

PARALLEL PROCESSING FOR DATA RETRIEVAL IN

ODOO ENTERPRISE RESOURCE PLANNING REPORTING

SYSTEM

ROUA ABDELMUNIEM OSMAN ALHAG EISA

FACULTY OF COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2021

Univ
ers

iti
Mala

ya

PARALLEL PROCESSING FOR DATA RETRIEVAL IN ODOO
ENTERPRISE RESOURCE PLANNING REPORTING SYSTEM

ROUA ABDELMUNIEM OSMAN ALHAG EISA

DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

SOFTWARE ENGINEERING
(SOFTWARE TECHNOLOGY)

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2021

Univ
ers

iti
Mala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Roua Abdelmuniem Osman Alhag Eisa

Matric No: WOC160016

Name of Degree: Master of Software Engineering (Software Technology)

Title of Dissertation (“this Work”): Parallel Processing for Data Retrieval in

Odoo Enterprise Resource Planning Reporting System

Field of Study: Data Mining

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been acknowledged
in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action or
any other action as may be determined by UM.

Candidate’s Signature Roua Date: 12/04/2021

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

Univ
ers

iti
Mala

ya

iii

PARALLEL PROCESSING FOR DATA RETRIEVAL IN ODOO

ENTERPRISE RESOURCE PLANNING REPORTING SYSTEM

ABSTRACT

Reporting process in Enterprise Resource Planning (ERP) system plays an important

role, as different information from different processes can be merged to generate

reports. Management can use these reports for providing key value indicators for

progress assessment, as well as the identification of poor business performance and the

formulation of strategies to eliminate them. Odoo framework, previously known as

OpenERP, is the most commonly installed open source ERP system worldwide. During

the ERP system lifetime massive data generated from the daily operations, most

implemented open source ERP systems such as the Odoo framework are using

Relational Database Management System (RDBMS) as data storage, while the amount

of the data increases this traditional data analysis, processing and storage technologies

are not capable enough to store and/or process a large amount of data effectively and

the performance became an issue as the relational database applies sequential data

processing. This performance latency has an implication on overall system

performance, concurrent users’ sessions, business processing, and report processing

which all affect organization processes and decision making to achieve business goals.

Report processing time increases while the number of data increases due to data

retrieving from the relational database, where the more data are processed; the more

time it needs to generate a report. This research aims to solve Odoo’s reporting latency

problem, where the proposed solution is to import data from the Odoo database and

store it in NoSQL data storage to perform parallel data processing to generate the

required report faster than the existing approaches to generating the same report. The

applied research methodology comprises several steps which include a literature review

that discusses the previous ERP system comparisons, existing reporting approaches and

Univ
ers

iti
Mala

ya

iv

the successful deployment of parallel data processing in various domains. Another step

is preliminary experiment conduct to compare the performance of generating sale orders

report using the existed approaches, the remain steps discuss the design, development

and evaluation of the research proposed solution. The research results find out that the

parallel data retrieval used in the developed solution shows performance improvement

over sequential data retrieval used in existed approaches. Organizations with a large

scale (500000 records and above per table) can get significant reporting performance

improvement which has a direct impact on an organization's processes, achieve insights

into business data, forecasting, decision support and to meet business goals.

Keywords: ERP, reporting, performance, parallel data processing.

Univ
ers

iti
Mala

ya

v

PEMPROSESAN SELARI UNTUK PENGAMBILAN DATA DALAM

SISTEM PELAPORAN PERANCANGAN SUMBER ODOO ENTERPRISE

ABSTRAK

Proses pelaporan dalam sistem Perancangan Sumber Daya Perusahaan (ERP)

memainkan peranan yang penting kerana ia mempunyai maklumat yang berbeza

daripada proses pelaporan biasa. Pihak pengurusan boleh menggunakan laporan tesis

ini untuk menjadi penunjuk nilai utama bagi penilaian kemajuan dan juga mengenal-

pasti prestasi perniagaan yang lemah bagi merangka strategi proses

penghapusannya. Rangka kerja Odoo, yang sebelumnya dikenali sebagai OpenERP,

adalah sistem ERP sumber terbuka yang paling kerap dipasang di seluruh dunia. Ketika

sistem ERP menghasilkan data besar dalam operasi hariannya, kebanyakan sistem ERP

sumber terbuka seperti kerangka Odoo menggunakan Sistem Pengurusan Pangkalan

Data Relasional (RDBMS) sebagai penyimpanan data. Semasa jumlah data meningkat

ketika menganalisis dan memproses data tradisional, teknologi penyimpanan tidak

cukup mampu untuk menyimpan dan / atau memproses sejumlah besar data dengan

berkesan yang menyebabkan prestasi menjadi masalah disebabkan oleh pangkalan data

hubungan menggunakan pemprosesan data berturutan. Latensi prestasi ini mempunyai

implikasi pada keseluruhan prestasi sistem, sesi pengguna bersamaan, pemprosesan

perniagaan, dan pemprosesan laporan yang semuanya mempengaruhi proses organisasi

dan membuat keputusan untuk mencapai tujuan perniagaan. Masa pemprosesan laporan

meningkat selari dengan peningkatan jumlah data disebabkan oleh data yang diambil

dari pangkalan data hubungan, di mana lebih banyak data yang akan diproses, lebih

banyak masa perlu menghasilkan laporan. Penyelidikan ini bertujuan menyelesaikan

masalah latensi pelaporan Odoo, di mana penyelesaian yang dicadangkan adalah untuk

mengimport data dari pangkalan data Odoo dan menyimpannya dalam penyimpanan

Univ
ers

iti
Mala

ya

vi

data NoSQL untuk melakukan pemprosesan data selari untuk menghasilkan laporan

yang diperlukan lebih cepat berbanding pendekatan sedia ada untuk menghasilkan

laporan yang sama. Metodologi penyelidikan yang diaplikasikan merangkumi beberapa

langkah yang merangkumi tinjauan literatur yang membincangkan perbandingan sistem

ERP sebelumnya, pendekatan pelaporan yang ada dan keberhasilan penggunaan

pemprosesan data selari dalam pelbagai domain. Langkah lain adalah melakukan

eksperimen awal untuk membandingkan prestasi menghasilkan laporan pesanan

penjualan menggunakan pendekatan yang ada, langkah-langkah yang lain

membincangkan reka bentuk, pengembangan dan penilaian penyelesaian yang

dicadangkan oleh penyelidikan. Hasil penyelidikan mendapati bahawa pengambilan

data selari yang digunakan dalam penyelesaian yang dikembangkan menunjukkan

peningkatan prestasi berbanding pengambilan data berurutan yang digunakan dalam

pendekatan yang ada. Organisasi dengan skala besar (500000 rekod dan ke atas per

jadual) dapat memperoleh peningkatan prestasi pelaporan yang signifikan yang

mempunyai kesan langsung pada proses organisasi, mencapai pandangan mengenai

data perniagaan, ramalan, sokongan keputusan dan untuk memenuhi tujuan perniagaan.

Katakunci: Perancangan Sumber Perusahaan, pelaporan, prestasi, pemprosesan data

selari.

 Univ
ers

iti
Mala

ya

vii

ACKNOWLEDGEMENTS

Thanks to God Almighty for the favour and wisdom to undertake this research.

Special thanks of gratitude to my supervisors Associate Prof. Dr. Siti Hafizah Binti Ab

Hamid and Dr. Mumtaz Begun Mustafa who helped me with the useful comments,

remarks, guidance through the learning process of this dissertation. To all the members

of Faculty of Computer Science and Information Technology (FCSIT), University of

Malaya, I appreciate your contribution to my study.

Secondly, I would also like to thank my parents, and my husband who helped me a

lot in finalizing this research within the limited time frame, thank you for your much-

needed support and encouragement.

Univ
ers

iti
Mala

ya

viii

TABLE OF CONTENTS

Abstract ... iii

Abstrak ... v

Acknowledgements .. vii

Table of Contents ... viii

List of Figures ... xiii

List of Tables ... xv

List of Symbols and Abbreviations ... xvi

CHAPTER 1: INTRODUCTION .. 1

1.1 Overview.. 1

1.2 Research Background .. 2

1.3 Research Motivation .. 3

1.4 Research Problem Statement ... 3

1.5 Research Objectives... 4

1.5.1 Research Objectives ... 4

1.5.2 Research Questions .. 5

1.6 Research Scope .. 5

1.7 Research Expected Outcomes.. 6

1.8 Research Significant .. 6

1.9 Thesis Organization ... 6

CHAPTER 2: LITERATURE REVIEW .. 8

2.1 Enterprise Resource Planning (ERP) System .. 8

2.1.1 ERP Main Components .. 15

Univ
ers

iti
Mala

ya

ix

2.2 Odoo ERP System ... 16

2.2.1 Odoo Framework .. 17

2.2.2 Odoo Architecture .. 17

 Models ... 17

 Views .. 18

 Controllers ... 18

2.3 Odoo Report... 20

2.3.1 Odoo Reporting process ... 21

2.3.2 Odoo Reporting Engine .. 21

 OpenOffice .. 22

 ReportLab .. 22

 OpenERP Webkit Report .. 22

 QWeb Template .. 22

2.4 NoSQL Database Storage and Parallel Processing .. 26

2.4.1 Parallel Data Processing ... 27

2.4.2 Applications of Parallel Data Processing ... 27

2.4.3 Hadoop Framework .. 30

 HDFS Architecture .. 30

 MapReduce .. 31

 Hadoop Ecosystems .. 32

(a) HBase ... 32

(b) Sqoop ...……………………………………………………… 33

(c) Phoenix .. 33

2.4.4 Report Processing in Hadoop ... 34

Univ
ers

iti
Mala

ya

x

2.5 Summary of literature .. 34

CHAPTER 3: RESEARCH METHODOLOGY ... 36

3.1 Literature Review .. 36

3.2 Data Collection .. 38

3.3 Preliminary Experiment ... 42

3.4 Design and Development ... 45

3.4.1 Design ... 45

3.4.2 Development .. 46

3.5 Experiment and Evaluation.. 48

3.5.1 Experimental design ... 48

3.5.2 Evaluation method .. 50

3.6 Summary .. 50

CHAPTER 4: DESIGN .. 51

4.1 System Architecture... 51

4.2 UML Diagram ... 52

4.2.1 Use Case Diagram .. 52

4.2.2 Activity Diagram .. 53

4.2.3 Flowchart Diagram ... 54

4.3 Development Tools and Environment ... 54

4.4 HBase Database Design, Connection and Access ... 55

4.5 Phoenix Connection using Phoenixdb ... 57

4.6 Summary .. 57

CHAPTER 5: DEVELOPMENT .. 58

Univ
ers

iti
Mala

ya

xi

5.1 Environmental setup .. 58

5.1.1 Java Installation .. 58

5.1.2 Hadoop installation and configuration ... 59

5.1.3 HBase Installation .. 60

5.1.4 Phoenix Installation .. 61

5.1.5 Sqoop Installation ... 61

5.1.6 Installing Thrift API ... 61

5.1.7 Installing HappyBase API .. 62

5.2 Data Migration: .. 62

5.3 Development of HBase Module in Odoo .. 63

5.3.1 HBase connection configuration .. 63

5.3.2 Data Synchronization ... 64

 Real-time synchronization ... 65

 Scheduled Synchronization ... 66

5.3.3 Phoenix Connection using PhoenixDB .. 67

5.4 Implementing Methods in Custom Module ... 69

5.4.1 Custom Module: ... 69

5.5 Summary .. 71

CHAPTER 6: EXPERIMENTS, EVALUATION AND RESULTS 72

6.1 Experiments and Evaluation .. 72

6.1.1 Retrieval Time: ... 72

6.1.2 Number of Records .. 73

6.1.3 Query Execution Time ... 74

Univ
ers

iti
Mala

ya

xii

6.2 Results 74

6.2.1 Generating Reports ... 74

6.2.2 Query Execution Time ... 75

6.3 Discussion .. 77

6.4 Summary .. 78

CHAPTER 7: CONCLUSION ... 79

7.1 State-of- the-art .. 79

7.2 Fulfilment of Research Aims, Objectives and Questions 79

7.2.1 Research Objectives ... 80

 First Objective ... 80

 Second objective ... 80

 Third objective .. 80

7.2.2 Research Questions .. 81

 First Question .. 81

 Second Question .. 81

 Third Question ... 82

7.3 Contribution ... 82

7.4 Work Limitation .. 82

7.5 For Future Research ... 83

References .. 85

Univ
ers

iti
Mala

ya

xiii

 LIST OF FIGURES

Figure 2.1: MVC architecture (Ganesh et al., 2016). .. 19

Figure 2.2: Odoo MVC architecture (Vaja & Rahevar, 2016). 19

Figure 2.3: Reporting process in Odoo framework (Reis, 2016). 21

Figure 3.1: Research methodology process flow. ... 36

Figure 3.2: Sales order form.. 38

Figure 3.3: generate_series() function in INSERT statement. 39

Figure 3.4: Preliminary Experiment SQL query. .. 43

Figure 3.5: Existing approaches experiments results graph. ... 45

Figure 3.6: Development phases. .. 47

Figure 3.7: Import data into HBase from PostgreSQL. .. 47

Figure 3.8: HBase connection UI. ... 48

Figure 4.1: System architecture... 52

Figure 4.2: Use Case diagram. .. 52

Figure 4.3: Activity diagram. .. 53

Figure 4.4: Flowchart diagram. ... 54

Figure 4.5: Sales orders stored in HBase. ... 56

Figure 5.1: Installed Java version.. 58

Figure 5.2: Sqoop import command.. 62

Figure 5.3: HBase scan. .. 63

Figure 5.4: HBase configuration class. ... 63

Figure 5.5: HBase configuration view XML. ... 64

Figure 5.6: HBase configuration UI form. .. 64

Univ
ers

iti
Mala

ya

file:///E:/Submission/Correction/Final%20Submission/Dissertation_final_submission_Roua.docx%23_Toc68782192

xiv

Figure 5.7: Real-time synchronization methods. .. 65

Figure 5.8: Scheduler function to synchronize transaction. .. 66

Figure 5.9: Interval period for scheduler function in XML file. 66

Figure 5.10: Scheduled actions UI form. .. 67

Figure 5.11: Phoenix configuration class. ... 67

Figure 5.12: Phoenix configuration view XML. ... 68

Figure 5.13: Phoenix configuration UI form... 68

Figure 5.14: Phoenix execute query method. .. 69

Figure 5.15: Custom sale orders report. .. 70

Figure 5.16: ORM methods inheritance in sale order class. ... 70

Figure 5.17: ORM methods inheritance in sale order class. ... 70

Figure 6.1: Experiment SQL query. .. 72

Figure 6.2: Approaches experiments results graph. .. 75

Figure 6.3: Query execution time graph in PostgreSQL and HBase. 76

Univ
ers

iti
Mala

ya

file:///E:/Submission/Correction/Final%20Submission/Dissertation_final_submission_Roua.docx%23_Toc68782202
file:///E:/Submission/Correction/Final%20Submission/Dissertation_final_submission_Roua.docx%23_Toc68782203

xv

LIST OF TABLES

Table 2.1: Leading open source ERP systems. ... 9

Table 2.2: ERP systems comparison (Ganesh et al., 2016). ... 10

Table 2.3: Comparison between ERP systems (Ganesh et al., 2016; Kowanda et al.,
2015). .. 11

Table 2.4: All Approaches developed in Odoo report engine. .. 23

Table 2.5: Existing solution to generate reports in Odoo.. 25

Table 2.6: Applying parallel processing in different domains. 29

Table 3.1: Sale order table. ... 39

Table 3.2: Customer table. .. 40

Table 3.3: Sale order line table. .. 41

Table 3.4: Product table. ... 41

Table 3.5: Experiments’ results for the three existing approaches. 44

Table 3.6: Experiments details. ... 49

Table 3.7: Query execution experiment table. .. 49

Table 6.1: Sample of sale orders dataset. .. 73

Table 6.2: Experiments. .. 73

Table 6.3: Approaches experiments results. ... 74

Table 6.4: Query execution time in PostgreSQL and HBase. ... 76

Univ

ers
iti

Mala
ya

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

ERP : Enterprise Resource Planning

RDBMS : Relational Database Management System

HRP : Horseradish peroxidase

SQL : Structured Query Language

NoSQL : Not Only SQL

SAP : Systems Applications and Products

RAM : Random Access Memory

API : Application Programming Interface

SME : Small-to-Medium Enterprise

App : Application

MVC : Model View Controller architecture

UI : User Interface

XML : eXtensible Markup Language

ORM : Object Relational Mapping

CRUD : Create, Read, Update and Delete on database

HTML : Hypertext Markup Language

Univ
ers

iti
Mala

ya

xvii

SXW : Sun Xml Writer

RML : Right Middle Lobe

PIR : Right Middle Lobe

CPU : Central Processing Unit

GFS : Google File System

HDFS : Hadoop Distributed File System

MR : Map Reduce

MPI : Message Passing Interface

Sqoop : SQL to Hadoop

HBase : Hadoop Database

UML : Unified Modeling Language

REST : Representational State Transfer API

JDK : Java Development Kit

URL : Universal Resource Location

IP : Internet Protocol

Univ
ers

iti
Mala

ya

1

CHAPTER 1: INTRODUCTION

1.1 Overview

In recent years, the computer system and its applications have revolutionized the

world. Enterprise Resource Planning (ERP) system has been adopted by many

organizations all over the world, especially after the emergence of open source-based

ERP system with less cost. This makes the ERP implementation applicable for all

organizations regardless of their sizes. Integrating subsystems, automating processes

and procedures, automating workflows, dashboards, and reports; are all components

provided by the ERP system to improve the organization’s business process in meeting

its business goals (Nah, Lau, & Kuang, 2001).

Reports play an important role in the organization's success, all data generated from

automated processes should be converted to meaningful information as regular reports

to executive levels whereas to help the organization keeps track the income and

expenses which are important for the organization’s current progress assessment and set

new goals as well. The analytics reports also help to figure out business lacking and

defects and they improve strategies in eliminating them (Dezdar & Ainin, 2011).

During the lifetime of the ERP running system, massive data are generated which are

involved in the daily operations. Thus, processing large amount of data using the

traditional data analysis and relational databases RDBMS has become an issue (Jung,

Youn, Bae, & Choi, 2015).

In line with the increased data to be stored and processed, new technologies have

been developed that are capable of storing and processing the large amount of data.

These Modern technologies can be used to improve the existing open source ERP

systems.

Univ
ers

iti
Mala

ya

2

1.2 Research Background

Enterprise Resource Planning (ERP) optimizes, automates and integrates most of the

business processes and transactions in an organization. Nowadays, many open sources

of the ERP systems have been developed and implemented, The Odoo framework,

previously known as OpenERP, is the most commonly installed open source ERP

system worldwide. Most implemented open source ERP systems such as the Odoo are

using Relational Database Management System (RDBMS); therefore, continue daily

processes lead to large amount of data stored in the relational database; thus, the

database performance decrease. Performance comparison has been conducted by (Jung

et al., 2015) between RDBMS and NoSQL databases and it has been found that

RDBMS database performance decreased when processing large data while NoSQL

database has shown performance improvement when processing large data. Relational

database performance decrease has an impact on a concurrent user’s sessions, business

processing, and report processing. As the report processing time increases, the amount

of data increases due to the data retrieving from the relational database, and the more

data to be processed the more time needs to generate a report.

The report engine that is used for generating reports in the Odoo has been enhanced

over time since the Odoo was developed. With every release of the Odoo, there is an

improvement for the exits approach or a new approach has been implemented (Moss,

2017). There developers from the Odoo community contribute to solve the problem of

processing big amounts of data to generate reports, they provide projects that connect

Odoo framework with standalone open source report engines to cover the lack of Open

Report engine such as JasperSoft report server and the Pentaho Interactive Reporting

(Kendengis & Santoso, 2018).

Univ
ers

iti
Mala

ya

3

1.3 Research Motivation

This research is motivated by the importance of the ERP system for Organizations,

and the important role that system plays to keep track of business progress assessment,

making decisions and achieving business goals. In the business market, it is important

to measure information and the value of the information itself as well as the time of

processing this information. The longer it takes for data to be converted into

meaningful information, the less value it has for the business, which has a direct impact

on making decisions in proper time and achieve business goals.

Report performance latency is caused by the sequential processing for the ever-

increasing data stored in the relational databases. Parallel data processing is developed

to process large scale data and to handle large loads. There are many open source

applications that provide parallel processing; hence, this technique can be used to solve

report performance latency in Odoo framework with no additional cost.

1.4 Research Problem Statement

According to the ERP systems comparison study conducted by (Kowanda, Firdaus,

Bismark, & Pasaribu, 2015), the OpenERP/Odoo system has several advantages over

the other two systems in all the comparison dimensions. While the three systems lacked

scalability and handling of large loads, the Open ERP/Odoo has high data storage

capacity and high processing time needed which affects the system overall performance

(concurrent user sessions, business processing, workflow implementation and report

processing). The suggested solution by (Kowanda et al., 2015) is to provide high

specification servers for implementation. This can solve the system load performance,

but it does not require any data processing manipulation in the system database.

Meanwhile the two other systems’ problems were solved by the integration with Oracle

database, which is enterprise database to handle large loads, thus, overcoming

Univ
ers

iti
Mala

ya

4

scalability problem. But it increases implementation costs and the ERP system does not

consider open source anymore due to the usage of not free database (Moss, 2017).

With the increasing amount of data, scalability issues and processing big amounts of

data is a serious problem (Moniruzzaman & Hossain, 2013). The database that was used

in Odoo was the PostgreSQL, which is an open source relational data base. Report

performance latency emerges due to the sequential data processing that was applied in

the PostgreSQL database to generate report while processing a huge data records using

the QWeb Odoo report engine. Some experiments were conducted to compare the

performance of the Odoo report between the existed solutions of the (Odoo QWeb,

JasperSoft report server, Pentaho Interactive Reporting), and it was found that the report

performance decreases as the data records to be processed increases. It was also found

that the JasperSoft and Pentaho improve and simplify the report design and reduce the

system load. But the SQL Queries execution time still generates report for large data

records.

The NoSQL database is designed for large-scale data storage and for parallel data

processing, to handle large loads (Moniruzzaman & Hossain, 2013). These features can

improve Odoo report processing performance, but this approach has not been

implemented yet in the Odoo for report processing.

1.5 Research Objectives

This research aims to improve the performance of reporting process in the Odoo’s

framework to process large scale data records.

1.5.1 Research Objectives

1. To determine the limitation(s) of the existing report processing approach in the

Enterprise Resource Planning (ERP) Odoo framework.

Univ
ers

iti
Mala

ya

5

2. To develop a reporting module using parallel data processing approach for

generating reports up to million data records with reduced processing time in the

Odoo’s framework.

3. To evaluate the performance of the proposed reporting module in terms

of processing time with the Odoo’s existing approaches.

1.5.2 Research Questions

1. What is the limitation(s) of the existing Odoo approach used to generate

reports?

2. What are the suitable tools and framework for developing a reporting module

using parallel data processing approach to generate large data records report with

reduced processing time in Odoo’s framework?

3. What is the processing time of the existing approaches and the proposed

reporting module for generating report with large data records?

1.6 Research Scope

This research focuses on the report processing performance improvement in the open

source ERP system (Odoo) for large amount of data up to one million records. This

study focuses on applying parallel data processing for data retrieval from NoSQL

database to generate report, to solve Odoo reporting latency while processing large

amount of data records from PostgreSQL database to generate the report. A New Odoo

reporting module is going to be developed to connect with the NoSQL database,

capable of executing the SQL queries on the NoSQL database and applying parallel

processing data retrieval to generate reports using suitable API’s and tools. Executing

the SQL subqueries or inner queries are not covered in this study.

Experiments will be conducted to compare report processing performance between

the existing report processing approaches (Odoo QWeb, JasperSoft report server,

Pentaho Interactive Reporting) and the developed reporting module to generate the

Univ
ers

iti
Mala

ya

6

same report. In these experiments, the reports will run several times with different

number of records for each approach. This study is significant only to improve the

performance of the large amount of data reports.

1.7 Research Expected Outcomes

New Odoo module is able to connect with the NoSQL database, execute SQL

queries on the NoSQL database tables, and retrieve large scale data records in parallel

to generate the required report with execution time less than the time consumed by the

existing approaches (Odoo QWeb, JasperSoft report server, Pentaho Interactive

Reporting) to generate the same report.

The new Odoo module is responsible for setting up connection configurations with

the selected NoSQL database, integrates Odoo framework with the selected framework

that applies parallel processing approach to generate reports by enabling SQL queries

execution on the selected NoSQL database tables using suitable API’s tools.

1.8 Research Significant

The ERP systems promise integration of organizational processes and access to

integrated data across the entire organizations, given the importance of the ERP reports

to keep track of the organization’s business process, meeting business goals and setting

new goals as well as data retrieval to generate reports in timely manner with direct

impact on the organization success.

This research should provide performance improvement for data retrieval in the

Odoo ERP reporting system for large data set and provide fast data retrieval time in

comparison with the existed approaches.

1.9 Thesis Organization

The rest of the dissertation is organized as follows:

Univ
ers

iti
Mala

ya

7

Chapter 2: reviews the relevant literatures of the ERP systems, the Odoo’s system

framework and architecture. This chapter is divided into three parts. The first part

includes ERP system definitions, Odoo system framework and architecture in details,

the second part reviews the Odoo Report process, existing approaches and their

limitations, the third part reviews the Applications of Parallel Data Processing.

Chapter 3: is dedicated to the research methodology, includes literature review, data

collection, preliminary experiments, design, development and evaluation.

Chapter 4: is dedicated to the design of the proposed approach.

Chapter 5: is dedicated to the development and implementation of the proposed

approach.

Chapter 6: contains the conducted experiments, performance evaluation of the

proposed approach and comparison with the existing approaches.

Chapter 7: contains the findings of our research, limitations of the study, it provides

suggestions for future research that can be carried from this one.

Univ
ers

iti
Mala

ya

8

CHAPTER 2: LITERATURE REVIEW

This chapter explains the definition of ERP system, comparison between ERP

systems in the market and the advantages of using open source ERP systems. It also

describes the Odoo’s framework architecture and the reporting process. The literature

review was carried out to collect the necessary information on the related studies of the

existing approaches to report on the Odoo’s framework that addresses a specific

problem in the related research area. The review also focused on previous studies which

showed a real performance improvement of data processing using parallel data

processing technique in different fields. Finally, it describes Hadoop’s framework as

one of the open source systems that apply parallel data processing using MapReduce

model.

2.1 Enterprise Resource Planning (ERP) System

(Gripe & Rodello, 2011)described the Enterprise Resource Planning (ERP) as a

software that is capable of integrating data from a different company’s departments that

involve in business processes. This integration involves processing and tracking of data

on account journals, account transactions, stock, invoicing, purchased orders and

human resources, for example, the ERP is an integration system that organizations used

for making decision based on the analysis of data from different incorporated sub-

systems. The ERP systems were limited to large organizations because of expensive

implementation cost. But after ERP open source system emerged ,the ERP systems

became widely used regardless of the organization’s size (Ganesh, K, C, & A, 2016).

 In recent decades ERP systems have showed great importance in the business

sector, there are many open sources and enterprise ERP systems has emerged in the

Univ
ers

iti
Mala

ya

9

market (Kr.Shukla & Indian, 2013), each has its implementation advantages and

disadvantages. The ERP Systems comparison was conducted by (Vartak, Desai, &

Kamble, 2014) between the ERP open source systems A survey was conducted for

small and medium enterprises, it found some ERP open source systems compatible with

the SMEs. Odoo is one of the most compatible open source ERP systems with high

functionalities. Another comparison was done between top 3 open source ERP systems:

Open Bravo, Odoo and Adempiere by (Kowanda et al., 2015). At the beginning, a

literature review was done to identify the leading open skource ERP systems through

previous analysis. The systems were identified as shown in the table below:

Table 2.1: Leading open source ERP systems.

Open ERP (Odoo) OpenBravo
ERP5 Opentaps
Compiere Adempiere
WebERP BlueERP
GNU Enterprise

After researching on each system, three were selected for analysis in detail, to evaluate

the OpenERP/Odoo, Openbravo and Adempiere. After the evaluation, some systems

were omitted from the list for one of the following reasons: functional problems, lack of

freely database, not mature enough or lack of documentation. Six dimensions were

considered for evaluating the systems.

A recent comparison was conducted by (Ganesh et al., 2016) between well-known

ERP systems. The SAP and Microsoft Dynamics NAV were selected as they are on top

of Commercial ERP systems. The Odoo and OpenBravo were selected from the open

source ERP systems. Six factors were considered in the comparison. Different

Univ
ers

iti
Mala

ya

10

feedbacks were collected from around 4319 users of different ERP systems. The table

below presents the comparison between the selected ERP systems.

Table 2.2: ERP systems comparison (Ganesh et al., 2016).

 No Feature Name

User Feedback in percentage

OpenERP
(Odoo) OpenBravo

Microsoft
Dynamic

NAV
SAP

1 Features & Business
Application 84.8% 29.80% 33.52% 78.9%

2 Market Position 47% 38.75% 94.75% 100%

3
Productivity,
Agronomy & Ease of
Use

82.6% 41.6% 48.8% 74%

4 Customization &
Flexibility 85.2% 34.6% 51.8% 69.6%

5 Technical Quality 78.6% 54.1% 56.1% 75.3%

6 Total Cost of
Ownership 96.16% 46.83% 42.33% 62.83%

The table below summarizes the evaluation of the three comparisons for the ERP

systems; the percentage is the user feedback:

Univ
ers

iti
Mala

ya

11

Table 2.3: Comparison between ERP systems (Ganesh et al., 2016; Kowanda et al., 2015).

Features OpenBravo OpenERP/Odoo Adempiere NAV SAP
Cost & cost of
ownership

• Modules free
• Customization fee
• Maintenance fee
• 96.16%

• Modules free
• Customization fee

reduced.
• Maintenance fee
• 46.83%

• Fully open source
system

• Modules fee
• Maintenance fee
• 42.33%

• Modules fee
• Maintenance fee
• 62.83%

Support Availability • OpenBravo forum
• Wiki documentation
• Reporting bugs and

feature requests

• Forum and mailing
lists

• Wiki documentation
and official source
repository

• Installation manual,
developer book and
community book
available

• Wiki community
• Functional, user

interface and best
practices
documentation
available

• No available
forum

• Support fee
• Documentation fee

• No available
forum

• Support fee
• Documentation fee

Stability and
Maturity

• hundred success
stories in vendor
websites

• Implemented in 45+
countries, 100
documented success
stories company’s
websites

• encourage the
contribution from
all over the world.

• a few success
stories of
implementation
shown on
Adempiere website

• Stable and mature • Stable and mature

 Univ
ers

iti
Mala

ya

12

Table 2.3: Comparison between ERP systems (Ganesh et al., 2016; Kowanda et al., 2015), continued.

Features OpenBravo OpenERP/Odoo Adempiere NAV SAP
Customization and
Flexibility

• Module
customizations

• Limits on workflow
customization

• 85.20%

• Quick and easy module
customization including
workflows, actions, and
reports.

• Integration with other
applications

• 34.60%

• Allow customization
without development
through Adempiere
Application Dictionary

• Not allowed
• Customization fee
• 51.80%

• Not allowed
• Customization fee
• 69.60%

Scalability • Able to connect
with Oracle
database, Suitable
for larger
deployment

• Required large servers,
minimum (1 GB RAM)

• Capability to use Oracle
database in addition to
PostgreSQL, handle
large load

• Scalable using
Enterprise database

• Scalable using
Enterprise
database

User Interface • User friendly
interface

• Implements all
keyboard shortcuts

• Comfortable and well-
designed interface.

• User friendly: drag and
drop, flexible display,
configured dynamic
dashboards and per-user
customizable, data
filtering.

• Integrate with JGoodies
and Tango project to
improve multi-platform
support simplified and
micro-appropriate
design.

• User friendly
interface

• User friendly
interface

Univ
ers

iti
Mala

ya

13

Table 2.3: Comparison between ERP systems (Ganesh et al., 2016; Kowanda et al., 2015), continued.

Features OpenBravo OpenERP/Odoo Adempiere NAV SAP
Features and business App 84.80% 29.80% - 33.52% 78.90%
Productivity and ease of use 82.60% 41.60% - 48.80% 74%
Market Position 47% 38.75% - 94.75% 100%
Technical Quality 78.60% 54.10% - 56.10% 75.30%

Univ
ers

iti
Mala

ya

14

From the above comparisons, it seems the three open source systems following a

sustainable growth path and can compete the enterprise ERP systems in reducing cost or

at least be available to organizations with possible amount of cost. Regarding stability

and market position of the vendor, the enterprise systems have the advantage over all

three open source systems because all are recent in the market. All three open source

systems limitations can be summarized to their scalability as there are still doubts about

the ability of those systems to handle big volumes of users or requests have scalability

issues to handle large loads; the suggested solution given by (Kowanda et al., 2015) is to

provide high specification servers for implementation in Odoo framework. While the

two other systems OpenBravo and Adempire, the problem can be solved by integration

with Oracle database which is enterprise database that handle large loads, to overcome

scalability problem. However, it increases implementation costs, and the ERP system

does not consider open source anymore due to the lack of not freely used database

(Moss, 2017).

Integrating subsystem-automating processes, automating workflows, dashboards, and

reports, are all components provided by the ERP system to improve an organization’s

business process and meet business goals (Nah et al., 2001). Commercial ERP systems

are expensive which make them difficult for small and medium organizations to invest

in them. The emergence of the open source based ERP systems with less cost, makes

the ERP implementation applicable for all organizational sizes (Ganesh et al., 2016).

(Ganesh et al., 2016; Jindal & Dhindsa, 2013; Vartak et al., 2014) described the main

advantages of the ERP open source systems that can solve the commercial ERP system

limitations:

1. Less expensive and it reduces cost: open source ERP systems reduce the cost of

implementation. Whereas, no license is required to run the system, no maintenance and

Univ
ers

iti
Mala

ya

15

support cost, and it uses open source databases and operating systems which are

obtained for free. (Vartak et al., 2014) compared between open source ERP systems and

compatibility for SME’s (small-medium enterprise) and found that open source ERP

systems were low cost but, the provided functionality was limited.

2. Flexibility and adaptability: open source ERP systems provide a flexible way of

customization to meet the business need for the organization with less effort and

complexity.

3. Ownership and vendor independence: organizations have full access to the

source code and control the system without vendor intervention. Support and technical

knowledge can be obtained from open source communities, which make vendor

independence.

4. Quality assurance: because the open source ERP systems rely on contributions

from communities, this creates competitive advantage between the expert developers.

Hence, code quality can be guaranteed.

5. Easily integration: open source ERP Systems are compatible with multiple

technologies which make it easier to integrate with other organization’s existing

systems.

6. Easily upgradable: upgrading the system can be done without affecting running

server due to the separation between system interface and system framework whereas

the customization is done at the interface level.

2.1.1 ERP Main Components

1. Modules: subsystems or applications each is dedicated to a specific business

function, all integrated to accomplish the organization processes. Main Apps such as

Accounting, Sales, Purchase, Manufacturing, Project Management and Human Resource

Management. Data that generated from different Apps stored in one single database.

Univ
ers

iti
Mala

ya

16

2. Workflows: organize a specific task into steps for the user to go through

following predefining rules. Thus, eliminates user errors and control transactions

quality.

3. Reports: presentation of data generated from ERP system processes converted

into a meaningful information.

4. Dashboards: present information in many different dynamic graph types,

consider as a key performance indicator to figure out the organization’s operations

productivity (Nah et al., 2001).

2.2 Odoo ERP System

Odoo framework, previously known as OpenERP has been developed by belgium

company in 2005; the name was Tiny ERP, three years later the name has been changed

to OpenERP and in 2014 version 8 has been released and the name changed to Odoo.

From Odoo version 9 the Odoo’s company begun to release two versions of Odoo,

community edition which is totally free and enterprise edition which requires a license;

the piece is based on the region and the number of users. Odoo version 10 that has been

released in 2016 is not just an ERP system but has gone beyond that to include

embedded Business Intelligence tool, E-commerce, and website builder. Thus, make

Odoo a Comprehensive system.

As mentioned earlier, many open source ERP systems in the market but what makes

Odoo highly recommended and modular solution comparing with other ERP solutions,

is each business function is carried out by a dedicated app, which allows growing

businesses to start with a few apps and to adopt more as their needs change and expand

(Moss, 2017).

Univ
ers

iti
Mala

ya

17

2.2.1 Odoo Framework

Odoo framework is compatible with different platform’s operating systems and

integrated tools. However, Odoo common implementation platform is under Ubuntu

operating system (Ganesh et al., 2016). There are many reasons for chosen ubuntu as

recommended operating system: ubuntu is open source, is the primary target platform

for the Odoo development team and has strong community support for Odoo (Moss,

2017).

Odoo is built using Python programming language and uses the PostgreSQL database

for data storage. So, to host Odoo framework python libraries and PostgreSQL database

need to be installed first. The Odoo source code can be downloaded from Odoo or

GitHub website (Reis, 2016).

2.2.2 Odoo Architecture

Odoo is built upon a Model-View-Controller (MVC) architecture. Since ERP system

is complex, so modifying the interface without affecting the data tables and structure is

so complicated. This architecture solves the problem of separating the UI from the

business logic by adding intermediate component (Ganesh et al., 2016).

MVC pattern makes it easy to provide multiple views of the data, supporting user

initiative. The main goal of MVC is to separate the display of the information from the

business logic and management of the underlying data. For example, same data can be

displayed in different views based on user’s role without need to change the model.

 Models

The model is the data which is stored in the database. Odoo has used PostgreSQL

database and the database schema is defined automatically when Odoo modules are

Univ
ers

iti
Mala

ya

18

installed. Odoo framework converts the model definitions which is written in python

code and creates the corresponding tables structures (columns with data types,

constraints, primary and foreign keys) inside of the PostgreSQL database, hence; the

data and tables can be restructured without any impact on the user interface. In

addition, extending and restructuring data model are applicable in Odoo framework

through web interface without need to modify the source code.

 Views

View is responsible for presenting data and interacting with the user, views are

defined in XML (eXtensible Markup Language) documents. The Odoo framework is

responsible for recall these view files in a web browser, these views represent the

Odoo’s user interface and can be modified without affecting the data tables and the data

itself.

 Controllers

The controller is a link between the business logic (model) and the user interface

(views). The controller components in Odoo called OpenERP objects are written in

Python code in Odoo modules, these objects provide access to the data stored in the

database easily through ORM methods (Object-Relational Mapping), which is a middle-

ware component layer that facilitates the communication between Odoo and the

relational data storage system to perform database Create, Read, Update and Delete

(CRUD) operations (Moss, 2017), figure 2.1 illustrates the MVC architecture. Figure

2.2 illustrates the Odoo MVC architecture.

Univ
ers

iti
Mala

ya

19

Figure 2.1: MVC architecture (Ganesh et al., 2016).

Figure 2.2: Odoo MVC architecture (Vaja & Rahevar, 2016).

Univ
ers

iti
Mala

ya

20

2.3 Odoo Report

Reports play an important role in the organization's success, all data generated from

automated processes should be converted to meaningful information as regular reports

to executive levels whereas helping the organization to keep track of the income and

expenses which are important for organization current progress assessment and setting

new goals as well. Also, the analytics reports help to figure out business lack and

defects then improve strategies to eliminate them (Dezdar & Ainin, 2011).

Finally, Reports document the organization sales, projects, plans and all processes

without the need to keep actual paper reports, which provides quick access and therefore

leads to make an appropriate decision in a timely manner. ERP Report can be one of the

following categories:

• Forms such as invoices, purchase orders, etc.

• Periodic reports that produced periodically: daily, weekly, monthly, and annually.

• Ad hoc reports that are usually one-time reports

• Analytical reports that display what happening in organization operations.

In Odoo and other open source ERP systems normally, there are standard reports

with each module which are the commonly used in the module. Also, customization of

existing report or creation of new report are available in each reporting engine in open

ERP system but need some of the knowledge in both business function side and

technical side with the used programming language in each reporting engine (Reis,

2016).

Univ
ers

iti
Mala

ya

21

2.3.1 Odoo Reporting process

To process any report and display the report data in Odoo regardless the report

engine has been used, the report engine needs to connect to PostgreSQL database and

retrieve the required data using SQL queries or ORM methods which convert the python

code into SQL query and provide the data needed to generate the report. Finally, the

report engine renders the retrieved data into a HTML document and displays the report

or converts it to a PDF form if the report display format is PDF. Figure 2.3 shows the

reporting process in Odoo framework.

Figure 2.3: Reporting process in Odoo framework (Reis, 2016).

2.3.2 Odoo Reporting Engine

A report engine can turn the system data into meaningful, readable information.

Odoo has embedded report engine that used for generating reports, which has been

enhanced over time since Odoo has been developed. With every release of Odoo, there

is an improvement for the exits approach or a new approach has been implemented to

solve the lack and problems that exist (Moss, 2017).

(Reis, 2016) has listed and described all approaches have been developed in Odoo

report engine to generate reports in Odoo framework as following:

Univ
ers

iti
Mala

ya

22

 OpenOffice

The first report engine was used for generating reports in version 5 is OpenOffice.org

reports, by design the report format in OpenOffice document with SXW extension, this

document is only used for developers, to generate the .RML file easily. Then, Open

Report engine converts SXW file to RML, fills in desired data and finally converts

RML file to PDF or HTML as needed for display.

 ReportLab

In version 6 the report engine was based on ReportLab library used in Open Report

module which is a python script that converts SXW to RML and allows to render the

RML document to PDF document. RML also can be used directly to design the report

layout, then converts RML to PDF document.

 OpenERP Webkit Report

Webkit report engine has been developed in version 7 based on Webkit HTML to

PDF library (wkhtml2pdf), this approach uses HTML to design report and draw report

layout instead of RML then converts it to PDF document.

 QWeb Template

Final approach has been developed with version 8 is QWeb which is a template

engine, XML-based used to generate reports using XML language then rendering report

into HTML, report data can be displayed in HTML format or be converted to PDF using

Webkit HTML to PDF library (wkhtml2pdf) also. QWeb template uses special XML

tags and attributes called directives to generate reports, QWeb parser searches for these

directives and replaces them with HTML code. Then, QWeb engine produces the

HTML document, QWeb templates report rendered on the server side and uses a python

Univ
ers

iti
Mala

ya

23

QWeb implementation. This approach also provides ability to modify existing report

without need to change the source code of the report (Moss, 2017). Table 2.4

summarizes all approaches have been developed in Odoo Report engine to generate

reports in Odoo framework.

Table 2.4: All Approaches developed in Odoo report engine.

Approach Version Solved problem Limitations Benefits

OpenOffice

(Moss, 2013;

Reis, 2016)

V5 Generate report

simply.
• Bad layout, inaccurate

design.

• Many limitations

compared to full

featured report writers.

• For developer with no

XML, RML experience.

ReportLab

(Moss, 2013;

Reis, 2016)

V6 Layout design. • Difficult to generate

report from different

tables.

• Developer can design

good report layout.

• Used to generate reports

from direct single table.

• Used RML to design the

report layout.

OpenERP

Webkit

Report (Moss,

2013; Reis,

2016)

V7 Support Multi

header and

footer per report

or company.

• No enhancement on

data retrieving level.

• Modify report header and

footer from client

interface without need to

change XML or RML

file.

• Used HTML to design

report.

QWeb (Moss,

2017; Reis,

2016)

V8 Layout design

Display report in

HTML or PDF

format.

• No enhancement on

data retrieving level.

• Enhance report design

through the template

framework.

• Modify existing report

without need to change

the source code.

Univ
ers

iti
Mala

ya

24

In Odoo community the developers provide projects that connect Odoo framework

with standalone open source report engines to cover the lack in Open Report engine.

(Moss, 2017) has mentioned two approaches in his book which connect directly with

PostgreSQL database server to generate report. The first approach is to connect Odoo

with JasperReport Server, then can use iReport or JasperStudio to design report, this

approach allows user to design report from complex and different tables easily and

generate corresponding SQL queries automatically. But the limitation of this approach is

also using SQL Quires to retrieve data and required parameters need to be send to

JasperSoft server to see reports. The second approach is to connect Odoo with Pentaho

Interactive Reporting (PIR), allows user to design complex report easily but also use

SQL to retrieve data from database and Some reporting functionality limit in community

edition and available only in enterprise edition.

The two approaches above reduce report processing time by separating report engine

server from Odoo server. Thus, processing reports is not affected by number of

concurrent user sessions, but the execution time increase while processing SQL queries

for large scale data records, due sequential data processing in PostgreSQL database.

Although the two approaches have been mentioned by (Moss,2017) as an alternative for

Odoo QWeb reporting, but there are no previous studies that have used any of these two

approaches in a comparison with Odoo Qweb to generate report in Odoo ERP system.

(Kendengis & Santoso, 2018) has mentioned that Pentaho and JasperSoft also have been

used to cope Odoo limitation features to process Odoo data and extract a very specific

information that help in decision making. Table 2.5 below shows the existing

approaches can be used to generate Odoo reports.

Univ
ers

iti
Mala

ya

25

Table 2.5: Existing solution to generate reports in Odoo.

Approach Year Problem Solved Limitations Benefits
QWeb (Moss,
2017; Reis, 2016)

2012 • Layout design
• Display report in

HTML or PDF
format.

• Sequential data
processing applied.

• Takes long time to
generate report with
1 million record or
more.

• Enhance report design
through the template
framework.

• Modify existing report
without need to change
the source code.

JasperSoft report
server (Kendengis
& Santoso, 2018;
Moss, 2013, 2017)

2011

• allows the user to
design report from
complex and
different tables
easily.

• Improve system
performance.

• Capability to
extract a specific
information that
help in decision
making.

• using SQL Quires
to retrieve data.

• Sequential data
processing applied.

• Takes long time to
generate report with
1 million record or
more

• Design complex reports
using UI (iReport).

• reduce system load by
separating report engine
server from Odoo server.

Pentaho Interactive
Reporting (PIR)
(Kendengis &
Santoso, 2018;
Moss, 2013, 2017)

2011 • Create report
design from
complex and
different tables.

• Improve system
performance.

• Capability to
extract a specific
information that
help in decision
making.

• Using SQL Quires
to retrieve data.

• Sequential data
processing applied.

• Takes long time to
generate report with
1 million record or
more.

• Some reporting
functionality limit
in the community
edition and
available only in
the enterprise
edition.

• Capability of integration
with different systems

• Integrated BI software
(OLAP, data mining,
ETL and reporting)

• reduce system load by
separating report engine
server from Odoo server.

Univ
ers

iti
Mala

ya

26

2.4 NoSQL Database Storage and Parallel Processing

NoSQL refers to not only SQL and it has been emerged as an alternative for the

relational database to store, process and manage the huge amount of data which is

beyond the capability of traditional relational database storages. NoSQL systems are

distributed, non-relational databases designed to handle large-scale data storage and

perform parallel data processing across several commodity servers. They also use non-

SQL languages to retrieve the data stored. (Moniruzzaman & Hossain, 2013). As

described earlier, PostgreSQL is relational database and during Odoo lifetime the data to

be stored is increased, hence; shows need to increase the database storage capacity as

well as longer time to process data is required. (Jung et al., 2015) in their study assessed

the performance between RDBMS and NoSQL databases and has found that RDBMS

database (PostgreSQL) performance decreased when processing large data while

NoSQL database (MongoDB) has shown performance improvement when processing

large data. Another performance comparison has been conducted by (Agarwal & Rajan,

2017) between RDBMS (PostgreSQL) and NoSQL (MongoDB) databases and the result

of the comparison experiment has found that PostgreSQL time increases as the size of

dataset increases whereas MongoDB performs better by an average factor of 10 which

increases exponentially as the data size increases. NoSQL databases has an advantage of

the ease of access, speed, and scalability over RDBMS, NoSQL storages provide

performance and horizontal scalability (horizontal scaling means that storage scale

by adding additional machines of resources whereas vertical scaling means scale by

adding more CPU or RAM to the existing machine) which made them suitable for

systems requiring massive amounts of storage hence, the capability of extending the

database easily and low cost (Nayak, Poriya, & Poojary, 2013). NoSQL database can be

an alternative storage for PostgreSQL in Odoo framework handle scalability fast data

retrieval.

Univ
ers

iti
Mala

ya

27

2.4.1 Parallel Data Processing

Processing a massive volume of data simultaneously in a timely manner, the concept

based on divide and distribute the large-scale data across several commodity servers and

process them in parallel hence, reduce the execution time, improve speed of processing

and achieves high performance (Moniruzzaman & Hossain, 2013). Parallel data

processing has been emerged after the rapid growth of companies that have to process a

huge amount of data such as google, Microsoft and Facebook. Also, the emergence of

companies that provide cloud computing systems. Parallel data processing commonly

used to perform complex tasks and computations on large scale data set such as data

mining, data analysis, data retrieval and resource utilization in cloud computing

(Warneke & Kao, 2011).

Many companies have been built data processing frameworks such as Google’s

MapReduce, Microsoft’s Dryad and Yahoo!’s Map-Reduce-Merge. All these

frameworks share similar programming models that provide of parallel programming,

fault tolerance, and execution optimizations while developers can customize on demand

(Warneke & Kao, 2011).

2.4.2 Applications of Parallel Data Processing

(Enaya, 2016) in his thesis has described the Odoo latency problem and he has

explained one of the causes of the problem which is the huge data that is generated from

the attachment and mail message modules. The two modules are special modules

because they can be used from any other modules in Odoo system. During system

lifetime, the stored data in these modules is increased and the system performance is

decreased consequentially. The performance problem has been solved by using NoSQL

data storage to store the data of attachment and mail message modules, then customizing

the ORM layer in Odoo framework to enable communicating with the NoSQL data

Univ
ers

iti
Mala

ya

28

storage to access and retrieve the required data. After customization has been done, two

experiments have been conducted to compare the performance of Odoo system and the

customized Odoo. And has been found that, for small and SME companies the Odoo

performs better without using NoSQL system. While the customized Odoo, performs

faster when the data of attachment and mail message modules are huge.

As mentioned earlier, Odoo scalability issue lead to system performance latency

which has an impact on concurrent user sessions, business processing, and report

processing. (Enaya, 2016) in his thesis has been solved the Odoo performance latency

caused by the huge data generated from attachment and mail message modules, while no

enhancement has been done for report processing performance.

There are many deployments of parallel data processing in different domain for the

purpose of performance enhancement. (Warneke & Kao, 2009) an efficient parallel data

processing has been applied to the cloud computing using Nephele framework. Nephele

is the first data processing framework that includes dynamic allocating/deallocating

different compute resources during tasks scheduling and execution. Therefore, provides

resource utilization improvement, efficiency on parallel data processing and reduce cost.

 A survey has been done by (Lee, Lee, Choi, Chung, & Moon, 2011) to provide a

studies of data analytics using MapReduce framework through defining the architecture

of MapReduce and how parallel data processing works, discussing pros and cons of

MapReduce also discuss the improvement strategies to enhance MapReduce framework

from the related works. At the end of the survey, it has been found that MapReduce

provides good scalability and fault-tolerance for massive data processing, applies

flexible parallel processing for different data analysis and automatic optimization for

high performance.

Univ
ers

iti
Mala

ya

29

(Bu, Howe, Balazinska, & Ernst, 2010) have developed HaLoop; a modified version

of the Hadoop MapReduce framework, which is designed for large-scale data mining

and data analysis applications. HaLoop is built on top of MapReduce to support iterative

applications and improves their efficiency by providing optimization that includes a

loop-aware task scheduler and applies several caching mechanisms. HaLoop is a new

programming model and iterative program that handles loop control rather than to be

manually programmed. It also offers a programming interface to express iterative data

analysis applications. The experimental evaluation results demonstrate that HaLoop

improves the overall performance of iterative data analysis applications. Table 2.3

below summarizes the application of parallel data processing in different domains.

Table 2.6: Applying parallel processing in different domains.

Researcher Domain Used Tool Problem Solved Result

(Warneke & Kao,
2009)

Cloud
Computing

Nephele
Fraemwork

- resource
utilization

- Data processing
cost and time

- Provides dynamic
allocate/deallocate resources for
task scheduling and execution.

- improve the overall resource
utilization.

- efficient parallel data processing
and reduce cost.

(Bu et al., 2010) Data
Mining and
Data
analysis

HaLoop - performance
latency in
iterative data
mining/ data
analysis
applications

- Provides loop-aware task
Scheduling.

- Provides caching mechanisms:
caching for loop-invariant, data
caching to support fixpoint
evaluation.

- Improves the performance of
iterative data analysis
applications.

(Lee et al., 2011) Data
Analytics

Hadoop:
MapReduce

- Scalability issue
- Data processing

cost and time

- Fault tolerance
- automatic optimization for high

performance.

(Enaya, 2016) ERP
System

NoSQL Storage

Hadoop: Phoenix
Project

- Slow system
performance
caused by a
large size of
tables

- inefficient problem Solved.
- System performance improved.

Univ
ers

iti
Mala

ya

30

2.4.3 Hadoop Framework

Hadoop is one of the common big data technologies was created by Doug Cutting in

2005. It is an eventual result of the Nutch search engine project of Dough Cutting.

Nutch project has derived from GFS (Google File System) and MapReduce projects

created by Google in 2003 – 2004. Cutting joined Yahoo and started a new project and

named it like his son's toy elephant. In 2006, Apache Hadoop project was started for the

development of HDFS (Hadoop Distributed File System) and Hadoop MapReduce,

Now Hadoop is top level project of the Apache software foundation. (Singh, Singh,

Garg, & Mishra, 2015)

Hadoop is one of an open source parallel processing framework, provides a

distributed file system and a framework for processing and analysis large data set using

MapReduce programming model. The main feature of Hadoop is the partitioning of

data and computation across many (thousands) of hosts and instead of moving data for

computation, parallel computations run on clusters having the data; Hadoop framework

scale up by adding commodity server (Shvachko, Kuang, Radia, & Chansler, 2010).

 HDFS Architecture

HDFS is a distributed file system, which provides unlimited storage, scalable and

fast access to data retrieval. Thousands of nodes in a cluster hold petabyte scale of data

and if there is a need for more storage, new nodes will be added. It uses a block-

structured file system and stores many copies of the files after splitting the file into

blocks. Block size and number of replicated copies are configurable. Storing data in a

distributed manner provides high fault tolerance and availability during execution of

Big Data applications on Compare HDFS with other DFS (Singh et al., 2015). HDFS

separates the file system metadata from application data and stores them independently

(Ayma et al., 2015) Metadata are the file name, permission, replication and location of

Univ
ers

iti
Mala

ya

31

each block of the file (Singh et al., 2015). HDFS stores all the files as replicated blocks

and retrieve them by request. By default, it stores three independent copies of each data

block (replication) to ensure reliability, availability, performance and failure issues

(Ayma et al., 2015).

HDFS provides fast access to data retrieval rather than traditional relational data

storage due Master-Slave architecture, there is a single master node called NameNode

and multiple slave nodes called DataNodes. Master node responsible to manage all

slave nodes, DataNodes store all data and replicated copies of blocks. NameNode is the

administrator of file system operations like metadata, file creation, permissions etc.

Without NameNode the cluster does not operate, and write/read data cannot be applied,

it stores all the metadata of the files in its memory in order to be fast accessed and apply

write/read data on request (Singh et al., 2015).

 MapReduce

MapReduce is a programming model developed recently by Google to facilitate

parallel programming and distributed execution on large clusters. It is based on a no

single point of failure architecture that is guaranteed by the underlying distributed file

system (GFS) which divides the data into smaller segments, stores it and safely

replicates it across all nodes. The idea behind MR is to provide abstraction from the

underlying hardware and eliminate the complexities of typical parallel programming

models such as MPI (Message Passing Interface). This is achieved by introducing two

key functions for processing the data: A map function which divides the input data set

into smaller segments, apply data processing parallelly on input data set segments and a

reduce function which merges the output of all data set segments. Therefore, parallel

data processing applied without knowing whether the job was split into 100 segments or

2 segments (Osman, El-Refaey, & Elnaggar, 2013).

Univ
ers

iti
Mala

ya

32

MapReduce does not intend to replace relational databases; it’s intended is to

provide a simple way of programming to process and manage the huge amount of data

which is beyond the capability of traditional relational database storages so they can run

fast by running in parallel on multiple devices. Hadoop’s main aim is to apply parallel

computing and data processing on distributed large clusters of commodity machines.

MapReduce accomplishes fault tolerance by automatically gathers data from different

nodes and combines the result in a single node (Pellakuri & Rao, 2014).

 Hadoop Ecosystems

Hadoop framework composed of sub-projects, each project dedicated for a specific

purpose (storing, analyzing, data processing or maintaining), to meet the research aim

which is improve the performance of reporting process in Odoo framework to process

large scale data records by apply parallel data processing to retrieve data, the following

subprojects are required.

(a) HBase

HBase is an Apache open source project, is a column oriented NoSQL database, runs

on top of HDFS with the characteristics of distributed, fault tolerant and high scalable.

It is highly recommended for real time read/write random access for large scale data

records in databases. Because HBase is column oriented, the data stored in labelled

tables, each table has columns and rows stored as a multidimensional sparse, each row

has primary key and the data is accessed through this key. HBase allows performing

transactional operations: updates, inserts, deletes (Narasimhan & Bhuvaneshwari,

2014), all data accesses through the table primary key and any scan of HBase table

converted to a Map/Reduce job, parallel scan in terms of Map/Reduce job results into

faster response time and better overall throughput. Row updates are atomic, reading and

Univ
ers

iti
Mala

ya

33

writing operations are accomplished at the same time thus, consistency not guaranteed.

Recent versions provide blocking rows while read/write operation are run (Vora, 2011).

HBase also supports Master/Slave architecture and uses ZooKeeper for cluster

management and coordination. ZooKeeper responsible for maintaining configuration

information, naming, providing distributed synchronization, and providing group

services. ZooKeeper plays a role of coordinator for HBase clusters.

A performance evaluation experiment has been done by (Vora, 2011) between

HBase and SQL database MySQL. The data have been used is image files and stored in

HDFS while the meta data are stored in HBase and MySQL. Results have been found

that HBase capable to read and retrieve information faster than MySQL and able to

serve more clients at the same time, and for write data also HBase is performing better

than MySQL but not as much as in read operation. As conclusion, HBase is highly

recommended for write-once read-many applications.

(b) Sqoop

Sqoop is a software tool used for data exchange between Hadoop and relational

databases. Sqoop is import data from the external relational databases into NoSQL

Database system storage (HDFS, HBASE or HIVE). It also enables export data from

NoSQL Database system storage into relational databases. Sqoop provides parallel data

transferring by using simple SQL query and saves jobs to be run many times for the

data update purpose (Narasimhan & Bhuvaneshwari, 2014)

(c) Phoenix

Phoenix is an Apache open source project, comprise a relational layer over the

HBase database, it provides an SQL interface to access HBase data. Phoenix executes

Univ
ers

iti
Mala

ya

34

the SQL query by splitting the query into several HBase scan processes. Then, it applies

these processes in parallel across the HBase database. Phoenix maps each HBase table

with Phoenix table and stores the table meta data for fast access (Enaya, 2016).

2.4.4 Report Processing in Hadoop

Storing data in NoSQL database, provides the capability to apply parallel processing

and distributed execution using map reduce program to retrieve the data. Map reduce

program can be used directly by writing map reduce job using multiple programming

languages like Java, Python, Ruby ,C++ (Ayma et al., 2015), Perl and C (Pellakuri &

Rao, 2014). The other option is to use Apache projects that implement MapReduce job

implicitly such as (HBase, phoenix and pig).

2.5 Summary of literature

Odoo framework is the most commonly installed open source ERP system

worldwide, many previous studies have been conducted to compare Odoo with other

open source and Enterprise ERP systems, Odoo outperformed other systems. However,

during Odoo system lifetime, the data amount increases resulting in scalability issue and

report processing latency due sequential data processing in the scalable relational

database (PostgreSQL). Many contributions from Odoo community developers to cover

the lack in Open Report engine such as Jasper soft and Pentaho that have improved the

system performance, but report processing latency exists while processing large data

records.

Performance improvement of data processing has been approved using parallel data

processing technique from many studies in different fields, hence can be applied in

Odoo reporting to generates reports. Hadoop framework is one of the open source

systems that apply parallel data processing using MapReduce model. Other Hadoop

Univ
ers

iti
Mala

ya

35

components provide data sorting, analysing, and maintaining. All components can work

together or separately.

Univ
ers

iti
Mala

ya

36

CHAPTER 3: RESEARCH METHODOLOGY

This chapter briefly describes the methodology employed to achieve the research

objectives. The aim of this research is to improve the performance of reporting process

in Odoo framework and to identify a solution that can reduce the processing time of

large scale data records. In order to meet the research aim, the researcher adopted a

methodology that comprises of several major steps, which are literature review, data

collection, data analysis, development and implementation, evaluation, and testing.

Figure 3.1 illustrates the process flow of the research methodology.

Figure 3.1: Research methodology process flow.

3.1 Literature Review

In this research, the ERP systems comparison with the previous studies was

conducted to compare between the open source and the Enterprise ERP systems. Based

on the analysis of those studies, the Odoo’s framework was selected.

Univ
ers

iti
Mala

ya

37

The literature review of related research that used the Odoo’s reporting process was

to find out the existed approaches that were used to recover the lake of Odoo reporting

process, and to investigate the validity of those approaches to improve the Odoo’s

report processing performance. The literature review also comprised of the existing

approaches from Odoo community developers, and they provide projects that connect

Odoo framework with standalone open source report engines to cover the lack in Odoo

report engine. One approach is to connect the Odoo with Jasper Report Server. This

approach allows users to design report from different tables easily to generate

corresponding SQL queries automatically. The second approach is to connect the Odoo

with Pentaho Interactive Reporting (PIR). This approach allows users to design

complex report easily. The two approaches reduce report processing time by separating

report engine server from Odoo server. Thus, processing reports are not affected by the

number of concurrent user sessions. But the limitation of those two approaches is using

the SQL quires to retrieve data, which increases the execution time while processing

SQL queries for large scale data records, due to sequential data processing in the

PostgreSQL database.

Performance improvement for Odoo reporting can be achieved by applying parallel

data processing, instead of sequential processing which applied by the three existing

approaches. Meanwhile, the previous studies showed the successful deployment of

parallel data processing in various domains. The concept is based on the division of

large-scale data into small parts and processes them in parallel. Thus, reducing the

execution time, improving speed of processing, and to achieve high performance

(Moniruzzaman & Hossain, 2013).

Univ
ers

iti
Mala

ya

38

3.2 Data Collection

Dataset in Odoo framework is generated from daily transactions and different

processes in a company that uses Odoo as its ERP system. So, it is quite difficult to get

existing data for Odoo. The dataset that was used in this work is the data of sale orders

from Sales module which contains order details such as order name, order date,

customer_id, untaxed amount, taxes, total and order status. The data was collected

purposely for this work using the PostgreSQL function called generate_series() which

generates a set of data based on a specific parameter. First, random data records were

created from the Sale Orders through Odoo’s framework UI; all the order details were

inserted as in figure 3.2 below.

Figure 3.2: Sales order form.

Then the PostgreSQL generate_series() function were used with SQL INSERT

statement that created one million records randomly from the existing records of sale

order, PgAdmin tool was used to access the PostgreSQL and to run generate_series

function, the function format as shown in figure 3.3 below.

Univ
ers

iti
Mala

ya

39

Figure 3.3: generate_series() function in INSERT statement.

the record size average is 85 bytes. Table 3.1 shows sample records from sale order

table.

Table 3.1: Sale order table.

The customer_id field is a foreign key many to one relation refers to the res_partner

table in the Base module that contains the customers’ details, the customers demo data

that created when the Base module installed, were used in this work as shown in table

below.

Univ
ers

iti
Mala

ya

40

Table 3.2: Customer table.

The sale_order_ids field in the sale order table is a foreign key one to many relation

refers to sale_oreder_line table. It contains sale order products details such as

product_id, description, ordered_quantity, unit_price, price_subtotal, price_tax,

price_total. The table below shows sample of sale_order_line table and the record size

in bytes. Univ
ers

iti
Mala

ya

41

Table 3.3: Sale order line table.

The product_id field in the sale_order_line table is a many to one relation refers to

product_template table in the Sales module which includes all the company’s products,

products demo data were used as shown in table 3.4 below.

Table 3.4: Product table.

Univ
ers

iti
Mala

ya

42

3.3 Preliminary Experiment

Preliminary experiment has been conducted to compare the performance of

generating report using the existed approaches because there are no specific studies used

any of these three approaches in their applications or research. To conduct the

preliminary experiment, the following tools and environments were used:

• Operating System: Ubuntu 14.0.1, 64 bit

• Odoo version 10

• Database: PostgreSQL9.2

• Eclipse Luna IDE

• Jasper Soft Studio 6.6.0

• Pentaho Business Intelligence 3.7.0

• Postgresql-9.2-1002.jdbc4.jar

The hardware was used as the following:

• RAM 4 GB

• Hard disk 1 TB

• Processor Intel Core i5 7500 (7th Gen), Quad-Core, 3.8 GHz.

Jasper soft studio installed as plug-in in Eclipse IDE, connected with PostgreSQL by

adding PostgreSQL IP and port; after connection established the database was selected

then SQL query created to generate report. In Pentaho, report designer UI was used to

connect with PostgreSQL by adding PostgreSQL JDBC jar file, PostgreSQL server IP,

port, database name, username and Password. Then, SQL query created to retrieve the

data from the defined PostgreSQL data source to generate report. To use Odoo QWeb

custom report was created to retrieve the date from PostgreSQL and generate the report

Univ
ers

iti
Mala

ya

43

using same SQL query was used in Jasper Soft and Pentaho. The following figure is the

SQL query that was used to generate reports in QWeb, Jasper and Pentaho.

Figure 3.4: Preliminary Experiment SQL query.

Seven experiments were conducted using different sizes of data records that were

created in the database to compare the performance of generating sale orders report

using Odoo’s QWeb, and the two other existing approaches (Jasper Soft and Pentaho),

in each experiment; the number of records determined in the SQL query. The

experiments found that the reporting process performance decreased when the number

of data records retrieved from databases increased, and more than 500 seconds required

in generating the sale orders report with one million data records in the three

approaches. Table 3.5 presents the experiments execution time in generating sale orders

report in the three approaches.

Univ
ers

iti
Mala

ya

44

Table 3.5: Experiments’ results for the three existing approaches.

Experiment Odoo QWeb Jasper Soft Pentaho

1
Execution time/second 5.24 0.44 1.50

No of Records 1000 1000 1000

2
Execution time/second 8.02 1.21 7.32

No of Records 10000 10000 10000

3
Execution time/second 10.17 3.40 18.62

No of Records 30000 30000 30000

4
Execution time/second 14.89 8.32 20.05

No of Records 50000 50000 50000

5
Execution time/second 20.55 23.94 53.20

No of Records 100000 100000 100000

6
Execution time/second 107.55 239.45 278.04

No of Records 500000 500000 500000

7
Execution time/second 511.45 503.60 532.30

No of Records 1000000 1000000 1000000

The experiments show that the execution time of the three existing approaches

QWeb, Jasper Soft and Pentaho increased in generating report while the number of

records increased as well. The first four experiments show that the execution time to

generate report using Jasper soft was less than the execution time to generate the same

report using Odoo QWeb and Pentaho. Experiments number five and six Odoo QWeb

used less execution time compared with other approaches, and the execution time gap

between the three approaches decreased. But in experiment seven, the number of

retrieved records was one million; it shows that the execution time of the three

approaches increased and took long time to generate report. In conclusion, the

experiments proved that the three existing approaches could not cope with huge report.

Figure 3.5 presents the graph of the experiments. The graph shows the execution time

of the three approaches in the first five experiments which increased slightly while the

Univ
ers

iti
Mala

ya

45

number of records increased as well, from experiment six with 500000 records; there is

a noticeable increase in the execution time.

Figure 3.5: Existing approaches experiments results graph.

3.4 Design and Development

3.4.1 Design

In this research, Hadoop framework and sub systems were used to deploy parallel

processing using map reduce program to retrieve the data. As mentioned in the literature

review, MapReduce program can be used directly either by writing MapReduce job

using different programming languages or using apache projects that implement

MapReduce job implicitly; Phoenix was selected to apply parallel data retrieval to

generate report. HBase database was used to store the data and has been chosen because

from the literature the column-oriented database type is similar to the relational

database which make it the most relevant type to store relational data conveniently

(Zafar, Yafi, Zuhairi, & Dao, 2016). HBase, Hypertable and Cassandra all are open

source column-oriented database, (Li & Manoharan, 2013) in their performance

comparison between NoSQL databases (MongoDB, RavenDB, CouchDB, Cassandra,

Univ
ers

iti
Mala

ya

46

Hypertable and Couchbase) and MS SQL database it has been found that Cassandra is

slow in read operation; Hypertable performs moderate in read operation while

Couchbase and MongoDB are the fastest for read operation. Another performance

evaluation has been conducted by (Jogi & Sinha, 2016) between Cassandra, HBase and

MySQL for heavy write operation it has been found that Cassandra provides fast write

speeds among other databases, while from the conducted experiment by (Vora, 2011) it

has been found that HBase provides high read and write speeds but it highly

recommended for write-once read-many applications. So, HBase is the most compatible

NoSQL database to integrates with Odoo framework for data retrieval to generate

report, further details discussed in chapter four section 4.4 and 4.5.

The design of the proposed solution is to use a single node of Hadoop cluster.

Although multiple nodes could be applied, the single node contains Hadoop and sub-

projects (HDFS, HBase and Phoenix) are quite enough to develop the proposed solution

and conduct the experiments. Odoo’s framework is connected to the HBase database

through a new Odoo module, using API libraries for data synchronization to maintain

the data consistency between the two databases and queries execution. Further details of

the design include the system architecture and case diagrams which are discussed in

chapter four, section 4.1 and 4.2.

3.4.2 Development

The deployment of a parallel data processing is to expedite the data retrieval from

the database to improve the performance of the reporting process in the Odoo’s

framework which involves three main phases as shown in figure 3.6.

Univ
ers

iti
Mala

ya

47

Figure 3.6: Development phases.

The first phase is to import existing data into HBase from PostgreSQL. At this phase,

the tables and columns to be imported should be defined, the corresponding tables in

HBase are created and then Sqoop tool is used to import data. Sqoop provides Map

Reduce job in terms of parallel data transferring results faster than data import. Figure

3.7 illustrates import data process.

Figure 3.7: Import data into HBase from PostgreSQL.

The second phase is the development of the Odoo module that is responsible of

setting up connection string configurations with the HBase through UI (user interface)

and enables the APIs for SQL queries execution against the HBase, Odoo module also

provides real-time synchronization component that tracks new changes in Odoo and

synchronize them up with the HBase. Figure 3.8 shows the HBase connection UI form.

Univ
ers

iti
Mala

ya

48

Figure 3.8: HBase connection UI.

The third stage is to implement custom sale orders report in sale module that utilizes

the HBase connection module; hence, the data is retrieved from the HBase instead of

the PostgreSQL.

3.5 Experiment and Evaluation

3.5.1 Experimental design

The same experiments were conducted to compare reporting processing performance

in the existing approaches (QWeb, Jasper Soft and Pentaho) was conducted to the

developed solution. Seven experiments were run with different number of data records

to retrieve from database, and to compare the performance of the generating sale orders

report in the existing approaches and the developed solution. The number of records for

each experiment to be retrieved from the same dataset which consists of 1 million

record in the database is determined in the SQL query that used to run the experiments

to generate reports. Table below shows the number of records for each experiment and

the experiment size in Kilobyte.

Univ
ers

iti
Mala

ya

49

Table 3.6: Experiments details.

Experiment No of Records Size in KB

1 1000 2.34

2 10000 825.84

3 30000 2665.47

4 50000 4505.50

5 100000 9105.47

6 500000 45908.50

7 1000000 91905.46

Another experiment was conducted to compare query execution time between the

PostgreSQL database (sequential data processing) and the HBase (parallel data

processing) using Phoenix console, experiment table shown below.

Table 3.7: Query execution experiment table.

Experiment PostgreSQL HBase

1
Execution time/second

No of Records 1000 1000

2
Execution time/second

No of Records 10000 10000

3
Execution time/second

No of Records 30000 30000

4
Execution time/second

No of Records 50000 50000

5
Execution time/second

No of Records 100000 100000

6
Execution time/second

No of Records 500000 500000

7
Execution time/second

No of Records 1000000 1000000

Univ
ers

iti
Mala

ya

50

3.5.2 Evaluation method

In this research, the evaluation factors to measure the performance of the developed

solution and the existed approaches to generate reports in the Odoo’s framework are

retrieval time from the database, execution time to generate the report and the number

of data record to measure the report processing performance. These factors were used in

many studies to evaluate data retrieval performance, (Enaya, 2016) used retrieval time

and number of records to measure the performance of the data retrieval time.

3.6 Summary

The main objective of this research is to improve the Odoo’s reporting process

performance, using parallel processing for data retrieval. The listed methods in this

chapter were used to achieve the objectives of this work, the methodology applied in

this research has shown that data retrieval time using the developed approach is faster

in generating report and therefore, the reporting process performance improved

considerably.

Univ
ers

iti
Mala

ya

51

CHAPTER 4: DESIGN

This chapter discusses details of the design of the proposed solutions. This includes

the system architecture and case diagrams; it also describes the development tools and

the environment used to develop the proposed solution. Finally, the chapter explains the

API’s have selected to connect the Odoo with the HBase and Phoenix.

4.1 System Architecture

This research aims to solve the Odoo reporting latency problem by performing

parallel data processing to generate reports, and the corresponding architecture for the

proposed solution of the Odoo framework that is connected to the PostgreSQL database,

Hadoop framework, HBase NoSQL database, Phoenix and developed Odoo HBase App.

The existed data in the PostgreSQL is imported to the HBase using Sqoop tool. The

HBase stores meta data in the HBase files while the actual data are stored in the Hadoop

Distributed File System. So, should there be configuration based on the system needs

and data size to define the number of master/slave nodes in the Hadoop. In this research,

single node scheme is applied, and all data is stored in a single node cluster. The CRUD

operation on the PostgreSQL is synchronized to the HBase database through the Odoo’s

HBase App using HappyBase API and running the Thrift server, and the SQL queries is

executed by Phoenix through the Odoo‘s HBase App using Phoenixdb API and running

query server to retrieve data and generate reports, figure 4.1 illustrates the system

architecture. Univ
ers

iti
Mala

ya

52

Figure 4.1: System architecture.

4.2 UML Diagram

The following section describes the use case diagram, activity diagram and flow

chart for the proposed solution in the Odoo’s framework to generate reports.

4.2.1 Use Case Diagram

Figure 4.2: Use Case diagram.

Univ
ers

iti
Mala

ya

53

Create Sales Order: the actor sales officer creates the sales order by filling up all

information related to the order, once the order created in the database is synchronized

automatically to the corresponding table (sales order table) in the HBase database.

Confirm Sales Order: the actor sales officer validates the sales order, the status update

synchronized automatically to the sales order table in the HBase database.

Validate Sales Order: the actor sales manager confirms the sales order, the status

update synchronized automatically to the sales order table in the HBase database.

Print Sales Order Report: the actor sales officer and the actor sales manager can print

the sales order report, the sales order data retrieved from the sales order table in the

HBase database. Then, the report displayed.

4.2.2 Activity Diagram

Figure 4.3: Activity diagram.

Univ
ers

iti
Mala

ya

54

Activity is started by a Sales officer actor who creates sales orders. When the Sales

officer saves the record, the Hbase connection module will synchronize the created sales

order to HBase database. If the Sales officer updates the order, the changes will

synchronize to the HBase database. The Sales officer actor confirms the order and the

Sales manager actor approves it. Sales officers and Sales managers can print sales order

reports and the Hbase connection module will retrieve the data from HBase database.

4.2.3 Flowchart Diagram

The following flowchart shows the flow of creating a sales order, update, confirm

and approve the created sales order processes. The final process is the print sales order

report which retrieve the data from HBase database:

Figure 4.4: Flowchart diagram.

4.3 Development Tools and Environment

In this research, the following tools and environments were used:

• Operating System: Ubuntu 14.0.1.

Univ
ers

iti
Mala

ya

55

• Odoo version 10

• Database: PostgreSQL9.2

• Hadoop version 2.7.3.

• HBase version 1.2.6.

• Phoenix version 4.14.0

• Java version 1.8.0 is compatible with Hadoop version 2.7.3

• Import tool: Sqoop.

The selected version of the Hadoop and subcomponent were chosen based on the

compatibility with each other to ensure the system running properly without bugs or

faults.

4.4 HBase Database Design, Connection and Access

All data in sale order table is of structured data type and has relational columns with

other tables. As mentioned earlier in the research methodology chapter; from literature

it was found that the column-oriented database is the most relevant type among all

NoSQL database types to store relational structured data. The columns are stored on the

disk consequentially as Key-Value pairs format; the key is the column, and the value is

the data itself. After further studies the HBase was selected, where the actual data is

stored in HDFS (Hadoop Distributed File System) while the meta data is stored in the

HBase, which has high capability to be read and retrieved information faster than other

databases and it is also able to serve more clients at the same time (Vora, 2011). The

HBase is highly recommended for write-once read-many applications. So, it is the most

compatible database to retrieves data in Odoo framework for report processing.

NoSQL databases and HBase allow data insertion without predefined schema, only

the tables should be defined. This can be done by either using “create table” command

in the HBase shell or defined corresponding table name, columns and family column (to

Univ
ers

iti
Mala

ya

56

group similar columns) while running the data import command for a specific table in

the Sqoop tool. Hence, if the table does not exist in the HBase database the table will be

created first then the data will be imported. In this research, the dataset used is the data

from sales orders table, the corresponding table in the HBase is salaes_orders and

columns are: ID, order name, order date, beneficiary name, total price and order status.

All columns grouped under family column “OrderInfo”. HBase stored data in the HDFS

consequentially as Key-Value pairs, the key is the row key which is the record ID in

PostgreSQL and the value contains the column name prefixed by the family column,

the column value and the timestamp for column value versioning purpose. Figure 4.5

shows sample of stored sales orders in the HBase using scan table command in the

HBase shell.

Figure 4.5: Sales orders stored in HBase.

To connect the Odoo framework with the HBase database through the developed

Odoo’s HBase App, The HBase provides various Client APIs to access it from other

programming languages. The two main supported APIs clients are: REST API and

Thrift API, from the evaluation experiment done by (Enaya, 2016) on both APIs, it was

found that Thrift API is faster than Representational State Transfer (REST) API, so, the

Thrift API was selected to connect between the Odoo and the HBase. To synchronize

Univ
ers

iti
Mala

ya

57

data between the PostgreSQL and the HBase, there are two Python libraries that can be

used to communicate with the HBase: HappyBase, StarBase. StarBase library does not

support Thrift API, it only supports the REST API. So, HappyBase library was chosen

for data synchronization through the Thrift API.

4.5 Phoenix Connection using Phoenixdb

To read data from the HBase tables and retrieve a specific data for generating

reports, HappyBase API cannot be used for three reasons. First, it retrieves data records

for given keys only which might not be known in some report generating cases. The

second reason is HappyBase only read data from a single table at time whereas some

reports are complicated and need to retrieve data from multiple tables using joins and

nested queries. The third reason is HappyBase does not apply parallel processing for

data retrieving which is the aim of this research to solve reporting process latency.

As mentioned earlier, Phoenix is a relational layer over the HBase database; it

provides an SQL interface to access the HBase data that applies parallel processing to

execute queries and retrieves data. Phoenixdb is a Python library to access Phoenix

using remote query server; after that access the HBase database to retrieve the required

data in parallel.

4.6 Summary

This chapter explains the design of the proposed solutions, and it illustrates the

system architecture and the UML diagrams. It also listed the required development

tools and environments, the compatibility issues between Hadoop and sub- components

were explained. Finally, the selected APIs to connect the Odoo with the HBase and

Phoenix are described in detail.

Univ
ers

iti
Mala

ya

58

CHAPTER 5: DEVELOPMENT

This chapter discusses detailed development and implementation of the proposed

solution to achieve the research aim and objectives. The development process includes

environmental setup, data migration, the development of the new Odoo module and

implementing methods which was presented in the newly developed module to create

report that retrieves data from the HBase database.

5.1 Environmental setup

To develop the proposed solution, Ubuntu14.0.1 operating system should be

installed; and Odoo, Hadoop and sub components will be installed as well in the

Ubuntu operating system.

5.1.1 Java Installation

Hadoop requires Java to be installed, Java version 1.8.0 is compatible with the

Hadoop version 2.7.3, and the following command is to install java JDK: $ sudo apt-

get install default-jdk, the following command to verify that Java is installed:

$ java -version. If Java is installed, version details displayed as in figure 5.1 below.

Figure 5.1: Installed Java version.

Univ
ers

iti
Mala

ya

59

5.1.2 Hadoop installation and configuration

To install Hadoop, the source should be downloaded from Apache website; then,

unzip the file in /usr/local/Hadoop directory, and to complete the setup of the Hadoop,

the following files should be modified:

• ~/.bashrc:

#HADOOP VARIABLES START

export JAVA_HOME = /usr/lib/jvm/java-7-openjdk-amd64

export HADOOP_INSTALL = /usr/local/hadoop

export PATH = $PATH:$HADOOP_INSTALL/bin

export PATH = $PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME = $HADOOP_INSTALL

export HADOOP_COMMON_HOME = $HADOOP_INSTALL

export HADOOP_HDFS_HOME = $HADOOP_INSTALL

export YARN_HOME = $HADOOP_INSTALL

export HADOOP_COMMON_LIB_NATIVE_DIR = $HADOOP_INSTALL/lib/native

export HADOOP_OPTS = "-Djava.library.path = $HADOOP_INSTALL/lib"

#HADOOP VARIABLES END

• /usr/local/hadoop/etc/hadoop/hadoop-env.sh:

export JAVA_HOME = /usr/lib/jvm/java-7-openjdk-amd64

• /usr/local/hadoop/etc/hadoop/core-site.xml:

<configuration>
<property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:9000</value>
</property>

</configuration>

• /usr/local/hadoop/etc/hadoop/yarn-site.xml:

<configuration>
<property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
</property>

<property>

 <name>yarn.nodemanager.aux-

services.mapreduce.shuffle.class</name>

 <value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>
</configuration>

• /usr/local/hadoop/etc/hadoop/mapred-site.xml.template:

Univ
ers

iti
Mala

ya

60

<configuration>

 <property>

 <name>mapreduce.framework.name</name>

 <value>yarn</value>

 </property>
</configuration>

• /usr/local/hadoop/etc/hadoop/hdfs-site.xml:

<configuration>

 <property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

 <property>

 <name>dfs.namenode.name.dir</name>

 <value>file:/usr/local/hadoop_store/hdfs/namenode</value>

 </property>

 <property>

 <name>dfs.datanode.data.dir</name>

 <value>file:/usr/local/hadoop_store/hdfs/datanode</value>

 </property>
</configuration>

• Run HBase command:

$ /usr/local/HBase/bin/start-dfs.sh

$ /usr/local/HBase/bin/start-yarn.sh

5.1.3 HBase Installation

To install HBase, the following steps were taken:

• Download Hbase source from apache website and unzip file in /usr/local/HBase

directory

• Edit ~/.bashrc file:

export HBASE_HOME = /usr/local/HBase

export PATH = $PATH:$HBASE_HOME/bin

• Edit hbase-site.xml in /usr/local/HBase/conf:

<configuration>

 <property>

 <name>hbase.rootdir</name>

 <value>hdfs://localhost:8030/hbase</value>

 </property>

 <property>

Univ
ers

iti
Mala

ya

61

 <name>hbase.zookeeper.property.dataDir</name>

 <value>/home/hadoop/zookeeper</value>

 </property>

 <property>

 <name>hbase.cluster.distributed</name>

 <value>true</value>

 </property>

</configuration>

• Run HBase command:

$ /usr/local/HBase/bin/start-hbase.sh

Now the HBase was installed and ready to be used.

5.1.4 Phoenix Installation

To install HBase, the following steps were undertaken:

• Download the phoenix-bin.tar from Apache website and expand it.

• Add the phoenix-server.jar to the class path into the HBase lib directory.

• Restart HBase using the following commands:

$ /usr/local/HBase/bin/stop-hbase.sh

$ /usr/local/HBase/bin/start-hbase.sh

• Add the phoenix-[version]-client.jar to the class path of any Phoenix client.

Type the following command to enter the terminal interface to execute SQL

from the command line: $ sqlline.py localhost.

5.1.5 Sqoop Installation

• Download sqoop from Apache website and unzip file in /usr/lib/sqoop directory

• Edit ~/.bashrc file:
export SQOOP_HOME = /usr/lib/sqoop

export PATH = $PATH:$SQOOP_HOME/bin

• Check if the sqoop is installed successfully, and type the command:

$ sqoop version

5.1.6 Installing Thrift API

$ wget sudo dpkg -i automake_1.15-3_all.deb

Univ
ers

iti
Mala

ya

62

$ wget

http://sourceforge.net/projects/boost/files/boost/1.60.0/boost_1

_60_0.tar.g z

$ tar xvf boost_1_60_0.tar.gz

$ cd boost_1_60_0

$./bootstrap.sh

$ sudo ./b2 install

To access the HBase through the thrift, need to open the thrift service on the HBase

by running this command: $ hbase thrift –p 9090 start

5.1.7 Installing HappyBase API

HappyBase library is chosen to send request to the HBase through the Thrift API,

type the following command to install: $ pip install happybase

5.2 Data Migration:

Sqoop tool has been used to migrate data from PostgreSQL to HBase. Define the

SQL database IP, database name, database username and password, the table name to

be imported. The import command is shown in figure 5.2 below.

Figure 5.2: Sqoop import command.

In previous command, --hbase-table clause refers to corresponding HBase table and

if the table does not exist in the HBase, create the table first with the defined column

family and row key. -m 1 is the number of reducers to split and import the data. To list

the table in HBase, enter HBase shell using command: $ hbase shell

sale_order table and all relation tables (sale_oreder_line, product_template and

res_partner) were migrated to HBase db, following figure 5.3 displays scan table

command for sale_order table and the results.

Univ
ers

iti
Mala

ya

63

Figure 5.3: HBase scan.

5.3 Development of HBase Module in Odoo

As described in the system architecture section the manipulated data (CRUD

operations) in Odoo is synchronized to the corresponding HBase table through the

HBase module. Also, the SQL query execution to retrieve data from HBase tables for a

specific report done through HBase module. The development of HBase module

consists of several parts and was created in Odoo with the following specifications:

5.3.1 HBase connection configuration

HBase connection configuration should be defined; therefore, the HBase

configuration class is created in python as shown in figure 5.4 below.

Figure 5.4: HBase configuration class.

Univ
ers

iti
Mala

ya

64

The corresponding form view is as in figure 5.5

Figure 5.5: HBase configuration view XML.

The HBase configuration UI form as in figure 5.6 below.

5.3.2 Data Synchronization

There is a trade-off between the system performance and the data to be up-to-date in

the HBase database. Hence, the system user can define the need and choose between a

real-time synchronization which data will be synchronized automatically when data

transaction created or scheduled synchronization using Odoo’s scheduled actions to

Figure 5.6: HBase configuration UI form. Univ
ers

iti
Mala

ya

65

synchronize the manipulated data in a predefined interval (hourly, daily or weekly).

These two options of synchronization maintain the consistency between the two

databases and can ensure the report generated by the developed module produces

correct results.

 Real-time synchronization

Each model in Odoo has four main functions for the CRUD operations (Create,

Read, Write and Unlink), to synchronize CRUD operations into the HBase tables two

methods were developed using happybase API to access the HBase tables, one for

creating and updating operations, and the second one for deleting operations. Figure 5.7

illustrates the two methods.

Figure 5.7: Real-time synchronization methods. Univ
ers

iti
Mala

ya

66

 Scheduled Synchronization

The second method is to log all CRUD operations in log table using audit log

module, then create scheduler function to synchronize all transactions logged in audit

log into the HBase tables within the pre-defined period. The scheduler functions as

shown in figure below.

Figure 5.8: Scheduler function to synchronize transaction.

The interval period for scheduler function to be implemented should be defined in

the xml file as shown in figure below.

Figure 5.9: Interval period for scheduler function in XML file.

 The interval period can be changed manually from scheduled actions UI form in

Odoo’s system as presented in figure below.

Univ
ers

iti
Mala

ya

67

Figure 5.10: Scheduled actions UI form.

5.3.3 Phoenix Connection using PhoenixDB

As mentioned earlier, Phoenix is a relational layer over the HBase database, it

provides an SQL interface to access the HBase data. Phoenixdb is a Python library to

access Phoenix using remote query server. Hence, accessing the HBase database and

executing the SQL query in parallel to retrieve data. The Phoenix connection

configuration should be defined (query server URL: IP/Port), therefore Phoenix

configuration class is created in python as shown in figure 5.11below

Figure 5.11: Phoenix configuration class.

The corresponding form view is as in figure 5.12.

Univ
ers

iti
Mala

ya

68

Figure 5.12: Phoenix configuration view XML.

The phoenix configuration UI form as in figure 5.13.

Figure 5.13: Phoenix configuration UI form.

To retrieve data from the HBase table, open the connection based on the given URL,

execute the given query and return the result as shown in figure 5.14.

Univ
ers

iti
Mala

ya

69

Figure 5.14: Phoenix execute query method.

5.4 Implementing Methods in Custom Module

Now the Odoo’s framework is integrated with the HBase database, the sale orders

data is synchronized and the HBase module manages the access to the HBase tables.

The final step is to generate a new report that utilizes the developed HBase module;

hence, the data is retrieved from the HBase instead of the PostgreSQL.

5.4.1 Custom Module:

The procedure of developing the new report is the same as using the Odoo’s report

engine, in identifying report render, and designing report’s template in the xml file. But

execute_query() function in the HBase module is called to execute requested query on

the HBase instead of requesting cr.execute() to execute requested query on the

PostgreSQL. Custom sale orders report was developed in the sale module as shown in

figure 5.15 below. Univ
ers

iti
Mala

ya

70

Figure 5.15: Custom sale orders report.

The sale order class was inherited and the ORM methods (create, write and unlink)

were modified to cope real-time synchronization for sale_order table as shown.

Figure 5.17: ORM methods inheritance in sale order class. Figure 5.16: ORM methods inheritance in sale order class.

Univ
ers

iti
Mala

ya

71

5.5 Summary

This chapter explains the development of the proposed solution module

configuration, data synchronization and parallel query function execution using

phoenixdb API. It also describes in detail the implementation of the developed methods

in the custom module.

Univ
ers

iti
Mala

ya

72

CHAPTER 6: EXPERIMENTS, EVALUATION AND RESULTS

This chapter illustrates the experiments that were conducted and the evaluation of

parallel data retrieval to generate reports in terms of retrieval time. It compares the

developed solution with the Odoo QWeb, Jasper Soft and Pentaho. It also discusses the

obtained results.

6.1 Experiments and Evaluation

The data was created in the PostgreSQL and migrated to corresponding HBase tables

in chapter five, are used to conduct the experiments for the developed solution and the

three existing approaches. Each experiment was run with a different number of data

records, starting from 1000 records to one million records. As mentioned in the research

methodology the number of records for each experiment to is determined in the SQL

query that used to run the experiments to generate reports. In this research, the

evaluation factors are retrieval time, the number of data record and the query execution

on the database, to measure the performance of the developed solution and the existed

approaches in data retrieval to generate reports in the Odoo framework.

6.1.1 Retrieval Time:

To compare the retrieval time to generate report for developed solution, QWeb,

Jasper Soft and Pentaho; the same SQL query is executed, and the number of data

records are equal in each experiment. The following figure is the SQL query that was

used to run all the experiments to generate reports.

Figure 6.1: Experiment SQL query.

Univ
ers

iti
Mala

ya

73

6.1.2 Number of Records

The number of retrieved data records from database to generate report has influence

on report performance, in this research, the data of sales orders from Sale module was

used, each record contains order details: order name, order date, customer name,

untaxed amount, taxes, total and order status, the record size average is 85-byte, sample

of the sale orders is shown in table 6.1 below.

Table 6.1: Sample of sale orders dataset.

The experiments were conducted seven times with different number of data records,

the table below shows number of records for each experiment and the experiment size

in Kilobyte.

Table 6.2: Experiments.

Experiment No of Records Size in KB

1 1000 2.34

2 10000 825.84

3 30000 2665.47

4 50000 4505.50

5 100000 9105.47

6 500000 45908.50

7 1000000 91905.46

Univ
ers

iti
Mala

ya

74

6.1.3 Query Execution Time

To compare query execution time between the PostgreSQL database (sequential data

processing) and the HBase (parallel data processing). Direct experiments on both

databases were conducted.

6.2 Results

6.2.1 Generating Reports

Odoo reports can be displayed in either PDF or HTML, the HTML file is first

created and if the report type is PDF; then, the HTML file is rendered to the PDF file.

HTML to PDF process takes long time to be converted using Python Web kit called

wkhtml2pdf, whereas the research aim is to improve the Odoo reporting performance

using parallel data processing and we do not want the report performance measurement

that would affect by another factors. So, all the reports in different approaches were

generated in the HTML format.

After running SQL query (figure 6.1) to retrieve data and generate report in the Odoo

using the HBase connection module (developed solution), Odoo QWeb, Jasper Soft and

Pentaho, the results obtained as follows.

Table 6.3: Approaches experiments results.

Experiment Odoo QWeb Jasper Soft Pentaho
Odoo HBase

Module

1
Execution time/second 5.24 0.44 1.50 4.06

No of Records 1000 1000 1000 1000

2
Execution time/second 8.02 1.21 7.32 4.28

No of Records 10000 10000 10000 10000

3
Execution time/second 10.17 3.40 18.62 5.21

No of Records 30000 30000 30000 30000

Univ
ers

iti
Mala

ya

75

Table 6.3: Approaches experiments results, continued.

Experiment Odoo QWeb Jasper Soft Pentaho
Odoo HBase

Module

4
Execution time/second 14.89 8.32 20.05 9.69

No of Records 50000 50000 50000 50000

5
Execution time/second 20.55 23.94 53.20 15.02

No of Records 100000 100000 100000 100000

6
Execution time/second 107.55 239.45 278.04 52.35

No of Records 500000 500000 500000 500000

7
Execution time/second 511.45 503.60 532.30 104.7

No of Records 1000000 1000000 1000000 1000000

Figure 6.2: Approaches experiments results graph.

6.2.2 Query Execution Time

Another experiment was conducted to compare query execution time between the

PostgreSQL database (sequential data processing) using PgAdmin tool and the HBase

(parallel data processing) using Phoenix console. The following results were obtained.

Univ
ers

iti
Mala

ya

76

Table 6.4: Query execution time in PostgreSQL and HBase.

Experiment PostgreSQL HBase

1
Execution time/second 0.207 0.205

No of Records 1000 1000

2
Execution time/second 1.00 0.55

No of Records 10000 10000

3
Execution time/second 3.20 2.11

No of Records 30000 30000

4
Execution time/second 5.40 2.19

No of Records 50000 50000

5
Execution time/second 10.90 3.44

No of Records 100000 100000

6
Execution time/second 54.60 17.20

No of Records 500000 500000

7
Execution time/second 108.00 37.61

No of Records 1000000 1000000

Figure 6.3: Query execution time graph in PostgreSQL and HBase.

Univ
ers

iti
Mala

ya

77

6.3 Discussion

The experiments’ results show that using the Odoo‘s HBase module to generate

report is faster in retrieving records compared with the QWeb, Jasper Soft and Pentaho.

It shows that when the number of records increases to 500000 records and more, the

execution time gap between the developed solution and the previous approaches is

increases. So, the developed solution is recommended for use when the number of

records to generate the report is 500000 or more, so as to get the benefits of using

parallel processing reports. As it was noticed the developed solution was stable and

slightly increases when the number of records is increased.

(Tripathi, 2011) described the two main factors that the ERP users evaluate for the

success of a report engine, depending on the process reports. This includes easiness of

generating various report and high report performance in term of report processing

time, which are the two factors that are achieved by the developed solution. Whereas

the process of generating report is the same as using the Odoo’s report engine, which

identifies report render, design report template in xml file. Write SQL query to retrieve

report data, all these procedures are easy and well-known for the Odoo developer; no

extra knowledge is needed. The second factor is proven by the conducted experiments

that showed the improvement performance among other existed approaches.

As conclusion from the experiment results, parallel data retrieval shows performance

improvement over sequential data retrieval. On the other hand, PostgreSQL has been

used as the data storage system in Odoo framework whereas a deployment of Hadoop

and sub systems are required to switch data storage from RDBMS to NoSQL and apply

parallel data retrieval to generate report, that means additional cost to be considered.

Hence, there is a tradeoff between the benefit gained and the deployment cost for

reporting performance improvement in terms of the organization's business goals

Univ
ers

iti
Mala

ya

78

achievement. Organizations that process large amount of data record (minimum 500000

record per table) can get significant performance improvement when deploying

developed module.

6.4 Summary

In this chapter, the performance of the Odoo HBase module (developed solution) in

generating reports was evaluated in terms of report processing time and number of

records compared to other existed approaches. According to the results, the

performance of the new Odoo HBase module is much better when the number of

records is 500000 or above compared to other existed approaches. It is also noted that

the execution time increased slightly when the number of records increases, which

makes the Odoo HBase module most suitable while retrieving large data records to

generate reports.

Univ
ers

iti
Mala

ya

79

CHAPTER 7: CONCLUSION

This chapter summarizes the major findings of this research, which highlight the

Odoo reporting process performance using parallel processing. The chapter presents the

objectives of this research, as well as the steps taken to achieve those objectives.

Furthermore, it discusses the research contributions and its limitations, as well as

suggestions for future researchers.

7.1 State-of- the-art

Nowadays, reports play an important role in the organization's success, and they

provide quick information, therefore it helps in making appropriate decision in a timely

manner. The Odoo reporting latency while processing large amount of data record has

direct impact on an organization processes, decisions in proper time and achievement of

business goals.

Improving Odoo’s reporting performance by speeding up the data retrieval time is

important to organizations as operations can be faster and reports can timely be

generated. Furthermore, using an open source framework to apply parallel data retrieval

can guarantee report performance improvement with low additional cost.

7.2 Fulfilment of Research Aims, Objectives and Questions

The overall aim of this research was to improve the performance of reporting process

in the Odoo’s framework to process large scale data records. To fulfil the overall aim of

this study, it formulated three research objectives and three corresponding questions,

which are as follows:

Univ
ers

iti
Mala

ya

80

7.2.1 Research Objectives

 First Objective

The first objective was to determine the limitation of the existing report processing

approaches in the ERP (Enterprise Resource Planning) the Odoo’s framework. This

objective was achieved by reviewing the existing literature to find the gap and because

there is no previous comparison has been done by other researchers to compare between

the three existed reporting system (Odoo QWeb, Jasper Soft and Pentaho), a

preliminary experiment was conducted to prove the limitation on the existed

approaches. The experiment found that reporting performance decreased when the

number of records generated reports increased to 500000 records.

 Second objective

The second objective was to develop a reporting module using parallel data

processing approach for generating reports up to million data records with reduced

processing time in the Odoo’s framework. This objective was met by developing the

new Odoo HBase module that is responsible to configure configuration and connect to

the HBase database to access data, execute SQL query and retrieve data in parallel to

generate reports.

 Third objective

The third objective was to evaluate the performance of the proposed solution in

terms of processing time with the Odoo’s existing approaches. This objective was

achieved by conducting experiments to generate the same report from the same dataset

using the developed HBase module, QWeb, Jasper Soft and Pentaho. The different sizes

of data records in each experiment were defined, the execution time to generate reports

with different sizes of data records were calculated. Another experiment was conducted

Univ
ers

iti
Mala

ya

81

to compare query execution time between PostgreSQL database (sequential data

processing) using PgAdmin tool and the HBase (parallel data processing) using Phoenix

console.

The results from all the experiments show that the execution time of the developed

solution is faster than all the existed approaches, and the execution time gap between

the developed solution and the existed approaches is noticeable when the number of

generated record reports is 500000 records or above. Recommended to use for data

retrieval of 500000 record or more to generate reports.

7.2.2 Research Questions

 First Question

The first question was ‘what is the limitation of the existing Odoo approach used to

generate reports?’ To answer this question an experiment was conducted to prove that

all the existed approaches in the Odoo were unable to cope with huge report. The

experiment found that reporting performance decreased when the number of records

generated reports is up 500000 records.

 Second Question

The second question was ‘what are the suitable tools and framework for developing

the proposed solution to generate large data records report with reduced processing time

in Odoo’s framework?’ This objective was answered by developing the new Odoo

HBase module that was capable to connect to the HBase database, access data, execute

SQL query and retrieve data in parallel to generate reports.

Univ
ers

iti
Mala

ya

82

 Third Question

The third question was ‘what is the processing time of the existing approach and the

proposed solution for generating report with large data records?’ This question was

answered by conducting experiments to generate same report from same dataset using

the developed HBase module, QWeb, Jasper Soft and Pentaho. Then, the execution

time to generate reports with different sizes of data records was calculated.

7.3 Contribution

The main contribution of this research is report processing performance

improvement for large data records in the Odoo’s framework, and to reduce the

processing time compared with the existed approaches. In addition, the developed

solution that improves the report processing performance in the Odoo’s framework is

general and not prepared for a specific module. That means, it can be used by any

module in Odoo. Furthermore, the HBase connection configurations for the HBase

integration are dynamic, if server IP or port is changed; no need to modify the code

only that can edit HBase configuration form in Odoo, and this feature provides flexible

implementation to generating reports.

Additionally, the developed module can ensure the data consistency between

PostgreSQL and HBase database due to the developed data synchronization methods

which provide two options: real-time synchronization and scheduled synchronization.

This data synchronization maintains the consistency between the two databases and can

ensure the report generated by the developed module produces correct results.

7.4 Work Limitation

The developed solution used (Phoenixdb API library) to access Phoenix through

remote query server. One limitation of the API in this research is that it does not

Univ
ers

iti
Mala

ya

83

support subquery feature at all. A Subquery or Inner query or Nested query is a query

within another SQL query, and it is embedded within the SELECT clause, the

WHERE clause or the FROM clause. A subquery is used to return data that is used in

the main query as a condition to filter the data that are retrieved.

Although phoenix supports subqueries in the WHERE clause and the FROM clause,

it has two limitations in the subqueries. First, it does not support subqueries in having

clause. The having clause is used when the specified condition includes aggregate

functions that perform a calculation on a set of values to return a single value like

average, count, minimum, maximum and sum. Meanwhile, the select statement should

only return rows that meet aggregate values condition, because the WHERE clause

could not be used with aggregate functions. Second, it does not support subqueries in

the SELECT clause. Such limitations may prevent some complicated report to be

generated with the developed solution (Apache, n.d.).

7.5 For Future Research

As mentioned earlier the developed solution in this research used a single node of

Hadoop cluster. However, for future research, it is recommended to add more nodes

and re-evaluate the report performance, and the number of nodes should be defined

based on the dataset size because data distribution and replication provide high data

processing performance. But on the other hand, data transfer latency between nodes

should be considered. Additionally, Phoenix has been used as SQL layer over the

HBase to execute the SQL query in parallel, other Hadoop projects can be used to apply

parallel processing to execute the SQL query. Then, compare the performance between

the two different Hadoop projects, and further studies should be conducted to find out

other Hadoop projects that function like the Phoenix.

Univ
ers

iti
Mala

ya

84

Another evaluation can be done using multiple report requests at the same time while

conducting the experiments, then re-evaluate the report performance for each report and

compare them with the single report request performance system to figure out the

impact of the concurrent report processing on the report performance.

Besides, a Map-Reduce job can be developed, to retrieve data from the HBase

database directly in parallel, to generate the required reports without the need for the

SQL layer. This approach can be complicated and may require more experience in the

Map-Reduce modelling.

Univ
ers

iti
Mala

ya

85

REFERENCES

Agarwal, S., & Rajan, K. (2017). Analyzing the performance of NoSQL vs. SQL
databases for Spatial and Aggregate queries. Free and Open Source Software for

Geospatial (FOSS4G) Conference Proceedings, 17.
https://doi.org/https://doi.org/10.7275/R5736P26

Apache. (n.d.). Subqueries. Apache Software Foundation. Retrieved January 11, 2019,
from https://phoenix.apache.org/subqueries.html

Ayma, V. A., Ferreira, R. S., Happ, P., Oliveira, D., Feitosa, R., Costa, G., Plaza, A., &
Gamba, P. (2015). Classification algorithms for big data analysis, a map reduce
approach. International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences - ISPRS Archives, 40(3/W2), 17–21.
https://doi.org/10.5194/isprsarchives-XL-3-W2-17-2015

Bu, Y., Howe, B., Balazinska, M., & Ernst, M. D. (2010). HaLoop- Efficient Iterative
Data Processing.pdf. Proceedings of the VLDB Endowment, 3(1), 285–296.

Dezdar, S., & Ainin, S. (2011). The influence of organizational factors on successful
ERP implementation. Management Decision, 49(6), 911–926.
https://doi.org/10.1108/00251741111143603

Enaya, M. F. (2016). An Experimental Performance Comparison of NoSQL and

RDBMS Data Storage Systems in the ERP System Odoo. University of Magdeburg.

Ganesh, A., K, S., C, S., & A, M. (2016). OpenERP / Odoo – An Open Source Concept
to ERP. IEEE 6th International Conference on Advanced Computing, 112–116.
https://doi.org/10.1109/IACC.2016.30

Gripe, F., & Rodello, I. (2011). A theoretical analysis of key points when choosing open
source ERP systems. JISTEM Journal of Information Systems and Technology

Management, 8(2), 414–458. https://doi.org/10.4301/s1807-17752011000200010

Univ
ers

iti
Mala

ya

86

Jindal, N., & Dhindsa, K. (2013). Comparative Study of Open ERP and its
Technologies. International Journal of Computer Applications, 73(20), 42–47.

Jogi, V. D., & Sinha, A. (2016). Performance evaluation of MySQL, Cassandra and
HBase for heavy write operation. 2016 3rd International Conference on Recent

Advances in Information Technology, RAIT 2016, 586–590.
https://doi.org/10.1109/RAIT.2016.7507964

Jung, M. G., Youn, S. A., Bae, J., & Choi, Y. L. (2015). A study on data input and
output performance comparison of MongoDB and PostgreSQL in the big data
environment. Proceedings - 8th International Conference on Database Theory and

Application, DTA 2015, 14–17. https://doi.org/10.1109/DTA.2015.14

Kendengis, Y., & Santoso, L. W. (2018). Integration Between ERP Software and
Business Intelligence in Odoo ERP: Case Study A Distribution Company.
Advances In Natural And Applied Sciences, 12(4), 16–21.
https://doi.org/10.22587/anas.2018.12.4.4

Kowanda, D., Firdaus, M., Bismark, R., & Pasaribu, F. (2015). Opportunity of Free
Open Source ERP System as a Competitive Advantage for Small and Medium
Enterprise. 1st Unnes International Conference on Research Innovation &

Commercialization for the Better Life 2015.

Kr.Shukla, A., & Indian, A. (2013). Enterprise Resource Planning: An Open Source
System. International Journal of Computer Applications, 84(17), 19–21.
https://doi.org/10.5120/14678-1541

Lee, K., Lee, Y., Choi, H., Chung, Y. D., & Moon, B. (2011). Parallel data processing
with MapReduce. ACM SIGMOD Record, 40(4), 11–20.
https://doi.org/10.1145/2094114.2094118

Li, Y., & Manoharan, S. (2013). A performance comparison of SQL and NoSQL
databases. IEEE Pacific RIM Conference on Communications, Computers, and

Signal Processing - Proceedings, 15–19.
https://doi.org/10.1109/PACRIM.2013.6625441

Univ
ers

iti
Mala

ya

87

Moniruzzaman, A. B. M., & Hossain, S. A. (2013). NoSQL Database : New Era of
Databases for Big data Analytics - Classification , Characteristics and Comparison.
International Journal of Database Theory and Application, 6(4), 1–14.

Moss, G. (2013). Working with OpenERP. Birmingham: Packt Publishing Ltd.

Moss, G. (2017). Working with Odoo 10 (2nd ed.). Birmingham: Packt Publishing Ltd.

Nah, F., Lau, J., & Kuang, J. (2001). Critical factors for successful implementation of
enterprise systems. Business Process Management Journal, 7(3), 285–296.

Narasimhan, R., & Bhuvaneshwari, T. (2014). Big Data – A Brief Study. International

Journal of Scientific & Engineering Research, 5(9), 350–353.

Nayak, A., Poriya, A., & Poojary, D. (2013). Type of NOSQL Databases and its
Comparison with Relational Databases. International Journal of Applied

Information Systems, 5(4), 16–19.

Osman, A., El-Refaey, M., & Elnaggar, A. (2013). Towards real-time analytics in the
cloud. Proceedings - 2013 IEEE 9th World Congress on Services, SERVICES

2013, 428–435. https://doi.org/10.1109/SERVICES.2013.36

Pellakuri, V., & Rao, D. R. (2014). Hadoop Mapreduce Framework in Big Data
Analytics. International Journal of Computer Trends and Technology (IJCTT),
8(3), 115–119.

Reis, D. (2016). Odoo 10 Development Essentials. Birmingham : Packt Publishing Ltd.

Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The Hadoop Distributed
File System. Proceedings of the 2010 IEEE 26th Symposium on Mass Storage

Systems and Technologies, 1–10.

Univ
ers

iti
Mala

ya

88

Singh, S., Singh, P., Garg, R., & Mishra, P. K. (2015). Big Data: Technologies, Trends
and Applications. International Journal of Computer Science and Information

Technologies, 6(5), 4633–4639.

Vaja, D., & Rahevar, M. (2016). Improve performance of ORM caching using In-
Memory caching. International Conference on Computing, Analytics and Security

Trends (CAST), 112–115.

Vartak, P., Desai, A., & Kamble, S. (2014). Empirical Study of Open Source ERP
Systems. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES &

RESEARCH TECHNOLOGY, 3(5), 1–5.

Vora, M. N. (2011). Hadoop-HBase for large-scale data. Proceedings of 2011

International Conference on Computer Science and Network Technology (ICCSNT

), 1, 601–605. https://doi.org/10.1109/ICCSNT.2011.6182030

Warneke, D., & Kao, O. (2009). Nephele : Efficient Parallel Data Processing in the
Cloud Categories and Subject Descriptors. Proceedings of the 2nd ACM Workshop

on Many-Task Computing on Grids and Supercomputers 2009, MTAGS, 09.
https://doi.org/10.1145/1646468.1646476

Warneke, D., & Kao, O. (2011). Exploiting dynamic resource allocation for efficient
parallel data processing in the cloud. IEEE Transactions on Parallel and

Distributed Systems, 22(6), 985–997. https://doi.org/10.1109/TPDS.2011.65

Zafar, R., Yafi, E., Zuhairi, M. F., & Dao, H. (2016). Big Data: The NoSQL and
RDBMS review. ICICTM 2016 - Proceedings of the International Conference on

Information and Communication Technology, 120–126.
https://doi.org/10.1109/ICICTM.2016.7890788

Univ
ers

iti
Mala

ya

