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ENERGY EFFICIENT POWER ALLOCATION FOR DOWNLINK NON-

ORTHOGONAL MULTIPLE ACCESS NETWORKS BASED ON GAME 

THEORY AND GENETIC ALGORITHM    

ABSTRACT 

The exponential growth in the number of users and their increasingly diverse demands in 

next-generation wireless networks has created significant challenges in managing limited 

resources while ensuring energy-efficient communication. The need to meet the quality 

of service (QoS) requirements for this rapidly expanding user base, particularly with 

heightened data rate expectations, underscores the urgency for innovative solutions. 

Although 5G and beyond technologies provide a foundation for next-generation 

networks, further advancements are required to improve energy efficiency (EE) and 

spectrum efficiency (SE) to meet these demands. This study focuses on optimizing 

energy-efficient power allocation in Non-Orthogonal Multiple Access (NOMA) systems, 

a transformative approach that allows multiple users to share resources simultaneously. 

The research leverages Artificial Intelligence (AI)-based Genetic Algorithms (GA) and 

game theory to address critical challenges in resource allocation. GA is specifically 

chosen for its ability to solve complex, non-linear problems by efficiently navigating large 

solution spaces. Complementing this, game theory offers a robust framework to model 

strategic interactions among users, ensuring fair and effective resource distribution. 

Together, these methods tackle critical gaps in resource allocation, including the trade-

off between energy efficiency and data rate, and the challenges posed by both perfect and 

imperfect channel state information (CSI). The novel power allocation mechanism 

developed in this study demonstrates significant improvements. The proposed method 

achieves a 75% enhancement in energy efficiency compared to conventional Orthogonal 

Multiple Access (OMA) and an 11% improvement over benchmark NOMA algorithms. 
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Additionally, it reduces outage probability by 25% and 10% relative to OMA and existing 

NOMA algorithms, respectively. These results validate the algorithm's robustness, 

particularly under imperfect CSI conditions, where traditional methods often fail. 

Furthermore, the research explores advanced applications such as integrating NOMA 

with Millimeter-Wave technology and optimizing user association strategies, enhancing 

system capacity and overall performance. The findings highlight the pivotal role of 

Genetic Algorithms and game theory in overcoming the limitations of conventional 

resource allocation methods. The integration of these advanced techniques ensures 

adaptability, efficiency, and resilience in dynamic network environments. By achieving 

substantial gains in energy efficiency and data rates, this study sets a new benchmark for 

resource allocation strategies in 5G and beyond networks. The proposed method 

demonstrates how AI-driven solutions, coupled with strategic modeling frameworks like 

game theory, can address the pressing challenges of next-generation wireless 

communication systems effectively. 

Keywords: 5G Networks, Artificial Intelligence (AI), Game Theory, Genetic 

Algorithm, Non-Orthogonal Multiple Access (NOMA). 
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PERUNTUKAN KUASA CEKAP TENAGA UNTUK RANGKAIAN AKSES 

BERBILANG BUKAN ORTOGONAL BUKAN ORTOGONAL BERDASARKAN 

TEORI PERMAINAN DAN ALGORITMA GENETIK 

ABSTRAK 

Pertumbuhan eksponen dalam bilangan pengguna dan permintaan mereka yang 

semakin pelbagai dalam rangkaian wayarles generasi akan datang telah mewujudkan 

cabaran yang ketara dalam menguruskan sumber yang terhad sambil memastikan 

komunikasi yang cekap tenaga. Keperluan untuk memenuhi keperluan kualiti 

perkhidmatan (QoS) untuk pangkalan pengguna yang berkembang pesat ini, terutamanya 

dengan jangkaan kadar data yang lebih tinggi, menekankan keperluan untuk penyelesaian 

inovatif. Walaupun teknologi 5G dan seterusnya menyediakan asas untuk rangkaian 

generasi akan datang, kemajuan selanjutnya diperlukan untuk meningkatkan kecekapan 

tenaga (EE) dan kecekapan spektrum (SE) untuk memenuhi permintaan ini. Kajian ini 

memberi tumpuan kepada mengoptimumkan peruntukan kuasa cekap tenaga dalam 

sistem Akses Berbilang Bukan Ortogonal (NOMA), pendekatan transformatif yang 

membolehkan berbilang pengguna berkongsi sumber secara serentak. Penyelidikan itu 

memanfaatkan Algoritma Genetik (GA) berasaskan Kecerdasan Buatan (AI) dan teori 

permainan untuk menangani cabaran kritikal dalam peruntukan sumber. GA dipilih 

secara khusus kerana keupayaannya untuk menyelesaikan masalah yang kompleks dan 

bukan linear dengan mengemudi dengan cekap ruang penyelesaian yang besar. 

Melengkapkan ini, teori permainan menawarkan rangka kerja yang mantap untuk 

memodelkan interaksi strategik di kalangan pengguna, memastikan pengagihan sumber 

yang adil dan berkesan. Bersama-sama, kaedah ini menangani jurang kritikal dalam 

peruntukan sumber, termasuk pertukaran antara kecekapan tenaga dan kadar data, dan 

cabaran yang ditimbulkan oleh maklumat keadaan saluran (CSI) yang sempurna dan tidak 

sempurna. Mekanisme peruntukan kuasa baru yang dibangunkan dalam kajian ini 
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menunjukkan peningkatan yang ketara. Kaedah yang dicadangkan mencapai peningkatan 

kecekapan tenaga sebanyak 75% berbanding dengan Akses Berbilang Ortogonal (OMA) 

konvensional dan peningkatan 11% berbanding algoritma penanda aras NOMA. Selain 

itu, ia mengurangkan kebarangkalian gangguan sebanyak 25% dan 10% berbanding 

dengan OMA dan algoritma NOMA sedia ada, masing-masing. Keputusan ini 

mengesahkan keteguhan algoritma, terutamanya dalam keadaan CSI yang tidak 

sempurna, di mana kaedah tradisional sering gagal. Tambahan pula, penyelidikan itu 

meneroka aplikasi termaju seperti menyepadukan NOMA dengan teknologi Gelombang 

Milimeter dan mengoptimumkan strategi persatuan pengguna, meningkatkan kapasiti 

sistem dan prestasi keseluruhan. Penemuan ini menyerlahkan peranan penting Algoritma 

Genetik dan teori permainan dalam mengatasi batasan kaedah peruntukan sumber 

konvensional. Penyepaduan teknik canggih ini memastikan kebolehsuaian, kecekapan 

dan daya tahan dalam persekitaran rangkaian dinamik. Dengan mencapai keuntungan 

besar dalam kecekapan tenaga dan kadar data, kajian ini menetapkan penanda aras baharu 

untuk strategi peruntukan sumber dalam 5G dan seterusnya rangkaian. Kaedah yang 

dicadangkan menunjukkan bagaimana penyelesaian dipacu AI, ditambah dengan rangka 

kerja pemodelan strategik seperti teori permainan, boleh menangani cabaran mendesak 

sistem komunikasi wayarles generasi akan datang dengan berkesan. 

Keywords: Rangkaian 5G, Kecerdasan Buatan , Teori Permainan, Algoritma Genetik, 

Capaian Berbilang Bukan Ortogon. Univ
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CHAPTER 1: INTRODUCTION 

1.1 Background  

A state-of-the-art wireless communication technology called Non-Orthogonal 

Multiple Access (NOMA) allows multiple users to share a time-frequency resource, like 

a channel or sub-channel, simultaneously. Using power domain multiplexing, NOMA 

enables various users to share the available resources concurrently, in contrast to 

traditional OMA schemes where users are assigned separate and non-overlapping 

resource blocks. This enables more effective use of the available spectrum by allocating 

various power levels to users within the same time-frequency resource. Users in NOMA 

are assigned power levels based on their channel conditions; users in poorer channel 

conditions are assigned lower power levels. NOMA breaks the conventional rule of 

exclusive resource allocation to a single user in the power domain by using non-

orthogonal superposition coding to transmit signals from multiple users and using 

Successive interference cancellation (SIC) at the receiver to eliminate interference, 

proposing a new idea of multi-user G. Wu, Chen, and Chen (2023). This increases system 

capacity and spectral efficiency by enabling the base station to transmit and receive 

multiple signals simultaneously (Qi, Xie, & Liu, 2022). When it comes to improving the 

functionality of next-generation wireless communication systems, like the fifth 

generation (5G) and beyond, NOMA is especially promising (Kumar, Hanif, Juntti, & 

Tran, 2023).  

However, the deployment of NOMA technology comes with its own set of challenges, 

particularly in the domain of energy-efficient power allocation. First, it is questionable 

whether it is fair to assign users different power levels based on their channel conditions 

and whether sufficient Quality of Service (QoS) is provided for each user. Resolving 

power disparities while upholding equity is a crucial obstacle in NOMA energy-efficient 

power allocation. Second, NOMA needs complex resource allocation algorithms in order 
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to figure out what each user's ideal power level is (Aghdam, Tazehkand, & Abdolee, 

2022). One major challenge is to design scalable and effective algorithms that can adjust 

to changing user requirements and dynamic channel conditions. Moreover, interference 

is considered an issue since there is a chance that users who are sharing the same resources 

could interfere with one another when multiple signals are transmitted simultaneously in 

NOMA. To lessen the effects of interference and guarantee dependable communication, 

effective interference management techniques are crucial (L. Xu, Cai, Chang, Fang, & 

Li, 2022). 

In addition, achieving perfect channel state information is difficult in real wireless 

communication systems where wireless channels can experience changes and oscillations 

over time. To continuously optimize performance, NOMA energy-efficient power 

allocation systems need to be able to dynamically adapt to shifting channel conditions 

(Ihsan, Chen, Zhang, & Xu, 2022). Therefore, advanced front and back-haul 

infrastructure may be needed for NOMA to facilitate the simultaneous transmission and 

reception of multiple signals. There are additional challenges in maintaining the network 

infrastructure's dependability and managing the increased data rates. Finally, even though 

NOMA can increase spectral efficiency (Budhiraja et al., 2021), it is crucial to take the 

system's energy efficiency (EE) into account, particularly when raising power levels for 

users with better channel conditions. An essential component of energy efficient power 

allocation in NOMA is striking a balance between power consumption and efficiency. 

It will take a combination of sophisticated algorithms, flexible systems, and strong 

network infrastructure to overcome these obstacles. To ensure that NOMA's potential 

benefits are realized in realistic wireless communication scenarios, ongoing research and 

development efforts are concentrated on optimizing it for real-world deployment 

(Kebede, Wondie, Steinbrunn, Kassa, & Kornegay, 2022; Shah, Qasim, Karabulut, Ilhan, 

& Islam, 2021). 

Univ
ers

iti 
Mala

ya



3 

The size of the transmitted data in the sixth generation (6G) is expected to be doubled 

ten to hundred times as compared to the 5G (S. Chen et al., 2020).  Although many 

challenges appeared in 5G, such as energy-saving, (Souza, Vieira, Seruffo, & Cardoso, 

2020; Zekri & Jia, 2018), the critical issues and challenges in 6G seem to be higher, such 

as attaining an improvement in system throughput, optimizing the spectrum efficiency 

(SE), reducing the time delay, and wider coverage (S. Chen et al., 2020). It is crucial to 

develop creative solutions that can improve the utilization of network resources as the 

demand for wireless services keeps rising, particularly in the context of NOMA, which is 

a crucial technology for 5G and beyond (Z. Wei, Yang, Ng, Yuan, & Hanzo, 2020). By 

allowing non-orthogonal sharing of the same time-frequency resources, NOMA could 

improve spectral efficiency. However, in NOMA networks, efficient resource allocation, 

energy saving, and data rate maximization present challenging optimization problems 

(Zamani, Eslami, Khorramizadeh, & Ding, 2019).  

With the growing Internet of Things (IoT) and cloud-based applications, the demand 

for new services and data traffic for wireless communications has increased 

tremendously. Thus, one of the expectations for 6G is to increase the transmission data 

rate to achieve a peak value of 1 Tbps to provide a massive number of users with the 

required service (T. Huang et al., 2019). The accessible spectrum resources are restricted 

since they serve tens of thousands of pieces of mobile communications equipment and 

therefore more techniques are required to guarantee the connection quality for each user 

(X. Liu, Ding, & Hu, 2021). NOMA is considered a very promising technique beyond 5G 

and 6G where it provides services to several users simultaneously at the same subcarrier 

and at the same time through the use of superposition coding in the power domain (L. 

Zhu, Z. Xiao, X. G. Xia, & D. O. Wu, 2019). NOMA has several advantages such as high 

SE, improved cell edge data rate, low latency, and good compatibility with other 

techniques such as orthogonal multiple access (OMA) (Wan, Wen, Ji, Yu, & Chen, 2018). 
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Moreover, considerable improvements in SE, EE, and outage probability are achieved in 

Multiple Input Multiple Output (MIMO) NOMA -based communications compared to 

MIMO-OMA when an appropriate resource allocation is implemented (Ghosh, Sharma, 

Haci, Singh, & Ra, 2021). However, channels in massive MIMO systems exhibit a high 

degree of spatial correlation. Information that describes the present state or condition of 

a communication channel in a wireless communication system is referred to as channel 

state information (CSI). A communication channel's properties can change as a result of 

things like obstructions, interference, signal reflections, and other external factors. By 

offering insightful information about the channel's current condition, channel state 

information enables the communication system to adjust and perform at peak efficiency. 

CSI facilitates intelligent resource allocation in wireless networks. The system can 

maximize network performance by allocating resources like time slots, frequency bands, 

or power levels efficiently by knowing the channel conditions for various users or 

devices. In (Chopra, Murthy, Suraweera, & Larsson, 2019), a large-system analysis is 

applied to the covariance-aided CSI acquisition strategy in the MIMO system, which 

exploits the individual covariance matrices for channel estimation when non-orthogonal 

pilot sequences are used. The analysis shows that the training overhead can be reduced 

when a covariance-aided strategy is implemented compared to the conventional CSI 

acquisition, where no knowledge of the user spatial co-variance matrices is known.  

The number of connected equipment massively increased in 5G compared to the 

previous fourth generation (4G) networks (Agiwal, Roy, & Saxena, 2016; Andrews et al., 

2014). By 2030, the density of connected devices is expected to reach 107 devices/km2, 

and multimedia applications will be the most popular applications for users, such as 

mobile video calls, streaming videos, and online conferences. As a result, the required 

data rate will rise about 10 times more than that in 4G, and the peak transmitted data in 

the 5G is expected to be about 20 Gbps (Bai, Yao, Zhang, & Leung, 2019; Z. Zhang et 
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al., 2019). On the other hand, the SE and the EE should be enhanced in 5G by x5 and 

x100 times, respectively (Z. Zhang et al., 2019). Therefore, satisfying the requirements 

of a massive number of users within the network's limited resources is considered a 

challenge in 5G. 

1.2 Motivation of the study  

In today's hyper-connected world, the demand for faster and more reliable wireless 

communication networks is insatiable. The emergence of 5G technology has promised to 

revolutionize the way people connect and communicate, offering unprecedented data 

rates and low latency. NOMA has emerged as a key technology in 5G networks, allowing 

multiple users to share the same time and frequency resources, thus significantly 

enhancing spectral efficiency. However, it is faced with the pressing need to ensure the 

sustainability and energy efficiency of these networks (Islam, Avazov, Dobre, & Kwak, 

2017). Despite the promises of 5G technology and the potential benefits of NOMA in 

enhancing SE, its integration into 5G networks poses several challenges. Sophisticated 

algorithms are needed to dynamically adapt to changing user conditions to ensure fairness 

and quality of service due to the complex resource allocation required by NOMA. To 

reduce the inter-user interference caused by multiple simultaneous transmissions, 

effective interference management becomes essential. Significant challenges also include 

addressing the dynamic nature of wireless channels, the requirement for sophisticated 

front- and back-haul infrastructure, and striking a balance between EE and higher power 

levels. In our hyper-connected world, standardization, security issues, and deployment 

costs highlight the complex terrain of NOMA implementation in the pursuit of faster and 

more dependable wireless networks. 

Energy efficiency optimization and data rate optimization are critical issues in NOMA 

5G networks, and this thesis aims to address these challenges using advanced techniques 

such as game theory and genetic algorithms. This research is motivated by several 
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compelling reasons. Energy efficiency is one of the most important concerns. With the 

proliferation of wireless devices and increasing demand for data, the energy consumption 

of 5G networks is skyrocketing. Energy-efficient communication systems are imperative 

to reduce carbon footprints and operational costs. Game theory and genetic algorithms 

have shown promise in optimizing wireless communication systems. Game theory and 

genetic algorithms can provide novel solutions to optimize energy efficiency and data rate 

in NOMA-based 5G networks (R. Liu, Lee, Yu, & Li, 2020; Luo et al., 2019; K. Wang, 

Cui, Ding, & Fan, 2019). Secondly, improving the QoS by providing users with a high 

data rate is an essential challenge beyond 5G (B5G) where the explosive growth of data-

hungry applications, including augmented reality, virtual reality, 4K video streaming, and 

IoT devices, has placed unprecedented pressure on 5G networks to deliver high data rates. 

NOMA, with its ability to enhance spectral efficiency, offers a promising solution. 

However, effective resource allocation and data rate optimization techniques are required 

to harness NOMA's full potential (P. Zhang, Yang, Chen, & Huang, 2019). 

1.3 Problem statement  

The optimization of resource allocation in the downlink (DL) is a challenging task in 

the context of NOMA systems, especially when there is imperfect CSI. This study tackles 

this important problem by exploring how game theory and genetic algorithms can be 

utilized to create novel approaches for data rate optimization and EE optimization in 

NOMA systems. Robust algorithms that strategically allocate power and optimize user 

pairings are imperative due to the inherent uncertainties introduced by imperfect CSI. 

Conventional algorithms may struggle to adapt to the dynamic and varying conditions in 

wireless channels, especially in NOMA systems with imperfect CSI. Furthermore, in 

situations where the communication environment is complex and prone to sudden 

changes, traditional algorithms may offer suboptimal solutions for user pairing and power 

allocation. The research aims to bridge this gap by proposing a novel framework that 
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leverages game-theoretic principles and genetic algorithms to adapt to the challenges 

posed by imperfect channel information. It is anticipated that the results of this study will 

advance the field of wireless communication by adding to the theoretical underpinnings 

of NOMA systems and providing useful insights into optimizing downlink performance 

in imperfect CSI scenarios found in real-world settings.  

The following explains the significance of these goals and how the proposed strategy 

utilizing genetic algorithms and game theory adds to the picture: 

1. The data rate: As bandwidth-intensive applications like video streaming, 

virtual reality, Electronic learning (E-learning), online gaming, and 

augmented reality become more commonplace in our hyper-connected world, 

there is an unquenchable need for faster data rates. Applications requiring 

large data throughput can benefit from a more responsive and seamless user 

experience thanks to higher data rates, which also translate to faster upload 

and download. The game theory-based algorithm is proposed in this study to 

solve the data rate optimization problem in several scenarios where the effect 

of the error in the channel state information is considered. 

2. Energy efficiency: In wireless communication systems, energy efficiency is 

crucial because it affects the network infrastructure's environmental 

sustainability and operational costs. In order to meet the increasing demand 

for high-performance wireless communication, NOMA systems must 

maximize data rate and EE. 

3. The cooperation between NOMA and other technologies: The effect of 

jointing mmWaves and user association technologies with the NOMA system 

to improve the system performance will be proved. Hence, there is a need for 

an efficient resource allocation method which considered the mentioned 

challenges to improve the performance of DL NOMA system.  
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1.4 Research objectives 

The main aim of the research is to investigate the resource allocation in the DL NOMA 

cellular systems. The research addresses various performance for NOMA systems, for 

example, optimizing the sum data rate and the energy efficiency of the DL NOMA 

system. The research also covered many scenarios such as single-cell and multi-cell 

networks for both: perfect CSI and imperfect CSI cases. Moreover, this thesis investigates 

user association for the NOMA-millimeter Waves (mmWaves) system. The objectives of 

the research are: 

1. The first objective focuses on developing advanced power allocation 

strategies for DLNOMA systems. Game theory is employed to model and 

resolve strategic user interactions, ensuring equitable and efficient resource 

distribution in a multi-user environment. Genetic algorithms (GAs), known 

for their robustness in exploring large, complex solution spaces, are 

integrated to overcome the limitations of traditional optimization methods. 

These methods are particularly suited to address constrained system resources 

and maintain user terminal threshold levels while optimizing system 

performance. 

2. The second objective addresses the significant challenge of optimizing non-

concave data rate and EE problems in NOMA systems. Game theory provides 

a theoretical framework to represent user interactions and develop strategic 

decision-making models. Genetic algorithms are utilized as an AI-based 

approach to navigate the complexity of non-concave optimization, efficiently 

searching for near-optimal solutions by simulating the process of natural 

evolution. This combined approach ensures the practicality and scalability of 

the optimization process, bridging a key gap in existing methodologies. 

Univ
ers

iti 
Mala

ya



9 

3. This objective evaluates the robustness and effectiveness of the proposed 

power allocation schemes in both perfect and imperfect Channel State 

Information (CSI) scenarios. A comprehensive analysis of key performance 

metrics, including sum data rate, energy efficiency, and outage probability, is 

conducted to validate the algorithm’s practicality in real-world conditions. The 

evaluation highlights the adaptability of the proposed methods to dynamic 

network environments, further reinforcing their suitability for next-generation 

wireless communication systems. 

The objectives of the research are successfully achieved through the proposed 

methodologies and comprehensive evaluations. The developed power allocation 

mechanisms based on game theory and genetic algorithms effectively optimize the data 

rate and energy efficiency in both single-cell and multi-cell NOMA networks, 

demonstrating superior performance under perfect and imperfect CSI conditions. 

1.5 Research scope 

This research explores resource management in NOMA networks, emphasizing the 

application of game theory and genetic algorithms. The study addresses challenges related 

to energy efficiency, data rate optimization, and resource allocation under both perfect 

and imperfect CSI. The scope of the research is defined as follows: 

1. Context and problem area: The research investigates the optimization of power 

allocation strategies in NOMA-based wireless communication networks, which 

are critical for addressing the growing demand for energy efficiency and high data 

rates in 5G and beyond networks. The study accounts for complex challenges, 

such as dynamic user conditions, interference management, and the inherent 

uncertainties of imperfect CSI. 

2. Core objectives:  The research is structured to achieve the following objectives: 
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 Develop power allocation mechanisms utilizing game theory and genetic 

algorithms to enhance energy efficiency and data rate performance in DL 

NOMA systems. 

 Analyze non-convex optimization problems related to energy efficiency 

and data rates, particularly in scenarios involving imperfect CSI. 

 Evaluate the performance of proposed resource management algorithms 

through simulation, focusing on metrics such as energy efficiency, outage 

probability, and average data rate.  

3. Methodological framework: Two approaches are utilized in this study: 

 Game Theory: The study employs game-theoretic models to formulate 

resource allocation as strategic user interactions. These models address 

fairness and efficiency in power distribution, ensuring that all users 

achieve satisfactory QoS. 

 Genetic algorithms: Genetic algorithms are applied to solve complex, non-

linear optimization problems. The research leverages these algorithms to 

optimize power allocation and user clustering in NOMA systems, 

especially under asymmetric user requirements and limited resources. 

4. Technical scope: The study examines: 

 Single-cell and multi-cell NOMA networks. 

 Scenarios integrating NOMA with advanced technologies such as 

Millimeter-Wave (mmWave). 

 The effects of imperfect CSI on resource allocation strategies and system 

robustness. 
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 Comparative analyses between NOMA and conventional OMA systems 

to highlight performance improvements. 

5. Expected Contributions: The research aims to provide: 

 Enhanced power allocation strategies for improving energy efficiency and 

reducing outage probabilities.  

 Advanced algorithms that balance resource utilization and QoS, ensuring 

scalable solutions for future wireless communication networks. 

 Insights into the integration of NOMA with other emerging technologies, 

such as mmWave, to maximize system capacity and efficiency. 

By addressing these aspects, this research contributes to advancing resource 

management strategies in next-generation wireless communication systems, supporting 

the evolution from 5G to 6G networks. 

1.6 Thesis overview 

This thesis consists of five chapters. Chapter 1 presents the background of the 

optimization problems in NOMA-based networks, the motivation of the study, the 

problem statement, and the objectives of the study. Chapter 2 presents a concise literature 

review concerning data rate optimization and EE in NOMA-based systems. Besides that, 

recent research is critically reviewed and discussed to provide a brief knowledge of the 

importance of energy-efficient power allocation in NOMA and the related challenges. 

Chapter 3 comprehensively describes the methodologies proposed in the study starting 

with the game theory and the role of the power allocation (PA) in optimizing data rate 

and EE in the CSI DL NOMA system. Then, the proposed genetic algorithm is described 

in detail. Chapter 4 critically analyses and discusses the results obtained by implementing 

game theory and GA to optimize the data rate and energy efficiency in the CSI DL NOMA 
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system. Chapter 5 summarizes the research results and findings and drives the overall 

thesis conclusions. The chapter also provides recommendations for further improvement 

in the future.
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CHAPTER 2: LITERATURE REVIEW 

This chapter presents a review of data rate optimization and EE optimization problems 

in NOMA-based networks and discusses the related works. This chapter is structured as 

follows. Section 2.1 presents the concept of NOMA and its advantages compared to 

OMA. Section 2.2 presents the PA and its role in source management in the NOMA 

system. Section 2.3 reviews the data rate optimization in NOMA systems while Section 

2.4 reviews the energy efficiency in NOMA systems. 

2.1 Multiple Access Techniques   

2.1.1 Orthogonal Multiple Access (OMA) 

Generally, multiple access techniques can be categorized into orthogonal and non-

orthogonal techniques. The signals in the first classification are made to be orthogonal to 

their counterparts to avoid the cross-correlation between the signals, such as Orthogonal 

Frequency Division Multiple Access (OFDMA) which is the multiuser extension of 

Orthogonal Frequency Division Multiplexing (OFDM) and is widely used in 4G 

networks. 

The advantage of orthogonality is that it allows simultaneous transmission over the 

subcarriers through a restricted frequency space with no interference. It is achieved 

among the OFDM subcarriers by a careful selection of the subcarrier spacing depicted in 

Figure 2.1, in which in some cases, the subcarrier spacing is set to be equal to the symbol 

rate. OFDMA is used for downlink in 4G and long-term evolution (LTE) where the inter-

cell interference is avoided and the receiver design is relatively simple  (Lei, Yuan, Ho, 

& Sun, 2016). OFDM allocates one subcarrier to one user at the same time, and therefore 

the information carried on all the subcarriers belongs to that user only. If several users 

intend to transmit by OFDM, they have to queue for their turns in time. This problem is 

solved in OFDMA by directly allocating the subcarriers in the frequency domain to 
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different users. OFDMA robustness against inter-symbol interference (ISI) is the reason 

that this technology is considered suitable as the air interface of 4G communication 

systems. OFDMA allows multi-user communications through its technique in which 

subcarrier frequencies are chosen so that the subcarriers are orthogonal to each other 

(Dulout, Mendiboure, Pousset, Deniau, & Launay, 2023; Islam et al., 2017). 

 

Figure 2.1: Illustration of the orthogonality of OFDM spectrum of eight 
different carrier frequencies 

Under the orthogonal technology category, time-division multiple access (TDMA) is 

considered a conventional OMA (K. S. Ali, Haenggi, ElSawy, Chaaban, & Alouini, 2019; 

Mokhtari et al., 2019; Zamani et al., 2019). The total base station (BS) power is utilized 

to transmit each signal in the TDMA within a time slot Ti (K. S. Ali et al., 2019).  TDMA 

is a technology used in communications that allows several users to share a 

communication channel effectively. At its core, TDMA assigns each user-specific time 

slot for transmissions by partitioning the channel into discrete time slots, usually arranged 
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into frames. Throughout their allotted time slots, users alternately access the channel; the 

duration of the communication period is organized into repeating segments to enable 

uninterrupted engagement. For users to be temporally aligned with the base station or 

access point and to avoid interference and collisions, synchronization is essential in 

TDMA technology. TDMA and ODFMA are some examples of OMA schemes. In 

TDMA, several users share the same frequency channel on a time-sharing basis. The users 

communicate in rapid succession, one after the other, each using their assigned time slots. 

The BS in the TDM-OMA system allocates the total transmission power to m-th user 

during the m-th time slot (Arzykulov, Tsiftsis, Nauryzbayev, & Abdallah, 2019; Z. Wei 

et al., 2020).  

Implementing OMA algorithms in 5G will not be adequate due to the limited number 

of simultaneously transmitted signals within the orthogonal resources (Y. Wang, Ren, 

Sun, Kang, & Yue, 2016). On the other hand, NOMA is considered a high-potential 

technique to provide an increasing number of users in 5G by the required quality of 

service.  

2.1.2 Non-Orthogonal Multiple Access (NOMA) 

The ambitious aims of Next Generation Mobile Networks (NGMN) include providing 

extremely fast connections and enormous data for billions of different users’ equipment 

in all areas. In recent years, there has been a rapid proliferation of innovative cyber habits 

(Abozariba et al., 2019). People can now participate in cutting-edge activities like 

monitoring and managing different areas of their homes and getting real-time data from 

smart city applications thanks to IoT technology. This development points to a move 

toward a more technologically advanced and networked way of living, where IoT devices 

are essential for improving efficiency, security, and convenience in homes and cities alike 

(Kunst, Avila, Pignaton, Bampi, & Rochol, 2018). The explosion of new IoT applications 

is growing in tandem with the growth of online business, resulting in a transformative 
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shift across multiple domains. A few examples of the growing electronic landscape 

influenced by IoT innovations are health, navigation, transportation, and security 

(Aloqaily, Elayan, & Guizani, 2023; Joshi et al., 2023; J. Zhang, Wang, Li, & Shi, 2021). 

Consequently, the proliferation of IoT applications has placed mobile communications 

technology in the position of facilitating a hyper-connected society (Derawi, Dalveren, & 

Cheikh, 2020; Santos, Perkusich, & Almeida, 2014). This fast-paced development affects 

traditional e-commerce and new IoT applications, ushering in a time when networked 

gadgets and services transform how people interact with and perceive the digital world. 

From the next-generation radio access technology viewpoint, an exponential increase in 

data speed and required capacity for high data–rate applications are major concerns for 

5G. In particular, many of the industry initiatives that have progressed with work on 5G 

declare that the network-level data rate in 5G should be 10-20 Gbps (10-20 times the peak 

data rate in 4G), and the user-experienced data rate should be 1 Gbps (100 times the user-

experienced data rate in 4G) (P. Zhang et al., 2019).  

5G is expected to provide a higher data rate and higher capacity to a massive number 

of users at lower power consumption and latency. One of the key techniques to meet these 

requirements in mobile communication systems is using NOMA where one frequency 

channel is allocated to several users within the cell at the same time (Budhiraja et al., 

2021). Several advantages are offered by NOMA, compared to OMA, such as improved 

spectral efficiency, higher cell-edge throughput, relaxed channel feedback (only the 

received signal strength, not exact CSI, is required), and low transmission latency (no 

scheduling request from users to base station is required) (Alsabah et al., 2021; Wan et 

al., 2018).  

NOMA techniques are divided into two classifications, namely, power-domain and 

code-domain NOMA (Islam et al., 2017).  In wireless networks, code-domain NOMA is 

a communication technique that uses distinct code-domain signatures to let multiple users 
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share the same time-frequency resource blocks. Unlike traditional OMA schemes, where 

users are assigned separate and non-overlapping resource blocks, code-domain NOMA 

enables users to share the same resource blocks simultaneously. A distinct spreading code 

or signature identifies each user and permits signal separation between them during 

transmission and reception. In power-domain NOMA, which is the focus of this study, 

multiple users are superposed in the power domain at the transmitter (BS) in the downlink 

transmission and the difference in the channel gain is exploited among the multiplexed 

users' power (Z. Ding, Fan, & Poor, 2016), while multiuser detection algorithms such as 

the SIC could be used at the receiver (the mobile user device) to decode the desired 

signals. Signal interference between users can occur in multi-user communication 

systems, particularly in NOMA scenarios where users share a time-frequency resource. 

The SIC technique works by trying to decode each user's signal one at a time and 

canceling the interference that corresponds to that user as it is decoded (Ihsan et al., 2022). 

By using SIC, users with relatively high received signal-to-noise and interference ratios 

(SINR) decode the interfering signals before decoding their signal while users with lower 

SINR levels would treat the interference as noise (Alsabah et al., 2021). Thus, power-

domain NOMA guarantees flexible resource allocation that improves the NOMA 

performance (Kassir, Dziyauddin, Kaidi, & Izhar, 2018) and increases the sum data rate 

(M. S. Ali, Hossain, Al-Dweik, & Kim, 2018).  

Figure 2.2 presents the principal comparison between the NOMA system model and 

the conventional OMA system model.  From Figure 2.2, the user equipment (UE1) is the 

farther user from the BS; this means that channel h1 is the weakest channel. However, 

that does not imply that the signal strength at UE1 is the weakest since a higher power 

level is assigned for that user. On the other hand, a lower power level is allocated for the 

nearest user to the BS that has the strongest channel. In other words, for the ordering users 

from the BS according to their channel gains (|ℎ𝑀2 | > ⋯ > |ℎ22| > |ℎ12|), the allocated 
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power to these users in the NOMA system should be 𝑃𝑀 < ⋯ < 𝑃2 < 𝑃1. Therefore, 

NOMA is in line with the SIC principle when the strongest signal is decoded first. 

Moreover, the effect of the inter-cell interference is more significant on the farther user 

who gets relatively high allocated power while this interference is negligible at the nearest 

user with the weakest signal since it decodes all the higher power allocated to the next 

users (Islam et al., 2017). In contrast to OMA, NOMA exploits the power domain to 

simultaneously serve multiple users at different power levels, where the PA for each user 

plays a key role in determining the overall performance of the system. DL NOMA 

combines superposition coding at the BS and SIC decoding at the user (Islam, Zeng, 

Dobre, & Kwak, 2018).  

 

Figure 2.2: A comparison between the OMA and the NOMA system models. 

Practically, it is a challenge to obtain perfect CSI. To enable the NOMA users to 

perform SIC and to detect the signals of the lower-order users, BS allocates the power 

levels according to their channel gains. That is, each receiver will eliminate the signals of 

other combined users on the same carrier which have weaker channel gain. On the other 

hand, the signals of the higher-order users with stronger channel gains will represent 

interference signals. To maximize the data rate, the effect of this interference should be 

minimized, and this could be ensured when the allocated power to the stronger channel 
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user is lower than the allocated power to the weaker channel user (M. S. Ali, Hossain, Al-

Dweik, et al., 2018).  

2.2 Power Allocation for NOMA-based Systems 

Figure 2.3 illustrates the hierarchical framework for resource allocation in NOMA 

systems, highlighting key components such as PA strategies, optimization objectives, and 

methodologies, as well as the various techniques used to achieve efficient resource 

management and system performance. 

 

Figure 2.3: The hierarchical framework for literature review of resource 
allocation in NOMA systems 

Power allocation in NOMA attracted the attention of the researchers who proposed 

different strategies and targeted different aspects of PA in NOMA. Many studies have 

been made on PA in NOMA system either in single cell or multi cells scenarios, one 

operating technology or heterogeneous network, maximization of the sum data rate or 

achieving higher fairness, and other schemes. To maximize the performance of a device 

to device (D2D) communication system based on NOMA for imperfect Successive SIC 

decoding, an efficient power allocation scheme is proposed in(G. Wu et al., 2023). An 

alternative optimization algorithm was presented to find the best solution using Lagrange 

duality analysis and the sub-gradient descent method to address the non-convexity of the 

problem caused by integer constraints and coupling variables. The numerical simulation 

results show how the suggested joint optimization algorithm for channel resource 

allocation and power control performs better in terms of energy efficiency. Elbakry, 
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Amer, and Ismail (2023) presented a dynamic power allocation scheme and optimal user 

pairing for the NOMA system to increase the system's performance. The algorithm 

precisely pinpoints the locations of dispersed users and ascertains the necessary power 

levels for every user by considering their position and channel conditions. By ensuring 

that every user receives the ideal power level, this precise power allocation maximizes 

the efficiency of data transmission. 

Power allocation is considered an essential method to raise the data rate and the energy 

efficiency in the NOMA system, where various powers are assigned to the cell’s users 

and combined on the same subcarrier at the same time (Yang, Hussein, Xu, Ding, & Wu, 

2018). PA depends on various factors in NOMA such as the channel conditions, the 

required QoS, total power restriction, and the system requirements. If power allocation is 

performed inappropriately, then the users will have an unfair rate distribution and the 

system outage will fail (Fang, Cheng, & Ding, 2019; Q. Wang, Zhang, Yang, & Hanzo, 

2018; H. Zhang, Fang, et al., 2018; Zhu et al., 2017). Power allocation is evaluated by 

different performance metrics such as the number of admitted users, the system fairness, 

the total power consumption, the sum data rate, and the outage probability. In general, 

power allocation in NOMA aims to achieve a higher number of admitted users and a 

higher sum data rate or to achieve more fairness between users at a limited consumed 

power (Nain, Das, & Chatterjee, 2018; H. Zhang, Fang, et al., 2018; Zheng, Liang, & Yu, 

2018). The complexity of power allocation is a measure of the computational resources 

needed to figure out the best power levels to assign to various users who share the same 

time-frequency resources. With consideration for each user's channel conditions and 

quality of service requirements, power allocation in NOMA seeks to optimize the overall 

system performance. Several factors can impact this process's complexity such as the 

number of users, QoS constraints, and interference management. In (Nain et al., 2018), a 

low complexity method to remove users who do not fit with the derived condition is 
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presented where the proposed power allocation scheme offers nearly equal cell 

throughput and user fairness to the optimal scheme utilizing exhaustive user search. The 

power allocation scheme has a closed-form solution, which reduces complexity, whereas 

the suggested user selection method finds an efficient user set by verifying users through 

basic conditions based on their SINR and weights. 

There are studies done on a Single-Carrier (SC) (Chraiti, Ghrayeb, & Assi, 2018), 

which is the focus of this study, while others considered Multi-Carrier (MC) (Al-Abbasi 

& So, 2017; M. S. Ali, Hossain, Al-Dweik, et al., 2018; Fu, Salaün, Sung, & Chen, 2018; 

Ni, Hao, Tran, & Qian, 2018; H. Zhang, Fang, et al., 2018). By allocating more power to 

the weak user in SC systems, better fairness is accomplished as well as more balanced 

system throughput could be achieved. This is because the strong user is capable of 

handling the interference due to the weak user by using the SIC technique (Islam et al., 

2018).  

Chraiti et al. (2018) proposed an efficient PA technique that does not require CSI at 

the BS and applied it to two users Multi Input Single Output (MISO) downlink channels. 

CSI refers to the information that characterizes the current state or condition of a 

communication channel between a transmitter and a receiver. Instead of draining the 

system bandwidth for feeding the BS with the CSI, the authors proposed a nonlinear 

interference alignment technique to enable the BS to communicate with the users 

simultaneously and keep the signals separated at their respective receivers. This technique 

enables each user to detect its signal without any interference from the other user’s signal 

while achieving better outage probability and data rate per user. 

Perfect CSI is challenging to achieve because of channel estimation errors, feedback, 

and quantization errors. It is requisite to search for novel solutions that address the 

imperfect CSI in wireless communication systems (X. Song, Dong, Wang, Qin, & Han, 

2019). Moreover, energy efficiency receives significant attention from both academia and 
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industry researchers since the information and communication sector consumes 5% of the 

total global energy consumption (Y. Zhang, Wang, Zheng, & Yang, 2017). Hence, many 

researchers have concentrated on energy efficiency in the NOMA system (Shi et al., 2019; 

Vien, Le, Barn, & Phan, 2016; H. Zhang, Wang, et al., 2018). An energy-efficient novel 

power allocation algorithm is presented in (X. Song et al., 2019) where the optimization 

problem is formulated based on imperfect CSI with outage probability constraints and 

then it is relaxed to a non-probabilistic problem. The results obtained for a small cell of 

one BS and 2 users showed that the performance of the proposed algorithm is better than 

the conventional algorithms.  

Optimizing the energy efficiency in the single input single output NOMA (SISO-

NOMA) system has been studied in (Y. Zhang et al., 2017) where the proposed power 

allocation algorithm for 2 users in a single cell shows superior behavior compared to the 

traditional algorithms. However, more investigation is still required on this algorithm in 

the imperfect CSI case. Distance between the receiver and the BS has been used for power 

allocation in (Glei & Chibani, 2019; Y. Zhang et al., 2017). On the other hand, joint 

optimization algorithm has been proposed in (X. Chen, Jia, & Ng, 2019) where power 

allocation is utilized to minimize the transmitted power which is required to attain the 

minimum required rate. Optimizing energy efficiency for imperfect CSI case with two 

secondary users is studied in (Arzykulov et al., 2019). Zamani et al. (2019) studied energy 

efficiency optimization and proved that NOMA outperforms conventional OMA schemes 

under low user’s quality of service constraint.   

There have been a number of studies applying game theory in power allocation for the 

NOMA systems. A Stackelberg game is used in (C. Li, Zhang, Li, & Qin, 2016) to model 

the interaction between BS and multiple users in the cellular network where the BS acts 

as a team leader and set the transmitted power price to each user to ensure maximum 

revenue is achieved. In (Z. Wang, Wen, Fan, & Wan, 2018), a price-based PA algorithm 
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based on Stackelberg game is presented for DL NOMA cellular system which shows 

better performance in terms of BS revenue and sum data rate. Lamba, Kumar, and Sharma 

(2019) proposes an auction-based mechanism to determine the allocated power by the BS 

to each user in the DL NOMA system. Each user attempts to maximize the utility by 

offering a price bid. The simulation results show an increase in the average sum rate of 

the users compared to that in (Z. Wang et al., 2018).  In (Zamani et al., 2019), a state of 

high CSI error variance values was investigated and the results show that NOMA is 

recommended for a special case of only two users to achieve the user data rate 

requirement. The energy efficiency concerning various transmission power levels and 

channel estimation error have been evaluated in (Zamani et al., 2019), and the proposed 

algorithm performed better compared to OMA. However, the performance of the 

proposed algorithm for high traffic should be considered. 

2.3 Data Rate Optimization in NOMA-Based Systems 

Figure 2.4 provides an overview of the data rate optimization challenges and solutions 

in NOMA systems, highlighting key research contributions and optimization techniques. 

It encompasses the complexities of non-convex optimization problems arising from 

interference control, power allocation, and non-linear constraints, as well as the methods 

used to address these challenges. The chart also reflects the advancements in throughput-

optimal scheduling, network utility maximization, hybrid relay-RIS systems, and game-

theory-based power allocation mechanisms, with an emphasis on overcoming the 

limitations of traditional approaches and improving the applicability of NOMA systems 

in real-world scenarios. 

In NOMA systems, the challenge of optimizing the aggregate data rates of multiple 

users sharing the same time-frequency resource blocks is known as the data rate 

optimization problem. This problem is formulated as a non-convex optimization problem. 

Efficient spectrum utilization is made possible by NOMA, which permits users to 
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concurrently occupy the same resource at different power levels (Y. Song, Xu, Sun, & 

Ai, 2023). Because the optimization problem is non-convex, it becomes more complex 

and calls for specialized methods to solve. The inherent non-linearity brought about by 

the interference control, power distribution, and possibly non-convex constraints make 

the optimization problem non-convex where the power allocation variables for different 

users and potentially non-linear power constraints contribute to the non-convexity and 

the interference management aspect, which aims to minimize interference among users, 

often leads to non-convex formulations due to the non-linear nature of interference terms 

(Liesegang, Zappone, Muñoz, & Pascual-Iserte, 2023).  

 

Figure 2.4: The hierarchical framework for data rate optimization in NOMA 
systems 

(Y. Chen, Zhu, Guo, Yuan, & Feng, 2023) contributes significantly to the field by 

addressing the dual objectives of throughput-optimal scheduling and network utility 

maximization in DL NOMA systems with flow-level dynamics. This study is pioneering 

in investigating a DL NOMA system with flow-level dynamics, where both long-lived 

and short-lived flows coexist. This is a significant departure from traditional models, 

which often assume static traffic conditions. Although the proposed suboptimal algorithm 

demonstrates practical applicability and strong performance, addressing the limitations 

related to scalability, parameter dependence, and multi-subchannel allocation could 

enhance its impact and utility further. The paper formulates an optimization problem that 
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jointly addresses user selection and power allocation. It aims to maximize network utility 

while ensuring throughput-optimality under QoS constraints. The proposed algorithm 

successfully achieves throughput-optimal scheduling and network utility maximization, 

addressing two critical challenges in wireless networks. The study restricts itself to a 

single subchannel allocation per user. This constraint simplifies the problem but limits its 

applicability to real-world networks with more dynamic and diverse requirements. 

Moreover, the proposed model assumes perfect CSI and fixed QoS constraints, which 

may not hold in practical deployment scenarios. Thus, incorporating mechanisms to 

handle imperfect CSI and other uncertainties, makes the solution more practical for real-

world deployment. 

 Kan, Chang, Chien, Chen, and Poor (2023) present a significant step forward in the 

design of hybrid relay–RIS systems, demonstrating their potential to enhance sum rate 

and energy efficiency in next-generation wireless networks. The paper explores a hybrid 

relay–RIS system integrating a half-duplex decode-and-forward (DF) relay and a full-

duplex RIS. This hybrid architecture leverages the strengths of both technologies, making 

it a novel contribution to next-generation wireless networks. The simultaneous design of 

active beamforming at the BS and DF relay, as well as passive beamforming at the RIS, 

addresses the complexity of multiuser MISO systems and maximizes system 

performance. The alternating optimization (AO)-based algorithm proposed in the paper 

effectively tackles the non-convex joint optimization problem, ensuring a practical 

solution. The gap here is assuming ideal conditions, such as perfect CSI and no hardware 

impairments may limit its applicability in real-world scenarios. Thus, addressing practical 

deployment challenges, full-duplex RIS limitations, and extending the energy efficiency 

analysis would further strengthen the research and its applicability. 

Maximization of the total cell data rate and fairness for N PD-NOMA users in Poisson 

distribution BSs is the objective of the study in (K. S. Ali et al., 2019) where the authors 
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applied two efficient algorithms to find the feasible resource allocation, namely; mean 

signal power-based and instantaneous signal-to inter cell-interference-and-noise-ratio-

based. This maximization problem is subject to two constraints, which are the lower 

boundary of throughput for each user and identical throughput for all users.  The results 

show that under a specific set of network parameters, there is an optimal number of served 

users in the cell. In addition, the effect of choosing the network parameters and the 

ordering technique on the data rate and fairness has been highlighted and the results show 

the necessity of a critical level of SIC to outperform the OMA. Choi (2016) focuses on 

the fairness in the DL NOMA system when power allocation is considered a key role in 

achieving proportional fairness scheduling and providing multiple users with positive 

transmission data rates simultaneously. The study shows that the required fairness could 

be acquired by maximizing the minimum normalized rate.  

Game theory has been applied in a wide range in NOMA systems’ power allocation. 

For instance, a Stackelberg game is used in (C. Li et al., 2016) to model the interaction 

between the BS and multiple users in the cellular network where the BS plays as the team 

leader and sets the transmitted power price to each user to ensure that it gets the maximum 

revenue. After that, as a secondary player in this game, each user chooses an optimal 

power to maximize its utility. To solve this non-convex optimization problem, the authors 

decoupled it into three optimization problems and then used an alternating optimization 

algorithm to solve them. Although the results show outperforming of the proposed 

algorithm over the uniform power allocation scheme, another price-based PA algorithm 

based on the Stackelberg game is presented in (Z. Wang et al., 2018) for DL NOMA 

cellular system which shows better performance in terms of BS revenue and sum data 

rate. It presents a closed-form solution for two users’ cases when the total transmission 

power could be allocated to either the strong user or both users. For the M -users case, an 

iterative algorithm is proposed and the results show that the number of iterations to find 
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the optimal solution is less than that in (C. Li et al., 2016). Lamba et al. (2019) propose 

an auction-based mechanism to compute the allocated power by the BS to each user in 

the DL NOMA system. Each user attempts to maximize his utility by putting in a price 

bid. The authors prove theoretically the existence of Nash equilibrium of the given model 

and the simulation results show an increase in the average sum rate of the users compared 

to that in (Z. Wang et al., 2018). 

A novel fast-learning machine-based extreme learning user cluster scheme is proposed 

in (Kumaresan, Tan, & Ng, 2021). A faster learning rate is achieved because the input 

weights and bias for the extreme learning machine hidden layer nodes are randomly 

generated and do not require parameter tuning. The modified architecture functions in 

NOMA environments, where it is possible to quickly predict the ideal cluster formation 

depending on the channel gains and powers of the users. Extensive simulations show 

better performance compared to the most advanced user cluster schemes. 

However, all the above-mentioned studies aiming to achieve maximum EE and data 

rate in practical wireless systems, while considering imperfect channel estimation, have 

encountered significant challenges with one-stage algorithms. These approaches often 

rely on simplistic assumptions and do not fully account for the complexities and 

uncertainties inherent in real-world wireless environments (Mokhtari et al., 2019). The 

presence of imperfect channel estimation can lead to inaccurate transmission decisions, 

reducing the overall system performance and hindering the ability to achieve optimal EE 

and data rate. In contrast, this thesis offers a compelling solution by incorporating a 

multistage mechanism. Adaptively address the imperfections in channel estimation of the 

communication process ensuring superior performance in real-world wireless systems 

compared to traditional one-stage algorithms (L. Xu et al., 2022).  Table 2.1 summarizes 

the contributions, strengths, weaknesses, insights, suggestions for improvement, and the 
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approaches used in each of the data rate optimization problems in the NOMA system’s 

studies within this section. 

Table 2.1   : Summary of literature review of data rate optimization problem in 
NOMA systems 

Ref. 
Key 
Contributio
ns 

Strengths Gaps Key 
Insights 

Improveme
nt 
Suggestion
s 

Approach 
Used 

Y. Song, 
Xu, Sun, 
& Ai 
(2023) 

Efficient 
spectrum 
utilization in 
NOMA, 
power 
allocation 
optimization 

Non-
convex 
optimizatio
n solved, 
improves 
system 
throughput 

Complex 
due to non-
convexity 
and 
interferenc
e 
manageme
nt 

Solves 
non-
convex 
optimizatio
n in 
NOMA 
systems 

Develop 
more robust 
methods for 
real-world 
non-ideal 
conditions 

Non-
convex 
optimizati
on, Power 
allocation 

Liesegang
, 
Zappone, 
Muñoz, & 
Pascual-
Iserte 
(2023) 

Interfere
nce control 
and power 
allocation 
optimization 
in NOMA 

Address
es non-
linear 
power and 
interferenc
e 
manageme
nt 

Non-
convex due 
to 
interferenc
e terms and 
power 
distribution 

Provide
s approach 
to handle 
interferenc
e in 
NOMA 

Explore 
alternative 
interference 
managemen
t techniques 

Power 
allocation, 
Interferenc
e 
manageme
nt 

Y. Chen, 
Zhu, Guo, 
Yuan, & 
Feng 
(2023) 

Throughput-
optimal 
scheduling, 
network 
utility 
maximizatio
n in DL 
NOMA 

Focus on 
flow-level 
dynamics, 
practical 
applicabilit
y 

Limited by 
single 
subchannel 
allocation, 
assumes 
perfect CSI 

Optimizes 
scheduling 
and 
network 
utility 

Consider 
multi-
subchannel 
allocation 
and 
imperfect 
CSI 

Scheduling 
optimizati
on, Flow-
level 
dynamics 

Kan, 
Chang, 
Chien, 
Chen, & 
Poor 
(2023) 

Hybrid 
relay–RIS 
system for 
sum-rate 
and energy 
efficiency 

Integrates 
relay and 
RIS for 
system 
enhanceme
nt 

Assumes 
ideal 
conditions, 
limited 
real-world 
applicabilit
y 

Hybrid 
relay-RIS 
approach 
improves 
efficiency 

Address 
practical 
deployment 
challenges, 
including 
hardware 
impairment
s 

Hybrid 
relay-RIS, 
Energy 
efficiency 

K. S. Ali 
et al. 
(2019) 

Maximizati
on of cell 
data rate 
and fairness 
in N PD-
NOMA 
systems 

Effective 
resource 
allocation 
algorithms, 
fairness 
considered 

Assumes 
specific 
network 
parameters
, limiting 
generality 

Optimizes 
throughput 
and 
fairness for 
NOMA 
users 

Broaden 
parameter 
set and 
extend to 
dynamic 
networks 

Resource 
allocation, 
Fairness, 
NOMA 
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Ref. 
Key 
Contributio
ns 

Strengths Gaps Key 
Insights 

Improveme
nt 
Suggestion
s 

Approach 
Used 

Choi 
(2016) 

Fairness in 
DL NOMA 
systems via 
power 
allocation 

Fairness 
achieved 
with 
proportiona
l fairness 
scheduling 

Limited to 
downlink, 
assumes 
ideal 
conditions 

Maximizes 
minimum 
normalized 
rate 

Explore 
fairness in 
uplink and 
real-world 
conditions 

Power 
allocation, 
Fairness 

C. Li et 
al. (2016) 

Stackelberg 
game for 
power 
allocation in 
NOMA 

Game-
theory-
based 
power 
allocation, 
optimal 
user 
interaction 

Non-
convexity 
makes the 
solution 
challengin
g 

Optimal 
power 
allocation 
via game 
theory 

Further 
refine 
solutions 
for multi-
user 
systems 

Stackelber
g game, 
Power 
allocation 

Z. Wang 
et al. 
(2018) 

Price-based 
power 
allocation in 
DL NOMA 

Closed-
form 
solution for 
two-user 
cases, 
iterative 
algorithm 
for M-
users 

Relies on 
ideal 
conditions 
and 
assumption
s 

Price-
based PA 
improves 
BS 
revenue 
and data 
rate 

Extend to 
more 
dynamic 
user and 
network 
models 

Stackelber
g game, 
Price-
based 
power 
allocation 

Lamba et 
al. (2019) 

Auction-
based 
mechanism 
for DL 
NOMA 
power 
allocation 

Increases 
average 
sum rate 
for users 

Relies on 
idealized 
auction 
assumption
s 

Auction 
mechanism
s improve 
power 
allocation 

Extend to 
practical 
scenarios 
with 
imperfect 
CSI 

Auction-
based 
mechanis
m, Power 
allocation 

Kumaresa
n, Tan, & 
Ng (2021) 

Extreme 
Learning 
Machine 
(ELM) for 
user 
clustering in 
NOMA 

Fast 
learning 
rate for 
user 
clustering, 
no 
parameter 
tuning 

Limited 
scalability 
in complex 
environme
nts 

ELM 
optimizes 
clustering 
in NOMA 
environme
nts 

Test with 
larger and 
more 
dynamic 
networks 

Extreme 
Learning 
Machine 
(ELM), 
User 
clustering 

Mokhtari 
et al. 
(2019) 

Challenges 
with one-
stage 
algorithms 
in imperfect 
channel 
estimation 

Highlights 
flaws in 
one-stage 
optimizatio
n 
approaches 

Simplistic 
assumption
s reduce 
real-world 
accuracy 

One-stage 
algorithms 
struggle 
with real-
world 
complexity
es 

Explore 
multistage 
algorithms 
and 
dynamic 
channel 
estimation 

One-stage 
algorithms
, Imperfect 
channel 
estimation 
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Ref. 
Key 
Contributio
ns 

Strengths Gaps Key 
Insights 

Improveme
nt 
Suggestion
s 

Approach 
Used 

L. Xu et 
al. (2022) 

Multistage 
mechanism 
for 
addressing 
imperfect 
channel 
estimation 

Better 
performanc
e in real-
world 
systems 
with 
imperfectio
ns 

More 
complex 
than one-
stage 
algorithms 

Multistage 
solutions 
outperform 
one-stage 
algorithms 

Further 
optimize for 
larger 
networks 
and 
dynamic 
environmen
ts 

Multistage 
mechanis
m, 
Channel 
estimation 

 

2.4 Energy Efficiency Optimization in NOMA-Based systems 

The hierarchical structure in Figure 2.5 organizes the complex topics in a logical flow, 

focusing on methods, metrics, applications, and challenges. You can use this framework 

for your diagrams or summaries to illustrate the relationships between techniques, 

performance measures, and the challenges in applying NOMA-based EE and throughput 

optimization in real-world networks. 

 

Figure 2.5: The hierarchical framework for EE optimization in NOMA systems 

 

The EE optimization and throughput optimization problems in NOMA have been 

studied under various constraints such as the total power, interference, and/or the 

minimum QoS of the users. A code reuse scheme in the downlink MIMO-NOMA system 

which separates active users into groups based on their channel quantity and inner 
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interference is proposed in (Gkonis, Trakadas, & Sarakis, 2020). The transmitted data 

correlation matrix is constructed at the transmitter using only the primary eigenvector and 

eigenvalue of the corresponding correlation matrix as the input via feedback, deducted by 

principal component analysis. The performance of this scheme is evaluated, in terms of 

code assignment gain and bit error rate. The results show that employing the SIC 

technique at the receivers can achieve an improvement over the conventional OMA. On 

the other hand, the same SINR level is assumed for all users in (L. Chen, Hu, Xu, & Chen, 

2021). Similarly, minimizing the total power consumption of the whole network under 

the constraint of all users’ long-term rate requirements is assumed in (Zhai, Zhang, Cai, 

Li, & Jiang, 2018). However, applications that require high QoS can drain network 

resources (Ahn, Kim, Park, & Cho, 2021).  

Y. Y. Guo, Tan, Gao, Yang, and Rui (2023) introduce a novel methodology for EE 

optimization in cooperative non-orthogonal multiple access (CNOMA) networks using a 

deep Monte Carlo Tree Search (MCTS) framework. This combination of artificial 

intelligence (AI) and optimization represents a creative application in wireless networks. 

The use of a "Go game" analogy to model the optimization problem provides a structured 

and intuitive framework for joint user pairing, subchannel assignment, and power control. 

The derivation of optimal closed-form expressions for power control provides a 

foundational mathematical basis for the proposed optimization framework. The deep 

MCTS approach combines neural networks and tree search for efficient exploration and 

decision-making, which is particularly advantageous for large-scale problems with 

complex constraints. The paper provides simulation results comparing the proposed 

method with existing NOMA schemes, demonstrating its superiority in terms of energy 

efficiency. The negligible computational overhead highlighted in the results strengthens 

the practicality of the proposed approach for real-time systems. However, while 

computational overhead is claimed to be negligible, the implementation of deep MCTS 
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with neural networks may require significant resources, especially in training the neural 

network with large datasets. The effectiveness of the approach in scenarios with a 

significantly larger number of users and subchannels is not explicitly discussed. This 

paper proposes a significant methodological advancement in CNOMA networks by 

leveraging AI techniques for energy-efficient optimization. However, further work is 

needed to address practical implementation challenges and validate the results in real-

world scenarios. 

In (Y. Guo, Fang, Cai, & Ding, 2023), the use of a Deep Deterministic Policy Gradient 

(DDPG) algorithm for solving EE optimization problem is innovative. DDPG is well-

suited for continuous action spaces, making it an apt choice for this optimization problem. 

In addition, the joint optimization of transmission beamforming at the base station and 

simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) 

coefficient matrices represents a holistic approach to addressing the EE challenge, as both 

components significantly impact network performance. The computational complexity of 

the DDPG algorithm might increase significantly as the number of users, antennas, or 

STAR-RIS elements grows. This scalability concern is not thoroughly addressed. 

Moreover, similar to other deep reinforcement learning approaches, the performance of 

DDPG is heavily dependent on the quality of training and hyper parameter tuning. The 

paper does not discuss potential challenges in training the algorithm or mitigating issues 

like overfitting. While the paper claims that the DDPG-based method outperforms 

traditional approaches, it does not provide sufficient details about the benchmarks used 

for comparison, making it difficult to assess the magnitude of improvement. This study 

presents a significant contribution by leveraging STAR-RIS and DDPG for energy 

efficiency optimization in NOMA-assisted networks. While the proposed solution shows 

promise in simulation, addressing the highlighted weaknesses and incorporating real-

world validation would strengthen its impact and applicability.  
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(Cao & Hou, 2023) addresses EE in the context of massive machine-type 

communications (mMTC), which is a cornerstone of 5G and beyond. This focus on a 

critical application is both timely and relevant. The discovery of a "hidden feature" in the 

NOMA SIC process is a significant contribution. This feature simplifies the analytical 

complexity of EE analysis in Carrier-sense multiple access (CSMA) NOMA networks. 

The use of Markov chains and Q-function approximations to model the system is a robust 

choice. These methods provide a solid foundation for deriving precise closed-form 

expressions for EE. However, the models assume ideal conditions such as perfect SIC 

and accurate Markov chain representations, which may not fully capture real-world 

complexities like noise, interference, or imperfect channel conditions. While the paper 

highlights the interactions among transmission probability, power, and data rate, it does 

not provide a comprehensive sensitivity analysis to explore how variations in one 

parameter influence the others. Moreover, although the approach ensures fast 

convergence, the computational overhead for large-scale systems with numerous devices 

is not discussed, leaving uncertainty about its practical implementation. Although this 

paper makes a substantial contribution by simplifying the analytical complexity of EE 

optimization in CSMA-NOMA networks and proposing an efficient optimization 

framework, addressing the limitations through real-world validation and scalability 

analysis would strengthen its impact and applicability in practical mMTC scenarios. 

(Muhammed, Chen, Seid, Han, & Yu, 2023) introduces a novel framework combining 

mmWave communications with NOMA in a two-tier heterogeneous network (HetNet) 

comprising macro-cells and small cells connected via wireless backhaul. The integration 

leverages the massive bandwidth of mmWave and the spectral efficiency of NOMA, 

enabling efficient resource utilization. A unique user grouping algorithm simplifies 

clustering by grouping highly correlated users, reducing inter-cluster interference. The 

framework incorporates hybrid analog/digital precoding at the macro base station and 
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jointly optimizes hybrid precoding, power allocation, and bandwidth partitioning to 

maximize system EE. The authors transform the non-convex optimization problem into a 

quasi-convex equivalent and propose an iterative algorithm for solution derivation. 

Extensive simulations validate the framework, demonstrating significant performance 

gains in EE and spectral efficiency compared to traditional OMA systems. Despite its 

strengths, the study has limitations that impact its practicality. The assumption of perfect 

CSI oversimplifies real-world scenarios where CSI estimation errors are prevalent, 

particularly in mmWave environments with high mobility and frequent blockages. 

Additionally, the impact of limited backhaul capacity on performance is not addressed, 

potentially overlooking a critical bottleneck in practical deployments. While the hybrid 

precoding approach is computationally efficient, the paper lacks a detailed analysis of its 

hardware implementation feasibility, including cost and energy consumption. 

Furthermore, the iterative algorithm may face scalability issues in dense network 

scenarios with a high number of users and cells. Benchmarking against more advanced 

NOMA and mmWave systems and accounting for dynamic factors like user mobility and 

interference would provide a more comprehensive evaluation of the proposed framework. 

The proposed framework in (Alajmi, Fayaz, Ahsan, & Nallanathan, 2023) strikes a 

balance between centralized and distributed approaches, leveraging their respective 

advantages while mitigating shortcomings such as high complexity and long convergence 

times. The use of Proximal Policy Optimization (PPO) for grant-based clients and a multi-

agent deep Q-network (DQN) for grant-based clients reflects a well-thought-out approach 

to tackling different optimization problems efficiently. These algorithms are suitable for 

handling the complexity and dynamics of resource allocation in NOMA IoT networks. 

The framework achieves notable improvements in energy efficiency:  A 6% and 11.5% 

increase for grant-based clients compared to fixed and random power allocation 

strategies, respectively, and a 47.4% increase for GF clients over the benchmark scheme. 
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The study includes an analysis of how an increase in the number of grant-based clients 

affects the energy efficiency of both grant-based and GF clients, providing insights into 

the system's scalability and interdependence. However, the findings are based solely on 

numerical simulations, with no experimental validation or testing in real-world IoT 

environments. This limits the practical applicability of the results. In addition, although 

the framework demonstrates improvements over fixed and random power allocation 

methods, it lacks a comprehensive comparison with other advanced state-of-the-art 

algorithms for NOMA IoT networks and the simulations likely operate under idealized 

conditions (e.g., perfect channel state information), which may not account for real-world 

factors like channel estimation errors, interference, or hardware limitations. Thus, 

addressing the highlighted weaknesses through real-world validation, scalability analysis, 

and benchmarking would significantly enhance its impact and applicability. 

Many prior works have studied power allocation in NOMA as the key role to optimize 

EE in perfect CSI case (Khazali, Bozorgchenani, Tarchi, Shayesteh, & Kalbkhani, 2023; 

G. Liu et al., 2018; Rezvani, Jorswieck, Joda, & Yanikomeroglu, 2022; J. Wang, Xu, Fan, 

Zhu, & Zhou, 2018; H. Zhang, Fang, et al., 2018). In a real cellular system, it is a 

challenge to obtain a full CSI at the BS because of the channel estimation error and the 

quantization error (Fang, Zhang, Cheng, Roy, & Leung, 2017; X. Song et al., 2019; 

Zamani et al., 2019). However, channel estimation errors in the imperfect CSI DL NOMA 

system could cause user ordering ambiguities (Z. Ding et al., 2017). The pilot 

transmission design for power-domain NOMA and the influence of the inaccurate 

channel estimation on power-domain NOMA have been investigated in (Ma, Liang, Xu, 

& Ping, 2017). Previous studies proved that NOMA technology has better performance 

than OMA in the imperfect CSI case. Resource allocation has been investigated in (Z. 

Wei, Ng, & Yuan, 2016) for multi-carrier NOMA depending on the available statistical 

CSI at the transmitter. Moreover, partial CSI has been used in (Hou et al., 2020; P. Xu, 
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Yuan, Ding, Dai, & Schober, 2016; Y. Xu, Cai, Ding, Shen, & Zhu, 2018) to determine 

the order of the user equipment, where CSI feedback has been mainly considered a 

potential improvement to support the BS in sorting user equipment. For example, one-bit 

feedback from the user to the transmitter scheme is proposed in (P. Xu et al., 2016) to 

indicate whether the sending bit is below or above a specific power level. 

Nooh et al. (2024) present a significant advancement in reducing power consumption 

and improving energy efficiency in 2-user NOMA downlink systems through an optimal 

user pairing strategy and tackles the computationally challenging problem of joint user 

pairing and power allocation in 2-user NOMA downlink systems, formulating it as a 

mixed-integer programming problem aimed at minimizing power consumption. The 

power minimization approach achieves an EE gain by a factor of 4.5 over OMA, 

outperforming the sum-rate maximization approach, which achieves a gain of 2.4.  

However, addressing the highlighted limitations, particularly in real-world scenarios and 

multi-user configurations, would further enhance its applicability and impact since the 

study focuses exclusively on 2-user NOMA systems, limiting its applicability to scenarios 

with larger or more dynamic user groupings, such as multi-user NOMA or heterogeneous 

IoT networks. The analysis relies on idealized assumptions, such as perfect CSI and a 

specific propagation model. Real-world factors like imperfect CSI or interference are not 

considered. 

In (Zamani et al., 2019), the impact of the CSI error levels on the system performance 

was investigated and the energy efficiency at various transmission power levels and the 

channel estimation error were evaluated. Results show that the system performance has 

been improved compared to OMA. Thus, NOMA is recommended for only two users in 

the cluster to achieve the user’s required data rate. The probabilistic problem is converted 

to a non-probabilistic version in (X. Song et al., 2019) to maximize EE in imperfect CSI 

DL NOMA system under outage probability constraints. Since outage probability is one 
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of the maximization problem constraints in (X. Song et al., 2019), the number of served 

equipment in the cell has to be evaluated. A simple suboptimal user device scheduling 

mechanism is presented to maximize the system EE and a closed-form formula of the 

assigned power for two or more users is derived in (Fang et al., 2017). Q. Zhao, Yang, 

and Zhang (2022) presented how NOMA technology can allow multiple kinds of mine 

smart devices to share subchannel resources for data transmission, thereby enhancing the 

Mine Internet of Things (MIoT) system's spectrum utilization and device access, realizing 

the state perception and information interaction by connecting massive smart sensing 

devices deployed in mine. Through power and subchannel assignment, the energy 

efficiency of small cell networks is maximized. An iterative algorithm for joint power 

allocation and subchannel assignment is proposed under the imperfect CSI. First, the EE 

optimization problem is formulated as a mixed integer nonlinear fractional programming 

problem by taking into account the cross-layer interference power constraints, maximum 

power constraints, and QoS constraints. Second, the original problem is converted into an 

equivalent convex optimization form by applying an elliptical uncertainty set to represent 

the uncertain CSI. 

Tackling the optimization problem becomes more challenging and complicated 

especially when dealing with a massive number of users in the beyond 5G and 6G 

networks. Solving the non-convex EE maximization by traditional approaches suffers 

from poor resource utilization while some advanced techniques that involve fractional 

programming and sequential convex optimization or heuristic algorithms target are 

unable to find effective solutions to large-scale wireless networks because of the 

complexity of the wireless communication systems (Spantideas et al., 2021). This has 

motivated the use of AI-based methods to satisfy these massive wireless connectivity 

requirements and solve power allocation and subchannel problems in the mmWave 

systems. Machine Learning techniques can provide new ideas for intelligent energy-
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efficient algorithms in wireless networks due to the fast adapting to environmental 

changes (Q. Ding, Zhu, Liu, & Ma, 2021). R. Liu et al. (2020) adopted the machine 

learning approach to decide the best user association in the mmWave NOMA system that 

maximizes EE. To maximize the EE under the constraints of QoS, interference, and 

transmission power in (H. Zhang, Zhang, Long, & Karagiannidis, 2020), the authors 

propose a machine learning framework to deal with the user association, subchannel and 

power allocation problems in the NOMA mmWave heterogeneous networks to meet the 

various requirements of users in different applications. Deep learning trained by GA is 

proposed in (Pan, Yang, & Li, 2021) to make benefits of the advantages of deep learning 

and genetic algorithm where combining GA with deep learning significantly reduces the 

computation time of complicated optimization problems in various scenarios. Moreover, 

the combined algorithm is advisable for solving complicated optimization problems and 

problems with high required timeliness. 

Forming clusters for different channel gain users in mmWave NOMA system is one 

of the aspects of achieving a good performance in NOMA. However, an excessive 

overhead is required to enable the BS to the users’ state information to form the clusters 

and allocate the power to each cluster’s member to improve the system performance  

(Celik, Tsai, Radaydeh, Al-Qahtani, & Alouini, 2019). In (K. Wang et al., 2019), 

Stackelberg game-based algorithm is proposed to design the user clustering and power 

allocation that maximizes the sum rate of the mmWave-NOMA system where the CSI of 

all cluster users is assumed to be perfectly known at the BS. More approaches are required 

to optimize the EE of the mmWave-NOMA system with a massive number of users 

considering the imperfection in the channel state. 

However, the CSI imperfection effect on optimizing the EE in NOMA systems has 

been not addressed (Glei & Chibani, 2019; G. Liu et al., 2018; J. Wang et al., 2018; H. 

Zhang, Fang, et al., 2018). The channel estimation error and the quantization error are 
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among the possible causes of imperfect CSI at the BS in the real wireless system (Fang 

et al., 2017) and this leads to user ordering ambiguities (Z. Ding et al., 2017). 

In (Asif et al., 2023), the EE maximization problem was reformulated as several sub-

problems, and an iterative method was used to find the optimal solutions that optimize 

the transmit power of the BS and power allocation coefficients under the imperfect SIC 

decoding at the receiver. The proposed algorithm shows an improvement in the system 

EE in perfect CSI condition. The probabilistic problem is converted to a non-probabilistic 

version in (X. Song et al., 2019) to maximize EE in imperfect CSI DL NOMA system 

under outage probability constraints. Since outage probability is one of the maximization 

problem constraints in (X. Song et al., 2019), the number of the served devices in the cell 

has to be evaluated. Similarly, Qiu, Gao, Chen, and Tu (2022) proposed an energy-

efficient rate allocation algorithm to minimize the energy in NOMA-assisted mobile edge 

computing under latency and outage constraints when only statistical channel state 

information is available. An iterative water-filling-based rate allocation algorithm is 

utilized to solve the EE problem. However, the effect of the channel estimation error 

existence on the EE, the data rate, and the outage probability need to be investigated when 

these algorithms are implemented. 

Previous studies proposed schemes to handle the imperfection of CSI to improve the 

performance of the NOMA system. In this context, pilot transmission design for power-

domain NOMA and the influence of the inaccurate channel estimation on power-domain 

NOMA have been investigated in (Klimentyev & Sergienko, 2016; Ma et al., 2017). The 

key findings show the advantages of NOMA in scenarios with imperfect channel 

estimation. Thus, NOMA is a promising multiple-access technique for future wireless 

communication systems, particularly in real-world environments with challenging 

channel conditions. Thus, improving the EE in an imperfect CSI DL NOMA system is 

still an open issue and needs deeper investigation.  Table 2.2 summarizes the 
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contributions, strengths, weaknesses, insights, suggestions for improvement, and the 

approaches used in each of the data rate optimization problems in NOMA system’s 

studies within this section. 

Table 2.2: Summary of literature review of energy efficiency optimization 
problem in NOMA systems 

Ref. 
Key 

Contributi
ons 

Strengths Gaps Key 
Insights 

Improvem
ent 
Suggestio
ns 

Approach 
Used 

Gkonis, 
Trakadas, 
& Sarakis 
(2020) 

Code reuse 
in 
downlink 
MIMO-
NOMA, 
SIC at 
receivers 

Uses SIC 
for 
improved 
performanc
e over 
OMA, 
PCA for 
channel 
informatio
n 

Assumes 
ideal SIC, 
performanc
e heavily 
dependent 
on system 
conditions 

Performan
ce 
improvem
ent using 
SIC 

Further 
validation 
in realistic 
scenarios 
with 
imperfect 
SIC 

MIMO-
NOMA, 
SIC 

L. Chen, 
Hu, Xu, & 
Chen (2021) 

Energy and 
throughput 
optimizatio
n with 
constant 
SINR 

Simplified 
assumption
s 

Doesn't 
account for 
varying 
SINR 
among 
users 

Focus on 
energy 
efficiency 

Consider 
dynamic 
SINR 
levels 
across 
users 

SINR-
based 
optimizatio
n 

Zhai, 
Zhang, Cai, 
Li, & Jiang 
(2018) 

Power 
minimizati
on in 
NOMA 
networks 
with long-
term rate 
constraints 

Addresses 
power 
consumptio
n in large 
networks 

High QoS 
requirement
s may drain 
resources 

Energy-
efficient 
network 
design 

Explore 
resource 
constraints 
in high-
QoS 
environme
nts 

Power 
minimizati
on, NOMA 

Ahn, Kim, 
Park, & 
Cho (2021) 

NOMA 
power 
optimizatio
n under 
high QoS 
requiremen
ts 

Identifies 
impact of 
QoS on 
resources 

High QoS 
may be 
inefficient 

QoS 
optimizati
on for 
energy 

Investigate 
optimal 
QoS 
allocation 
strategies 

Power 
optimizatio
n, QoS 
constraints 

Y. Guo, 
Tan, Gao, 
Yang, and 
Rui (2023) 

EE 
optimizatio
n using 
Deep 
MCTS 

Novel AI-
based 
optimizatio
n 
framework 

Heavy 
computatio
nal 
requirement
s, 

Innovative 
AI 
techniques 
in NOMA 

Validate 
scalability 
for large 
networks 

Deep 
Monte 
Carlo Tree 
Search 
(MCTS), 
AI-based 
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Ref. 
Key 

Contributi
ons 

Strengths Gaps Key 
Insights 

Improvem
ent 
Suggestio
ns 

Approach 
Used 

scalability 
concerns 

optimizatio
n 

Y. Guo, 
Fang, Cai, 
& Ding 
(2023) 

EE 
optimizatio
n with 
DDPG, 
STAR-RIS 

Suitable for 
continuous 
spaces, 
comprehen
sive 
approach 

Training 
and 
hyperparam
eter tuning 
challenges 

DDPG for 
EE 
optimizati
on 

Address 
training 
challenges 
and 
provide 
more 
detailed 
benchmark
s 

Deep 
Determinist
ic Policy 
Gradient 
(DDPG), 
Reconfigur
able 
Intelligent 
Surfaces 
(STAR-
RIS) 

Cao & Hou 
(2023) 

EE 
optimizatio
n in mMTC 
networks, 
hidden 
feature in 
SIC 

Simplifies 
EE 
analysis, 
efficient 
approach 

Assumes 
ideal 
conditions 
like perfect 
SIC 

EE 
simplificat
ion in 
mMTC 

Address 
real-world 
conditions 
like 
interferenc
e and noise 

EE 
optimizatio
n, SIC 

Muhamme
d, Chen, 
Seid, Han, 
& Yu 
(2023) 

mmWave-
NOMA 
integration 
in HetNets, 
user 
grouping 

Efficient 
hybrid 
precoding 
and 
resource 
allocation 

CSI errors 
and 
backhaul 
impact not 
considered 

Hybrid 
precoding 
boosts 
performan
ce 

Consider 
practical 
backhaul 
and 
mobility 
effects 

mmWave-
NOMA, 
Hybrid 
precoding 

Alajmi, 
Fayaz, 
Ahsan, & 
Nallanatha
n (2023) 

Energy-
efficient 
strategies 
using PPO 
and DQN 

Suitable for 
complex, 
dynamic 
systems 

Limited by 
numerical 
simulations
, idealized 
conditions 

Effective 
for 
NOMA 
IoT 
networks 

Real-world 
testing and 
more 
algorithm 
compariso
ns needed 

Proximal 
Policy 
Optimizati
on (PPO), 
DQN 

Khazali, 
Bozorgchen
ani, Tarchi, 
Shayesteh, 
& 
Kalbkhani 
(2023) 

Power 
allocation 
optimizatio
n in 
NOMA 

Optimizes 
EE under 
ideal CSI 

Real-world 
challenges 
like 
imperfect 
CSI not 
addressed 

EE gains 
in ideal 
conditions 

Investigate 
CSI 
imperfecti
ons and 
their 
impact 

Power 
allocation, 
NOMA 

Nooh et al. 
(2024) 

User 
pairing and 
power 
allocation 
for 2-user 
NOMA 

EE gain by 
4.5x over 
OMA 

Limited to 
2-user 
systems, 
ideal 
assumption
s 

Efficiency 
in small-
scale 
systems 

Extend to 
multi-user 
configurati
ons and 
real-world 
settings 

User 
pairing, 
Power 
allocation 
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Ref. 
Key 

Contributi
ons 

Strengths Gaps Key 
Insights 

Improvem
ent 
Suggestio
ns 

Approach 
Used 

Zamani et 
al. (2019) 

CSI error 
impact and 
EE 
maximizati
on in 
NOMA 

Shows 
improveme
nts over 
OMA 
despite CSI 
errors 

Ideal 
conditions 
assumed 

CSI error 
tolerance 
in NOMA 

Address 
real-world 
CSI errors 
and 
interferenc
e 

CSI error 
mitigation, 
EE 
maximizati
on 

Q. Zhao, 
Yang, and 
Zhang 
(2022) 

EE 
optimizatio
n in Mine 
IoT 

Improves 
EE by 
optimizing 
power and 
subchannel 

Limited to 
specific IoT 
networks 

EE 
maximizat
ion in IoT 
systems 

Expand to 
diverse 
IoT 
scenarios 
and 
consider 
more 
dynamic 
parameters 

Power and 
subchannel 
optimizatio
n, IoT 

Spantideas 
et al. (2021) 

AI for EE 
optimizatio
n in large-
scale 
networks 

Tackles 
large-scale 
issues with 
AI 

Complexity 
limits large 
network 
scalability 

AI-based 
optimizati
on 
approach 

Further 
exploratio
n into 
scalability 
and real-
time 
application
s 

AI-based 
optimizatio
n, Large-
scale 
networks 

R. Liu et al. 
(2020) 

ML for 
user 
association 
in 
mmWave-
NOMA 

Maximizes 
EE using 
ML 
techniques 

Doesn't 
address 
channel 
uncertainty 

ML-
driven 
user 
associatio
n 

Validate in 
larger, 
real-world 
mmWave 
networks 

Machine 
Learning 
(ML), User 
association 

H. Zhang, 
Zhang, 
Long, & 
Karagianni
dis (2020) 

ML 
framework 
for EE in 
mmWave-
NOMA 

Addresses 
user 
association
, power 
allocation 

Doesn't 
address 
mobility 
and 
interference 

ML-based 
resource 
allocation 

Include 
real-time 
mobility 
and 
interferenc
e 
considerati
ons 

Machine 
Learning 
(ML), 
Power 
allocation 

Pan, Yang, 
& Li (2021) 

Combining 
deep 
learning 
with GA 
for EE 
optimizatio
n 

Reduces 
computatio
n time for 
complex 
problems 

Requires 
substantial 
resources 
for training 

Efficient 
ML 
approach 
to EE 

Improve 
computatio
nal 
efficiency 
in larger 
networks 

Deep 
Learning, 
GA 

Celik, Tsai, 
Radaydeh, 

User 
clustering 

Efficient 
clustering 

Excessive 
overhead 

Performan
ce in 

Reduce 
overhead 

User 
clustering, 
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Ref. 
Key 

Contributi
ons 

Strengths Gaps Key 
Insights 

Improvem
ent 
Suggestio
ns 

Approach 
Used 

Al-Qahtani, 
& Alouini 
(2019) 

for 
mmWave-
NOMA 

and power 
allocation 

for channel 
state info 

clustered 
mmWave 
systems 

in large 
user 
networks 

mmWave-
NOMA 

K. Wang et 
al. (2019) 

Stackelber
g game for 
user 
clustering 
and power 
allocation 

Optimizes 
sum rate in 
mmWave-
NOMA 

Relies on 
perfect CSI 
assumption
s 

Game-
theoretic 
clustering 
and power 
allocation 

Consider 
imperfect 
CSI and 
practical 
deploymen
t 
conditions 

Stackelberg 
game, User 
clustering 

Glei & 
Chibani 
(2019) 

CSI 
imperfectio
n in EE 
optimizatio
n 

NOMA 
outperform
s OMA in 
imperfect 
CSI 

Doesn't 
explore 
real-world 
factors 

Imperfect 
CSI 
tolerance 

Address 
more real-
world CSI 
imperfecti
ons 

CSI 
imperfectio
n, EE 
optimizatio
n 

Asif et al. 
(2023) 

EE 
maximizati
on under 
imperfect 
SIC 
decoding 

Improves 
EE in 
perfect CSI 
conditions 

Needs more 
testing for 
imperfect 
conditions 

EE gains 
with SIC 

Validate 
with 
imperfect 
SIC and 
dynamic 
user 
scenarios 

SIC, EE 
maximizati
on 

X. Song et 
al. (2019) 

EE 
optimizatio
n with 
outage 
constraints 

Maximizes 
EE under 
outage 
probability 

Outage 
impacts not 
fully 
explored 

EE with 
outage 
constraint
s 

Explore 
real-world 
outage 
scenarios 
and 
interferenc
e 

Outage 
constraints, 
EE 
optimizatio
n 

Qiu, Gao, 
Chen, and 
Tu (2022) 

Rate 
allocation 
for NOMA 
mobile 
edge 
computing 

Minimizes 
energy in 
NOMA 

CSI errors 
and latency 
not fully 
explored 

Effective 
for latency 
and QoS 
constraint
s 

Address 
more 
complex 
real-world 
scenarios 
like 
latency 
and 
interferenc
e 

Rate 
allocation, 
Mobile 
edge 
computing 
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CHAPTER 3: METHODOLOGY 

This chapter is structured to address the core objectives of the research and provide a 

logical progression from theoretical frameworks to practical implementation. This 

chapter is organized into four sub-sections, each detailing a critical aspect of the proposed 

approach for optimizing energy-efficient power allocation in NOMA systems. By 

leveraging game theory and genetic algorithms, the methodology systematically tackles 

challenges related to resource allocation, data rate maximization, and energy efficiency 

in both perfect and imperfect CSI scenarios. Each sub-section builds upon the insights 

and outcomes of the preceding one, creating a cohesive narrative that aligns with the 

overall research objectives. 

3.1 Game-Theoretic Power Allocation (GTPA) Algorithm for Downlink 

NOMA System 

This section lays the groundwork for the proposed methodology by introducing the 

application of game theory in optimizing power allocation. The focus is on modeling 

resource distribution as a strategic interaction among users, ensuring fairness and 

efficiency in allocation. The insights gained from this analysis form the basis for 

addressing more complex scenarios, including imperfect CSI and advanced optimization 

strategies discussed in subsequent sections. 

A field of mathematics called "game theory" examines how rational decision-makers 

interact with one another. It was created to simulate strategic interactions and has 

applications in computer science, biology, and even economics and political science. This 

paper explores the basic ideas of game theory, including its criteria, rules, and proofs that 

influence choices made in competitive situations. The core idea of game theory is that 

players make choices based on what other people do. Information, players, strategies, and 

payoffs are among the essential components (Fei et al., 2021). The foundation for 
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comprehending strategic interactions is the interaction of these components. In most game 

theories, there are two or more players, each of whom can employ a variety of strategies. 

Gamers make decisions based on the tactics that other players have selected. A payoff 

matrix shows the game's results for every combination of strategies. The utility or 

satisfaction that each player obtains from their chosen strategies is reflected in the 

payouts. Game theory can be represented in two ways: normally (a matrix) or extensively 

(a tree). The extended form captures sequential decision-making, while the normal form 

simplifies games with simultaneous moves (Tim, 2020). A key idea in game theory, the 

Nash Equilibrium is a collection of strategies in which no player has a reason to 

unilaterally change their preferred course of action. It symbolizes a steady state in which 

every player's plan is the best one in light of the other players' choices. The games are 

classified mainly into two types:  zero-sum games and cooperative games. In zero-sum 

Games games, the victory of one player equals the defeat of another such as Chess and 

poker. On the other hand, participants can establish legally binding coalitions and 

agreements and the joint payoff distribution is the main topic of interest in cooperative 

games (Jinho, 2022). In many different domains, game theory is an effective tool for 

comprehending strategic decision-making. It offers a framework for examining 

interactions and making predictions thanks to its criteria, proofs, and rules.  

In this thesis, a new power allocation mechanism is proposed that can allocate power 

to the users in fewer simple steps than (Lamba et al., 2019; Z. Wang et al., 2018) which 

makes the proposed model simpler. Also, most of the previous studies focus on 

maximizing the BS revenue (Lamba et al., 2019; Z. Wang et al., 2018), while in the 

proposed power allocation algorithm studied here, the sum data rate will be maximized 

by maximizing the utility function of the served users as players in a Glicksberg game. 

Besides, the SIC condition is also considered here. In this study, a price-based utility 

function of the user is proposed and its convexity is proven. Then, the effectiveness of 
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the proposed utility function is also proven. Subsequently, a new Glicksberg game-

theoretic model is proposed to distribute the power in the DL NOMA cellular network. 

The existence and the uniqueness of the Nash equilibrium of the proposed model are 

proven. Moreover, a mathematical expression of power price is derived.  The proposed 

algorithm outperforms the algorithm proposed in (Lamba et al., 2019; Z. Wang et al., 

2018) in terms of sum data rate and average data rate of users. The following subsection 

describes the system model for the proposed game-theoretic power allocation algorithm.. 

3.1.1 System Model 

A cellular DL NOMA transmission system is considered, which is equipped with a set 

of M user equipment (UE), 𝑚 = {1, 2, … ,𝑀} which is being served by the BS on the same 

channel is considered. Here, the BS and all UEs are equipped with a single antenna. The 

BS in the NOMA system uses superposition coding techniques to serve multiple users 

simultaneously. The received signal at the m-th UE terminal is given by 

𝒚𝒎(𝒕) = 𝒉𝒎𝒙(𝒕) + 𝒏𝒎 ,                                            (3.1) 

where hm  is the m-th channel gain from the BS to the m-th user, nm is the additive white 

Gaussian noise (AWGN) at the m-th UE, nm rrepresents a complex Gaussian distribution 

noise CN(0,σ2) and 𝑥(𝑡) is the superposed transmitted signal by the BS that could be 

expressed as   

𝒙(𝒕) = ∑ √𝜶𝒎𝑷𝒎𝒙𝒎(𝒕)

𝑴

𝒎=𝟏

                                             (3. 2) 

where xm(t) is the individual OFDM signal, Pt is the total transmitted power from the BS  

and m is the power coefficient allocated to the m-th UE, where it satisfies 

∑𝛼𝑖 = 1

𝑀

𝑖=1

,                                                               (3. 3) 
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   The SIC technique will be used to exclude interference from other users who 

multiplexed on the same bandwidth. The nearest UE to the BS, with the strongest channel 

hM, is defined as UEM while the farthest user, with the weakest channel h1, is noted as 

UE1.  Thus, the BS transmits M different signals over the same frequency resource while 

every user receives the desired signal combined with the interferences due to the other 

users’ signals on the same radio signal (M. S. Ali, Tabassum, & Hossain, 2016). It is 

assumed that the users are being sorted according to their channels’ strengths, such as 

|ℎ𝑀| ≥ |ℎ𝑀−1| ≥ … ≥ |ℎ2| ≥ |ℎ1|. Thus, a user with a higher order (stronger channel) 

can decode the lower order users’ signals before decoding its desired signal. Thus,  the 

SINR at the m-th user can be expressed as 

𝑺𝑰𝑵𝑹𝒎 =
𝑷𝒎|𝒉𝒎|

𝟐 

|𝒉𝒎|𝟐  ∑ 𝑷𝒊 + 𝝈𝟐 
𝑴
𝒊=𝒎+𝟏

,                                    (3. 4) 

where Pm is the allocated power to the m-th user, and the summation term in the 

denominator represents the remaining undesired signals from the users with stronger 

channels (higher order than m). The allocated power for any user Pm should be greater 

than the allocated power for the next user in the sequence (𝑃𝑚 ≥ 𝑃𝑚+1). This indicates 

the importance of different power levels for the multiplexed signals to decode the desired 

signal and therefore maximize the data rate (M. S. Ali, Hossain, Al-Dweik, et al., 2018). 

The achieved data rate of the m-th user is given by 

    

𝑹𝒎 = 𝐥𝐨𝐠𝟐(𝟏 +
𝑷𝒎|𝒉𝒎|

𝟐 

𝝈𝟐 + |𝒉𝒎|𝟐  ∑ 𝑷𝒊 
𝑴
𝒊=𝒎+𝟏

).                                 (3. 5) 

                         

It is worth noting that fairness among users in the NOMA system is not the focus of 

this study. Since PA plays a vital role in maximizing the sum data rate, Rsum in the cell, 

this study focuses on the maximization of Rsum in the DL NOMA system. Rsum per each 1 
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Hz spectrum, of a BS serving M multiplexed users on the same bandwidth can be defined 

as 

    
𝑹𝒔𝒖𝒎 = ∑ 𝐥𝐨𝐠𝟐(𝟏 +

𝑷𝒎|𝒉𝒎|
𝟐 

𝝈𝟐+|𝒉𝒎|𝟐  ∑ 𝑷𝒊 
𝑴
𝒊=𝒎+𝟏

)𝑴
𝒎−𝟏 .                             (3. 6)               

Assuming the total transmission power of the BS is limited to Pt, the maximization 

problem could be formulated as 

max
𝑃𝑚

𝑅𝑠𝑢𝑚 = ∑ log2 (1 +
𝑃𝑚|ℎ𝑚|

2 

𝜎2 + |ℎ𝑚|2  ∑ 𝑃𝑖  
𝑀
𝑖=𝑚+1

)

𝑀

𝑚−1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝑃𝑖 ≤ 𝑃𝑡

𝑀

𝑖=1

  

∀ 𝑷𝒊 ≥ 𝟎                                               (3.7) 

The 

3.1.2 Game-Theory and Power Allocation 

It can be seen from Equation ∀ 𝑷𝒊≥ 𝟎                                               (3.7) that this is a 

non-convex optimization problem. The number of served users and their allocated power 

should be determined carefully to ensure the QoS of the cellular systems.  Furthermore, 

the difference in the allocated power levels should be compatible with SIC conditions so 

that each receiver would be able to extract the desired signal (M. S. Ali et al., 2016). The 

user utility function, Um is defined as  

𝑼𝒎 =
𝑷𝒎
𝟐

𝑺𝑰𝑵𝑹𝒎
− 𝑩𝑷𝒎 =

𝑷𝒎
|𝒉𝒎|𝟐

(𝝈𝟐 + |𝒉𝒎|
𝟐  ∑ 𝑷𝒊 

𝑴

𝒊=𝒎+𝟏

) − 𝑩𝑷𝒎                 (3. 8) 

where B is the price of the allocated power Pm collected by the BS. It describes the 

behavior of the player and sets the strategy for each user in the game. Based on  

(3.8Error! Reference source not found., an increase in the allocated power to the user 

will raise its SINR, but at the same time will cause more interference on the higher order 
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users. Therefore, higher power will be needed to maintain the required SINR. Thus, the 

proposed Um reflects the idea of the utility function, in which the positive effect (benefit) 

is represented by the SINR of the user while the second term ( mPB ) represents the 

negative side (detriment) of increasing the allocated power to the m-th user.  

The increase in Pm will cause a rise in Um until a maximum point, and then the negative 

effect of the price will lead to a decrease in the utility function. Figure 3.1 illustrates the 

effect of increasing Pm on this utility function and its effect on the SINR.  

 

Figure 3.1: Comparison between the effect of Pm on Um and SINRm 

Lemma 1: Um given in Equation (3.8Error! Reference source not found. is effective 

and restrictive.  

Proof. Um is considered an effective utility function if an increase in the allocated 

power to any user causes an increase in the utility value. On the other hand, it is restrictive 

if the allocated power beyond a threshold value causes a decrease in the utility value. In 

other words, restrictiveness ensures that the strategy adopted by the user to set its 

allocated power will be limited to control the interference on other users. The 

effectiveness and restrictiveness features of the utility function could be ensured by 

satisfying the following condition: 
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𝝏𝟐𝑼𝒎
𝝏𝑷𝒎𝟐

< 𝟎                                                        (3. 9) 

From Equation (3.8Error! Reference source not found., this condition is satisfied 

since 

𝝏𝟐𝑼𝒎
𝝏𝑷𝒎𝟐

= −𝑩𝑷𝒎(𝒍𝒏𝑩)𝟐 < 𝟎                                 (3. 10) 

Glicksberg game is proposed to solve the optimization problem discussed earlier. The 

selection of the Glicksberg game in the proposed method to ensure the existence of a Nash 

equilibrium, which is crucial for achieving stable and efficient power allocation in a 

game-theoretic context. The Glicksberg game allows users (players) to iteratively adjust 

their strategies to maximize their utility, ensuring that the total power allocation is 

optimized while maintaining fairness and satisfying SINR constraints. This method is 

particularly suitable because it guarantees that each user’s strategy is optimal given the 

strategies of others, leading to a stable and efficient outcome. Compared to existing 

studies such as (J. Huang, Huang, Xing, & Qian, 2018), the main difference lies in the 

use of a more structured utility function and a clear derivation of Nash equilibrium 

conditions, which enhances the model’s stability. While both methods use game theory, 

the proposed method’s focus on utility and price dynamics introduces additional 

complexities in the implementation, not seen in simpler versions. Therefore, it is not a 

direct adaptation but rather an extension that refines the game-theoretic approach for 

better network optimization. The strongest user reveals its required SINR, and then the 

power price and the number of users will depend on the total transmission power, based 

on the required SINRM. Secondly, all players (users) set their power to maximize the total 

users’ utility function. Proof of the existence of Nash equilibrium for the proposed power 

allocation algorithm is shown below. 
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Theorem 1: The proposed game theoretic power allocation model satisfies Nash 

equilibrium.  

Proof: The allocated power to each user is limited to 𝑃𝑖 ≥ 0 . Thus, the strategy space 

of the downlink is nonempty, compact, and convex. Also, the utility function, Um in 

Equation (3.8) is continuous. In addition, for any BS-user link, Equation (3.10) is verified. 

This implies that Um is quasi-concave with respect to Pm. The allocated power among the 

users in a cellular system is limited to the total power of the BS, such that ∑ 𝑃𝑖 < 𝑃𝑡
𝑀
𝑖=1 . 

Thus, the number of users is finite. 

This completes the proof.  

Theorem 2: If  |𝜕
2𝑈𝑚

𝜕𝑃𝑚
2 | ≥ ∑ |

𝜕2𝑈𝑚

𝜕𝑃𝑖𝜕𝑃𝑗
|𝑀

𝑖≠𝑗   for any user, the Nash equilibrium is unique. 

Proof: The best response function for any user could be determined by solving the first 

derivative equation:  

𝝏𝑼𝒎
𝝏𝑷𝒎

= 𝟎                                                    (3. 11) 

Thus, the optimal allocated power that maximizes the utility function of the m-th user 

is given by 

𝑷𝒎
∗ = (𝒍𝒏𝑩)−𝟏𝒍𝒏 (

𝝈𝟐 + |𝒉𝒎|
𝟐∑ 𝑷𝒊

𝑴
𝒊=𝒎+𝟏

|𝒉𝒎|𝟐𝒍𝒏𝑩
) .                             3. 12) 

Also, from the proposed utility function Um,  

|
𝝏𝟐𝑼𝒎
𝝏𝑷𝒊𝝏𝑷𝒋

| = {
−𝑩𝑷𝒎(𝒍𝒏𝑩)𝟐 𝒋 = 𝒊

𝟏 𝒋 > 𝒊
𝟎 𝒋 < 𝒊

                                         (3. 13) 

Using Equation (3.13), the Hessian matrix for M users can be represented as 

𝑯 =

[
 
 
 

  
−𝑩𝑷𝟏(𝒍𝒏𝑩)𝟐

𝟎
⋮
𝟎

  
𝟏
⋱
𝟎
⋯

  
⋯
𝟏

−𝑩𝑷𝑴−𝟏(𝒍𝒏𝑩)𝟐

𝟎

  
𝟏
𝟏
𝟏

−𝑩𝑷𝑴(𝒍𝒏𝑩)𝟐]
 
 
 

.                        (3. 14) 
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The best response function must be contractive to guarantee a unique Nash 

equilibrium. Thus, 

|
𝝏𝟐𝑼𝒎
𝝏𝑷𝒎𝟐

| ≥ ∑|
𝝏𝟐𝑼𝒎
𝝏𝑷𝒊𝝏𝑷𝒋

|                                 

𝑴

𝒊≠𝒋

           (3. 15) 

In the proposed game theoretic model, the PA aims to maximize ∑ 𝑈𝑚
𝑀
𝑖=1 . Based on 

Equation (3.15), the following equalities can be obtained 

𝑩𝑷𝒎(𝒍𝒏𝑩)𝟐 ≥ 𝑴−𝒎                                           (3. 16) 

𝑩𝑷𝑴(𝒍𝒏𝑩)𝟐 ≥ 𝟎
𝒚𝒊𝒆𝒍𝒅𝒔
→    {

𝑩 > 𝟏
𝑷𝑴 ≥ 𝟎

                                 (3. 17) 

It can be seen that Equation (3.16) corresponds to the requirement of the SIC principle. 

Moreover, Equation (3.17) represents the negative effect of the utility function. The 

crucial step in PA mechanism is to determine the power price, B. To derive B, the 

allocated power to the M-th user based on the required SINR needs to be determined, 

which is given by 

𝑷𝑴 + ∑ 𝑷𝒊

𝑴−𝟏

𝒊=𝟏

≤ 𝑷𝒕                                                    (3. 18) 

Substituting Equation (3.16) into Equation (3.18),  

𝑷𝑴 + ∑

 𝐥𝐧 (
𝑴 − 𝒊
(𝒍𝒏𝑩)𝟐

)

𝒍𝒏𝑩

𝑴−𝟏

𝒊=𝟏

≤ 𝑷𝒕.                                (3. 19) 

Thus, Equation (3.19) could be re-written as 

𝑷𝑴 +
𝐥𝐧(𝑴− 𝟏) ! − 𝟐(𝑴− 𝟏)𝐥𝐧 (𝒍𝒏𝑩)

𝒍𝒏𝑩
≤ 𝑷𝒕.                       (3. 20)  

This shows the relation between power price and the number of served users in the 

cell. Once M and B are determined, the minimum allocated power to each user is 

determined according to Equation (3.16). Then, Equation (3.12) is used to find the optimal 

allocated power that maximizes Um. The leader reveals its required SINR, and thus, the 

power price and the number of possible served users are determined depending on the 
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limited total transmission power. Then, power is assigned to each user to maximize the 

overall cell utility function. The flowchart in Figure 3.2 illustrates the steps of the Game-

theoretic power allocation algorithm. It simplifies the complex process into clear, 

sequential steps, making it easier to understand and follow the algorithm effectively.  

 

Figure 3.2: Game-theoretic power allocation algorithm flowchart. 

Ignoring fairness in the design of the proposed method can lead to significant issues 

such as unequal resource allocation, where some users receive excessive power, resulting 

in high data rates, while others suffer poor service. This imbalance can degrade user 

experience, violate QoS requirements, and cause instability in the network, as users adjust 

their power allocations to maximize personal utility, leading to interference and 

inefficient resource usage. Moreover, it could create economic disparities, with some 

users generating higher revenue for the base station than others. Overall, neglecting 
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fairness undermines network efficiency, user satisfaction, and regulatory compliance, 

potentially destabilizing the system and reducing its overall performance. 

Maximizing the sum data rate instead of the BS's revenue prioritizes system efficiency, 

user satisfaction, and overall throughput. While this leads to better user performance and 

fairness, it may not align with the BS's financial goals. Balancing the need for revenue 

generation with data rate optimization is essential for designing a sustainable business 

model for cellular networks. In practice, a hybrid approach that optimizes both revenue 

and data rate while managing user interference and satisfaction would be more practical 

in achieving a balance between performance and profit. 

The practicality of the proposed GTPA algorithm lies in its ability to model the 

dynamic interactions between users and the BS, ensuring that the system remains efficient 

even under varying network conditions. However, one of the main challenges in applying 

game-theoretic approaches in real-time cellular systems is the high computational 

complexity, especially when the network conditions are constantly changing due to 

factors like user mobility, varying traffic loads, and interference. These factors require 

the system to re-compute the optimal power allocation regularly, which can result in 

significant computational overhead. To address this challenge, the proposed method 

likely includes mechanisms for simplifying the computation, such as approximating the 

Nash equilibrium or using iterative algorithms that converge quickly. For example, using 

a distributed approach where each user only updates its power allocation based on local 

information could reduce the computational burden on the BS and speed up convergence. 

Furthermore, the method could incorporate adaptive strategies, allowing it to adjust the 

frequency of power updates based on the rate of change in network conditions, thus 

balancing between computational efficiency and system performance. Additionally, 

while game-theoretic models can be computationally expensive, advances in hardware 

and software, such as parallel processing and machine learning optimization techniques, 
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can make the implementation more feasible in practical scenarios. These methods could 

be further refined to limit the number of iterations or to use approximations that maintain 

system stability without the need for exhaustive computations. As the network conditions 

change, a real-time adjustment of the power allocation could be carried out in a way that 

does not significantly disrupt ongoing communication, ensuring that the BS can react 

quickly while maintaining overall system fairness and performance. 

3.2 Energy-Efficient Power Allocation for Imperfect CSI DL NOMA 

System 

Building on the game-theoretic approach, this section expands the methodology to 

consider the challenges posed by imperfect CSI. The proposed algorithm integrates error 

modeling and robustness analysis to ensure reliable performance under realistic 

conditions. This section bridges the gap between theoretical constructs and practical 

challenges, setting the stage for leveraging genetic algorithms in more dynamic scenarios. 

The main goals and approaches of energy-efficient PA algorithms for maximizing EE 

and game-theoretical PA algorithms for maximizing data rate differ significantly. When 

utilizing game theory to maximize data rates, user-centric strategies are the main focus. 

This can lead to a competitive environment where users try to maximize their own data 

rates without necessarily taking the efficiency of the system as a whole into account. On 

the other hand, a comprehensive strategy is given priority by an energy-efficient power 

allocation algorithm, which seeks to maximize the total EE of the communication system. 

These algorithms take into account striking a balance between obtaining acceptable data 

rates and reducing power consumption, promoting user cooperation, and a 

communication network that is more globally optimized, environmentally friendly, and 

sustainable. While energy-efficient power allocation tackles the larger issue of resource 
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utilization and environmental impact in the pursuit of sustainable telecommunications, 

data rate maximization emphasizes individual gains. 

In communications networks, EE is crucial for several strong reasons. Above all, the 

effects of these systems on the environment are enormous, especially considering how 

frequently data centers and mobile networks are used. In keeping with international 

efforts to mitigate climate change, energy-efficient practices greatly lower the carbon 

footprint of telecommunications operations. EE, above and beyond environmental 

concerns, is essential to the long-term financial viability of telecom networks. Operators 

can save significant operating expenses, improve network reliability, and guarantee 

continuous service, particularly in times of emergency, by optimizing their energy 

consumption. Adopting energy-efficient technologies also becomes a catalyst for 

innovation as technology continues to change the sector, guaranteeing that telecom 

networks will continue to be both commercially and environmentally sustainable in the 

future. Energy efficiency receives significant attention from both academia and industry 

researchers since the information and communication sector consumes 5% of the total 

global energy consumption (Y. Zhang et al., 2017). Hence, energy efficiency is crucial in 

NOMA systems. 

In this study, a simple PA algorithm among M users is proposed for a DL NOMA 

system with imperfect CSI where the allocated power to each channel in the cell depends 

on channel strength. The performance of the proposed algorithm in a single cell is 

investigated in terms of EE and outage probability and compared with the conventional 

OMA. The following subsection describes the system model of the proposed PA 

algorithm to maximize EE.  
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3.2.1 System Model 

A single cellular cell of the DL NOMA system with M users’ equipment (UEs), which 

share the same resources is considered. Here, the transmitter and each UE are provided 

by a single antenna, and superposition coding techniques are used to serve all users at the 

same time. The received signal at UEm is defined as,  

𝒚𝒎(𝒕) = (𝒉𝒎 + 𝒆𝒉)𝒙(𝒕) + 𝒏𝒎,       𝒎 ∈ {𝟏, 𝟐, … ,𝑴}.                    (3. 21) ,                                             

where hm is the channel gain from the BS to UEm, eh is the channel estimation error, 

nm~CN(0,σ2) represents the AWGN at UEm, and x(t) is the transmitted signal from BS 

which is given as 

𝒙(𝒕) = ∑ √𝜶𝒎𝑷𝒎𝒙𝒎(𝒕)

𝑴

𝒎=𝟏

,                                              (3. 22) 

where xm(t) is the individual OFDM signal, Pt is the total BS’s transmission power, and 

m is the power coefficient of UEm, which verifies: 

∑ 𝛼𝑚 = 1.

𝑀

𝑚=1

                                                      (3. 23) 

M different signals are combined on the same carrier, transmitted by the BS, and then, 

are received by all users (M. S. Ali et al., 2016). These users have been ordered depending 

on their channels’ strength such that |ℎ𝑀| ≥ |ℎ𝑀−1| ≥ … ≥ |ℎ2| ≥ |ℎ1|.  The closest user 

to BS is denoted as UEM and the farther user, which has the weakest channel h1, is denoted 

as UE1.  The SIC technique could be utilized to extract a specific signal from superposed 

signals on a single carrier. Thus, a higher-order user can decode signals of the lower-order 

users before decoding its signal. The system model is shown in Figure 3.3. 
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Practically, it is a challenge to obtain perfect CSI. Thus, an error in the channel 

estimation is considered as shown in Equation (3.21). To implement the SIC method in 

the NOMA system at the receivers, the allocated power to every user has to be less than 

the allocated power to the farther user within the cell (𝑃𝑚 ≥ 𝑃𝑚+1) (M. S. Ali, Hossain, 

Al-Dweik, et al., 2018). In this case, the SINR at UEm is expressed as 

 

Figure 3.3: DL NOMA cellular system 

𝑺𝑰𝑵𝑹𝒎 =
𝑷𝒎|𝒉𝒎|

𝟐 

|𝒉𝒎|𝟐  ∑ 𝑷𝒊 + 𝝈𝝐𝟐 ∑ 𝑷𝒊 + 𝝈𝟐 
𝑴
𝒊=𝟏  𝑴

𝒊=𝒎+𝟏

                           (3. 24) 

where Pm is the allocated power to UEm, 


M

mi
iP

1
  represents undesired signals from the 

higher-order users, and 2
e represents the power fraction due to the channel estimation 

error. Thus, the data rate of UEm is defined as  

𝑹𝒎 = 𝐥𝐨𝐠𝟐 (𝟏 +
𝑷𝒎|𝒉𝒎|

𝟐 

|𝒉𝒎|𝟐  ∑ 𝑷𝒊 + 𝝈𝝐𝟐∑ 𝑷𝒊 + 𝝈𝟐 
𝑴
𝒊=𝟏  𝑴

𝒊=𝒎+𝟏

) .              (3. 25) 

The total data rate, Rsum of a cell of a single BS that serves M multiplexed users on the 

same carrier is expressed as 

𝑹𝒔𝒖𝒎 = ∑ 𝑹𝒎.

𝑴

𝒎=𝟏

                                                         (3. 26) 

Univ
ers

iti 
Mala

ya



59 

The system’s EE is defined as the total data rate (throughput) to the total consumption 

power ratio, which is expressed as 

𝐸𝐸 =
𝑅𝑠𝑢𝑚
𝑃𝑡 + 𝑃𝑐

 

=

∑ 𝐥𝐨𝐠𝟐 (𝟏 +
𝑷𝒎|𝒉𝒎|

𝟐 
|𝒉𝒎|𝟐  ∑ 𝑷𝒊 + 𝝈𝝐𝟐∑ 𝑷𝒊 + 𝝈𝟐 

𝑴
𝒊=𝟏  𝑴

𝒊=𝒎+𝟏

)𝑴
𝒎=𝟏

∑ 𝑷𝒊
𝑴
𝒊=𝟏 + 𝑷𝒄

 ,              (3. 27) 

where Pc is the BS’s dissipated power in the operation circuit. 

The objective of this study is to maximize the system’s EE under a restriction of limited 

total consumption power. To implement SIC for extracting the desired signals at the 

receivers, the allocated power to the users should be ordered according to their channels' 

strength (M. S. Ali et al., 2016). Hence, the problem could be formulated as 

max
𝑃𝑚

    𝐸𝐸 =
𝑅𝑠𝑢𝑚
𝑃𝑡 + 𝑃𝑐

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝑃𝑖 ≤ 𝑃𝑡

𝑀

𝑖=1

  

∀ 𝑃𝑖 ≥ 0 

𝑷𝒎 ≤ 𝑷𝒎+𝟏                                                         (3. 28) 

It can be seen from Equation (3.28) that maximizing EE requires maximizing the sum 

rate at a certain power consumption level.   

3.2.2 Energy-Efficient Power Allocation Algorithm  

The flowchart in Figure 3.4 illustrates the steps of the Energy-efficient power 

allocation algorithm. It simplifies the complex process into clear, sequential steps, making 

it easier to understand and follow the algorithm effectively. 
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Figure 3.4: Energy-efficient power allocation algorithm flowchart 

In the DL NOMA system, a higher power level should be set to the weaker user and a 

lower power level will be allocated to the strongest user. Based on this fact, a PA 

algorithm for the NOMA system in the imperfect CSI case is proposed. For simplicity, 

the channel estimation error is assumed to be constant for all users in the cell. The 

allocated power Pm to the m–th user is inversely proportional to the channel strength as 

follows 

𝑷𝒎 =
𝜷𝑷𝒕

|𝒉𝒎|𝟐 + 𝝈𝒉
𝟐
 ,                                                        (3. 29) 

where   is the power factor which has to guarantee that Equation (3.23) is verified. Hence 

𝜷 = [∑
𝟏

|𝒉𝒊|𝟐 + 𝝈𝒉
𝟐

𝑴

𝒊=𝟏

]

−𝟏

.                                            (3. 30) 

By substituting Equation (3.30) in Equation (3.29), Pm can be re-written as 

𝑷𝒎 =
𝑷𝒕

(|𝒉𝒎|
𝟐 + 𝝈𝒉

𝟐)∑
𝟏

|𝒉𝒊|𝟐 + 𝝈𝒉
𝟐

𝑴
𝒊=𝟏

 ,                               (3. 31) 

From Equation (3.31), the allocated power to a user will decrease when the user’s 

number rises. This will affect the SINR of the user at the cell edge and consequently, the 
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coverage of the BS will degrade. The proposed algorithm has been summarized in 

Algorithm 1.  

Algorithm 1: Energy Efficient Power Allocation Algorithm of Imperfect CSI DL NOMA 
System  

1: Initiate l=M, 

2.Determine   based on Equation (3.30), 

3. For m=1:l, do: 

3.1 Evaluate the allocated power Pm based on Equation (3.31), 

3.2 Evaluate SINRm based on Equation (3.24) 

4. If SINRm<threshold level 

4.1 l=l-1 

4.2 Repeat steps 2 to 4 

5. End If    

6. End For   

One important outcome of this approach is that it guarantees fairness in power 

distribution since weaker users get more power, which helps meet the required SINR for 

each user. However, as the user number increases, the allocated power for each user 

decreases, which could lead to coverage degradation, especially for users at the cell's 

edge. The algorithm dynamically adjusts the number of users served based on their SINR, 

ensuring that the SINR threshold is met while maintaining energy efficiency. Thus, this 

method is important because it provides an energy-efficient solution for power allocation 

under the assumption of perfect CSI, allowing for optimal system performance and power 

distribution across users. The downside is that this assumes perfect knowledge of the 

channel, which may not be feasible in practical systems due to the challenges of obtaining 

perfect CSI in real-world environments. This limitation should be addressed in future 

work focusing on imperfect CSI. 
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3.3 Genetic Algorithm for Optimizing Energy Efficiency in Downlink 

mmWave NOMA System with Imperfect CSI 

To address the limitations of traditional methods in dynamic environments, this section 

introduces GA as an advanced optimization tool. The GA-based framework enhances the 

adaptability and performance of power allocation mechanisms, especially under multi-

user and multi-cell scenarios. The results from this section are core of the finding of this 

study, where optimizing EE in imperfect CSI NOMA system is a main objective, while 

GTPA aims to achieve the maximum data rate in the NOMA system. 

This study focuses on user clustering to maximize the EE in the DL mmWave NOMA 

imperfect CSI system subjected to the asymmetric users’ data rate requirement using one 

of the AI methods, which is a genetic algorithm for light traffic and heavy traffic cases. 

GA are selected to solve the non-convex problem in the proposed method due to their 

ability to efficiently navigate complex solution spaces with multiple local optima, which 

is a common characteristic of non-convex problems like PA in NOMA systems. Unlike 

traditional gradient-based methods that require differentiable objective functions and can 

be prone to getting stuck in local optima, GA uses a population-based approach that 

explores multiple solutions simultaneously, increasing the chances of finding a global 

optimum. Additionally, GA does not rely on initial guesses, making it more robust and 

adaptable to large, complex problems with many variables and constraints, such as power 

limits, SINR requirements, and fairness considerations in resource management. Its 

flexibility in handling non-smooth objective functions and the ability to incorporate 

multiple constraints make GA a practical and effective choice for optimizing resource 

allocation in NOMA systems. 

In the field of artificial intelligence, GA has arisen as a powerful tool to solve the non-

convex optimization problem to determine the minimum solutions when the level of 

quality of service is constrained and the resources are limited especially when no full 
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information about the users’ states is available. In this study, firstly, the EE optimization 

problem for the DL mmWave NOMA system with user clustering under total power and 

specific required SINR for each user depending on the users’ application is formulated. 

Then, the role that PA can play in maximizing the EE in DL mmWave NOMA system 

with clustering where the users’ applications impose asymmetric SINR requirements is 

Investigated. For this purpose, the EE of a two-member cluster system is evaluated at 

asymmetric users’ requirements scenarios where the cell-edge user and the nearby BS 

user require different data rates. Next, a mixed-integer GA problem is converted to an 

integer GA problem for solving EE optimization problems by determining the best 

clusters. The performance of the proposed GA and its convergence is evaluated in the 

case of light traffic and heavy traffic.  The performance of the proposed GA is compared 

with the optimal solution and the conventional OMA at different users’ SINR 

requirements scenarios. The impact of estimation error in CSI at BS on the system 

performance is evaluated based on the proposed GA and the optimal NOMA.  Table 3.1 

shows the list of parameters of the NOMA mmWave system model that is described in 

the following subsection. 

Table 3.1:  List of parameters 

Notation Parameters 
𝜃𝑚
𝑏  The beam width of the mmWave BS b to user m 
𝜑𝑚
𝑏  The boresight angle from mmWave BS b to user m 
𝛾𝑚
𝑏  The spatial angle from user m to mmWave BS b 

𝑔𝑚
𝑏  The gain of the directivity between the beam from mmWave BS b to 

user m and the beam from device m to mmWave BS b 
𝜃𝑚
𝑢  The beam width of the user m to mmWave BS b 
𝜑𝑚
𝑢  The boresight angle from device m to mmWave BS b  
𝛾𝑚
𝑢  The spatial angle from mmWave BS b to user m 

𝑔𝑚
𝑢  The gain of the directivity between the beam from user m to mmWave 

BS b and the beam from mmWave BS b to user m 
𝑔𝑚
𝑐  The gain of the channel linked the user m to the mmWave BS b 
𝜖 Side lobe 
ℎ𝑚 The complete representation of the channel between BS b and user m 
𝑝𝑚 The allocated power to the user m from the mmWave BS b 
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3.3.1 System Model 

A single-cell cellular NOMA mmWave system is considered as illustrated in Figure 

3.5, which includes the beamforming-based directional links (L. Li, Ota, Dong, & 

Verikoukis, 2018; R. Liu et al., 2020). The central BS is equipped with multiple antennas 

whereas each user is equipped with a single antenna. Without losing generality, the users 

are assumed to be uniformly allocated (R. Liu et al., 2020). The set of users within the 

cell boundary is ℳ = {1, 2, 3, … ,𝑀}. The set of the clusters is denoted as ℂ =

{1, 2, 3, … , 𝐶}, where one subchannel is dedicated for each cluster. The user association 

state between every user and BS is represented by Χ𝑀×𝐵matrix as follows: 

𝜲 = [

𝒙𝟏,𝟏 ⋯ 𝒙𝟏,𝑩
⋮ ⋱ ⋮
𝒙𝑴,𝟏 ⋯ 𝒙𝑴,𝑩

]                                             (3. 32)   

where 𝑥𝑚,𝑏 = 1 when the user m is a member of cluster b, and 𝑥𝑚,𝑏 = 0 when it is not. 

Due to the complexity of SIC decoding, it is assumed that each cluster can support two 

members simultaneously on one subchannel (Xie, 2019). 

 

Figure 3.5: The proposed DL mmWave NOMA system. 
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The gain of the directivity between the beam from mmWave BS to user m and the 

beam from user m to mmWave BS is given by 

 𝒈𝒎𝒃 (𝜽𝒎𝒃 , 𝝋𝒎𝒃 , 𝜸𝒎𝒃 ) =

{
 
 

 
 

𝝐,
𝒊𝒇 

𝜽𝒃

𝟐
< |𝝋𝒎

𝒃 − 𝜸𝒎
𝒃 |

< 𝟐𝝅 −
𝜽𝒃

𝟐
 

             

𝟐𝝅−(𝟐𝝅−𝜽𝒃)𝝐

𝜽𝒃
, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                          

(3. 33) 

Similarly, the gain of the directivity between the beam from the user m to the mmWave 

BS and the beam from the mmWave BS to the user m is given as 

𝒈𝒎
𝒖 (𝜽𝒎

𝒖, 𝝋𝒎
𝒖 , 𝜸𝒎

𝒖 ) =

{
 
 

 
 

𝝐,
𝒊𝒇 

𝜽𝒎
𝒖

𝟐
< |𝝋𝒎

𝒖 − 𝜸𝒎
𝒖 |

< 𝟐𝝅 −
𝜽𝒎

𝒖

𝟐

𝟐𝝅−(𝟐𝝅−𝜽𝒎
𝒖)𝝐

𝜽𝒎
𝒖 , 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 

                       (3.34) 

The cluster users are supported at the same time and at the same subchannel by 

utilizing superposition coding techniques. The channel gain from the BS to every user is 

given by 𝑔𝑚𝑐 = 𝑐𝑚𝑑𝑚
−
𝛿

2, where )1,0(~ CNcm  is a Rayleigh fading factor, dm denotes the 

distance from each UE to the transmitter, and δ refers to the path loss exponent (Zamani 

et al., 2019). In practice, it is difficult to attain perfect channel state information due to 

various reasons such as channel estimation errors, feedback delays, and quantization 

errors. Here, a NOMA system with imperfect CSI is considered in which the channel 

estimation is given by 𝑔𝑚𝑐 = 𝑔𝑚𝑐̂ + 𝜀, where ),0(~ 2
 CN is the error of the channel 

estimation with variance 2
 , and 𝑔𝑚𝑐̂  is the estimated channel gain 𝑔𝑚𝑐̂ ~𝐶𝑁(0, 𝜎𝑔𝑚

2 ) 

which is uncorrelated with   (Zamani et al., 2019). Thus, the complete representation of 

the channel between BS and user m is given by: 

 
 
In the DL NOMA system, the users equipment are ordered according to their channels’ 

strength (|ℎ𝑀| ≥ |ℎ𝑀−1| ≥ … ≥ |ℎ2| ≥ |ℎ1|) (Z. Ding et al., 2017). Thereby, the SIC technique 

could extract a specific signal from the superposed signals on a single carrier. The 

ℎ𝑚 = 𝑔𝑚
𝑏 𝑔𝑚

𝑢 𝑔𝑚
𝑐                                                   (3. 35)  
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strongest user device is indicated as UEM and the weakest user device is indicated as UE1.  

The BS transmits M different messages on the same carrier within the same bandwidth. 

On the other side, each user receives a composition of its message with the interferences 

from the signals of other users (M. S. Ali et al., 2016).  

Figure 3.6 illustrates the SIC technique in the mmWave-NOMA system where each 

cluster consists of two members and is carried on a specific subchannel. The mmWave 

BS in the NOMA system utilizes superposition coding techniques to serve several users 

simultaneously. A superposed transmitted signal by the mmWave BS can be expressed 

as (Zamani et al., 2019): 

 

 

where fm is the individual signal dedicated to the m-th user and 𝐸{|𝑓𝑚|2}=1, before 

transmission, M is the number of the UEs supported by the mmWave BS, Ptot is the total 

transmitted power of the mmWave BSs and 𝛼𝑚 is the power coefficient allocated to the 

m-th UE where:  

3  

Figure 3.6: SIC technique to decode signals for two members’ clusters in DL 
mmWave-NOMA system. 

𝑓 = ∑ √𝛼𝑚𝑃𝑡𝑜𝑡 𝑓𝑚(𝑡)

𝑀

𝑚=1

= ∑ √𝑝𝑚 𝑓𝑚

𝑀

𝑚=1

  (3.36) 
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3.3.2 Problem Formulation 

The variation in the power levels of the composed signals plays an important role in 

maximizing the cell throughput and EE (M. S. Ali, Hossain, Al-Dweik, et al., 2018). The 

mmWave BS transmits different signals over the same frequency resource while every 

user receives its desired signal combined with the interferences due to the other users’ 

signals on the same radio signal (M. S. Ali et al., 2016). Each one of the DL NOMA’s 

users undergoes a different attenuation according to its channel gain with the mmWave 

BS.  The user with the strongest channel has the capability to decode the signals of the 

remaining users before decoding its own signal. On the other hand, the user with the 

weakest channel can’t eliminate the signals of the other strong channel UEs. The received 

signal at the m-th UE terminal before applying the SIC technique is given by (Zamani et 

al., 2019).  

𝑦𝑚 = ∑ √𝑥𝑚,𝑏𝑔𝑚
𝑏 𝑔𝑚

𝑢 𝑔𝑚
𝑐 𝑝𝑙𝑓𝑙

∀𝑙∈𝑀,𝑏∈𝐵

+ 𝑤𝑚 (3.37) 

where pl is the allocated power to the l-th user and wm represents the additive white 

Gaussian noise (AWGN). In general, the signal after applying SIC technique at the m-th 

user can be expressed as (Zamani et al., 2019) 

𝑦𝑚 = √𝑥𝑚,𝑏𝑔𝑚
𝑏 𝑔𝑚

𝑢 𝑔𝑚
𝑐 𝑝𝑚𝑓𝑚 + ∑ √𝑥𝑚,𝑏𝑔𝑚

𝑏 𝑔𝑚
𝑢 𝑔𝑚

𝑐 𝑝𝑙
∀𝑙∈𝑀

𝑓𝑙
⏟                

 

𝑙>𝑚

 

+ ∑ √𝜀𝑥𝑙,𝑏𝑝𝑙∀𝑙∈𝑀 𝑓𝑙 + 𝑤𝑚                                                         (3.38)   

 

where in Equation (3.39), the dedicated signal for the m-th UE is represented by the first 

term, while the second term is the inter-channel interference due to decomposed signals 

on the same subchannel of other users and the third term is due to the estimation error of 
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the CSI. It is worth mentioning that the interference due to the signals of the other clusters 

will be eliminated by filtration where other clusters are on different subchannels. 

It is assumed that all users utilize the mmWave spectrum resources completely to 

achieve full employment of the directional gain of the mmWave system. Thus, the 

communication link between the mmWave BS and the m-th user is subjected to 

interference given by 

𝐼𝑚 = ∑ 𝑥𝑚,𝑏𝑝𝑙𝑔𝑚
𝑏

∀𝑙∈𝑀

𝑔𝑚
𝑢 𝑔𝑚

𝑐

⏟            
𝑙<𝑚

+ 𝜎𝜀
2∑𝑥𝑙,𝑏𝑝𝑙

𝑀

𝑙=1

 (3.39) 

This is considered a commonly used interference model in mmWave PA systems (Y. 

Liu, Fang, Xiao, & Mumtaz, 2018). Based on the interference model, the SINR at the m-

th user is given as 

𝑆𝐼𝑁𝑅𝑚 =
𝑥𝑚,𝑏𝑝𝑚𝑔𝑚

𝑏 𝑔𝑚
𝑢 𝑔𝑚

𝑐

𝐼𝑚+𝐵𝑁𝑜
                                                (3.40)  

where B represents the utilized bandwidth and No represents the power spectrum density 

of the AWGN at the user terminal. Thereby, the obtained data rate at the m-th user from 

the mmWave BS could be expressed as 

𝑅𝑚 = 𝐵𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑚)              (3.41) 

The improved throughput is an advantage of the NOMA over the conventional OMA. 

For a more specific comparison, conventional frequency division multiple access 

(FDMA) will be considered in this thesis. For a fair comparison with the NOMA, the 

bandwidth dedicated for each cluster is divided equally among its members so that the 

cluster will support the same number of users within the same dedicated bandwidth in 

both systems: NOMA and OMA. Thus, the data rate of the m-th user from the mmWave 

BS in OMA system is determined as 
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𝑅𝑚
𝑂𝑀𝐴 =

𝐵

𝑀
𝑙𝑜𝑔2 (1 +

∑ 𝑃𝑚𝑔𝑚
𝑏 𝑔𝑚

𝑢 𝑔𝑚
𝑐

𝑛∈𝑁

𝜎𝜀2𝑃𝑚 +
𝐵
𝑀𝑁𝑜

 )      (3.42) 

The advantage of NOMA over OMA in increasing the data rate could be illustrated by 

taking an example of a cell with only two users where the first is at the cell edge, which 

is far from the BS while the second is near the BS. Although low power will be allocated 

to the nearest user who has the strongest channel, its SINR will be high since no inter-cell 

interference significantly affects it. 

Due to the system’s resource constraints, the number of served users and their allocated 

power should be determined carefully to ensure the QoS of wireless systems. 

Furthermore, the difference in the allocated power levels should be verified so that each 

receiver would be able to perform SIC and extract the desired signal (M. S. Ali et al., 

2016). The sum data rate of the NOMA mmWave downlink system is expressed as 

𝑅𝑠𝑢𝑚 = ∑ 𝑅𝑚
𝑚∈𝑀

 (3.43) 

Based on the given data rate, the EE of the user association NOMA mmWave DL 

system would be written as (Zhou et al., 2019) 

𝐸𝐸 =
𝑅𝑠𝑢𝑚

∑ 𝑝𝑚𝑚∈𝑀 + 𝑃𝑐
  (3.44) 

where Pc represents the circuit power dissipation for SIC detection at the mmWave BSs 

with the assumption that it is fixed for all users. In this work, the objective is to maximize 

the non-concave EE optimization problem of the NOMA mmWave with clustering. The 

allocated power by the mmWave BS to each user depends on the required QoS by that 

user within the limited total BS transmission power. Each cluster is assumed to consist of 

two members while each user is supported by one cluster (subchannel). Finding the 

optimal cluster composition that maximizes the EE of the mmWave system subjected to 
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the required QoS and limited transmission power. This EE optimization problem could 

be formulated as 

max⏟
𝑥𝑚,𝑏,𝑝𝑚

  𝐸𝐸 =
𝑅𝑠𝑢𝑚

∑ ∑ 𝑥𝑚,𝑏𝑏∈𝐵𝑚∈𝑀 𝑝𝑚 + 𝑃𝑐
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝐶1: 𝑥𝑚,𝑏 ∈ {0,1}, ∀𝑚 ∈ 𝑀,∀𝑏 ∈ 𝐵, 

𝐶2: ∑ 𝑥𝑚,𝑏
𝑚∈𝑀,𝑏∈𝐵

= 1,          ∀𝑚 ∈ 𝑀,  

𝐶3: ∑ 𝑥𝑚,𝑏
𝑚∈𝑀,𝑏∈𝐵

= 2, ∀𝑏 ∈ 𝐵, 

                                   𝐶4: ∑ ∑𝑥𝑚,𝑏
𝑏∈𝐵𝑚∈𝑀

𝑝𝑚 ≤ 𝑃𝑡𝑜𝑡 , 

                                𝐶5: 𝑆𝐼𝑁𝑅𝑚 ≥ 𝛿𝑚  ,∀𝑚 ∈ 𝑀     (3.45) 

where C1 refers to the association of each user m with a cluster b. C2 states that each user 

should be supported by one cluster while C3 defines that every cluster consists of two 

members. The limited transmission power of the mmWave BS is represented in C4 while 

C5 is to ensure that the minimum QoS requirements for all users in the DL mmWave 

NOMA system are satisfied. It is worthy to mention that the design that allows only two 

users per cluster is likely a simplification for analytical purposes rather than a strict 

implementation of NOMA. In reality, NOMA systems are designed to accommodate 

multiple users in a cluster, where power allocation and SIC are applied to a larger set of 

users. Limiting the number of users per cluster to just two simplifies the problem by 

reducing the complexity of power allocation and interference management. This 

simplification allows for easier mathematical analysis and clearer insights into the 

system's performance, but in practical NOMA implementations, there would typically be 

more than two users in each cluster, depending on the system's design and resource 

constraints. Therefore, the two-user assumption is a modeling choice to facilitate the 

study, not a direct reflection of actual NOMA deployment. 
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It is obvious the difficulties and complexity of finding all xmn and pm that maximize the 

data rate in the downlink user association mmWave NOMA system. Besides, the relation 

between the data rate and the transmitted power makes this problem a non-convex 

optimization problem that is difficult to solve using classical methods. Therefore, a 

genetic algorithm is employed in this study to solve the subchannel association problem. 

Based on the GA scheme, the optimization problem in Equation (3.46) is a mixed integer 

nonlinear problem. 

Genetic Algorithms are often considered a complex optimization technique with a 

relatively low convergence rate, but they are still suitable for solving power allocation 

problems in non-convex scenarios like those encountered in NOMA systems. The 

primary advantage of GA lies in its ability to explore a wide solution space and handle 

complex, non-linear, and non-convex problems that traditional optimization methods 

might struggle with. Power allocation in NOMA, especially when considering factors like 

imperfect CSI, interference, and fairness, introduces a high level of complexity that 

requires a global search for an optimal or near-optimal solution. GA’s stochastic nature, 

which mimics the process of natural evolution, allows it to efficiently navigate through 

multiple local optima without being trapped in suboptimal solutions. Although GA may 

have a slower convergence rate compared to some more specialized algorithms, its 

robustness in handling diverse problem constraints, its ability to work with noisy or 

incomplete data, and its flexibility in dealing with complex system models make it highly 

effective in power allocation. Additionally, techniques like elitism, mutation, and 

crossover can be applied to enhance GA’s convergence rate over time, allowing it to 

converge to a suitable solution while avoiding computationally expensive methods. Given 

these characteristics, GA is well-suited for resource management problems where 

conventional methods may fail or become computationally prohibitive. 
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The GA method can be extended to a multi-cell scenario, though it requires additional 

considerations to account for inter-cell interference, coordination between cells, and the 

complexity of managing resources across multiple cells. Here's how it can be extended: 

1. Inter-cell Interference Management: In a multi-cell scenario, the interference 

between cells becomes a critical factor in power allocation. GA can be 

extended by including inter-cell interference as part of the fitness function. 

The fitness function would then need to incorporate the total interference from 

neighboring cells and penalize solutions that result in high interference levels. 

This encourages solutions that optimize power allocation not just within a 

single cell but across multiple cells, reducing the overall interference and 

improving the system's performance. 

2. Resource Sharing: In a multi-cell system, power allocation across multiple 

cells might need to be coordinated. GA can be extended to handle resource 

sharing between cells. Each cell can be treated as a separate agent or player, 

and GA can optimize the power allocation by considering the overall 

network's objectives (such as total sum rate, fairness, or EE) rather than 

focusing on individual cells. The interactions between cells can be modeled as 

a multi-agent system, where the power allocation in each cell depends on the 

decisions made by neighboring cells. 

3. Multiple Objectives: In a multi-cell system, the goals of optimization are more 

complex, often involving a trade-off between sum data rate, fairness, energy 

efficiency, and interference management. GA can be extended to a multi-

objective optimization problem, where multiple objectives are simultaneously 

optimized. For instance, the fitness function could be designed to balance the 

total data rate with fairness across cells or minimize the total interference 
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across the network. Multi-objective GA techniques, such as Pareto-based 

approaches, could be employed to find a set of optimal solutions. 

4. Population Representation: In a multi-cell system, the population in the GA 

could represent the power allocation across all cells. Each chromosome could 

encode the power allocation decisions for all users in all cells, and crossover 

and mutation operations could be designed to exchange power allocation 

information between different cells. The algorithm would then search for the 

optimal distribution of power across the entire network. 

5. Cooperation or Competition Between Cells: Depending on the network 

architecture, GA can be adapted to either coordinate the power allocation 

between cells (cooperative case) or have each cell independently optimize its 

power allocation based on local objectives and constraints (non-cooperative 

case). In the cooperative case, a centralized GA approach can be used where 

the cells exchange information to jointly optimize the system’s performance. 

In the non-cooperative case, the GA can be used to find Nash equilibria, where 

each cell independently maximizes its performance given the strategies of 

other cells. 

6. Additional Constraints: In a multi-cell system, there might be more 

constraints, such as the backhaul capacity, cell-specific power limits, and the 

quality of service requirements for users in different cells. These constraints 

would be incorporated into the fitness function and the genetic operators to 

ensure that the solutions are feasible in the context of the entire multi-cell 

network. 

By extending GA to handle these additional factors, the power allocation problem in a 

multi-cell NOMA system can be effectively addressed. The flexibility of GA in handling 

complex, non-convex optimization problems, coupled with its ability to incorporate 
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various network-wide constraints, makes it a promising tool for solving power allocation 

in multi-cell scenarios. 

3.3.3 Power Allocation and GA Scheme 

3.3.3.1 Power Allocation 

To propose a mechanism to allocate the power to cluster members of various required 

data rates, first, investigate the assumption the assumption of allocating higher power to 

the weaker-channel state user in the cluster as well as the assumption of allocating the 

lower power to the stronger-channel state user is required to ensure higher EE can be 

achieved (Vaezi, Schober, Ding, & Poor, 2019). For simplicity, a simple scenario is 

considered where the mmWave has complete CSI information of all users. Thus, for a 

two members-cluster, the SINR of the strong-channel user (SINR1) and the SINR of the 

weak-channel user (SINR2) are given as: 

𝑆𝐼𝑁𝑅1 =
𝑝1𝑔1

𝑏𝑔1
𝑢𝑔1

𝑐

𝑝2𝑔1
𝑏𝑔1

𝑢𝑔1
𝑐 + 𝐵𝑁𝑜

 (3.46) 

and  

𝑆𝐼𝑁𝑅2 =
𝑝2𝑔2

𝑏𝑔2
𝑢𝑔2

𝑐

𝐵𝑁𝑜
 (3.47) 

where the SIC technique is used at the UE2 to eliminate the interference due to the weaker-

channel user UE1.  

3.3.3.2 Genetic Algorithm 

The GA is one of the classical heuristic algorithms that successfully implemented to 

solve non-convex optimization problems (H. Wei et al., 2021). In this section, the 

components of the GA to solve the EE optimization problem in DL mmWave NOMA 

with clustering will be described. 

Univ
ers

iti 
Mala

ya



75 

GA is one of the evolutionary algorithms that is inspired by the biological selection 

process and follows similar operators. Goldberg's GA was inspired by Darwin's evolution 

theory, which says that an organism's survival is determined by the criterion "the strongest 

species survive". Based on Darwin’s theory, an organism's survival can be ensured by the 

processes of reproduction, crossover, and mutation (Sai et al., 2020). Darwin’s principle 

about evolution is utilized later in a computational algorithm to solve a problem called an 

objective function. The solution found by GA is indicated by a chromosome whereas a 

collection of chromosomes represents a population. A chromosome comprises genes, and 

the value of each chromosome can be numerical, binary, or character depending on the 

nature of the problem. These chromosomes pass through a series of steps starting with a 

fitness function process to evaluate the suitability between the solution provided by GA 

and the problem. Through another process called a crossover, new offspring of 

chromosomes are generated by mating some chromosomes in the population. The genes 

carried by the new offspring are a mixture of their parents (X. Sun, Yang, & Cai, 2020). 

On the other hand, some chromosomes in the generation will undergo gene mutation. The 

crossover rate and mutation rate values determine the number of chromosomes that will 

undergo crossover and mutation, respectively. According to Darwin’s rule of evolution, 

the chromosome with the highest fitness value will have a larger chance of being selected 

again in the future generation. The chromosomal value will converge over numerous 

generations to a specific value which is the optimal solution for the problem (Ahn et al., 

2021). 

By utilizing GA to solve the problem in Equation (3.46), repetitively assigning cluster 

members and determining their power allocation process should be performed to 

determine the maximum EE.  Based on the known CSI of the users at mmWave NOMA 

BS, the allocated power to the weaker-channel user and the allocated power to the 

strongest user depends on their inquired QoS to attain C5. To solve the non-convex 
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optimization problem in Equation (3.46) using GA, a reformulation was conducted to 

achieve a minimization problem, which can be written as 

min⏟
𝑥𝑚,𝑏

−
𝑅𝑠𝑢𝑚

∑ ∑ 𝑥𝑚,𝑏𝑏∈𝐵𝑚∈𝑀 𝑝𝑚 + 𝑃𝑐
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝐶1: 𝑥𝑚,𝑏 ∈ {0,1}, ∀𝑚 ∈ 𝑀,∀𝑏 ∈ 𝐵, 

𝐶2: ∑ 𝑥𝑚,𝑏
𝑚∈𝑀,𝑏∈𝐵

= 1,          ∀𝑚 ∈ 𝑀,  

𝐶3: ∑ 𝑥𝑚,𝑏
𝑚∈𝑀,𝑏∈𝐵

= 2, ∀𝑏 ∈ 𝐵, 

𝐶4: ∑ ∑𝑥𝑚,𝑏
𝑏∈𝐵𝑚∈𝑀

𝑝𝑚 ≤ 𝑃𝑡𝑜𝑡 ,  

𝐶5: 𝑆𝐼𝑁𝑅𝑚 = 𝛿𝑚  ,∀𝑚 ∈ 𝑀                                    (3.48) 

 

 

Integer GA is utilized to determine the best cluster combination that maximizes EE. 

The GA process to solve the optimization problem in Equation (3.49) consists of 

sequential stages, that begin with a determination of the chromosome number, maximum 

number of generations, mutation rate, and crossover rate. Initial values of xmb will be 

assumed then sequences of selection and mutation will be performed. The evolution starts 

with random individual elements xm,b of the generation that satisfies C1, C2, and C3. 

Based on C2, the sum of each row in the matrix X in Equation (3.32) should be equal 1, 

which indicates that each user is supported by only one subchannel via one cluster in the 

cell. On the other hand, based on C3, the sum of each column in X should be equal to 2 

since each cluster supports 2 members. Because these are integer constraints, the linear 

equality constraints of the optimization problem in Equation (3.49) should be 

reformulated to inequality constraints. Generally, the vector form for linear inequality 

constraints of GA problem is given as 
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𝑨𝑿 ≤ 𝒃                                                (3.49)    

For a problem of nc linear inequality constraints and nvars variables, A is a matrix of 

size nc-by-nvars and b is a vector of length nc. Thus, C2 and C3 could be reformulated as 

𝐶2:

{
 
 

 
 ∑𝑥𝑚,𝑏

𝐵

𝑏=1

≤ 1

∑𝑥𝑚,𝑏

𝐵

𝑏=1

≥ 1

  ,         ∀𝑚 ∈ 𝑀, (3.50) 

 𝑎𝑛𝑑, 𝐶3:

{
 
 

 
 ∑ 𝑥𝑚,𝑏

𝑀

𝑚=1

≤ 2

∑ 𝑥𝑚,𝑏

𝑀

𝑚=1

≥ 2

  ,         ∀𝑏 ∈ 𝐵     (3.51) 

Since each cluster is assumed to support 2 users (𝐵 = 𝑀

2
), the number of variables nvars 

would be 𝑀
2

2
 and the number of linear inequality constraints nc would be 3M . It is worth 

mentioning that the initial population created by GA contains several individuals that lie 

within the preset initial range. For the concerned GA problem, all individuals should lie 

within the range [0; 1]. Because of the massive number of users in the real wireless 

system, the population size will contain thousands of potential solutions and the initial 

population will be randomly selected. The population size of the integer GA problem 

should be higher than the double GA problem to ensure a feasible solution can be obtained 

(Mircea, Chen-Ching, & Abdel-Aty, 2016). 

These generation elements are reproduced iteratively within a maximum number of 

generations. Providing lower and upper bounds for all xm,b elements is necessary to find 

the best solution to the integer GA problem. Thus, the lower bound Lb and the upper 

bound Ub of the problem in Equation (3.49) are given by: 
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𝐿𝑏 = [0 … 0]1×𝑛𝑐   (3.52) 

and  

𝑈𝑏 = [1 … 1]1×𝑛𝑐    (3.53) 

Some genes of selective individuals in the current population (parents) are passed on 

to the next generation (children). Usually, the selected individuals are those who have the 

best fitness values. The other individuals pass through crossover and mutation processes 

that are illustrated in Figure 3.7. Thus, the next generation is classified into three types: 

 Elite children: Individuals that attain the best fitness values and therefore 

have a higher probability to appear in the next generation. In the concerned 

GA problem, the elite group is selected as the individual clustering groups 

xm,b that attain the maximum EE among the whole population. The percentage 

of the elite to the total individual is set to 2% to pass completely to the next 

generation. 

 Crossover children: Individuals that are created by mixing the vectors of a 

pair of parents. 

 Mutation children: Individuals that are created by applying random changes, 

or gene mutations, to individual parents to produce children. The mutation 

rule applies to the individual with a lower probability of attaining maximum 

EE. 

The flowchart of the proposed GA is illustrated in Figure 3.8 where the fitness of the 

population units is assessed by the objective function value of the optimization problem 

in every generation.  However, the integer genetic algorithm seeks to minimize a penalty 

function instead of the objective function. The penalty function adds a term for solution 

infeasibility to the original objective function (Deb, 2000). The penalty function consists 

of weighted penalty parameters to estimate the infraction of the constraints. Thus, the 
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constrained problem is converted to a series of unconstrained problems where their 

solutions are converged to the potential solution of the original problem. The penalty 

function represents the fitness function if the candidate solution is feasible. Otherwise, 

the sum of the constraint violations of the (infeasible) point is added to the objective 

function (Deep, Singh, Kansal, & Mohan, 2009). Thus, the penalty function of the EE 

optimization problem in Equation (3.49) is given as: 

 

Figure 3.7: Three classifications of the next generations (children) created by 
GA. 

min⏟
𝑥𝑚,𝑏

−
𝑅𝑠𝑢𝑚

∑ ∑ 𝑥𝑚,𝑏𝑏∈𝐵𝑚∈𝑀 𝑝𝑚 + 𝑃𝑐
+ 𝜌𝑘∑𝑔𝑖(𝑥

2

𝑖=1

),       (3.54) 

where 𝜌𝑘 is the penalty factor and the second term in Equation (3.55) represents the 

penalty function which could be represented as 

𝑔1(𝑥) = max(1,∑𝑥𝑚,𝑏

𝐵

𝑏=1

),      ∀𝑚 ∈ 𝑀              (3.55) 

and  

𝑔2(𝑥) = max(2, ∑ 𝑥𝑚,𝑏

𝑀

𝑚=1

),      ∀𝑏 ∈ 𝐵 (3.56) 
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Initially, the penalty factor is set to a small value and, then it is increased in the next 

iterations. The penalty function converges to the fitness function when the penalty 

function attains the constraints. Eventually, the solutions of the successive unconstrained 

problem will meet the solution of the original constrained problem.  

 

Figure 3.8: The flowchart of the proposed genetic algorithm 

The computational complexity of the proposed GA-based method has been analyzed 

to evaluate its feasibility for real-world applications, particularly in large-scale networks. 

The complexity primarily depends on the population size (P), the number of generations 

(G), and the constraints incorporated within the fitness function evaluation. For a single 

iteration, the complexity is proportional to O(P⋅F) where F represents the time required 

to compute the fitness value for each solution. Over G generations, the total complexity 

becomes O(P⋅G⋅F). In the context of the optimization problem addressed in this study, 

the constraints (e.g., user and cluster assignments, power allocations) increase the 

evaluation time due to additional penalty calculations. However, integer GA has been 
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chosen for its ability to handle these constraints efficiently while ensuring convergence 

to a near-optimal solution. While the method demonstrates scalability to moderate 

problem sizes, further optimizations (e.g., parallel processing or hybrid techniques) can 

enhance its applicability to large-scale networks. Additionally, reference to the 

mechanism described in (Ruochen Liu, Yang, & Liu, 2021) provides insights into 

analyzing complexity and optimizing GA performance under large-scale scenarios. This 

analysis will be explored further in future work to refine the algorithm and enhance its 

practical deployment in real-world NOMA networks. 

3.4 Multi-Stage Mechanism for Optimizing EE in Imperfect CSI DL NOMA 

System 

The final section synthesizes the insights and techniques from previous sections into a 

comprehensive, multi-stage mechanism. This approach ensures iterative refinement and 

robust optimization of energy efficiency and data rates in complex network environments. 

The multi-stage methodology proposes a trade-off between EE and data rate in the 

imperfect CSI NOMA systems, highlighting their synergistic potential in addressing the 

challenges of next-generation wireless networks. 

In this thesis, a multi-stage mechanism is proposed to optimize the EE under the 

imperfect CSI condition. In the proposed technique, game theory is utilized in the first 

stage to maximize the data rate, and an iterative method is incorporated in the second 

stage so that the EE can be optimized. Imperfect CSI at the BSs is also considered in this 

study and the effect of the channel estimation error on the system performance is 

evaluated. In this study: 

 Based on the game theory, a PA algorithm that maximizes the system data 

rate is derived.  Firstly, a user utility function based on the power cost in an 

imperfect CSI scenario is derived and its convexity will be proved. Next, a 
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theoretical model of the Glicksberg game is presented to assign powers to 

users in the DL NOMA system under the maximum transmitted power and 

SINR constraints. Besides that, a mathematical proof of unique Nash and the 

mathematical relation between the power cost and users' number for the 

proposed model are also presented. 

 An iterative method is utilized to find the optimal transmission power that 

maximizes the EE. Based on the proposed game strategy, power is allocated 

to the users to maximize the data rate. 

 A closed-form expression for the outage probability of the user device at the 

cell edge is derived based on the adopted channel model.   

 Finally, the performance of the proposed multi-stage algorithm is evaluated 

by simulation in terms of EE, average data rate, and outage probability in the 

case of perfect CSI and imperfect CSI.   

The algorithm is referred to as multi-stage because it involves multiple iterative stages 

in which the PA and EE are updated step by step until a convergence criterion is met. 

Each "stage" corresponds to one iteration of evaluating and adjusting the power allocation 

for each user, followed by an assessment of the energy efficiency. The process is repeated 

(in stages) until the difference in energy efficiency between the upper and lower bounds 

becomes sufficiently small (i.e., the convergence criterion is satisfied). The following 

subsection describes the system model of the proposed multi-stage power allocation 

algorithm and the outage probability of the edge user based on the proposed algorithm. 

3.4.1 System Model 

A DL multi-cell NOMA system consisting of K cells is considered. In the NOMA 

system, one carrier has been dedicated to every cell 𝑘 = {1, 2, , … , 𝐾} that is equipped 

with a central BS to provide service to M user equipment (UEs), where  𝑚 =

{1, 2, , … ,𝑀}. The BS and each user device are assumed to be equipped with a single 
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antenna. Every BS serves numerous users at the same time with the same carrier by 

utilizing superposition coding techniques. The channel gain from the BS k to the user m 

is given by 2/
,,,
 kmkmkm dgh , where )1,0(~, CNg km  is a Rayleigh fading factor, dm,k denotes 

the distance from each UE(m) to the BS(k), and δ refers to the path loss exponent (Zamani 

et al., 2019). Here, a NOMA system with imperfect CSI is considered, in which the 

channel estimation is given by  kmkm hh ,,
ˆ , where ),0(~ 2

 CN is the error of the 

channel estimation with variance 2
 , and kmh ,

ˆ  is the estimated channel gain 

),0(~ˆ 2
ˆ,

,kmhkm CNh  which is uncorrelated with   (Zamani et al., 2019). The system 

architecture is illustrated in Figure 3.9. 

In the DL NOMA system, the user devices within every cell are ordered according to 

their channels’ strength (|ℎ𝑀| ≥ |ℎ𝑀−1| ≥ … ≥ |ℎ2| ≥ |ℎ1|) for perfect CSI and 

imperfect CSI cases (Z. Ding et al., 2017). Thus, SIC technique could be utilized to extract 

a specific signal from the superposed signals on a single carrier. The strongest user device 

associated with the k BS is denoted as UEM,k while the weakest user device is indicated 

as UE1,k.  The BS k transmits M different messages on the same carrier within the same 

bandwidth. On the receiver side, each user receives a composition of its message with 

inter-cell interference from the signals of other users associated with the same BS (M. S. 

Ali et al., 2016).  
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Figure 3.9: The multi-cell DL NOMA system. 

It is worth noting that the BS is assumed to have a full CSI knowledge of all user 

devices (Khan, Yu, Yu, Sidhu, & Liu, 2019). However, because of the channel estimation 

error and the quantization error, these CSIs might be imperfect (Zamani et al., 2019). 

Moreover, imperfect SIC could happen due to an error in the SIC procedure where the 

users of stronger channels imperfectly eliminate the interference that results from the 

weaker users’ signal. This remaining interference degrades the system's performance 

(Saetan & Thipchaksurat, 2019). To facilitate the performance analysis, this study focuses 

on the effect of the imperfect CSI while the influence of imperfect SIC is beyond the 

scope of this thesis. The analytical framing of this study could be expanded in future work 

to study the impact of both imperfect SIC and imperfect CSI in a straightforward manner 

where the imperfect SIC changes the system model by adding one independent noise part 

(Y. Sun, Ding, Dai, & Dobre, 2019).  

In general, the signal at the receiving terminal m in cell k before applying the SIC 

technique is given by (Khan, Li, Zeng, & Dobre, 2021; Zamani et al., 2019)  
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𝒚𝒎,𝒌(𝒕) = 𝒉̂𝒎,𝒌√𝜶𝒎,𝒌𝑷𝒌𝒙𝒎,𝒌(𝒕) + 𝒉̂𝒎,𝒌∑√𝜶𝒋,𝒌𝑷𝒌𝒙𝒋,𝒌(𝒕)

𝑴

𝒋=𝟏
𝒋≠𝒎

+ 𝜺∑√𝜶𝒋,𝒌𝑷𝒌𝒙𝒋,𝒌(𝒕) + 𝒘𝒎,

𝑴

𝒋=𝟏

                                                               (3. 57) 

where in Equation (3.58), the dedicated signal for a user device m in cell k is represented 

by the first term, while the second term represents the inter-cell interference due to the 

decomposed signals on the same carrier of other devices within cell k. The third term in 

Equation (3.58) represents the interference due to the error in the channel estimation, and 

wm is the AWGN at the m-th user with zero mean and density and variance 𝜎2. Pk is the 

total power of the k-th BS, xm,k refers to the individual OFDM signal, and km,  represents 

the assigned power coefficient of UEm,k, which satisfies:    

∑ 𝜶𝒎,𝒌 ≤ 𝟏.

𝑴

𝒎=𝟏

                                                      (3. 58) 

In general, the received signal at the user device terminal after performing the SIC 

technique is given as: 

𝒚𝒎,𝒌(𝒕) = 𝒉̂𝒎,𝒌√𝜶𝒎,𝒌𝑷𝒌𝒙𝒎,𝒌(𝒕) + 𝒉̂𝒎,𝒌 ∑ √𝜶𝒋,𝒌𝑷𝒌𝒙𝒋,𝒌(𝒕)

𝑴

𝒋=𝒎+𝟏

+ 𝜺∑√𝜶𝒋,𝒌𝑷𝒌𝒙𝒋,𝒌(𝒕) + 𝒘𝒎,

𝑴

𝒋=𝟏

                                                              (3. 59 

Consider the case where the allocated power to the m-th UE in the k-th cell is 

kkmkm PP ,,  . Then the SINR at UEm,k in the NOMA system when CSI is imperfect can 

be derived as: 

𝑺𝑰𝑵𝑹𝒎,𝒌 =
𝑷𝒎|𝒉̂𝒎|

𝟐 

|𝒉̂𝒎,𝒌|
𝟐  ∑ 𝑷𝒋,𝒌 + 𝝈𝝐

𝟐∑ 𝑷𝒋,𝒌 + 𝝈
𝟐 𝑴

𝒋=𝟏  𝑴
𝒋=𝒎+𝟏

,                 (3. 60) 

where the noise due to all undesired signals from the stronger channel users is represented 

by the first term in the denominator, and the second term represents the inter-cell 
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interference resulting from the composed messages due to the error in the channel 

estimation. Based on the SIC process, SINRM,k will be relatively high despite its low 

allocated power since no inter-cell interference will influence it. On the other hand, the 

highest power level should be assigned to the weakest device to compensate for the inter-

cell interference and maintain the required SINR1,k. However, the presence of channel 

estimation errors adversely impacts the SINR for all users, leading to a reduction in both 

individual and overall achieved data rates within the cell. 

The throughput of UEm,k in the case of imperfect CSI NOMA of this thesis case can 

be written as 

𝑹𝒎,𝒌
𝑵𝑶𝑴𝑨 = 𝐥𝐨𝐠𝟐 [𝟏 +

𝑷𝒎|𝒉̂𝒎,𝒌|
𝟐 

|𝒉̂𝒎,𝒌|𝟐  ∑ 𝑷𝒋,𝒌 + 𝝈𝝐𝟐∑ 𝑷𝒋,𝒌 + 𝝈𝟐 
𝑴
𝒋=𝟏  𝑴

𝒋=𝒎+𝟏

],                 (3. 61) 

TDMA is commonly used to compare the performance of NOMA to OMA (Y. Wu, 

Zhang, & Rong, 2020; L. Zhu, Z. Xiao, X. Xia, & D. O. Wu, 2019). Hence, to evaluate 

the proposed mechanism, TDMA is adopted here where the total BS power is assigned to 

an individual user during its block time. Thus, the data rate of m-th user in the downlink 

OMA cellular system with a central BS serving M users on a single carrier per each 1 Hz 

spectrum for the imperfect CSI case is given by: 

𝑹𝒎,𝒌
𝑶𝑴𝑨 =

𝟏

𝑴
𝐥𝐨𝐠𝟐 [𝟏 +

𝑷𝒎|𝒉̂𝒎,𝒌|
𝟐 

𝝈𝝐𝟐𝑷𝒌 + 𝝈𝟐
].                               (3. 62) 

On the other hand, the sum data rate, Rsum of DL NOMA system with K cells where 

every central BS serving M users on a single carrier per each 1 Hz spectrum in imperfect 

CSI case can be expressed as: 

𝑹𝒔𝒖𝒎
𝑵𝑶𝑴𝑨 =∑∑ 𝐥𝐨𝐠𝟐 [𝟏 +

𝑷𝒎|𝒉̂𝒎,𝒌|
𝟐 

|𝒉̂𝒎,𝒌|𝟐  ∑ 𝑷𝒋,𝒌 + 𝝈𝝐𝟐∑ 𝑷𝒋,𝒌 + 𝝈𝟐 
𝑴
𝒋=𝟏  𝑴

𝒋=𝒎+𝟏

]

𝑴

𝒎=𝟏

𝑲

𝒌=𝟏

,       (3. 63) 

Univ
ers

iti 
Mala

ya



87 

The importance of EE as a performance metric lies in its ability to optimize resource 

utilization, minimize energy consumption, and promote the sustainability of the system. 

Energy efficiency is defined as the ratio of the total network throughput to the total 

consumed power (Luong et al., 2018), and it is expressed as 

𝐸𝐸 =
𝑅𝑠𝑢𝑚
𝑃𝑡 + 𝑃𝑐

 

=

∑ ∑ 𝐥𝐨𝐠𝟐 [𝟏 +
𝑷𝒎|𝒉̂𝒎,𝒌|

𝟐 

|𝒉̂𝒎,𝒌|𝟐  ∑ 𝑷𝒋,𝒌 + 𝝈𝝐𝟐∑ 𝑷𝒋,𝒌 + 𝝈𝟐 
𝑴
𝒋=𝟏  𝑴

𝒋=𝒎+𝟏

]𝑴
𝒎=𝟏

𝑲
𝒌=𝟏

∑ ∑ 𝑷𝒋,𝒌 + 𝑷𝒕
𝑴
𝒋=𝟏

𝑲
𝒌=𝟏

 ,               (3. 64) 

where Pc represents the fixed transmitter circuit dissipation power (Zeng, Hao, Dobre, & 

Poor, 2019). This thesis focuses on maximizing the EE of DL NOMA systems within 

limited total power consumption subject to the QoS requirements. Utilizing power 

allocation plays a key role in optimizing the total EE in wireless systems. Hence, to extract 

the desired signals at the receivers using SIC, the assigned power to the user devices 

should be based on their channel’s strength (M. S. Ali et al., 2016). Thus, the EE 

optimization problem could be formulated as: 

max
𝑷𝒎,𝒌

        𝐸𝐸 =
𝑅𝑠𝑢𝑚
𝑃𝑡 + 𝑃𝑐

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑃𝑚,𝑘 ≤ 𝑃𝑘

𝑀

𝑚=1

    ∀𝑘 ∈ 𝐾 

𝑃𝑚,𝑘 ≥ 𝑃𝑚+1,𝑘 ≥ 0,      ∀𝑘 ∈ 𝐾 

𝑺𝑰𝑵𝑹𝒎,𝒌 ≥ 𝜻,   ∀𝒎 ∈ 𝑴                                       (3. 65) 

where   
is the SINR threshold value that ensures the minimum required data rate for all 

users (H. Zhang, Wang, et al., 2018). The number of users and their assigned powers must 

be determined carefully to verify the minimum boundary of the constraints.  Moreover, 

variations in the levels of the assigned power must be verified to ensure that each UE is 

capable of performing SIC and extracting its signal (M. S. Ali et al., 2016). In this study, 
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a multi-stage mechanism based on the game theory and PA is proposed to solve the EE 

optimization problem in Equation (3.66). 

The QoS in your study is represented by ensuring that the required minimum SINR is 

achieved for each user, but it is treated as a constraint within the power allocation 

optimization problem, rather than being explicitly calculated. The algorithm ensures that 

the power allocation adheres to the minimum SINR requirement through constraints, 

which govern how the power is distributed among users to meet this threshold, thereby 

ensuring the desired QoS. This constraint is incorporated into the problem formulation 

and is not computed directly as a separate process. 

3.4.2 Multi-Stage Power Allocation Algorithm 

Game theory provides a robust tool for modeling discrepancies between 

communication system members such as BS and user devices. Every user requires high 

power to increase its data rate. On the other hand, the BS, which represents the 

communication utility, aims to minimize the consumed power and to provide all users 

with minimum QoS at the same time. In game theory, each player seeks to maximize his 

payoffs, where the benefit of each player relies on his playing strategy as well as other 

players’ strategies. The result of the game represents a solution in which all players have 

no motive to change their actions to gain more benefit. This stable state where all the 

participants are in approval is known as Nash Equilibrium. In general, the strategic game 

involves a group of players (the users and the BS), strategies, and the declared benefit 

functions (utility functions) for every adopted action by the game player. In a non-

cooperative game, such as the Glicksberg game, each user aims to increase his benefit, in 

terms of data rate, by requesting higher allocated power. The BS sets the power price to 

restrict the demanded power and to create a balance (Mohammadi, Mashhadi, & 

Shahidehpour, 2019). All players in this case, the users, use the game theory to decide 

intelligently how to achieve as maximum as possible benefits while maintaining the 
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required quality of service at a minimum data rate level. Non-cooperative games, such as 

the Glicksberg game (J. Huang et al., 2018) and the Stackelberg game (Q. Wang, Wang, 

Jin, Zhu, & Zhang, 2015), have been utilized to solve data rate and EE optimization 

problems in 5G. Based on the Glicksberg-Fan fixed point theorem (Van Hung & Keller, 

2021) , if a game consists of a delimited number of players where the space of the playing 

strategy of each player is not empty, is limited convex set in the Euclidian space and the 

utility function of each player is quasi-concave in its strategy space, then the game is 

expected to have at minimum one pure strategy Nash equilibrium.  

Equation (3.61) shows that a larger Pm,k results in a higher SINRm,k for the m-th user in 

the k-th cell. However, this increase leads to higher interference to other users. Thus, the 

relationship among the users at the time of allocating their powers could be described as 

a game. In this Glicksberg game, the user devices represent the game players, and the 

allocated power represents each player’s action. By definition, let 𝐺 =

(𝑀, {𝑃𝑚,𝑘}, {𝑈𝑚,𝑘}) a PA game in which 𝑚 = {1, 2, … ,𝑀} represents the index of user 

devices in the cell 𝑘 = {1, 2, … , 𝐾}, {𝑃𝑚,𝑘} represents the strategy set, and Um,k refers to 

the utility function.  Up to a certain level of transmission power, maximizing the total 

data rate refers to the maximum EE that can be achieved at this level (Zamani et al., 2019). 

Maximizing the sum data rate is obtained when every user's data rate is maximized. Thus, 

the proposed approach will be to design a game to determine the power that maximizes 

the throughput. The utility function Um,k of each user device in every cell can be derived 

as:  

𝑈𝑚 =
𝑃𝑚,𝑘
2

𝑆𝐼𝑁𝑅𝑚,𝑘
− 𝐵𝑃𝑚,𝑘 

=
𝑷𝒎,𝒌
|𝒉𝒎,𝒌|𝟐

(|𝒉𝒎,𝒌|
𝟐  ∑ 𝑷𝒋,𝒌 

𝑴

𝒋=𝒎+𝟏

+ 𝝈𝝐
𝟐∑𝑷𝒋,𝒌 + 𝝈

𝟐 

𝑴

𝒋=𝟏

) − 𝑩𝑷𝒎,𝒌 ,           (3. 66) 

Univ
ers

iti 
Mala

ya



90 

where B represents the cost charged by the BS for the assigned power Pm,k. The first term 

𝑃𝑚,𝑘
2

𝑆𝐼𝑁𝑅𝑚,𝑘
 represents the utility gained by the m-th user based on its power allocation Pm,k 

and the SINR. The SINR measures the quality of the received signal, accounting for both 

the desired signal power and interference. The squared term in the numerator implies that 

higher power allocation increases the utility, but the SINR denominator ensures 

diminishing returns as power allocation grows due to increasing interference. The second 

term 𝐵𝑃𝑚,𝑘  models the cost of allocating power to the user. This term penalizes the system 

for increasing the power, thus discouraging excessive power allocation. The function 

𝐵𝑃𝑚,𝑘could be an increasing function of Pm,k   representing the price or cost associated 

with allocating more power to the user. This encourages efficient power distribution 

across users.  The first term of the utility function encourages maximizing the SINR, 

which translates to better signal quality for the user. The second term penalizes excessive 

power allocation, helping prevent inefficiency and ensuring that power resources are not 

wasted. The utility function reflects a balance between maximizing user performance 

(through high SINR and power) and minimizing the associated cost of power usage. The 

utility function describes the player’s reactions in playing. An increase in the assigned 

power to any device certainly enhances its SINR.  

However, more interference will be seen by other users of a higher order (Z. Wang et al., 

2018) where a greater power level is required to achieve the threshold SINR. Thus, Um,k 

in Equation (3.67) illustrates the utility function’s conditions; where SINR represents the 

user’s benefit while the price,  𝐵𝑃𝑚,𝑘  represents a detriment resulting from the increment 

in the assigned power to UEm,k. The rise in Pm,k leads to a rise in Um,k until it reaches a 

peak value, and then it will start to decrease due to the negative effect of the price. Thus, 

the relation between the proposed utility function and Pm,k is a convex function. 
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Firstly, the proposed utility function has proved to be effective. Then, a complete 

theoretic game mechanism to allocate the power is presented and the existence of the 

equilibrium is investigated.    

Lemma 1. The proposed Um,k in Equation  (3.67) is effective and restrictive.  

Proof. The effectiveness of Um,k is achieved if a rise in the assigned power to UEm,k 

leads to an increase in the Um,k value. Besides, the utility function’s restrictiveness is 

achieved when the assigned power beyond a specific threshold degrades the utility value 

(J. Huang et al., 2018). In other words, restrictiveness guarantees a limited level of the 

allocated power to every player, depending on the adopted game strategy. Therefore, its 

influence on other users can be controlled. The utility function is considered effective and 

restrictive if it satisfies the following condition:  

𝝏𝟐𝑼𝒎,𝒌

𝝏𝑷𝒎,𝒌
𝟐

< 𝟎                                                  (3. 67) 

It can be seen that, Equation (3.67) fulfills the condition in Equation (3.68) if and only 

if ∑ 𝑃𝑖,𝑘
𝑀
𝑖=1 = 𝑃𝑘, where: 

𝝏𝟐𝑼𝒎,𝒌

𝝏𝑷𝒎,𝒌
𝟐

= −𝑩𝑷𝒎,𝒌(𝒍𝒏𝑩)𝟐 < 𝟎                           (3. 68) 

Thus, the proposed Um,k is considered as a well-designed utility function. Moreover, 

the channel estimation error term does not affect the effectiveness and restrictiveness of 

the proposed Um,k.  

Glicksberg game is proposed for solving the optimization problem in Equation (3.66), 

where the leader in this game is the user with the strongest channel. This leader takes the 

first action in the game by choosing his minimum required SINR. The total transmission 

power and the required SINRM,k will determine the power cost and the number of users 

covered by service in the cell. Then, all players set their power level that maximizes Um,k.  
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Next, the existence of the Nash equilibrium for the proposed algorithm will be proved 

(Vamvakas, Tsiropoulou, & Papavassiliou, 2019).  

Theorem 1.  Nash equilibrium satisfies the proposed game theoretic power allocation.  

Proof: The assigned power to every user for the proposed game model is predefined as 

0, kiP . For the DL system, the strategy space is nonempty, compact, and convex. 

Moreover, Um,k in Equation (3.67) is continuous and Equation (3.68) is verified for every 

link between BS and the user. Therefore, Um,k is a quasi-concave function depending on 

Pm,k. Every BS-transmitted power predefines the assigned power to all user devices within 

the cell (∑ 𝑃𝑖,𝑘
𝑀
𝑖=1 = 𝑃𝑘). Thus, the number of user devices will be limited due to the finite 

system resources. 

This completes the proof.  

Theorem 2. If |𝜕
2𝑈,𝑘𝑚

𝜕𝑃𝑚,𝑘
2 | ≥ ∑ |

𝜕2𝑈𝑚,𝑘

𝜕𝑃𝑖,𝑘𝜕𝑃𝑗,𝑘
|𝑀

𝑖≠𝑗   for any user who is involved in the proposed 

game model, the Nash equilibrium is unique.  

Proof: The result of the following first derivative Equation gives the best user 

response: 

𝝏𝟐𝑼𝒎,𝒌

𝝏𝑷𝒎,𝒌
𝟐

= 𝟎                                                     (3. 69)     

Hence, the optimal allocated power that maximizes Um,k in DL NOMA cellular system 

in the case of imperfect CSI is given by: 

𝑷𝒎,𝒌
∗ =

𝟏

𝒍𝒏𝑩
𝒍𝒏(

|𝒉𝒎,𝒌|
𝟐
∑ 𝑷𝒊,𝒌 + 𝝈𝝐

𝟐∑ 𝑷𝒋,𝒌 + 𝝈
𝟐 𝑴

𝒋=𝟏
𝑴
𝒊=𝒎+𝟏

|𝒉𝒎,𝒌|
𝟐
𝒍𝒏𝑩

).               (3. 70) 

Equation (3.71) shows that higher allocated power is required to obtain the same value 

of data rate compared to the perfect CSI case where .02
  This is due to the effect of 

the inaccurate channel estimation value. Based on the given Um,k,  
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|
𝝏𝟐𝑼𝒎,𝒌

𝝏𝑷𝒊,𝒌𝝏𝑷𝒋,𝒌
| = {

−𝑩𝑷𝒎,𝒌(𝒍𝒏𝑩)𝟐 𝒎 = 𝒏
𝟏 𝒎 > 𝒏
𝟎 𝒎 < 𝒏

                            (3.71) 

Based on Equation (3.72), the Hessian matrix is formulated as: 

𝑯 =

[
 
 
 

  
−𝑩𝑷𝟏,𝒌(𝒍𝒏𝑩)𝟐

𝟎
⋮
𝟎

  
𝟏
⋱
𝟎
⋯

  
⋯
𝟏

−𝑩𝑷𝑴−𝟏,𝒌(𝒍𝒏𝑩)𝟐

𝟎

  
𝟏
𝟏
𝟏

−𝑩𝑷𝑴,𝒌(𝒍𝒏𝑩)𝟐]
 
 
 

                 (3.72) 

To ensure that the Nash equilibrium is unique, the response function should be 

contractive. Therefore, 

|
𝝏𝟐𝑼,𝒌𝒎

𝝏𝑷𝒎,𝒌
𝟐
| ≥ ∑|

𝝏𝟐𝑼𝒎,𝒌
𝝏𝑷𝒊,𝒌𝝏𝑷𝒋,𝒌

|

𝑴

𝒊≠𝒋

.                                       (3. 73) 

From Equation (3.74): 

𝑩𝑷𝒎,𝒌(𝒍𝒏𝑩)𝟐 ≥ 𝑴−𝒎                                           (3. 74) 

𝑩𝑷𝑴,𝒌(𝒍𝒏𝑩)𝟐 ≥ 𝟎
𝒚𝒊𝒆𝒍𝒅𝒔
→    {

𝑩 > 𝟏
𝑷𝑴,𝒌 ≥ 𝟎

                        (3.75) 

It can be seen that Equation (3.75) matches the SIC requirements while Equation (3.76) 

illustrates the detriment of the Um,k. Determining B is an essential stage in the PA 

algorithm. The strongest player, denoted by UEM,k, has the top priority in the game and 

therefore its allocated power is set to meet the required SINR. Then the price B is 

determined once power has been assigned to UEM,k. The total transmission power at the 

BS is allocated to the users to obtain the maximum data rate. Subsequently, 

𝑷𝑴,𝒌 + ∑ 𝑷𝒊,𝒌

𝑴−𝟏

𝒊=𝟏

≤ 𝑷𝒕                                         (3. 76) 

Substituting Equation (3.75) into Equation (3.77), 

𝑷𝑴,𝒌 + ∑

  𝒍𝒏 (
𝑴− 𝒊
(𝒍𝒏𝑩)𝟐

)

𝒍𝒏𝑩

𝑴−𝟏

𝒊=𝟏

= 𝑷𝒌.                               (3. 77) 
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Equation (3.78) could be expressed as 

𝑷𝑴,𝒌 +
𝒍𝒏(𝑴 − 𝟏) ! − 𝟐(𝑴− 𝟏)𝒍𝒏(𝒍𝒏𝑩)

𝒍𝒏𝑩
= 𝑷𝒌.                      (3. 78)  

The relationship between the cost and the number of user devices covered by the BS 

service and the BS power is apparent in Equation (3.79). First, M and B are predefined 

and the minimum assigned power to every UE in the cell is calculated by using Equation 

(3.75). Subsequently, the optimal power that maximizes Um,k could be determined based 

on Equation (3.71). 

From Equation (3.79), all the allowable transmission power at the BS will be 

consumed to achieve the maximum data rate at the cell. However, maximizing the data 

rate does not ensure maximizing the EE at all transmission power levels. At high 

transmission power, EE tends to decrease rapidly although the data rate is high (Ihsan et 

al., 2022). In other words, providing a user with a high data rate exceeding its requirement 

will drain the system resources while a noteworthy data rate increment is required to attain 

the required QoS. Therefore, the second stage of the proposed multi-stage mechanism 

pursues a lower total transmission power that maximizes the EE while achieving the 

maximum data rate as well as meeting the minimum required SINR constraint. 

A summary of the proposed algorithm is presented in Algorithm 2, where the false 

position method is utilized to evaluate the minimum transmission power to attain the 

maximum EE where the allocated power to all users is determined based on the proposed 

game theory. Comparing the False-position method to the other closed interval methods 

such as the bisection method, reveals several benefits. Its propensity to converge more 

quickly in many situations is a major benefit. The false-position approach uses linear 

interpolation based on the function values at the endpoints to improve the interval. In 

contrast, the bisection technique cuts the distance in half with each iteration. For non-

linear functions, this often results in a more direct approach to finding the solution.  
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To solve the non-convex optimization problem in Equation (3.66) using the false 

position method, a reformulation was conducted to achieve a minimization problem, 

which can be written as: 

min
𝑃𝑚,𝑘

        𝐸𝐸𝑃𝑘𝑙 − 𝐸𝐸𝑃𝑘𝑢  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑃𝑚,𝑘 ≤ 𝑃𝑘

𝑀

𝑚=1

    ∀𝑘 ∈ 𝐾 

𝑃𝑚,𝑘 ≥ 𝑃𝑚+1,𝑘 ≥ 0,      ∀𝑘 ∈ 𝐾 

𝑺𝑰𝑵𝑹𝒎,𝒌 ≥ 𝜻,   ∀𝒎 ∈ 𝑴                                          (3. 79) 

where Pku is the total allowable transmission power and Pkl is the lower transmission 

power at the BS. To increase the EE, the total transmission power should be decreased. 

Thus, based on the false position method, the total transmission power in the next 

iteration, Pkr is determined as: 

𝑷𝒌𝒓 = 𝑷𝒌𝒖
𝑬𝑬𝑷𝒖(𝑷𝒌𝒍 −𝑷𝒌𝒖)

𝑬𝑬𝑷𝒌𝒍 − 𝑬𝑬𝑷𝒌𝒖
                                         (3. 80) 

SINRM,k  is assigned initially in the process, so it does not change for the user with 

strongest channel condition within the next steps. The algorithm confirms that it is not 

stuck at a local maximum by leveraging the global search capability of the game-theoretic 

framework. The convergence to a Nash equilibrium, as guaranteed in the formulation, 

implies that the EE metric is optimized across all users, given the constraints and 

conditions of the system. This equilibrium inherently avoids local maxima by ensuring 

that no individual user can unilaterally improve their utility. To address the possibility of 

infinite iterations, a predefined convergence threshold (Δ) is used. The algorithm stops 

when the change in energy efficiency ∣𝐸𝐸𝑃𝑘𝑙 − 𝐸𝐸𝑃𝑘𝑢∣ falls below Δ, which is a small, 

positive value chosen to balance computational complexity and accuracy. This ensures 

that the iterations terminate after a finite number of steps while achieving a sufficiently 
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high EE. Furthermore, practical constraints such as a maximum iteration count or a 

timeout can be imposed to safeguard against excessive runtime in edge cases.  

Algorithm 2: Multi-stage game-theoretic power allocation algorithm for maximizing 
EE and data rate in imperfect CSI DL NOMA system 
Require: Pc, SINRM,k, 
Ensure: Pku = Pk, Pkl = 0, 
1: EEkl ⇐ 0, 
2: Determine B based on Equation (3.79), 
3: m ⇐ M, 
4: while m ≠ 0 do, 
5: Evaluate Pm, ∀m ∈ M based ((Equation (3.61)) 
6: m ⇐ m − 1, 
7: end while 
8: Evaluate EEku based on Equation (3.65), 
9: while |EEku − EEkl | ≥ △ do 
10: Pkr  based on Equation (3.65), 
11: if EEku ≥ EEkl then 
12: EEmax ← EEku, 
13: Pkl ⇐ Pkr , 
14: Determine B based on Equation (3.79), 
15: m ⇐ M 
16: while m ≠ 0 do 
17: Evaluate Pm, ∀m ∈ M (Equation (3.61)) 
18: m ⇐ m − 1 
19: end while 
20: Evaluate EEkl based on Equation (3.65), 
21: else 
22: EEmax ← EEkl, 
23: Pku ⇐ Pkr, 
24: Determine B based on Equation (3.79), 
25: m ⇐ M 
26: while m ≠ 0 do 
27: Evaluate Pm, ∀m ∈ M (Equation (3.61)) 
28: m ⇐ m − 1 
29: end while 
30: Evaluate EEku based on Equation (3.65), 
31: end if 
32: end while 

3.4.3 Algorithm Convergence Analysis 

The convergence of the proposed multi-stage algorithm is ensured by the properties of 

both the Glicksberg game (for power allocation) and the false position method (for EE 

optimization). The convergence of the game-theoretic power allocation is guaranteed by 

the Glicksberg-Fan fixed point theorem. The utility function used in the proposed 
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algorithm satisfies the properties listed in the theorem. Besides that, the existence of a 

Nash equilibrium has been proven. Therefore, the PA stage of the algorithm converges to 

a stable PA strategy, ensuring that no user can improve their utility by unilaterally altering 

their strategy. The false position method for energy efficiency optimization converges 

based on the property that each iteration reduces the error between an upper and a lower 

bounds of the energy efficiency, based on linear interpolation. In terms of the termination 

condition: The algorithm continues to iterate until the difference between the EE in 

successive iterations is below a predetermined threshold, Δ. This ensures that the 

algorithm terminates once a sufficiently accurate solution is reached. Therefore, the 

combination of these two methods ensures that the proposed multi-stage algorithm 

converges to an optimal solution, balancing EE and data rate in the NOMA system. 

 
3.4.4 Outage Probability Analysis 

Outage probability can be used to evaluate the performance in DL NOMA systems 

where it is defined as the probability that the SINR at UEm,k is at a lower level than a 

threshold level,  (Arzykulov et al., 2019). The outage probability at the m-th user in 

imperfect CSI DL NOMA k-th cell could be given as 

𝑃𝑜𝑢𝑡
𝑚,𝑘 = 𝑃𝑟[𝑆𝐼𝑁𝑅𝑚,𝑘 ≤ 𝜁] 

= 𝑃𝑟 [
𝑃𝑚,𝑘|ℎ̂𝑚,𝑘|

2 

|ℎ̂𝑚,𝑘|2  ∑ 𝑃𝑖,𝑘 + 𝜎𝜖2∑ 𝑃𝑖,𝑘 + 𝜎2 
𝑀
𝑖=1  𝑀

𝑖=𝑚+1

≤ 𝜁] 

= 𝑷𝒓[|𝒉̂𝒎,𝒌|
𝟐 ≤ 𝝃𝒎,𝒌],                                       (3. 81) 

where 𝜉𝑚,𝑘is  

𝝃𝒎,𝒌 = 𝜻
𝝈𝝐
𝟐∑ 𝑷𝒊,𝒌 + 𝝈

𝟐 𝑴
𝒊=𝟏

𝑷𝒎,𝒌 − 𝜻∑ 𝑷𝒋,𝒌
𝑴
𝒋=𝒎+𝟏

                         (3. 82) 

A conditional probability expression can be derived by first substituting Equation 

(3.71) in Equation (3.75): 
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𝑩

𝟏
𝒍𝒏𝑩

𝒍𝒏(
|𝒉̂𝒎,𝒌|

𝟐
∑ 𝑷𝒊,𝒌+𝝈𝝐

𝟐∑ 𝑷𝒋,𝒌+𝝈
𝟐 𝑴

𝒋=𝟏
𝑴
𝒊=𝒎+𝟏

|𝒉𝒎,𝒌|
𝟐
𝒍𝒏𝑩

)

≥
𝑴−𝒎

(𝒍𝒏𝑩)𝟐
                    (3. 83) 

From Equation (3.84), the random variable |ℎ̂𝑚,𝑘|
2
is limited to 

|𝒉̂𝒎,𝒌|
𝟐
≥

𝝈𝝐
𝟐 ∑ 𝑷𝒊,𝒌 + 𝝈

𝟐 𝑴
𝒊=𝟏

𝜻∑ 𝑷𝒋,𝒌 −𝝍𝒎,𝒌
𝑴
𝒋=𝒎+𝟏

                                     (3. 84) 

where 𝜓𝑚,𝑘 = ln (
𝑀−𝑚

(ln𝐵)2
). Hence, the outage probability in Equation (3.82) could be re-

written as 

𝑷𝒐𝒖𝒕
𝒎,𝒌 = 𝑷𝒓 [|𝒉̂𝒎,𝒌|

𝟐
≤ 𝝃𝒎,𝒌\|𝒉̂𝒎,𝒌|

𝟐
≥ 𝝋𝒎,𝒌],                 (3. 85) 

where 

𝝋𝒎,𝒌 =
𝝈𝝐
𝟐∑ 𝑷𝒊,𝒌 + 𝝈

𝟐 𝑴
𝒊=𝟏

𝜻∑ 𝑷𝒋,𝒌 −𝝍𝒎,𝒌
𝑴
𝒋=𝒎+𝟏

,                                     (3. 86) 

 and the channel gain |ℎ̂𝑚,𝑘|
2
follows an exponential distribution with unity mean and 

unity variance (Arzykulov et al., 2019). Thus, the outage probability in Equation (3.86) 

could be expressed as 

𝑃𝑜𝑢𝑡
𝑚,𝑘 =

𝑃𝑟 [|ℎ̂𝑚,𝑘|
2
≤ 𝜉𝑚,𝑘 ∩ |ℎ̂𝑚,𝑘|

2
≥ 𝜑𝑚,𝑘]

𝑃𝑟 [|ℎ̂𝑚,𝑘|
2
≥ 𝜑𝑚,𝑘]

 

                                    =

{
 

 𝑃𝑟 [|ℎ̂𝑚,𝑘|
2
≤ 𝜉𝑚,𝑘 ∩ |ℎ̂𝑚,𝑘|

2
≥ 𝜑𝑚,𝑘]

𝑃𝑟 [|ℎ̂𝑚,𝑘|
2
≥ 𝜑𝑚,𝑘]

𝜑𝑚,𝑘 ≤ 𝜉𝑚,𝑘

0 𝜑𝑚,𝑘 > 𝜉𝑚,𝑘

 

= {
𝒆−𝝋𝒎,𝒌 − 𝒆−𝝃𝒎,𝒌

𝒆−𝝋𝒎,𝒌
𝝋𝒎,𝒌 ≤ 𝝃𝒎,𝒌

𝟎 𝝋𝒎,𝒌 > 𝝃𝒎,𝒌

                                      (3. 87) 

The outage probability analysis concludes that the probability of outage in a DL 

NOMA system is determined by the interplay between the channel gain, power allocation, 

and the SINR threshold. The derived expressions show that the outage probability 

depends on whether the channel gain satisfies specific bounds (𝜑𝑚,𝑘) and (𝜉𝑚,𝑘), which 
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are functions of system parameters like power levels, noise variance, and the SINR 

threshold. The final outage probability formula illustrates that an outage occurs when the 

effective channel gain is confined within a specific range (𝜑𝑚,𝑘 ≤ |ℎ̂𝑚,𝑘|
2
≤ 𝜉𝑚,𝑘), if 

𝜑𝑚,𝑘 > 𝜉𝑚,𝑘, the outage  probability is zero, indicating no overlap between the feasible 

and required channel conditions. Conversely, when 𝜑𝑚,𝑘 ≤ 𝜉𝑚,𝑘, the outage probability 

depends on the exponential distribution of the channel gain and is proportional to the 

difference between (𝜑𝑚,𝑘) and (𝜉𝑚,𝑘). This analysis highlights the trade-offs in power 

allocation and channel estimation errors under imperfect CSI. It also quantifies the 

conditions under which a user experiences insufficient SINR, providing insight into 

system reliability and performance limits. 
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CHAPTER 4: RESULTS AND DISCUSSION 

This chapter presents and discusses the results of four proposed power allocation 

techniques in optimizing the data rate and optimizing the EE for the DL NOMA system 

for both perfect CSI and imperfect CSI cases. The results from extensive simulation of 

the proposed PA techniques under various scenarios are presented. The results of the 

proposed methods are presented and comprehensively discussed with various 

performance parameter metrics such as data rate, EE, and outage probability. 

Furthermore, a critical analysis of the acquired results of the proposed PA algorithms is 

also presented in the following subsections. 

4.1 Game-theoretic Power Allocation Algorithm for DL NOMA System 

In this section, different scenarios are simulated by Matlab to evaluate the proposed 

game-theoretic power allocation algorithm and compare the results to the existing 

algorithms in (Lamba et al., 2019; Z. Wang et al., 2018). The accomplished sum rate in 

bps/Hz is measured when applying the game-theoretic power allocation algorithm on M 

users distributed randomly in a cell with channel gains between the BS and the users are 

modeled as ),0(~ 2
mm CNh  , .Mm  First, the mechanism is performed on 2 users 

with channel gains of variances 1,5.0 2
2

2
1   . Secondly, the mechanism is testified on 

5 users with channel gains of variance ,8.0,6.0,4.0,2.0 2
4

2
3

2
2

2
1    and 12

5  . 

In both cases, the results are collected at different levels of transmission power 2
tP up to 

30 dBm and the results are taken as an average of 1000 run trials in (Lamba et al., 2019; 

Z. Wang et al., 2018). The assumed SINR of the team leader in the game is 1.5.  

The results in Figure 4.1 illustrate that the cell’s sum rate will increase proportionally 

with the increase in the transmission power as expected. This behavior aligns with the 

fundamental principles of wireless communication, where a higher transmission power 
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improves the received signal strength at the users, thereby enabling higher data rates. For 

the same number of users, the power price value within the GTPA algorithm will decrease 

with the increase of the total transmission power. According to the supply and demand 

principle, each user will buy more power at a cheaper price, and therefore the individual, 

and accordingly, the overall sum rate will increase. The results show that the proposed 

mechanism outperforms the existing algorithms where the achieved sum rate by this 

mechanism is higher at all transmission power levels than that from other methods. For 

M=5, as an example, there is about a 4% increase in the sum rate at a transmission power 

level of 20 dBm. For M=2, it is obvious that both algorithms achieved the same rate at a 

transmitter power of 0 dBm. At such low transmitted power, the probability that the BS 

can serve more than one user, at the expected QoS (the minimum level of SINR), is so 

low. Thus, the sum rate at low Pt is the same for both algorithms since the whole power 

is allocated to one user in this case. The superior performance of the proposed algorithm 

can be analytically attributed to its efficient utilization of the power-price relationship. 

By dynamically adjusting the power allocation based on user demands and the prevailing 

power price, the algorithm ensures that the available transmission power is optimally 

distributed among users to maximize the sum rate. This efficiency stems from its ability 

to balance supply and demand, incentivizing users to consume power strategically when 

prices are low. Additionally, the algorithm's adaptability to varying transmission power 

levels allows it to outperform existing methods consistently, as evidenced by the higher 

sum rates achieved across different scenarios. The mechanism's design, which prioritizes Univ
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fairness and resource efficiency, highlights its robustness in handling multi-user 

environments and its potential for scalability in larger, more complex networks. 

 

Figure 4.1: Sum rate in DL NOMA system versus 𝑷𝒕 𝝈𝟐⁄ , (a) For M=2,  𝜹𝟏𝟐 =
𝟎. 𝟓 𝒂𝒏𝒅 𝜹𝟐

𝟐 = 𝟏.  (b) For M=5,  𝜹𝟏𝟐 = 𝟎. 𝟐; 𝜹𝟐𝟐 = 𝟎. 𝟒; 𝜹𝟑𝟐 = 𝟎. 𝟔; 𝜹𝟒𝟐 =
𝟎. 𝟖 𝒂𝒏𝒅 𝜹𝟓

𝟐 = 𝟏 
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Another performance metric is testified, which is the average data rate of the users. 

The simulation is done for the same circumstances in the first experiment mentioned 

above. The results are illustrated in Figure 4.2. The user average data rate achieved by the 

GTPA proves the enhanced performance individually for each user. The results in Figure 

4.2 confirm that the GTPA algorithm achieves a consistently higher average data rate for 

users compared to the other algorithms under the same conditions. This outperformance 

can be analytically explained by the algorithm's ability to dynamically allocate power 

resources based on real-time user requirements and the power price mechanism. By 

prioritizing fairness and optimizing the power distribution, the GTPA ensures that each 

user receives an adequate share of resources, thereby improving individual performance. 

However, as the number of users increases, the available power must be distributed 

among more users, leading to a decline in the average data rate, as evidenced by the 17% 

reduction at 30 dBm when the number of users increases from 5 to 10. This trend is 

consistent with resource-sharing limitations in multi-user environments. Nevertheless, the 

algorithm’s ability to maintain relatively high performance, even under increased user 

density, highlights its robustness and scalability. This advantage is primarily due to the 

efficient handling of the power-price relationship, which minimizes wastage and 

enhances overall system utilization.  It worth to mention that the effect on EE due to the 

GTPA will be discussed later in the next sections. 

4.2 Energy-Efficient Power Allocation for Imperfect CSI DL NOMA System 

In this section, the proposed energy-efficient power allocation algorithm is evaluated 

in a single cellular cell with central BS which serves M users and the achieved results are 

compared to the conventional OMA in the case of zero-channel estimation error.  
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Figure 4.2: Average data rate of users versus 𝑷𝒕 𝝈𝟐⁄ ; (a) For M=5,  𝜹𝟏𝟐 =
𝟎. 𝟐; 𝜹𝟐

𝟐 = 𝟎. 𝟒; 𝜹𝟑
𝟐 = 𝟎. 𝟔; 𝜹𝟒

𝟐 = 𝟎. 𝟖 𝒂𝒏𝒅 𝜹𝟓
𝟐 = 𝟏 . (b) For M=10,  𝜹𝒎𝟐 = 𝒎/𝑴 

 The users are distributed randomly within a single cell, where the channel from the 

BS to the user has been modeled as ),0(~ 2
mm CNh  . In this study. It is assumed that M=3 

users, and the variance of the channel gains are given by
M
m

m 2 .  The total transmission 

Univ
ers

iti 
Mala

ya



105 

power Pt is varied up to 1W and the assumed total BS dissipated power is Pc=1W. The 

system bandwidth and the AWGN spectral density are assumed to be 1MHz and -

174dBm/Hz respectively (Glei & Chibani, 2019). 

Results are taken as an average of 1000 run trials. The simulations in the study use 

varying values of M across experiments to analyze system performance under different 

conditions. While M=3 represents a moderate case, other experiments explored smaller 

and larger values to examine scalability and robustness. This approach ensures that the 

study comprehensively evaluates the algorithm’s adaptability to different user densities. 

Figure 4.3 presents the obtained energy efficiency at different transmission powers. It 

illustrates that the proposed algorithm causes an improvement in the system’s EE 

compared with the conventional OMA where the total transmission power is distributed 

equally among all users. For example, at Pt=0.25W, the proposed algorithm achieves a 

more than 50% increase in energy efficiency compared to that in the OMA system. 

Moreover, the EE obtained by applying the proposed algorithm will increase when the 

transmission power increases until it reaches its maximum value at a certain Pt. Thus, any 

redundant power will not cause an increase in EE. The observed trend, where EE 

increases with transmission power up to a certain point, reflects the balance between 

achieving higher data rates and maintaining minimal power expenditure. Beyond this 

optimal transmission power level, any additional power becomes redundant, as it no 

longer contributes to improving data rates significantly but instead increases energy 

consumption. This plateau in EE underscores the importance of identifying and operating 

at optimal power levels to maximize system performance. The results confirm the 

algorithm’s ability to achieve this balance, showcasing its practical value for energy-

efficient communication systems. 
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Figure 4.3: Energy efficiency versus transmission power 

The results in Figure 4.4 reveal a clear advantage of the proposed algorithm in reducing 

the outage probability compared to the conventional OMA system. This improved 

performance can be attributed to the algorithm’s use of NOMA, which allows multiple 

users to share the same resource blocks while differentiating them based on their channel 

conditions and power levels. By optimizing PA, the proposed algorithm ensures that even 

cell-edge users who typically experience weaker signal strength and higher interference 

achieve higher SINR levels. This results in a significant reduction in the likelihood of 

outage without increasing overall power consumption. The algorithm’s ability to minimize 

outage probability while maintaining the same power budget demonstrates its efficiency 

in resource management and fairness in serving users across the cell. This improvement is 

particularly critical in scenarios with a high density of users or challenging channel 

conditions, where conventional OMA methods fail to sustain adequate performance for all 

users. Consequently, the results highlight the practical benefits of the proposed algorithm 

for ensuring reliable connectivity and service quality in modern wireless communication 

systems. 
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Figure 4.4: Outage probability versus transmission power 

The results in Figure 4.5 illustrate the impact of imperfect CSI on the EE of the 

proposed algorithm compared to the conventional OMA system. The superior 

performance of the proposed algorithm across all levels of estimation error reaffirms its 

robustness and adaptability in realistic scenarios where perfect CSI is often unattainable. 

By leveraging the power allocation and user prioritization inherent to NOMA, the 

algorithm can mitigate the effects of estimation errors to some extent, maintaining higher 

energy efficiency than OMA even under degraded conditions. However, the results also 

demonstrate that both algorithms experience performance degradation as the estimation 

error increases. This decline is a direct result of the reduced accuracy in channel 

knowledge, which affects the SINR and subsequently the ability to allocate power 

effectively. The proposed algorithm's optimal performance at zero estimation error 

(perfect CSI case) highlights the critical role of accurate channel estimation in 

maximizing energy efficiency. This sensitivity to estimation errors suggests that 

enhancements, such as integrating robust estimation techniques or designing error-

resilient power allocation strategies, could further improve the algorithm’s performance 
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under imperfect CSI conditions. These findings emphasize the practicality and reliability 

of the proposed algorithm while highlighting areas for potential future improvement. 

 

Figure 4.5: Energy efficiency versus transmission power at various estimation 
error values 

4.3 Genetic Algorithm for Optimizing Energy Efficiency in Downlink 

mmWave NOMA System with Imperfect CSI 

In this section, the performance of the proposed GA scheme for optimizing the EE in 

the DL mmWave NOMA system with user clustering is evaluated. Next, the validity of 

the proposed scheme is verified by evaluating the performance of the NOMA system in 

terms of EE and comparing it to both optimal NOMA and conventional OMA.  The 

general scenario for the simulation is a single cell of a 500 m radius. A mmWave BS with 

40 dBm power capability is located at the cell’s center and equipped with multiple 

antennas whereas M users are distributed randomly at distances between 50m to 500m 

from the mmWave BS within the cell’s boundary. The capacity of each cluster is only 2 

users. For simplicity, the transmission beams between the mmWave and the users are 

assumed to have the same direction, which matches the geographical bore-sight links 

between them (R. Liu et al., 2020). The allocated power to each user is determined based 

on its required data rate. The minimum level  𝛿𝑚  is set randomly between 1 and 2. The 
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parameters of the DL mmWave NOMA simulation are listed in Table 4.1 (R. Liu et al., 

2020). 

4.3.1 Cluster Selecting for Maximizing Energy Efficiency 

The study also investigates whether increasing the data rate of the strong-channel user 

(UE2) in the cluster higher than its requirements will be a benefit to the system EE. 

Assuming a unity channel gain, ℎ2 = 1 and the required QoS of the UE2 is 2, the allocated 

power 𝑝2 would be 2 regardless of the UE1 requirement. On the other hand, the allocated 

power to the weak-channel user UE1, 𝑝1 would be less than 𝑝2 when its QoS requirement 

is only at low levels. However, when UE1 requests a higher data rate, its allocated power 

should be higher than the allocated power of UE1. Figure 4.6 illustrates the allocated 

power and the EE for a cluster of 2 members with various requirements and channel 

states.  

Table 4.1: Simulation Parameters for GPTA. 

Parameter Value 
Operating frequency 24GHz 

Cell radius 500m 
Minimum distance between user and BS 50m 

Required data rate 1-2 b/s/Hz 
Total dissipated power at the Transmitter 1 Watt 

Path loss component  3 
BS transmission power 40 dBm  

The subchannel Bandwidth 1MHz 
AWGN power -173dB/Hz 

Operating beam-width of the mmWave BS  5o 
Operating beam-width of the user  10 

Side lobe gain 0.1 
Simulation trials 1000 

Maximum generations 100 
Elite ratio 5% of the population size 

Population Initial range [0; 1] 
Tolerance of objective function 10-12 

 

As can be seen from Figure 4.6, the weaker channel user requires higher allocated 

power to achieve the data rate. Although previous studies prove that increasing the 
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allocated power to the strong-channel user significantly increases the total throughput of 

the system, this rise of the allocated power decreases the system EE based on Equation 

(3.45).   In Figure 4.6(b), the allocated power to the strong-channel member in the cluster 

is increased so that its new SINR is 3. This leads to a noticeable increment in the allocated 

power to the weaker-channel user to attain its requirement and eventually, the system EE 

degrades. Thus, the best scenario to achieve the highest EE to support the cluster members 

with the same requirements of data rate is to set the subject C5 in the optimization problem 

as 𝑆𝐼𝑁𝑅𝑚 = 𝛿𝑚 .  

The analysis highlights the unique challenge of balancing power allocation in NOMA 

systems, particularly for users with diverse channel conditions. The weaker channel user 

UE1, despite its higher power requirements, has a more significant impact on achieving 

system-level fairness and meeting individual QoS needs. As seen in the results, the power 

allocation mechanism ensures that UE1's QoS is fulfilled, even if it requires 

disproportionately higher power. This prioritization underscores the proposed algorithm's 

adaptability and fairness, ensuring that the system caters to all users regardless of channel 

disparities. However, the observed reduction in EE with increasing power to UE2 suggests 

that future work could explore optimized algorithms to balance throughput and EE, 

particularly in scenarios where one user has considerably stronger channel conditions. 

This balance is crucial for maintaining high-performance energy-efficient communication 

systems. 

In this thesis, it is assumed that the allocated power to every user will satisfy the user’s 

QoS (𝛿𝑚 ). Then, the possibility of improving the system EE by selecting different 

members in the cluster is studied. It is assumed there are two weak-channel users in the 

cell. Assuming a unity channel gain, ℎ2 = 1 and the required QoS of the UE2 is 2, the 

allocated power 𝑝2 would be 2 regardless of the UE1 requirement. On the other hand, the 

allocated power to the weak-channel user UE1, 𝑝1 would be less than 𝑝2 when its QoS 
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requirement is only at low levels. However, when UE1 requests a higher data rate, its 

allocated power should be higher than the allocated power of UE1. User with ℎ1 = 0.5ℎ2 

is referred to UEx while user with ℎ1 = 0.25ℎ2 is denoted UEy. The general assumption 

of selecting either one of them as a second member in the cluster depends on its channel 

state increases the system EE will not be an accurate conclusion where, as seen in Figure 

4.6 (a). This is because the required QoS of every user plays an important role in this 

issue. For example, choosing UEx leads to higher EE when the required SINR of UEx is 

𝛿𝑥 = 0.5, and the required SINR of UEy is 𝛿𝑦 = 0.5 while choosing UEy leads to higher 

EE when 𝛿𝑥 = 2 and 𝛿𝑦 = 0.25.  

Although selecting the cluster members with various QoS requirements can be decided 

easily in this example, the massive number of users in real wireless communication 

networks makes the problem more complicated where there are 𝑀!

2!(𝑀−2)!
 different 

combinations of 2 members in a cell of M users (J. Zhao, Yue, Kang, & Tang, 2021), and 

therefore GA scheme is adopted in this study to determine the optimal cluster 

combinations xm,b to maximize the EE of the DL mmWave NOMA system. 

4.3.2 Genetic Algorithm Performance 

In this section, the performance of GA in solving the EE optimization problem in the 

DL mmWave NOMA system is evaluated. First, diverse population sizes are tested to 

determine the most appropriate population for different numbers of users. Starting from 

2 clusters (4 users) up to 8 clusters (16 users), the population size was increased until all 

constraints were satisfied to determine the required population size related to the number 

of users. The elite ratio is 5% of the overall population and the crossover fraction is set to 

be 50% of the chromosome. 

 

Univ
ers

iti 
Mala

ya



112 

 

 

Figure 4.6: The allocated power to the two members of the cluster and the EE 
vs. the obtained SINR at the weaker-channel user (h1) when the required SINR of 

the stronger-channel user (h2) is 2 in (a) and 3 in (b). 
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Figure 4.7 illustrates the required GA population size for various traffic cases.  The 

results show that the required size of the population in GA is relatively low at light traffic 

in the cell. As the number of users increases, the minimum population size that guarantees 

to find feasible solution and satisfy the constraints also increases. The significant increase 

in the population size indicates a much longer time required to solve the GA. Thus, for 

the DL mmWave-NOMA with clusters that consist of a massive number of users, GA 

could be utilized to determine the optimal clusters’ pairs that maximize the EE 

highlighting the computational burden and extended processing time necessary to ensure 

constraint satisfaction and solution feasibility. This limitation poses a challenge for real-

time applications in dense networks, particularly for DL mmWave-NOMA systems with 

large clusters. To address this issue, the integration of GA with deep learning presents a 

promising solution. While GA excels at exploring the solution space and determining 

near-to-optimal cluster configurations, its longer execution time under heavy traffic 

conditions makes it less practical for time-sensitive scenarios. Deep learning, on the other 

hand, can leverage the training data generated by GA to learn efficient patterns and 

provide real-time decisions that meet the timeliness requirement. This hybrid approach 

combines the exploratory strength of GA with the speed of deep learning, offering a 

scalable and efficient solution for optimizing energy efficiency in dense user 

environments. By leveraging such a combination, the system can achieve near-optimal 

performance without compromising timeliness, making it well-suited for future wireless 

communication systems (Pan et al., 2021).   Univ
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Figure 4.7:The appropriate population size of GA with respect to the number of 
users. 

The performance of the GA convergence is evaluated in terms of the relation between 

the population size and the number of required iterations (generations) to find the 

solution. For this purpose, two cases are selected; the first case considers relatively low 

traffic (6 users) while the second case considers relatively heavy traffic (16 users). The 

results are illustrated in Figure 4.8 and Figure 4.9, respectively, which show that generally 

fewer iterations (generations) are required for convergence when the population size is 

larger for M=6 users and M=16 users, respectively. As seen in Figure 4.8(a) and Figure 

4.8(b), the convergence to the solution becomes sharper after 9 generations and 6 

generations where the population size increased from 120 to 160. Similar trends can be 

seen in Figure 4.9(a) and Figure 4.9(b) when the population size increases from 1500 to 

1800. Moreover, by comparing the results in (a) and (b) for both cases shown in Figure 

4.8 and Figure 4.9, it is obvious that the number of repetitions (generations) to find the 

solution reduces when the population size increases. The number of generations executed 
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to solve within the tolerance increased significantly in the case of 16 users as compared 

to 6 users, and thus this leads to the long execution time of the GA as has been shown in 

Figure 4.7. 

 

(a) Population size=120 

 

(b) Population size=160 

Figure 4.8: The GA convergence to the best penalty value for light traffic case 
(M=6). 
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(a) Population size = 1500 

 

(b) Population size = 1800 

Figure 4.9: The GA convergence to the best penalty value for relatively heavy 
traffic case (M=16). 
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4.3.3 Impact of the Required SINR 

The effect of the asymmetric users’ required SINR on the EE of the proposed system 

is being investigated. The simulation settings remain as in the previous section while the 

total transmission power is sufficient to provide all users with the required QoS. In the 

first scenario, it is assumed that random requirement of users’ data for different types of 

applications since some of the applications such as email require a much lower data rate 

than online gaming or video conference. 

Figure 4.10(a) shows the system’s EE based on random required SINR ranging 

between 1b/s/Hz and 2b/s/Hz for a different number of users. Then, all users are assumed 

to hypothetically have the same requirements either low SINR (1b/s/Hz) or high SINR 

(2b/s/Hz). The results are shown in Figure 4.10(b) and Figure 4.10(c), respectively. It can 

be seen from the figures that the GA approach achieves almost the optimal solution in all 

cases which proves its effectiveness for solving complex EE optimization problems. It is 

obvious that for all cases, the EE degrades as the number of users increases. However, as 

the number of users increases, the EE of the system approaches the same value for the 

random SINR requirements and the high SINR cases. Finally, results show the 

outperformance of the combination of NOMA with mmWave to improve the system EE 

compared to OMA-mmWave where a 75% increase in EE can be obtained. For example, 

the EE rises from about 1b/Joule in mmWave-OMA for 16 users to 2b/Joule in mmWave-

OMA under the same circumstances. This outperformance can be attributed to NOMA's 

ability to increase user fairness by allocating power based on individual SINR 

requirements, ensuring that both strong and weak users can be served efficiently. In 

contrast, OMA-based systems, which typically allocate separate resources to each user, 

are less efficient in terms of resource utilization, leading to lower EE, especially as the 

user count increases. Thus, combining NOMA with mmWave not only enhances the 

system's ability to support more users simultaneously but also maximizes energy 
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efficiency, making it a promising solution for future wireless networks, especially in 

dense urban environments where both high user density and high data rates are common. 

 

(a) Random SINR between 1 and 2 

 

 

(b) All SINR = 2 

 

 

(c) All SINR = 1 

Figure 4.10: The EE of mmWave-NOMA system versus the number of users at 
different SINR conditions. 

4.3.4 Imperfect CSI 

Here, GA is utilized to determine the EE of the mmWave-NOMA system in an 

imperfect CSI DL mmWave-NOMA system. The effect of the channel estimation error 

variance on EE for various numbers of user equipment is shown in Figure 4.11. The 

number of users is varied from 4 users to 16 users, and channel estimation error σ2 is set 
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to 0.01. It is evident that the maximum EE is obtained at zero error (perfect CSI), and the 

channel estimation error causes a decrease in EE because of the decrease in the SINR 

level. A degradation in the system’s performance occurs in the case of imperfect CSI due 

to the impact of additional noise related to the channel estimation error variance.  

As can be seen from Figure 4.11, the performance of the mmWave-NOMA system is 

better than the conventional OMA system in the imperfect CSI case when GA is 

employed. The use of GA in this context further enhances the system's performance by 

optimizing the power allocation and user scheduling, even under imperfect CSI 

conditions. GA helps in identifying near-optimal solutions for resource allocation, 

ensuring that the system can maintain relatively high EE even as channel estimation errors 

degrade the performance. The fact that the mmWave-NOMA system with GA still 

outperforms the OMA system in this imperfect CSI scenario highlights the robustness of 

NOMA, especially when combined with optimization techniques like GA. In summary, 

the outperformance of the mmWave-NOMA system over OMA, despite the presence of 

channel estimation errors, can be attributed to NOMA's efficient use of available 

spectrum and power through simultaneous transmission to multiple users. The 

introduction of GA to optimize resource allocation further strengthens the system's 

resilience to imperfect CSI, ensuring that it continues to deliver superior performance 

compared to traditional OMA methods. 

4.4 Multi-Stage Mechanism for Optimizing EE in Imperfect CSI DL NOMA 

System 

Here, the performance of the proposed multi-stage algorithm is evaluated where a 

multiple-cell DL NOMA system is considered for both perfect CSI and imperfect CSI 

case. The number of cells is set to 3 where user devices in every cell are set to M=4 and 

every device is equipped with one antenna (M. S. Ali, Hossain, & Kim, 2018). Each cell 
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has a centered BS and serves randomly distributed user devices at a distance dm=80m 

from the BS. The path loss component of the user devices channel is δ=3 (Zamani et al., 

2019). The proposed algorithm has been applied at a range of BS transmission power up 

to 35 dBm and the channel estimation error on the system performance 2
 is set to 0.01. 

The essential adopted parameters in this simulation are summarized in Table 4.2.  

 

Figure 4.11: The impact of channel estimation error on the mmWave-NOMA 
system EE and mmWave-OMA system. 

 

The performance of the proposed algorithm is compared with existing algorithms such 

as the optimum sum rate power allocation (OSRPA) algorithm (Zamani et al., 2019), 

GTPA algorithm (Aldebes, Dimyati, & Hanafi, 2019), and the conventional OMA (Cui, 

Ding, & Fan, 2016).  
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Table 4.2: Simulation parameters for multi-stage algorithm 

Parameters Value 
Minimum data rate 1 b/s/Hz 
Noise level at BS  -70 dBm 

Total dissipated power at BS (Pc) 1 Watt 
Path loss component  3 

BS transmission power 0-35dB  
The system Bandwidth 1MHz 

The cell radius 80 m 
AWGN power -173dB 

Number of device antenna  1 
Tolerance (Δ) 0.1 

Simulation trials 1000 

 

Figure 4.12 highlights the performance of the proposed algorithm in terms of EE 

compared to three other algorithms: OSRPA, GTPA, and OMA, under both perfect and 

imperfect CSI conditions. The results demonstrate that the proposed algorithm 

significantly outperforms the OSRPA and conventional OMA, achieving higher EE at the 

same transmission power. For example, at a transmission power of 25 dBm, the proposed 

algorithm provides an enhancement of about 5%, 7%, and 11% in EE over OSRPA, 

GTPA, and OMA, respectively. This improvement is a direct result of the proposed 

algorithm’s ability to efficiently allocate resources and use the minimum transmission 

power required to meet the QoS requirements of each user device. One key feature that 

contributes to the outperformance is the proposed algorithm’s efficient use of system 

resources. By allocating power in such a way that the minimum necessary transmission 

power is used to satisfy the users' QoS demands, the algorithm minimizes wasteful power 

expenditure and optimizes the overall energy usage. This is particularly beneficial in 

reducing the total power consumption while maintaining the necessary data rates for 

users, leading to improved energy efficiency in the system. However, the results also 

reveal the impact of imperfect CSI on system performance. In the case of imperfect CSI, 

the estimation error at the BS leads to a reduction in the SINR of the users, which in turn 

degrades the system's EE. As shown in Figure 4.12(b), the EE decreases by about 30%, 
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from 11 b/joule/Hz in the perfect CSI case to 7.5 b/joule/Hz in the imperfect CSI case. 

This performance degradation is expected since inaccurate CSI leads to suboptimal power 

allocation and increases interference, thereby reducing the system's ability to maximize 

EE. Despite this, the proposed algorithm still performs better than the other algorithms 

even in the presence of imperfect CSI. The robustness of the proposed algorithm to 

imperfect CSI can be attributed to its adaptive power allocation strategy, which continues 

to operate efficiently even when the channel conditions are not perfectly known. In 

comparison, algorithms like OSRPA and GTPA may not be as adaptable to CSI errors, 

leading to more significant performance degradation under imperfect conditions. In 

conclusion, the proposed algorithm outperforms OSRPA, GTPA, and OMA in terms of 

energy efficiency, particularly by utilizing the minimum transmission power required to 

meet QoS demands. While imperfect CSI does degrade performance, the proposed 

algorithm remains superior to other methods due to its efficient resource allocation 

strategy. The significant performance gap between perfect and imperfect CSI scenarios 

underscores the importance of accurate channel estimation, but the proposed algorithm’s 

design ensures that it maintains a high level of energy efficiency even when CSI is 

imperfect. 

Figure 4.13 presents a detailed comparison of the average data rate achieved by the 

proposed multi-stage algorithm versus GTPA, OSRPA, and OMA for each 1Hz of the 

system bandwidth, under both perfect and imperfect CSI conditions. The results, shown 

in Figure 4.13(a) and Figure 4.13(b), reveal several important insights regarding the 

performance of the proposed algorithm. As expected, increasing the transmitted power 

leads to a higher average data rate for all cases, owing to the higher allocated power for 

each user.  
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Figure 4.12: Energy efficiency vs. transmission power at a minimum required 
data rate of every user, Rmk(min)=1 b/s/Hz in a) perfect CSI case in (a), and in b) 

imperfect CSI  case with ( 2
 =0.01). 
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However, the proposed multi-stage algorithm consistently outperforms OSRPA and 

OMA in both perfect and imperfect CSI cases, with the data rate exceeding that of the 

other methods up to 22 dBm for perfect CSI (Figure 4.13(a)) and 15 dBm for imperfect 

CSI (Figure 4.13(b)). This improvement can be attributed to the ability of the proposed 

algorithm to effectively utilize power resources while ensuring that the minimum required 

data rate for each user is met, all while maintaining the system’s EE (as seen in Figure 

4.12).  

The key advantage of the proposed multi-stage algorithm lies in its efficient use of 

transmitted power. Unlike other algorithms, it conserves power by allocating only the 

minimum necessary power to each user to meet their required QoS, without over-

allocating unnecessary power. This strategy results in a significant improvement in the 

average data rate, which, in some cases, reaches more than 300% of the minimum 

required data rate. This ensures that users experience very satisfactory QoS while 

minimizing power consumption, making the system more energy-efficient.  

Furthermore, it is noticeable from Figure 4.13 that the average data rate is lower in the 

imperfect CSI case compared to the perfect CSI case. This is because imperfect CSI leads 

to an increase in interference, which degrades the SINR, thereby reducing the achievable 

data rate.  

The increased interference reduces the accuracy of power allocation and scheduling, 

causing a slight decrease in the system’s overall performance. This degradation highlights 

the importance of accurate CSI for achieving optimal performance, but even with 

imperfect CSI, the proposed algorithm still provides better data rates than the other 

methods. In conclusion, the proposed multi-stage algorithm outperforms the GTPA, 

OSRPA, and OMA in terms of average data rate by utilizing power more efficiently and 

conserving resources while still ensuring high QoS for users. This allows it to achieve 

data rates well above the minimum required, providing significant benefits in terms of 
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both throughput and EE. The lower performance observed in the imperfect CSI case 

further emphasizes the challenges posed by channel estimation errors but also 

underscores the robustness of the proposed algorithm in handling such imperfections 

while still delivering superior results.  

The relation between the minimum required data rate and the system EE in both perfect 

and imperfect CSI cases is shown in Figure 4.14 for the proposed multi-stage algorithm 

as well as the GTPA algorithm and the conventional OMA. The distance and path loss 

component parameters are unchanged while the number of the user devices in every cell 

is assigned as M=4 and the transmission power is set to be Pk=26 dBm. All users in the 

cell are assumed to have the same minimum QoS, represented by the minimum accepted 

data rate Rmin. From Figure 4.14, it can be seen that EE is higher in the proposed algorithm 

compared to the conventional OMA at all different required QoS. The allocated power to 

the stronger user in the proposed algorithm is relatively low compared to the OMA system 

to attain the minimum data rate. Therefore, the allowable transmission power is capable 

to serve more users even at high Rmin. 

It appears that the GTPA algorithm is better suited for achieving an optimal data rate, 

whereas the proposed multi-stage algorithm is designed to optimize EE. The key insight 

from the results is that in the proposed multi-stage algorithm, the allocated power to the 

stronger user is kept relatively low compared to the OMA system. This is crucial because 

it allows the system serving more users at higher required data rates. By conserving power 

while still meeting the minimum QoS requirements for each user, the proposed algorithm 

optimizes EE, which is particularly beneficial in power-constrained environments.  
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Figure 4.13: Average data rate vs. total transmission power for M=4, in a) 
perfect CSI case, and in b) imperfect CSI case with ( 2

 =0.01). 
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This contrasts with OMA, where higher transmission power is typically required to 

ensure that all users can meet their data rate requirements, leading to increased energy 

consumption and reduced efficiency. When comparing the proposed multi-stage 

algorithm with the GTPA algorithm, it becomes evident that while the GTPA algorithm 

is more effective at achieving higher data rates, the proposed multi-stage algorithm is 

specifically designed to optimize EE.  

 

Figure 4.14: Energy efficiency vs. minimum required data rate, in perfect CSI 
case and imperfect CSI case ( 2

 =0.01). 

This trade-off between maximizing data rate and optimizing energy efficiency is a key 

consideration in communication system design. In scenarios where energy efficiency is a 

critical concern (such as in battery-powered or power-limited systems), the proposed 

algorithm would likely be the better choice. However, in systems where maximizing data 
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OMA system is zero for any device if the transmission power is not sufficiently high to 

achieve the minimum QoS of that device (Rmin is 3.5 b/s/Hz and 2.5 b/s/Hz in perfect and 

imperfect CSI OMA systems, respectively). This limitation further emphasizes the 

importance of efficient power allocation and the advantages of using algorithms like the 

proposed multi-stage method that optimize both energy efficiency and data rate without 

over-relying on high transmission power. In conclusion, the proposed multi-stage 

algorithm provides a clear benefit in terms of energy efficiency, particularly when dealing 

with high user density and stringent power constraints. While it may not achieve the 

maximum data rate compared to GTPA, its ability to maintain acceptable QoS at lower 

power consumption makes it an attractive choice for energy-efficient communication 

systems. The results highlight the importance of considering both data rate and energy 

efficiency when selecting an algorithm, as these factors are often in tension and must be 

balanced based on the specific goals of the system. 

Figure 4.15 presents the effect of the channel estimation error on EE for a variety 

number of user devices. Here, Rmin=1 b/s/Hz, number of users in each cell is set to M = 

{2 and 5}, and σ2 is varied from 0 to 0.4. The transmission power is set to 20 dBm where 

the EE is maximized in the perfect CSI case.  It is evident from Figure 4.15 that the 

maximum EE is obtained at zero error (perfect CSI), and an increase in the channel 

estimation error causes a decrease in EE due to the reduction in the SINR level. 

Moreover, a rise in the number of user devices number will decrease the EE. This trend 

is consistent with the general expectation that channel estimation errors cause additional 

interference, reducing the signal quality for each user and thus lowering the overall 

system performance. The observed degradation in EE is a direct consequence of the 

imperfect CSI, where the lack of accurate channel knowledge at the base station results 

in suboptimal power allocation. When channel estimation is inaccurate, PA decisions 

are less effective, leading to inefficient utilization of the available power resources. 
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Another important observation is the effect of user density on the EE. As the number of 

users in the cell increases (from M = 2 to M = 5), the EE decreases. This can be attributed 

to the increased complexity of managing power allocation across more users. With more 

users, the system has to allocate power in a way that meets the minimum QoS for each 

user while maintaining overall system efficiency. However, as the number of users 

increases, the available transmission power has to be shared, leading to reduced power 

per user and a corresponding decrease in the EE. Furthermore, the results show that 

NOMA outperforms the conventional OMA system in terms of EE in the presence of 

imperfect CSI.  

This highlights one of the key advantages of NOMA: its ability to serve multiple 

users with the same time-frequency resources by optimizing power allocation. In the 

case of imperfect CSI, the NOMA system can still provide higher EE than OMA by 

utilizing power allocation strategies that are more adaptable to the available but 

imperfect channel information. Additionally, the results show that for M = 2, the system 

achieves better EE than for higher values of M (i.e., when more signals are combined). 

This is because, with two signals, the PA process is simpler and more efficient, as there 

are fewer users competing for the available power. The PA can be optimized more 

effectively, even with imperfect CSI. However, when M > 2, the system becomes more 

complex, and the allocation of power to multiple users becomes less effective, 

particularly under imperfect CSI conditions. The increased number of users introduces 

more interference and reduces the ability of the system to make optimal power allocation 

decisions, thus leading to a lower EE. 
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Figure 4.15: Energy efficiency vs. channel estimation error values for various 
number of user devices. 

 

The analysis of outage probability, presented in Figure 4.16, provides valuable 

insights into the performance of the proposed multi-stage game theoretic algorithm, 

GTPA, and the conventional OMA under varying transmission power and channel 

estimation errors. The results illustrate a key finding: the outage probability decreases 

with increasing transmission power, which is consistent with the derived outage 

probability formula in Equation (3.85). As transmission power is increased, the signal 

strength improves, which leads to a lower probability of outage and better chances of 

successful communication for the users. The proposed multi-stage game theoretic 

algorithm outperforms both the GTPA and OMA across all scenarios (perfect and 

imperfect CSI). This is particularly noticeable in the cell edge user's SINR improvement, 

which directly contributes to the lower outage probability. For example, in the imperfect 

CSI case at 20 dBm, the multi-stage algorithm reduces the outage probability by 

approximately 10% compared to GTPA and 25% compared to OMA. This 
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outperformance can be attributed to the algorithm’s ability to optimize resource 

allocation more effectively, even in the presence of imperfect channel information. 

However, the impact of channel estimation errors on system performance is also evident. 

As the channel estimation error increases, the outage probability rises significantly. For 

instance, at 20 dBm, the outage probability increases from 0.05 to around 0.6 when the 

channel estimation error rises from zero to σ2 = 0.01. This highlights the critical role of 

accurate CSI in achieving optimal system performance. 

 

Figure 4.16: The outage probability vs. total transmission power for both 
perfect and imperfect CSI case. 
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increased outage probability in systems with imperfect CSI is largely due to the inability 

of the system to adapt effectively to changing channel conditions. Since resource 

allocation decisions are based on erroneous channel state information, the system may 

allocate insufficient power to users in poor channel conditions or allocate excessive 

power to users with better conditions, both of which can lead to inefficiencies and higher 

outage probabilities. In summary, while the multi-stage algorithm demonstrates 

significant improvements in outage probability over the other algorithms, the results 

underscore the importance of accurate CSI for optimal resource allocation. In the 

presence of imperfect CSI, the system struggles with suboptimal power allocation, 

leading to higher outage probabilities and reduced system performance. This analysis 

emphasizes the need for more robust channel estimation techniques to minimize the 

adverse effects of channel estimation errors and improve the overall reliability of the 

system. 

The findings of this research effectively address the key objectives outlined for 

optimizing resource allocation in DL NOMA systems. First, the proposed power 

allocation mechanisms, grounded in game theory and GAs, demonstrate efficient 

resource distribution despite limited system resources, while accounting for user 

terminal threshold levels to maintain practical power allocation. Second, the use of game 

theory and GAs to solve non-concave optimization problems for data rate and energy 

efficiency showcases their ability to navigate complex solution spaces, offering 

significant improvements over traditional methods. Finally, performance evaluations 

under both perfect and imperfect CSI conditions confirm that the developed mechanisms 

enhance sum data rate and energy efficiency, ensuring robust system performance with 

minimal outage probability across various network configurations. The following points 

highlight how the research findings address each objective, demonstrating the 
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effectiveness of the proposed power allocation mechanisms in optimizing performance 

in DL NOMA systems. 

1. Objective 1: Power Allocation Mechanisms: 

The findings demonstrate that the power allocation mechanisms based on game theory 

and GAs effectively manage resource distribution in NOMA systems, optimizing power 

use despite limited resources. The inclusion of user terminal threshold levels was critical 

to ensuring that the power allocation remains within practical limits while optimizing 

system performance. 

2. Objective 2: Non-Concave Optimization: 

The research findings highlight how the combination of game theory and GAs helps 

navigate the non-concave nature of data rate and energy efficiency optimization. By 

modeling user interactions strategically and leveraging GAs to explore the solution space, 

your results show that these methods provide effective solutions, leading to better overall 

system performance compared to traditional methods. 

3. Objective 3: Performance Evaluation: 

The results indicate that the proposed power allocation mechanisms significantly 

enhance the sum data rate and energy efficiency in both single-cell and multi-cell NOMA 

networks. In both perfect and imperfect CSI cases, the system performance remains 

robust, with low outage probability, proving the effectiveness of the proposed 

mechanisms across different conditions. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION FOR FUTURE 

WORKS 

5.1 Conclusion  

The objectives of this research have been successfully achieved through a systematic 

and comprehensive approach. The proposed methodologies, utilizing game theory and 

genetic algorithms, have addressed the challenges in power allocation for NOMA 

networks. Each objective and its corresponding achievements are summarized as follows: 

Objective 1: Development of power allocation mechanisms   

   This research successfully developed power allocation mechanisms that leverage 

game theory and genetic algorithms to improve energy efficiency and data rate 

performance in DL NOMA systems. The game-theoretic approach formulated resource 

allocation as strategic interactions among users, achieving fairness and efficiency in 

power distribution. The proposed algorithms outperformed conventional methods by 

effectively balancing resource utilization and QoS, ensuring scalability for real-world 

applications. 

Objective 2: Analysis of non-convex optimization problems 

   A detailed analysis of non-convex optimization problems related to EE and data rates 

was conducted. The study particularly focused on scenarios with imperfect CSI, where 

conventional optimization methods often fail. The innovative use of GA provided robust 

solutions to these challenges, demonstrating the adaptability and effectiveness of the 

proposed methods under varying network conditions. 

Objective 3: Performance evaluation of power allocation algorithms   

   Extensive simulations were carried out to evaluate the performance of the proposed 

algorithms. Key metrics, such as energy efficiency, outage probability, and average data 

rate, were analyzed. The results highlighted significant improvements compared to 
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traditional OMA systems. For instance, the genetic algorithm-based methods enhanced 

energy efficiency by up to 75% and reduced outage probabilities by 25% under 

challenging conditions. The integration of NOMA with advanced technologies, such as 

mmWave, further demonstrated the adaptability and scalability of the proposed strategies. 

This research has provided a comprehensive framework for power allocation in 

NOMA networks, addressing critical challenges in energy efficiency and data rate 

optimization. The integration of NOMA and mmWaves has set a foundation for future 

advancements in next-generation wireless communication systems, supporting the 

evolution from 5G to 6G networks. The findings contribute to the body of knowledge in 

the field and offer practical solutions for implementing NOMA in real-world scenarios.  

In sum, the research objectives were not only met but exceeded expectations through 

innovative methodologies and rigorous evaluation. The results affirm the potential of the 

proposed approaches to revolutionize resource management in NOMA networks, paving 

the way for more sustainable and efficient wireless communication technologies in the 

future. 

5.2 Significance of the study  

The novelty and significance of this research lie in its innovative approach to 

addressing critical challenges in resource management for NOMA-based wireless 

communication networks. This study makes unique contributions through the following 

aspects: 

 Integration of game theory and GA: The research proposes game-theoretic 

models and genetic algorithms to develop novel power allocation 

mechanisms that address both fairness and efficiency. While game theory 

provides a strategic framework for resource allocation, genetic algorithms are 
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employed to solve complex non-convex optimization problems, enabling 

robust and efficient solutions under varying network conditions. 

 Addressing imperfect CSI challenges: This study pioneers the analysis of 

resource allocation strategies in scenarios involving imperfect CSI. By 

accounting for real-world conditions where perfect CSI is often unattainable, 

the proposed algorithms demonstrate enhanced adaptability and robustness, 

ensuring optimal performance in dynamic and uncertain environments. 

 Focus on energy efficiency and data rate optimization: Unlike traditional 

methods, this research prioritizes both EE and data rate optimization as dual 

objectives. The proposed solutions achieve significant improvements in these 

metrics, with EE enhancements of up to 75% and substantial reductions in 

outage probabilities, making them highly relevant for sustainable 5G and 

beyond networks. 

 Application to advanced technologies: The integration of NOMA with 

emerging technologies such as mmWave is a groundbreaking aspect of this 

research. This combination enhances the scalability and applicability of the 

proposed methods, paving the way for their adoption in future 

communication systems, including 6G networks. 

 Comprehensive evaluation and validation: The research employs extensive 

simulations to validate the proposed algorithms across diverse scenarios, 

including single-cell and multi-cell networks. By comparing the performance 

with conventional OMA systems, the study highlights the superiority of 

NOMA in terms of EE, data rates, and robustness. 

 Practical implications and contributions to the field: This study provides 

actionable insights and practical solutions for implementing NOMA in real-

world scenarios. By addressing critical challenges and demonstrating the 
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effectiveness of the proposed methods, this research contributes to advancing 

the state-of-the-art in resource management for next-generation wireless 

communication networks. 

By addressing these three objectives, this thesis contributes a comprehensive solution 

to the resource allocation problem in DL NOMA cellular systems. The proposed 

mechanisms provide equitable and efficient resource distribution while optimizing 

critical performance metrics like data rate and EE. The findings collectively advance the 

understanding of NOMA system performance, especially in realistic scenarios involving 

imperfect CSI, and provide practical methods for resource allocation in modern cellular 

networks. In summary, the novelty of this study lies in its innovative methodologies and 

focus on real-world challenges, while its significance is underscored by the impactful 

contributions to both theory and practice in the field of wireless communications. 

5.3 Recommendations for future works 

The introduction of 6G technology holds the potential to bring about revolutionary 

improvements in energy efficiency and data rates in the rapidly evolving field of wireless 

communications. Leading this change have been NOMA systems, which are renowned 

for their capacity to support numerous users on the same time-frequency resource. 

Looking ahead, the combination of GA, as an AI methodology, with NOMA's 

cooperation with other emerging technologies opens a door to previously unimaginable 

possibilities. 

Despite their high computational cost, genetic algorithms have shown to be very useful 

for improving NOMA systems. They are a great option because of their capacity to search 

through large solution spaces and identify the best configurations. Their primary 

disadvantage, though, is the amount of time needed for operations. Researchers are 

looking into creative ways to apply GA's results to address this challenge. In the field of 
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optimization, artificial intelligence, especially machine learning techniques, appears to be 

revolutionary. AI algorithms can be quickly trained to predict ideal configurations by 

utilizing GA-generated data. The quantity of data that GA provides can be processed by 

neural networks, reinforced learning, and deep learning techniques to produce effective, 

real-time solutions that drastically cut down on the amount of time needed for 

optimization. Future 6G technology research projects should concentrate on combining 

the outcomes of GA with AI algorithms to establish a mutually beneficial relationship 

between prediction and optimization. AI models can be trained on historical GA data, 

which enables researchers to quickly and reliably predict the best NOMA configurations. 

This combination of prediction and optimization provides a real-time adaptive method 

for allocating resources in NOMA systems. Advantages of the combined methods 

include: 

i. Shorter Operation Time: The time needed for optimization is greatly reduced 

when AI models trained on GA data are used. It becomes possible to adapt in 

real-time to changing network conditions, guaranteeing peak performance 

constantly. 

ii. Enhanced Energy Efficiency: Rapid optimization results in less energy being 

used when allocating resources. Proactive adjustments are made possible by 

AI-driven predictions, guaranteeing energy-efficient operations even in 

dynamic network environments. 

iii. Increased Data Rates: The hybrid GA-AI approach's optimal resource 

allocation guarantees increased data rates and better spectral efficiency. 

Customers benefit from quicker, more dependable connections that easily 

handle the demands of bandwidth-intensive applications. 

The combination of NOMA, and genetic algorithms is a shining example of 

innovation. Through the utilization of AI's predictive power and GA's optimization 
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capabilities, researchers can achieve unprecedented levels of efficiency and performance 

for NOMA systems. This collaboration not only tackles present issues but also sets the 

stage for wireless communication to become adaptive and intelligent in the future, in 

addition to being quick and dependable. In addition to bringing about a paradigm change 

in optimization techniques, the era of 6G signals the arrival of a time when intelligence 

and efficiency coexist peacefully in the wireless communications industry. 

There is significant potential to build on the advancements made in this study by 

exploring the integration of NOMA with emerging 6G technologies, such as terahertz 

communication and intelligent reflecting surfaces, to further enhance EE and SE. 

Additionally, future research could delve deeper into AI-driven optimization techniques, 

such as deep reinforcement learning and federated learning, to address resource allocation 

challenges in highly dynamic and ultra-dense networks. These methods could provide 

more robust and scalable solutions that adapt to the unique demands of 6G, including 

ultra-low latency and massive connectivity for diverse IoT applications. The exploration 

of hybrid approaches that combine NOMA with other multiple access schemes, such as 

orthogonal time-frequency-space), could also be a fruitful direction, enabling even greater 

performance gains in complex communication scenarios. Moreover, further refinement 

of power allocation mechanisms under real-world conditions, such as imperfect CSI in 

heterogeneous networks, would provide practical insights for deploying these strategies 

in large-scale 6G environments. 

These potential research directions build upon the foundational work presented in this 
thesis, offering pathways to address the evolving challenges and opportunities in next-
generation wireless communication systems 
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