and Figure 

2.11 show their sonar robot results.  
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Figure 2.10: Starting location is marked X, and the target location is O. Solid lines 
depict traveling from X to O and dotted lines from O to X (Wong et al., 2007) 
 

 

Figure 2.11: Each dots represent an ASR in the fuzzy cognitive map (Wong et al., 2007) 
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The success of implementing a network of ASRs is significant for a real-time mobile 

robot. For the first time, a robot is used to prove how humans and animals use distance 

and orientation information in their wayfinding. The robot calculated the distance 

between exits of each ASRs in the homeward journey and projected it onto the path 

planning created for the outward journey. The projected distance is then recalled when 

returning home. Merely recalling the distances between one ASR to another while 

backtracking home is not enough. The home finding is successful only when the robot 

maintains orientation to home throughout the attempt. Another significant achievement 

is showing how a machine uses a non-metrically precise map as a navigation reference.  

 

Despite the success of the sonar robot’s fuzzy cognitive map computation, several 

questions about the humans and animals’ internal mapping process are unanswered. 

Mainly, the world is relatively stable. Indeed, with a better sensor, a robot can develop a 

map that sustains a rough shape of the environment. The fuzzy sonar map did not do 

great in this perspective, missing the overall shape of the environment. The overall 

fuzzy cognitive map is too vague to offer a meaningful description of the environment. 

Nevertheless, for humans, we can describe a place to a point where it is reflectable by 

another person. 

 

It is also noteworthy that the sonar robot is limited in its movement, only moving in a 

zig-zag formation. Zig-zag movement is unlike humans and animals, which move 

through space with purpose, not leaving for luck and chance to achieve a target location. 

What is the algorithm for the humans and animals traversing through segments of 

space? How can a robot imitate it? Also, when is an opening a gap, and when is it an 

exit? The fuzzy cognitive maps do not offer clarity to this question  
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In 2015, Azizul & Yeap explored computing a network of ASRs with a more accurate 

depth-sensing robot, a laser type sensor. The laser can emit up to 30 meters beam at half 

degrees each for a 180 degrees field of view. The specification is ideal for scanning in 

an indoor environment. The limitation of a laser type sensor is that it is susceptible to 

transparent walls. Without a sonar type sensor on board to detect glasses, a slight 

modification to the environment is required, i.e., covering glass walls with the opaque 

lining. The laser type robot is fitting to compute ASRs in an indoor environment 

following the definition by Yeap & Jefferies (1999).  

 

First, the depth of the scanning laser is ideal for detecting and following the boundaries 

of the room. With 30 meters depth range, a scan can acquire the boundary information 

by converting laser points into 2D lines. These lines or surfaces make up the enclosure 

required by an ASR. Second, the half-degree resolution of the laser type sensor 

describes spaces of doorways and office furniture well. Some of the spaces are large and 

allows the robot to pass through easily. Some of the spaces are narrow and restrictive. 

These openings can be evaluated and classified into gaps and exits.  

 

Figure 2.12 shows the laser robot set up in extracting input from the environment. Given 

that laser beams are in the form of light and light penetrates through transparent 

materials, Azizul & Yeap (2015) reported that all-glass walls in the office are covered 

using cardboards throughout the implementation. Covering the glasses helps avoid 

mishap as the robot can mistaken glass wall areas as passable. They propose this is the 

only physical modification done to the environment. Everything else; the position of 

things, opening or closing of doors to the rooms, is left as it is.  
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Figure 2.12: Raw laser scanning at 1800 field of view and 0.50 resolution (Azizul, 2013) 

 
Figure 2.13: Robot at (0,0) looking out to boundaries computed of a room (Azizul, 
2013) 

 

Figure 2.14: G1 to G7 indicating gaps found in between the boundaries (Azizul, 2013) 
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Figure 2.13 is derived after raw laser points are processed to extract line. Algorithms 

like the split-and-merge algorithm, the line regression algorithm, the incremental 

algorithm, and the Hough transform can convert points to 2D lines, providing an 

accurate polygonal description of the environment. Figure 2.14 denotes gaps and the 

possible emergence of exits. Tiny openings such as those in red circles are ignored 

because they are a good indicator of areas cluttered with objects. Large openings, the 

largest in the example is G3, indicate potential wide spaces. When the boundaries and 

gaps are joined together, they make up a potential ASR for the robot.  

 

The work by Azizul & Yeap (2015) indicates that a well-defined local space can be 

computed using a more accurate depth sensor such as the laser. A local space from a 

laser robot perspective shows boundaries and gaps from the environment. However, 

local space is not an ASR until an exit is found and crossed by the robot. The example 

from Figure 2.14 does not depict the emergence of exit, which means the robot must 

search for it by traversing through the local space. How can the laser robot traverse a 

local space? How do humans and animals perform path selection? The limitation of 

Yeap & Jefferies (1999)’s ASR is that it does not include computing a robot’s 

waypoints to pass-through space.  
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2.4.3 The minimal bounded space (MBS) method 

From the waypoint strategy described by humans and animals, path planning is a crucial 

step when exploring the environment. However, if one has not developed a bird’s eye 

view of space and remembers it, how can one perform efficient path planning? What 

happens during updating? What information gets an update, and what does not? 

Cognitive and behavioral researchers have broken down wayfinding strategies and 

propose numerous spatial conception and organization processes in the human mind. 

One that is strongly represented in revealing the processes of cognitive mapping in 

humans and animals is the communication between the egocentric and the allocentric 

representations (Ruggiero et al., 2016; Starrett & Ekstrom, 2018; Colombo et al., 2017; 

Wang et al., 2020).  

 

The egocentric representation concerns the immediate space surrounding one’s body, 

where objects from the external world are associated with the ego or the body. Figure 

2.14 represents the egocentric representation of the laser robot. Features from the local 

space, the boundaries, and gaps, are organized as captured by the laser sensor from the 

robot’s position. When one traverses through space, one collects a series of egocentric 

views from the environment. Information such as landmarks, paths, and direction, are 

accumulated as one move. At some point, somehow, this spatial information is chunked, 

linked, disjointed, neglected, and reorganized into a single, global, allocentric 

representation.  
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Cognitive and behavioral researchers believed the transition of spatial information 

between the egocentric to the allocentric representation is the basis in cognitive 

mapping updating (Meilinger & Vosgerau, 2010; McCunn & Gifford, 2018; Zhang & 

Mou, 2017). Collectively they further highlighted features of the cognitive map: 

a) The cognitive map contains; one, a transitory egocentric system which can be 

disrupted with disorientation, and two, an enduring allocentric system which is 

less vulnerable to disorientation 

b) The interchange between the egocentric and the allocentric systems mainly 

functions to re-establish the remembered direction of an object; either to self or 

to other familiar objects in the environment 

c) Human is said to use the stable allocentric system to reorient for the 

environment’s shape 

d) Getting lost does not destroy the allocentric spatial representation 

e) The moment a human recovers his location and orientation to the allocentric 

spatial representation, he regains his spatial relations with familiar objects in the 

surroundings, and this information is sufficient to determine where he is at in 

that environment 

 

It is from these observations that Azizul (2013) proposed a minimal bounded space 

(MBS) method to extend Yeap & Jefferies (1999)’s ASR. ASRs on their own are 

explicit for robot navigation, as seen in Wong et al. (2007). A robot can explore the 

environment by traversing from one ASR to another through their shared exits, defining 

high-level path planning (see Figure 2.11). However, the algorithm for Wong’s sonar 

robot is robust only for a corridor-like environment, where there is no requirement to 

search for an exit. An exit is available by default at the end of each corridor segment.  
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For a complex environment such as the one in Figure 2.14, the laser robot requires a 

conscious selection of paths in traversing local spaces. Otherwise, the laser robot may 

end up like the ones in Figure 2.8(a). An explicit path and direction selection strategy is 

required, so the laser robot always searches for exit to complete an ASR.  

 

The goal at local spaces for an ASR is to find an exit and cross it, and the MBS aims to 

allow robots to perform precisely that. Central to the MBS method is evaluating 

occlusion information in the immediate surrounding. Each line computed by the laser 

robot has edges that are either an occluding point or an occluded point. An occluding 

point means the edge is absolute and within the robot’s line of sight. An occluded point 

means the edge could be partially hidden. The occlusion plays a vital role in evaluating 

gaps in the boundary. In Figure 2.14, all the gaps G1 to G7 are drawn from one 

occluding edge and one occluded edge. As a result, the gaps are not perpendicular to the 

robot at (0,0). So even if the robot turns towards the middle point of the gaps and drives 

to it, the occluding edge may block the robot.  

 

Drift is unavoidable in robot navigation. Drift causes wheels to steer out of the course 

and usually get worst over longer drives. Cutting robot drive shorter can reduce drift, 

but with gaps at the boundary, there is always distance to consider when driving to the 

gaps. The MBS solves this by reorganizing gap information in local spaces. The MBS 

redefines gaps for an ASR by drawing gap lines between two occluding edges. The 

algorithm to generate MBS gaps is described next (Azizul, 2013). Figure 2.15 shows the 

effect of the algorithm on an ASR local space.  
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#1 MBS gaps algorithm 

Count_newGap is 0 

DO 

 Count_m is 0 

(1) FOR all Gn and Gn+1, go to (2) 

(2) IF start_point of Gn  is an occluding point, AND 

   end_point of Gn+1 is an occluding point,  

   Increment m by 1, go to (3) 

 ELSE go to (11) 

(3) Create new_gap_line from start_point of Gn to end_point of Gn+1, AND 

   Mark the mid_point, go to (4) 

(4) Draw an imaginary_long_line (30m) from robot crossing the mid_point, go to 

(5) 

(5) IF imaginary_long_line intersects with the virtual boundary after crossing the 

   mid_point, go to (6) 

 ELSE go to (11) 

(6) IF new_gap_line is between 0.6 to 1.2 meters, go to (7) 

ELSE go to (8) 

(7) Save new_gap_line as an exit, go to (9) 

(8) Save new_gap_line as a gap, increment count_newGap by 1, go to (9) 

(9) Remove Gn and Gn+1, go to (10) 

(10) Increment n by 2, go to (12) 

(11) Increment n by 1, go to (12) 

(12) Repeat step, go to (1) 

Rename gap from left to right order 

Rename exit from left to right order 

WHILE Count_m is not 0 

IF count_newGap is larger than 0, remove remaining raw gaps 

Rename gap from left to right order 
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Figure 2.15: Deriving best MBS gaps for the robot to cross (Azizul, 2013) 

 

The algorithm first checks G1 and G2 in Figure 2.15(b) but rejects a new gap line 

because the start point of G1 is not an occluding point. G2 and G3 fail similarly. When 

G3 and G4 are analyzed, they pass the requirement, and a new gap line is drawn 

between their occluding edges. The same goes for G5 and G6. The first iteration is 

exited with G7 left as it is. The second and third iterations pass only G3 and G4, 

respectively (see Figure 2.15(c) and Figure 2.15(d)).  G1 and G2 in Figure 2.15(e) are 

removed, leaving one in Figure 2.15(f). Figure 2.16(a) is taken once the robot crosses 

G1 of Figure 2.15(f).  
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Figure 2.16: Another example of the MBS gaps (Azizul, 2013) 

 

The next scan begins with two exits (E1 and E2) in Figure 2.16(b). The MBS gaps 

algorithm only processes gaps; thus, the exits are left as it is. In the first iteration, the 

algorithm passes G1 and G2, then G4 and G5. In the second iteration, the algorithm 

passes G1 and G2, and leave G3 as it is (see Figure 2.16(c)). The next iteration passes 

G1 and G2 (see Figure 2.16(d)). Finally, G1 and the two exits are left. The robot is 

instructed to turn facing G1 at the middle intersection and cross it. The robot eventually 

crosses E1 after several laser scans.  

 

 

Univ
ers

iti 
Mala

ya



46 

 

 

 

Figure 2.17: The first three MBS gaps crossed by the laser robot (Azizul, 2013) 
 

Univ
ers

iti 
Mala

ya



47 

Azizul (2013) shows how a laser robot uses the MBS to redefine gaps while traversing 

local spaces. The MBS strategy does not focus on obstacle avoidance; instead, it utilizes 

an understanding of spatial information like gaps and occlusions to plan its path. The 

path planning executed by the robot is also similar to humans and animals. For example, 

humans and animals choose to cross spaces where it is least blocked. The safest path is 

usually the middle of the way, with walls and furniture at the sides. Humans and 

animals do not wander about without purpose. They look for openings in the 

environment to extend their journey, and they are unlikely to follow the wall or go by 

random path selection. The MBS method facilitates robots to move similarly. More 

significantly, the MBS allows robots to be fully autonomous and support spatial 

frameworks like the ASR.  A full report of the robot mapping process is available in 

Azizul & Yeap (2015).  

 

2.4.4 Implementing the MBS on a visual robot 

The practicality of the MBS method for real-time robot navigation prompted Azizul & 

Khanil (2017) to explore the approach on a visual robot. They found that the adoption of 

the MBS method from laser to vision is not straightforward. A new MBS algorithm is 

required, one that can redefine gaps in local spaces when depth information is not 

available. Without depth information, it is impossible to derive occlusion information, 

which has been fundamental in extracting the MBS gaps. Floor segmentation is 

proposed as the basis for the vision-based MBS. The robot used is called Rovio, a 

WIFI-enabled small robot equipped with a webcam, IR sensor, and three wheels moving 

forward, backward, sideways, and diagonal. The IR sensor is turned off for the MBS 

testing.  
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The Rovio can stream video, and the Python programming language and OpenCV 

library are useful for video processing. Generally, the MBS algorithm for the visual 

robot is designed to acquire a raw image from the environment, process the image, 

compute the MBS, and instruct the robot to cross the MBS gaps. Figure 2.18 shows the 

MBS method designed for Rovio navigation.  

 

 

 

Figure 2.18: The MBS algorithm for visual robot navigation 
 
 

Rovio’s camera is forward-facing and positioned about 10-12cm from the ground. At 

that height, the viewing angle of the robot captures mainly the floor and furniture’s 

bases and legs. The MBS bounds the immediate space in front of the robot by fixing a 

rectangle. When the pixel values filling up the rectangle matches the floor, the rectangle 

becomes the MBS for the robot. A point location on the MBS boundary may indicate 

the direction that is likely to take the robot to more openings. Figure 2.20 is the statistics 

results in Figure 2.19(13) when imposed on the original image. 
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Figure 2.19: The MBS steps visualized (Khanil, 2016) 
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Figure 2.20: Diamond indicating the best direction selection for the MBS. Robot to turn 
facing diamond and cross MBS boundary (Khanil, 2016) 
 

To test the MBS algorithm, Azizul & Khanil (2017) let their Rovio roaming in several 

environments; a room with flooring tiles of size 1x1 ft, a kitchen floor with flooring tiles 

of 2x2 ft size, living room with random tile textures, a 20x75 ft room with different 

colors flooring tiles, and a large hall with 1x1 ft tiles. These environments were left as it 

is, no changes done to the environment. The Rovio is programmed to stop if it hits an 

obstacle and getting stuck for more than five seconds. Figure 2.21 describes some of the 

robot actions.  
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Figure 2.21: The MBS for visual robot navigation (Azizul & Khanil, 2017) 
 

In Figure 2.21(a) and (b), the Rovio avoids obstacles by skewing left or right. The green 

dot projects the MBS gap, the point where the robot should stop depending on where 

the diamond is located. If the diamond is somewhere in the middle hemisphere of the 

image, then the green dot should be inside the MBS boundary. In cases where the 

diamond is located inside the MBS boundary, a dead-end could be found (see Figure 

2.21(c)). Rovio should turn around and move away from the space. If the diamond is 

somewhere in the top hemisphere of the image, it means the pixel covering the entire 

image is similar. The pixelation is usually caused when the robot is immediately facing 

a wall. The action is included so Rovio can react to dynamic obstacles (see Figure 2.21 

(d)).  
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Performance-wise, the MBS can fail if the robot encounters the following problems: 

a) Viewing angle. Rovio could hit an obstacle lower than 8cm from the ground if 

the object missed the robot viewing angle. See Figure 2.22 and Figure 2.23. 

b) Noise. Flooring texture influences the MBS algorithm. The MBS performs 

lesser when the flooring texture is too noisy, like the carpet in Figure  

c) Lagging issue is encountered when the frame rate dropped from 30fps to 5fps  

d) Communication. Poor WiFi connection can cause disruptions between the robot 

and the laptop performing the MBS algorithm.  

 

The problem in (c) and (d) can be avoided if the codes are directly hard-coded onto 

Rovio’s microcontroller. Furthermore, there are rooms for improving the vision-based 

MBS if the issues with image processing, such as the ones shown in Figure 2.25 and 

Figure 2.26 can be sorted.  

   

 
Figure 2.22: Rovio viewing angle missing the chair base resulting in action go straight Univ
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Figure 2.23: At a different scanning distance, the Rovio captures the chair base, and the 
MBS computes a dead-end  
  

 
Figure 2.24: The MBS fails to compute when the image is too noisy 

 

Figure 2.25: Prewitt detector missing weak edges causing the MBS to misinterpret 
obstacles 
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Figure 2.26: Reflection produces a false-positive image (left), and the robot sees 
through the glass wall (right)  
 

2.4.5 Remarks 

There are several critical problems for robot navigation; (1) finding where the robot 

currently is, (2) planning the path so a robot can move from one place to another, and 

(3) how to move the robot to follow the selected path. The probabilistic techniques such 

as the metrical, topological, and hybrid mapping can describe an image of the space for 

a robot. Path, trajectory, and motion planning can resolve path selection for a robot, 

while motion control is usually adopted to move a robot.  

 

Despite the current robotics solutions, some of them are unnatural to humans’ and 

animals’ wayfinding. For example, in trajectory planning, often the precise metrical 

distance and direction are required for a robot to get from one point to another. Unlike 

humans and animals, rough distance and direction are sufficient. More importantly, 

humans and animals detect safe space in between obstacles and make a conscious 

decision to update their waypoints as they traverse. Rarely humans and animals follow 

walls or react to obstacles as a means to traverse the space.  
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Many spatial representation models describe the space of navigation. One that is 

implementable for robots is the ASR. The ASR describes local spaces as having a sense 

of boundedness, with openings to allow entries and exits. An ASR can help a robot to 

traverse the space by planning a path from one opening to another. However, an ASR 

does not define how a robot should move to fulfill such a path. To understand the space 

of navigation is to understand also space around the body. If an ASR is a representation 

of local space, then the MBS provides the method for a body to navigate through it. 

Two works showcase the utility of the MBS method for robot navigation. One is an 

implementation on a depth perceiving laser robot, and the other, a vision robot without 

depth information.  

 

2.5 Sensing the world – an open challenge to robot navigation 

Developing a successful robot navigation system, be it the object-based or the space-

based approach, often depends on successful interpretation of the world surrounding the 

robot. Higher number of sensors mounted on a robot increases the chance for complete 

world model. Carrying an abundance of sensors is near impossible, when a robot is not 

able to carry load. When the load allowed is minimal, a robot designer has to choose a 

compact, lightweight and a non-resource hungry sensor. Often times, designers would 

choose a mono-camera over other sensors, for the richness of data captured.  

 

When only mono-camera is mounted, the robot will lack attributes contributed by other 

types of sensors such as depth sensing and the time-of-flight wave bouncing from solid 

objects. As a consequent, the world model of the robot consists only data contributed by 

processing brightness level and cannot include range and transparent objects, without 

any modifications.  
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2.5.1 Glass detection 

An active research in robot navigation includes glass detection. Glass detection is 

important for robot navigation because glass walls is a significant material of a building, 

indoor and outdoor. Several methods are proposed to overcome glass during navigation, 

and the repeating pattern is the presence of sensors such as the ultrasonic, depth camera, 

and lidar, and a technique such as the deep neural networks. 

 

Forouher et al. (2016) combines the ultrasonic and depth camera for occupancy grid 

map creation. They show that the combination is able to improve the detection of 

transparent objects compared with using depth cameras alone. Wei et al. (2018) 

combines an ultrasonic and a laser scanner for glass detection. Their method utilized 

two maps for navigation; one laser, glass-less, SLAM map, and the other is what they 

called a gmapping map produced by the ultrasonic sensor. Wei and his fellow 

researchers overlay the gmapping map onto the laser map for a complete world model. 

They claim that this method increases robot navigation efficiency by 11% in glass 

environments compared with classical methods which use one map. 

 

Wanga et al. (2015) perform laser beam intensity tests to detect glass in their robot’s 

environment. They argued that the speed of light traveling through different mediums 

produce different intensity. They determine the intensity of light going through different 

glass surfaces and their results show good performance using a laser scanner, without 

further modification to the robot nor its algorithm.  

 

 

 

Univ
ers

iti 
Mala

ya



57 

A laser beam reflection intensity and threshold method is used in Kim et al. (2016) to 

determine where glass walls are by considering all candidate distances that can be 

measured in the direction of the glass wall. This is a novel method for improving the 

performance of laser range finder-based localization schemes in glass-wall 

environments. However, glass detection based on laser intensities measurement suffers 

a lot of drawbacks. For example, different types of glasses or thickness of glasses will 

affect the reflection intensities. When mapping is considered, the uncertain penetration 

lowers the probability of glass walls occupying a grid compared to opaque walls. 

Therefore, manual modification of the grid map is required. 

 

Moving away from range finders, Mei et al. (2020) proposed to detect glass from a 

single RGB image using the neural-network methods. The proposed method 

successfully eliminated non-glass regions which share similar appearance with the glass 

regions and detected only the real glass regions. However, as with all the neural-

network methods, this method fails in cases where the scene is very complex or has 

insufficient contexts which describe the inside and outside of the glass. Furthermore, 

new training data is required when moving into new environments. 
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2.6 Chapter Summary 

Obstacle avoidance is essential for mobile robots to navigate autonomously and safely, 

particularly in dynamic environments. However, most robot solutions require depth 

information. Depth perceiving robots are either hardware expensive, the robot equipped 

with powerful rangefinders or stereo vision cameras, or algorithm expensive, the robot 

requiring complex probabilistic to elicit spatial features. When depth information 

becomes unavailable, a norm with low-cost and small robots, the robots are usually 

required to perform wall/line following or object tracking. These methods of navigation 

do not describe how humans and animals perform wayfinding.  

 

The minimal bounded space (MBS) is a cognitive method inspired by how humans and 

animals move through spaces. The MBS marks safe spaces immediately to the robot, 

not by reacting to objects or obstacles, but by evaluating spatial openings in the 

surrounding. The MBS method has been tested on two different types of robots. While 

the principles are the same, the differing perceptual sensing made it difficult for a 

straightforward adoption between the two. Similar to cognitive species having distinct 

wayfinding mechanisms due to evolutions, robotics species, with their sensors and 

different abilities, can have different MBS algorithms. The robots tested with the MBS 

method performed autonomously, moving from space to space, in an indoor 

environment.  

 

This chapter reviews the literature relevant to the work. The following chapter presents 

the methodology.  
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CHAPTER 3: METHODOLOGY 

3.1 Overview 

This chapter describes the MBS method for space computation in indoor and outdoor 

environments for a mono-visual drone. The chapter begins by introducing the drone and 

its sensor. The discussion continues with a description of a new MBS algorithm for a 

visual drone. Complementing the chapter is a description of a new computer vision 

framework to segment spaces for the MBS method.  

 

3.2 The drone and its sensors 

The drone used in this work is called the Parrot Bebop Drone 1.0 from Parrot SA.  It is a 

light-weight drone with an average weight of 420g. The drone has been enabled to 

create its hotspot, which allows for a dedicated radio controller and a smart device’s 

application to control it. The manufacturing company provides the API to send 

command and receive information from the drone used in this dissertation. In terms of 

power consumption, the drone battery lasts about 11 minutes of flights per taking off. 

Table 3.1 shows the specifications of the drone. 

 

The drone is equipped with a front-facing, fish-eye lens 1800 camera with 14 

megapixels, digital video stabilization, 1920 x 1080 resolution, and 30Hz or 30 fps for 

onboard recording. Due to limitations in Parrot’s ARDroneSDK3, the quality of the 

video stream is limited to 640 x 360 resolutions at 30Hz or 30 fps, with the field of view 

of the virtual camera is around 80 degrees on horizontal and 50 degrees on vertical. 

Figure 3.1 shows the general setup for the drone in this work.  
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Table 3.1: The Parrot Bebob 1.0 specifications 
Dimensions: 330 mm x 380 mm x 36 mm 
Weights: 420 g 
Maximum speed: 13 m/s 
Operating range: 250 m 
Operating duration: 11 minutes 
Processor: P7 dual-core CPU Cortex 9 with quad-core GPU 
Internal Storage: 8GB 
Sensors: Three-axis accelerometer 

Three-axis gyroscope 
Three-axis magnetometer 
Optical-flow sensor: vertical stabilization camera (data not 
available for use) 
Ultrasound sensor for ground altitude measurement 
Pressure sensor for ground altitude measurement  
Fish-eye lens 180o camera, 14 mega pixels, digital video 
stabilization, 1920 x 1080p, 30fps (not for transfer) 

 

 
Figure 3.1: General drone set up in this work 

 

A Robot Operating System (ROS) package called the bebop_autonomy is used to 

communicate with the drone via ROS. The bebop_autonomy serves as a wrapper around 

official Parrot’s Software development kit (SDK), which is called the Parrot’s 

ARDroneSDK3, to ease code development. 

 

For this research, the camera is not calibrated, and it is tilted approximately 20 degrees 

below its eye level. Figure 3.1 shows the general set up of the drone sending a command 

to the camera control. The 20 degrees tilt is to maximize the view of the floor while 

maintaining the view at eye level. The drone’s eye level in this research is defined as a 
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horizontal virtual line, which extends away from the drone camera’s z-axis, denoted by 

the broken blue line in Figure 3.1. It is crucial to note that the eye-level serves as a 

guide for the drone operator to estimate obstacle height. The drone’s eye-level is an 

excellent indicator to determine when the drone should fly over an obstacle or turn and 

escape a blocked space. 

 

Active monitoring of the default pitch angle during flight allows for continuous tracking 

of the drone’s aerial position to support navigation. Unlike a wheeled robot, the drone 

cannot rely on an odometer to measure distance traversed. Instead, the distance covered 

by the drone is speed-dependent, for example, reaching, on average, five to ten meters 

per second. The lesson from computing and crossing the MBS gaps in previous works 

(see Azizul & Yeap, 2015; Azizul & Khanil, 2017) include the need for short-distance 

intervals. An experiment is done to decide short-distance intervals that suit a drone, 

testing with one second, two seconds, three seconds, and four seconds of flight time. 

Two durations have been selected, the two and four seconds. They allow the drone to 

fly forward for about 1 meter and 3 meters, respectively.  

 

The distances are an approximation and not to scale, because sometimes the drone does 

not stop immediately after the command is lifted. Programming a reverse pitch is 

proposed for a navigation system that requires a drone to stop on point. However, the 

reverse pitch is considered an aggressive motion and not crucial to the MBS method 

hence not part of the scope of this work. Finally, the drone is assuming taking off from a 

safe location for the MBS implementation. 
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3.3 Autonomous navigation for a mono-visual drone 

Autonomous navigation concerns the robot’s movement and decision making to 

maintain safe travel and escape from one space to another. The popular method is the 

object-based approach, where researchers perform obstacle avoidance by tracking 

features and markers from the environment. A less popular approach is the space-based 

method that focuses on finding openings in the space for path planning. One such 

method is called the minimal bounded space (MBS). Central to the MBS computation is 

space segmentation. For the laser robot of Azizul & Yeap (2015), occlusion information 

derived from depth perception defines their MBS gaps. For the mono-visual Rovio of 

Azizul & Khanil (2017), the lack of depth information led to floor segmentation, which 

influences their MBS gaps.  

 

The interest of this work is to test the notion of MBS gaps on a mono-visual drone. One 

would suggest that the implementation should be straightforward with the success of the 

Rovio. While the overall pipeline should look similar, a distinguishing factor is the 

Rovio’s floor segmentation is done with a camera about 12-15cm above the ground. The 

drone, on the other hand, hovers at about five feet high above the ground. Another 

defining factor is the Rovio, while grounded, is very stable for shot making. The drone, 

however, is prone to shake and can fluctuate some while hovering.  

 

The five feet height selection has justifications. One, the height is sensible for an indoor 

exploration. Two, increasing the height means decreasing light variations. Low light 

variations can make the floor appear monotone relative to the surrounding in the video 

stream. Therefore, flying low can conserve the richness of information of the real 

environment, which is crucial for the floor segmentation to work.  
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3.4 Data acquisition 

The first action when the drone begins to hover is to grab an image from the live stream. 

Figure 3.2(left) shows a sample image grabbed from a live scene. Figure 3.2(right) 

shows how the actual drone looks like from a human’s point of view (POV). The 

camera angle is tilted 20 degrees below the drone’s eye level to snap the image. The 

next time the drone grabs another image is after it has crossed an MBS gap. The drone 

will fly following the two seconds or four seconds forward move, before pausing to 

evaluate the space with the MBS method. The drone will have five seconds waiting time 

upon pausing to stabilize.  

 

 
Figure 3.2: The drone’s POV (left) and the human’s POV (right) 

 
 
3.5 A new segmentation process for the MBS method 

The image is then passed through three segmentation filters, centered at the image 

center.  The difference between all three is the shape of the filter box, a rectangle, a 

triangle, and an inverse triangle. At the base of each filter box, the width is about twice 

the size of the drone. The idea behind the filter boxes is derived from observing the type 

of spaces in front of the drone. Space can be a corridor-like opening, stable in size and 

shape, similar to the rectangular filter box. Space can get wider the further the 

environment goes; thus, the inverse triangle filter box is proposed. Also, space can get 

narrower with a broader opening near the drone’s base, and the triangle is used to define 

a filter box.  
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Figure 3.3: Three filter boxes, rectangle, triangle, and the inverse triangle 

 

Each filter box is divided further into several layering zones. The height of each layer is 

about 50 pixels, and they imitate the depth of the physical space since the mono-vision 

gives none. The idea is to correlate the depth of space observed in an image to the depth 

space in the real world. For the drone’s flying height and tilt of the camera, it is 

estimated the 50 pixels represent about 5 meters in the real environment. These filter 

boxes propose calculation of the pixel difference for each layering zones before getting 

the mean of the distance. The shape of the segmentation filters (bottom width x height x 

top width) are 160 x 360 x 160, 160 x 360 x 330 and 160 x 320 x 10 for rectangle, 

inverse triangle and triangle, respectively. 

 

3.5.1 MBS boundaries for the drone  

The pixel difference between the layering zones for the rectangle filter box is calculated 

based on the absolute error for each of the red, green, and blue (RGB) channels. For the 

triangle and inverse triangle filter boxes, an additional extra resize process is applied to 

the smaller layers to compensate for the difference in layering size. Equation (1) shows 

the formula to calculate the pixel difference.  

 

Figure 3.4 shows the results of the pixel distance calculation separated by each of the 

RGB channels. Interestingly, the different color channels propose different curve 

patterns for each filter box, due to the richness of information captured by an image. 
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𝑑𝑐,𝑖 =  ∑ ∑ 𝑎𝑏𝑠(𝑃𝑥,𝑦
𝑖 − 𝑃𝑥,𝑦

𝑖+1)

𝑌

𝑦=0

𝑋

𝑥=0

 
 
…………..…………………………………(1) 

 
 
Where 𝑑 = distance, pixel 
 𝑐 = color channel, i.e. blue, red, green 
 𝑃 = pixel value at x,y with value [0,255] 
 𝑖 = segmentation box 
 𝑖 + 1 = segmentation box above the current segmentation box 
 𝑥 = coordinate x of segmentation box 
 𝑦 = coordinate y of segmentation box 
 

 
Figure 3.4: The RGB pixel distance difference for each filter box 
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3.5.2 Computing obstacles in the MBS boundary 

Next is calculating the mean of the pixel distances for each of the filter box. The 

visualization of the mean for the RGB channels is shown in Figure 3.5. The horizontal 

axis denotes the pixel value distances, and the vertical axis denotes the layering zones 

separated at 50 pixels each. The furthest layering zone (see value 0 on the vertical axis) 

denotes the furthest space from the drone in the real world. The tracking of the RGB 

pixel value begins from the base (at marker 350 on the vertical axis) since the pixel 

value represents the floor in the real world. For the rectangle filter box, the pixel 

distance values on the horizontal axis range between 20,000 and 40,000 and goes up the 

vertical axis from 350 to marker 100. The assumption here is that, if the pixel value at 

marker 350 represents the floor, then tracking the value means tracking the floor. For 

the rectangular filter box, the pixel value of the floor significantly changes at marker 

100, indicating the floor ending near marker 100 in the image and about 25 meters in 

the real world.  

 

A similar trend is projected for the triangle filter box. The value at marker 350 is 

considerably stable until around marker 150, indicating the floor can reach about 20 

meters from the drone in the real world. Figure 3.3 shows the rectangle and triangle 

filter boxes have only floor inside their respective segments. In contrast, the inverse 

triangle filter box captured not just the floor but also other objects like chairs and tables 

between marker 150 and marker 0 (on the vertical axis). The floor is also a bit reflective 

in some areas, introducing light variations to the inverse triangle filter box. As a result, 

the pixel value across the horizontal axis is less stable.  
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Figure 3.5 also includes a mean for the pixel value on the horizontal axis (see the 

vertical broken line in yellow). This mean line separates the floor data into two groups, 

the certain floor group on the left side of the mean line and the uncertain floor group on 

the right. The confidence is high when there is only one intersection along the mean 

line. The rectangle and triangle filter boxes observe the confidence floor for about 25 

meters and 20 meters, respectively, while the inverse triangle group is not conclusive 

about the floor confidence (more than one intersection observed for the mean line). 

Figure 3.6 shows one intersection line for the rectangle filter box. 

 

 

Figure 3.5: Visualizing the mean line for each filter box; the highest mean is the 
triangle, and the lowest mean is the inverse triangle in the example  
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Figure 3.6: Single intersection on the mean line observed for the rectangle filter box 

 

The MBS method suggests a local space to contain the boundary and openings of the 

environment. Segmenting the floor using the filter boxes allows the drone to have an 

impression of the space the drone is in. The next step is to decide which filter box is the 

better option to compute the obstacle inside the MBS boundary. The filter box with the 

high confidence of the floor is the rectangle and triangle. Examining the mean of the 

two filter boxes shows the rectangle mean is 56,402 while the triangle mean is 109,426. 

A lower mean indicates a lower variation (more stable) on the pixel distances on the 

horizontal axis. Therefore, the rectangular filter box is the better candidate over the 

triangle for the MBS boundary. The intersection on the mean line can specify the 

location of possible obstacles for the MBS boundary.  

 

The intersecting line or obstacle line decides how much space the drone has to explore 

in the current MBS before a potential collision with obstacles. Figure 3.6 shows that the 

obstacle line of the MBS is located about 25 meters in front of the drone. However, a 

drone, like other navigating robots, is susceptible to drift. The drift can cause robots to 

steer away from the path planning, especially if the target location is far-reaching. The 

MBS method proposes crossing gaps before the MBS boundary to minimize drift errors 

while sticking to the path planning.  
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3.5.3 Avoiding obstacles and path planning 

The real world is complex, and there are segmentation results that extract more than one 

intersection on the mean line, such as the inverse triangle filter box in Figure 3.5. 

Multiple intersection lines can mean two possibilities; one, the environment has tall 

obstacles, a potential for collision for the drone, or two, there are slight variations on the 

pixilation due to changes in brightness. When tall obstacles are observed, there should 

be different jumps in the pixel value. When lighting is the issue, the difference in pixel 

value should be small. Two noise removing algorithms is proposed to determine 

whether the MBS contains tall obstacles to avoid or the issue is slight illumination 

variations. Ideally, the intersections can be reduced to three or less for lighting issues. 

The first algorithm checks if the intersections can be reduced by shifting the mean line 

to the left.  

 

 
Figure 3.7: Shifting the mean line to the left to reduce the number of intersections on the 
mean line 
 

Figure 3.7 is a hypothetical example of the segmentation having an illumination issue. 

Note how the changes in pixel value are minimal. A slight shift of the mean line to the 

left reduces the number of the intersection to one. Left is selected because that side of 

the mean line denotes the confidence floor. Note that before the line is left-shifted in 

Figure 3.7(a), the lowest intersection is higher than after (see Figure 3.7(b)). Algorithm 

1 shows how shifting the mean line is done.  

Univ
ers

iti 
Mala

ya



70 

 

 
Algorithm two reduces the number of intersections by combining the intersection line as 

one. If the height separating one intersection line and the next is lesser than 20 pixels, it 

means the difference in pixel value is significantly less. When a combination is 

required, the higher intersecting line is deleted while, the lower intersecting line is 

retained. Figure 3.8 describes the condition. Algorithm 2 shows how the combination is 

processed.  

 

 
Figure 3.8: Less than 20 pixels distance separating the two top intersections in (a). They 
are combined in (b).  Univ
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Algorithm 1 and 2 are two noise removing algorithms proposed to handle segmentation 

data. The algorithms consider shifting the mean line to the left, then check if the 

intersections can be combined if they are separated by less than 20 pixels. The 

procedures leave the segmentations with one, two, or three intersecting lines. Figure 3.9 

shows three final intersecting lines for the MBS.  

 

 

Figure 3.9: An MBS with three intersection lines 
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The remaining three intersecting lines are strong candidates for the location of obstacles 

and should be considered in obstacle avoidance. For this reason, two MBS boundaries 

are fixed in this work, one at marker 100 on the vertical axis, another at marker 220 on 

the vertical axis. The possibility to deal with tall obstacles requires consideration of 

whether the drone can fly over them or not. Fixing two MBS boundaries solves this 

problem. If the tall obstacles are dangerous to the drone, selecting the lower MBS 

boundary (marker 220) can get the drone fly towards the obstacles and stop before 

hitting them. If the height of the obstacles is manageable, the drone should fly over it, 

which makes the upper MBS boundary (marker 100) a better option for path planning.  

 

Figure 3.10 shows the environment in Figure 3.2 side by side with the segmentation 

outcome. With one obstacle line, only one MBS boundary is required. Note the upper 

MBS boundary at marker 100 on the vertical axis (denoted in the display in green). The 

drone’s eye level is fixed at marker 50 and denoted in blue in Figure 3.10. In Figure 

3.11 and Figure 3.12, more than one intersecting or obstacle line computed, thus 

requiring both the upper and lower MBS boundaries. The intersection or obstacle line 

positions relative to the drone’s eye level, and the MBS boundaries define if the drone 

should fly over an obstacle, fly forward, or turn 45 degrees counterclockwise when 

facing a dead end. 

 

 
Figure 3.10: Segmentation result showing one intersecting line and one MBS boundary 
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Figure 3.11: Segmentation result showing three intersecting or obstacle lines, and the 
upper and lower MBS boundaries 
 

 
Figure 3.12: Segmentation result showing three obstacle lines, and the upper and lower 
MBS boundaries 
 
 
3.5.4 Crossing the MBS boundary 

For a single intersection, if the intersecting or obstacle line is above the MBS boundary, 

it means there is no obstacle within the MBS boundary. Thus, the MBS boundary 

becomes the drone’s target location. Figure 3.10 shows the upper MBS boundary is 

about 25 meters away from the drone. The drone can fly in the direction of the upper 

MBS boundary with confidence. However, in terms of flying distance, the drone has 

two options, fly for two-second or four-second to minimize drift error. The four-second 

option is suitable since the upper MBS boundary is selected.  

 

When there is more than one intersecting line calculated, the upper and lower MBS 

boundaries are considered. In Figure 3.11, the top intersecting line exceeds the drone’s 

eye level, indicating tall boundaries dangerous to fly over. The top obstacle line is then 

ignored in path planning. The bottom obstacle line satisfies the requirement with the 
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lower MBS boundary, and the shorter distance suggests the two-second flying time is 

sufficient. When the top obstacle line is lower than the eye level, the upper MBS 

boundary is selected. The four-second flight time is selected for longer distance 

matching the upper MBS boundary (see Figure 3.12). When the bottom obstacle line is 

lower than the lower MBS boundary, that indicates that the drone is facing a dead end, 

and a turnaround is required to escape. Algorithm 3 shows the decision-making process. 
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3.6 System design 

For completion, the overall navigation process is summarized in Figure 3.13, while 

Figure 3.14 visualizes the decision-making process in a flow chart. 

 

 

Figure 3.13: The overall navigation process. Number 1 and 2 are the input and output, 
respectively.  The process “decide what action to take” is expanded into Figure 3.14. 

 

 

Figure 3.14: Flowchart of the decision-making process. Number 1 and 2 are the input 
and output, respectively, corresponding to Number 1 and 2 in Figure 3.13. 
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3.7 Chapter summary 

In this chapter, the overall system design and research methodology for drone 

navigation using the MBS approach is presented. The chapter begins by introducing a 

new segmentation process for the MBS and methods to evaluate space. Then, the 

chapter continues with determining boundedness for the MBS, describing the 

justification for an upper and lower MBS boundary. The decision-making process 

completes the chapter, where path planning and gap crossing is examined. In the next 

chapter, the results from field testing with the drone are presented and discussed.  
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Overview 

This chapter presents six experiments on drone navigation using the MBS method 

developed in Chapter 3. The goal is to demonstrate that the algorithm is robust, at least 

for drone navigation in an indoor, outdoor, and a semi-outdoor environment. In each 

experiment, the drone segments space and perform obstacle detection without relying on 

depth information. Other than demonstrating how the drone builds the MBS 

representation, the discussion also includes how the drone crosses MBS gaps and 

perform path planning.  

 

For testing, middleware has been created where all commands from the central 

controller are redirected to the middleware. The middleware acts as a buffer, so a 

command can be reviewed first before executing it on the drone. Reviewing the 

command can avoid mishaps if the command is faulty or sending the drone to a possible 

crash. On top of the middleware, a fail-safe software sends a stop and land command in 

an emergency landing.  

 

Throughout this chapter, a diagrammatic approach is adopted to present the results to 

the reader. In the diagram, the matrix imaging of computers denotes the pixel (0,0) at 

the top left. However, the drone’s position is around (350, 350). Thus, the smaller the 

pixel value, the further away in-depth it gets from the robot. For example, the marker 

100 on the vertical axis has more depth to the drone than marker 220.  
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4.2 Experiment 1 – navigating in an indoor environment 

In this experiment, the drone segment spaces in an indoor foyer of a faculty. The foyer 

is an open space with a considerably high ceiling. There is furniture in the foyer, such as 

tables and chairs for students to use in between classes. The lighting condition at the 

foyer includes natural sunlight and artificial light. A series of 23 images show how the 

drone navigates autonomously by crossing 23 MBS gaps consecutively across the foyer 

until it detected obstacles and decide to stop. The total distance covered is about 25 to 

30 meters.  

 

Figure 4.1 shows the lower MBS boundary at 220. The upper MBS boundary is at 100, 

and the drone’s eye level at 50. First, the lower MBS boundary is checked against the 

lowest obstacle line. Obstacles at 143, 149, and 148 pass the lower MBS boundary (they 

are not between the drone and the lower MBS boundary). Next, the upper MBS 

boundary is checked. There is only one obstacle line for each image, so the obstacles at 

143, 149, and 148 are tested again. The obstacles fail the upper MBS boundary at 100 

because they obstruct the drone’s line of sight to the upper MBS boundary. 
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Figure 4.1: The obstacle lines at 143, 149, and 148 fails the upper MBS boundary so the 
move forward by crossing the lower MBS boundary (two-seconds flight time).  
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Figure 4.2: Single obstacle lines at 140, 179, 168, 157, and 162 all passes only the lower 
MBS boundary. The drone moves forward by crossing only the lower MBS boundary.  
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Figure 4.3: Single obstacle lines ranging from 137 to 178 passes only the lower MBS 
boundary suggesting forward movement to the drone.  
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Figure 4.4: Obstacle lines are more than one in some steps. None of them passes the 
upper MBS boundary (value must range between 50 and 100). The drone moves 
forward, crossing the lower MBS boundary 
 

 

Figure 4.5: No obstacle lines have a value between 50-100, indicating the drone cannot 
decide to cross the upper MBS boundary for safety reasons.  
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Figure 4.6: The drift has steered the drone a little as it goes forward. Only one of the 
obstacle line has a value between 50 and 100. However, the other obstacle line in the 
image has a value of 194. It would be dangerous to attempt the upper MBS boundary.  

 

Figure 4.7: In the top image, there is an obstacle line with a value between 50 and 100. 
However, its pair does not pass the upper MBS boundary. The drone can only choose 
the lower MBS boundary to cross. In the bottom image, both obstacle lines fail even the 
lower MBS boundary indicating tight space for the drone. The drone plans an escape by 
turning. 
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4.3 Experiment 2 – avoiding obstacles in an outdoor environment 

The goal of this experiment is to place tall obstacles in the drone’s space and test if the 

drone can avoid them following the MBS method. The outdoor environment is an open 

parking place, with tar roads as the floor. The lighting condition is entirely natural 

sunlight, and the wind speed is minimal during testing. A series of 13 images are 

captured, denoting the 13 steps or MBS gaps crossed by the drone. Figure 4.6 shows the 

first image.  

 

 

 
 
Figure 4.8: The first two images show the obstacle lines detected at 154 and 174, 
passing the lower MBS boundary but not the upper one. The bottom image is showing 
three obstacle lines at 45, 68, and 191. Obstacles 191 and 68 do not pass the upper MBS 
boundary, so the drone can only move forward by crossing the lower MBS boundary.  
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Figure 4.9: The top two images showing obstacle lines passing only the lower MBS 
boundary. In the bottom image, one obstacle line is obstructing the drone from getting 
to the lower MBS boundary indicating tight spaces. The drone escapes by turning away.  
 
 

 

Figure 4.10: The drone successfully turns 45 degrees counter clock-wise and segments a 
different space. Some texture difference on the ground creates a change in the pixel 
values and adds another obstacle line. The three obstacle lines at 82, 107, and 154 only 
satisfy the lower MBS boundary.  
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Figure 4.11: The top image has obstacle lines passing only the lower MBS boundary. 
The middle image has a single obstacle line at 81, passing the 50-100 value. Here, the 
drone can move forward by crossing the upper MBS boundary. The bottom image has a 
bottom obstacle line at 249, which fails the lower MBS boundary. However, this can be 
ignored because the top and middle obstacle lines are between the lower MBS boundary 
and the eye-level indicating a flyover is recommended.  
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Figure 4.12: Obstacle lines at 173 and 193 pass only the lower MBS boundary. In the 
last image, the bottom obstacle line at 258 fails the lower MBS boundary, but that is 
negligible because obstacle lines 129 and 189 are between the upper and the lower MBS 
boundaries. The drone can fly over safely.  
 

 

4.4 Experiment 3 – handling obstacle dynamics in an outdoor environment 

Another outdoor experiment is conducted, and this time, two sets of obstacles are 

introduced. The first set is placed nearer to the drone’s line of sight while the second set 

is placed behind the first one. There is a height difference between the two. The first set 

is ground obstacles that the drone should be able to fly over. The second set is high and 

can obstruct the drone. The test is designed to observe the robustness of the MBS 

method dealing with an abrupt change in obstacle information.  
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Figure 4.13: Two sets of obstacles in the drone’s space.  Obstacle lines ranging from 85 
to 219 have no problem allowing the drone to cross the lower MBS boundary.  
 

 
 
Figure 4.14: Bottom obstacle line 253, failing the lower MBS boundary. However, this 
can be ignored because the obstacle line 75 and 153 are in between the lower MBS 
boundary and drone’s eye-level suggesting a fly over.  
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Figure 4.15: Obstacle line 83 passes the upper MBS boundary. However, the bottom 
obstacle, line 231, fails the lower MBS boundary. Without a middle obstacle line, it is 
not possible to check for a fly over. Thus, the drone has to skip the space by turning 
away.  

 

 
 
Figure 4.16: After the turn, the space segments single obstacle lines at 116, 118, 121, 
and 122, all passing only the lower MBS boundary.  
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Figure 4.17: The obstacle lines passing the lower MBS boundary for the drone to move 
forward.  
 

In Figure 4.13, a fault has occurred to the drone navigation system. The decision 

making at each step is correct, i.e., forward movement crossing the lower MBS 

boundary. However, the drone did not move. It hangs in the air and keeps rescanning 

the environment at five seconds interval. Failure to move is not detected sooner because 

the system design is not equipped with any localization technique. So, there is no way 

for the central controller to know if the drone has physically moved.  

 
 
4.5 Experiment 4 – avoiding ground obstacles in the outdoor environment 

The goal of this experiment is to test the effectiveness of the drone to fly over two 

consecutive short obstacles. The drone has to move as close as possible to the first 

obstacle, perform a fly over, then move as close as possible to the second obstacle 

before executing another fly over.   
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Figure 4.18: Obstacle lines for the first two images allowing the drone to cross only the 
lower MBS boundary. In the third image, for the first time, all three obstacle lines 93, 
127, and 194 are between the lower MBS boundary and the eye-level. However, the 
bottom obstacle line has to fail the lower MBS boundary for fly over decision. The last 
image showing the obstacle lines passing the lower MBS boundary.  
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Figure 4.19: A fly over decision for the drone. The top and middle obstacle lines (101 
and 137) between the eye-level and the lower MBS boundary, and, the bottom obstacle 
line at 231 failing the lower MBS boundary.  
 

 
Figure 4.20: Interesting combination of obstacle lines observed. With a range from 51 to 
201, the obstacle lines pass the upper MBS boundary. The drone moves with confidence 
crossing several upper MBS boundaries consecutively at four-seconds flight time each 

Univ
ers

iti 
Mala

ya



93 

 
 
Figure 4.21: The top image sees the drone crossing the upper MBS boundary with 
obstacle lines 103 and 211. The middle image has an obstacle line 238 failing the lower 
MBS boundary but with obstacle lines 53 and 113 between the eye-level and lower 
MBS boundary to decide a fly over. The bottom image has an obstacle line 127, passing 
the lower MBS boundary.  
 

4.6 Experiment 5 – obstacles in semi-outdoor environment 

The goal of this experiment is to test autonomous mono-visual drone navigation in a 

semi-outdoor environment. Semi-outdoor environments post a different challenge to 

floor segmentation because of uneven lighting and shade. Traditional floor 

segmentation algorithms always fail in such an environment. The environment selected 

is an outdoor office pavement, an open space receiving natural sunlight, and shaded 

under the rooftop. The cemented flooring can be reflective when it is bright.  
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Figure 4.22: The first five steps showing obstacle lines passing only the lower MBS 
boundary. The drone moves forward several meters and stops before the first set of 
obstacles.  
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Figure 4.23: Top image has obstacle line 250 failing the lower MBS boundary, but lines 
96 and 157 are between the drone’s eye-level and the lower MBS boundary. The drone 
flies over the first set of obstacles. The bottom image is the drone observing a single 
obstacle line at 181, passing the lower MBS boundary.  
 

 

 

 
 
Figure 4.24: The top image has an obstacle line failing the lower MBS boundary. The 
drone can fly over the second set of obstacles because the other obstacles, lines 64 and 
129, are between the eye-level and the lower MBS boundary. The bottom image shows 
the drone crossing another lower MBS boundary.  
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Figure 4.25: The drone moving forward several steps. Some obstacle lines are observed, 
and they pass the lower MBS boundary.  
 
 

 
Figure 4.26: Obstacle line 103 passing the upper MBS boundary, but the obstacle line 
226 failing the lower MBS boundary forcing the drone to escape the space by turning 
away.  
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4.7 Experiment 6 – testing with various types of surfaces 

The new segmentation process for the MBS is tested to segment various floors and 

walls in an indoor environment. The aim here is to observe the performance of the 

segmentation method on various surfaces and conditions.  

 

 
 
Figure 4.27: In front of a wall with a blue poster, the obstacle line 133 fails the upper 
MBS boundary, while 243 fails the lower MBS boundary, indicating tight spaces. The 
drone is recommended to escape the space by turning away.  
 

 
 
Figure 4.28: Facing a wall nearby shows an obstacle line 233, failing the lower MBS 
boundary and unsafe to move forward. Escaping the space is suggested.  
 

 
 
Figure 4.29: The drone in front of a stack of chairs showing an obstacle line generated 
at 220, which fails the lower MBS boundary. The drone has to turn away to escape the 
space.  
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Figure 4.30: Facing a wooden door saw the drone getting one obstacle line at 198 and 
allowed to move forward.  
 
 

 
Figure 4.31: The drone is instructed to turn away when facing a glass door because the 
obstacle line 238 fails any MBS boundaries. 
 

 
Figure 4.32: In the garden in front of the wall has the robot is instructed to move away.   
 

 
Figure 4.33: Another wall where obstacle lines 252 failing the lower MBS boundary. 
The drone has to escape by turning away.  
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4.8 Discussion 

Six experiments showing the mono-visual drone performing autonomous navigation has 

been discussed through a series of diagrammatic representation. The experiments are: 

Experiment 1 – drone navigation in an indoor environment 

Experiment 2 – drone avoiding obstacles in an outdoor environment 

Experiment 3 – drone handling obstacle dynamics in an outdoor environment 

Experiment 4 – drone avoiding multiple ground obstacles in an outdoor environment  

Experiment 5 – drone avoiding multiple ground obstacles in semi-outdoor environment 

Experiment 6 – testing various types of surfaces 

 

In the experiments, the MBS method has shown good performance in segmenting 

spaces, computing the MBS boundaries, computing obstacles positions, estimating 

opening and tightening of space, and path planning. Central to the decision making is 

the lower and upper MBS boundaries. Obstacle positions are evaluated based on the 

MBS boundaries. Some observations from the experiments include: 

• Observation 1: an obstacle line cannot obstruct the drone’s line of sight to any 

MBS boundaries; less indicates tightening of space. The drone should escape 

such a space by turning away.  

• Observation 2: an opening of space is indicated when all obstacle lines are 

further than the upper MBS boundary. The drone can select the upper MBS 

boundary as part of path planning.  

• Observation 3: light variations increases the number of intersection or obstacle 

lines but reduces the disparity between the pixel difference.  

• Observation 4: real obstacles usually are indicated by a smaller number of the 

intersection but a high jump in the pixel difference. 
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• Observation 5: ground obstacles can be defined by nearness to the drone (bottom 

obstacle line failing the lower MBS boundary) and height between the lower 

MBS boundary and the drone’s eye level. The drone can fly over the ground 

obstacles. 

• Observation 6: tall obstacles can be defined by nearness to the drone (bottom 

obstacle line failing the lower MBS boundary) and height of obstacles 

surpassing the upper MBS boundary. 

• Observation 7: the new MBS segmentation process can work on surfaces such as 

tiles, wooden flooring, tar roads, cemented flooring, walls, and, to some extent, 

glasses doors.  

• Observation 8: the MBS method performs consistently in indoor, outdoor, and 

semi-outdoor environments. 

 

The MBS method is meant as a cognitive approach to finding waypoints for a flying 

drone, without the traditional requirement to process and recognize objects in the 

environment. The qualitative aspect of the MBS approach is evidence when human 

reasoning is used as the benchmark – a human always has a sense of safeness when 

navigating the immediate space. A human can also project the next waypoint by sensing 

empty space ahead. What is that safe boundedness to a human? Why are humans so 

successful at navigation, and able to perform it without precise information? The MBS 

method answers these questions by showing how a computational model for robots can 

imitate the safe boundedness to a human.  
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4.9 Chapter Summary 

This chapter presented six experiments that show the drone’s performance in indoor, 

outdoor, and semi-outdoor environments including against obstacle dynamics such as 

flying-over maneuver. Additional experiments were carried out to test the MBS 

performance when facing various types of surfaces. The next chapter concludes the 

dissertation. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

The dissertation asks the following research questions – how can one implement the 

MBS method on a mono-visual drone? How can one segment spaces from a mono-

visual feed? How does a mono-visual drone perform using the MBS navigation method? 

In answering these research questions, this work has uncovered a new implementation 

of the MBS method on a mono-visual drone and contributed a new segmentation 

process so the MBS can handle mono-visual feed from a drone.  

 

The MBS methods have been successful on two other robotics platforms, a depth 

perceiving laser robot that uses the MBS to find occlusions and openings in the space, 

and a mobile robot called Rovio, which showcased the first implementation of the MBS 

method on mono-visual feed without depth information. In this work, the MBS method 

is extended to the outdoor environment. Four experiments have been carried out outdoor 

where the drone is shown to perform obstacle avoidance, handling obstacle dynamics by 

avoiding a combination of ground and tall obstacles and navigating in a semi-outdoor 

environment. The semi-outdoor environment poses an exciting challenge. The 

contrasting brightness of the sunlight compared to the shades under the sunroof heavily 

influences the segmentation of the floor. For completion, two experiments were 

performed indoor – testing the drone navigation inside an open foyer and testing the 

segmentation on different surfaces.  

 

Central to the development of the new segmentation process for the MBS method is the 

realization that for a drone, one needs to have two MBS boundaries, a lower boundary, 

so when the space is tight, the drone can choose to fly in small distances. Another is an 

upper boundary, useful when there is an opening of the space so that the drone can fly 
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more confidently. In the outdoor environment, often the drone path planning includes 

crossing the upper MBS boundary. In areas where the light condition varies greatly, the 

lower MBS boundary becomes handy. The lower MBS boundary keeps the drone 

moving and exploring the space, although in small intervals. More significantly, for the 

first time, obstacles are deduced not from tracking features or recognizing objects in the 

environment, but from analyzing pixel difference.  

 

5.2 Future work 

At the heart of this work is a combination of spatial reasoning with image processing. 

Learning about opening and tightening of spaces through the lens of a camera could 

lead to revealing new models for robot navigation. For example, the previous MBS 

method has already supported a space-based approach to robot navigation and mapping, 

such as the ASR computational theory. For the new MBS segmentation, such as the one 

proposed in this dissertation, it would be interesting to explore the following further: 

• Exploring the filter boxes; rectangular, triangle, and the inverse triangle, with 

different shape, width, and height.  

• Extend the segmentation area to the left and right side of the drone, and not just 

the front like the current work. 

• Flying the drone at different heights in the outdoor environment.  

• Testing the drone in a corridor-like environment to see if it can escape it 

• Combine the MBS with object recognition and tracking, and create a new hybrid 

approach for robot navigation.  
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