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ENERGY EFFICIENT POWER ALLOCATION FOR DOWNLINK NON-
ORTHOGONAL MULTIPLE ACCESS NETWORKS BASED ON GAME
THEORY AND GENETIC ALGORITHM

ABSTRACT

The exponential growth in the number of users and their increasingly diverse demands in
next-generation wireless networks has created significant challenges in managing limited
resources while ensuring energy-efficient communication. The need to meet the quality
of service (QoS) requirements for this rapidly expanding user base, particularly with
heightened data rate expectations, underscores the urgency for innovative solutions.
Although 5G and beyond technologies provide a foundation for next-generation
networks, further advancements are required to improve energy efficiency (EE) and
spectrum efficiency (SE) to meet these demands. This study focuses on optimizing
energy-efficient power allocation in Non-Orthogonal Multiple Access (NOMA) systems,
a transformative approach that allows multiple users to share resources simultaneously.
The research leverages Artificial Intelligence (Al)-based Genetic Algorithms (GA) and
game theory to address critical challenges in resource allocation. GA is specifically
chosen for its ability to solve complex, non-linear problems by efficiently navigating large
solution spaces. Complementing this, game theory offers a robust framework to model
strategic interactions among users, ensuring fair and effective resource distribution.
Together, these methods tackle critical gaps in resource allocation, including the trade-
off between energy efficiency and data rate, and the challenges posed by both perfect and
imperfect channel state information (CSI). The novel power allocation mechanism
developed in this study demonstrates significant improvements. The proposed method
achieves a 75% enhancement in energy efficiency compared to conventional Orthogonal

Multiple Access (OMA) and an 11% improvement over benchmark NOMA algorithms.
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Additionally, it reduces outage probability by 25% and 10% relative to OMA and existing
NOMA algorithms, respectively. These results validate the algorithm's robustness,
particularly under imperfect CSI conditions, where traditional methods often fail.
Furthermore, the research explores advanced applications such as integrating NOMA
with Millimeter-Wave technology and optimizing user association strategies, enhancing
system capacity and overall performance. The findings highlight the pivotal role of
Genetic Algorithms and game theory in overcoming the limitations of conventional
resource allocation methods. The integration of these advanced techniques ensures
adaptability, efficiency, and resilience in dynamic network environments. By achieving
substantial gains in energy efficiency and data rates, this study sets a new benchmark for
resource allocation strategies in 5G and beyond networks. The proposed method
demonstrates how Al-driven solutions, coupled with strategic modeling frameworks like
game theory, can address the pressing challenges of next-generation wireless

communication systems effectively.

Keywords: 5G Networks, Artificial Intelligence (AI), Game Theory, Genetic

Algorithm, Non-Orthogonal Multiple Access (NOMA).
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PERUNTUKAN KUASA CEKAP TENAGA UNTUK RANGKAIAN AKSES
BERBILANG BUKAN ORTOGONAL BUKAN ORTOGONAL BERDASARKAN
TEORI PERMAINAN DAN ALGORITMA GENETIK
ABSTRAK

Pertumbuhan eksponen dalam bilangan pengguna dan permintaan mereka yang
semakin pelbagai dalam rangkaian wayarles generasi akan datang telah mewujudkan
cabaran yang ketara dalam menguruskan sumber yang terhad sambil memastikan
komunikasi yang cekap tenaga. Keperluan untuk memenuhi keperluan kualiti
perkhidmatan (QoS) untuk pangkalan pengguna yang berkembang pesat ini, terutamanya
dengan jangkaan kadar data yang lebih tinggi, menekankan keperluan untuk penyelesaian
inovatif. Walaupun teknologi 5G dan seterusnya menyediakan asas untuk rangkaian
generasi akan datang, kemajuan selanjutnya diperlukan untuk meningkatkan kecekapan
tenaga (EE) dan kecekapan spektrum (SE) untuk memenuhi permintaan ini. Kajian ini
memberi tumpuan kepada mengoptimumkan peruntukan kuasa cekap tenaga dalam
sistem Akses Berbilang Bukan Ortogonal (NOMA), pendekatan transformatif yang
membolehkan berbilang pengguna berkongsi sumber secara serentak. Penyelidikan itu
memanfaatkan Algoritma Genetik (GA) berasaskan Kecerdasan Buatan (Al) dan teori
permainan untuk menangani cabaran kritikal dalam peruntukan sumber. GA dipilih
secara khusus kerana keupayaannya untuk menyelesaikan masalah yang kompleks dan
bukan linear dengan mengemudi dengan cekap ruang penyelesaian yang besar.
Melengkapkan ini, teori permainan menawarkan rangka kerja yang mantap untuk
memodelkan interaksi strategik di kalangan pengguna, memastikan pengagihan sumber
yang adil dan berkesan. Bersama-sama, kaedah ini menangani jurang kritikal dalam
peruntukan sumber, termasuk pertukaran antara kecekapan tenaga dan kadar data, dan
cabaran yang ditimbulkan oleh maklumat keadaan saluran (CSI) yang sempurna dan tidak

sempurna. Mekanisme peruntukan kuasa baru yang dibangunkan dalam kajian ini



menunjukkan peningkatan yang ketara. Kaedah yang dicadangkan mencapai peningkatan
kecekapan tenaga sebanyak 75% berbanding dengan Akses Berbilang Ortogonal (OMA)
konvensional dan peningkatan 11% berbanding algoritma penanda aras NOMA. Selain
itu, ia mengurangkan kebarangkalian gangguan sebanyak 25% dan 10% berbanding
dengan OMA dan algoritma NOMA sedia ada, masing-masing. Keputusan ini
mengesahkan keteguhan algoritma, terutamanya dalam keadaan CSI yang tidak
sempurna, di mana kaedah tradisional sering gagal. Tambahan pula, penyelidikan itu
meneroka aplikasi termaju seperti menyepadukan NOMA dengan teknologi Gelombang
Milimeter dan mengoptimumkan strategi persatuan pengguna, meningkatkan kapasiti
sistem dan prestasi keseluruhan. Penemuan ini menyerlahkan peranan penting Algoritma
Genetik dan teori permainan dalam mengatasi batasan kaedah peruntukan sumber
konvensional. Penyepaduan teknik canggih ini memastikan kebolehsuaian, kecekapan
dan daya tahan dalam persekitaran rangkaian dinamik. Dengan mencapai keuntungan
besar dalam kecekapan tenaga dan kadar data, kajian ini menetapkan penanda aras baharu
untuk strategi peruntukan sumber dalam 5G dan seterusnya rangkaian. Kaedah yang
dicadangkan menunjukkan bagaimana penyelesaian dipacu Al, ditambah dengan rangka
kerja pemodelan strategik seperti teori permainan, boleh menangani cabaran mendesak

sistem komunikasi wayarles generasi akan datang dengan berkesan.

Keywords: Rangkaian 5G, Kecerdasan Buatan , Teori Permainan, Algoritma Genetik,

Capaian Berbilang Bukan Ortogon.
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CHAPTER 1: INTRODUCTION

1.1 Background

A state-of-the-art wireless communication technology called Non-Orthogonal
Multiple Access (NOMA) allows multiple users to share a time-frequency resource, like
a channel or sub-channel, simultaneously. Using power domain multiplexing, NOMA
enables various users to share the available resources concurrently, in contrast to
traditional OMA schemes where users are assigned separate and non-overlapping
resource blocks. This enables more effective use of the available spectrum by allocating
various power levels to users within the same time-frequency resource. Users in NOMA
are assigned power levels based on their channel conditions; users in poorer channel
conditions are assigned lower power levels. NOMA breaks the conventional rule of
exclusive resource allocation to a single user in the power domain by using non-
orthogonal superposition coding to transmit signals from multiple users and using
Successive interference cancellation (SIC) at the receiver to eliminate interference,
proposing a new idea of multi-user G. Wu, Chen, and Chen (2023). This increases system
capacity and spectral efficiency by enabling the base station to transmit and receive
multiple signals simultaneously (Qi, Xie, & Liu, 2022). When it comes to improving the
functionality of next-generation wireless communication systems, like the fifth
generation (5G) and beyond, NOMA is especially promising (Kumar, Hanif, Juntti, &

Tran, 2023).

However, the deployment of NOMA technology comes with its own set of challenges,
particularly in the domain of energy-efficient power allocation. First, it is questionable
whether it is fair to assign users different power levels based on their channel conditions
and whether sufficient Quality of Service (QoS) is provided for each user. Resolving
power disparities while upholding equity is a crucial obstacle in NOMA energy-efficient

power allocation. Second, NOMA needs complex resource allocation algorithms in order



to figure out what each user's ideal power level is (Aghdam, Tazehkand, & Abdolee,
2022). One major challenge is to design scalable and effective algorithms that can adjust
to changing user requirements and dynamic channel conditions. Moreover, interference
is considered an issue since there is a chance that users who are sharing the same resources
could interfere with one another when multiple signals are transmitted simultaneously in
NOMA. To lessen the effects of interference and guarantee dependable communication,
effective interference management techniques are crucial (L. Xu, Cai, Chang, Fang, &

Li, 2022).

In addition, achieving perfect channel state information is difficult in real wireless
communication systems where wireless channels can experience changes and oscillations
over time. To continuously optimize performance, NOMA energy-efficient power
allocation systems need to be able to dynamically adapt to shifting channel conditions
(Ihsan, Chen, Zhang, & Xu, 2022). Therefore, advanced front and back-haul
infrastructure may be needed for NOMA to facilitate the simultaneous transmission and
reception of multiple signals. There are additional challenges in maintaining the network
infrastructure's dependability and managing the increased data rates. Finally, even though
NOMA can increase spectral efficiency (Budhiraja et al., 2021), it is crucial to take the
system's energy efficiency (EE) into account, particularly when raising power levels for
users with better channel conditions. An essential component of energy efficient power

allocation in NOMA is striking a balance between power consumption and efficiency.

It will take a combination of sophisticated algorithms, flexible systems, and strong
network infrastructure to overcome these obstacles. To ensure that NOMA's potential
benefits are realized in realistic wireless communication scenarios, ongoing research and
development efforts are concentrated on optimizing it for real-world deployment
(Kebede, Wondie, Steinbrunn, Kassa, & Kornegay, 2022; Shah, Qasim, Karabulut, Ilhan,

& Islam, 2021).



The size of the transmitted data in the sixth generation (6G) is expected to be doubled
ten to hundred times as compared to the 5G (S. Chen et al., 2020). Although many
challenges appeared in 5G, such as energy-saving, (Souza, Vieira, Seruffo, & Cardoso,
2020; Zekri & Jia, 2018), the critical issues and challenges in 6G seem to be higher, such
as attaining an improvement in system throughput, optimizing the spectrum efficiency
(SE), reducing the time delay, and wider coverage (S. Chen et al., 2020). It is crucial to
develop creative solutions that can improve the utilization of network resources as the
demand for wireless services keeps rising, particularly in the context of NOMA, which is
a crucial technology for 5G and beyond (Z. Wei, Yang, Ng, Yuan, & Hanzo, 2020). By
allowing non-orthogonal sharing of the same time-frequency resources, NOMA could
improve spectral efficiency. However, in NOMA networks, efficient resource allocation,
energy saving, and data rate maximization present challenging optimization problems

(Zamani, Eslami, Khorramizadeh, & Ding, 2019).

With the growing Internet of Things (IoT) and cloud-based applications, the demand
for new services and data traffic for wireless communications has increased
tremendously. Thus, one of the expectations for 6G is to increase the transmission data
rate to achieve a peak value of 1 Tbps to provide a massive number of users with the
required service (T. Huang et al., 2019). The accessible spectrum resources are restricted
since they serve tens of thousands of pieces of mobile communications equipment and
therefore more techniques are required to guarantee the connection quality for each user
(X. Liu, Ding, & Hu, 2021). NOMA is considered a very promising technique beyond 5G
and 6G where it provides services to several users simultaneously at the same subcarrier
and at the same time through the use of superposition coding in the power domain (L.
Zhu, Z. Xiao, X. G. Xia, & D. O. Wu, 2019). NOMA has several advantages such as high
SE, improved cell edge data rate, low latency, and good compatibility with other

techniques such as orthogonal multiple access (OMA) (Wan, Wen, Ji, Yu, & Chen, 2018).



Moreover, considerable improvements in SE, EE, and outage probability are achieved in
Multiple Input Multiple Output (MIMO) NOMA -based communications compared to
MIMO-OMA when an appropriate resource allocation is implemented (Ghosh, Sharma,
Haci, Singh, & Ra, 2021). However, channels in massive MIMO systems exhibit a high
degree of spatial correlation. Information that describes the present state or condition of
a communication channel in a wireless communication system is referred to as channel
state information (CSI). A communication channel's properties can change as a result of
things like obstructions, interference, signal reflections, and other external factors. By
offering insightful information about the channel's current condition, channel state
information enables the communication system to adjust and perform at peak efficiency.
CSI facilitates intelligent resource allocation in wireless networks. The system can
maximize network performance by allocating resources like time slots, frequency bands,
or power levels efficiently by knowing the channel conditions for various users or
devices. In (Chopra, Murthy, Suraweera, & Larsson, 2019), a large-system analysis is
applied to the covariance-aided CSI acquisition strategy in the MIMO system, which
exploits the individual covariance matrices for channel estimation when non-orthogonal
pilot sequences are used. The analysis shows that the training overhead can be reduced
when a covariance-aided strategy is implemented compared to the conventional CSI

acquisition, where no knowledge of the user spatial co-variance matrices is known.

The number of connected equipment massively increased in 5G compared to the
previous fourth generation (4G) networks (Agiwal, Roy, & Saxena, 2016; Andrews et al.,
2014). By 2030, the density of connected devices is expected to reach 107 devices/km?,
and multimedia applications will be the most popular applications for users, such as
mobile video calls, streaming videos, and online conferences. As a result, the required
data rate will rise about 10 times more than that in 4G, and the peak transmitted data in

the 5G is expected to be about 20 Gbps (Bai, Yao, Zhang, & Leung, 2019; Z. Zhang et



al., 2019). On the other hand, the SE and the EE should be enhanced in 5G by x5 and
x100 times, respectively (Z. Zhang et al., 2019). Therefore, satisfying the requirements
of a massive number of users within the network's limited resources is considered a

challenge in 5G.

1.2 Motivation of the study

In today's hyper-connected world, the demand for faster and more reliable wireless
communication networks is insatiable. The emergence of 5G technology has promised to
revolutionize the way people connect and communicate, offering unprecedented data
rates and low latency. NOMA has emerged as a key technology in 5G networks, allowing
multiple users to share the same time and frequency resources, thus significantly
enhancing spectral efficiency. However, it is faced with the pressing need to ensure the
sustainability and energy efficiency of these networks (Islam, Avazov, Dobre, & Kwak,
2017). Despite the promises of 5G technology and the potential benefits of NOMA in
enhancing SE, its integration into 5G networks poses several challenges. Sophisticated
algorithms are needed to dynamically adapt to changing user conditions to ensure fairness
and quality of service due to the complex resource allocation required by NOMA. To
reduce the inter-user interference caused by multiple simultaneous transmissions,
effective interference management becomes essential. Significant challenges also include
addressing the dynamic nature of wireless channels, the requirement for sophisticated
front- and back-haul infrastructure, and striking a balance between EE and higher power
levels. In our hyper-connected world, standardization, security issues, and deployment
costs highlight the complex terrain of NOMA implementation in the pursuit of faster and

more dependable wireless networks.

Energy efficiency optimization and data rate optimization are critical issues in NOMA
5G networks, and this thesis aims to address these challenges using advanced techniques

such as game theory and genetic algorithms. This research is motivated by several



compelling reasons. Energy efficiency is one of the most important concerns. With the
proliferation of wireless devices and increasing demand for data, the energy consumption
of 5G networks is skyrocketing. Energy-efficient communication systems are imperative
to reduce carbon footprints and operational costs. Game theory and genetic algorithms
have shown promise in optimizing wireless communication systems. Game theory and
genetic algorithms can provide novel solutions to optimize energy efficiency and data rate
in NOMA-based 5G networks (R. Liu, Lee, Yu, & Li, 2020; Luo et al., 2019; K. Wang,
Cui, Ding, & Fan, 2019). Secondly, improving the QoS by providing users with a high
data rate is an essential challenge beyond 5G (B5G) where the explosive growth of data-
hungry applications, including augmented reality, virtual reality, 4K video streaming, and
IoT devices, has placed unprecedented pressure on 5G networks to deliver high data rates.
NOMA, with its ability to enhance spectral efficiency, offers a promising solution.
However, effective resource allocation and data rate optimization techniques are required

to harness NOMA''s full potential (P. Zhang, Yang, Chen, & Huang, 2019).

1.3 Problem statement

The optimization of resource allocation in the downlink (DL) is a challenging task in
the context of NOMA systems, especially when there is imperfect CSI. This study tackles
this important problem by exploring how game theory and genetic algorithms can be
utilized to create novel approaches for data rate optimization and EE optimization in
NOMA systems. Robust algorithms that strategically allocate power and optimize user
pairings are imperative due to the inherent uncertainties introduced by imperfect CSI.
Conventional algorithms may struggle to adapt to the dynamic and varying conditions in
wireless channels, especially in NOMA systems with imperfect CSI. Furthermore, in
situations where the communication environment is complex and prone to sudden
changes, traditional algorithms may offer suboptimal solutions for user pairing and power

allocation. The research aims to bridge this gap by proposing a novel framework that



leverages game-theoretic principles and genetic algorithms to adapt to the challenges

posed by imperfect channel information. It is anticipated that the results of this study will

advance the field of wireless communication by adding to the theoretical underpinnings

of NOMA systems and providing useful insights into optimizing downlink performance

in imperfect CSI scenarios found in real-world settings.

The following explains the significance of these goals and how the proposed strategy

utilizing genetic algorithms and game theory adds to the picture:

1.

The data rate: As bandwidth-intensive applications like video streaming,
virtual reality, Electronic learning (E-learning), online gaming, and
augmented reality become more commonplace in our hyper-connected world,
there is an unquenchable need for faster data rates. Applications requiring
large data throughput can benefit from a more responsive and seamless user
experience thanks to higher data rates, which also translate to faster upload
and download. The game theory-based algorithm is proposed in this study to
solve the data rate optimization problem in several scenarios where the effect
of the error in the channel state information is considered.

Energy efficiency: In wireless communication systems, energy efficiency is
crucial because it affects the network infrastructure's environmental
sustainability and operational costs. In order to meet the increasing demand
for high-performance wireless communication, NOMA systems must
maximize data rate and EE.

The cooperation between NOMA and other technologies: The effect of
jointing mmWaves and user association technologies with the NOMA system
to improve the system performance will be proved. Hence, there is a need for
an efficient resource allocation method which considered the mentioned

challenges to improve the performance of DL NOMA system.
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Research objectives

The main aim of the research is to investigate the resource allocation in the DL NOMA

cellular systems. The research addresses various performance for NOMA systems, for

example, optimizing the sum data rate and the energy efficiency of the DL NOMA

system. The research also covered many scenarios such as single-cell and multi-cell

networks for both: perfect CSI and imperfect CSI cases. Moreover, this thesis investigates

user association for the NOMA-millimeter Waves (mmWaves) system. The objectives of

the research are:

1.

The first objective focuses on developing advanced power allocation
strategies for DLNOMA systems. Game theory is employed to model and
resolve strategic user interactions, ensuring equitable and efficient resource
distribution in a multi-user environment. Genetic algorithms (GAs), known
for their robustness in exploring large, complex solution spaces, are
integrated to overcome the limitations of traditional optimization methods.
These methods are particularly suited to address constrained system resources
and maintain user terminal threshold levels while optimizing system

performance.

The second objective addresses the significant challenge of optimizing non-
concave data rate and EE problems in NOMA systems. Game theory provides
a theoretical framework to represent user interactions and develop strategic
decision-making models. Genetic algorithms are utilized as an Al-based
approach to navigate the complexity of non-concave optimization, efficiently
searching for near-optimal solutions by simulating the process of natural
evolution. This combined approach ensures the practicality and scalability of

the optimization process, bridging a key gap in existing methodologies.



3. This objective evaluates the robustness and effectiveness of the proposed
power allocation schemes in both perfect and imperfect Channel State
Information (CSI) scenarios. A comprehensive analysis of key performance
metrics, including sum data rate, energy efficiency, and outage probability, is
conducted to validate the algorithm’s practicality in real-world conditions. The
evaluation highlights the adaptability of the proposed methods to dynamic
network environments, further reinforcing their suitability for next-generation

wireless communication systems.

The objectives of the research are successfully achieved through the proposed
methodologies and comprehensive evaluations. The developed power allocation
mechanisms based on game theory and genetic algorithms effectively optimize the data
rate and energy efficiency in both single-cell and multi-cel NOMA networks,

demonstrating superior performance under perfect and imperfect CSI conditions.

1.5 Research scope

This research explores resource management in NOMA networks, emphasizing the
application of game theory and genetic algorithms. The study addresses challenges related
to energy efficiency, data rate optimization, and resource allocation under both perfect
and imperfect CSI. The scope of the research is defined as follows:

1. Context and problem area: The research investigates the optimization of power
allocation strategies in NOMA-based wireless communication networks, which
are critical for addressing the growing demand for energy efficiency and high data
rates in 5G and beyond networks. The study accounts for complex challenges,
such as dynamic user conditions, interference management, and the inherent
uncertainties of imperfect CSI.

2. Core objectives: The research is structured to achieve the following objectives:



o Develop power allocation mechanisms utilizing game theory and genetic
algorithms to enhance energy efficiency and data rate performance in DL
NOMA systems.

e Analyze non-convex optimization problems related to energy efficiency
and data rates, particularly in scenarios involving imperfect CSI.

o Evaluate the performance of proposed resource management algorithms
through simulation, focusing on metrics such as energy efficiency, outage

probability, and average data rate.

3. Methodological framework: Two approaches are utilized in this study:

e Game Theory: The study employs game-theoretic models to formulate
resource allocation as strategic user interactions. These models address
fairness and efficiency in power distribution, ensuring that all users
achieve satisfactory QoS.

e Genetic algorithms: Genetic algorithms are applied to solve complex, non-
linear optimization problems. The research leverages these algorithms to
optimize power allocation and user clustering in NOMA systems,

especially under asymmetric user requirements and limited resources.

4. Technical scope: The study examines:

o Single-cell and multi-cell NOMA networks.

e Scenarios integrating NOMA with advanced technologies such as
Millimeter-Wave (mmWave).

e The effects of imperfect CSI on resource allocation strategies and system

robustness.
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e Comparative analyses between NOMA and conventional OMA systems

to highlight performance improvements.

5. Expected Contributions: The research aims to provide:

e Enhanced power allocation strategies for improving energy efficiency and
reducing outage probabilities.

e Advanced algorithms that balance resource utilization and QoS, ensuring
scalable solutions for future wireless communication networks.

e Insights into the integration of NOMA with other emerging technologies,

such as mmWave, to maximize system capacity and efficiency.

By addressing these aspects, this research contributes to advancing resource
management strategies in next-generation wireless communication systems, supporting

the evolution from 5G to 6G networks.

1.6 Thesis overview

This thesis consists of five chapters. Chapter 1 presents the background of the
optimization problems in NOMA-based networks, the motivation of the study, the
problem statement, and the objectives of the study. Chapter 2 presents a concise literature
review concerning data rate optimization and EE in NOMA-based systems. Besides that,
recent research is critically reviewed and discussed to provide a brief knowledge of the
importance of energy-efficient power allocation in NOMA and the related challenges.
Chapter 3 comprehensively describes the methodologies proposed in the study starting
with the game theory and the role of the power allocation (PA) in optimizing data rate
and EE in the CSI DL NOMA system. Then, the proposed genetic algorithm is described
in detail. Chapter 4 critically analyses and discusses the results obtained by implementing

game theory and GA to optimize the data rate and energy efficiency in the CSI DL NOMA
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system. Chapter 5 summarizes the research results and findings and drives the overall
thesis conclusions. The chapter also provides recommendations for further improvement

in the future.
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CHAPTER 2: LITERATURE REVIEW

This chapter presents a review of data rate optimization and EE optimization problems
in NOMA-based networks and discusses the related works. This chapter is structured as
follows. Section 2.1 presents the concept of NOMA and its advantages compared to
OMA. Section 2.2 presents the PA and its role in source management in the NOMA
system. Section 2.3 reviews the data rate optimization in NOMA systems while Section

2.4 reviews the energy efficiency in NOMA systems.

2.1 Multiple Access Techniques

2.1.1 Orthogonal Multiple Access (OMA)

Generally, multiple access techniques can be categorized into orthogonal and non-
orthogonal techniques. The signals in the first classification are made to be orthogonal to
their counterparts to avoid the cross-correlation between the signals, such as Orthogonal
Frequency Division Multiple Access (OFDMA) which is the multiuser extension of
Orthogonal Frequency Division Multiplexing (OFDM) and is widely used in 4G

networks.

The advantage of orthogonality is that it allows simultaneous transmission over the
subcarriers through a restricted frequency space with no interference. It is achieved
among the OFDM subcarriers by a careful selection of the subcarrier spacing depicted in
Figure 2.1, in which in some cases, the subcarrier spacing is set to be equal to the symbol
rate. OFDMA is used for downlink in 4G and long-term evolution (LTE) where the inter-
cell interference is avoided and the receiver design is relatively simple (Lei, Yuan, Ho,
& Sun, 2016). OFDM allocates one subcarrier to one user at the same time, and therefore
the information carried on all the subcarriers belongs to that user only. If several users
intend to transmit by OFDM, they have to queue for their turns in time. This problem is

solved in OFDMA by directly allocating the subcarriers in the frequency domain to
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different users. OFDMA robustness against inter-symbol interference (ISI) is the reason
that this technology is considered suitable as the air interface of 4G communication
systems. OFDMA allows multi-user communications through its technique in which
subcarrier frequencies are chosen so that the subcarriers are orthogonal to each other

(Dulout, Mendiboure, Pousset, Deniau, & Launay, 2023; Islam et al., 2017).

0.8
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Figure 2.1: Illustration of the orthogonality of OFDM spectrum of eight
different carrier frequencies

Under the orthogonal technology category, time-division multiple access (TDMA) is
considered a conventional OMA (K. S. Ali, Haenggi, EISawy, Chaaban, & Alouini, 2019;
Mokhtari et al., 2019; Zamani et al., 2019). The total base station (BS) power is utilized
to transmit each signal in the TDMA within a time slot T; (K. S. Ali et al., 2019). TDMA
is a technology used in communications that allows several users to share a
communication channel effectively. At its core, TDMA assigns each user-specific time

slot for transmissions by partitioning the channel into discrete time slots, usually arranged
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into frames. Throughout their allotted time slots, users alternately access the channel; the
duration of the communication period is organized into repeating segments to enable
uninterrupted engagement. For users to be temporally aligned with the base station or
access point and to avoid interference and collisions, synchronization is essential in
TDMA technology. TDMA and ODFMA are some examples of OMA schemes. In
TDMA, several users share the same frequency channel on a time-sharing basis. The users
communicate in rapid succession, one after the other, each using their assigned time slots.
The BS in the TDM-OMA system allocates the total transmission power to m-t4 user
during the m-¢4 time slot (Arzykulov, Tsiftsis, Nauryzbayev, & Abdallah, 2019; Z. Wei

et al., 2020).

Implementing OMA algorithms in 5G will not be adequate due to the limited number
of simultaneously transmitted signals within the orthogonal resources (Y. Wang, Ren,
Sun, Kang, & Yue, 2016). On the other hand, NOMA is considered a high-potential
technique to provide an increasing number of users in 5G by the required quality of

service.

2.1.2 Non-Orthogonal Multiple Access (NOMA)

The ambitious aims of Next Generation Mobile Networks (NGMN) include providing
extremely fast connections and enormous data for billions of different users’ equipment
in all areas. In recent years, there has been a rapid proliferation of innovative cyber habits
(Abozariba et al., 2019). People can now participate in cutting-edge activities like
monitoring and managing different areas of their homes and getting real-time data from
smart city applications thanks to IoT technology. This development points to a move
toward a more technologically advanced and networked way of living, where IoT devices
are essential for improving efficiency, security, and convenience in homes and cities alike
(Kunst, Avila, Pignaton, Bampi, & Rochol, 2018). The explosion of new IoT applications

is growing in tandem with the growth of online business, resulting in a transformative

15



shift across multiple domains. A few examples of the growing electronic landscape
influenced by IoT innovations are health, navigation, transportation, and security
(Aloqaily, Elayan, & Guizani, 2023; Joshi et al., 2023; J. Zhang, Wang, Li, & Shi, 2021).
Consequently, the proliferation of IoT applications has placed mobile communications
technology in the position of facilitating a hyper-connected society (Derawi, Dalveren, &
Cheikh, 2020; Santos, Perkusich, & Almeida, 2014). This fast-paced development affects
traditional e-commerce and new loT applications, ushering in a time when networked
gadgets and services transform how people interact with and perceive the digital world.
From the next-generation radio access technology viewpoint, an exponential increase in
data speed and required capacity for high data—rate applications are major concerns for
5G. In particular, many of the industry initiatives that have progressed with work on 5G
declare that the network-level data rate in 5G should be 10-20 Gbps (10-20 times the peak
data rate in 4G), and the user-experienced data rate should be 1 Gbps (100 times the user-

experienced data rate in 4G) (P. Zhang et al., 2019).

5G is expected to provide a higher data rate and higher capacity to a massive number
of users at lower power consumption and latency. One of the key techniques to meet these
requirements in mobile communication systems is using NOMA where one frequency
channel is allocated to several users within the cell at the same time (Budhiraja et al.,
2021). Several advantages are offered by NOMA, compared to OMA, such as improved
spectral efficiency, higher cell-edge throughput, relaxed channel feedback (only the
received signal strength, not exact CSI, is required), and low transmission latency (no
scheduling request from users to base station is required) (Alsabah et al., 2021; Wan et

al., 2018).

NOMA techniques are divided into two classifications, namely, power-domain and
code-domain NOMA (Islam et al., 2017). In wireless networks, code-domain NOMA is

a communication technique that uses distinct code-domain signatures to let multiple users
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share the same time-frequency resource blocks. Unlike traditional OMA schemes, where
users are assigned separate and non-overlapping resource blocks, code-domain NOMA
enables users to share the same resource blocks simultaneously. A distinct spreading code
or signature identifies each user and permits signal separation between them during
transmission and reception. In power-domain NOMA, which is the focus of this study,
multiple users are superposed in the power domain at the transmitter (BS) in the downlink
transmission and the difference in the channel gain is exploited among the multiplexed
users' power (Z. Ding, Fan, & Poor, 2016), while multiuser detection algorithms such as
the SIC could be used at the receiver (the mobile user device) to decode the desired
signals. Signal interference between users can occur in multi-user communication
systems, particularly in NOMA scenarios where users share a time-frequency resource.
The SIC technique works by trying to decode each user's signal one at a time and
canceling the interference that corresponds to that user as it is decoded (Ihsan et al., 2022).
By using SIC, users with relatively high received signal-to-noise and interference ratios
(SINR) decode the interfering signals before decoding their signal while users with lower
SINR levels would treat the interference as noise (Alsabah et al., 2021). Thus, power-
domain NOMA guarantees flexible resource allocation that improves the NOMA
performance (Kassir, Dziyauddin, Kaidi, & Izhar, 2018) and increases the sum data rate

(M. S. Ali, Hossain, Al-Dweik, & Kim, 2018).

Figure 2.2 presents the principal comparison between the NOMA system model and
the conventional OMA system model. From Figure 2.2, the user equipment (UE)) is the
farther user from the BS; this means that channel h; is the weakest channel. However,
that does not imply that the signal strength at UE; is the weakest since a higher power
level is assigned for that user. On the other hand, a lower power level is allocated for the
nearest user to the BS that has the strongest channel. In other words, for the ordering users

from the BS according to their channel gains (|hj| > --- > |h3| > |h?]), the allocated
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power to these users in the NOMA system should be Py < -+ < P, < P;. Therefore,
NOMA is in line with the SIC principle when the strongest signal is decoded first.
Moreover, the effect of the inter-cell interference is more significant on the farther user
who gets relatively high allocated power while this interference is negligible at the nearest
user with the weakest signal since it decodes all the higher power allocated to the next
users (Islam et al., 2017). In contrast to OMA, NOMA exploits the power domain to
simultaneously serve multiple users at different power levels, where the PA for each user
plays a key role in determining the overall performance of the system. DL NOMA
combines superposition coding at the BS and SIC decoding at the user (Islam, Zeng,

Dobre, & Kwak, 2018).

Figure 2.2: A comparison between the OMA and the NOMA system models.
Practically, it is a challenge to obtain perfect CSI. To enable the NOMA users to
perform SIC and to detect the signals of the lower-order users, BS allocates the power
levels according to their channel gains. That is, each receiver will eliminate the signals of
other combined users on the same carrier which have weaker channel gain. On the other
hand, the signals of the higher-order users with stronger channel gains will represent
interference signals. To maximize the data rate, the effect of this interference should be

minimized, and this could be ensured when the allocated power to the stronger channel
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user is lower than the allocated power to the weaker channel user (M. S. Ali, Hossain, Al-

Dweik, et al., 2018).

2.2 Power Allocation for NOMA-based Systems

Figure 2.3 illustrates the hierarchical framework for resource allocation in NOMA
systems, highlighting key components such as PA strategies, optimization objectives, and
methodologies, as well as the various techniques used to achieve efficient resource

management and system performance.
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Figure 2.3: The hierarchical framework for literature review of resource
allocation in NOMA systems

Power allocation in NOMA attracted the attention of the researchers who proposed
different strategies and targeted different aspects of PA in NOMA. Many studies have
been made on PA in NOMA system either in single cell or multi cells scenarios, one
operating technology or heterogeneous network, maximization of the sum data rate or
achieving higher fairness, and other schemes. To maximize the performance of a device
to device (D2D) communication system based on NOMA for imperfect Successive SIC
decoding, an efficient power allocation scheme is proposed in(G. Wu et al., 2023). An
alternative optimization algorithm was presented to find the best solution using Lagrange
duality analysis and the sub-gradient descent method to address the non-convexity of the
problem caused by integer constraints and coupling variables. The numerical simulation
results show how the suggested joint optimization algorithm for channel resource

allocation and power control performs better in terms of energy efficiency. Elbakry,
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Amer, and Ismail (2023) presented a dynamic power allocation scheme and optimal user
pairing for the NOMA system to increase the system's performance. The algorithm
precisely pinpoints the locations of dispersed users and ascertains the necessary power
levels for every user by considering their position and channel conditions. By ensuring
that every user receives the ideal power level, this precise power allocation maximizes

the efficiency of data transmission.

Power allocation is considered an essential method to raise the data rate and the energy
efficiency in the NOMA system, where various powers are assigned to the cell’s users
and combined on the same subcarrier at the same time (Yang, Hussein, Xu, Ding, & Wu,
2018). PA depends on various factors in NOMA such as the channel conditions, the
required QoS, total power restriction, and the system requirements. If power allocation is
performed inappropriately, then the users will have an unfair rate distribution and the
system outage will fail (Fang, Cheng, & Ding, 2019; Q. Wang, Zhang, Yang, & Hanzo,
2018; H. Zhang, Fang, et al., 2018; Zhu et al., 2017). Power allocation is evaluated by
different performance metrics such as the number of admitted users, the system fairness,
the total power consumption, the sum data rate, and the outage probability. In general,
power allocation in NOMA aims to achieve a higher number of admitted users and a
higher sum data rate or to achieve more fairness between users at a limited consumed
power (Nain, Das, & Chatterjee, 2018; H. Zhang, Fang, et al., 2018; Zheng, Liang, & Yu,
2018). The complexity of power allocation is a measure of the computational resources
needed to figure out the best power levels to assign to various users who share the same
time-frequency resources. With consideration for each user's channel conditions and
quality of service requirements, power allocation in NOMA seeks to optimize the overall
system performance. Several factors can impact this process's complexity such as the
number of users, QoS constraints, and interference management. In (Nain et al., 2018), a

low complexity method to remove users who do not fit with the derived condition is
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presented where the proposed power allocation scheme offers nearly equal cell
throughput and user fairness to the optimal scheme utilizing exhaustive user search. The
power allocation scheme has a closed-form solution, which reduces complexity, whereas
the suggested user selection method finds an efficient user set by verifying users through

basic conditions based on their SINR and weights.

There are studies done on a Single-Carrier (SC) (Chraiti, Ghrayeb, & Assi, 2018),
which is the focus of this study, while others considered Multi-Carrier (MC) (Al-Abbasi
& So,2017; M. S. Ali, Hossain, Al-Dweik, et al., 2018; Fu, Salaiin, Sung, & Chen, 2018;
Ni, Hao, Tran, & Qian, 2018; H. Zhang, Fang, et al., 2018). By allocating more power to
the weak user in SC systems, better fairness is accomplished as well as more balanced
system throughput could be achieved. This is because the strong user is capable of

handling the interference due to the weak user by using the SIC technique (Islam et al.,

2018).

Chraiti et al. (2018) proposed an efficient PA technique that does not require CSI at
the BS and applied it to two users Multi Input Single Output (MISO) downlink channels.
CSI refers to the information that characterizes the current state or condition of a
communication channel between a transmitter and a receiver. Instead of draining the
system bandwidth for feeding the BS with the CSI, the authors proposed a nonlinear
interference alignment technique to enable the BS to communicate with the users
simultaneously and keep the signals separated at their respective receivers. This technique
enables each user to detect its signal without any interference from the other user’s signal

while achieving better outage probability and data rate per user.

Perfect CSI is challenging to achieve because of channel estimation errors, feedback,
and quantization errors. It is requisite to search for novel solutions that address the
imperfect CSI in wireless communication systems (X. Song, Dong, Wang, Qin, & Han,

2019). Moreover, energy efficiency receives significant attention from both academia and
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industry researchers since the information and communication sector consumes 5% of the
total global energy consumption (Y. Zhang, Wang, Zheng, & Yang, 2017). Hence, many
researchers have concentrated on energy efficiency in the NOMA system (Shi et al., 2019;
Vien, Le, Barn, & Phan, 2016; H. Zhang, Wang, et al., 2018). An energy-efficient novel
power allocation algorithm is presented in (X. Song et al., 2019) where the optimization
problem is formulated based on imperfect CSI with outage probability constraints and
then it is relaxed to a non-probabilistic problem. The results obtained for a small cell of
one BS and 2 users showed that the performance of the proposed algorithm is better than

the conventional algorithms.

Optimizing the energy efficiency in the single input single output NOMA (SISO-
NOMA) system has been studied in (Y. Zhang et al., 2017) where the proposed power
allocation algorithm for 2 users in a single cell shows superior behavior compared to the
traditional algorithms. However, more investigation is still required on this algorithm in
the imperfect CSI case. Distance between the receiver and the BS has been used for power
allocation in (Glei & Chibani, 2019; Y. Zhang et al., 2017). On the other hand, joint
optimization algorithm has been proposed in (X. Chen, Jia, & Ng, 2019) where power
allocation is utilized to minimize the transmitted power which is required to attain the
minimum required rate. Optimizing energy efficiency for imperfect CSI case with two
secondary users is studied in (Arzykulov et al., 2019). Zamani et al. (2019) studied energy
efficiency optimization and proved that NOMA outperforms conventional OMA schemes

under low user’s quality of service constraint.

There have been a number of studies applying game theory in power allocation for the
NOMA systems. A Stackelberg game is used in (C. Li, Zhang, Li, & Qin, 2016) to model
the interaction between BS and multiple users in the cellular network where the BS acts
as a team leader and set the transmitted power price to each user to ensure maximum

revenue is achieved. In (Z. Wang, Wen, Fan, & Wan, 2018), a price-based PA algorithm
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based on Stackelberg game is presented for DL NOMA cellular system which shows
better performance in terms of BS revenue and sum data rate. Lamba, Kumar, and Sharma
(2019) proposes an auction-based mechanism to determine the allocated power by the BS
to each user in the DL NOMA system. Each user attempts to maximize the utility by
offering a price bid. The simulation results show an increase in the average sum rate of
the users compared to that in (Z. Wang et al., 2018). In (Zamani et al., 2019), a state of
high CSI error variance values was investigated and the results show that NOMA is
recommended for a special case of only two users to achieve the user data rate
requirement. The energy efficiency concerning various transmission power levels and
channel estimation error have been evaluated in (Zamani et al., 2019), and the proposed
algorithm performed better compared to OMA. However, the performance of the

proposed algorithm for high traffic should be considered.

2.3 Data Rate Optimization in NOMA-Based Systems

Figure 2.4 provides an overview of the data rate optimization challenges and solutions
in NOMA systems, highlighting key research contributions and optimization techniques.
It encompasses the complexities of non-convex optimization problems arising from
interference control, power allocation, and non-linear constraints, as well as the methods
used to address these challenges. The chart also reflects the advancements in throughput-
optimal scheduling, network utility maximization, hybrid relay-RIS systems, and game-
theory-based power allocation mechanisms, with an emphasis on overcoming the
limitations of traditional approaches and improving the applicability of NOMA systems

in real-world scenarios.

In NOMA systems, the challenge of optimizing the aggregate data rates of multiple
users sharing the same time-frequency resource blocks is known as the data rate
optimization problem. This problem is formulated as a non-convex optimization problem.

Efficient spectrum utilization is made possible by NOMA, which permits users to
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concurrently occupy the same resource at different power levels (Y. Song, Xu, Sun, &
Ai, 2023). Because the optimization problem is non-convex, it becomes more complex
and calls for specialized methods to solve. The inherent non-linearity brought about by
the interference control, power distribution, and possibly non-convex constraints make
the optimization problem non-convex where the power allocation variables for different
users and potentially non-linear power constraints contribute to the non-convexity and
the interference management aspect, which aims to minimize interference among users,
often leads to non-convex formulations due to the non-linear nature of interference terms
(Liesegang, Zappone, Muiioz, & Pascual-Iserte, 2023).

Optimizationin
NOMA Systems
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Figure 2.4: The hierarchical framework for data rate optimization in NOMA
systems

(Y. Chen, Zhu, Guo, Yuan, & Feng, 2023) contributes significantly to the field by
addressing the dual objectives of throughput-optimal scheduling and network utility
maximization in DL NOMA systems with flow-level dynamics. This study is pioneering
in investigating a DL NOMA system with flow-level dynamics, where both long-lived
and short-lived flows coexist. This is a significant departure from traditional models,
which often assume static traffic conditions. Although the proposed suboptimal algorithm
demonstrates practical applicability and strong performance, addressing the limitations
related to scalability, parameter dependence, and multi-subchannel allocation could

enhance its impact and utility further. The paper formulates an optimization problem that
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jointly addresses user selection and power allocation. It aims to maximize network utility
while ensuring throughput-optimality under QoS constraints. The proposed algorithm
successfully achieves throughput-optimal scheduling and network utility maximization,
addressing two critical challenges in wireless networks. The study restricts itself to a
single subchannel allocation per user. This constraint simplifies the problem but limits its
applicability to real-world networks with more dynamic and diverse requirements.
Moreover, the proposed model assumes perfect CSI and fixed QoS constraints, which
may not hold in practical deployment scenarios. Thus, incorporating mechanisms to
handle imperfect CSI and other uncertainties, makes the solution more practical for real-

world deployment.

Kan, Chang, Chien, Chen, and Poor (2023) present a significant step forward in the
design of hybrid relay—RIS systems, demonstrating their potential to enhance sum rate
and energy efficiency in next-generation wireless networks. The paper explores a hybrid
relay—RIS system integrating a half-duplex decode-and-forward (DF) relay and a full-
duplex RIS. This hybrid architecture leverages the strengths of both technologies, making
it a novel contribution to next-generation wireless networks. The simultaneous design of
active beamforming at the BS and DF relay, as well as passive beamforming at the RIS,
addresses the complexity of multiuser MISO systems and maximizes system
performance. The alternating optimization (AO)-based algorithm proposed in the paper
effectively tackles the non-convex joint optimization problem, ensuring a practical
solution. The gap here is assuming ideal conditions, such as perfect CSI and no hardware
impairments may limit its applicability in real-world scenarios. Thus, addressing practical
deployment challenges, full-duplex RIS limitations, and extending the energy efficiency

analysis would further strengthen the research and its applicability.

Maximization of the total cell data rate and fairness for N PD-NOMA users in Poisson

distribution BSs is the objective of the study in (K. S. Ali et al., 2019) where the authors
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applied two efficient algorithms to find the feasible resource allocation, namely; mean
signal power-based and instantaneous signal-to inter cell-interference-and-noise-ratio-
based. This maximization problem is subject to two constraints, which are the lower
boundary of throughput for each user and identical throughput for all users. The results
show that under a specific set of network parameters, there is an optimal number of served
users in the cell. In addition, the effect of choosing the network parameters and the
ordering technique on the data rate and fairness has been highlighted and the results show
the necessity of a critical level of SIC to outperform the OMA. Choi (2016) focuses on
the fairness in the DL NOMA system when power allocation is considered a key role in
achieving proportional fairness scheduling and providing multiple users with positive
transmission data rates simultaneously. The study shows that the required fairness could

be acquired by maximizing the minimum normalized rate.

Game theory has been applied in a wide range in NOMA systems’ power allocation.
For instance, a Stackelberg game is used in (C. Li et al., 2016) to model the interaction
between the BS and multiple users in the cellular network where the BS plays as the team
leader and sets the transmitted power price to each user to ensure that it gets the maximum
revenue. After that, as a secondary player in this game, each user chooses an optimal
power to maximize its utility. To solve this non-convex optimization problem, the authors
decoupled it into three optimization problems and then used an alternating optimization
algorithm to solve them. Although the results show outperforming of the proposed
algorithm over the uniform power allocation scheme, another price-based PA algorithm
based on the Stackelberg game is presented in (Z. Wang et al., 2018) for DL NOMA
cellular system which shows better performance in terms of BS revenue and sum data
rate. It presents a closed-form solution for two users’ cases when the total transmission
power could be allocated to either the strong user or both users. For the M -users case, an

iterative algorithm is proposed and the results show that the number of iterations to find
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the optimal solution is less than that in (C. Li et al., 2016). Lamba et al. (2019) propose
an auction-based mechanism to compute the allocated power by the BS to each user in
the DL NOMA system. Each user attempts to maximize his utility by putting in a price
bid. The authors prove theoretically the existence of Nash equilibrium of the given model

and the simulation results show an increase in the average sum rate of the users compared

to that in (Z. Wang et al., 2018).

A novel fast-learning machine-based extreme learning user cluster scheme is proposed
in (Kumaresan, Tan, & Ng, 2021). A faster learning rate is achieved because the input
weights and bias for the extreme learning machine hidden layer nodes are randomly
generated and do not require parameter tuning. The modified architecture functions in
NOMA environments, where it is possible to quickly predict the ideal cluster formation
depending on the channel gains and powers of the users. Extensive simulations show

better performance compared to the most advanced user cluster schemes.

However, all the above-mentioned studies aiming to achieve maximum EE and data
rate in practical wireless systems, while considering imperfect channel estimation, have
encountered significant challenges with one-stage algorithms. These approaches often
rely on simplistic assumptions and do not fully account for the complexities and
uncertainties inherent in real-world wireless environments (Mokhtari et al., 2019). The
presence of imperfect channel estimation can lead to inaccurate transmission decisions,
reducing the overall system performance and hindering the ability to achieve optimal EE
and data rate. In contrast, this thesis offers a compelling solution by incorporating a
multistage mechanism. Adaptively address the imperfections in channel estimation of the
communication process ensuring superior performance in real-world wireless systems
compared to traditional one-stage algorithms (L. Xu et al., 2022). Table 2.1 summarizes

the contributions, strengths, weaknesses, insights, suggestions for improvement, and the
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approaches used in each of the data rate optimization problems in the NOMA system’s

studies within this section.

Table 2.1 : Summary of literature review of data rate optimization problem in
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The hierarchical structure in Figure 2.5 organizes the complex topics in a logical flow,

focusing on methods, metrics, applications, and challenges. You can use this framework
for your diagrams or summaries to illustrate the relationships between techniques,
performance measures, and the challenges in applying NOMA-based EE and throughput

optimization in real-world networks.
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Figure 2.5: The hierarchical framework for EE optimization in NOMA systems

The EE optimization and throughput optimization problems in NOMA have been
studied under various constraints such as the total power, interference, and/or the
minimum QoS of the users. A code reuse scheme in the downlink MIMO-NOMA system

which separates active users into groups based on their channel quantity and inner
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interference is proposed in (Gkonis, Trakadas, & Sarakis, 2020). The transmitted data
correlation matrix is constructed at the transmitter using only the primary eigenvector and
eigenvalue of the corresponding correlation matrix as the input via feedback, deducted by
principal component analysis. The performance of this scheme is evaluated, in terms of
code assignment gain and bit error rate. The results show that employing the SIC
technique at the receivers can achieve an improvement over the conventional OMA. On
the other hand, the same SINR level is assumed for all users in (L. Chen, Hu, Xu, & Chen,
2021). Similarly, minimizing the total power consumption of the whole network under
the constraint of all users’ long-term rate requirements is assumed in (Zhai, Zhang, Cai,
Li, & Jiang, 2018). However, applications that require high QoS can drain network

resources (Ahn, Kim, Park, & Cho, 2021).

Y. Y. Guo, Tan, Gao, Yang, and Rui (2023) introduce a novel methodology for EE
optimization in cooperative non-orthogonal multiple access (CNOMA) networks using a
deep Monte Carlo Tree Search (MCTS) framework. This combination of artificial
intelligence (AI) and optimization represents a creative application in wireless networks.
The use of a "Go game" analogy to model the optimization problem provides a structured
and intuitive framework for joint user pairing, subchannel assignment, and power control.
The derivation of optimal closed-form expressions for power control provides a
foundational mathematical basis for the proposed optimization framework. The deep
MCTS approach combines neural networks and tree search for efficient exploration and
decision-making, which is particularly advantageous for large-scale problems with
complex constraints. The paper provides simulation results comparing the proposed
method with existing NOMA schemes, demonstrating its superiority in terms of energy
efficiency. The negligible computational overhead highlighted in the results strengthens
the practicality of the proposed approach for real-time systems. However, while

computational overhead is claimed to be negligible, the implementation of deep MCTS
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with neural networks may require significant resources, especially in training the neural
network with large datasets. The effectiveness of the approach in scenarios with a
significantly larger number of users and subchannels is not explicitly discussed. This
paper proposes a significant methodological advancement in CNOMA networks by
leveraging Al techniques for energy-efficient optimization. However, further work is
needed to address practical implementation challenges and validate the results in real-
world scenarios.

In (Y. Guo, Fang, Cai, & Ding, 2023), the use of a Deep Deterministic Policy Gradient
(DDPQG) algorithm for solving EE optimization problem is innovative. DDPG is well-
suited for continuous action spaces, making it an apt choice for this optimization problem.
In addition, the joint optimization of transmission beamforming at the base station and
simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS)
coefficient matrices represents a holistic approach to addressing the EE challenge, as both
components significantly impact network performance. The computational complexity of
the DDPG algorithm might increase significantly as the number of users, antennas, or
STAR-RIS elements grows. This scalability concern is not thoroughly addressed.
Moreover, similar to other deep reinforcement learning approaches, the performance of
DDPG is heavily dependent on the quality of training and hyper parameter tuning. The
paper does not discuss potential challenges in training the algorithm or mitigating issues
like overfitting. While the paper claims that the DDPG-based method outperforms
traditional approaches, it does not provide sufficient details about the benchmarks used
for comparison, making it difficult to assess the magnitude of improvement. This study
presents a significant contribution by leveraging STAR-RIS and DDPG for energy
efficiency optimization in NOMA -assisted networks. While the proposed solution shows
promise in simulation, addressing the highlighted weaknesses and incorporating real-

world validation would strengthen its impact and applicability.
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(Cao & Hou, 2023) addresses EE in the context of massive machine-type
communications (mMTC), which is a cornerstone of 5G and beyond. This focus on a
critical application is both timely and relevant. The discovery of a "hidden feature" in the
NOMA SIC process is a significant contribution. This feature simplifies the analytical
complexity of EE analysis in Carrier-sense multiple access (CSMA) NOMA networks.
The use of Markov chains and Q-function approximations to model the system is a robust
choice. These methods provide a solid foundation for deriving precise closed-form
expressions for EE. However, the models assume ideal conditions such as perfect SIC
and accurate Markov chain representations, which may not fully capture real-world
complexities like noise, interference, or imperfect channel conditions. While the paper
highlights the interactions among transmission probability, power, and data rate, it does
not provide a comprehensive sensitivity analysis to explore how variations in one
parameter influence the others. Moreover, although the approach ensures fast
convergence, the computational overhead for large-scale systems with numerous devices
is not discussed, leaving uncertainty about its practical implementation. Although this
paper makes a substantial contribution by simplifying the analytical complexity of EE
optimization in CSMA-NOMA networks and proposing an efficient optimization
framework, addressing the limitations through real-world validation and scalability

analysis would strengthen its impact and applicability in practical mMTC scenarios.

(Muhammed, Chen, Seid, Han, & Yu, 2023) introduces a novel framework combining
mmWave communications with NOMA in a two-tier heterogeneous network (HetNet)
comprising macro-cells and small cells connected via wireless backhaul. The integration
leverages the massive bandwidth of mmWave and the spectral efficiency of NOMA,
enabling efficient resource utilization. A unique user grouping algorithm simplifies
clustering by grouping highly correlated users, reducing inter-cluster interference. The

framework incorporates hybrid analog/digital precoding at the macro base station and
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jointly optimizes hybrid precoding, power allocation, and bandwidth partitioning to
maximize system EE. The authors transform the non-convex optimization problem into a
quasi-convex equivalent and propose an iterative algorithm for solution derivation.
Extensive simulations validate the framework, demonstrating significant performance
gains in EE and spectral efficiency compared to traditional OMA systems. Despite its
strengths, the study has limitations that impact its practicality. The assumption of perfect
CSI oversimplifies real-world scenarios where CSI estimation errors are prevalent,
particularly in mmWave environments with high mobility and frequent blockages.
Additionally, the impact of limited backhaul capacity on performance is not addressed,
potentially overlooking a critical bottleneck in practical deployments. While the hybrid
precoding approach is computationally efficient, the paper lacks a detailed analysis of its
hardware implementation feasibility, including cost and energy consumption.
Furthermore, the iterative algorithm may face scalability issues in dense network
scenarios with a high number of users and cells. Benchmarking against more advanced
NOMA and mmWave systems and accounting for dynamic factors like user mobility and

interference would provide a more comprehensive evaluation of the proposed framework.

The proposed framework in (Alajmi, Fayaz, Ahsan, & Nallanathan, 2023) strikes a
balance between centralized and distributed approaches, leveraging their respective
advantages while mitigating shortcomings such as high complexity and long convergence
times. The use of Proximal Policy Optimization (PPO) for grant-based clients and a multi-
agent deep Q-network (DQN) for grant-based clients reflects a well-thought-out approach
to tackling different optimization problems efficiently. These algorithms are suitable for
handling the complexity and dynamics of resource allocation in NOMA IoT networks.
The framework achieves notable improvements in energy efficiency: A 6% and 11.5%
increase for grant-based clients compared to fixed and random power allocation

strategies, respectively, and a 47.4% increase for GF clients over the benchmark scheme.
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The study includes an analysis of how an increase in the number of grant-based clients
affects the energy efficiency of both grant-based and GF clients, providing insights into
the system's scalability and interdependence. However, the findings are based solely on
numerical simulations, with no experimental validation or testing in real-world IoT
environments. This limits the practical applicability of the results. In addition, although
the framework demonstrates improvements over fixed and random power allocation
methods, it lacks a comprehensive comparison with other advanced state-of-the-art
algorithms for NOMA IoT networks and the simulations likely operate under idealized
conditions (e.g., perfect channel state information), which may not account for real-world
factors like channel estimation errors, interference, or hardware limitations. Thus,
addressing the highlighted weaknesses through real-world validation, scalability analysis,

and benchmarking would significantly enhance its impact and applicability.

Many prior works have studied power allocation in NOMA as the key role to optimize
EE in perfect CSI case (Khazali, Bozorgchenani, Tarchi, Shayesteh, & Kalbkhani, 2023;
G. Liu et al., 2018; Rezvani, Jorswieck, Joda, & Yanikomeroglu, 2022; J. Wang, Xu, Fan,
Zhu, & Zhou, 2018; H. Zhang, Fang, et al., 2018). In a real cellular system, it is a
challenge to obtain a full CSI at the BS because of the channel estimation error and the
quantization error (Fang, Zhang, Cheng, Roy, & Leung, 2017; X. Song et al., 2019;
Zamani et al., 2019). However, channel estimation errors in the imperfect CSI DL NOMA
system could cause user ordering ambiguities (Z. Ding et al., 2017). The pilot
transmission design for power-domain NOMA and the influence of the inaccurate
channel estimation on power-domain NOMA have been investigated in (Ma, Liang, Xu,
& Ping, 2017). Previous studies proved that NOMA technology has better performance
than OMA in the imperfect CSI case. Resource allocation has been investigated in (Z.
Wei, Ng, & Yuan, 2016) for multi-carrier NOMA depending on the available statistical

CSI at the transmitter. Moreover, partial CSI has been used in (Hou et al., 2020; P. Xu,
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Yuan, Ding, Dai, & Schober, 2016; Y. Xu, Cai, Ding, Shen, & Zhu, 2018) to determine
the order of the user equipment, where CSI feedback has been mainly considered a
potential improvement to support the BS in sorting user equipment. For example, one-bit
feedback from the user to the transmitter scheme is proposed in (P. Xu et al., 2016) to

indicate whether the sending bit is below or above a specific power level.

Nooh et al. (2024) present a significant advancement in reducing power consumption
and improving energy efficiency in 2-user NOMA downlink systems through an optimal
user pairing strategy and tackles the computationally challenging problem of joint user
pairing and power allocation in 2-user NOMA downlink systems, formulating it as a
mixed-integer programming problem aimed at minimizing power consumption. The
power minimization approach achieves an EE gain by a factor of 4.5 over OMA,
outperforming the sum-rate maximization approach, which achieves a gain of 2.4.
However, addressing the highlighted limitations, particularly in real-world scenarios and
multi-user configurations, would further enhance its applicability and impact since the
study focuses exclusively on 2-user NOMA systems, limiting its applicability to scenarios
with larger or more dynamic user groupings, such as multi-user NOMA or heterogeneous
IoT networks. The analysis relies on idealized assumptions, such as perfect CSI and a
specific propagation model. Real-world factors like imperfect CSI or interference are not

considered.

In (Zamani et al., 2019), the impact of the CSI error levels on the system performance
was investigated and the energy efficiency at various transmission power levels and the
channel estimation error were evaluated. Results show that the system performance has
been improved compared to OMA. Thus, NOMA is recommended for only two users in
the cluster to achieve the user’s required data rate. The probabilistic problem is converted
to a non-probabilistic version in (X. Song et al., 2019) to maximize EE in imperfect CSI

DL NOMA system under outage probability constraints. Since outage probability is one
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of the maximization problem constraints in (X. Song et al., 2019), the number of served
equipment in the cell has to be evaluated. A simple suboptimal user device scheduling
mechanism is presented to maximize the system EE and a closed-form formula of the
assigned power for two or more users is derived in (Fang et al., 2017). Q. Zhao, Yang,
and Zhang (2022) presented how NOMA technology can allow multiple kinds of mine
smart devices to share subchannel resources for data transmission, thereby enhancing the
Mine Internet of Things (MIoT) system's spectrum utilization and device access, realizing
the state perception and information interaction by connecting massive smart sensing
devices deployed in mine. Through power and subchannel assignment, the energy
efficiency of small cell networks is maximized. An iterative algorithm for joint power
allocation and subchannel assignment is proposed under the imperfect CSI. First, the EE
optimization problem is formulated as a mixed integer nonlinear fractional programming
problem by taking into account the cross-layer interference power constraints, maximum
power constraints, and QoS constraints. Second, the original problem is converted into an
equivalent convex optimization form by applying an elliptical uncertainty set to represent

the uncertain CSI.

Tackling the optimization problem becomes more challenging and complicated
especially when dealing with a massive number of users in the beyond 5G and 6G
networks. Solving the non-convex EE maximization by traditional approaches suffers
from poor resource utilization while some advanced techniques that involve fractional
programming and sequential convex optimization or heuristic algorithms target are
unable to find effective solutions to large-scale wireless networks because of the
complexity of the wireless communication systems (Spantideas et al., 2021). This has
motivated the use of Al-based methods to satisfy these massive wireless connectivity
requirements and solve power allocation and subchannel problems in the mmWave

systems. Machine Learning techniques can provide new ideas for intelligent energy-
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efficient algorithms in wireless networks due to the fast adapting to environmental
changes (Q. Ding, Zhu, Liu, & Ma, 2021). R. Liu et al. (2020) adopted the machine
learning approach to decide the best user association in the mmWave NOMA system that
maximizes EE. To maximize the EE under the constraints of QoS, interference, and
transmission power in (H. Zhang, Zhang, Long, & Karagiannidis, 2020), the authors
propose a machine learning framework to deal with the user association, subchannel and
power allocation problems in the NOMA mmWave heterogeneous networks to meet the
various requirements of users in different applications. Deep learning trained by GA is
proposed in (Pan, Yang, & Li, 2021) to make benefits of the advantages of deep learning
and genetic algorithm where combining GA with deep learning significantly reduces the
computation time of complicated optimization problems in various scenarios. Moreover,
the combined algorithm is advisable for solving complicated optimization problems and

problems with high required timeliness.

Forming clusters for different channel gain users in mmWave NOMA system is one
of the aspects of achieving a good performance in NOMA. However, an excessive
overhead is required to enable the BS to the users’ state information to form the clusters
and allocate the power to each cluster’s member to improve the system performance
(Celik, Tsai, Radaydeh, Al-Qahtani, & Alouini, 2019). In (K. Wang et al., 2019),
Stackelberg game-based algorithm is proposed to design the user clustering and power
allocation that maximizes the sum rate of the mmWave-NOMA system where the CSI of
all cluster users is assumed to be perfectly known at the BS. More approaches are required
to optimize the EE of the mmWave-NOMA system with a massive number of users

considering the imperfection in the channel state.

However, the CSI imperfection effect on optimizing the EE in NOMA systems has
been not addressed (Glei & Chibani, 2019; G. Liu et al., 2018; J. Wang et al., 2018; H.

Zhang, Fang, et al., 2018). The channel estimation error and the quantization error are
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among the possible causes of imperfect CSI at the BS in the real wireless system (Fang

et al., 2017) and this leads to user ordering ambiguities (Z. Ding et al., 2017).

In (Asif et al., 2023), the EE maximization problem was reformulated as several sub-
problems, and an iterative method was used to find the optimal solutions that optimize
the transmit power of the BS and power allocation coefficients under the imperfect SIC
decoding at the receiver. The proposed algorithm shows an improvement in the system
EE in perfect CSI condition. The probabilistic problem is converted to a non-probabilistic
version in (X. Song et al., 2019) to maximize EE in imperfect CSI DL NOMA system
under outage probability constraints. Since outage probability is one of the maximization
problem constraints in (X. Song et al., 2019), the number of the served devices in the cell
has to be evaluated. Similarly, Qiu, Gao, Chen, and Tu (2022) proposed an energy-
efficient rate allocation algorithm to minimize the energy in NOMA -assisted mobile edge
computing under latency and outage constraints when only statistical channel state
information is available. An iterative water-filling-based rate allocation algorithm is
utilized to solve the EE problem. However, the effect of the channel estimation error
existence on the EE, the data rate, and the outage probability need to be investigated when

these algorithms are implemented.

Previous studies proposed schemes to handle the imperfection of CSI to improve the
performance of the NOMA system. In this context, pilot transmission design for power-
domain NOMA and the influence of the inaccurate channel estimation on power-domain
NOMA have been investigated in (Klimentyev & Sergienko, 2016; Ma et al., 2017). The
key findings show the advantages of NOMA in scenarios with imperfect channel
estimation. Thus, NOMA is a promising multiple-access technique for future wireless
communication systems, particularly in real-world environments with challenging
channel conditions. Thus, improving the EE in an imperfect CSI DL NOMA system is

still an open issue and needs deeper investigation. Table 2.2 summarizes the
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contributions, strengths, weaknesses, insights, suggestions for improvement, and the
approaches used in each of the data rate optimization problems in NOMA system’s

studies within this section.

Table 2.2: Summary of literature review of energy efficiency optimization
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CHAPTER 3: METHODOLOGY

This chapter is structured to address the core objectives of the research and provide a
logical progression from theoretical frameworks to practical implementation. This
chapter is organized into four sub-sections, each detailing a critical aspect of the proposed
approach for optimizing energy-efficient power allocation in NOMA systems. By
leveraging game theory and genetic algorithms, the methodology systematically tackles
challenges related to resource allocation, data rate maximization, and energy efficiency
in both perfect and imperfect CSI scenarios. Each sub-section builds upon the insights
and outcomes of the preceding one, creating a cohesive narrative that aligns with the

overall research objectives.

3.1 Game-Theoretic Power Allocation (GTPA) Algorithm for Downlink

NOMA System

This section lays the groundwork for the proposed methodology by introducing the
application of game theory in optimizing power allocation. The focus is on modeling
resource distribution as a strategic interaction among users, ensuring fairness and
efficiency in allocation. The insights gained from this analysis form the basis for
addressing more complex scenarios, including imperfect CSI and advanced optimization

strategies discussed in subsequent sections.

A field of mathematics called "game theory" examines how rational decision-makers
interact with one another. It was created to simulate strategic interactions and has
applications in computer science, biology, and even economics and political science. This
paper explores the basic ideas of game theory, including its criteria, rules, and proofs that
influence choices made in competitive situations. The core idea of game theory is that
players make choices based on what other people do. Information, players, strategies, and

payoffs are among the essential components (Fei et al., 2021). The foundation for
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comprehending strategic interactions is the interaction of these components. In most game

theories, there are two or more players, each of whom can employ a variety of strategies.

Gamers make decisions based on the tactics that other players have selected. A payoff
matrix shows the game's results for every combination of strategies. The utility or
satisfaction that each player obtains from their chosen strategies is reflected in the
payouts. Game theory can be represented in two ways: normally (a matrix) or extensively
(a tree). The extended form captures sequential decision-making, while the normal form
simplifies games with simultaneous moves (Tim, 2020). A key idea in game theory, the
Nash Equilibrium is a collection of strategies in which no player has a reason to
unilaterally change their preferred course of action. It symbolizes a steady state in which
every player's plan is the best one in light of the other players' choices. The games are
classified mainly into two types: zero-sum games and cooperative games. In zero-sum
Games games, the victory of one player equals the defeat of another such as Chess and
poker. On the other hand, participants can establish legally binding coalitions and
agreements and the joint payoff distribution is the main topic of interest in cooperative
games (Jinho, 2022). In many different domains, game theory is an effective tool for
comprehending strategic decision-making. It offers a framework for examining

interactions and making predictions thanks to its criteria, proofs, and rules.

In this thesis, a new power allocation mechanism is proposed that can allocate power
to the users in fewer simple steps than (Lamba et al., 2019; Z. Wang et al., 2018) which
makes the proposed model simpler. Also, most of the previous studies focus on
maximizing the BS revenue (Lamba et al., 2019; Z. Wang et al., 2018), while in the
proposed power allocation algorithm studied here, the sum data rate will be maximized
by maximizing the utility function of the served users as players in a Glicksberg game.
Besides, the SIC condition is also considered here. In this study, a price-based utility

function of the user is proposed and its convexity is proven. Then, the effectiveness of

45



the proposed utility function is also proven. Subsequently, a new Glicksberg game-
theoretic model is proposed to distribute the power in the DL NOMA cellular network.
The existence and the uniqueness of the Nash equilibrium of the proposed model are
proven. Moreover, a mathematical expression of power price is derived. The proposed
algorithm outperforms the algorithm proposed in (Lamba et al., 2019; Z. Wang et al.,
2018) in terms of sum data rate and average data rate of users. The following subsection

describes the system model for the proposed game-theoretic power allocation algorithm..

3.1.1 System Model

A cellular DL NOMA transmission system is considered, which is equipped with a set
of M user equipment (UE), m = {1, 2, ..., M} which is being served by the BS on the same
channel is considered. Here, the BS and all UEs are equipped with a single antenna. The
BS in the NOMA system uses superposition coding techniques to serve multiple users
simultaneously. The received signal at the m-th UE terminal is given by

Ym(t) = hpx(t) + n,, (3.1)
where /m is the m-th channel gain from the BS to the m-th user, 7 is the additive white
Gaussian noise (AWGN) at the m-th UE, n,, rrepresents a complex Gaussian distribution
noise CN(0,0%) and x(t) is the superposed transmitted signal by the BS that could be

expressed as

M
x() = ) \TmPrtm(®) (3.2)
m=1

where x,(?) 1s the individual OFDM signal, P; is the total transmitted power from the BS

and ¢, 1s the power coefficient allocated to the m-th UE, where it satisfies

M
Zal- -1, (3.3)

=1
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The SIC technique will be used to exclude interference from other users who
multiplexed on the same bandwidth. The nearest UE to the BS, with the strongest channel
hur, 18 defined as UEm while the farthest user, with the weakest channel 4, is noted as
UE:. Thus, the BS transmits M different signals over the same frequency resource while
every user receives the desired signal combined with the interferences due to the other
users’ signals on the same radio signal (M. S. Ali, Tabassum, & Hossain, 2016). It is
assumed that the users are being sorted according to their channels’ strengths, such as
|Am| = |hy—1| = ... = |hy| = |hyq|. Thus, a user with a higher order (stronger channel)
can decode the lower order users’ signals before decoding its desired signal. Thus, the

SINR at the m-th user can be expressed as

Pyl hpy?
SINRm=|hm|Z P er (3.4)

i=m+1

where P, is the allocated power to the m-th user, and the summation term in the
denominator represents the remaining undesired signals from the users with stronger
channels (higher order than m). The allocated power for any user P, should be greater
than the allocated power for the next user in the sequence (P, = P,,41). This indicates
the importance of different power levels for the multiplexed signals to decode the desired
signal and therefore maximize the data rate (M. S. Ali, Hossain, Al-Dweik, et al., 2018).
The achieved data rate of the m-th user is given by

P |hy,|?
T ). (3.5)

i=m+1Pi

R,, =log,(1 +

It is worth noting that fairness among users in the NOMA system is not the focus of
this study. Since PA plays a vital role in maximizing the sum data rate, Rqu» in the cell,

this study focuses on the maximization of Ry, in the DL NOMA system. Ry per each 1
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Hz spectrum, of a BS serving M multiplexed users on the same bandwidth can be defined

as

Pl |?
02+ hm|2 XM P

Roym = Z%—ﬂogz(l + (3' 6)

Assuming the total transmission power of the BS is limited to P, the maximization

problem could be formulated as

M

B lhm|?
max R = lo 1+
P T L 52 ( s [ Ly
M
subject to Z P, <P,
i=1
VP;>0 (3.7)
The
3.1.2 Game-Theory and Power Allocation
It can be seen from Equation V Pi> 0 (3.7) that this is a

non-convex optimization problem. The number of served users and their allocated power
should be determined carefully to ensure the QoS of the cellular systems. Furthermore,
the difference in the allocated power levels should be compatible with SIC conditions so
that each receiver would be able to extract the desired signal (M. S. Ali et al., 2016). The

user utility function, U,, is defined as

P2 P u
U,=——2= —BPm=—"_|(42 4 |h_|2 Z P; | — BPm 3.8

i=m+1

where B is the price of the allocated power P, collected by the BS. It describes the
behavior of the player and sets the strategy for each user in the game. Based on
(3.8Error! Reference source not found., an increase in the allocated power to the user

will raise its SINR, but at the same time will cause more interference on the higher order

48



users. Therefore, higher power will be needed to maintain the required SINR. Thus, the
proposed Un, reflects the idea of the utility function, in which the positive effect (benefit)
is represented by the SINR of the user while the second term (BP”’ ) represents the

negative side (detriment) of increasing the allocated power to the m-th user.

The increase in P, will cause a rise in U,, until a maximum point, and then the negative

effect of the price will lead to a decrease in the utility function. Figure 3.1 illustrates the

effect of increasing P on this utility function and its effect on the SINR.
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Figure 3.1: Comparison between the effect of Pm on Um and SINRny,

Lemma 1: U, given in Equation (3.8Error! Reference source not found. is effective
and restrictive.

Proof. U is considered an effective utility function if an increase in the allocated

power to any user causes an increase in the utility value. On the other hand, it is restrictive

if the allocated power beyond a threshold value causes a decrease in the utility value. In
other words, restrictiveness ensures that the strategy adopted by the user to set its
allocated power will be limited to control the interference on other users. The

effectiveness and restrictiveness features of the utility function could be ensured by
satisfying the following condition:
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9%u,,
aP2,

<0 (3.9)

From Equation (3.8Error! Reference source not found., this condition is satisfied

since

a%U

__m_ __pPp 2
P2, B'm(InB)* <0 (3.10)

Glicksberg game is proposed to solve the optimization problem discussed earlier. The
selection of the Glicksberg game in the proposed method to ensure the existence of a Nash
equilibrium, which is crucial for achieving stable and efficient power allocation in a
game-theoretic context. The Glicksberg game allows users (players) to iteratively adjust
their strategies to maximize their utility, ensuring that the total power allocation is
optimized while maintaining fairness and satisfying SINR constraints. This method is
particularly suitable because it guarantees that each user’s strategy is optimal given the
strategies of others, leading to a stable and efficient outcome. Compared to existing
studies such as (J. Huang, Huang, Xing, & Qian, 2018), the main difference lies in the
use of a more structured utility function and a clear derivation of Nash equilibrium
conditions, which enhances the model’s stability. While both methods use game theory,
the proposed method’s focus on utility and price dynamics introduces additional
complexities in the implementation, not seen in simpler versions. Therefore, it is not a
direct adaptation but rather an extension that refines the game-theoretic approach for
better network optimization. The strongest user reveals its required SINR, and then the
power price and the number of users will depend on the total transmission power, based
on the required SINRwm. Secondly, all players (users) set their power to maximize the total
users’ utility function. Proof of the existence of Nash equilibrium for the proposed power

allocation algorithm is shown below.
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Theorem 1: The proposed game theoretic power allocation model satisfies Nash

equilibrium.

Proof: The allocated power to each user is limited to P; = 0 . Thus, the strategy space
of the downlink is nonempty, compact, and convex. Also, the utility function, Un in
Equation (3.8) is continuous. In addition, for any BS-user link, Equation (3.10) is verified.
This implies that Uy, 1s quasi-concave with respect to P,,. The allocated power among the
users in a cellular system is limited to the total power of the BS, such that ¥, P; < P,.

Thus, the number of users is finite.
This completes the proof.

ZUm
aPLOPJ

0%Um,

> yM
P,

= Lizj

Theorem 2: If | for any user, the Nash equilibrium is unique.

Proof: The best response function for any user could be determined by solving the first

derivative equation:

au,,

Thus, the optimal allocated power that maximizes the utility function of the m-th user

is given by
o+ |h,* XM .. P;
P, = (InB)~1 m_—iomil 3.12
Also, from the proposed utility function U,
‘ 92U —BPm(InB)* j=i
m
= 1 j>i (3.13)
Using Equation (3.13), the Hessian matrix for M users can be represented as
[-BP1(inB)%1 1|
H= 0 1 1 . (3.14)
: 0 —BPv-1(InB)? 1
0 0 —BPm(InB)?
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The best response function must be contractive to guarantee a unique Nash

equilibrium. Thus,

M
*U,, a*u,,
—_ > -
[£9]

In the proposed game theoretic model, the PA aims to maximize Y./, U,,. Based on
Equation (3.15), the following equalities can be obtained

BPm(InB)2 >M —m (3.16)

BPM(InB)? > 0

ld
yie S{B>1 (3.17)

Py=>0

It can be seen that Equation (3.16) corresponds to the requirement of the SIC principle.
Moreover, Equation (3.17) represents the negative effect of the utility function. The
crucial step in PA mechanism is to determine the power price, B. To derive B, the
allocated power to the M-th user based on the required SINR needs to be determined,

which is given by

Py + z P, <P, (3.18)

Substituting Equation (3.16) into Equation (3.18),

M-1 ]1n

Py + Z ((I"B)Z) <P, (3.19)

Thus, Equation (3.19) could be re-written as

In(M—-1)!—-2(M — 1)In(InB)
< P,.
mt InB =P

(3.20)

This shows the relation between power price and the number of served users in the
cell. Once M and B are determined, the minimum allocated power to each user is
determined according to Equation (3.16). Then, Equation (3.12) is used to find the optimal
allocated power that maximizes U,. The leader reveals its required SINR, and thus, the

power price and the number of possible served users are determined depending on the
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limited total transmission power. Then, power is assigned to each user to maximize the
overall cell utility function. The flowchart in Figure 3.2 illustrates the steps of the Game-
theoretic power allocation algorithm. It simplifies the complex process into clear,

sequential steps, making it easier to understand and follow the algorithm effectively.

Figure 3.2: Game-theoretic power allocation algorithm flowchart.
Ignoring fairness in the design of the proposed method can lead to significant issues
such as unequal resource allocation, where some users receive excessive power, resulting
in high data rates, while others suffer poor service. This imbalance can degrade user
experience, violate QoS requirements, and cause instability in the network, as users adjust
their power allocations to maximize personal utility, leading to interference and
inefficient resource usage. Moreover, it could create economic disparities, with some

users generating higher revenue for the base station than others. Overall, neglecting
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fairness undermines network efficiency, user satisfaction, and regulatory compliance,
potentially destabilizing the system and reducing its overall performance.

Maximizing the sum data rate instead of the BS's revenue prioritizes system efficiency,
user satisfaction, and overall throughput. While this leads to better user performance and
fairness, it may not align with the BS's financial goals. Balancing the need for revenue
generation with data rate optimization is essential for designing a sustainable business
model for cellular networks. In practice, a hybrid approach that optimizes both revenue
and data rate while managing user interference and satisfaction would be more practical

in achieving a balance between performance and profit.

The practicality of the proposed GTPA algorithm lies in its ability to model the
dynamic interactions between users and the BS, ensuring that the system remains efficient
even under varying network conditions. However, one of the main challenges in applying
game-theoretic approaches in real-time cellular systems is the high computational
complexity, especially when the network conditions are constantly changing due to
factors like user mobility, varying traffic loads, and interference. These factors require
the system to re-compute the optimal power allocation regularly, which can result in
significant computational overhead. To address this challenge, the proposed method
likely includes mechanisms for simplifying the computation, such as approximating the
Nash equilibrium or using iterative algorithms that converge quickly. For example, using
a distributed approach where each user only updates its power allocation based on local
information could reduce the computational burden on the BS and speed up convergence.
Furthermore, the method could incorporate adaptive strategies, allowing it to adjust the
frequency of power updates based on the rate of change in network conditions, thus
balancing between computational efficiency and system performance. Additionally,
while game-theoretic models can be computationally expensive, advances in hardware

and software, such as parallel processing and machine learning optimization techniques,
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can make the implementation more feasible in practical scenarios. These methods could
be further refined to limit the number of iterations or to use approximations that maintain
system stability without the need for exhaustive computations. As the network conditions
change, a real-time adjustment of the power allocation could be carried out in a way that
does not significantly disrupt ongoing communication, ensuring that the BS can react

quickly while maintaining overall system fairness and performance.

3.2 Energy-Efficient Power Allocation for Imperfect CSI DL NOMA

System

Building on the game-theoretic approach, this section expands the methodology to
consider the challenges posed by imperfect CSI. The proposed algorithm integrates error
modeling and robustness analysis to ensure reliable performance under realistic
conditions. This section bridges the gap between theoretical constructs and practical

challenges, setting the stage for leveraging genetic algorithms in more dynamic scenarios.

The main goals and approaches of energy-efficient PA algorithms for maximizing EE
and game-theoretical PA algorithms for maximizing data rate differ significantly. When
utilizing game theory to maximize data rates, user-centric strategies are the main focus.
This can lead to a competitive environment where users try to maximize their own data
rates without necessarily taking the efficiency of the system as a whole into account. On
the other hand, a comprehensive strategy is given priority by an energy-efficient power
allocation algorithm, which seeks to maximize the total EE of the communication system.
These algorithms take into account striking a balance between obtaining acceptable data
rates and reducing power consumption, promoting user cooperation, and a
communication network that is more globally optimized, environmentally friendly, and

sustainable. While energy-efficient power allocation tackles the larger issue of resource
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utilization and environmental impact in the pursuit of sustainable telecommunications,

data rate maximization emphasizes individual gains.

In communications networks, EE is crucial for several strong reasons. Above all, the
effects of these systems on the environment are enormous, especially considering how
frequently data centers and mobile networks are used. In keeping with international
efforts to mitigate climate change, energy-efficient practices greatly lower the carbon
footprint of telecommunications operations. EE, above and beyond environmental
concerns, is essential to the long-term financial viability of telecom networks. Operators
can save significant operating expenses, improve network reliability, and guarantee
continuous service, particularly in times of emergency, by optimizing their energy
consumption. Adopting energy-efficient technologies also becomes a catalyst for
innovation as technology continues to change the sector, guaranteeing that telecom
networks will continue to be both commercially and environmentally sustainable in the
future. Energy efficiency receives significant attention from both academia and industry
researchers since the information and communication sector consumes 5% of the total
global energy consumption (Y. Zhang et al., 2017). Hence, energy efficiency is crucial in

NOMA systems.

In this study, a simple PA algorithm among M users is proposed for a DL NOMA
system with imperfect CSI where the allocated power to each channel in the cell depends
on channel strength. The performance of the proposed algorithm in a single cell is
investigated in terms of EE and outage probability and compared with the conventional
OMA. The following subsection describes the system model of the proposed PA

algorithm to maximize EE.
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3.2.1 System Model

A single cellular cell of the DL NOMA system with M users’ equipment (UEs), which
share the same resources is considered. Here, the transmitter and each UE are provided
by a single antenna, and superposition coding techniques are used to serve all users at the

same time. The received signal at UE, is defined as,
Ym(@®) = (b, + ep)x(t) +n,,, me{l,2, .. M} (3.21),

where /., is the channel gain from the BS to UEn, e; is the channel estimation error,
nw~CN(0,6%) represents the AWGN at UEm, and x(?) is the transmitted signal from BS

which is given as

M
x(b) = z JanPox(t), (3.22)
m=1

where x,(2) is the individual OFDM signal, P; is the total BS’s transmission power, and

a,, 1s the power coefficient of UEw, which verifies:

M
Z = 1. (3.23)

M different signals are combined on the same carrier, transmitted by the BS, and then,
are received by all users (M. S. Ali et al., 2016). These users have been ordered depending
on their channels’ strength such that |hy | = |hy_1| = ... = |hy| = |hq|. The closest user
to BS is denoted as UEwm and the farther user, which has the weakest channel hy, is denoted
as UE;. The SIC technique could be utilized to extract a specific signal from superposed
signals on a single carrier. Thus, a higher-order user can decode signals of the lower-order

users before decoding its signal. The system model is shown in Figure 3.3.
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Practically, it is a challenge to obtain perfect CSI. Thus, an error in the channel
estimation is considered as shown in Equation (3.21). To implement the SIC method in
the NOMA system at the receivers, the allocated power to every user has to be less than
the allocated power to the farther user within the cell (B,, = P,,41) (M. S. Ali, Hossain,

Al-Dweik, et al., 2018). In this case, the SINR at UEn, is expressed as

Figure 3.3: DL NOMA cellular system

SINR,, = o~ P’"lh’"lzz — > (3.24)
|Aom| izm+1 Pi t 0 2iz1Pi + 0

M
where P, is the allocated power to UEn, ZR represents undesired signals from the

i=m+l1
higher-order users, and ¢ *represents the power fraction due to the channel estimation

error. Thus, the data rate of UEy, is defined as

Py |hy |? )
(3.25)

R,, =log <1+
" g || XM 1 Pi+ 623X P, + o2

i=m+

The total data rate, Rq.» of a cell of a single BS that serves M multiplexed users on the

same carrier is expressed as

M
R, = Z R, (3.26)
m=1
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The system’s EE is defined as the total data rate (throughput) to the total consumption

power ratio, which is expressed as

Rsum

P, + P,

EE =

Pyl |?

YM_lo <1+ >
_ m=17082 || X1 Pi + 0230, Py + 02
= m , (3.27)
l=1Pl +PC

where P, is the BS’s dissipated power in the operation circuit.

The objective of this study is to maximize the system’s EE under a restriction of limited
total consumption power. To implement SIC for extracting the desired signals at the
receivers, the allocated power to the users should be ordered according to their channels'

strength (M. S. Ali et al., 2016). Hence, the problem could be formulated as

R
max EE = —&
Pp P, + P,
M

subject to z P, <P,

i=1

VP, =0
Pm < Pm+1 (3-28)
It can be seen from Equation (3.28) that maximizing EE requires maximizing the sum

rate at a certain power consumption level.

3.2.2 Energy-Efficient Power Allocation Algorithm

The flowchart in Figure 3.4 illustrates the steps of the Energy-efficient power
allocation algorithm. It simplifies the complex process into clear, sequential steps, making

it easier to understand and follow the algorithm effectively.
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Figure 3.4: Energy-efficient power allocation algorithm flowchart

In the DL NOMA system, a higher power level should be set to the weaker user and a
lower power level will be allocated to the strongest user. Based on this fact, a PA
algorithm for the NOMA system in the imperfect CSI case is proposed. For simplicity,
the channel estimation error is assumed to be constant for all users in the cell. The
allocated power P, to the m—th user is inversely proportional to the channel strength as

follows

BP,

P,=—-7,
" |hm|2+0h

(3.29)

where S is the power factor which has to guarantee that Equation (3.23) is verified. Hence

-1

o1
= —_— 3.30
F [Z |hi|? + o}, (:30)
i=1
By substituting Equation (3.30) in Equation (3.29), P, can be re-written as
P,
P, (3.31)

= 1 )
2 M
(Il + 03) 2 (2 3 57

From Equation (3.31), the allocated power to a user will decrease when the user’s

number rises. This will affect the SINR of the user at the cell edge and consequently, the
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coverage of the BS will degrade. The proposed algorithm has been summarized in

Algorithm 1.

Algorithm 1: Energy Efficient Power Allocation Algorithm of Imperfect CSI DL NOMA
System

1: Initiate /=M,
2.Determine £ based on Equation (3.30),
3. For m=1:/, do:
3.1 Evaluate the allocated power Py, based on Equation (3.31),
3.2 Evaluate SINRy, based on Equation (3.24)
4. If SINRy,<threshold level
4.11=l-1
4.2 Repeat steps 2 to 4
5. End If

6. End For

One important outcome of this approach is that it guarantees fairness in power
distribution since weaker users get more power, which helps meet the required SINR for
each user. However, as the user number increases, the allocated power for each user
decreases, which could lead to coverage degradation, especially for users at the cell's
edge. The algorithm dynamically adjusts the number of users served based on their SINR,
ensuring that the SINR threshold is met while maintaining energy efficiency. Thus, this
method is important because it provides an energy-efficient solution for power allocation
under the assumption of perfect CSI, allowing for optimal system performance and power
distribution across users. The downside is that this assumes perfect knowledge of the
channel, which may not be feasible in practical systems due to the challenges of obtaining
perfect CSI in real-world environments. This limitation should be addressed in future

work focusing on imperfect CSI.
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3.3 Genetic Algorithm for Optimizing Energy Efficiency in Downlink

mmWave NOMA System with Imperfect CSI

To address the limitations of traditional methods in dynamic environments, this section
introduces GA as an advanced optimization tool. The GA-based framework enhances the
adaptability and performance of power allocation mechanisms, especially under multi-
user and multi-cell scenarios. The results from this section are core of the finding of this
study, where optimizing EE in imperfect CSI NOMA system is a main objective, while

GTPA aims to achieve the maximum data rate in the NOMA system.

This study focuses on user clustering to maximize the EE in the DL mmWave NOMA
imperfect CSI system subjected to the asymmetric users’ data rate requirement using one
of the Al methods, which is a genetic algorithm for light traffic and heavy traffic cases.
GA are selected to solve the non-convex problem in the proposed method due to their
ability to efficiently navigate complex solution spaces with multiple local optima, which
1s a common characteristic of non-convex problems like PA in NOMA systems. Unlike
traditional gradient-based methods that require differentiable objective functions and can
be prone to getting stuck in local optima, GA uses a population-based approach that
explores multiple solutions simultaneously, increasing the chances of finding a global
optimum. Additionally, GA does not rely on initial guesses, making it more robust and
adaptable to large, complex problems with many variables and constraints, such as power
limits, SINR requirements, and fairness considerations in resource management. Its
flexibility in handling non-smooth objective functions and the ability to incorporate
multiple constraints make GA a practical and effective choice for optimizing resource

allocation in NOMA systems.

In the field of artificial intelligence, GA has arisen as a powerful tool to solve the non-
convex optimization problem to determine the minimum solutions when the level of

quality of service is constrained and the resources are limited especially when no full
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information about the users’ states is available. In this study, firstly, the EE optimization
problem for the DL mmWave NOMA system with user clustering under total power and
specific required SINR for each user depending on the users’ application is formulated.
Then, the role that PA can play in maximizing the EE in DL mmWave NOMA system
with clustering where the users’ applications impose asymmetric SINR requirements is
Investigated. For this purpose, the EE of a two-member cluster system is evaluated at
asymmetric users’ requirements scenarios where the cell-edge user and the nearby BS
user require different data rates. Next, a mixed-integer GA problem is converted to an
integer GA problem for solving EE optimization problems by determining the best
clusters. The performance of the proposed GA and its convergence is evaluated in the
case of light traffic and heavy traffic. The performance of the proposed GA is compared
with the optimal solution and the conventional OMA at different users’ SINR
requirements scenarios. The impact of estimation error in CSI at BS on the system
performance is evaluated based on the proposed GA and the optimal NOMA. Table 3.1
shows the list of parameters of the NOMA mmWave system model that is described in

the following subsection.

Table 3.1: List of parameters

Notation Parameters
02, The beam width of the mmWave BS b t0 user m
e The boresight angle from mmWave BS b to user m
yL The spatial angle from user m to mmWave BS b
b The gain of the directivity between the beam from mmWave BS b to
gm user m and the beam from device m to mmWave BS b
0 The beam width of the user m to mmWave BS b
1) The boresight angle from device m to mmWave BS b
Vo The spatial angle from mmWave BS b to user m
+«  The gain of the directivity between the beam from user m to mmWave
gm BS b and the beam from mmWave BS b to user m
I The gain of the channel linked the user m to the mmWave BS b
€ Side lobe
h, The complete representation of the channel between BS b and user m
Dm The allocated power to the user m from the mmWave BS b

63



3.3.1 System Model

A single-cell cellular NOMA mmWave system is considered as illustrated in Figure
3.5, which includes the beamforming-based directional links (L. Li, Ota, Dong, &
Verikoukis, 2018; R. Liu et al., 2020). The central BS is equipped with multiple antennas
whereas each user is equipped with a single antenna. Without losing generality, the users
are assumed to be uniformly allocated (R. Liu et al., 2020). The set of users within the
cell boundary is M ={1,2,3,..., M}. The set of the clusters is denoted as C =
{1,2,3,...,C}, where one subchannel is dedicated for each cluster. The user association

state between every user and BS is represented by XM*Bmatrix as follows:

X =

X110 X1B
: P ] (3.32)

Xm1 °°° XMmB

where x,, , = 1 when the user m is a member of cluster b, and x,, , = 0 when it is not.
Due to the complexity of SIC decoding, it is assumed that each cluster can support two

members simultaneously on one subchannel (Xie, 2019).

Figure 3.5: The proposed DL mmWave NOMA system.
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The gain of the directivity between the beam from mmWave BS to user m and the

beam from user m to mmWave BS is given by

.. 0P
( if > <|oh—vnl
€, b
I (05, P Vi) = <2m— "7 (3.33)
_ _pb
W, otherwise

Similarly, the gain of the directivity between the beam from the user m to the mmWave

BS and the beam from the mmWave BS to the user m is given as

. O
( if - < |okh — vl
€
) omu
In(On", O, Yin) = <2m-—- (3.34)
o o o u
k%’ otherwise

The cluster users are supported at the same time and at the same subchannel by

utilizing superposition coding techniques. The channel gain from the BS to every user is

s
given by g5, = ¢, d,?, where ¢, ~ CN(0,]) is a Rayleigh fading factor, d denotes the

distance from each UE to the transmitter, and 6 refers to the path loss exponent (Zamani
et al., 2019). In practice, it is difficult to attain perfect channel state information due to
various reasons such as channel estimation errors, feedback delays, and quantization

errors. Here, a NOMA system with imperfect CSI is considered in which the channel
estimation is given by g<, = g% + &, where &~ CN(O, o) is the error of the channel
estimation with variance &7, and gﬁl is the estimated channel gain f,pCN (X agzm)

which is uncorrelated with & (Zamani et al., 2019). Thus, the complete representation of

the channel between BS and user m is given by:

hm = GmgmIim (3.35)

In the DL NOMA system, the users equipment are ordered according to their channels’
strength (Jhy| = |hy_1| = ... = |h,| = |hy]) (Z. Ding et al., 2017). Thereby, the SIC technique

could extract a specific signal from the superposed signals on a single carrier. The
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strongest user device is indicated as UEwm and the weakest user device is indicated as UE;.
The BS transmits M different messages on the same carrier within the same bandwidth.
On the other side, each user receives a composition of its message with the interferences

from the signals of other users (M. S. Ali et al., 2016).

Figure 3.6 illustrates the SIC technique in the mmWave-NOMA system where each
cluster consists of two members and is carried on a specific subchannel. The mmWave
BS in the NOMA system utilizes superposition coding techniques to serve several users
simultaneously. A superposed transmitted signal by the mmWave BS can be expressed
as (Zamani et al., 2019):

M M
f= mzzl\j AmProt fm(t) = mz \/ﬂfm (3.36)

=
where f, is the individual signal dedicated to the m-th user and E{|f;,|?}=1, before
transmission, M is the number of the UEs supported by the mmWave BS, Py is the total

transmitted power of the mmWave BSs and a,, is the power coefficient allocated to the

m-th UE where:

3

Figure 3.6: SIC technique to decode signals for two members’ clusters in DL
mmWave-NOMA system.
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3.3.2 Problem Formulation

The variation in the power levels of the composed signals plays an important role in
maximizing the cell throughput and EE (M. S. Ali, Hossain, Al-Dweik, et al., 2018). The
mmWave BS transmits different signals over the same frequency resource while every
user receives its desired signal combined with the interferences due to the other users’
signals on the same radio signal (M. S. Ali et al., 2016). Each one of the DL NOMA'’s
users undergoes a different attenuation according to its channel gain with the mmWave
BS. The user with the strongest channel has the capability to decode the signals of the
remaining users before decoding its own signal. On the other hand, the user with the
weakest channel can’t eliminate the signals of the other strong channel UEs. The received
signal at the m-th UE terminal before applying the SIC technique is given by (Zamani et

al., 2019).

Ym = z \/xm,bg%g#lgﬁmzﬁ + Wi, (3.37)

VIEM,bEB

where p; is the allocated power to the I-th user and wy, represents the additive white
Gaussian noise (AWGN). In general, the signal after applying SIC technique at the m-th

user can be expressed as (Zamani et al., 2019)

Vm = \/xm,bgfng#lgfnpmfm + Z J Xmb I G fi

VIEM

I>m

+ Yviem/EX1pD1 fi + Wi (3.38)

where in Equation (3.39), the dedicated signal for the m-th UE is represented by the first
term, while the second term is the inter-channel interference due to decomposed signals

on the same subchannel of other users and the third term is due to the estimation error of
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the CSI. It is worth mentioning that the interference due to the signals of the other clusters

will be eliminated by filtration where other clusters are on different subchannels.

It is assumed that all users utilize the mmWave spectrum resources completely to
achieve full employment of the directional gain of the mmWave system. Thus, the
communication link between the mmWave BS and the m-th user is subjected to

interference given by

M

Ly = Z Xm,pPiGm G + 0F Z X1,pP1 (3.39)
vieM =1
l<m

This is considered a commonly used interference model in mmWave PA systems (Y.
Liu, Fang, Xiao, & Mumtaz, 2018). Based on the interference model, the SINR at the m-

th user is given as

b u ,c
_ XmbPmImImIm
SINRy, = “mbndndndn (3.40)

where B represents the utilized bandwidth and N, represents the power spectrum density
of the AWGN at the user terminal. Thereby, the obtained data rate at the m-th user from

the mmWave BS could be expressed as

R,, = Blog,(1 + SINR,,) (3.41)

The improved throughput is an advantage of the NOMA over the conventional OMA.
For a more specific comparison, conventional frequency division multiple access
(FDMA) will be considered in this thesis. For a fair comparison with the NOMA, the
bandwidth dedicated for each cluster is divided equally among its members so that the
cluster will support the same number of users within the same dedicated bandwidth in
both systems: NOMA and OMA. Thus, the data rate of the m-th user from the mmWave

BS in OMA system is determined as

68



B P b ,u ,C
RTOnMA — Mlogz 1+ ZnEN mgmBgmgm (3.42)

O'gZPm + MNO

The advantage of NOMA over OMA in increasing the data rate could be illustrated by
taking an example of a cell with only two users where the first is at the cell edge, which
is far from the BS while the second is near the BS. Although low power will be allocated
to the nearest user who has the strongest channel, its SINVR will be high since no inter-cell

interference significantly affects it.

Due to the system’s resource constraints, the number of served users and their allocated
power should be determined carefully to ensure the QoS of wireless systems.
Furthermore, the difference in the allocated power levels should be verified so that each
receiver would be able to perform SIC and extract the desired signal (M. S. Ali et al.,
2016). The sum data rate of the NOMA mmWave downlink system is expressed as

Rsum = Z R (3.43)

meM

Based on the given data rate, the EE of the user association NOMA mmWave DL

system would be written as (Zhou et al., 2019)

Rsum

FE = /———
ZmEM Pm + Pc (3'44)

where P. represents the circuit power dissipation for SIC detection at the mmWave BSs
with the assumption that it is fixed for all users. In this work, the objective is to maximize
the non-concave EE optimization problem of the NOMA mmWave with clustering. The
allocated power by the mmWave BS to each user depends on the required QoS by that
user within the limited total BS transmission power. Each cluster is assumed to consist of
two members while each user is supported by one cluster (subchannel). Finding the

optimal cluster composition that maximizes the EE of the mmWave system subjected to
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the required QoS and limited transmission power. This EE optimization problem could

be formulated as

max FE = Rsum
ZmEM ZbEB xm,b Pm + Pc
Xm,bPm

subject to C1:x,; € {0,1}, vm € M,Vb € B,

C2: Z Xmp = 1, vme M,

MmeEM,bEB

C3: Z Xmp =2, VbEB,
MmeEM,bEB

C4: Z z Xm,b Pm = Piot)

MEM beEB

C5: SINR,, = 6,, Ym € M (3.45)

where C1 refers to the association of each user m with a cluster b. C2 states that each user
should be supported by one cluster while C3 defines that every cluster consists of two
members. The limited transmission power of the mmWave BS is represented in C4 while
C5 1is to ensure that the minimum QoS requirements for all users in the DL mmWave
NOMA system are satisfied. It is worthy to mention that the design that allows only two
users per cluster is likely a simplification for analytical purposes rather than a strict
implementation of NOMA. In reality, NOMA systems are designed to accommodate
multiple users in a cluster, where power allocation and SIC are applied to a larger set of
users. Limiting the number of users per cluster to just two simplifies the problem by
reducing the complexity of power allocation and interference management. This
simplification allows for easier mathematical analysis and clearer insights into the
system's performance, but in practical NOMA implementations, there would typically be
more than two users in each cluster, depending on the system's design and resource
constraints. Therefore, the two-user assumption is a modeling choice to facilitate the

study, not a direct reflection of actual NOMA deployment.
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It is obvious the difficulties and complexity of finding all x,u, and p.» that maximize the
data rate in the downlink user association mmWave NOMA system. Besides, the relation
between the data rate and the transmitted power makes this problem a non-convex
optimization problem that is difficult to solve using classical methods. Therefore, a
genetic algorithm is employed in this study to solve the subchannel association problem.
Based on the GA scheme, the optimization problem in Equation (3.46) is a mixed integer
nonlinear problem.

Genetic Algorithms are often considered a complex optimization technique with a
relatively low convergence rate, but they are still suitable for solving power allocation
problems in non-convex scenarios like those encountered in NOMA systems. The
primary advantage of GA lies in its ability to explore a wide solution space and handle
complex, non-linear, and non-convex problems that traditional optimization methods
might struggle with. Power allocation in NOMA, especially when considering factors like
imperfect CSI, interference, and fairness, introduces a high level of complexity that
requires a global search for an optimal or near-optimal solution. GA’s stochastic nature,
which mimics the process of natural evolution, allows it to efficiently navigate through
multiple local optima without being trapped in suboptimal solutions. Although GA may
have a slower convergence rate compared to some more specialized algorithms, its
robustness in handling diverse problem constraints, its ability to work with noisy or
incomplete data, and its flexibility in dealing with complex system models make it highly
effective in power allocation. Additionally, techniques like elitism, mutation, and
crossover can be applied to enhance GA’s convergence rate over time, allowing it to
converge to a suitable solution while avoiding computationally expensive methods. Given
these characteristics, GA is well-suited for resource management problems where

conventional methods may fail or become computationally prohibitive.
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The GA method can be extended to a multi-cell scenario, though it requires additional
considerations to account for inter-cell interference, coordination between cells, and the

complexity of managing resources across multiple cells. Here's how it can be extended:

1. Inter-cell Interference Management: In a multi-cell scenario, the interference
between cells becomes a critical factor in power allocation. GA can be
extended by including inter-cell interference as part of the fitness function.
The fitness function would then need to incorporate the total interference from
neighboring cells and penalize solutions that result in high interference levels.
This encourages solutions that optimize power allocation not just within a
single cell but across multiple cells, reducing the overall interference and
improving the system's performance.

2. Resource Sharing: In a multi-cell system, power allocation across multiple
cells might need to be coordinated. GA can be extended to handle resource
sharing between cells. Each cell can be treated as a separate agent or player,
and GA can optimize the power allocation by considering the overall
network's objectives (such as total sum rate, fairness, or EE) rather than
focusing on individual cells. The interactions between cells can be modeled as
a multi-agent system, where the power allocation in each cell depends on the
decisions made by neighboring cells.

3. Multiple Objectives: In a multi-cell system, the goals of optimization are more
complex, often involving a trade-off between sum data rate, fairness, energy
efficiency, and interference management. GA can be extended to a multi-
objective optimization problem, where multiple objectives are simultaneously
optimized. For instance, the fitness function could be designed to balance the

total data rate with fairness across cells or minimize the total interference
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across the network. Multi-objective GA techniques, such as Pareto-based
approaches, could be employed to find a set of optimal solutions.

4. Population Representation: In a multi-cell system, the population in the GA
could represent the power allocation across all cells. Each chromosome could
encode the power allocation decisions for all users in all cells, and crossover
and mutation operations could be designed to exchange power allocation
information between different cells. The algorithm would then search for the
optimal distribution of power across the entire network.

5. Cooperation or Competition Between Cells: Depending on the network
architecture, GA can be adapted to either coordinate the power allocation
between cells (cooperative case) or have each cell independently optimize its
power allocation based on local objectives and constraints (non-cooperative
case). In the cooperative case, a centralized GA approach can be used where
the cells exchange information to jointly optimize the system’s performance.
In the non-cooperative case, the GA can be used to find Nash equilibria, where
each cell independently maximizes its performance given the strategies of
other cells.

6. Additional Constraints: In a multi-cell system, there might be more
constraints, such as the backhaul capacity, cell-specific power limits, and the
quality of service requirements for users in different cells. These constraints
would be incorporated into the fitness function and the genetic operators to
ensure that the solutions are feasible in the context of the entire multi-cell

network.

By extending GA to handle these additional factors, the power allocation problem in a
multi-cell NOMA system can be effectively addressed. The flexibility of GA in handling

complex, non-convex optimization problems, coupled with its ability to incorporate
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various network-wide constraints, makes it a promising tool for solving power allocation

in multi-cell scenarios.

3.3.3 Power Allocation and GA Scheme

3.3.3.1 Power Allocation

To propose a mechanism to allocate the power to cluster members of various required
data rates, first, investigate the assumption the assumption of allocating higher power to
the weaker-channel state user in the cluster as well as the assumption of allocating the
lower power to the stronger-channel state user is required to ensure higher EE can be
achieved (Vaezi, Schober, Ding, & Poor, 2019). For simplicity, a simple scenario is
considered where the mmWave has complete CSI information of all users. Thus, for a
two members-cluster, the SINR of the strong-channel user (SINR;) and the SINR of the

weak-channel user (SINR,) are given as:

b u_c
SINR, = — 291919 (3.46)
P29191 91 + BN,
and
P295 9% 95
_ P2929292 3.47
SINR, B (3.47)

where the SIC technique is used at the UE; to eliminate the interference due to the weaker-

channel user UE;.

3.3.3.2 Genetic Algorithm

The GA is one of the classical heuristic algorithms that successfully implemented to
solve non-convex optimization problems (H. Wei et al., 2021). In this section, the
components of the GA to solve the EE optimization problem in DL mmWave NOMA

with clustering will be described.
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GA is one of the evolutionary algorithms that is inspired by the biological selection
process and follows similar operators. Goldberg's GA was inspired by Darwin's evolution
theory, which says that an organism's survival is determined by the criterion "the strongest
species survive". Based on Darwin’s theory, an organism's survival can be ensured by the
processes of reproduction, crossover, and mutation (Sai et al., 2020). Darwin’s principle
about evolution is utilized later in a computational algorithm to solve a problem called an
objective function. The solution found by GA is indicated by a chromosome whereas a
collection of chromosomes represents a population. A chromosome comprises genes, and
the value of each chromosome can be numerical, binary, or character depending on the
nature of the problem. These chromosomes pass through a series of steps starting with a
fitness function process to evaluate the suitability between the solution provided by GA
and the problem. Through another process called a crossover, new offspring of
chromosomes are generated by mating some chromosomes in the population. The genes
carried by the new offspring are a mixture of their parents (X. Sun, Yang, & Cai, 2020).
On the other hand, some chromosomes in the generation will undergo gene mutation. The
crossover rate and mutation rate values determine the number of chromosomes that will
undergo crossover and mutation, respectively. According to Darwin’s rule of evolution,
the chromosome with the highest fitness value will have a larger chance of being selected
again in the future generation. The chromosomal value will converge over numerous
generations to a specific value which is the optimal solution for the problem (Ahn et al.,

2021).

By utilizing GA to solve the problem in Equation (3.46), repetitively assigning cluster
members and determining their power allocation process should be performed to
determine the maximum EE. Based on the known CSI of the users at mmWave NOMA
BS, the allocated power to the weaker-channel user and the allocated power to the

strongest user depends on their inquired QoS to attain C5. To solve the non-convex
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optimization problem in Equation (3.46) using GA, a reformulation was conducted to

achieve a minimization problem, which can be written as

Rsum

ZmeM ZhEB xm,b Pm + Pc

min —

Xm,b

subject to C1:x,, € {0,1}, vm € M,Vb € B,

C2: Z Xmp = 1, vm e M,

MmeM,beB

C3: Z Xmp =2, VbEB,

meEM,bEB

C4: z Z Xmp Pm = Piot)

MEM bEB

C5:SINR,, =6,, Vm e M (3.48)

Integer GA is utilized to determine the best cluster combination that maximizes EE.
The GA process to solve the optimization problem in Equation (3.49) consists of
sequential stages, that begin with a determination of the chromosome number, maximum
number of generations, mutation rate, and crossover rate. Initial values of x,» will be
assumed then sequences of selection and mutation will be performed. The evolution starts
with random individual elements x5 of the generation that satisfies C/, C2, and C3.
Based on C2, the sum of each row in the matrix X in Equation (3.32) should be equal 1,
which indicates that each user is supported by only one subchannel via one cluster in the
cell. On the other hand, based on C3, the sum of each column in X should be equal to 2
since each cluster supports 2 members. Because these are integer constraints, the linear
equality constraints of the optimization problem in Equation (3.49) should be
reformulated to inequality constraints. Generally, the vector form for linear inequality

constraints of GA problem is given as
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AX<bh (3.49)

For a problem of n. linear inequality constraints and 7. variables, 4 is a matrix of

size ne-by-nyvars and b is a vector of length n.. Thus, C2 and C3 could be reformulated as

(B
me'bS1

) b=1
€2:4°2 ,  VmEM, (3.50)
Z Xm,b >1
b=1
and,  C3:{™=1 , VbEB (3.51)

. . M .
Since each cluster is assumed to support 2 users (B = ;), the number of variables 7y

2
would be MT and the number of linear inequality constraints nc would be 3M . It is worth

mentioning that the initial population created by GA contains several individuals that lie
within the preset initial range. For the concerned GA problem, all individuals should lie
within the range [0; 1]. Because of the massive number of users in the real wireless
system, the population size will contain thousands of potential solutions and the initial
population will be randomly selected. The population size of the integer GA problem
should be higher than the double GA problem to ensure a feasible solution can be obtained

(Mircea, Chen-Ching, & Abdel-Aty, 2016).

These generation elements are reproduced iteratively within a maximum number of
generations. Providing lower and upper bounds for all x,,» elements is necessary to find
the best solution to the integer GA problem. Thus, the lower bound L, and the upper

bound U}, of the problem in Equation (3.49) are given by:
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and

Ly=[0 .. Olixn, (3.52)

Up=1[1 .. 1lixn, (3.53)

Some genes of selective individuals in the current population (parents) are passed on

to the next generation (children). Usually, the selected individuals are those who have the

best fitness values. The other individuals pass through crossover and mutation processes

that are illustrated in Figure 3.7. Thus, the next generation is classified into three types:

Elite children: Individuals that attain the best fitness values and therefore
have a higher probability to appear in the next generation. In the concerned
GA problem, the elite group is selected as the individual clustering groups
Xm,» that attain the maximum EE among the whole population. The percentage
of the elite to the total individual is set to 2% to pass completely to the next
generation.

Crossover children: Individuals that are created by mixing the vectors of a
pair of parents.

Mutation children: Individuals that are created by applying random changes,
or gene mutations, to individual parents to produce children. The mutation
rule applies to the individual with a lower probability of attaining maximum

EE.

The flowchart of the proposed GA is illustrated in Figure 3.8 where the fitness of the

population units is assessed by the objective function value of the optimization problem

in every generation. However, the integer genetic algorithm seeks to minimize a penalty

function instead of the objective function. The penalty function adds a term for solution

infeasibility to the original objective function (Deb, 2000). The penalty function consists

of weighted penalty parameters to estimate the infraction of the constraints. Thus, the
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constrained problem is converted to a series of unconstrained problems where their
solutions are converged to the potential solution of the original problem. The penalty
function represents the fitness function if the candidate solution is feasible. Otherwise,
the sum of the constraint violations of the (infeasible) point is added to the objective
function (Deep, Singh, Kansal, & Mohan, 2009). Thus, the penalty function of the EE

optimization problem in Equation (3.49) is given as:

Figure 3.7: Three classifications of the next generations (children) created by

GA.
R 2
. sum
min — +p Z gi(x), (3.54)
m ZmEM ZbEB xm,b Pm + Pc k im1 '

where py is the penalty factor and the second term in Equation (3.55) represents the

penalty function which could be represented as

B
g1(x) = max (1, xm,b>, vmeM (3.55)
b=1
and
M
g>(x) = max (2, Z xm‘b>, Vb €B (3.56)
m=1
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Initially, the penalty factor is set to a small value and, then it is increased in the next
iterations. The penalty function converges to the fitness function when the penalty
function attains the constraints. Eventually, the solutions of the successive unconstrained

problem will meet the solution of the original constrained problem.

Figure 3.8: The flowchart of the proposed genetic algorithm

The computational complexity of the proposed GA-based method has been analyzed
to evaluate its feasibility for real-world applications, particularly in large-scale networks.
The complexity primarily depends on the population size (P), the number of generations
(G), and the constraints incorporated within the fitness function evaluation. For a single
iteration, the complexity is proportional to O(P-F) where F represents the time required
to compute the fitness value for each solution. Over G generations, the total complexity
becomes O(P-GF). In the context of the optimization problem addressed in this study,
the constraints (e.g., user and cluster assignments, power allocations) increase the

evaluation time due to additional penalty calculations. However, integer GA has been
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chosen for its ability to handle these constraints efficiently while ensuring convergence
to a near-optimal solution. While the method demonstrates scalability to moderate
problem sizes, further optimizations (e.g., parallel processing or hybrid techniques) can
enhance its applicability to large-scale networks. Additionally, reference to the
mechanism described in (Ruochen Liu, Yang, & Liu, 2021) provides insights into
analyzing complexity and optimizing GA performance under large-scale scenarios. This
analysis will be explored further in future work to refine the algorithm and enhance its

practical deployment in real-world NOMA networks.

34 Multi-Stage Mechanism for Optimizing EE in Imperfect CSI DL NOMA

System

The final section synthesizes the insights and techniques from previous sections into a
comprehensive, multi-stage mechanism. This approach ensures iterative refinement and
robust optimization of energy efficiency and data rates in complex network environments.
The multi-stage methodology proposes a trade-off between EE and data rate in the
imperfect CSI NOMA systems, highlighting their synergistic potential in addressing the

challenges of next-generation wireless networks.

In this thesis, a multi-stage mechanism is proposed to optimize the EE under the
imperfect CSI condition. In the proposed technique, game theory is utilized in the first
stage to maximize the data rate, and an iterative method is incorporated in the second
stage so that the EE can be optimized. Imperfect CSI at the BSs is also considered in this
study and the effect of the channel estimation error on the system performance is
evaluated. In this study:

e Based on the game theory, a PA algorithm that maximizes the system data
rate is derived. Firstly, a user utility function based on the power cost in an

imperfect CSI scenario is derived and its convexity will be proved. Next, a
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theoretical model of the Glicksberg game is presented to assign powers to
users in the DL NOMA system under the maximum transmitted power and
SINR constraints. Besides that, a mathematical proof of unique Nash and the
mathematical relation between the power cost and users' number for the
proposed model are also presented.

e An iterative method is utilized to find the optimal transmission power that
maximizes the EE. Based on the proposed game strategy, power is allocated
to the users to maximize the data rate.

e A closed-form expression for the outage probability of the user device at the
cell edge is derived based on the adopted channel model.

¢ Finally, the performance of the proposed multi-stage algorithm is evaluated
by simulation in terms of EE, average data rate, and outage probability in the

case of perfect CSI and imperfect CSI.

The algorithm is referred to as multi-stage because it involves multiple iterative stages
in which the PA and EE are updated step by step until a convergence criterion is met.
Each "stage" corresponds to one iteration of evaluating and adjusting the power allocation
for each user, followed by an assessment of the energy efficiency. The process is repeated
(in stages) until the difference in energy efficiency between the upper and lower bounds
becomes sufficiently small (i.e., the convergence criterion is satisfied). The following
subsection describes the system model of the proposed multi-stage power allocation
algorithm and the outage probability of the edge user based on the proposed algorithm.

34.1 System Model

A DL multi-cell NOMA system consisting of K cells is considered. In the NOMA
system, one carrier has been dedicated to every cell k = {1,2,, ..., K} that is equipped
with a central BS to provide service to M user equipment (UEs), where m =

{1,2,,...,M}. The BS and each user device are assumed to be equipped with a single
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antenna. Every BS serves numerous users at the same time with the same carrier by
utilizing superposition coding techniques. The channel gain from the BS £ to the user m

is givenbyn,, =g, d,5*, where g, ~CN(0,]) is a Rayleigh fading factor, du,« denotes

the distance from each UE») to the BS«), and o refers to the path loss exponent (Zamani

et al., 2019). Here, a NOMA system with imperfect CSI is considered, in which the

channel estimation is given by %, , = fzm,k +&, where &~ CN(0,07)is the error of the

A

channel estimation with variance ng , and & is the estimated channel gain

m,k

}}m’k ~CN(0,0; )which is uncorrelated with & (Zamani et al., 2019). The system
architecture is illustrated in Figure 3.9.

In the DL NOMA system, the user devices within every cell are ordered according to
their channels’ strength (|hy| = |hy—1| = ... = |hy| = |h4|) for perfect CSI and
imperfect CSI cases (Z. Ding et al., 2017). Thus, SIC technique could be utilized to extract
a specific signal from the superposed signals on a single carrier. The strongest user device
associated with the k£ BS is denoted as UEmx while the weakest user device is indicated
as UE1x. The BS k transmits M different messages on the same carrier within the same
bandwidth. On the receiver side, each user receives a composition of its message with
inter-cell interference from the signals of other users associated with the same BS (M. S.

Alietal., 2016).
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Figure 3.9: The multi-cell DL NOMA system.

It is worth noting that the BS is assumed to have a full CSI knowledge of all user
devices (Khan, Yu, Yu, Sidhu, & Liu, 2019). However, because of the channel estimation
error and the quantization error, these CSIs might be imperfect (Zamani et al., 2019).
Moreover, imperfect SIC could happen due to an error in the SIC procedure where the
users of stronger channels imperfectly eliminate the interference that results from the
weaker users’ signal. This remaining interference degrades the system's performance
(Saetan & Thipchaksurat, 2019). To facilitate the performance analysis, this study focuses
on the effect of the imperfect CSI while the influence of imperfect SIC is beyond the
scope of this thesis. The analytical framing of this study could be expanded in future work
to study the impact of both imperfect SIC and imperfect CSI in a straightforward manner
where the imperfect SIC changes the system model by adding one independent noise part

(Y. Sun, Ding, Dai, & Dobre, 2019).

In general, the signal at the receiving terminal m in cell k before applying the SIC

technique is given by (Khan, Li, Zeng, & Dobre, 2021; Zamani et al., 2019)
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M
Y (®) = Ao i/ A k PrcXm i (8) + Ry i z ’aj,kP 1Xj i ()
=

j*m
M
te Z J @eP i) + W, (3.57)
=1

where in Equation (3.58), the dedicated signal for a user device m in cell k is represented
by the first term, while the second term represents the inter-cell interference due to the
decomposed signals on the same carrier of other devices within cell . The third term in
Equation (3.58) represents the interference due to the error in the channel estimation, and
wm is the AWGN at the m-th user with zero mean and density and variance 2. P is the

total power of the k-th BS, x refers to the individual OFDM signal, and «,,, represents

the assigned power coefficient of UEm k, which satisfies:

M
Z Ui < 1. (3.58)
m=1
In general, the received signal at the user device terminal after performing the SIC
technique is given as:

M
Y (®) = R/ A k PrcXm e (8) + Aoy i Z /aj,kP kXj k()

j=m+1
M
+ EZ /aj,kkaj,k(t) + w,, (3 59
j=1

Consider the case where the allocated power to the m-th UE in the k-th cell is

P,, =a, P, . Then the SINR at UEnx in the NOMA system when CSI is imperfect can

be derived as:

PR |®

SINR,,, = —
Rl Ylmia Pix + 02 %L, Py + a2

, (3.60)

where the noise due to all undesired signals from the stronger channel users is represented

by the first term in the denominator, and the second term represents the inter-cell
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interference resulting from the composed messages due to the error in the channel
estimation. Based on the SIC process, SINRyx will be relatively high despite its low
allocated power since no inter-cell interference will influence it. On the other hand, the
highest power level should be assigned to the weakest device to compensate for the inter-
cell interference and maintain the required SINRx. However, the presence of channel
estimation errors adversely impacts the SINR for all users, leading to a reduction in both

individual and overall achieved data rates within the cell.

The throughput of UEnk in the case of imperfect CSI NOMA of this thesis case can

be written as

h 2
woma _ 1og. |1 4 — Pl Pl

|Rnie? X i1 Pje + 02 XM Pjy + 02
j j

Rk , (3.61)

TDMA is commonly used to compare the performance of NOMA to OMA (Y. Wu,
Zhang, & Rong, 2020; L. Zhu, Z. Xiao, X. Xia, & D. O. Wu, 2019). Hence, to evaluate
the proposed mechanism, TDMA is adopted here where the total BS power is assigned to
an individual user during its block time. Thus, the data rate of m-th user in the downlink
OMA cellular system with a central BS serving M users on a single carrier per each 1 Hz

spectrum for the imperfect CSI case is given by:

OMA

1
R = —log, |1+
mk M 082[

P_|h, .|?
PonlRem k|~ l (3.62)

olP; + o?

On the other hand, the sum data rate, Rs.» of DL NOMA system with K cells where
every central BS serving M users on a single carrier per each 1 Hz spectrum in imperfect
CSI case can be expressed as:

K M
RsumNOMA = Z Z log;

=1m=1

Pmlhm,kl2

|hm)? 2 Pik + 02 57, Pjy + 02

1+ . (3.63)
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The importance of EE as a performance metric lies in its ability to optimize resource
utilization, minimize energy consumption, and promote the sustainability of the system.
Energy efficiency is defined as the ratio of the total network throughput to the total

consumed power (Luong et al., 2018), and it is expressed as

Rsum
EE =
P, +P;

Pmlhm,kl2

Yi=1Xm=11082 [1+ =
 Ziea Zme | iel? Xonsa Pis + 02 XLy Py + 02 (3.64)
Ik(=12jlvi1pilk+Pt |

where P. represents the fixed transmitter circuit dissipation power (Zeng, Hao, Dobre, &
Poor, 2019). This thesis focuses on maximizing the EE of DL NOMA systems within
limited total power consumption subject to the QoS requirements. Utilizing power
allocation plays a key role in optimizing the total EE in wireless systems. Hence, to extract
the desired signals at the receivers using SIC, the assigned power to the user devices
should be based on their channel’s strength (M. S. Ali et al., 2016). Thus, the EE

optimization problem could be formulated as:

R
max EE =
Pk P, + P.

M
subject to Z Pox <P, VKkEK

m=1

Poi = Ppiixc 20, VkeEK

SINR,, ;> {, VmEM (3.65)

where ¢ is the SINR threshold value that ensures the minimum required data rate for all
users (H. Zhang, Wang, et al., 2018). The number of users and their assigned powers must
be determined carefully to verify the minimum boundary of the constraints. Moreover,
variations in the levels of the assigned power must be verified to ensure that each UE is

capable of performing SIC and extracting its signal (M. S. Ali et al., 2016). In this study,
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a multi-stage mechanism based on the game theory and PA is proposed to solve the EE

optimization problem in Equation (3.66).

The QoS in your study is represented by ensuring that the required minimum SINR is
achieved for each user, but it is treated as a constraint within the power allocation
optimization problem, rather than being explicitly calculated. The algorithm ensures that
the power allocation adheres to the minimum SINR requirement through constraints,
which govern how the power is distributed among users to meet this threshold, thereby
ensuring the desired QoS. This constraint is incorporated into the problem formulation

and is not computed directly as a separate process.

3.4.2 Multi-Stage Power Allocation Algorithm

Game theory provides a robust tool for modeling discrepancies between
communication system members such as BS and user devices. Every user requires high
power to increase its data rate. On the other hand, the BS, which represents the
communication utility, aims to minimize the consumed power and to provide all users
with minimum QoS at the same time. In game theory, each player seeks to maximize his
payoffs, where the benefit of each player relies on his playing strategy as well as other
players’ strategies. The result of the game represents a solution in which all players have
no motive to change their actions to gain more benefit. This stable state where all the
participants are in approval is known as Nash Equilibrium. In general, the strategic game
involves a group of players (the users and the BS), strategies, and the declared benefit
functions (utility functions) for every adopted action by the game player. In a non-
cooperative game, such as the Glicksberg game, each user aims to increase his benefit, in
terms of data rate, by requesting higher allocated power. The BS sets the power price to
restrict the demanded power and to create a balance (Mohammadi, Mashhadi, &
Shahidehpour, 2019). All players in this case, the users, use the game theory to decide

intelligently how to achieve as maximum as possible benefits while maintaining the
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required quality of service at a minimum data rate level. Non-cooperative games, such as
the Glicksberg game (J. Huang et al., 2018) and the Stackelberg game (Q. Wang, Wang,
Jin, Zhu, & Zhang, 2015), have been utilized to solve data rate and EE optimization
problems in 5G. Based on the Glicksberg-Fan fixed point theorem (Van Hung & Keller,
2021), if a game consists of a delimited number of players where the space of the playing
strategy of each player is not empty, is limited convex set in the Euclidian space and the
utility function of each player is quasi-concave in its strategy space, then the game is

expected to have at minimum one pure strategy Nash equilibrium.

Equation (3.61) shows that a larger Py, results in a higher SINR,, ; for the m-th user in
the k-th cell. However, this increase leads to higher interference to other users. Thus, the
relationship among the users at the time of allocating their powers could be described as
a game. In this Glicksberg game, the user devices represent the game players, and the
allocated power represents each player’s action. By definition, let G =
(M, {Pm,k},{Um_k}) a PA game in which m = {1, 2, ..., M} represents the index of user
devices in the cell k = {1, 2, ..., K}, {P, x } represents the strategy set, and U« refers to
the utility function. Up to a certain level of transmission power, maximizing the total
data rate refers to the maximum EE that can be achieved at this level (Zamani et al., 2019).
Maximizing the sum data rate is obtained when every user's data rate is maximized. Thus,
the proposed approach will be to design a game to determine the power that maximizes
the throughput. The utility function U, of each user device in every cell can be derived

as:

PZ
U, = —2% _ BPmk
SINR, &
M M
Pk 2 2 2 Pk
=W |hm,k| P]',k + o¢ Pj,k+o- — B mk, (366)
mk j=m+1 j=1
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where B represents the cost charged by the BS for the assigned power Py, . The first term

2
Pm,k

SINRy 1

represents the utility gained by the m-th user based on its power allocation P«

and the SINR. The SINR measures the quality of the received signal, accounting for both
the desired signal power and interference. The squared term in the numerator implies that
higher power allocation increases the utility, but the SINR denominator ensures
diminishing returns as power allocation grows due to increasing interference. The second
term BPmk models the cost of allocating power to the user. This term penalizes the system
for increasing the power, thus discouraging excessive power allocation. The function
BPmkcould be an increasing function of P, representing the price or cost associated
with allocating more power to the user. This encourages efficient power distribution
across users. The first term of the utility function encourages maximizing the SINR,
which translates to better signal quality for the user. The second term penalizes excessive
power allocation, helping prevent inefficiency and ensuring that power resources are not
wasted. The utility function reflects a balance between maximizing user performance
(through high SINR and power) and minimizing the associated cost of power usage. The
utility function describes the player’s reactions in playing. An increase in the assigned

power to any device certainly enhances its SINR.

However, more interference will be seen by other users of a higher order (Z. Wang et al.,
2018) where a greater power level is required to achieve the threshold SINR. Thus, Uk
in Equation (3.67) illustrates the utility function’s conditions; where SINR represents the
user’s benefit while the price, BPmk represents a detriment resulting from the increment
in the assigned power to UEmk. The rise in Pu« leads to a rise in U,k until it reaches a
peak value, and then it will start to decrease due to the negative effect of the price. Thus,

the relation between the proposed utility function and Py« is a convex function.
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Firstly, the proposed utility function has proved to be effective. Then, a complete
theoretic game mechanism to allocate the power is presented and the existence of the

equilibrium is investigated.
Lemma 1. The proposed Un in Equation (3.67) is effective and restrictive.

Proof. The effectiveness of U,k is achieved if a rise in the assigned power to UEmk
leads to an increase in the U, value. Besides, the utility function’s restrictiveness is
achieved when the assigned power beyond a specific threshold degrades the utility value
(J. Huang et al., 2018). In other words, restrictiveness guarantees a limited level of the
allocated power to every player, depending on the adopted game strategy. Therefore, its
influence on other users can be controlled. The utility function is considered effective and
restrictive if it satisfies the following condition:

U 1
aP;k

<0 (3.67)

It can be seen that, Equation (3.67) fulfills the condition in Equation (3.68) if and only
if 1L, Py = Py, where:

*U
k — —BPmi(InB)? < 0 (3.68)
apPZ,,

Thus, the proposed U« is considered as a well-designed utility function. Moreover,
the channel estimation error term does not affect the effectiveness and restrictiveness of

the proposed Uy .

Glicksberg game is proposed for solving the optimization problem in Equation (3.66),
where the leader in this game is the user with the strongest channel. This leader takes the
first action in the game by choosing his minimum required S/NR. The total transmission
power and the required SINRyx will determine the power cost and the number of users

covered by service in the cell. Then, all players set their power level that maximizes Uy .
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Next, the existence of the Nash equilibrium for the proposed algorithm will be proved

(Vamvakas, Tsiropoulou, & Papavassiliou, 2019).

Theorem 1. Nash equilibrium satisfies the proposed game theoretic power allocation.

Proof: The assigned power to every user for the proposed game model is predefined as

P, >0. For the DL system, the strategy space is nonempty, compact, and convex.

Moreover, Uy, in Equation (3.67) is continuous and Equation (3.68) is verified for every
link between BS and the user. Therefore, U, is a quasi-concave function depending on
P . Every BS-transmitted power predefines the assigned power to all user devices within
the cell (XM, P; . = Py). Thus, the number of user devices will be limited due to the finite

system resources.
This completes the proof.

aZU‘km
2
aPm‘k

aZUm_k
aPi_kan_k

M
= Li#j

Theorem 2. If | for any user who is involved in the proposed

game model, the Nash equilibrium is unique.

Proof: The result of the following first derivative Equation gives the best user
response:

*U
k=0 (3.69)
apPZ,,

Hence, the optimal allocated power that maximizes U, x in DL NOMA cellular system

in the case of imperfect CSI is given by:

2
1 | ie|” Zims1 Pig + 02 L4 Py + 07

™k InB | | InB

(3.70)

Equation (3.71) shows that higher allocated power is required to obtain the same value
of data rate compared to the perfect CSI case where ,> = 0. This is due to the effect of

the inaccurate channel estimation value. Based on the given U, s,
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) —BPmk(InB)? m=n
92Uk
|—ap- p | = 1 m>n (3.71)
i,k .k
0 m<n

Based on Equation (3.72), the Hessian matrix is formulated as:

[-BPix(InB)? 1 1 ]
_ 0 1 1
H | s 0 BPH-vk(InB)? 1 (3.72)
I 0 0 —BPMJk(lnB)ZJ

To ensure that the Nash equilibrium is unique, the response function should be

contractive. Therefore,

92U | 92U
‘% > Z |—m" . (3.73)
aPm'k Py aPi'kan'k
From Equation (3.74):
BPmk(InB)? > M — m (3.74)
jelds ( B > 1
BPi(InB)? > 0 {PMk S0 (3.75)

It can be seen that Equation (3.75) matches the SIC requirements while Equation (3.76)
illustrates the detriment of the U, Determining B is an essential stage in the PA
algorithm. The strongest player, denoted by UEwm, has the top priority in the game and
therefore its allocated power is set to meet the required SINR. Then the price B is
determined once power has been assigned to UEmk. The total transmission power at the

BS is allocated to the users to obtain the maximum data rate. Subsequently,

M-1

Pui + Z Pix <P, (3.76)
i=1

Substituting Equation (3.75) into Equation (3.77),

M-1 ln((l B)l2>
n
Pu+ Z =Py, (3.77)
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Equation (3.78) could be expressed as

N In(M—1)!-2(M—1)In(InB) _
Mk InB Tk

(3.78)

The relationship between the cost and the number of user devices covered by the BS
service and the BS power is apparent in Equation (3.79). First, M and B are predefined
and the minimum assigned power to every UE in the cell is calculated by using Equation
(3.75). Subsequently, the optimal power that maximizes U, could be determined based

on Equation (3.71).

From Equation (3.79), all the allowable transmission power at the BS will be
consumed to achieve the maximum data rate at the cell. However, maximizing the data
rate does not ensure maximizing the EE at all transmission power levels. At high
transmission power, EE tends to decrease rapidly although the data rate is high (Ihsan et
al., 2022). In other words, providing a user with a high data rate exceeding its requirement
will drain the system resources while a noteworthy data rate increment is required to attain
the required QoS. Therefore, the second stage of the proposed multi-stage mechanism
pursues a lower total transmission power that maximizes the EE while achieving the

maximum data rate as well as meeting the minimum required SINR constraint.

A summary of the proposed algorithm is presented in Algorithm 2, where the false
position method is utilized to evaluate the minimum transmission power to attain the
maximum EE where the allocated power to all users is determined based on the proposed
game theory. Comparing the False-position method to the other closed interval methods
such as the bisection method, reveals several benefits. Its propensity to converge more
quickly in many situations is a major benefit. The false-position approach uses linear
interpolation based on the function values at the endpoints to improve the interval. In
contrast, the bisection technique cuts the distance in half with each iteration. For non-

linear functions, this often results in a more direct approach to finding the solution.
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To solve the non-convex optimization problem in Equation (3.66) using the false
position method, a reformulation was conducted to achieve a minimization problem,

which can be written as:

rgnn EEp,,— EEp,,
mk

M
subject to z Phr <P, VkKEK

m=1

Ppi =Pk =20, Vk€EK

SINR,, ;= {, VMEM (3.79)

where Py, is the total allowable transmission power and Py is the lower transmission
power at the BS. To increase the EE, the total transmission power should be decreased.
Thus, based on the false position method, the total transmission power in the next
iteration, Py is determined as:

EEp (P — Piy)

P,. =

(3.80)

SINRuy 1s assigned initially in the process, so it does not change for the user with
strongest channel condition within the next steps. The algorithm confirms that it is not
stuck at a local maximum by leveraging the global search capability of the game-theoretic
framework. The convergence to a Nash equilibrium, as guaranteed in the formulation,
implies that the EE metric is optimized across all users, given the constraints and
conditions of the system. This equilibrium inherently avoids local maxima by ensuring
that no individual user can unilaterally improve their utility. To address the possibility of
infinite iterations, a predefined convergence threshold (A) is used. The algorithm stops
when the change in energy efficiency |EEp,, — EEp, | falls below A, which is a small,
positive value chosen to balance computational complexity and accuracy. This ensures

that the iterations terminate after a finite number of steps while achieving a sufficiently
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high EE. Furthermore, practical constraints such as a maximum iteration count or a

timeout can be imposed to safeguard against excessive runtime in edge cases.

Algorithm 2: Multi-stage game-theoretic power allocation algorithm for maximizing
EE and data rate in imperfect CSI DL NOMA system
Require: P, SINR 1,

Ensure: Py, = Py, Pu=0,

1: EEn < 0,

: Determine B based on Equation (3.79),
meM,

: while m # 0 do,

: Evaluate P, Vm € M based ((Equation (3.61))
mEeEm-—1,

: end while

: Evaluate EE, based on Equation (3.65),
9: while |EEw — EEuw | > A do

10: Py based on Equation (3.65),

11: if EEw, > EEy then

12: EEpax «— EEm,

13: Pkl & Pkr,

14: Determine B based on Equation (3.79),
I5:meM

16: while m # 0 do

17: Evaluate P, Vm € M (Equation (3.61))
18&mem—1

19: end while

20: Evaluate EEw based on Equation (3.65),
21: else

22: EEnax < EEn,

23: P, < P,

24: Determine B based on Equation (3.79),
25:-meM

26: while m # 0 do

27: Evaluate P, Vm € M (Equation (3.61))
288mem—1

29: end while

30: Evaluate EE}, based on Equation (3.65),
31: end if

32: end while

01N L B~ WD

343 Algorithm Convergence Analysis

The convergence of the proposed multi-stage algorithm is ensured by the properties of
both the Glicksberg game (for power allocation) and the false position method (for EE
optimization). The convergence of the game-theoretic power allocation is guaranteed by

the Glicksberg-Fan fixed point theorem. The utility function used in the proposed
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algorithm satisfies the properties listed in the theorem. Besides that, the existence of a
Nash equilibrium has been proven. Therefore, the PA stage of the algorithm converges to
a stable PA strategy, ensuring that no user can improve their utility by unilaterally altering
their strategy. The false position method for energy efficiency optimization converges
based on the property that each iteration reduces the error between an upper and a lower
bounds of the energy efficiency, based on linear interpolation. In terms of the termination
condition: The algorithm continues to iterate until the difference between the EE in
successive iterations is below a predetermined threshold, A. This ensures that the
algorithm terminates once a sufficiently accurate solution is reached. Therefore, the
combination of these two methods ensures that the proposed multi-stage algorithm

converges to an optimal solution, balancing EE and data rate in the NOMA system.

344 Outage Probability Analysis

Outage probability can be used to evaluate the performance in DL NOMA systems
where it is defined as the probability that the SINR at UEnx is at a lower level than a

threshold level, ¢ (Arzykulov et al., 2019). The outage probability at the m-th user in

imperfect CSI DL NOMA k-th cell could be given as

P = Pr[SINRy < {]

out

Pm,klhm,k|2

"7 2 VM 2yM 2
|hm,k| i=m+1 Pi,k + O¢ Zi=1Pi,k t+0o

= Pr{|Apmil? < Emil. (3.81)
where &, 1s

2 vM 2
0:Yiz1Pix+o

Pok — X/ mi1 Pik

$mrk=¢ (3.82)

A conditional probability expression can be derived by first substituting Equation

(3.71) in Equation (3.75):
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7 EyM M
1 ln<|hm,k| Zi=m+1Pi,k+ang=1Pj.k+°'2)
=

InB 2 M-m
B et 3.83
(InB)? ( )
From Equation (3.84), the random variable |iAlm’k | 2is limited to
- o?YM Py + o?
o] = e Ziz1 Pus (3.84)

{21 Pik — Yk

where Y, , = In ( (11\:;;12). Hence, the outage probability in Equation (3.82) could be re-
written as

PluY = Pr [|sz,k|2 < &g\ || = <pm,k], (3.85)
where

M
_ O'g Zi:l Pi,k + 0-2
= 7 5
(2j=m+1 P],k — lpm,k

Pmk (3- 86)

- 2 . .. . . .
and the channel gain |hm,k| follows an exponential distribution with unity mean and

unity variance (Arzykulov et al., 2019). Thus, the outage probability in Equation (3.86)

could be expressed as

Pr [li\lm,kl2 < fm,k N |;\lm,k|2 > (pm,k]

m,k —
\ Pr{omsl” = o]

out

Pr [lﬁm,klz < Em,k N |i\lm,k|2 = (pm,k]

- = 2 Omi < Emyk
Pr “hm,k' = (pm,k]
0 q)m,k > fm,k
e Pmk — e_fm,k
— o Pmk Pmk < fm,k (3_ 87)

0 (pm,k > Em,k

The outage probability analysis concludes that the probability of outage in a DL
NOMA system is determined by the interplay between the channel gain, power allocation,
and the SINR threshold. The derived expressions show that the outage probability

depends on whether the channel gain satisfies specific bounds (¢, ) and (&, x), which
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are functions of system parameters like power levels, noise variance, and the SINR

threshold. The final outage probability formula illustrates that an outage occurs when the

effective channel gain is confined within a specific range (@, < |i’im,k|2 < &mi)s 1f
@mx > $mx, the outage probability is zero, indicating no overlap between the feasible
and required channel conditions. Conversely, when @, , < &, &, the outage probability
depends on the exponential distribution of the channel gain and is proportional to the
difference between (¢, ) and (&, k). This analysis highlights the trade-offs in power
allocation and channel estimation errors under imperfect CSI. It also quantifies the
conditions under which a user experiences insufficient SINR, providing insight into

system reliability and performance limits.
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CHAPTER 4: RESULTS AND DISCUSSION

This chapter presents and discusses the results of four proposed power allocation
techniques in optimizing the data rate and optimizing the EE for the DL NOMA system
for both perfect CSI and imperfect CSI cases. The results from extensive simulation of
the proposed PA techniques under various scenarios are presented. The results of the
proposed methods are presented and comprehensively discussed with various
performance parameter metrics such as data rate, EE, and outage probability.
Furthermore, a critical analysis of the acquired results of the proposed PA algorithms is

also presented in the following subsections.

4.1 Game-theoretic Power Allocation Algorithm for DL NOMA System

In this section, different scenarios are simulated by Matlab to evaluate the proposed
game-theoretic power allocation algorithm and compare the results to the existing
algorithms in (Lamba et al., 2019; Z. Wang et al., 2018). The accomplished sum rate in
bps/Hz is measured when applying the game-theoretic power allocation algorithm on M

users distributed randomly in a cell with channel gains between the BS and the users are

modeled as #, ~ CN(0,5.), me M. First, the mechanism is performed on 2 users

with channel gains of variances 57 =0.5,5, =1. Secondly, the mechanism is testified on

5 users with channel gains of variance 5 =0.2,8; =0.4,5; =0.6,5; =0.8, and5; =1.
In both cases, the results are collected at different levels of transmission power ifz up to
o

30 dBm and the results are taken as an average of 1000 run trials in (Lamba et al., 2019;
Z. Wang et al., 2018). The assumed SINR of the team leader in the game is 1.5.

The results in Figure 4.1 illustrate that the cell’s sum rate will increase proportionally
with the increase in the transmission power as expected. This behavior aligns with the

fundamental principles of wireless communication, where a higher transmission power
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improves the received signal strength at the users, thereby enabling higher data rates. For
the same number of users, the power price value within the GTPA algorithm will decrease
with the increase of the total transmission power. According to the supply and demand
principle, each user will buy more power at a cheaper price, and therefore the individual,
and accordingly, the overall sum rate will increase. The results show that the proposed
mechanism outperforms the existing algorithms where the achieved sum rate by this
mechanism is higher at all transmission power levels than that from other methods. For
M=5, as an example, there is about a 4% increase in the sum rate at a transmission power
level of 20 dBm. For M=2, it is obvious that both algorithms achieved the same rate at a
transmitter power of 0 dBm. At such low transmitted power, the probability that the BS
can serve more than one user, at the expected QoS (the minimum level of SINR), is so
low. Thus, the sum rate at low P; is the same for both algorithms since the whole power
is allocated to one user in this case. The superior performance of the proposed algorithm
can be analytically attributed to its efficient utilization of the power-price relationship.
By dynamically adjusting the power allocation based on user demands and the prevailing
power price, the algorithm ensures that the available transmission power is optimally
distributed among users to maximize the sum rate. This efficiency stems from its ability
to balance supply and demand, incentivizing users to consume power strategically when
prices are low. Additionally, the algorithm's adaptability to varying transmission power
levels allows it to outperform existing methods consistently, as evidenced by the higher

sum rates achieved across different scenarios. The mechanism's design, which prioritizes
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fairness and resource efficiency, highlights its robustness in handling multi-user

environments and its potential for scalability in larger, more complex networks.

Figure 4.1: Sum rate in DL NOMA system versus P,/d?, (a) For M=2, §% =
0.5 and 85 = 1. (b) For M=5, §2=10.2; §5=0.4; 63=10.6; 82 =
0.8and 6% =1
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Another performance metric is testified, which is the average data rate of the users.
The simulation is done for the same circumstances in the first experiment mentioned
above. The results are illustrated in Figure 4.2. The user average data rate achieved by the
GTPA proves the enhanced performance individually for each user. The results in Figure
4.2 confirm that the GTPA algorithm achieves a consistently higher average data rate for
users compared to the other algorithms under the same conditions. This outperformance
can be analytically explained by the algorithm's ability to dynamically allocate power
resources based on real-time user requirements and the power price mechanism. By
prioritizing fairness and optimizing the power distribution, the GTPA ensures that each
user receives an adequate share of resources, thereby improving individual performance.
However, as the number of users increases, the available power must be distributed
among more users, leading to a decline in the average data rate, as evidenced by the 17%
reduction at 30 dBm when the number of users increases from 5 to 10. This trend is
consistent with resource-sharing limitations in multi-user environments. Nevertheless, the
algorithm’s ability to maintain relatively high performance, even under increased user
density, highlights its robustness and scalability. This advantage is primarily due to the
efficient handling of the power-price relationship, which minimizes wastage and
enhances overall system utilization. It worth to mention that the effect on EE due to the

GTPA will be discussed later in the next sections.

4.2 Energy-Efficient Power Allocation for Imperfect CSI DL NOMA System

In this section, the proposed energy-efficient power allocation algorithm is evaluated
in a single cellular cell with central BS which serves M users and the achieved results are

compared to the conventional OMA in the case of zero-channel estimation error.
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Figure 4.2: Average data rate of users versus P,/ o?; (a) For M=5, 8 =
0.2; 62=0.4; 62=0.6; 62 = 0.8 and 82 = 1. (b) For M=10, 62, = m/M

The users are distributed randomly within a single cell, where the channel from the

BS to the user has been modeled as 4, ~ CN(0,5.) . In this study. It is assumed that M=3

users, and the variance of the channel gains are given by 5. = e The total transmission
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power P; is varied up to 1W and the assumed total BS dissipated power is P.=1W. The
system bandwidth and the AWGN spectral density are assumed to be IMHz and -

174dBm/Hz respectively (Glei & Chibani, 2019).

Results are taken as an average of 1000 run trials. The simulations in the study use
varying values of M across experiments to analyze system performance under different
conditions. While M=3 represents a moderate case, other experiments explored smaller
and larger values to examine scalability and robustness. This approach ensures that the

study comprehensively evaluates the algorithm’s adaptability to different user densities.

Figure 4.3 presents the obtained energy efficiency at different transmission powers. It
illustrates that the proposed algorithm causes an improvement in the system’s EE
compared with the conventional OMA where the total transmission power is distributed
equally among all users. For example, at P—=0.25W, the proposed algorithm achieves a
more than 50% increase in energy efficiency compared to that in the OMA system.
Moreover, the EE obtained by applying the proposed algorithm will increase when the
transmission power increases until it reaches its maximum value at a certain P,. Thus, any
redundant power will not cause an increase in EE. The observed trend, where EE
increases with transmission power up to a certain point, reflects the balance between
achieving higher data rates and maintaining minimal power expenditure. Beyond this
optimal transmission power level, any additional power becomes redundant, as it no
longer contributes to improving data rates significantly but instead increases energy
consumption. This plateau in EE underscores the importance of identifying and operating
at optimal power levels to maximize system performance. The results confirm the
algorithm’s ability to achieve this balance, showcasing its practical value for energy-

efficient communication systems.
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Figure 4.3: Energy efficiency versus transmission power

The results in Figure 4.4 reveal a clear advantage of the proposed algorithm in reducing
the outage probability compared to the conventional OMA system. This improved
performance can be attributed to the algorithm’s use of NOMA, which allows multiple
users to share the same resource blocks while differentiating them based on their channel
conditions and power levels. By optimizing PA, the proposed algorithm ensures that even
cell-edge users who typically experience weaker signal strength and higher interference
achieve higher SINR levels. This results in a significant reduction in the likelihood of
outage without increasing overall power consumption. The algorithm’s ability to minimize
outage probability while maintaining the same power budget demonstrates its efficiency
in resource management and fairness in serving users across the cell. This improvement is
particularly critical in scenarios with a high density of users or challenging channel
conditions, where conventional OMA methods fail to sustain adequate performance for all
users. Consequently, the results highlight the practical benefits of the proposed algorithm
for ensuring reliable connectivity and service quality in modern wireless communication

systems.
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Figure 4.4: Outage probability versus transmission power

The results in Figure 4.5 illustrate the impact of imperfect CSI on the EE of the
proposed algorithm compared to the conventional OMA system. The superior
performance of the proposed algorithm across all levels of estimation error reaffirms its
robustness and adaptability in realistic scenarios where perfect CSI is often unattainable.
By leveraging the power allocation and user prioritization inherent to NOMA, the
algorithm can mitigate the effects of estimation errors to some extent, maintaining higher
energy efficiency than OMA even under degraded conditions. However, the results also
demonstrate that both algorithms experience performance degradation as the estimation
error increases. This decline is a direct result of the reduced accuracy in channel
knowledge, which affects the SINR and subsequently the ability to allocate power
effectively. The proposed algorithm's optimal performance at zero estimation error
(perfect CSI case) highlights the critical role of accurate channel estimation in
maximizing energy efficiency. This sensitivity to estimation errors suggests that
enhancements, such as integrating robust estimation techniques or designing error-

resilient power allocation strategies, could further improve the algorithm’s performance
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under imperfect CSI conditions. These findings emphasize the practicality and reliability
of the proposed algorithm while highlighting areas for potential future improvement.
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Figure 4.5: Energy efficiency versus transmission power at various estimation
error values
4.3 Genetic Algorithm for Optimizing Energy Efficiency in Downlink

mmWave NOMA System with Imperfect CSI

In this section, the performance of the proposed GA scheme for optimizing the EE in
the DL mmWave NOMA system with user clustering is evaluated. Next, the validity of
the proposed scheme is verified by evaluating the performance of the NOMA system in
terms of EE and comparing it to both optimal NOMA and conventional OMA. The
general scenario for the simulation is a single cell of a 500 m radius. A mmWave BS with
40 dBm power capability is located at the cell’s center and equipped with multiple
antennas whereas M users are distributed randomly at distances between 50m to 500m
from the mmWave BS within the cell’s boundary. The capacity of each cluster is only 2
users. For simplicity, the transmission beams between the mmWave and the users are
assumed to have the same direction, which matches the geographical bore-sight links
between them (R. Liu et al., 2020). The allocated power to each user is determined based

on its required data rate. The minimum level &, is set randomly between 1 and 2. The
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parameters of the DL mmWave NOMA simulation are listed in Table 4.1 (R. Liu et al.,

2020).

4.3.1 Cluster Selecting for Maximizing Energy Efficiency

The study also investigates whether increasing the data rate of the strong-channel user

(UE2) in the cluster higher than its requirements will be a benefit to the system EE.

Assuming a unity channel gain, h, = 1 and the required QoS of the UE: is 2, the allocated

power p, would be 2 regardless of the UE; requirement. On the other hand, the allocated

power to the weak-channel user UE1, p; would be less than p, when its QoS requirement

is only at low levels. However, when UE; requests a higher data rate, its allocated power

should be higher than the allocated power of UE;. Figure 4.6 illustrates the allocated

power and the EE for a cluster of 2 members with various requirements and channel

states.

Table 4.1: Simulation Parameters for GPTA.

Parameter Value
Operating frequency 24GHz
Cell radius 500m
Minimum distance between user and BS 50m
Required data rate 1-2 b/s/Hz
Total dissipated power at the Transmitter 1 Watt
Path loss component 3
BS transmission power 40 dBm
The subchannel Bandwidth IMHz
AWGN power -173dB/Hz
Operating beam-width of the mmWave BS 5°
Operating beam-width of the user 10
Side lobe gain 0.1
Simulation trials 1000
Maximum generations 100

FElite ratio

5% of the population size

Population Initial range

[0; 1]

Tolerance of objective function

10-12

As can be seen from Figure 4.6, the weaker channel user requires higher allocated

power to achieve the data rate. Although previous studies prove that increasing the
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allocated power to the strong-channel user significantly increases the total throughput of
the system, this rise of the allocated power decreases the system EE based on Equation
(3.45). In Figure 4.6(b), the allocated power to the strong-channel member in the cluster
is increased so that its new SINR is 3. This leads to a noticeable increment in the allocated
power to the weaker-channel user to attain its requirement and eventually, the system EE
degrades. Thus, the best scenario to achieve the highest EE to support the cluster members
with the same requirements of data rate is to set the subject C5 in the optimization problem

as SINR,,, = 6,, .

The analysis highlights the unique challenge of balancing power allocation in NOMA
systems, particularly for users with diverse channel conditions. The weaker channel user
UE)\, despite its higher power requirements, has a more significant impact on achieving
system-level fairness and meeting individual QoS needs. As seen in the results, the power
allocation mechanism ensures that UE;'s QoS is fulfilled, even if it requires
disproportionately higher power. This prioritization underscores the proposed algorithm's
adaptability and fairness, ensuring that the system caters to all users regardless of channel
disparities. However, the observed reduction in EE with increasing power to UE; suggests
that future work could explore optimized algorithms to balance throughput and EE,
particularly in scenarios where one user has considerably stronger channel conditions.
This balance is crucial for maintaining high-performance energy-efficient communication

systems.

In this thesis, it is assumed that the allocated power to every user will satisfy the user’s
QoS (8,,). Then, the possibility of improving the system EE by selecting different
members in the cluster is studied. It is assumed there are two weak-channel users in the
cell. Assuming a unity channel gain, h, = 1 and the required QoS of the UE: is 2, the
allocated power p, would be 2 regardless of the UE; requirement. On the other hand, the

allocated power to the weak-channel user UEi, p; would be less than p, when its QoS
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requirement is only at low levels. However, when UE; requests a higher data rate, its
allocated power should be higher than the allocated power of UE;. User with h; = 0.5h,
is referred to UEx while user with h; = 0.25h, is denoted UEy. The general assumption
of selecting either one of them as a second member in the cluster depends on its channel
state increases the system EE will not be an accurate conclusion where, as seen in Figure
4.6 (a). This is because the required QoS of every user plays an important role in this
issue. For example, choosing UEx leads to higher EE when the required SINR of UEx is

8, = 0.5, and the required SINR of UEy is §,, = 0.5 while choosing UEy leads to higher

EE when §, = 2 and 6,, = 0.25.

Although selecting the cluster members with various QoS requirements can be decided

easily in this example, the massive number of users in real wireless communication

!

different
21(M=2)!

networks makes the problem more complicated where there are

combinations of 2 members in a cell of M users (J. Zhao, Yue, Kang, & Tang, 2021), and
therefore GA scheme is adopted in this study to determine the optimal cluster

combinations X,» to maximize the EE of the DL mmWave NOMA system.

4.3.2 Genetic Algorithm Performance

In this section, the performance of GA in solving the EE optimization problem in the
DL mmWave NOMA system is evaluated. First, diverse population sizes are tested to
determine the most appropriate population for different numbers of users. Starting from
2 clusters (4 users) up to 8 clusters (16 users), the population size was increased until all
constraints were satisfied to determine the required population size related to the number
of users. The elite ratio is 5% of the overall population and the crossover fraction is set to

be 50% of the chromosome.

111



— h1=h,

— h1=h,

=
[Sig]
T
[}
[y}

— h1=0'5h‘

—e—h=025h, |

EE (b/J/Hz)

025+

0.2t

05}

01t

0 ' L . 0.05

(a) SINR2=2

45¢ 1 0.45F

_9_h1=0_25h, | 04t

35 1
J 035}

03}

025}

EE (b/J/Hz)

021

0161

01r

0 L L ' 0.05
0

(b) SINR2=3

Figure 4.6: The allocated power to the two members of the cluster and the EE
vs. the obtained SINR at the weaker-channel user (hi1) when the required SINR of
the stronger-channel user (h2) is 2 in (a) and 3 in (b).
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Figure 4.7 illustrates the required GA population size for various traffic cases. The
results show that the required size of the population in GA is relatively low at light traffic
in the cell. As the number of users increases, the minimum population size that guarantees
to find feasible solution and satisfy the constraints also increases. The significant increase
in the population size indicates a much longer time required to solve the GA. Thus, for
the DL mmWave-NOMA with clusters that consist of a massive number of users, GA
could be utilized to determine the optimal clusters’ pairs that maximize the EE
highlighting the computational burden and extended processing time necessary to ensure
constraint satisfaction and solution feasibility. This limitation poses a challenge for real-
time applications in dense networks, particularly for DL mmWave-NOMA systems with
large clusters. To address this issue, the integration of GA with deep learning presents a
promising solution. While GA excels at exploring the solution space and determining
near-to-optimal cluster configurations, its longer execution time under heavy traffic
conditions makes it less practical for time-sensitive scenarios. Deep learning, on the other
hand, can leverage the training data generated by GA to learn efficient patterns and
provide real-time decisions that meet the timeliness requirement. This hybrid approach
combines the exploratory strength of GA with the speed of deep learning, offering a
scalable and efficient solution for optimizing energy efficiency in dense user
environments. By leveraging such a combination, the system can achieve near-optimal
performance without compromising timeliness, making it well-suited for future wireless

communication systems (Pan et al., 2021).
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Figure 4.7:The appropriate population size of GA with respect to the number of
users.

The performance of the GA convergence is evaluated in terms of the relation between
the population size and the number of required iterations (generations) to find the
solution. For this purpose, two cases are selected; the first case considers relatively low
traffic (6 users) while the second case considers relatively heavy traffic (16 users). The
results are illustrated in Figure 4.8 and Figure 4.9, respectively, which show that generally
fewer iterations (generations) are required for convergence when the population size is
larger for M=6 users and M=16 users, respectively. As seen in Figure 4.8(a) and Figure
4.8(b), the convergence to the solution becomes sharper after 9 generations and 6
generations where the population size increased from 120 to 160. Similar trends can be
seen in Figure 4.9(a) and Figure 4.9(b) when the population size increases from 1500 to
1800. Moreover, by comparing the results in (a) and (b) for both cases shown in Figure
4.8 and Figure 4.9, it is obvious that the number of repetitions (generations) to find the

solution reduces when the population size increases. The number of generations executed
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to solve within the tolerance increased significantly in the case of 16 users as compared

to 6 users, and thus this leads to the long execution time of the GA as has been shown in

Figure 4.7.
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Figure 4.8: The GA convergence to the best penalty value for light traffic case

(M=6).
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Figure 4.9: The GA convergence to the best penalty value for relatively heavy
traffic case (M=16).
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4.3.3 Impact of the Required SINR

The effect of the asymmetric users’ required SINR on the EE of the proposed system
is being investigated. The simulation settings remain as in the previous section while the
total transmission power is sufficient to provide all users with the required QoS. In the
first scenario, it is assumed that random requirement of users’ data for different types of
applications since some of the applications such as email require a much lower data rate

than online gaming or video conference.

Figure 4.10(a) shows the system’s EE based on random required SINR ranging
between 1b/s/Hz and 2b/s/Hz for a different number of users. Then, all users are assumed
to hypothetically have the same requirements either low SINR (1b/s/Hz) or high SINR
(2b/s/Hz). The results are shown in Figure 4.10(b) and Figure 4.10(c), respectively. It can
be seen from the figures that the GA approach achieves almost the optimal solution in all
cases which proves its effectiveness for solving complex EE optimization problems. It is
obvious that for all cases, the EE degrades as the number of users increases. However, as
the number of users increases, the EE of the system approaches the same value for the
random SINR requirements and the high SINR cases. Finally, results show the
outperformance of the combination of NOMA with mmWave to improve the system EE
compared to OMA-mmWave where a 75% increase in EE can be obtained. For example,
the EE rises from about 1b/Joule in mmWave-OMA for 16 users to 2b/Joule in mmWave-
OMA under the same circumstances. This outperformance can be attributed to NOMA's
ability to increase user fairness by allocating power based on individual SINR
requirements, ensuring that both strong and weak users can be served efficiently. In
contrast, OMA-based systems, which typically allocate separate resources to each user,
are less efficient in terms of resource utilization, leading to lower EE, especially as the
user count increases. Thus, combining NOMA with mmWave not only enhances the

system's ability to support more users simultaneously but also maximizes energy
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efficiency, making it a promising solution for future wireless networks, especially in

dense urban environments where both high user density and high data rates are common.
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Figure 4.10: The EE of mmWave-NOMA system versus the number of users at
different SINR conditions.

434 Imperfect CSI

Here, GA is utilized to determine the EE of the mmWave-NOMA system in an
imperfect CSI DL mmWave-NOMA system. The effect of the channel estimation error
variance on EE for various numbers of user equipment is shown in Figure 4.11. The

number of users is varied from 4 users to 16 users, and channel estimation error 6 is set
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to 0.01. It is evident that the maximum EE is obtained at zero error (perfect CSI), and the
channel estimation error causes a decrease in EE because of the decrease in the SINR
level. A degradation in the system’s performance occurs in the case of imperfect CSI due

to the impact of additional noise related to the channel estimation error variance.

As can be seen from Figure 4.11, the performance of the mmWave-NOMA system is
better than the conventional OMA system in the imperfect CSI case when GA is
employed. The use of GA in this context further enhances the system's performance by
optimizing the power allocation and user scheduling, even under imperfect CSI
conditions. GA helps in identifying near-optimal solutions for resource allocation,
ensuring that the system can maintain relatively high EE even as channel estimation errors
degrade the performance. The fact that the mmWave-NOMA system with GA still
outperforms the OMA system in this imperfect CSI scenario highlights the robustness of
NOMA, especially when combined with optimization techniques like GA. In summary,
the outperformance of the mmWave-NOMA system over OMA, despite the presence of
channel estimation errors, can be attributed to NOMA's efficient use of available
spectrum and power through simultaneous transmission to multiple users. The
introduction of GA to optimize resource allocation further strengthens the system's
resilience to imperfect CSI, ensuring that it continues to deliver superior performance

compared to traditional OMA methods.

4.4 Multi-Stage Mechanism for Optimizing EE in Imperfect CSI DL NOMA

System

Here, the performance of the proposed multi-stage algorithm is evaluated where a
multiple-cell DL NOMA system is considered for both perfect CSI and imperfect CSI
case. The number of cells is set to 3 where user devices in every cell are set to M=4 and

every device is equipped with one antenna (M. S. Ali, Hossain, & Kim, 2018). Each cell
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has a centered BS and serves randomly distributed user devices at a distance d,,=80m
from the BS. The path loss component of the user devices channel is 6=3 (Zamani et al.,

2019). The proposed algorithm has been applied at a range of BS transmission power up

to 35 dBm and the channel estimation error on the system performance o ’is set to 0.01.

&

The essential adopted parameters in this simulation are summarized in Table 4.2.
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Figure 4.11: The impact of channel estimation error on the mmWave-NOMA
system EE and mmWave-OMA system.

The performance of the proposed algorithm is compared with existing algorithms such
as the optimum sum rate power allocation (OSRPA) algorithm (Zamani et al., 2019),
GTPA algorithm (Aldebes, Dimyati, & Hanafi, 2019), and the conventional OMA (Cui,

Ding, & Fan, 2016).
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Table 4.2: Simulation parameters for multi-stage algorithm

Parameters Value
Minimum data rate 1 b/s/Hz
Noise level at BS -70 dBm
Total dissipated power at BS (P.) 1 Watt
Path loss component 3
BS transmission power 0-35dB
The system Bandwidth 1MHz
The cell radius 80 m
AWGN power -173dB
Number of device antenna 1
Tolerance (A) 0.1
Simulation trials 1000

Figure 4.12 highlights the performance of the proposed algorithm in terms of EE
compared to three other algorithms: OSRPA, GTPA, and OMA, under both perfect and
imperfect CSI conditions. The results demonstrate that the proposed algorithm
significantly outperforms the OSRPA and conventional OMA, achieving higher EE at the
same transmission power. For example, at a transmission power of 25 dBm, the proposed
algorithm provides an enhancement of about 5%, 7%, and 11% in EE over OSRPA,
GTPA, and OMA, respectively. This improvement is a direct result of the proposed
algorithm’s ability to efficiently allocate resources and use the minimum transmission
power required to meet the QoS requirements of each user device. One key feature that
contributes to the outperformance is the proposed algorithm’s efficient use of system
resources. By allocating power in such a way that the minimum necessary transmission
power is used to satisfy the users' QoS demands, the algorithm minimizes wasteful power
expenditure and optimizes the overall energy usage. This is particularly beneficial in
reducing the total power consumption while maintaining the necessary data rates for
users, leading to improved energy efficiency in the system. However, the results also
reveal the impact of imperfect CSI on system performance. In the case of imperfect CSI,
the estimation error at the BS leads to a reduction in the SINR of the users, which in turn

degrades the system's EE. As shown in Figure 4.12(b), the EE decreases by about 30%,
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from 11 b/joule/Hz in the perfect CSI case to 7.5 b/joule/Hz in the imperfect CSI case.
This performance degradation is expected since inaccurate CSI leads to suboptimal power
allocation and increases interference, thereby reducing the system's ability to maximize
EE. Despite this, the proposed algorithm still performs better than the other algorithms
even in the presence of imperfect CSI. The robustness of the proposed algorithm to
imperfect CSI can be attributed to its adaptive power allocation strategy, which continues
to operate efficiently even when the channel conditions are not perfectly known. In
comparison, algorithms like OSRPA and GTPA may not be as adaptable to CSI errors,
leading to more significant performance degradation under imperfect conditions. In
conclusion, the proposed algorithm outperforms OSRPA, GTPA, and OMA in terms of
energy efficiency, particularly by utilizing the minimum transmission power required to
meet QoS demands. While imperfect CSI does degrade performance, the proposed
algorithm remains superior to other methods due to its efficient resource allocation
strategy. The significant performance gap between perfect and imperfect CSI scenarios
underscores the importance of accurate channel estimation, but the proposed algorithm’s
design ensures that it maintains a high level of energy efficiency even when CSI is

imperfect.

Figure 4.13 presents a detailed comparison of the average data rate achieved by the
proposed multi-stage algorithm versus GTPA, OSRPA, and OMA for each 1Hz of the
system bandwidth, under both perfect and imperfect CSI conditions. The results, shown
in Figure 4.13(a) and Figure 4.13(b), reveal several important insights regarding the
performance of the proposed algorithm. As expected, increasing the transmitted power
leads to a higher average data rate for all cases, owing to the higher allocated power for

each user.
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However, the proposed multi-stage algorithm consistently outperforms OSRPA and
OMA in both perfect and imperfect CSI cases, with the data rate exceeding that of the
other methods up to 22 dBm for perfect CSI (Figure 4.13(a)) and 15 dBm for imperfect
CSI (Figure 4.13(b)). This improvement can be attributed to the ability of the proposed
algorithm to effectively utilize power resources while ensuring that the minimum required
data rate for each user is met, all while maintaining the system’s EE (as seen in Figure

4.12).

The key advantage of the proposed multi-stage algorithm lies in its efficient use of
transmitted power. Unlike other algorithms, it conserves power by allocating only the
minimum necessary power to each user to meet their required QoS, without over-
allocating unnecessary power. This strategy results in a significant improvement in the
average data rate, which, in some cases, reaches more than 300% of the minimum
required data rate. This ensures that users experience very satisfactory QoS while

minimizing power consumption, making the system more energy-efficient.

Furthermore, it is noticeable from Figure 4.13 that the average data rate is lower in the
imperfect CSI case compared to the perfect CSI case. This is because imperfect CSI leads
to an increase in interference, which degrades the SINR, thereby reducing the achievable

data rate.

The increased interference reduces the accuracy of power allocation and scheduling,
causing a slight decrease in the system’s overall performance. This degradation highlights
the importance of accurate CSI for achieving optimal performance, but even with
imperfect CSI, the proposed algorithm still provides better data rates than the other
methods. In conclusion, the proposed multi-stage algorithm outperforms the GTPA,
OSRPA, and OMA in terms of average data rate by utilizing power more efficiently and
conserving resources while still ensuring high QoS for users. This allows it to achieve

data rates well above the minimum required, providing significant benefits in terms of

124



both throughput and EE. The lower performance observed in the imperfect CSI case
further emphasizes the challenges posed by channel estimation errors but also
underscores the robustness of the proposed algorithm in handling such imperfections

while still delivering superior results.

The relation between the minimum required data rate and the system EE in both perfect
and imperfect CSI cases is shown in Figure 4.14 for the proposed multi-stage algorithm
as well as the GTPA algorithm and the conventional OMA. The distance and path loss
component parameters are unchanged while the number of the user devices in every cell
is assigned as M=4 and the transmission power is set to be P,=26 dBm. All users in the
cell are assumed to have the same minimum QoS, represented by the minimum accepted
data rate Ryuin. From Figure 4.14, it can be seen that EE is higher in the proposed algorithm
compared to the conventional OMA at all different required QoS. The allocated power to
the stronger user in the proposed algorithm is relatively low compared to the OMA system
to attain the minimum data rate. Therefore, the allowable transmission power is capable

to serve more users even at high R

It appears that the GTPA algorithm is better suited for achieving an optimal data rate,
whereas the proposed multi-stage algorithm is designed to optimize EE. The key insight
from the results is that in the proposed multi-stage algorithm, the allocated power to the
stronger user is kept relatively low compared to the OMA system. This is crucial because
it allows the system serving more users at higher required data rates. By conserving power
while still meeting the minimum QoS requirements for each user, the proposed algorithm

optimizes EE, which is particularly beneficial in power-constrained environments.
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This contrasts with OMA, where higher transmission power is typically required to
ensure that all users can meet their data rate requirements, leading to increased energy
consumption and reduced efficiency. When comparing the proposed multi-stage
algorithm with the GTPA algorithm, it becomes evident that while the GTPA algorithm
is more effective at achieving higher data rates, the proposed multi-stage algorithm is

specifically designed to optimize EE.
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Figure 4.14: Energy efficiency vs. minimum required data rate, in perfect CSI
case and imperfect CSI case (o,” =0.01).

This trade-off between maximizing data rate and optimizing energy efficiency is a key
consideration in communication system design. In scenarios where energy efficiency is a
critical concern (such as in battery-powered or power-limited systems), the proposed
algorithm would likely be the better choice. However, in systems where maximizing data
rate is the primary goal, the GTPA algorithm might be more suitable, as it can achieve

higher throughput, albeit at the cost of increased power consumption. The data rate in the
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OMA system is zero for any device if the transmission power is not sufficiently high to
achieve the minimum QoS of that device (Ruin 1s 3.5 b/s/Hz and 2.5 b/s/Hz in perfect and
imperfect CSI OMA systems, respectively). This limitation further emphasizes the
importance of efficient power allocation and the advantages of using algorithms like the
proposed multi-stage method that optimize both energy efficiency and data rate without
over-relying on high transmission power. In conclusion, the proposed multi-stage
algorithm provides a clear benefit in terms of energy efficiency, particularly when dealing
with high user density and stringent power constraints. While it may not achieve the
maximum data rate compared to GTPA, its ability to maintain acceptable QoS at lower
power consumption makes it an attractive choice for energy-efficient communication
systems. The results highlight the importance of considering both data rate and energy
efficiency when selecting an algorithm, as these factors are often in tension and must be

balanced based on the specific goals of the system.

Figure 4.15 presents the effect of the channel estimation error on EE for a variety
number of user devices. Here, Rnin=1 b/s/Hz, number of users in each cell is set to M =
{2 and 5}, and o? is varied from 0 to 0.4. The transmission power is set to 20 dBm where
the EE is maximized in the perfect CSI case. It is evident from Figure 4.15 that the
maximum EE is obtained at zero error (perfect CSI), and an increase in the channel
estimation error causes a decrease in EE due to the reduction in the SINR level.
Moreover, a rise in the number of user devices number will decrease the EE. This trend
is consistent with the general expectation that channel estimation errors cause additional
interference, reducing the signal quality for each user and thus lowering the overall
system performance. The observed degradation in EE is a direct consequence of the
imperfect CSI, where the lack of accurate channel knowledge at the base station results
in suboptimal power allocation. When channel estimation is inaccurate, PA decisions

are less effective, leading to inefficient utilization of the available power resources.
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Another important observation is the effect of user density on the EE. As the number of
users in the cell increases (from M =2 to M = 5), the EE decreases. This can be attributed
to the increased complexity of managing power allocation across more users. With more
users, the system has to allocate power in a way that meets the minimum QoS for each
user while maintaining overall system efficiency. However, as the number of users
increases, the available transmission power has to be shared, leading to reduced power
per user and a corresponding decrease in the EE. Furthermore, the results show that
NOMA outperforms the conventional OMA system in terms of EE in the presence of

imperfect CSI.

This highlights one of the key advantages of NOMA: its ability to serve multiple
users with the same time-frequency resources by optimizing power allocation. In the
case of imperfect CSI, the NOMA system can still provide higher EE than OMA by
utilizing power allocation strategies that are more adaptable to the available but
imperfect channel information. Additionally, the results show that for M = 2, the system
achieves better EE than for higher values of M (i.e., when more signals are combined).
This is because, with two signals, the PA process is simpler and more efficient, as there
are fewer users competing for the available power. The PA can be optimized more
effectively, even with imperfect CSI. However, when M > 2, the system becomes more
complex, and the allocation of power to multiple users becomes less effective,
particularly under imperfect CSI conditions. The increased number of users introduces
more interference and reduces the ability of the system to make optimal power allocation

decisions, thus leading to a lower EE.
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Figure 4.15: Energy efficiency vs. channel estimation error values for various
number of user devices.

The analysis of outage probability, presented in Figure 4.16, provides valuable
insights into the performance of the proposed multi-stage game theoretic algorithm,
GTPA, and the conventional OMA under varying transmission power and channel
estimation errors. The results illustrate a key finding: the outage probability decreases
with increasing transmission power, which is consistent with the derived outage
probability formula in Equation (3.85). As transmission power is increased, the signal
strength improves, which leads to a lower probability of outage and better chances of
successful communication for the users. The proposed multi-stage game theoretic
algorithm outperforms both the GTPA and OMA across all scenarios (perfect and
imperfect CSI). This is particularly noticeable in the cell edge user's SINR improvement,
which directly contributes to the lower outage probability. For example, in the imperfect
CSI case at 20 dBm, the multi-stage algorithm reduces the outage probability by

approximately 10% compared to GTPA and 25% compared to OMA. This
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outperformance can be attributed to the algorithm’s ability to optimize resource
allocation more effectively, even in the presence of imperfect channel information.

However, the impact of channel estimation errors on system performance is also evident.

As the channel estimation error increases, the outage probability rises significantly. For

instance, at 20 dBm, the outage probability increases from 0.05 to around 0.6 when the

channel estimation error rises from zero to 6> = 0.01. This highlights the critical role of

accurate CSI in achieving optimal system performance.
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When CSI is imperfect, the base station lacks precise information about the channel

conditions, leading to suboptimal resource allocation. This can result in over-allocating

resources to some users while others may experience inadequate resource allocation,

causing higher interference and an increased likelihood of transmission failures. The
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increased outage probability in systems with imperfect CSI is largely due to the inability
of the system to adapt effectively to changing channel conditions. Since resource
allocation decisions are based on erroneous channel state information, the system may
allocate insufficient power to users in poor channel conditions or allocate excessive
power to users with better conditions, both of which can lead to inefficiencies and higher
outage probabilities. In summary, while the multi-stage algorithm demonstrates
significant improvements in outage probability over the other algorithms, the results
underscore the importance of accurate CSI for optimal resource allocation. In the
presence of imperfect CSI, the system struggles with suboptimal power allocation,
leading to higher outage probabilities and reduced system performance. This analysis
emphasizes the need for more robust channel estimation techniques to minimize the
adverse effects of channel estimation errors and improve the overall reliability of the

system.

The findings of this research effectively address the key objectives outlined for
optimizing resource allocation in DL NOMA systems. First, the proposed power
allocation mechanisms, grounded in game theory and GAs, demonstrate efficient
resource distribution despite limited system resources, while accounting for user
terminal threshold levels to maintain practical power allocation. Second, the use of game
theory and GAs to solve non-concave optimization problems for data rate and energy
efficiency showcases their ability to navigate complex solution spaces, offering
significant improvements over traditional methods. Finally, performance evaluations
under both perfect and imperfect CSI conditions confirm that the developed mechanisms
enhance sum data rate and energy efficiency, ensuring robust system performance with
minimal outage probability across various network configurations. The following points

highlight how the research findings address each objective, demonstrating the
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effectiveness of the proposed power allocation mechanisms in optimizing performance

in DL NOMA systems.

1. Objective 1: Power Allocation Mechanisms:

The findings demonstrate that the power allocation mechanisms based on game theory
and GAs effectively manage resource distribution in NOMA systems, optimizing power
use despite limited resources. The inclusion of user terminal threshold levels was critical
to ensuring that the power allocation remains within practical limits while optimizing

system performance.

2. Objective 2: Non-Concave Optimization:

The research findings highlight how the combination of game theory and GAs helps
navigate the non-concave nature of data rate and energy efficiency optimization. By
modeling user interactions strategically and leveraging GAs to explore the solution space,
your results show that these methods provide effective solutions, leading to better overall

system performance compared to traditional methods.

3. Objective 3: Performance Evaluation:

The results indicate that the proposed power allocation mechanisms significantly
enhance the sum data rate and energy efficiency in both single-cell and multi-cell NOMA
networks. In both perfect and imperfect CSI cases, the system performance remains
robust, with low outage probability, proving the effectiveness of the proposed

mechanisms across different conditions.
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CHAPTER 5: CONCLUSION AND RECOMMENDATION FOR FUTURE
WORKS

5.1 Conclusion

The objectives of this research have been successfully achieved through a systematic
and comprehensive approach. The proposed methodologies, utilizing game theory and
genetic algorithms, have addressed the challenges in power allocation for NOMA

networks. Each objective and its corresponding achievements are summarized as follows:

Objective 1: Development of power allocation mechanisms

This research successfully developed power allocation mechanisms that leverage
game theory and genetic algorithms to improve energy efficiency and data rate
performance in DL NOMA systems. The game-theoretic approach formulated resource
allocation as strategic interactions among users, achieving fairness and efficiency in
power distribution. The proposed algorithms outperformed conventional methods by
effectively balancing resource utilization and QoS, ensuring scalability for real-world

applications.

Objective 2: Analysis of non-convex optimization problems

A detailed analysis of non-convex optimization problems related to EE and data rates
was conducted. The study particularly focused on scenarios with imperfect CSI, where
conventional optimization methods often fail. The innovative use of GA provided robust
solutions to these challenges, demonstrating the adaptability and effectiveness of the

proposed methods under varying network conditions.

Objective 3: Performance evaluation of power allocation algorithms

Extensive simulations were carried out to evaluate the performance of the proposed
algorithms. Key metrics, such as energy efficiency, outage probability, and average data

rate, were analyzed. The results highlighted significant improvements compared to
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traditional OMA systems. For instance, the genetic algorithm-based methods enhanced
energy efficiency by up to 75% and reduced outage probabilities by 25% under
challenging conditions. The integration of NOMA with advanced technologies, such as

mmWave, further demonstrated the adaptability and scalability of the proposed strategies.

This research has provided a comprehensive framework for power allocation in
NOMA networks, addressing critical challenges in energy efficiency and data rate
optimization. The integration of NOMA and mmWaves has set a foundation for future
advancements in next-generation wireless communication systems, supporting the
evolution from 5G to 6G networks. The findings contribute to the body of knowledge in

the field and offer practical solutions for implementing NOMA in real-world scenarios.

In sum, the research objectives were not only met but exceeded expectations through
innovative methodologies and rigorous evaluation. The results affirm the potential of the
proposed approaches to revolutionize resource management in NOMA networks, paving
the way for more sustainable and efficient wireless communication technologies in the

future.

5.2 Significance of the study

The novelty and significance of this research lie in its innovative approach to
addressing critical challenges in resource management for NOMA-based wireless
communication networks. This study makes unique contributions through the following

aspects:

e Integration of game theory and GA: The research proposes game-theoretic
models and genetic algorithms to develop novel power allocation
mechanisms that address both fairness and efficiency. While game theory

provides a strategic framework for resource allocation, genetic algorithms are
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employed to solve complex non-convex optimization problems, enabling
robust and efficient solutions under varying network conditions.

Addressing imperfect CSI challenges: This study pioneers the analysis of
resource allocation strategies in scenarios involving imperfect CSI. By
accounting for real-world conditions where perfect CSI is often unattainable,
the proposed algorithms demonstrate enhanced adaptability and robustness,
ensuring optimal performance in dynamic and uncertain environments.
Focus on energy efficiency and data rate optimization: Unlike traditional
methods, this research prioritizes both EE and data rate optimization as dual
objectives. The proposed solutions achieve significant improvements in these
metrics, with EE enhancements of up to 75% and substantial reductions in
outage probabilities, making them highly relevant for sustainable 5G and
beyond networks.

Application to advanced technologies: The integration of NOMA with
emerging technologies such as mmWave is a groundbreaking aspect of this
research. This combination enhances the scalability and applicability of the
proposed methods, paving the way for their adoption in future
communication systems, including 6G networks.

Comprehensive evaluation and validation: The research employs extensive
simulations to validate the proposed algorithms across diverse scenarios,
including single-cell and multi-cell networks. By comparing the performance
with conventional OMA systems, the study highlights the superiority of
NOMA in terms of EE, data rates, and robustness.

Practical implications and contributions to the field: This study provides
actionable insights and practical solutions for implementing NOMA in real-

world scenarios. By addressing critical challenges and demonstrating the
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effectiveness of the proposed methods, this research contributes to advancing
the state-of-the-art in resource management for next-generation wireless

communication networks.

By addressing these three objectives, this thesis contributes a comprehensive solution
to the resource allocation problem in DL NOMA cellular systems. The proposed
mechanisms provide equitable and efficient resource distribution while optimizing
critical performance metrics like data rate and EE. The findings collectively advance the
understanding of NOMA system performance, especially in realistic scenarios involving
imperfect CSI, and provide practical methods for resource allocation in modern cellular
networks. In summary, the novelty of this study lies in its innovative methodologies and
focus on real-world challenges, while its significance is underscored by the impactful

contributions to both theory and practice in the field of wireless communications.

5.3 Recommendations for future works

The introduction of 6G technology holds the potential to bring about revolutionary
improvements in energy efficiency and data rates in the rapidly evolving field of wireless
communications. Leading this change have been NOMA systems, which are renowned
for their capacity to support numerous users on the same time-frequency resource.
Looking ahead, the combination of GA, as an Al methodology, with NOMA's
cooperation with other emerging technologies opens a door to previously unimaginable

possibilities.

Despite their high computational cost, genetic algorithms have shown to be very useful
for improving NOMA systems. They are a great option because of their capacity to search
through large solution spaces and identify the best configurations. Their primary
disadvantage, though, is the amount of time needed for operations. Researchers are

looking into creative ways to apply GA's results to address this challenge. In the field of
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optimization, artificial intelligence, especially machine learning techniques, appears to be
revolutionary. Al algorithms can be quickly trained to predict ideal configurations by
utilizing GA-generated data. The quantity of data that GA provides can be processed by
neural networks, reinforced learning, and deep learning techniques to produce effective,
real-time solutions that drastically cut down on the amount of time needed for
optimization. Future 6G technology research projects should concentrate on combining
the outcomes of GA with Al algorithms to establish a mutually beneficial relationship
between prediction and optimization. Al models can be trained on historical GA data,
which enables researchers to quickly and reliably predict the best NOMA configurations.
This combination of prediction and optimization provides a real-time adaptive method
for allocating resources in NOMA systems. Advantages of the combined methods

include:

1. Shorter Operation Time: The time needed for optimization is greatly reduced
when Al models trained on GA data are used. It becomes possible to adapt in
real-time to changing network conditions, guaranteeing peak performance
constantly.

i1. Enhanced Energy Efficiency: Rapid optimization results in less energy being
used when allocating resources. Proactive adjustments are made possible by
Al-driven predictions, guaranteeing energy-efficient operations even in
dynamic network environments.

iii. Increased Data Rates: The hybrid GA-AI approach's optimal resource
allocation guarantees increased data rates and better spectral efficiency.
Customers benefit from quicker, more dependable connections that easily

handle the demands of bandwidth-intensive applications.

The combination of NOMA, and genetic algorithms is a shining example of

innovation. Through the utilization of Al's predictive power and GA's optimization
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capabilities, researchers can achieve unprecedented levels of efficiency and performance
for NOMA systems. This collaboration not only tackles present issues but also sets the
stage for wireless communication to become adaptive and intelligent in the future, in
addition to being quick and dependable. In addition to bringing about a paradigm change
in optimization techniques, the era of 6G signals the arrival of a time when intelligence

and efficiency coexist peacefully in the wireless communications industry.

There is significant potential to build on the advancements made in this study by
exploring the integration of NOMA with emerging 6G technologies, such as terahertz
communication and intelligent reflecting surfaces, to further enhance EE and SE.
Additionally, future research could delve deeper into Al-driven optimization techniques,
such as deep reinforcement learning and federated learning, to address resource allocation
challenges in highly dynamic and ultra-dense networks. These methods could provide
more robust and scalable solutions that adapt to the unique demands of 6G, including
ultra-low latency and massive connectivity for diverse IoT applications. The exploration
of hybrid approaches that combine NOMA with other multiple access schemes, such as
orthogonal time-frequency-space), could also be a fruitful direction, enabling even greater
performance gains in complex communication scenarios. Moreover, further refinement
of power allocation mechanisms under real-world conditions, such as imperfect CSI in
heterogeneous networks, would provide practical insights for deploying these strategies
in large-scale 6G environments.

These potential research directions build upon the foundational work presented in this

thesis, offering pathways to address the evolving challenges and opportunities in next-
generation wireless communication systems

139



REFERENCES

Abozariba, R., Naecem, M. K., Patwary, M., Seyedebrahimi, M., Bull, P., & Aneiba, A.
(2019). NOMA-Based Resource Allocation and Mobility Enhancement

Framework for IoT in Next Generation Cellular Networks. /[EEE Access, 7,
29158-29172. doi:10.1109/ACCESS.2019.2896008

Aghdam, M. R. G., Tazehkand, B. M., & Abdolee, R. (2022). Joint Optimal Power
Allocation and Beamforming for MIMO-NOMA in mmWave Communications.
IEEE Wireless Communications Letters, 11(5), 938-941.
doi:10.1109/LWC.2022.3150217

Agiwal, M., Roy, A., & Saxena, N. (2016). Next Generation 5G Wireless Networks: A
Comprehensive Survey. IEEE Communications Surveys & Tutorials, 18(3), 1617-
1655. doi:10.1109/COMST.2016.2532458

Ahn, S., Kim, J., Park, S. Y., & Cho, S. (2021). Explaining Deep Learning-Based Traffic
Classification Using a Genetic Algorithm. [EEE Access, 9, 4738-4751.
doi:10.1109/ACCESS.2020.3048348

Al-Abbasi, Z. Q., & So, D. K. C. (2017). Resource Allocation in Non-Orthogonal and
Hybrid Multiple Access System With Proportional Rate Constraint. /EEE
Transactions  on Wireless =~ Communications, 16(10),  6309-6320.
doi:10.1109/TWC.2017.2721936

Alajmi, A., Fayaz, M., Ahsan, W., & Nallanathan, A. (2023). Semi-Centralized
Optimization for Energy Efficiency in [oT Networks With NOMA. /[EEE Wireless
Communications Letters, 12(2), 366-370. doi:10.1109/LWC.2022.3227135

Aldebes, R., Dimyati, K., & Hanafi, E. (2019). Game-theoretic power allocation
algorithm for downlink NOMA cellular system. Electronics Letters, 55(25), 1361-
1364. doi:10.1049/€1.2019.2095

Ali, K. S., Haenggi, M., ElSawy, H., Chaaban, A., & Alouini, M. (2019). Downlink Non-
Orthogonal Multiple Access (NOMA) in Poisson Networks. /[EEE Transactions
on Communications, 67(2), 1613-1628. doi:10.1109/TCOMM.2018.2877328

Ali, M. S., Hossain, E., Al-Dweik, A., & Kim, D. 1. (2018). Downlink Power Allocation
for CoMP-NOMA in Multi-Cell Networks. [EEE Transactions on
Communications, 66(9), 3982-3998. doi:10.1109/TCOMM.2018.2831206

Ali, M. S., Hossain, E., & Kim, D. L. (2018). Coordinated Multipoint Transmission in
Downlink Multi-Cell NOMA Systems: Models and Spectral Efficiency
Performance. IEEE Wireless Communications, 25(2), 24-31.
doi:10.1109/MWC.2018.1700094

Ali, M. S., Tabassum, H., & Hossain, E. (2016). Dynamic User Clustering and Power

Allocation for Uplink and Downlink Non-Orthogonal Multiple Access (NOMA)
Systems. IEEE Access, 4, 6325-6343. doi:10.1109/ACCESS.2016.2604821

140



Aloqaily, M., Elayan, H., & Guizani, M. (2023). C-HealthIER: A Cooperative Health
Intelligent Emergency Response System for C-ITS. [EEE Transactions on
Intelligent Transportation Systems, 24(2), 2111-2121.
doi:10.1109/TITS.2022.3141018

Alsabah, M., Naser, M. A., Mahmmod, B. M., Abdulhussain, S. H., Eissa, M. R., Al-
Baidhani, A., . . . Hashim, F. (2021). 6G Wireless Communications Networks: A
Comprehensive Survey. IEEE Access, 9, 148191-148243.
doi:10.1109/ACCESS.2021.3124812

Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., & Zhang,
J. C. (2014). What Will 5G Be? [EEE Journal on Selected Areas in
Communications, 32(6), 1065-1082. doi:10.1109/JSAC.2014.2328098

Arzykulov, S., Tsiftsis, T. A., Nauryzbayev, G., & Abdallah, M. (2019). Outage
Performance of Cooperative Underlay CR-NOMA With Imperfect CSI. /IEEE
Communications Letters, 23(1), 176-179. doi:10.1109/LCOMM.2018.2878730

Asif, M., Thsan, A., Khan, W. U., Ranjha, A., Zhang, S., & Wu, S. X. (2023). Energy-
Efficient Backscatter-Assisted Coded Cooperative NOMA for B5G Wireless
Communications. [EEE Transactions on Green Communications and

Networking, 7(1), 70-83. doi:10.1109/TGCN.2022.3216209

Bai, W., Yao, T., Zhang, H., & Leung, V. C. M. (2019). Research on Channel Power
Allocation of Fog Wireless Access Network Based on NOMA. [EEE Access, 7,
32867-32873. doi:10.1109/ACCESS.2019.2901740

Budhiraja, I., Kumar, N., Tyagi, S., Tanwar, S., Han, Z., Piran, M. J., & Suh, D. Y. (2021).
A Systematic Review on NOMA Variants for 5G and Beyond. /IEEE Access, 9,
85573-85644. doi:10.1109/ACCESS.2021.3081601

Cao, S., & Hou, F. (2023). On the Mathematical Modeling and Optimization for the
Energy Efficiency Performance of CSMA-NOMA Random Access Networks

With Channel Inversion. IEEE Transactions on Wireless Communications, 22(4),
2867-2884. doi:10.1109/TWC.2022.3215227

Celik, A., Tsai, M., Radaydeh, R. M., Al-Qahtani, F. S., & Alouini, M. (2019). Distributed
Cluster Formation and Power-Bandwidth Allocation for Imperfect NOMA in DL-
HetNets. [EEE Transactions on Communications, 67(2), 1677-1692.
doi:10.1109/TCOMM.2018.2879508

Chen, L., Hu, B., Xu, G., & Chen, S. (2021). Energy-Efficient Power Allocation and
Splitting for mmWave Beamspace MIMO-NOMA With SWIPT. [EEE Sensors
Journal, 21(14), 16381-16394. doi:10.1109/JSEN.2021.3076517

Chen, S., Liang, Y., Sun, S., Kang, S., Cheng, W., & Peng, M. (2020). Vision,
Requirements, and Technology Trend of 6G: How to Tackle the Challenges of
System Coverage, Capacity, User Data-Rate and Movement Speed. /EEE
Wireless Communications, 27(2), 218-228.

Chen, X., Jia, R., & Ng, D. W. K. (2019). On the Design of Massive Non-Orthogonal
Multiple Access With Imperfect Successive Interference Cancellation. /EEE

141



Transactions on Communications, 67(3), 2539-2551.
doi:10.1109/TCOMM.2018.2884476

Chen, Y., Zhu, Q., Guo, C., Yuan, Y., & Feng, C. (2023). Combination of Throughput-
Optimal Scheduling and Network Utility Maximization in NOMA Systems With
Flow-Level Dynamics. IEEE Transactions on Vehicular Technology, 72(11),
14573-14588. do0i:10.1109/TVT.2023.3287282

Choi, J. (2016). Power Allocation for Max-Sum Rate and Max-Min Rate Proportional
Fairness in NOMA. [EEE Communications Letters, 20(10), 2055-2058.
doi:10.1109/LCOMM.2016.2596760

Chopra, R., Murthy, C. R., Suraweera, H. A., & Larsson, E. G. (2019). Analysis of
Nonorthogonal Training in Massive MIMO Under Channel Aging With SIC
Receivers.  [EEE  Signal  Processing  Letters,  26(2),  282-286.
doi:10.1109/LSP.2018.2889955

Chraiti, M., Ghrayeb, A., & Assi, C. (2018). A NOMA Scheme for a Two-User MISO
Downlink Channel With Unknown CSIT. IEEE Transactions on Wireless
Communications, 17(10), 6775-6789. doi:10.1109/TWC.2018.2864215

Cui, J., Ding, Z., & Fan, P. (2016). A Novel Power Allocation Scheme Under Outage
Constraints in NOMA Systems. /[EEE Signal Processing Letters, 23(9), 1226-
1230. doi:10.1109/LSP.2016.2591561

Deb, K. (2000). An efficient constraint handling method for genetic algorithms.
Computer methods in applied mechanics and engineering, 186(2-4), 311-338.

Deep, K., Singh, K. P., Kansal, M. L., & Mohan, C. (2009). A real coded genetic
algorithm for solving integer and mixed integer optimization problems. Applied
Mathematics and Computation, 212(2), 505-518.

Derawi, M., Dalveren, Y., & Cheikh, F. A. (2020, 2-16 June 2020). Internet-of-Things-
Based Smart Transportation Systems for Safer Roads. Paper presented at the 2020
IEEE 6th World Forum on Internet of Things (WF-IoT).

Ding, Q., Zhu, R., Liu, H., & Ma, M. J. E. (2021). An overview of machine learning-
based energy-efficient routing algorithms in wireless sensor networks. /0(13),
1539.

Ding, Z., Fan, P., & Poor, H. V. (2016). Impact of User Pairing on 5G Nonorthogonal
Multiple-Access Downlink Transmissions. /[EEE Transactions on Vehicular
Technology, 65(8), 6010-6023. doi:10.1109/TVT.2015.2480766

Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. K. (2017).
A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research
Challenges and Future Trends. [EEE Journal on Selected Areas in
Communications, 35(10), 2181-2195. doi:10.1109/JSAC.2017.2725519

Dulout, R., Mendiboure, L., Pousset, Y., Deniau, V., & Launay, F. (2023). Non-

Orthogonal Multiple Access for Offloading in Multi-Access Edge Computing: A
Survey. IEEE Access, 11, 118983-119016. doi:10.1109/ACCESS.2023.3326846

142



Elbakry, M. S., Amer, A. A., & Ismail, T. (2023). Enhancing Performance of Downlink
NOMA-Based C-RAN Topology Through Optimal User Pairing and Dynamic
Power  Allocation Scheme. I[EEE  Access, 11, 111324-111334.
doi:10.1109/ACCESS.2023.3322231

Fang, F., Cheng, J., & Ding, Z. (2019). Joint Energy Efficient Subchannel and Power
Optimization for a Downlink NOMA Heterogeneous Network. [EEE
Transactions on Vehicular Technology, 68(2), 1351-1364.
doi:10.1109/TVT.2018.2881314

Fang, F., Zhang, H., Cheng, J., Roy, S., & Leung, V. C. M. (2017). Joint User Scheduling
and Power Allocation Optimization for Energy-Efficient NOMA Systems With
Imperfect CSI. IEEE Journal on Selected Areas in Communications, 35(12),
2874-2885. doi:10.1109/JSAC.2017.2777672

Fei, F., Shutian, L., Anjon, B., Quanyan, Z., Christopher, D. K., & Charles, A. K. (2021).
Introduction to Game Theory. In Game Theory and Machine Learning for Cyber
Security (pp. 21-46): IEEE.

Fu, Y., Salaiin, L., Sung, C. W., & Chen, C. S. (2018). Subcarrier and Power Allocation
for the Downlink of Multicarrier NOMA Systems. /EEE Transactions on
Vehicular Technology, 67(12), 11833-11847. doi:10.1109/TVT.2018.2875601

Ghosh, J., Sharma, V., Haci, H., Singh, S., & Ra, I. H. (2021). Performance Investigation
of NOMA Versus OMA Techniques for mmWave Massive MIMO
Communications. IEEE Access, 9, 125300-125308.
doi:10.1109/ACCESS.2021.3102301

Gkonis, P. K., Trakadas, P. T., & Sarakis, L. E. (2020). Non-Orthogonal Multiple Access
in Multiuser MIMO Configurations via Code Reuse and Principal Component
Analysis. 9(8), 1330.

Glei, N., & Chibani, R. B. (2019, 24-26 March 2019). Power Allocation for Energy-
Efficient Downlink NOMA Systems. Paper presented at the 2019 19th International
Conference on Sciences and Techniques of Automatic Control and Computer
Engineering (STA).

Guo, Y., Fang, F., Cai, D., & Ding, Z. (2023). Energy-Efficient Design for a NOMA
Assisted STAR-RIS Network With Deep Reinforcement Learning. [EEE
Transactions on Vehicular Technology, 72(4), 5424-5428.
doi:10.1109/TVT.2022.3224926

Guo, Y. Y., Tan, X. L., Gao, Y., Yang, J., & Rui, Z. C. (2023). A Deep Reinforcement
Approach for Energy-Efficient Resource Assignment in Cooperative NOMA-
Enhanced Cellular Networks. IEEE Internet of Things Journal, 10(14), 12690-
12702. doi:10.1109/J10T.2023.3253129

Hou, T., Liu, Y., Sun, X., Song, Z., Chen, Y., & Hou, J. (2020, 7-11 June 2020). Massive

NOMA Enhanced lIoT Networks with Partial CSI. Paper presented at the ICC 2020
- 2020 IEEE International Conference on Communications (ICC).

143



Huang, J., Huang, S., Xing, C. C., & Qian, Y. (2018). Game-Theoretic Power Control
Mechanisms for Device-to-Device Communications Underlaying Cellular

System.  [EEE  Transactions  on Vehicular ~ Technology, 1-1.
doi:10.1109/TVT.2018.2800051

Huang, T., Yang, W., Wu, J., Ma, J., Zhang, X., & Zhang, D. (2019). A Survey on Green
6G Network: Architecture and Technologies. IEEE Access, 7, 175758-175768.
doi:10.1109/ACCESS.2019.2957648

Ihsan, A., Chen, W., Zhang, S., & Xu, S. (2022). Energy-Efficient NOMA Multicasting
System for Beyond 5G Cellular V2X Communications With Imperfect CSI. [EEE

Transactions on Intelligent Transportation Systems, 23(8), 10721-10735.
doi:10.1109/TITS.2021.3095437

Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K. (2017). Power-Domain Non-
Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges.
IEEE  Communications  Surveys &  Tutorials,  19(2), 721-742.
doi:10.1109/COMST.2016.2621116

Islam, S. M. R., Zeng, M., Dobre, O. A., & Kwak, K. (2018). Resource Allocation for
Downlink NOMA Systems: Key Techniques and Open Issues. IEEE Wireless
Communications, 25(2), 40-47. doi:10.1109/MWC.2018.1700099

Jinho, C. (2022). Game-Theoretic Perspective of NOMA-Based Random Access. In
Massive Connectivity: Non-Orthogonal Multiple Access to High Performance
Random Access (pp. 139-165): IEEE.

Joshi, K., Rastogi, R., Singh, A., Kaushik, V., Anandaram, H., & Kumar, A. (2023, 6-8
July 2023). Effect on Public Health Due to Environment Condition- Role of IoT.
Paper presented at the 2023 14th International Conference on Computing
Communication and Networking Technologies (ICCCNT).

Kan, T. Y., Chang, R. Y., Chien, F. T., Chen, B. J., & Poor, H. V. (2023). Hybrid Relay
and Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems. /IEEE
Transactions on Vehicular Technology, 72(6), 7653-7668.
doi:10.1109/TVT.2023.3243489

Kassir, A., Dziyauddin, R. A., Kaidi, H. M., & Izhar, M. A. M. (2018, 24-26 July 2018).
Power Domain Non Orthogonal Multiple Access: A Review. Paper presented at
the 2018 2nd International Conference on Telematics and Future Generation
Networks (TAFGEN).

Kebede, T., Wondie, Y., Steinbrunn, J., Kassa, H. B., & Kornegay, K. T. (2022). Multi-
Carrier Waveforms and Multiple Access Strategies in Wireless Networks:
Performance, Applications, and Challenges. /IEEE Access, 10, 21120-21140.
doi:10.1109/ACCESS.2022.3151360

Khan, W. U., Li, X., Zeng, M., & Dobre, O. A. (2021). Backscatter-Enabled NOMA for

Future 6G Systems: A New Optimization Framework under Imperfect SIC. /EEE
Communications Letters, 1-1. doi:10.1109/LCOMM.2021.3052936

144



Khan, W. U., Yu, Z., Yu, S., Sidhu, G. A. S., & Liu, J. (2019). Efficient power allocation
in downlink multi-cell multi-user NOMA networks. IET Communications, 13(4),
396-402. doi:10.1049/iet-com.2018.5251

Khazali, A., Bozorgchenani, A., Tarchi, D., Shayesteh, M. G., & Kalbkhani, H. (2023).
Joint Task Assignment, Power Allocation and Node Grouping for Cooperative
Computing in NOMA-mmWave Mobile Edge Computing. /[EEE Access, 11,
93664-93678. doi:10.1109/ACCESS.2023.3309628

Klimentyev, V. P., & Sergienko, A. B. (2016, 18-22 April 2016). Detection of SCMA
signal with channel estimation error. Paper presented at the 2016 18th Conference
of Open Innovations Association and Seminar on Information Security and
Protection of Information Technology (FRUCT-ISPIT).

Kumar, V., Hanif, M. F., Juntti, M., & Tran, L. N. (2023). A Max-Min Task Offloading
Algorithm for Mobile Edge Computing Using Non-Orthogonal Multiple Access.
IEEE  Transactions on Vehicular Technology, 72(9), 12332-12337.
doi:10.1109/TVT.2023.3263791

Kumaresan, S. P., Tan, C. K., & Ng, Y. H. (2021). Extreme Learning Machine (ELM) for
Fast User Clustering in Downlink Non-Orthogonal Multiple Access (NOMA) 5G
Networks. IEEE Access, 9,130884-130894. doi:10.1109/ACCESS.2021.3114619

Kunst, R., Avila, L., Pignaton, E., Bampi, S., & Rochol, J. (2018). Improving network
resources allocation in smart cities video surveillance. Computer Networks, 134,
228-244. do01:10.1016/j.comnet.2018.01.042

Lamba, A. K., Kumar, R., & Sharma, S. (2019). Auction-based power allocation for
downlink non-orthogonal multiple access systems. Electronics Letters, 55(7),
420-422. doi:10.1049/el.2018.7544

Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2016). Power and Channel Allocation for Non-
Orthogonal Multiple Access in 5G Systems: Tractability and Computation. /[EEE
Transactions  on Wireless ~ Communications, 15(12),  8580-8594.
doi:10.1109/TWC.2016.2616310

Li, C., Zhang, Q., Li, Q., & Qin, J. (2016). Price-Based Power Allocation for Non-
Orthogonal Multiple Access Systems. I[EEE Wireless Communications Letters,
5(6), 664-667. doi:10.1109/LWC.2016.2613972

Li, L., Ota, K., Dong, M., & Verikoukis, C. (2018, 9-13 Dec. 2018). Enabling 60 GHz
Seamless Coverage for Mobile Devices: A Motion Learning Approach. Paper
presented at the 2018 IEEE Global Communications Conference (GLOBECOM).

Liesegang, S., Zappone, A., Muioz, O., & Pascual-Iserte, A. (2023). Rate Optimization
for RIS-Aided mMTC Networks in the Finite Blocklength Regime. /EEE
Communications Letters, 27(3), 921-925. doi:10.1109/LCOMM.2022.3231717

Liu, G., Wang, R., Zhang, H., Kang, W., Tsiftsis, T. A., & Leung, V. C. M. (2018). Super-
Modular Game-Based User Scheduling and Power Allocation for Energy-
Efficient NOMA Network. IEEE Transactions on Wireless Communications,
17(6), 3877-3888. doi:10.1109/TWC.2018.2817194

145



Liu, R., Lee, M., Yu, G., & Li, G. Y. (2020). User Association for Millimeter-Wave
Networks: A Machine Learning Approach. [EEE Transactions on
Communications, 68(7), 4162-4174. doi:10.1109/TCOMM.2020.2983036

Liu, R., Yang, P., & Liu, J. (2021). A dynamic multi-objective optimization evolutionary
algorithm for complex environmental changes. Knowledge-Based Systems, 216,
106612. doi:https://doi.org/10.1016/].knosys.2020.106612

Liu, X., Ding, H., & Hu, S. (2021). Uplink Resource Allocation for NOMA -Based Hybrid
Spectrum Access in 6G-Enabled Cognitive Internet of Things. /EEE Internet of
Things Journal, 8(20), 15049-15058. doi:10.1109/JI0T.2020.3007017

Liu, Y., Fang, X., Xiao, M., & Mumtaz, S. (2018). Decentralized Beam Pair Selection in
Multi-Beam  Millimeter-Wave  Networks. [EEE  Transactions  on
Communications, 66(6), 2722-2737. doi:10.1109/TCOMM.2018.2800756

Luo, J., Tang, J., So, D. K. C., Chen, G., Cumanan, K., & Chambers, J. A. (2019). A Deep
Learning-Based Approach to Power Minimization in Multi-Carrier NOMA With
SWIPT. IEEE Access, 7, 17450-17460. doi:10.1109/ACCESS.2019.2895201

Luong, N. C., Wang, P., Niyato, D., Liang, Y., Han, Z., & Hou, F. (2018). Applications
of Economic and Pricing Models for Resource Management in 5G Wireless

Networks: A Survey. [EEE Communications Surveys & Tutorials, 1-1.
doi:10.1109/COMST.2018.2870996

Ma, J., Liang, C., Xu, C., & Ping, L. (2017). On Orthogonal and Superimposed Pilot
Schemes in Massive MIMO NOMA Systems. /[EEE Journal on Selected Areas in
Communications, 35(12), 2696-2707. doi:10.1109/JSAC.2017.2726019

Mircea, E., Chen-Ching, L., & Abdel-Aty, E. (2016). Genetic Algorithms. In Advanced
Solutions in Power Systems: HVDC, FACTS, and Artificial Intelligence (pp. 845-
902): IEEE.

Mohammadi, R., Mashhadi, H. R., & Shahidehpour, M. (2019). Market-Based Customer
Reliability Provision in Distribution Systems Based on Game Theory: A Bi-Level
Optimization Approach. I[EEE Transactions on Smart Grid, 10(4), 3840-3848.
doi:10.1109/TSG.2018.2839598

Mokhtari, F., Mili, M. R., Eslami, F., Ashtiani, F., Makki, B., Mirmohseni, M., . . .
Svensson, T. (2019). Download Elastic Traffic Rate Optimization via NOMA
Protocols. IEEE Transactions on Vehicular Technology, 68(1), 713-727.
doi:10.1109/TVT.2018.2885001

Muhammed, A. J., Chen, H., Seid, A. M., Han, Z., & Yu, Q. (2023). Energy-Efficient
Resource Allocation for NOMA HetNets in Millimeter Wave Communications.
IEEE  Transactions on Wireless Communications, 22(6), 3790-3804.
doi:10.1109/TWC.2022.3221469

Nain, G., Das, S. S., & Chatterjee, A. (2018). Low Complexity User Selection With

Optimal Power Allocation in Downlink NOMA. IEEE Wireless Communications
Letters, 7(2), 158-161. doi:10.1109/LWC.2017.2762303

146


https://doi.org/10.1016/j.knosys.2020.106612

Ni, D., Hao, L., Tran, Q. T., & Qian, X. (2018). Transmit Power Minimization for
Downlink Multi-Cell Multi-Carrier NOMA Networks. IEEE Communications
Letters, 22(12), 2459-2462. doi:10.1109/LCOMM.2018.2872991

Nooh, H., Won, S., Ng, S. X., Sohail, M. F., Kim, M., & El-Hajjar, M. (2024). Optimal
User Pairing Strategy for Minimum Power Utilization in Downlink Non-

Orthogonal Multiple Access Systems. IEEE Open Journal of the Communications
Society, 5,4125-4137. doi:10.1109/0JCOMS.2024.3421382

Pan, Y., Yang, Y., & Li, W. (2021). A Deep Learning Trained by Genetic Algorithm to
Improve the Efficiency of Path Planning for Data Collection With Multi-UAV.
IEEFE Access, 9, 7994-8005. doi:10.1109/ACCESS.2021.3049892

Qi, X., Xie, G., & Liu, Y. (2022). Energy-Efficient Power Allocation in Multi-User
mmWave-NOMA Systems With Finite Resolution Analog Precoding. /EEE
Transactions on Vehicular Technology, 71(4), 3750-3759.
doi:10.1109/TVT.2021.3080387

Qiu, H., Gao, S., Chen, Y., & Tu, G. (2022). Energy-Efficient Rate Allocation for
NOMA-MEC Offloading Under Outage Constraints. /[EEE Communications
Letters, 26(11), 2710-2714. doi:10.1109/LCOMM.2022.3195767

Rezvani, S., Jorswieck, E. A., Joda, R., & Yanikomeroglu, H. (2022). Optimal Power
Allocation in Downlink Multicarrier NOMA Systems: Theory and Fast
Algorithms. IEEE Journal on Selected Areas in Communications, 40(4), 1162-
1189. doi:10.1109/JSAC.2022.3143237

Saetan, W., & Thipchaksurat, S. (2019, 10-13 July 2019). Application of Deep Learning
to Energy-Efficient Power Allocation Scheme for 5G SC-NOMA System with
Imperfect SIC. Paper presented at the 2019 16th International Conference on
Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON).

Sai, Z., Lu, C., Jiang, S., Shan, L., James, C., & Xiong, N. N. (2020). Energy Management
Optimization of Open-Pit Mine Solar Photothermal-Photoelectric Membrane
Distillation Using a Support Vector Machine and a Non-Dominated Genetic
Algorithm. IEEE Access, 8, 155766-155782.
doi:10.1109/ACCESS.2020.3017688

Santos, D. F. S., Perkusich, A., & Almeida, H. O. (2014, 15-18 Oct. 2014). Standard-
based and distributed health information sharing for mHealth IoT systems. Paper
presented at the 2014 IEEE 16th International Conference on e-Health
Networking, Applications and Services (Healthcom).

Shah, A. F. M. S., Qasim, A. N., Karabulut, M. A., Ilhan, H., & Islam, M. B. (2021).
Survey and Performance Evaluation of Multiple Access Schemes for Next-
Generation Wireless Communication Systems. /EEE Access, 9, 113428-113442.
doi:10.1109/ACCESS.2021.3104509

Shi, J., Yu, W., Ni, Q., Liang, W., Li, Z., & Xiao, P. (2019). Energy Efficient Resource
Allocation in Hybrid Non-Orthogonal Multiple Access Systems. I[EEE

147



Transactions on Communications, 67(5), 3496-3511.
doi:10.1109/TCOMM.2019.2893304

Song, X., Dong, L., Wang, J., Qin, L., & Han, X. (2019). Energy Efficient Power
Allocation for Downlink NOMA Heterogeneous Networks With Imperfect CSL
IEEFE Access, 7,39329-39340. doi:10.1109/ACCESS.2019.2906780

Song, Y., Xu, S., Sun, G., & Ai, B. (2023). Weighted Sum-Rate Maximization in Multi-
IRS-Aided Multi-Cell mmWave Communication Systems for Suppressing ICI.
IEEE  Transactions on Vehicular Technology, 72(8), 10234-10250.
doi:10.1109/TVT.2023.3255235

Souza, D. D. S., Vieira, R. F., Seruffo, M. C. D. R., & Cardoso, D. L. (2020). A Novel
Heuristic for Handover Priority in Mobile Heterogeneous Networks. [EEE
Access, 8,4043-4050. doi:10.1109/ACCESS.2019.2963069

Spantideas, S. T., Giannopoulos, A. E., Kapsalis, N. C., Kalafatelis, A., Capsalis, C. N.,
& Trakadas, P. (2021). Joint energy-efficient and throughput-sufficient
transmissions in 5G cells with deep Q-learning. Paper presented at the 2021 IEEE
International Mediterranean Conference on Communications and Networking
(MeditCom).

Sun, X., Yang, W., & Cai, Y. (2020). Secure Communication in NOMA-Assisted
Millimeter-Wave SWIPT UAV Networks. IEEE Internet of Things Journal, 7(3),
1884-1897.

Sun, Y., Ding, Z., Dai, X., & Dobre, O. A. (2019). On the Performance of Network
NOMA in Uplink CoMP Systems: A Stochastic Geometry Approach. [EEE
Transactions on Communications, 67(7), 5084-5098.
doi:10.1109/TCOMM.2019.2906307

Tim, R. (2020). Complexity Theory, Game Theory, and Economics: The Barbados
Lectures: now.

Vaezi, M., Schober, R., Ding, Z., & Poor, H. V. (2019). Non-Orthogonal Multiple Access:
Common Myths and Critical Questions. I[EEE Wireless Communications, 26(5),
174-180. doi:10.1109/MWC.2019.1800598

Vamvakas, P., Tsiropoulou, E. E., & Papavassiliou, S. (2019). On Controlling Spectrum
Fragility via Resource Pricing in 5G Wireless Networks. /[EEE Networking
Letters, 1(3), 111-115. doi:10.1109/LNET.2019.2921425

Van Hung, N., & Keller, A. A. (2021). Existence and generic stability conditions of
equilibrium points to controlled systems for n-player multiobjective generalized
games using the Kakutani—Fan—Glicksberg fixed-point theorem. Optimization
Letters, 1-17.

Vien, Q., Le, T. A., Barn, B., & Phan, C. V. (2016). Optimising energy efficiency of non-
orthogonal multiple access for wireless backhaul in heterogeneous cloud radio
access network. IET Communications, 10(18), 2516-2524. doi:10.1049/iet-
com.2016.0247

148



Wan, D., Wen, M., Ji, F., Yu, H., & Chen, F. (2018). Non-Orthogonal Multiple Access
for Cooperative Communications: Challenges, Opportunities, and Trends. /EEE
Wireless Communications, 25(2), 109-117. doi:10.1109/MWC.2018.1700134

Wang, J., Xu, H., Fan, L., Zhu, B., & Zhou, A. (2018). Energy-Efficient Joint Power and
Bandwidth Allocation for NOMA Systems. I[EEE Communications Letters, 22(4),
780-783. doi:10.1109/LCOMM.2018.2794521

Wang, K., Cui, J., Ding, Z., & Fan, P. (2019). Stackelberg Game for User Clustering and
Power Allocation in Millimeter Wave-NOMA Systems. [EEE Transactions on
Wireless Communications, 18(5), 2842-2857. doi:10.1109/TWC.2019.2908642

Wang, Q., Wang, W., Jin, S., Zhu, H., & Zhang, N. T. (2015). Quality-Optimized Joint
Source Selection and Power Control for Wireless Multimedia D2D

Communication Using Stackelberg Game. [EEE Transactions on Vehicular
Technology, 64(8), 3755-3769. doi:10.1109/TVT.2014.2355594

Wang, Q., Zhang, R., Yang, L., & Hanzo, L. (2018). Non-Orthogonal Multiple Access:
A Unified Perspective. [EEE Wireless Communications, 25(2), 10-16.
doi:10.1109/MWC.2018.1700070

Wang, Y., Ren, B., Sun, S., Kang, S., & Yue, X. (2016). Analysis of non-orthogonal
multiple access for 5G. China Communications, 13(Supplement2), 52-66.
doi:10.1109/CC.2016.7833460

Wang, Z., Wen, C., Fan, Z., & Wan, X. (2018). A Novel Price-Based Power Allocation
Algorithm in Non-Orthogonal Multiple Access Networks. [EEE Wireless
Communications Letters, 7(2), 230-233. doi:10.1109/LWC.2017.2768367

Wei, H., Li, S., Quan, H., Liu, D., Rao, S., Li, C., & Hu, J. (2021). Unified Multi-
Objective Genetic Algorithm for Energy Efficient Job Shop Scheduling. /EEE
Access, 9, 54542-54557. doi:10.1109/ACCESS.2021.3070981

Wei, Z., Ng, D. W. K., & Yuan, J. (2016, 4-8 Dec. 2016). Power-Efficient Resource
Allocation for MC-NOMA with Statistical Channel State Information. Paper
presented at the 2016 IEEE Global Communications Conference (GLOBECOM).

Wei, Z., Yang, L., Ng, D. W. K., Yuan, J., & Hanzo, L. (2020). On the Performance Gain
of NOMA Over OMA in Uplink Communication Systems. /EEE Transactions on
Communications, 68(1), 536-568. doi:10.1109/TCOMM.2019.2948343

Wu, G., Chen, G., & Chen, G. (2023). Energy-Efficient Utility Function-Based Channel
Resource Allocation and Power Control for D2D Clusters With NOMA
Enablement in Cellular Networks. [EEE Access, 11, 45001-45010.
doi:10.1109/ACCESS.2023.3264483

Wu, Y., Zhang, N., & Rong, K. (2020). Non-Orthogonal Random Access and Data
Transmission Scheme for Machine-to-Machine Communications in Cellular

Networks. IEEE Access, 8,27687-27704. doi:10.1109/ACCESS.2020.2972064

Xie, S. (2019). Power allocation scheme for downlink and uplink NOMA networks. IET
Communications, 13(15), 2336-2343. doi:10.1049/iet-com.2019.0066

149



Xu, L., Cai, J., Chang, J., Fang, H., & Li, X. (2022). Joint optimization scheme based on
beam selection and interference cancellation in lens millimeter wave NOMA
systems. China Communications, 19(4), 57-66. doi:10.23919/JCC.2022.04.005

Xu, P., Yuan, Y., Ding, Z., Dai, X., & Schober, R. (2016). On the Outage Performance
of Non-Orthogonal Multiple Access With 1-bit Feedback. /IEEE Transactions on
Wireless Communications, 15(10), 6716-6730. doi:10.1109/TWC.2016.2587880

Xu, Y., Cai, D., Ding, Z., Shen, C., & Zhu, G. (2018, 9-13 Dec. 2018). Average Power
Minimization for Downlink NOMA Transmission with Partial HARQ. Paper
presented at the 2018 IEEE Globecom Workshops (GC Wkshps).

Yang, Z., Hussein, J. A., Xu, P., Ding, Z., & Wu, Y. (2018). Power Allocation Study for
Non-Orthogonal ~Multiple  Access Networks With  Multicast-Unicast

Transmission. IEEE Transactions on Wireless Communications, 17(6), 3588-
3599. doi:10.1109/TWC.2018.2806972

Zamani, M. R., Eslami, M., Khorramizadeh, M., & Ding, Z. (2019). Energy-Efficient
Power Allocation for NOMA With Imperfect CSI. [EEE Transactions on
Vehicular Technology, 68(1), 1009-1013. doi:10.1109/TVT.2018.2882500

Zekri, A., & Jia, W. J. (2018). Heterogeneous vehicular communications: A
comprehensive study. Ad Hoc Networks, 75-76, 52-79.
doi:10.1016/j.adhoc.2018.03.010

Zeng, M., Hao, W., Dobre, O. A., & Poor, H. V. (2019). Energy-Efficient Power
Allocation in Uplink mmWave Massive MIMO With NOMA. [EEE Transactions
on Vehicular Technology, 68(3), 3000-3004. doi:10.1109/TVT.2019.2891062

Zhai, D., Zhang, R., Cai, L., Li, B., & Jiang, Y. (2018). Energy-Efficient User Scheduling
and Power Allocation for NOMA-Based Wireless Networks With Massive IoT
Devices. IEEE Internet of Things Journal, 5(3), 1857-1868.

Zhang, H., Fang, F., Cheng, J., Long, K., Wang, W., & Leung, V. C. M. (2018). Energy-
Efficient Resource Allocation in NOMA Heterogeneous Networks. [EEE
Wireless Communications, 25(2), 48-53. doi:10.1109/MWC.2018.1700074

Zhang, H., Wang, B., Jiang, C., Long, K., Nallanathan, A., Leung, V. C. M., & Poor, H.
V. (2018). Energy Efficient Dynamic Resource Optimization in NOMA System.
IEEE  Transactions on Wireless Communications, 17(9), 5671-5683.
doi:10.1109/TWC.2018.2844359

Zhang, H., Zhang, H., Long, K., & Karagiannidis, G. K. (2020). Deep Learning Based
Radio Resource Management in NOMA Networks: User Association, Subchannel

and Power Allocation. I[EEE Transactions on Network Science and Engineering,
7(4), 2406-2415. doi:10.1109/TNSE.2020.3004333

Zhang, J., Wang, Y., Li, S., & Shi, S. (2021). An Architecture for loT-Enabled Smart

Transportation Security System: A Geospatial Approach. IEEE Internet of Things
Journal, 8(8), 6205-6213. doi:10.1109/J10T.2020.3041386

150



Zhang, P., Yang, X., Chen, J., & Huang, Y. (2019). A survey of testing for 5G: Solutions,
opportunities, and challenges. China Communications, 16(1), 69-85.

Zhang, Y., Wang, H., Zheng, T., & Yang, Q. (2017). Energy-Efficient Transmission
Design in Non-orthogonal Multiple Access. IEEE Transactions on Vehicular
Technology, 66(3), 2852-2857. doi:10.1109/TVT.2016.2578949

Zhang, Z., Xiao, Y., Ma, Z., Xiao, M., Ding, Z., Lei, X., . . . Fan, P. (2019). 6G Wireless
Networks: Vision, Requirements, Architecture, and Key Technologies. [EEE
Vehicular Technology Magazine, 14(3), 28-41.

Zhao, J., Yue, X., Kang, S., & Tang, W. (2021). Joint Effects of Imperfect CSI and SIC
on NOMA Based Satellite-Terrestrial Systems. IEEE Access, 9, 12545-12554.
doi:10.1109/access.2021.3051306

Zhao, Q., Yang, W., & Zhang, L. (2022). Energy-Efficient Resource Allocation for
NOMA-Based Heterogeneous 5G Mine Internet of Things. IEEE Access, 10,
67437-67450. doi:10.1109/ACCESS.2022.3184798

Zheng, M., Liang, W., & Yu, H. (2018). Utility-Based Resource Allocation in Wireless-
Powered Communication Networks. IEEE Systems Journal, 12(4), 3881-3884.
doi:10.1109/JSYST.2018.2805887

Zhou, T., Zhao, J., Qin, D., Li, X., Li, C., & Yang, L. (2019). Green Base Station
Assignment for NOMA-Enabled HCNs. [EEE Access, 7, 53018-53031.
doi:10.1109/ACCESS.2019.2912633

Zhu, J., Wang, J., Huang, Y., He, S., You, X., & Yang, L. (2017). On Optimal Power
Allocation for Downlink Non-Orthogonal Multiple Access Systems. [EEE
Journal on Selected Areas in Communications, 35(12), 2744-2757.
doi:10.1109/JSAC.2017.2725618

Zhu, L., Xiao, Z., Xia, X., & Wu, D. O. (2019). Millimeter-Wave Communications With
Non-Orthogonal Multiple Access for BSG/6G. IEEE Access, 7, 116123-116132.
doi:10.1109/ACCESS.2019.2935169

Zhu, L., Xiao, Z., Xia, X. G., & Wu, D. O. (2019). Millimeter-Wave Communications

With Non-Orthogonal Multiple Access for BSG/6G. IEEE Access, 7, 116123-
116132. doi:10.1109/ACCESS.2019.2935169

151





