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THE DEVELOPMENT OF NEW CRESCENT MOON VISIBILITY CRITERIA 

USING CIRCULAR REGRESSION MODEL 

ABSTRACT 

 

The lunar crescent moon visibility has a long research history since Babylonian Era. It is 

important in determining the local Islamic calendar and setting the dates of important 

Islamic events. The possible visibility of the crescent moon is dependent on a few criteria  

used during the sighting process. The methods  to determine minimum condition or 

criteria for crescent moon visibility  based on the linear statistical theory that have so far 

been developed are not that suitable for this study because the useful variables  are in the 

circular unit. Thus, new visibility tests are proposed in this research using the circular 

regression model, which will divide the data into three visibility categories; visible to the 

unaided eye, may need optical aid and not visible. Using the residuals of the fitted circular 

regression model, we formulate the method for separating the categories. We apply the 

model on 254 observations collected at Baitul Hilal Teluk Kemang Malaysia, starting 

from March 2000 to June 2019. Based on the analysis, the visibility test developed based 

on the elongation of the moon (dependent variable) and altitude of the moon (independent 

variable) gives the smallest rate of misclassification. From the statistical analysis, we 

propose the elongation of 7.28°, the altitude of the moon of 3.39° and the arc of vision of 

3.74° at sunset as the new crescent visibility criteria. The new criteria have a significant 

impact on improving the chance of observing the crescent moon and hence producing a 

more accurate Islamic calendar in Malaysia. 

 

Keywords: Circular regression; crescent moon; lunar month; q-test; visibility criteria  
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PEMBANGUNAN KRITERIA KETERLIHATAN BULAN SABIT BARU 

MENGGUNAKAN MODEL REGRESI BULAT 

ABSTRAK 

Keterlihatan bulan sabit mempunyai sejarah penyelidikan yang panjang sejak Era 

Babylon. Ini penting dalam menentukan kalendar Islam tempatan dan menetapkan tarikh 

peristiwa penting Islam. Kemungkinan terlihatnya bulan sabit bergantung pada beberapa 

kriteria yang digunakan semasa proses mencerap. Kaedah untuk menentukan keadaan 

minimum atau kriteria keterlihatan bulan sabit berdasarkan teori statistik linear yang 

sejauh ini dibangunkan tidak sesuai untuk kajian ini kerana pembolehubah berguna 

terdapat dalam unit bulat. Oleh itu, ujian penglihatan baru dicadangkan dalam 

penyelidikan ini menggunakan model regresi bulat, yang akan membahagikan data 

menjadi tiga kategori penglihatan; dapat dilihat oleh mata tanpa bantuan, mungkin 

memerlukan bantuan optik dan tidak kelihatan. Dengan menggunakan sisa model regresi 

bulat yang disuaikan, kami merumuskan kaedah untuk memisahkan kategori. Kami 

mengaplikasiakan model tersebut ke atas 254 cerapan yang dikumpulkan di Baitul Hilal 

Teluk Kemang Malaysia, bermula dari Mac 2000 hingga Jun 2019. Berdasarkan analisis, 

ujian penglihatan yang dibangunkan berdasarkan pemanjangan bulan (pembolehubah 

bersandar) dan ketinggian bulan (pembolehubah bebas) memberikan kadar salah 

klasifikasi terkecil. Dari analisis statistik, kami mencadangkan pemanjangan 7.28°, 

ketinggian bulan 3.39° dan arka penglihatan 3.74° ketika matahari terbenam sebagai 

kriteria jarak cahaya bulan sabit yang baru. Kriteria baru ini memberi kesan yang besar 

dalam meningkatkan peluang melihat bulan sabit dan menghasilkan kalendar Islam yang 

lebih tepat di Malaysia. 

Kata Kunci: Regresi bulat; bulan sabit; kalendar lunar; ujian-q; kriteria penglihatan 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background of the Study  

 

Each set of data has its distributional topology which classify whether it is linear or 

circular type. The statistical techniques that are commonly found are based on linear data. 

These data sets can be represented on a straight line. However, some variables use angles 

as the measurement of direction in the range from 0 to 360 or (0,2π]. A radian is “an 

angle measure related to the arc length of a circle” (Akkoc, 2008). These types of data are 

represented as data of directional or circular data type. Examples of several circular data 

angles or measurements over time are time of day, seasonality and point in the lunar cycle.  

The circular data type represents the data points whose periodic nature supports it on a 

circle and differs from the linear type. As a result, statistical techniques developed for 

directional variables are different from those for linear data. 

 

A point on a circumference of a circle or sphere surface represents the data point of a 

circular type. Circular data analysis is useful in many scientific fields, such as: 

 

(i) Meteorology 

 

Many circular data analysis are arising in meteorological studies, such as a test 

comparing tropical and temperate phenology (Staggemeier et al., 2020),  change in 

seasonality (Dhakal et al., 2015), environmental applications, including wave 

direction (Jona-Lasinio et al., 2012) while Kamisan et al. (2011) conducted a case 

study of Malaysian wind data for 2005. 
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(ii) Medicine 

 

In medicine, there is also research on circular statistics, for example, the 

probabilistic model based on circular statistics for quantifying coverage depth 

dynamics originating from DNA replication (Suzuki & Yamada, 2020), a practical  

introduction  to circular variables & periodic regression (Bell, 2008) and an elliptic 

spatial scan statistic (Kulldorff et al., 2006). 

 

(iii) Physics 

 

Skew-symmetric circular distributions and their structural properties                

(Hatami & Alamatsaz, 2019), environmental contours for circular‐linear variables 

based on the direct sampling method (Vanem et al., 2020) and a circular statistical 

method for extracting rotation measures (Sarala & Jain, 2001) are some examples 

of recent research that use circular method in physics fields. 

 

In general, circular data are found in a cycle or periodic phenomenon. Circular data 

treatment using linear techniques can lead to bias or bad results because it does not 

represent the real situation. For example, let us use the linear and circular techniques to 

show the difference in the results of the analysis. Consider the observations of four angles 

15˚, 25˚, 335 ̊  and 345˚, as shown in Figure 1.1. When analyzing circular data, it is crucial 

to take into account their periodical nature. By treating the observations as linear 

observation, the arithmetic mean of the sample is 180, and the mean direction of the four 

directions/angles is 0˚, respectively. So, the arithmetic mean of these four observations is 
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distinctly inaccurate, i.e., it is not even near to the observed points, but in the opposite 

direction, as can be seen in Figure 1.1. The true mean direction is 0˚, which makes more 

sense because it is closer to the points of observations. Therefore a special statistical 

method is needed to analyse circular data while taking into account the circular sample 

space structure. 

 

 

 

 

 

 

 

 

 

   Figure 1.1: A circular map of data on a circle. 

 

One of the most important approaches for calculating the interaction between the 

variables is regression analysis. For the linear case, linear regression measures the 

relationship between the linear variables, where both dependent and independent 

variables are in linear type. In circular regression, the relationship between variables are 

classified into three categories; (i) circular-circular regression: both the dependent and 

independent variables are in circular type (ii) circular-linear regression: the linear variable 

depends on the circular variable and (iii) linear-circular regression: the circular variable 

depends on the linear variable (Sarma & Jammalamadaka, 1993). In this study, we 

attempt to use the circular-circular regression in finding the new criteria for crescent moon 

0˚=360˚ 180˚ 

15˚ 

345˚ 

25˚ 

335˚ 

Univ
ers

iti 
Mala

ya



 

4 

 

sighting activities which is an important aspect in establishing local Islamic calendar in 

Malaysia. 

 

In recent years, few procedures have been proposed in determining the visibility of the 

crescent moon. These procedures are developed mostly by setting a minimum condition 

of some parameters for determining the visibility of the crescent moon during the sighting 

process. Nonetheless, the values used as minimum conditions in Malaysia are deemed to 

be too low, resulting in negative visibility decisions (or the moon is not visible from the 

earth). Then, a new minimum condition in determining the visibility of the crescent moon 

is seriously needed. This will be the interest of this study. 

 

The classical definition of the new moon is still in use in some cultures. The new moon  

defines the start of the calendar months or the first day of the month. Specifically, in 

Malaysia, the beginning or first day of the lunar month depends on the visibility of the 

crescent moon, which uses two parameters, the elongation (Elon) and altitude of the moon 

(Alt(M)) to determine the beginning of a month. Many astronomers have studied lunar 

crescent moon visibility and many methods have been proposed in determining the 

visibility of the crescent moon (Danjon, 1936; Ilyas, 1994; Yallop, 1997). The importance 

of  studying the visibility of the crescent moon includes determining special events based 

on the lunar calendar. Hebrew, Muslim, Hindu and some Christian, for example,  still use 

the lunar calendar to determine their ritual day. In determining the first day of the lunar 

month, different methods and procedures have been used to determine the ritual day. 

Some of them use directly the observation (sighting of the moon) or the rukyah method, 

the calculation (mathematical calculation) or hisab method, and the concept of “a 

possibility of visibility”. For example, a Muslim organization in Indonesia, 

Muhammadiyyah and Saudi Arabia are using a calculation or ‘hisab’ method to determine 
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the first day of Ramadan and Eid festival (Al-Mostafa, 2015). Meanwhile, Brunei 

Darussalam and Muslim minority in South Thailand use direct observation to determine 

the first day of fasting month and the Eid festival. As for Sanhedrin, Jewish uses the same 

method of observation to regulate their religious base on the lunar calendar            

(Hoffman, 2003). 

 

In Malaysia, Indonesia and Singapore, the Islamic Religious Authorities’ Al-Falakh 

divisions are using the concept of “possibility to visibility” in which a new lunar month 

begins when the crescent moon could be visible in the clear sky. To determine the new 

lunar month using the the possibility of visibility method, the history of the observation’s 

records is used to set up a criterion for lunar crescent moon visibility. Then the crescent 

moon is considered visible if the calculation of the following conditions satisfies      

(Samad Abu et al., 2001):  

 

(i) During sunset, the altitude of the moon is not less than 2˚, and the 

elongation of the moon-sun is not less than 3˚, or  

 

(ii) During the moonset, and the age of the moon is not less than 8 hours. 

 

Thus the new lunar month may begin even though the crescent moon is invisible if the 

criteria have been fulfilled. These minimum criterion rules are used as a guide for crescent 

moon visibility. This rule has been used in Malaysia, Indonesia and Singapore to 

determine the beginning of the lunar months since more than twenty years ago        

(Nawawi et al., 2015). However, the criteria considered is insignificant in most cases due 

to the minimum limit of the crescent’s moon are below than criteria suggested by the 
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other studies (Fotheringham, 1910; Maunder, 1911; Bruin, 1977; Yallop, 1997; Odeh, 

2004).  

 

1.2  Problem Statement 

 

Statistical analysis is an important consideration in the overall problem-solving 

process. So far in detecting the crescent moon visibility, there are a few different methods 

that have been proposed such as q-test (Yallop, 1997) and Danjon limit (Danjon, 1936). 

Various approaches resulting in different minimum criteria to detect the crescent moon 

visibility. In Malaysia, the criteria used nowadays is based on criteria that have been 

decided at the unofficial annual meeting of the religious ministers of the country of Brunei 

Darussalam, the Republic of Indonesia, Malaysia, and the Republic of Singapore 

(MABIMS) conference which are 2˚ of altitude of moon, 3˚ of elongation and the age of 

crescent moon must exceed 8 hours. However, based on data from historical records, the 

values have been found very low and hence do not exceed the minimum criteria for 

visibility. Moreover, the method used in the development of the crescent moon visibility 

criteria is conducted using linear statistical theories, whereas most variables consider are 

of circular types. This may affect the findings. Therefore, we propose in this study the 

development of a circular regression model using local crescent moon data that have been 

collected for the past 20 years. Then we suggest a new set of parameters and its minimum 

condition to increase the probability of visibility of the crescent moon using the circular 

statistical theories. The performance of the relevant methods will be compared. To 

summarize, there are two research problems: (i) The historical records show that the moon 

is visible even when the altitude of the moon value is much lower than the predetermined 

visibility criteria, and (ii) so far, the linear model has been used to determine the visibility 

criteria while data are circular in nature.   
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1.3 Objectives 

 

The main objectives of this study are: 

 

1. To describe local crescent moon data using circular statistics. 
 

2. To propose a new visibility test for crescent moon sighting data using circular 
regression. 

 
3. To determine the values for the new criteria of crescent moon visibility for 

local Malaysian crescent moon data. 
 

4. To improve the new criteria of crescent moon visibility using local best time 
data. 

 

 

1.4 Research Outline 

 

This study aims to resolve the problem of the invisibility of the crescent moon, by 

proposing a new visibility test based on circular regression modelling. The outline of this 

research is as follows: 

 

Chapter two gives the literature review on linear data, circular data and the previous 

history of the crescent moon visibility criteria. The review on the linear and circular 

distributions are also presented as well as the regression modelling based on the circular 

procedure.     

Chapter three discusses the descriptive statistics of the circular data. The theory of 

the Sarma & Jammalamadaka (1993), JS circular regression model is also presented.  

Then we fit the simple circular regression model to the data and identify the significant 

parameters that can be used in the determination of the new criteria. 
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Chapter four presents the development of the new visibility test based on circular 

regression modelling. We will investigate the performance of several JS regression 

models with various model variables and will use the best model to obtain the new values 

of visibility criteria. 

 

Chapter five presents the development of crescent moon visibility criteria using best 

time data. This chapter aims to observe the performance of the model and procedure given 

in Chapter 4 using best time data.  The moon visibility criteria using the best time data 

will be compared in performance to the original data, accordingly. 

 

Chapter six presents a review of the analysis work carried out and a summary of the 

research work. We also provide recommendations for future work. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

 

In this chapter, we review the theories related to the crescent moon, linear data, circular 

data, and the visibility criteria/test of the crescent moon. First, in the next two sections, 

we review relevant past studies about the criteria or the minimum condition/value of 

relevant parameters for the crescent moon to be visible. Then we proceed to the theories 

on linear and circular data that are relevant for the study. We review some of the topics 

on the descriptive statistics for circular data. Then we will proceed to circular distributions 

as well as circular regression models in this chapter.   

 

2.2  Cresent Moon/Hilal 

 

Crescent moon  or in the Arabic term called “Hilal” is defined as a physical structure 

of the moon that is very difficult to observe with the naked eye. The crescent moon can 

be observed from the earth a few hours after the event of conjunction or “ijtimak”. 

Conjunction (ijtimak) states mean that the moon and the sun are at a meeting point or the 

center of the sun, moon and earth are on a straight line as shown in Figure 2.1. During the 

conjunction, the moon's light side faces the sun while the moon's dark side faces the 

world. The reflected light from the moon after several hours of conjunction is called the 

crescent. The new moon begins when the crescent moon is at the horizon for a short period 

after sunset without considering whether the crescent moon is visible or not (Pulau Pinang 

Mufti’s Department, 2015). 
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Figure 2.1: Global view of the geometric variables of the sun and 

moon after a few hours of conjunction.  

 

However, many factors can cause the crescent moon to be invisible despite the best 

criteria of crescent moon visibility considered in the sighting process. A good weather 

condition and unobtrusive sky condition will allow the observer to see the crescent moon 

clearly. In the Islamic calendar, the visibility of the crescent moon is the basis for 

determining the start of a new month. Consequently, visibility will affect the dates of 

important events such as the start of the fasting month (Ramadan) and celebrating Eid 

(Syawal). Methods used by religious authorities in the Islamic countries in determining 

the first date of the lunar month are largely based on rukyah and hisab methods. 

 

In the Islamic world, different implementation of either rukyah (sighting of the moon) 

or hisab (mathematical calculations) or both to establish the beginning of the Islamic 

months contribute to the difference of dates of celebrating the Islamic events in various 

Islamic countries. In Malaysia, rukyah-hisab method using the Imkanur Rukyah approach 

is practiced to ease the process of sighting and determining the starting dates of Islamic 

lunar months, especially Ramadan and Syawal (Nawawi et al., 2015). 

 

Several parameters are useful in predicting the visibility of a new moon. The 

parameters are the elongation (Elon), the arc of vision (ARCV), the altitude of the sun 
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(Alt(S)), the altitude of the moon (Alt(M)), the time between the conjunction of the sun, 

the moon and sunset in hours (Age), and the width of the crescent moon (W). Note that 

all parameters except Age (in hours) are circular variables and measured in degree. The 

definition of these parameters will be given in Chapter 3. 

  

2.2.1 Cresent Moon Visibility 

 

Visibility of the crescent moon is an important procedure for deciding the beginning 

of the month dates and important festivals in many religions. Main religions in the world 

have their own calendar based on lunar month including Islam. The other religions 

including Jews and Hindu also use crescent moon visibility to determine the important 

date based on their calendars. As a result, the determination of criteria to indicate the 

expected visibility of the crescent moon is of utmost importance since the time of the 

Babylon Era (Ilyas, 1994). The criteria are mainly derived based on the crescent moon 

data collected at end of the month. The choice of the parameters for the criteria mainly 

corresponds to the minimum contrast between the brightness of the moon and the sky. 

That is, we look at certain values such that the moon is bright enough, or the sky is dark 

enough for the crescent moon to be seen. For example, the Babylonians used both age 

and lag time as a measure of the brightness of the moon and the sky, respectively      

(Bruin, 1977). Here, the lag time is at least 48 minutes after sunset, and this value has 

changed since Babylonians era. 

 

 

In the past, different studies reported the criteria based on a different set of variables 

measured in crescent moon sighting activities. Among the early Arabic astronomers, Al-

Tabari utilized the depression angle of the sun in the visibility of the crescent moon. The 
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crescent would be considered visible at the time of moonset if the altitude of the sun was 

9.5° below the horizon (Hogendijk, 1988; Guessoum & Meziane, 2001).  In the more 

recent centuries, most models were built based on the observations made by Julius 

Schmidt in Athens, Greece, from 1859-1880 (Schaefer, 1988). Based on 76 sets of 

observations of the crescent moon, Fotheringham (1910) established necessary specific 

criteria, which include the relative altitude of the moon with respect to the sun’s altitude 

(known as an arc of vision, ARCV). By placing a line of separation between the negative 

and positive crescent moons, Fotheringham (1910) gave a minimum limit of an ARCV of 

12° and a relative azimuth of 0°. Maunder (1911) formulated a smaller minimum limit 

than Fotheringham (1910), which is 11° ARCV at 0° relative azimuths, for when the 

crescent moons can be seen, as he suggested there was a technical issue with the negative 

data reported by Fotheringham (1910).  Ilyas (1988) examined the ACRV and its relative 

azimuth criteria and found the criteria proposed by Fotheringham (1910) and Maunder 

(1911) were limited to a difference in azimuth of 20 degrees. At a larger scale, these 

criteria cannot be applied. Consequently, to match his criteria of elongation of 10.4°, Ilyas 

(1988) concluded that the minimum limit of ARCV was supposedly 10.5° with a relative 

azimuth of 0°. 

 

In the early 20th century, discussion on the criteria focused on the Danjon limit 

(Danjon, 1936). In the year 1931, the French astronomer André Danjon measured 75 

moon samples observed using a theoretical approach. He estimated the length of the 

crescent moon by measuring the parts of the moon illuminated by sunlight. Crescent is 

expected to be visible if the elongation is more than 7°, hereafter known as the Danjon 

limit (Fatoohi et al., 1998). Further improvement of the criteria was later published. 

McNally (1983) suggested that atmospheric seeing causes the crescent to be obscured 

when it is smaller than the seeing disk. He concluded that the Danjon limit is supposed to 
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be 5° rather than 7°. However, Schaefer (1991) explained that atmospheric seeing is not 

the main factor in the deficiency of the arc. He developed a model and suggested 7° as 

the new Danjon limit for the crescent to be visible. Ilyas (1983) stated that the Danjon 

limit is intended to be a general guide. However, for the formation of calendar regulation, 

elongation of 10.5° is the best. Fatoohi et al. (1998) and Odeh (2004) studied the 

observational reports and respectively concluded that 7.4° and 6.4° as the estimated 

Danjon limits. Sultan (2007) and Hasanzadeh (2012) developed a photometric model of 

crescent visibility and re-evaluated the Danjon limit to be 5°. 

 

Different mathematical approaches have been used to arrive at the values of the 

criteria. McNally (1983) studied mathematically the effect of atmosphere on the shape of 

the crescent moon and formulated the width as a measure of shortening the crescent moon 

in terms of   and , where  = 180−𝑥, 𝑥 being the elongation of the earth from the sun 

as viewed from the moon centre and  is the position of the outer terminator near the cusp. 

He suggested the atmospheric factor should be considered to maximize the length of the 

outer terminator. The poor seeing condition will cause a shortened terminator of the 

crescent moon. However, Schaefer (1991) later argued that atmospheric factor is not 

important by considering the Hapke’s lunar surface brightness measure.   

 

Ilyas (1994) reviewed the development of criteria, especially in producing a universal 

international Islamic calendar amid the challenge for quality crescent moon data. A 

unified approach of five practical considerations is proposed to come up with a universal 

international Islamic calendar in the future. Yallop (1997) introduced the q-test as a test 

of the visibility of the crescent by considering the residuals of the fitted polynomial 

regression model of ARCV on the width of the crescent moon. Several different categories 

of visibility are proposed. Hoffman (2003) provided a collection of the crescent moon 
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data set observed in good weather conditions. He used it to update the criteria of the           

q-test and further claimed that the data could be used to validate any visibility tests. 

Similarly, Odeh (2004) combined data set from different studies and used them to come 

up with the new values of the existing criteria. Hasanzadeh (2012) used the weighted 

polynomial function of the arc length of crescent moon against elongation and obtained 

a new value of the Danjon limit by extrapolating the curves to the case of zero arc length.  

 

The history of visibility crescent moon criteria in Malaysia specifically is based on the 

minimum condition of the criteria during the sighting process (Nawawi et al., 2015). In 

Indonesia, there are two methods that are used in determining the first date of the month 

based on ru’yatul Hilal (moon visibility) which are using the astronomical aid (sighting 

process) and using Hisab method (astronomical calculation) without using any criteria 

for the crescent moon to be visible (Djamaluddin, 2000). 

 

Visibility criteria for crescent moon sighting that have been used in Malaysia started 

after the Istanbul International Congress on Crescent Moon back in 1978, which used the 

criteria 5˚ altitude of the moon and 8˚ of the elongation. Starting from 1983, Malaysia 

considered a slightly different set of values of the criteria, which is 5.5˚ altitude of the 

moon and 7.5˚ of the elongation. Furthermore, Malaysia also added other criteria such 

that the age of the crescent moon must not be less than 8 hours. At the unofficial annual 

meeting of the religious ministers of the country of Brunei Darussalam, the Republic of 

Indonesia, Malaysia, and the Republic of Singapore (MABIMS), it was decided that the 

criteria for crescent moon visibility are; (1) minimum 2˚ altitude of the moon and 3˚ of 

the elongation when the sunset, or (2) the age of the moon must exceed 8 hours when the 

moon sets (Nawawi et al., 2015). The inductive analysis has been applied in analyzing 

the data. Hence, the Djamaluddin (2000) found that while the criteria for altitude 2 
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degrees and 3 degrees of elongation is formulated based on the data visibility of the 

crescent in Indonesia, criteria of 8 hours after the conjunction (ijtimak) is derived from 

the views and ideas of Malaysian astronomers. 

 

In recent years, many astronomers study the visibility of the crescent moon and many 

criteria have been proposed to determine the visibility of the crescent moon, for example, 

Utama et al. (2019) and Zainon et al. (2019). However, we expect that the visibility 

criteria that have been used widely in moon sighting will give us unreliable results and 

wrong conclusions. Therefore, the visibility criteria to detect the crescent moon needs to 

be reviewed and other criteria which is more effective in detecting the visibility of the 

crescent moon need to be proposed. As the technology evolves, the visibility aid tools, 

such as telescope and image processing algorithms can now be used to improve the 

detection of the crescent moon during sunset (Fakhar et al., 2014).    

 

So far, the development of the criteria uses only linear statistical theory. However, 

most of the variables in crescent moon data are measured in degree/radian. Hence, in this 

study, we consider the circular statistical theory to come up with new criteria for the 

visibility of local crescent moon data. The proposed criteria follow closely the 

methodology adopted by Yallop (1997) for the q-test. 
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2.3 Linear Data 

 

A linear data type refers to data that lie on a straight line. A linear data structure 

sequentially locates the data elements through which only one data element can be 

reached directly. It consists of a set of data with the elements are arranged linearly where 

the data elements are attached to its previous and next adjacent ones as shown in Figure 

2.2. The structure represents the linear relationship and involves a single level of data 

elements. Most of the data available are of a linear data type. 

 

 

 

             

Figure 2.2: Real line number. 

 

2.3.1 Distributions on Real Line 

 

All sample data will form a distribution based on the type of data. Distribution of data 

is a mathematical feature that provides the likelihood of different potential outcomes 

happening in the space sample experiment. The distribution represents the density of the 

data referred to as the probability density function. From a given probability distribution, 

a calculation can be made to get the probability of any one particular observation in the 

sample space. There are many probability distributions for the real line type data, 

including the discrete or continuous distributions and mixed discrete and continuous 

distribution. 

-1 0 1 2 3 4 
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Standard distribution, also known as Gaussian distribution, is the most general 

continuous probability distribution of a random variable. The probability density function 

of a normal random variable  with mean 𝜇 and variance 𝜎2 is given by equation (2.11). 

 

𝑓(𝑥) =  
1

𝜎√2𝜋
𝑒−(𝑥−𝜇)2/(2𝜎2) , 𝑥 ∈ (−∞, ∞) , 𝜇 ∈  R, σ > 0.      (2.11) 

 

The normal distribution is the probability distribution that is symmetrical around the 

mean and appears like a bell-shaped line. The normal distribution is the most important 

distribution in statistics and it is very useful as it is widely used in various statistical areas. 

Not all the data follow the normal distribution but there are many other distributions for 

example; Poisson distribution, binomial distribution, geometric distribution, and so on. 

 

2.3.2 Multiple Linear Regression 

 

The linear regression model allows us to model mathematically the relationship 

between two or more variables using simple algebra. Linear regression modelling is a 

type of predictive analysis, and it examines the significance of the predictor variables 

(independent variables) towards the model. Simple linear regression is an approach to 

model a linear relationship between two variables, which is a target variable known as a 

response (dependent) variable and an explanatory (independent) variable. While for more 

than one explanatory (independent) variables, it is called multiple linear regression. 

Formally, the multiple linear regression model is given by: 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+ . . . +𝛽𝑘𝑥𝑘 + 𝜀,   (2.12) 
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where 𝑥1, 𝑥2, … , 𝑥𝑛 are the explanatory (independent) variables or regressors and y is 

response (dependent) variable. In addition, 𝛽1, 𝛽2, . . . . , 𝛽𝑛 are the coefficient parameters 

and the y-intercept is 𝛽0 and 𝜀 is the random error. The explanatory (independent) 

variables explain causal changes in the response variables. 

 

The multiple linear regression model is developed based on the following assumptions: 

 

(i) Linearity – There must be a linear relationship between the response 

variable and the independent variables. Linear or curvilinear relationship can be 

observed by a scatter plot. 

 

(ii) Normality – Multiple regression assumes that with a mean of 0 and 

variance, σ2, the residuals are normally distributed. 

 

(iii) No multicollinearity – Multiple regression assumes that individual 

variables are not strongly correlated. Variance Inflation Factor (VIF) values are 

used to test this statement. 

 

(iv) Homoscedasticity – This assumption states that the variance of error 

terms is similar across the values of the independent variables. A plot of 

standardized residuals vs. expected values will indicate whether the points are 

uniformly distributed over all independent variable values.  
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2.4 Circular data 

 

Circular data are data that refer to variables measured on a circle and  a set of 

observations measured by angles in a unit degree or radian. This is radically different 

from linear data due to its bounded properties, such that the observations are distributed 

in the range (0, 2𝜋] or (0°, 360°]. It is distributed on the perimeter of a unit circle which 

is in the form of direction on a compass. The measurements of circular data are based on 

the direction; on a scale from 0° to 360° North, South, East or West. The observations of 

0° and 360° represent the same direction on a circle but they will be placed at various 

points on the linear scale. For example, a month of a year is a type of circular data in the 

form of periodic. January, month 1 is closer to December, month 12, than it is to June, 

month 6. Statistical techniques developed for linear data do not work for circular data. In 

such cases, to perform statistical analysis on circular data, specialized statistical 

techniques are necessary. 

 

There are a few circular distributions that have been proposed for the circular data.  

The distribution of von Mises is widely used for mathematical analysis of circular data 

which can be approximated by a normal distribution under large sampling theory. The 

distribution has two parameters; mean direction, 𝜇, and concentration parameter, 𝜅. 

Circular data, also known as directional data, occur in various fields including astronomy 

see example Fakhar et al. (2014), Martins et al. (2015), de Freitas et al. (2018) and Vanem 

et al. (2020). The next subsection presents some descriptive statistics that can be used to 

describe circular data. 
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2.4.1 Descriptive Measure for Circular Data 

 

Descriptive statistics is a summary of statistics that describes quantitatively the basic 

features of the data. Some measures of location and dispersion parameters are useful 

properties to describe circular data. Let 𝜃1, 𝜃2, … , 𝜃𝑛 be a random circular sample of size 

𝑛 from a circular population. Table 2.1 shows some measures of central tendency and 

dispersion for two types of data.  

 

Table 2.1: Descriptive statistics for linear and circular variables. 

Statistic Linear Circular 

Central 

tendency 

Mean, X̅ 

X̅ =  
1

𝑁
∑ 𝑥𝑖,

𝑛

𝑖=1

 

X̅ = arithmethic mean 
𝑁 = number of values 

xi = data set values 

Mean Direction 

Median 

Median = (𝑁+1)𝑡ℎ

2
 𝑡𝑒𝑟𝑚 

Median Direction 

Dispersion Variance, 𝜎2 

𝜎2 = ∑
(𝑥𝑖 − �̅�)2

𝑁
 

Circular variance 

Concentration parameter 

Correlation Correlation, 𝑟 

𝑟 =
𝑛(∑ 𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2 − (∑ 𝑥)
2

][𝑛 ∑ 𝑦2 − (∑ 𝑦)
2

]

 

Circular correlation 

 

Univ
ers

iti 
Mala

ya



 

21 

 

(i) Mean direction, 𝝁 

Circular data is periodic in nature and most circular data comes in the form of 

direction (Cremers & Klugkist, 2018). The mean for circular statistics is generally 

referred to as mean direction. To summarize the data, we use the mean direction as 

an indicator of a trend that represents the normal direction of a variable in the 

population. For a given circular random sample, we consider each observation to 

be a unit vector whose direction is specified by the circular angle and find their 

resultant vector. The mean direction is defined by the angle made by the resultant 

vector with a horizontal line. Specifically, we have the resultant length 𝑅 given by:  

 

𝑅 = √𝐶2 + 𝑆2,    (2.13) 

 

where 𝐶 = ∑ cos 𝜃𝑖
𝑛
𝑖=1    and  𝑆 = ∑ sin 𝜃𝑖

𝑛
𝑖=1 . The mean direction, denoted by �̅�, 

may be obtained by solving the equations, cos �̅� =  
𝐶

𝑅
 and sin �̅� =  

𝑆

𝑅
, giving 
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     (2.14) 

 

One of the mean direction characteristics is that ∑ sin(𝜃𝑖 − �̅�) = 0𝑛
𝑖=1 , which is 

analogous to the linear case. 
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(ii) Concentration parameter, κ 

 

The concentration parameter, denoted by κ, is a significant parameter of the 

standard measure of dispersion for circular distribution. It shows whether the data 

set is homogeneously distributed on the circle or shows a concentration in the 

reference direction. Best & Fisher (1981) gave the maximum likelihood estimates 

of the concentration parameter κ as follow: 

 

( )
( )












+−

−++−

++

=

−
85.0if,34

85.053.0if,1
43.039.14.0

53.0if,6
52

ˆ

123

53

RRRR

RRR

RRRR

 ,    (2.15) 

where �̅� is mean resultant length and is given by R =
𝑅

𝑛
. The larger the value of 

concentration parameter, the more concentrated the data towards the mean 

direction.  

 

(iii) Mean resultant length, �̅� 

  

Mean resultant length  �̅� is important to measure how concentrated the data towards 

the center or mean direction, �̅�. It is defined as: 

 

      R =
𝑅

𝑛
 .     (2.16) 

 

The resultant length �̅� is a statistical measure that lies in the range [0, 1] that gives 

us information on the spread of the circular variables in the population. It is 

interpreted as a precision measure where 0 means that the spread is large and 1 
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means that all directions in the data set are the same or concentrated at a single 

value (Jammalamadaka & SenGupta, 2001). 

 

(iv) Median direction, Quantile and Percentile 

 

Median is denoting to any point which separates the data into two sections or is  

known as the “middle’ value. In circular techniques, the median is known as the 

median direction. For any circular sample, Mardia and Jupp (1972) defined the 

median as any point 𝜙, where half of the data lie in the arc [𝜙, 𝜙 + 𝜋) and the other 

points are nearer to 𝜙 than to 𝜙 + 𝜋. Based on Fisher (1993), the median for any 

circular sample is referred to the median direction as the observation which 

minimizes the summation of circular distances to all observations  𝜃1, 𝜃2, … , 𝜃𝑛, 

that is,  

 

𝑑(𝜙) = 𝜋 − ∑ |𝜋 − |𝜃𝑖 − 𝜙||𝑛
𝑖=1 .    (2.17) 

 

Fisher’s definition is used to obtain the circular median in the Oriana statistical 

software package. 

On the other hand, the first and third quantile directions 𝑄1 and 𝑄3 are shown in 

equation (2.18). 

 

𝑄1 = ∫ 𝑓(𝜃)𝑑𝜃 = 0.25  
𝜙

𝜙−𝑄1
and   𝑄3 = ∫ 𝑓(𝜃)𝑑𝜃 = 0.25

𝜙 + 𝑄3

𝜙
, (2.18) 
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𝑄1 can be considered as the median of the first half of the ordered data and 𝑄3 as 

the median of the second.  The percentiles can then be obtained by further splitting 

the ordered sample. 

 

(v) Sample circular variance and standard deviation 

 

The sample circular variance is given by equation (2.19). 

 

𝑉 = 1 − R , 0 ≤ 𝑉 ≤ 1.        (2.19) 

 

The smaller the value of circular variance refers to a more concentrated sample data. 

The measure of the variability of sample data always refers to the concentration 

parameter κ, which is interpreting the same information as the circular variance. 

Then the sample circular standard deviation is given by equation (2.20). 

 

   𝑣 =  √−2log (1 − 𝑉) , 0 < 𝑣 < ∞,    (2.20) 

 

where 𝑉 is the sample circular variance. The reason for defining the circular 

standard deviation in this way rather than as the square root of the sample circular 

variance is to obtain some reasonable approximations for the proportion of von 

Mises distribution provided the distribution is not too dispersed (Fisher, 1993). 
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(vi) Circular correlation 

 

Special measure of correlation has been developed for any two circular variables. 

It is given that (𝜃1, 𝛽1), … , (𝜃𝑛, 𝛽𝑛) is a random sample of observations measured 

as angles. As for measuring the correlation between two circular variables, we use 

the sample circular correlation given by equation (2.21). 

 

𝑟𝜃𝛽 =  
∑ sin𝑛

𝑖=1 (𝜃𝑖−�̅�) sin(𝛽𝑖−�̅�)

√∑ sin2𝑛
𝑖=1 (𝜃𝑖−�̅�) ∑ sin2(𝛽𝑖−�̅�)𝑛

𝑖=1  

 , (2.21) 

  

where �̅� and �̅� are sample mean directions. As in the linear case, 𝑟𝜃𝛽 takes values 

in the range [-1, 1] and the closer the value to 1 or -1, the stronger the relationship 

between the variables.   

 

2.4.2  Circular Distributions 

 

A circular distribution is a probability distribution whose total probability is 

concentrated on the circumference of a unit circle (Jammalamadaka & SenGupta, 2001). 

There are a few important circular distributions that have been developed, for example, 

von Mises (Normal Circular) distribution, wrapped Cauchy distribution and Cardioid 

distribution (see Jammalamdaka & SenGupta, 2001; Mardia & Jupp, 1972; Fisher, 1993). 

 

The most common circular distribution used is the von Mises distribution. This 

distribution can be approximated by normal distribution for large concentration 

parameters. We present some of these distributions  below: 
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i. The von Mises (VM) Distribution 

 

Von Mises (1918) introduced a circular distribution known as von Mises distribution. 

The von Mises distribution is also known as a circular normal distribution, which is a 

continuous probability distribution on the circle to emphasize its importance and 

similarities to the normal distribution on the real line. It is the most common circular 

distribution considered for unimodal samples of circular data. On the other hand, the 

von Mises distribution is the maximum entropy distribution for circular data when the 

real and imaginary parts of the first circular moment are specified. The von Mises 

distribution has been extensively discussed with many inferential techniques that have 

been developed. It is denoted as VM (µ, κ), where µ is the mean direction and κ is the 

concentration parameter. The von Mises probability density function is given by 

equation (2.22). 

 

𝑓(𝜃; 𝜇, 𝜅) =  
1

2𝜋 𝐼0 (𝑘)
exp {𝑘 cos(𝜃 − 𝜇)},     0 < 𝜃, 𝜇 ≤ 2𝜋 and 𝜅 > 0, (2.22) 

 

where 𝐼0(𝜅) is the modified Bessel function of the first kind and order zero and it is 

given by 

 

𝐼0(𝜅) =
1

2𝜋
∫ exp {𝜅 cos 𝜃}𝑑𝜃

2𝜋

0
   (2.23) 

= ∑ (
𝜅

2
)

2𝑟

(
1

𝑟!
)

2
∞
𝑟=0 . 
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ii. The Wrapped Cauchy (WC) Distribution 

 

Wrapped Cauchy distribution is obtained by wrapping the Cauchy distribution on the 

real line around the circle. The Wrapped Cauchy distribution is unimodal and 

symmetric. The probability density function for the Cauchy distribution is given by: 

 

𝑓(𝑥) = (
1

𝜋
)

𝜎

𝜎2+(𝑥−𝜇)2  , −∞ < 𝑥 < ∞,   (2.24) 

 

where 𝜎 is scale factor and  𝜇 is the peak of the “unwrapped” distribution. Then the 

probability density function for the wrapped Cauchy distribution is  

 

𝑔(𝜃) =
1

2𝜋
(1 + 2 ∑ 𝜌𝑘 cos 𝑘(𝜃 − 𝜇))∞

𝑘=1    (2.25) 

=  
1

2𝜋

1 − 𝜌2

1 + 𝜌2 − 2𝜌 cos(𝜃 − 𝜇)
 , 

 

where 0 ≤ 𝜃 < 2𝜋 and 𝜌 = 𝑒−𝜎. The equality of the two expressions above is verified 

by equating the real parts of the geometric series identify as shown in equation (2.26) 

 

∑ 𝑎𝑘 =  
𝑎

1−𝑎

∞
𝑘=1 , 𝑎 = 𝜌𝑒−𝑖(𝜃−𝜇).    (2.26) 
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iii. Wrapped Normal (WN) Distribution  

 

A wrapped normal distribution is wrapped probability distribution obtained by 

wrapping a normal distribution denoted by (𝜇, 𝜎2) (𝜇 is the mean and 𝜎2 is variance) 

around a unit circle.  The wrapped normal distribution is denoted by 𝑊𝑁(𝜇, 𝜌) where  

𝜇 is the mean direction and 𝜌 is the mean resultant length parameter. Its probability 

density function is given by  

 

𝑓(𝜃; 𝜇, 𝜎) =  
1

𝜎√2𝜋
∑ 𝑒𝑥𝑝 [

−(𝜃−𝜇−2𝑘𝜋)2

2𝜎2 ]∞
𝑘=−∞ .   (2.27) 

 

The alternate and more useful representation of this density can be shown to be  

 

𝑓(𝜃; 𝜇, 𝜌) =
1

2𝜋
[1 + 2 ∑ 𝜌𝑘2

 cos 𝑘(𝜃 − 𝜇)∞
𝑘=−∞ ],     (2.28) 

     0 < 𝜃 ≤ 2𝜋,     0 < 𝜌 < 1.   

 

The distribution is unimodal and symmetric about value 𝜃 = 𝜇. Unlike the von Mises 

distribution, the wrapped normal distribution possesses the additive property that is the 

convolution of two wrapped-normal variables is also wrapped normal. Specifically, if  

𝜃1~𝑊𝑁(𝜇1, 𝜌1), 𝜃2~𝑊𝑁(𝜇2, 𝜌2) and are independent, then 𝜃1 + 𝜃2~𝑊𝑁(𝜇1 +

𝜇2, 𝜌1 + 𝜌2) (Whittaker & Watson, 1944). 
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iv. Circular Uniform (CU) Distribution 

 

A circular uniform distribution is a distribution on the unit circle of uniform density at 

all angles. This is a unique distribution on a circle which is invariant under rotation 

and reflection (Mardia & Jupp, 1999). If the total probability is distributed evenly on 

the circumference, then we have Circular Uniformity (CU) distribution with the 

constant density function of: 

 

    𝑡(𝜃) =
1

2𝜋
, 0 ≤ 𝜃 < 2𝜋.     (2.29) 

 

v. Offset Normal (ON) Distribution 

 

The offset normal (ON) distribution is derived from a bivariate normal distribution 

𝜙 (𝑥, 𝑦;  𝜇, Σ) with mean 𝜇 = (𝝁, 𝒗)′ and covariance matrix ∑  . If 𝑟 denotes the 

correlation between the variables and 𝜎1
2, 𝜎2

2 denote the variances, the probability 

density function of the offset normal distribution is given by  

 

𝑓(𝜃) =  
1

𝐶(𝜃)
{𝜙(𝜇, 𝑣; 0, Σ) + 𝑎𝐷(𝜃)𝛷[𝐷(𝜃)]𝜙 [

𝑎(𝜇𝑠𝑖𝑛𝜃−𝑣𝑐𝑜𝑠𝜃)

√𝐶(𝜃)
] } ,  (2.30) 

 

where 

𝑎 =
1

𝜎1𝜎2√1 − 𝑟2
, 

𝐶(𝜃) = 𝑎2(𝜎2
2𝑐𝑜𝑠2𝜃 − 𝑟𝜎1𝜎2𝑠𝑖𝑛2𝜃 + 𝜎1

2𝑠𝑖𝑛2𝜃), 
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𝐷(𝜃) =
𝑎2

√𝐶(𝜃)
[𝜇𝜎2(𝜎2𝑐𝑜𝑠𝜃 − 𝑟𝜎1𝑠𝑖𝑛𝜃) + 𝑣𝜎1(𝜎1𝑠𝑖𝑛𝜃 − 𝑟𝜎2𝑐𝑜𝑠𝜃)]. 

 

Here,  𝜙(∙), 𝛷(∙) are the probability density function  and cumulative distribution 

function of 𝑁(0,1), respectively. The particular case when 𝜇 = 0 and 𝜅 = 0 leads to 

the density function 

 

𝑓(𝜃) =
√1−𝑏2

2𝜋(1−𝑏𝑐𝑜𝑠2𝜃)
,      (2.31) 

𝑏 =
𝜎1

2 − 𝜎2
2

𝜎1
2 + 𝜎2

2. 

 

2.5 Comparison between Linear and Circular Concepts 

 

A data structure is a type of data that needs to be categorized accordingly based on 

their characteristics. Linear and circular data are examples of data structures that are 

fundamentally different from each other based on their characteristics. Then different 

statistical methods are required to treat the different data structures. The most common 

problem when treating circular data is to estimate a preferred direction and its 

corresponding distribution. Then the linear statistical method is limited in precisely 

characterizing the central tendency of circular distributions. For example, if we have 

observations of angular value on the circle, then the mean of the measures should give an 

estimate of the true population mean parameter.   
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There are many problems associated with the use of traditional statistical methods for 

describing circular data. Classical statistical inference methods do not take into account 

the circularity scale, so these methods can generate unknown and unrecognized errors. 

Then it will come out with a result that does not represent the real data set and loss of 

statistical power in making the best decision. The statistical methods that minimize the 

interpretational risks associated with circular data when certain distributional 

assumptions are met (King et al., 1987). 

 

2.6  Circular regression 

 

Regression is a map between two sets of variables that define the relationship between 

the dependent variable and the independent variable by the slope of the curve that is 

plotted between them. It is important in statistical analysis to model and investigate the 

relationship between two or more variables of interest and examine the influence of one 

or more independent variables on dependent variables. It is also known as the predictive 

modelling technique which is used for forecasting, time series modelling and finding the 

causal effect relationship between variables. There are several types of regression 

modellling including linear regression, logistic regression, multivariate regression and 

circular regression that have been used widely for various purposes. The basis and 

simplest form of a regression model is the linear regression model which makes several 

assumptions, including the measurements of errors that need to be normally distributed. 

The regression analysis has been applied in numerous and occur in almost every field, 

including engineering, physical science, economics, management, life and biological 

sciences and social science. 
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The regression model may be extended to the circular case which involved circular 

variables. The study of the circular regression model has been explored for the past 50 

years. Discussion on the development of circular regression models began with Gould 

(1969) who predicted the mean direction of a circular response variable from a vector of 

linear covariates. Then  Johnson & Wehrly (1977) improved the Gould (1969) model by 

restricting the range of the independent variables to the half-open interval (0,2π]. Circular 

regression procedure has been used in various applications including the study of 

correlations among circadian biological rhythms, where a 24-hour clock is considered as 

a circle (Downs, 1974; Kronauer et al., 1982; Binkley, 1990).  

 

There are two types of circular regression, namely, simple circular regression which 

involved only one independent variable and multiple circular regression which involved 

more than one independent variable. Circular regression can be classified into two 

categories, where the relationship between circular variables and the relationship between 

mix variables which is circular and linear variables. The circular regression equation for 

the data is divided into two types: 

 

i. Linear- circular and circular-linear regression 

 

Linear-circular (linear responses and circular predictors) or circular-linear 

(circular responses and linear predictors) regression is a mixture of the linear 

variables and circular variables in the model. Regression model where the 

independent variables consists of one circular and a set of linear variables was 

proposed by Lund (1999).  
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ii. Circular-circular regression model  

 

Circular-circular regression or simple circular regression is a regression model 

that consists of one independent circular variable and one dependent circular 

variable. It is very useful for analyzing bivariate circular data.  

 

For the circular response variable denoted as 𝑣 and circular explanatory variable 

denoted as 𝑢 with mean directions 𝛼′ and 𝛽′ respectively, Down & Mardia (2002) 

applied the following mapping to relate 𝑢 and 𝑣 such that 

 

tan
1

2
(𝑣 − 𝛽′) = 𝜔 tan

1

2
(𝑢 − 𝛼′)   (2.32) 

 

where 𝜔 is a slope parameter in the closed interval [-1,1]. The mapping defines a 

one-to-one relationship with a unique solution given by 

 

𝑣 = 𝛽′ + 2𝑡𝑎𝑛−1 {𝜔 tan
1

2
(𝑢 − 𝛼′)}    (2.33) 

 

A simple circular-circular regression model consists one independent variable 

proposed by Hussin et al. (2004) such that  

 

𝑣𝑖 = 𝛼′ + 𝛽′𝑢𝑖 + 𝜀𝑖(mod 2π)     (2.34) 

 

where 𝜀𝑖 is circular random error having a von Mises distribution with circular 

mean 0 and concentration parameter к and 𝛼′ and 𝛽′ are the coefficients of the 
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model. The model is useful when we are interested to find a direct relationship 

between the two circular variables. 

 

Earlier than that, Sarma & Jammalamadaka (1993) proposed an interesting 

circular model that considered the conditional expectation of the vector 𝑒(𝑖𝑣) given 

u such that 

 

         𝐸(𝑒𝑖𝑣 |𝑢) = 𝜌(𝑢)𝑒𝑖𝜇(𝑢)          (2.35) 

= 𝜌(𝑢) cos 𝜇(𝑢) + 𝑖𝜌(𝑢) sin 𝜇(𝑢)             

= 𝑔1(𝑢) + 𝑔2(𝑢), 

 

where 𝜇(𝑢) is the conditional mean direction of 𝑣 given 𝑢 and 𝜌(𝑢) is the 

conditional concentration parameter for some periodic function 𝑔1(𝑢) and 𝑔2(𝑢). 

The functions 𝑔1(𝑢) and 𝑔2(𝑢) are expressed in the form of their trigonometric 

polynomial expansions. In this study, we consider the model proposed by       

Sarma & Jammalamadaka (1993) and we will describe the model in detail in 

Chapter Three.  

 

The circular-circular regression model with more than one independent variable 

is the extended model or generalized model from the simple circular regression 

model. It is called a multiple circular regression model where more than one 

independent circular variable is included in the model (Ibrahim, 2013). 
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2.7 Summary 

 

In this chapter, we have discussed the existence of crescent moon visibility criteria and 

their minimum condition to sight the moon, as well as the existing methods to detect the 

crescent moon. The differences between linear and circular data are also highlighted. Due 

to the particular nature of their properties, we need different approaches for evaluating 

these data sets. Next, we have reviewed the approach of circular regression method. In 

the next chapter, we consider the circular regression procedure with the von Mises 

distributed errors in developing a new statistical test to detect the crescent moon based on 

Yallop’s (1997) procedure.   
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CHAPTER 3: MODELLING MALAYSIAN CRESCENT MOON DATA USING 

CIRCULAR REGRESSION MODEL 

 

3.1 Introduction 

 

In this chapter, we study the properties of Malaysian crescent moon data using some 

circular descriptive statistics. We review the theory of the circular regression model,  

given in Sarma & Jammalamadaka (1993).  After that, we apply the model to the local 

crescent moon data. Then, we study the correlation between the predictor variables 

relevant to crescent moon visibility and will use the results to determine the variables  

required in developing the visibility test proposed in Chapter 4. In this chapter, we will 

also illustrate the application of the JS regression model for one variable. 

 

3.2  Background of data   

 

The Astronomy Research Group of the University of Malaya in cooperation with 

Jabatan Kemajuan Islam Malaysia (JAKIM) are involved in the crescent moon sighting 

activities since 2000. The sighting activities take place at the Baitul Hilal Teluk Kemang. 

This location is the first location in Malaysia that was used for sighting the crescent moon 

in the 1970s. Previously, the observations were conducted only for three important lunar 

months (29th of Ramadhan, Syawal, and Zulhijah of Hijr) each year. It is to determine the 

start of the fasting month, Eid-alFitr and Eid al-Adha, respectively. Starting from March 

2000, the sighting activity has been carried out consistently on the 29th and 30th of each 

lunar month. It continues until now, except for a few months due to the COVID-19 

pandemic in 2020. Consequently, a total of 254 monthly observations have been collected 

since 2000 (1420H) with 81 (31.89%) positive results that is, the crescent moon is sighted. 
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The negative results may due to a few reasons, such as bad weather and severe sky 

conditions or when the values of important parameters are lower than the specified 

crescent moon visibility criteria. This will be elaborated in detail in Chapter 4. 

 

There are various types of equipment used in the sighting activities, such as theodolites, 

a portable telescope of 12-inch reflector and a 76mm refractor. A few measurements are 

taken and the variables considered in this thesis are listed in Table 3.1. The first five 

variables are measured in radian/degree while the last variable indicates positive (Y) or 

negative (N) outcomes. Figure 3.1 shows the local view of geometric variables of the sun 

and moon. We can see the first five important parameters, as listed in Table 3.1 are 

indicated.  We expect that all the parameters have a relationship with each other. Hence, 

we will determine the strength of the relationship using a circular correlation coefficient 

measure. 

 

Table 3.1: Definition of the variables. 

Variables Definition 

Width The width of the crescent moon in arcminutes. 

Alt(S) The altitude of the sun in degree unit. 

Alt(M) The altitude of the moon in degree unit. 

ARCV The arc of vision in degree unit, i.e., the geocentric difference in the 

altitude between the centre of the sun and the centre of the moon for 

a given latitude and longitude with taking into account the effects of 

refraction. 

Elon The elongation, in degree unit, which refers to the angle between the 

centre of the sun and the centre of the moon, as viewed from earth. 

Viz The visibility of the crescent moon marked either yes (Y) or no (N).  
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Figure 3.1: Local view of geometric variables of the sun and moon: ARCV, relative 

altitude; Alt, altitude of the center of the crescent moon above the horizon. 

 

Since the explanatory variables are circular, we use circular descriptive statistics to 

provide basic features about the data. In addition, the plot of the circular variables can be 

used to identify the correlation between the variables. We then apply the JS circular 

regression procedure to the data set.  

 

3.3 Descriptive Statistics 

 

Table 3.2 lists the descriptive statistics on the local crescent moon variables. The 

distribution of the  the circular variables in the crescent moon data can be described by a 

rose diagram, as shown in Figure 3.2. The rose diagrams show the distribution of each 

circular variable and the angles are measured in degrees clockwise from the east (0°). 
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Figure 3.2: Rose diagram for the circular variables in the crescent moon dataset. 

 

Figure 3.2 shows the rose diagram for each circular variable. We can see that most of 

the variables are concentrated around zero. These show the condition of an early phase of 

the moon after sunset and the data collected after sunset. As we expected, the Alt(S) must 

be negative since the position of the sun is below the horizon while the Alt(M) must be 

positive where the position is above the horizon. It is clearly shown from the figure that  

the values of Alt(S) and Alt(M) are as we expected. ARCV  is the difference between the 

Alt(S) and Alt(M) and the values of ARCV are concentrated around zero as shown in Figure 

3.2. While for Elon, the values are always positive since the values of Elon refer to the 

angles between the centre of the sun and the centre of the moon, as viewed from earth.  
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Table 3.2 provides the mean direction, concentration, minimum/maximum, and the 

95% confidence interval (CI) of mean direction for the circular variables. As expected, 

mean direction for the Width of the crescent moon during sighting is generally small with 

a large concentration value.  The observation for Alt(M) and Alt(S) must be positive and 

negative due to above and below the horizon respectively, though ARCV is more 

substantial than the Alt(M) because ARCV takes into account the position of the sun below 

the horizon. We can see the mean direction for all variables gives positive value except 

for Alt(S). However, the minimum value of Alt(M) is negative due to the data collection 

occur before ijtimak or location of the moon still below the horizon. All the variables give 

the same and large concentration values, which means that the data are very concentrated 

in one direction. This is expected as sigthing is carried at the same time during sunset and 

the values will be very close to each other.  

 

   Table 3.2: Summary statistics for circular variables in the crescent moon dataset. 

Variable Mean 

direction 

(degree) 

Concentration, κ  (min, max)  

(degree) 

95% CI of mean 

direction 

(degree) 

Width 0.006 1 x 105  (0,0. 0.032) (0.005, 0.007) 

Alt(S) −1.652 1 x 105 (−19.934, 4.019) (−2.094, −1.274) 

Alt(M) 7.498 1 x 105 (−5.460, 27.835) (6.791, 8.204) 

ARCV 9.159 1 x 105 (−5.165, 26.405) (8.440, 9.957) 

Elon 10.779 1 x 105 (0.563, 28.244) (10.099, 11.527) 
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    Table 3.3: Circular correlation between circular variables. 

Variables Width Alt(S) Alt(M) ARCV Elon 

Width      

Alt(S) -0.233     

Alt(M) 0.827 0.212    

ARCV 0.924 -0.334 0.850   

Elon 0.962 -0.287 0.841 0.966  

 

 

The correlation values between variables are also calculated, as tabulated in Table 3.3. 

We found that Alt(M)-Width, ARCV-Width, Elon-Width, ARCV-Alt(M), Elon-Alt(M), and 

Elon-ARCV have high correlation values than that of the other possible combinations of 

two variables. Nevertheless, not all the highly correlated variables are suitable to be used 

as the parameters for crescent moon visibility. Based on the description of variables as 

given in Figure 3.1, ARCV-Alt(M), ARCV-Alt(S), Alt(S)-Alt(M), and Elon-Width are 

collinear variables, which mean they have the same corresponding angle of geometry. To 

study the relationship between two variables using a simple circular regression model, we 

consider ARCV and Alt(M) only as the model variables. We refuse to consider models 

with the other two combinations ARCV-Alt(S), and Alt(S) - Alt(M) because the ARCV, 

Alt(M), Alt(S) are highly correlated with each other. As for Width, the variation of the 

values is too small and might affect the relationship with other variables (Hoffman, 2003).  

Hence, in this study, we focus on the combination of Elon-Alt(M), Elon-ARCV and   

ARCV-Alt(M) only. The results will be used in the new criteria developed in Chapter 4. 
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Figures 3.3-3.5 give the scatter plots of Elon against Alt(M), Elon against ARCV and 

ARCV against Alt(M), respectively. The Alt(M) for Y visibility is recorded at the time of 

the moon being sighted, which occurs a few minutes after the sunset. In this case, the 

altitude of the sun is several degrees below the horizon.  Whereas for N visibility 

(invisible), the altitude of the moon is calculated at sunset. Therefore, the distribution of 

data for Y is expected to be more scattered than N cases.  From both plots, we observed 

that the larger the values of Elon, ARCV, and Alt(M), the higher the possibility of sighting 

the crescent moons. For comparison purposes, Figure 3.6 gives the plot of ARCV against 

Width.  Though the correlation between the two variables is high, the relationship is not 

linear.  

 

 

 
Figure 3.3: Scatter plot of Elon versus the Alt(M). 
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Figure 3.4: Scatter plot of Elon versus the ARCV. 

Figure 3.5: Scatter plot of the ARCV versus Alt(M). 
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        Figure 3.6: Scatter plot of ARCV versus Width. 

 

3.4  JS Circular Regression Model 

 

We now look the theory of JS Circular Regression model which will be use in this study.  

 

3.4.1  Theory 

 

The Sarma & Jammalamadaka (1993) circular regression model with two circular random 

variables U  and V is considered. The model for two circular random variables U and V 

in terms of the conditional expectation of the vector ( )ive given u such that 

 

            𝐸(𝑒𝑖𝑣 |𝑢) = 𝜌(𝑢)𝑒𝑖𝜇(𝑢)       

= 𝜌(𝑢) cos 𝜇(𝑢) + 𝑖𝜌(𝑢) sin 𝜇(𝑢)             
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= 𝑔1(𝑢) + 𝑔2(𝑢),       (3.11) 

 

where   𝑒𝑖𝑣 = cos 𝑣 + 𝑖 sin 𝑣,   𝜇(𝑢) is the conditional mean direction of 𝑣 given 𝑢 and 

𝜌(𝑢) is the conditional concentration parameter for some periodic function 𝑔1(𝑢) and 

𝑔2(𝑢). Equivalently, we can write 

 

𝐸(cos 𝑣 | 𝑢) = 𝑔1(𝑢) 

𝐸(sin 𝑣 | 𝑢) = 𝑔2(𝑢).    (3.12) 

 

Then we may predict v such that 
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The difficulty of non-parametrically estimating 𝑔1(𝑢) and 𝑔2(𝑢)  leads us to approximate 

them by using suitable functions, taking into account the fact that they are both periodic 

with period 2𝜋. Sarma & Jammalamadaka (1993) considered the trigonometric 

polynomials of a function of one variable to approximate 𝑔1(𝑢) and 𝑔2(𝑢) (Kufner & 

Kadlec, 1971). The approximations used are the trigonometric polynomials of suitable 

degree m of the form 
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Therefore, we have the following two observational models: 
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                                (3.15) 

 

where 𝜀 = (𝜀1, 𝜀2) is the vector of random errors following the normal distribution with 

mean vector 0 and unknown dispersion matrix Σ .  The parameters Ak, Bk, Ck, and Dk, 

where   k = 0, 1, …, m, the standard errors as well as the dispersion matrix Σ  can then be 

estimated using the generalized least squares estimation method. 

 

3.4.2 Estimation of JS Circular Regression Parameters 

 

The least square procedure is considered in the calculation of the JS circular regression 

parameters. 

 

(i) Least Squares Method 

 

Sarma & Jammalamadaka (1993) defined the estimation framework for the JS circular 

regression model based on the generalized least square (LS) methodology. Let 
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(𝑢1, 𝑣1), (𝑢2, 𝑣2), … , (𝑢𝑛, 𝑣𝑛) be a random circular sample of size 𝑛. From (3.15), we now 

have the observational regression-like equations that have been given by 

 

𝑉1𝑗 =  cos 𝑣𝑗 = ∑ (𝐴𝑘 cos 𝑘𝑢𝑗 + Bk sin 𝑘𝑢𝑗) + 𝜀1𝑗
𝑚
𝑘=0 , 

           (3.16) 

𝑉2𝑗 =  sin 𝑣𝑗 = ∑ (𝐶𝑘 cos 𝑘𝑢𝑗 + 𝐷𝑘 sin 𝑘𝑢𝑗) + 𝜀2𝑗
𝑚
𝑘=0 , 

 

for j = 1, … , n. Assume that 𝐵0 = 𝐷0 = 0 to ensure identifiability. The observational 

equations (3.16) can then be summarized as follows 

 

𝑉(1) = (𝑉11, … , 𝑉1𝑛)′, 

𝑉(2) = (𝑉21, … , 𝑉2𝑛)′, 

           (3.17) 

𝜀(1) = (𝜀11, … , 𝜀1𝑛)′, 

𝜀(2) = (𝜀21, … , 𝜀2𝑛)′, 
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,  (3.18) 

 

and 

γ(1) = (𝐴0, 𝐴1, … , 𝐴𝑚, 𝐵1, … , 𝐵𝑚)′, 

γ(2) = (𝐶0, 𝐶1, … , 𝐶𝑚, 𝐷1, … , 𝐷𝑚)′.   (3.19) 
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Equations (3.16) can be written in a matrix form 

 

𝑉(1) = 𝑈𝛾(1) + 𝜀(1), 

𝑉(2) = 𝑈𝛾(2) + 𝜀(2).     (3.20) 

 

The least squares estimates turn out to be  

 

γ̂(1) =  (𝑈′𝑈)−1𝑈′𝑉(1), 

γ̂(2) =  (𝑈′𝑈)−1𝑈′𝑉(2).    (3.21) 

 

Then, resulting from equation (3.15), covariance matrix Σ can be estimated using the least 

square theory. Let 

 

𝑅0(𝑝, 𝑞) = 𝑉(𝑝)′𝑉(𝑞) − 𝑉(𝑝)′𝑈(𝑈′𝑈)−1𝑈′𝑉(𝑞)  (3.22) 

 

where 𝑅0 = (𝑅0(𝑝, 𝑞))
𝑝,𝑞=1,2

, then 

 

�̂� = [𝑛 − 2(2𝑚 + 1)]−1𝑅0    (3.23) 
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is unbiased estimate of Σ, and the standard error of estimators can then be found. Then 

we can also estimate 𝜇(𝑢) by using equation (3.13) and 𝜌 using the equation (3.24) below: 

 

𝜌(𝑢) = √
1

𝑛
∑ 𝜌2(𝑢𝑗)𝑛

𝑗=1 = √
1

𝑛
∑ [𝑔1

2(𝑢𝑗) + 𝑔2
2(𝑢𝑗)]𝑛

𝑗=1 ,  (3.24) 

 

where 0 ≤ 𝜌(𝑢) ≤ 1. 

 

3.5 Application on Malaysian Crescent Moon data 

 

The JS circular regression model is now being extended to the real data set; the local 

crescent moon data. We choose three combination variables with two circular variables 

Elon, E and Alt(M), A, denoted as EA-model, Elon,E and ARCV,V, denoted as EV-model, 

and ARCV,V,  and Alt(M), A, denoted as VA-model. In this study, codes are written in R-

studio software to produce results of the model below. 

 

3.5.1 EA-model 

 

The  EA-model, represents the JS circular regression model with circular model variables 

Elon, E and Alt(M), A. First, we must determine the order of the trigonometric 

polynomials in the circular-circular regression. The appropriate order 𝑚 of trigonometric 

polynomial is determined by testing the significance of the (m + 1)th terms in both 

regression models. If the (m + 1)th terms do not contribute significantly to the models, the 

mth order models are used. 
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Table 3.4 displays the regression coefficients of the first order models and the 𝑝 values 

for evaluating the need for higher order models. We may claim that models of the second 

order are not required (p = 0.3729 and 0.1189). The best fitted JS circular regression 

model for Elon and Alt(M) is the model of first-order (m = 1) terms. The rho, ρ in circular 

regression is a measure of explained variance, indeed with interpretation analogous to 𝑟-

squared. This model shows that the high value of ρ indicates that the model is good enough 

to fit the data. The scatter plot Elon versus Alt(M) with the fitted line is presented in Figure 

3.7. It shows that the fitted line is quite good since the variation of data scatters along the 

fitted line. It makes sense that the higher-order model is not necessary.    

 

Table 3.4: Coefficient of circular-circular regression of Elon and Alt(M). 

                     Response   

Coefficient     cos(E)           sin(E) 

Intercept     0.1832   1.0108 

1st Order terms 

      cos(A)     0.8104   -0.9178 

      sin(A)      -0.0372  0.6172 

p-value for 2nd Order    0.3729   0.1189 

ρ (r-squared)     0.9985469 
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Figure 3.7: Plot of fitted Elon versus the Alt(M). 

 

3.5.2 EV-model 

 

We repeat the process using the Elon, E and ARCV, V, denoted as EV-model. 

 

Using the same approach as for EA-model, the regression coefficient of the first-order 

models with p values for evaluating the need for higher-order models as shown in Table 

3.5. It shows that the higher-order terms are not significant at the 0.05 level. We can say 

that the first order model is good enough to explain the relationship between variables          

(p = 0.6038 and 5.1174e-10). Although the p-values for sin(𝐸) of the model are close to 

zero, in general, to increase the order model is not necessary.        
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Table 3.5: Coefficient of circular-circular regression of Elon and ARCV. 

                      Response   

Coefficient     cos(E)   sin(E) 

Intercept     -0.0480  1.5536 

1st Order terms 

      cos(V)     1.0452   -1.4884 

      sin(V)      -0.0021  0.5877 

p-value for 2nd Order    0.6038              5.1174e-10 

ρ (r-squared)     0.9997308 

 

 

The best fitted JS circular regression model for Elon and ARCV is a model of first-

order (m = 1) terms. The scatter plot Elon versus ARCV with the fitted line is presented in 

Figure 3.8. It shows that most of the data are close to the fitted line, and we can say that 

the model fitted with the first-order term is good enough to explain the relationship 

between these two variables. The value of ρ also gives a high value indicates that the the 

data are concentrated and gives us that the data fits the model very well. 
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 Figure 3.8: Plot of fitted Elon versus the ARCV. 

 

3.5.3 VA-model 

 

The next model ARCV versus Alt(M). We repeat the process as EA-model and EV-model 

using the ARCV, V, and Alt(M), A denoted as VA-model.         

  

The best fitted JS regression model for ARCV and Alt(M) is the first-order model          

(m = 1). The p values for the need for higher-order models are seen in Table 3.6 where 

the higher model is not significant (p = 0.3117 and 0.2039). The value for rho, ρ  shows a 

high value indicates that the model is a good model that fits the data very well. Based on 

the scatter plot in Figure 3.9, most of the data are close enough to the fitted line however, 

some observations are far from the fitted line. But in general, the model is still considered 

a good model.   
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Table 3.6: Coefficient of circular-circular regression of ARCV and Alt(M). 

                      Response   

Coefficient     cos (V)   sin(V) 

Intercept     0.2235   -0.3794 

1st Order terms 

      cos(A)     0.7724   0.4189 

      sin(A)      -0.0288  0.9606 

p-value for 2nd Order    0.3117              0.2039 

ρ (r-squared)     0.9983459 

 

 

 

Figure 3.9: Plot of fitted ARCV versus the Alt(M). 
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3.5.4 Discussion 

 

From the analysis of the local crescent data, we can see the important parameters that 

give a significant contribution to the model. The result for the mean direction, 

concentration, minimum/maximum, 95% confidence interval (CI) and circular correlation 

between circular variables are tabulated in Table 3.2 and 3.3, respectively. Then the 

Tables 3.4 – 3.6 show the coefficients for the circular-circular regression model and 

Figures 3.7 – 3.9 show the plot of the circular regression model. Several results are 

observed: 

 

1. For the mean direction, all the circular variables are positive except for the Alt(S). 

All the variables have a high value of concentration, indicating the observations 

are concentrated and close to each other. These are as expected as the sun is always 

below the horizon after sunset while the sighting of the crescent moon is 

concluded not long after sunset giving values of the variable to be close. 

 

2. The value of minimum and maximum for all variables should be positive, except 

for the Alt(S). However, the minimum value for the Alt(M) and ARCV is negative. 

This observation corresponds to the case when the moon set occurs before the 

sunset, that is the conjunction has not happened yet when the crescent moon 

sighting is carried out. 

 
 

3. All five variables are correlated with each other. The variables have a strong 

correlation except for the Alt(S) – Width, Alt(M) – Alt(S), ARCV – Alt(S) and Elon 

– Alt(S). However, some of the variables are collinear, that is, they contain similar 
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information about the data.  For example, the information on Alt(M) is explained 

by ARCV and further study on the relationship between the two variables is not 

informative. 

 

4. The three circular regression models considered show the first-order models 

regression coefficients are significant with the p values for assessing the need for 

higher-order models. The higher-order model is needed when the first order is not 

significant. 

 
  

5. The circular regression modelling with two circular variables, namely, the EA-

model, EV-model, and VA-model give a high value of ρ (r-squared) which is close 

to one. This means that the independent variable has a significant contribution to 

the prediction of the response variable.  

 

6.  The plot of the regression model (the EA model, the EV model or the VA model) 

shows the data points of the two variables are close to the fitted line. However, 

some observations lie far away from the fitted line. Further investigation is needed 

to treat the data. 

 

In this study,  the Elon, Alt(M) and ARCV are important variables used for developing 

the JS circular regression. In the next chapter, the EA, EV and VA models will be used to 

determine the new visibility criteria of the crescent moon.  
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3.6  Summary 

 

In this chapter, we have studied the Malaysian crescent moon data, which includes the 

background of data, the descriptive circular statistics and the correlation between the 

circular variables in the dataset. We also have reviewed the JS circular regression model 

theory and have studied the JS regression parameter estimation. Then we have applied the 

theory of the JS circular regression method to the data of the Malaysian crescent moon. 

We have obtained three JS circular regression models, the EA, EV and VA models that 

will be used in the next chapter to derive the visibility tests.  
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CHAPTER 4: NEW VISIBILITY TEST USING LINEAR JS CIRCULAR 

REGRESSION MODEL 

 

4.1  Introduction 

 

The problem of obtaining the visibility criteria of the new crescent moon has been 

explored. Although there are a few new moon visibility criteria procedures proposed in 

the literature,  none uses circular statistics to obtain the criteria. In this chapter, we follow 

closely the theory developed  by Yallop (1997), who uses a linear model to construct the 

crescent moon visibility test. In this study, we develop a new crescent moon visibility test 

to determine the visibility criteria of the crescent moon using the  JS circular regression 

model (Sarma & Jammalamadaka, 1993). Then, we find the percentages of correct 

classification of the crescent moon visibility and invisibility, for all the proposed visibility 

tests.  

 

4.2 Yallop Method   

 

This chapter reviews the theory on the derivation of the q-test by Yallop (1997) in 

detecting the crescent moon visibility.  In 1997, Yallop introduced a crescent moon 

visibility test based on the topocentric crescent width, W, and geocentric ARCV. He 

analysed a sample of 295 first sightings of the crescent moons compiled by Schaefer 

(1996) that covered the period of 1859 to 1996 (Yallop, 1997). Yallop’s algorithm 

computes crescent moon visibility based on residuals obtained by fitting a polynomial 

regression, 𝐴𝑅𝐶𝑉 = 𝑓(𝑊)  where f is a polynomial function with argument Width, W. 

 The polynomial regression is given by 
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 𝐴𝑅�̂�𝑉 = 11.8371 − 6.3226𝑊 + 0.7319 𝑊2 − 0.1018𝑊3  (4.1) 

 

Yallop (1997) developed a mathematical relation between the visibility test parameter q 

and the fitted 𝐴𝑅�̂�𝑉 based on the Indian method (Schoch, 1930). 

The residuals  𝐴𝑅𝐶𝑉 − 𝐴𝑅�̂�𝑉 are divided by 10 giving the q-statistics in equation (4.2): 

 

     𝑞 =
[𝐴𝑅𝐶𝑉−𝐴𝑅�̂�𝑉]

10
.      (4.2) 

 

He further defined six different categories by type A to F depending on the visibility 

of crescent moon using various instruments and non-visible categories, as described in 

Table 4.1. 

 

Table 4.1: The q-test types by Yallop (1997). 

Types q-test value Justification 

A > +0.216 easily visible to the unaided eye (≥ 12ARCV) 

B –0.014 < q < +0.216 visible under certain atmospheric conditions 

C –0.160 < q < –0.014 may need optical aid to find the thin crescent moon 

before it can be seen with the unaided eye. 

D –0.232 < q < –0.160 can only be seen with binoculars or a telescope. 

E –0.293 < q < –0.232 below the normal limit for detection with a 

telescope. 

F q < –0.293 not visible below the Danjon limit. 
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Hoffman (2003) investigated the validity of the Yallop (1997) criteria using the results 

of 539 observations of the moon made over several years by many experienced observers 

in good weather conditions. The data were selected from 1047 reports. He suggested a 

three-category type of visibility, that is, if q is greater than 0.43, the crescent moon is 

visible and not visible if q is less than −0.06 and the otherwise need some optical aid to 

observe the crescent moon.  These suggest that different data set may give different ranges 

of the categories. 

 

Yallop (1997) considered circular variables ARCV and W as the basis to develop the 

q-test for crescent moon detection as in equation (4.1) but using linear techniques. The q-

statistic is developed by the following steps below: 

 

Step 1:  Consider a function f such that 𝐴𝑅𝐶𝑉 = 𝑓(𝑊) 

Step 2:  Choose 𝑓(𝑊) = 𝑎 + 𝑏𝑊 + 𝑐𝑊2 + 𝑑𝑊3 as a cubic polynomial 

function. 

Step 3:  Fit 𝐴𝑅𝐶𝑉 = �̂� + 𝑏�̂� + 𝑐𝑊 2̂ + 𝑑𝑊3̂ using the multiple linear 

regression model setup. 

Step 4:  Define the q-statistic as 𝑞 =
𝐴𝑅𝐶𝑉−(�̂�+𝑏�̂�+𝑐𝑊2̂+𝑑𝑊3̂ )

10
 

Step 5:  Categorize the q-statistic into 6 groups according to the visibility of the 

new crescent moon as shown in table 4.1. 
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4.3  The new cresent moon visibility test  

 

The main interest of this study is to develop an alternative crescent moon visibility test 

besides the q-test. In developing new crescent moon visibility tests using the circular 

regression model, we closely follow the procedure q-test of Yallop (1997).  As in the       

q-test, we use the resulting residuals from the estimated  JS circular regression model 

(Sarma & Jammalamadaka, 1993)  with two circular variables to categorize the visibility 

of the crescent moon.  

 

The new tests are developed by generalizing the derivation of the q-test by Yallop 

(1997) for the case of circular variables. The new crescent moon visibility test, say the 

YX-test, utilizes two circular variables Y and X only. Here, we use the JS circular 

regression with Y as the dependent variable and X as the independent variable. The 

resulting residuals are obtained using Equation (4.3). The YX-statistic then is derived as 

follows: 

 

Step 1:  Consider a function 𝑔 such that 𝑌 = 𝑔(X) 

Step 2:  Fit the two circular variables using the JS circular regression model.   

Step 3:  Obtain the fitted values of 𝑌, say �̂� . 

Step 4: Define the YX-statistic which is the residuals of the fitted model                        

as given in equation (4.3). 

Step 5:  Categorise the 𝑌𝑋 -statistics into three groups according to the visibility 

of the moon. 
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As for the error of the model, we use the definition of circular distance as given 

Jammalamadaka & SenGupta (2001) such that 

  

 𝑒 = π − |𝜋 − |𝑌 − �̂�||,     (4.3)

  

where �̂� is the estimated value of  𝑌. 

The ranges of categories of the visibility tests are obtained based on the percentage of 

correct classification of the visibility types. Three visibility tests are proposed based on 

the residuals of three fitted simple JS circular regression model, each with different 

response and independent variables. In this study, we use 90%, 95%, and 99% confidence 

intervals of the residuals, namely [L99, U99], [L95, U95], and [L90, U90] respectively, 

to indicate the percentage of scores that fall in the interval. For example, category A 

(visible to unaaided eye) may refer to test values that fall in [U99, ∞), category B (may 

need optical aid)  refers to test values that are in [L90, U99), and category C (not visible) 

refers to test values that fall in (-∞, L90). For these new visibility tests, we use the 

combination of variables, that are, Elon-Alt(M), Elon-ARCV and ARCV-Alt(M), as 

discussed in Chapter 3. The performance comparison of three new visibility tests is 

measured using the percentage of correct classification. The higher the percentage of 

correct classification, the better the test. The percentage of correct classification is 

calaculated using the following formula: 

 

𝐻 =
𝑁𝑜.𝑜𝑓 (𝑌)𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝐴+𝑁𝑜.𝑜𝑓 (𝑁)𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝐶

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 X 100,  (4.31) 

where H percentage of correct classification, (N) is crescent moon non-visibility and (Y) 

is crescent moon visibility. 
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4.3.1 EA-test 

 

The crescent moon visibility test, called EA-test, utilizes two circular variables Elon, 

E and Alt(M), A. The best fitted JS circular regression model with first order (m = 1) is 

given by equation (4.4). 

 

  cos �̂� = 0.1832 + 0.8104 cos 𝐴 − 0.0372 sin 𝐴         

              (4.4) 

  sin �̂� = 1.0108 − 0.9178 cos 𝐴 + 0.6172 sin 𝐴.                       

 

Using the approach adopted by Yallop (1997), we define the EA-test, which takes 

values of residuals of the fitted JS circular regression model. We then attempt to 

categorize EA using the procedure described above and tabulated in Table 4.2. The second 

column gives the intervals of the categories based on the EA-test; for example, Category 

A consists of observations with EA greater than 0.0086.  The third and fourth columns 

give the frequency of crescent moon non-visibility (N) and visibility (Y). For Category A, 

the number of Y is greater than N, while for Category C, more N compared to Y. Hence, 

we label Category A as "Visible to the unaided eye" while Category C as "Not visible." 

As for Group B, the number of N and Y are fewer with smaller Y compared to N.  This 

might be due to many reasons including the condition of the sky, and hence labelled as 

"May need optical aid”.  The percentage of correct classification for the EA-test is 70.10% 

using Equation (4.31).   
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Table 4.2: Distribution of moon visibility based on three categories for EA-test. 

Category EA-test values N Y Total (percentage 

of data, %) 

Interpretation 

A [0.0086, ∞) 21 52 73 (29) Visible to the unaided 

eye 

B  [-0.00516, 0.0086) 26 9 35 (14) May need optical aid 

C (-∞, -0.0052) 126 20 146 (57) Not visible 

 

Figure 4.1 gives the plot of EA versus Alt(M). It shows that the residuals separate the Y/N 

values quite well. Observations with low residuals and small Alt(M) are largely categorized 

as non-visible, which is below −0.00156. For EA above 0.0086, the moon can be observed 

by unaided eyes. Otherwise, an optical aid may be needed in the sightings. 

 

 

Figure 4.1: EA-test versus the Alt(M). 
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4.3.2 EV-test 

We repeat the process using the Elon, E and ARCV, V, denoted as EV-test.  The best fitted 

JS regression model with first order (m = 1) is given by equation (4.5). 

 

cos �̂� = −0.0480 + 1.0452 cos 𝑉 − 0.0021 sin 𝑉        

             (4.5) 

  sin �̂� = 1.5536 − 1.4884 cos 𝑉 + 0.5877 sin 𝑉             

                      

Using the same approach as  the EA-test, the distribution of moon visibility based on 

the three categories are given in Table 4.3.  The EV-test does not give a good result, with 

the percentage of correct classification is only 43.7% using Equation (4.31). This low 

performance is supported by the plot of EV versus ARCV, as given in Figure 4.2. The 

distribution of the residual values of fitted model denoted as visible, Y and nonvisible, N 

data are more scattered than that of the EA-test; thus, it fails to separate the Y and N data 

very well.   

 

Table 4.3: Distribution of moon visibility based on three categories for EV-test. 

Category EV-test values N Y Total (percentage of 

data, %) 

Interpretation 

A [0.0039, ∞) 59 21 80(31) Visible to the unaided 

eye 

B [-0.0022, 0.0039) 24 16 40(16) May need optical aid  

C (-∞, -0.0022) 90 44 135(53) Not visible 
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 Figure 4.2: EV-test versus the ARCV. 

 

4.3.3 VA-test 

 

We repeat the process using the ARCV, V, and Alt(M) denoted as ArcvA-test.  The best 

fitted JS regression model with 𝑚 = 1 is given by equation (4.6). 

 

cos 𝐴𝑟𝑐�̂� = 0.2235 + 0.7724 cos 𝐴 − 0.0288 sin 𝐴        

             (4.6) 

  sin 𝐴𝑟𝑐�̂� = −0.3794 + 0.4189 cos 𝐴 + 0.9605 sin 𝐴             

 

The result of the categories is shown in Table 4.4. From the result, category A with  

visible, Y is 49 and category C with nonvisible, N is 161. Hence, the percentage of correct 

classification is 82% using Equation (4.31). This means the model is significant to detect 

the new crescent moon. Unfortunately, although the percentage of correct classification 

is high, the model with the combination VA is not preferred as the variables ARCV and 

Alt(M) are collinear, as explained in Chapter 3. Hence we do not proceed using this VA-

test in the next sections. 
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In the next section, we will focus on category B of EA-test as the best indicator in this 

study to determine the crescent moon visibility criteria.  

 

Table 4.4: Distribution of moon visibility based on three categories.  

Category VA-test values N Y Total (percentage 

of data, %) 

Interpretation 

A [0.0085, ∞) 5 49 54(21) Visible to the unaided 

eye 

B [-0.0060, 0.0085) 7 11 18(7) May need optical aid  

C (-∞, -0.0060) 161 21 182(72) Not visible 

        

 

 

Figure 4.3: VA-test versus the Alt(M). 
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4.4 Discussion 

 

The results in Section 4.3 indicate that EA-test provides the best indicator of visibility 

of the crescent moon because of the higher percentage of correct detection. Hence, we 

attempt to come up with the new visibility criteria based on the EA-test. The lower limit 

of the EA test value is then used as the criteria of crescent moon visibility to set the date 

of important event in religion. In this work, the criteria will be based on category B of 

Table 4.2 as nowadays, telescopes or other optical aid systems are used in the 

observations. As Elon is taken as the dependent variable in the EA-test, we first estimate 

the criteria value of Elon by its percentile values of category B. To obtain the percentile 

value of the Elon, first we arrange the values of Elon for all observations in Category B 

in ascending order. The 5th, 10th, and 15th percentile mean 5%, 10%, and 15% of the 

ordered observations will be smaller than the percentile values, respectively. That 

corresponds to 1, 3, and 5 ordered observations and, hence, the choice of 15% percentile 

seems to be adequate for this data. This choice is due to the sample size of Group B is 

small, which is 35. So, taking the 15% percentile of data that refers to the first five ordered 

observations seems reasonable. From the astronomical point of view, we can only see the 

moon when its altitude is greater than 2 degrees, and this corresponds to when the 

percentile of Elon in Group B is 15%. The five observations are listed in Table 4.5. Most 

of them have rather low values of Alt(M) and ARCV, which makes it rather difficult to 

sight the crescent moon after the sunset. Hence, the value of the criteria for Elon is 

estimated at 7.28° (i.e. the 15% percentile).  

 

We then estimate the corresponding values of Alt(M) and ARCV given that Elon = 

7.28° using the linear regression model. Hence, the values of Alt(M) and ARCV are 3.03° 

and 3.74°, respectively. Figure 4.4 shows plot of Elon vs Alt(M) for observations in 
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Category B.   Consequently, by definition, the estimated Alt(S) is taken as the difference 

between ARCV and Alt(M), that is -0.71°.  As for Width(W), the observed values are 

consistently small and we use the 15th percentile as its estimate, which is 0.1°. We note 

that the sun's altitude of 0.71° below the horizon has considered the effect of refraction 

near the horizon and semi-diameter of the sun. During sunset, the centre of the sun is 

estimated at 0.35° below the horizon, and hence the estimated time taken for the sun to 

the altitude -0.71° is 1.4 minutes after it sets. 

 

Table 4.5: Observations with Elon less than the 15th percentile value. 

Date of moon 

sighting 

(Masehi) 

Date of moon 

sighting (Hijr) 

Elon 

(°) 

Alt (M) 

(°) 

ARCV 

(°) 

Alt(S) 

(°) 

Width 

(°) 

Visibility 

(Y/N) 

27.07.2014 

29 Ramadan 

1435 7.042 2.577 2.912 -0.335 0.11 N 

10.11.2007 29 Syawal 1428 6.898 1.963 2.314 -0.351 0.11 N 

16.09.2012 29 Syawal 1433 6.286 0.945 1.361 -0.416 0.1 N 

25.04.2009 

29 Rabiulakhir 

1430 6.276 1.286 1.495 -0.209 0.1 N 

27.06.2014 

29 Syaaban 

1435 4.888 -0.319 0.114 -0.433 0.05 N 
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Figure 4.4: Elon vs Alt(M) for observations Category B of the EA-test. 

 

In determining the crescent visibility criteria, we use the Elon and Alt(M) at sunset.  

We note that the duration of 1.4 minutes after sunset is considered negligible to elongation 

as the average rotation rate of the moon surrounding the earth takes about 0.008°/minute. 

Hence, the adjusted values of criteria for Elon and Alt(M) are 7.28° and 3.39°, 

respectively, and the corresponding values for ARCV = 3.74° and Alt(S) = –0.35°. The 

proposed new values of the crescent moon visibility criteria are as listed in Table 4.6. 

 

Table 4.6: The values of new criteria of variables for Category B of the EA-test 

at sunset. 

Variables Value of criteria 
(°) 

Elon 7.28 

Alt(M) 3.39 

ARCV 3.74 

Alt(S) -0.35 

Width 0.10 
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4.5  Summary 

 

In this chapter, we have discussed new visibility test based on Yallop (1997) procedure. 

We have reviewed the theory of Yallop (1997) procedure in developing the crescent moon 

visibility test. Then we have applied the theory of Yallop (1997) procedure to the local 

crescent moon data using circular regression set up,  calculated the percentage correct 

detection of the new crescent moon and identified the significance of the model in 

detecting the crescent moon. The EA-model is the significant model in this chapter and 

so we use the EA-test is the best indicator to determine the new crescent moon visibility 

criteria using percentile value of observations in Category B. The new crescent moon 

visibility criteria as shown in Table 4.6 give Elon is 7.28° and Alt(M) is 3.39°. In this 

study, we consider the definition of circular distance from Jammalamadaka & SenGupta 

(2001) as the model error for the circular regression procedure used in developing new 

statistical test to detect the crescent moon based on Yallop (1997) procedure.  
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CHAPTER 5: APPLICATION BASED ON LOCAL BEST TIME CRESCENT 

MOON DATA 

 

5.1 Introduction 

 

In this chapter, we review the concept of best time data (Yallop, 1997) that was proposed 

to improve the criteria for crescent moon visibility. In this study, we transform the original 

dataset into best time data by applying the transformation procedure given in Yallop 

(1997) to the local  crescent moon data. Then, we propose  new criteria of crescent moon 

visibility based on the best time data obtained and using the procedures developed in 

Chapter 4. 

 

5.2 The Concept of Best Time 

 

We review the concept of "best time" developed by Bruin (1977), Schaefer (1991) and 

Yallop (1997) for obtaining the earliest visibility time of the new crescent moon. Crescent 

moon best time data refers to the observations collected at the best time to sight the moon 

such that the probability of sighting the moon is higher than when we sight at the time of 

sunset. It gives an empirical estimate of the time that gives the observers with the best 

chance to see the new crescent moon. The best time is directly proportional to site 

elevation and inversely proportional to moon altitude. Generally, it is taken at the time 

point that is 4/9 of the lag time after sunset.  
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When observing the crescent moon, there is a point on earth after sunset that the sun 

and the moon are in a perfect geometrical condition where the different of azimuth is 0 

degrees between the sun and the moon. The crescent moon should be observed as early 

as possible after the conjunction occurs. Although in practice, the sighting of the crescent 

moon is possible after the sunset, there is the best time to observe the moon which gives 

the highest chance to observe the moon. When the observation is made too early after 

sunset then the horizon can be too vivid for the small crescent moon to pick out. The 

observer needs to wait until there has been enough rise in the contrast between the 

crescent moon and the twilight sky for the moon to be seen. As the twilight sky gets 

darker, the brightness of the crescent moon will decrease as the altitude of the moon 

decreases due to atmospheric extinction, so there is an optimal time to make an 

observation. In critical condition, the visibility of crescent moon is only possible during 

the right moment within a limited period of time. 
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    Figure 5.1: Lunar visibility curves (Taken from Bruin, 1977). 

Schaefer (1988) determined the best time from the logarithm of the real total brightness 

of the moon divided by the total brightness of the moon needed for visibility for the state 

of observation. Bruin (1977) gave a simple method for estimating the probability of 

viewing the moon at some moment after sunset which is sufficient for most purposes. The 

derivation formula for best time based on the Bruin (1977) comes from the series of 

curves of visibility as shown in Figure 5.1. The plot shows series of visibility curves of 

Alt(M) + Alt(S) (ARCV) against Alt(S) for W = 0.5', 0.7', 1', 2', and 3'. Hence Alt(S) is the 

depression of the sun below the horizon and Alt(M) + Alt(S) = ARCV. Bruin (1977) 

claimed that when the condition is optimal, every of those curves has a minimum. He 

marks the minimum as point C on the curve for W = 0.5'. If we draw a straight line through 

the origin (at Alt(M) + Alt(S) = 0 ° and Alt(S) = 0 °) and through point C (at Alt(M) + 

Alt(S) = 9 ° and Alt(S) = 4 °), then we notice that the line goes straight through the minima 
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of different W curve sequences. Hence, at the best time, the equation of the line is 4 Alt(M) 

= 5 Alt(S). Therefore, the best time is given by 

 

𝑇𝑏 = (5𝑇𝑠 + 4𝑇𝑚)/9 = 𝑇𝑠 + (4/9)𝐿𝑎𝑔,     (5.1) 

 

where 𝑇𝑏 = Best time, 

     𝑇𝑠 = Sunset time, 

         𝑇𝑚 = Moonset time, 

              𝐿𝑎𝑔 = Moon′s lag time. 

 

5.2.1 Data Transformation to Best Time 

 

In this section, we consider data transformation from the original data to the new best 

time data. Generally, the objectives of data transformation are  improving the data quality 

and giving a more reliable result. For linear data, feature scaling or data normalization is 

one of the methods used to normalize the data, hence to obtain a better analysis of the 

data. In this study, the transformation of data is made based on the theory or concept of 

the best time data (Yallop, 1997) as described in section 5.2. The concept of best time is 

used to determine the new value for each parameter. Together with this concept,  we also 

use the theory that the earth does one revolution (360 degrees) on its axis every 24 hours 

(Rawlins, 2008). Its means that it will take 4 minutes on average for every one-degree 

movement of the earth.  
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The transformation of the original dataset into a new dataset is necessary because 

adjusting the time using the best time concept will improve the new moon visibility, as 

discussed in the previous section. In practice, we need to observe the moon right after the 

conjunction until the crescent moon is visible. However, for the best time concept, the 

sighting is done when the time is optimal to observe the crescent moon. The best time 

dataset is expected to give a higher percentage of visibility of the crescent moon.  

 

To transform the original data to best time data, we use the formula proposed by Yallop 

(1977) and it is given by 

 

𝐴𝑏 = 4/9(𝐴𝑚) + 5/9(𝐴𝑠)    (5.2) 

 

      where  𝐴𝑏 = New transformed value of a parameter 

𝐴𝑚 = 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑚𝑜𝑜𝑛𝑠𝑒𝑡 

𝐴𝑠 = 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑠𝑢𝑛𝑠𝑒𝑡   

 

In this study, we transform each of the following parameters,  Alt(M), Alt(S), ARCV, Elon, 

and Width using the formula given in equation (5.2). After transforming the original data 

to the best time data,  we apply the circular regression to the transformed dataset (best time 

data) and construct the visbility tests based on the Yallop’s procedure. This procedure  is 

expected to improve the visibility criteria compared to using the original data.    
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5.3 Application on Local Best Time Crescent Moon Data 

 

In this chapter, we apply the best time concept and tranform the original dataset with 

254 observations to the local best time data. Based on the procedure developed by 

generalising the  Yallop’s procedure  to the case of circular variables  as described in 

Chapter 4,  we reapply the procedures on the local best time data.  In the procedure, first 

we fit the JS circular regression model to the transformed values of Elon and Alt(M) 

obtained using equation (5.2).  

 

Table 5.1: Coefficient of circular-circular regression of Elon and Alt(M) in the local 

best time data. 

 
                      Response   

Coefficient     cos(E)   sin(E) 

Intercept     0.2833   0.0114 

1st Order terms 

      cos(A)     0.7155   0.0614 

      sin(A)      -0.1041  0.9237 

p-value for 2nd Order    0.6646     0.00149 

ρ (r-squared)     0.9983828 
 
 

Table 5.1 shows the first order models regression estimated coefficients and with the 

p values for assessing the need for higher order models. We find that the second order 

models are not neccessary (p = 0.6646 and 0.00149). 
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Figure 5.2: Plot of fitted Elon versus the Alt(M). 

 

Figure 5.2 presents the scatter plot of Elon against Alt(M) with their fitted JS circular 

regression line. It shows that the fitted line is quite good where the variation of the data 

is small, and the points lie close to the fitted line. The first order circular regression model 

is significant in this case since the p-value is small. 

 

Table 5.2: The percentage for correct detection.  

Model Percentage Correct detection 

Elon – Alt(M) 

(EA-test) 
70.5% 

Elon – ARCV 

(EV-test) 
46.5% 

ARCV – Alt(M) 

(VA-test) 
82.2% 
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Table 5.2 shows the percentages of correct detection for the three models using the 

local best time dataset. From the table, we can see that the percentage of correct detection 

for  the ARCV – Alt(M) model is the highest with the percentage of correct detection is 

82.2%. Although the percentage is high,  collinearity occurs between ARCV amd Alt(M). 

The ARCV is the summation of the  altitude of moon (Alt(M)) and altitude of sun. Due to 

this relationship, this model is not taken into account for further investigatation. As a 

result,  the  Elon and Alt(M) model with the percentage of correct detection 70.5% is 

preferred over  the other models.  

 

Table 5.3 shows the crescent moon visibility criteria obtained using the proposed 

method. We use the circular regression model with elongation (Elon) and altitude of the 

moon (Alt(M)) as the dependent and independent variables, respectively, to determine the 

value for crescent moon visibility criteria at sunset. As Elon is taken as the dependent 

variable in the EA-test, we first estimate the criteria value of Elon by its percentile values. 

The 5th, 10th, and 15th percentile mean 5%, 10%, and 15% of the ordered observations 

will be smaller than the percentile values, respectively. That corresponds to 1, 3, and 4 

observations and, hence, the choice of 15% percentile seems to be adequate for this data. 

Table 5.4 shows four observations based on the 15th percentiles over all data in group B. 

Most of them have rather low values of Alt(M) and ARCV, which makes it rather difficult 

to sight the crescent moon after the sunset. Hence, the value of the criteria for Elon is 

estimated at 5.58°. 

 

As for Alt(M) and ARCV, we consider the linear regression model of Elon - Alt(M) and 

Elon - ARCV. We then estimate the corresponding values of Alt(M) and ARCV given that 

Elon = 5.58°. Hence, the values for Alt(M)and ARCV are 1.33° and 2.80°, respectively. 
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Consequently, by definition, the estimated Alt(S) is taken as the difference between ARCV 

and Alt(M), that is -1.47°. As for Width (W), the observed values are consistently small 

and we use the 15th percentile as its estimate, which is 0.06°. 

 

We note that the sun’s altitude of -1.47°. below the horizon has considered the effect 

of refraction near the horizon and semi-diameter of the sun. During sunset, the centre of 

the sun is estimated at 0.35° below the horizon, and hence the estimated time taken for 

the sun to the altitude -1.47° is 4.5 min after it sets. In determining the final value for the 

crescent visibility criteria, we use the elongation and altitude of the crescent moon at 

sunset. We note that the duration of 4.5 min after sunset is considered negligible to 

elongation as the average rotation rate of the moon surrounding the earth takes about 

0.008°/min. Hence, the adjusted values of criteria for Elon and Alt(M) are 5.58° and 2.45°, 

respectively, and the corresponding values for ARCV = 2.80° and Alt(S) = -0.35. The final 

new values of the crescent moon visibility criteria are as listed in Table 5.3. 

 

Table 5.3: The values of new criteria of the EA-test at sunset. 

 

 

 

 

 

 

 

Variables Value of criteria  

(best time data) 

(°) 

Elon 5.58 

Alt(M) 2.45 

ARCV 2.80 

Alt(S) -0.35 

Width 0.06 
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Table 5.4: Observations with Elon less than the 15th percentile value. 

 

5.4 Discussion  

 

The results for minimum or best criteria for the original and best time crescent moon 

data for each parameter estimates are tabulated in Table 5.5. Several results are 

observed: 

 

1. For best time data, the estimated value of criteria for Elon, Alt(M) and ARCV are 

slightly lower compared to those of the original data. As for the best time data, it 

gives higher probability to observe the new moon. Using data transformation from 

Date of 

moon 

sighting 

(Masehi) 

Date of 

moon 

sighting 

(Hijr) 

Elon 

(°) 

Alt (M) 

(°) 

ARCV 

(°) 

Alt(S) 

(°) 

Width 

(°) 

Visibility 

(Y/N) 

25.10.2003 

29 Syaaban  

1424 1.92 -2.10 -2.36 0.26 0.02 N 

20.08.2009 

29 Syaaban 

1430 2.32 -2.16 -2.31 0.15 0.02 N 

06.11.2010 

29 

Zulkaedah 

1431 5.18 0.87 1.69 -0.82 0.06 N 

19.07.2012 

29 Syaaban 

1433 5.72 1.46 2.28 -0.82 0.06 N 
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original data to best time data, the percentage of correct detection is higher than 

the original data as shown in table . It shows that, the criteria value of crescent 

moon visibility will give a better criterion for sighting the new crescent moon as 

shown in table 5.2. 

 

Table 5.41: Comparison of the percentage of correct detection for best 

time data and original data. 

 

Model Percentage of correct 

detection original data, % 

Percentage of correct 

detection original data, % 

Elon- Alt (M) 

(EA-test) 

70.1 70.5 

Elon-ARCV 

(EV-test) 

43.7 46.5 

ARCV-Alt(M) 

(VA-test) 

82.0 82.2 

 

2. Based on the Elon-Alt(M) model, the percentages of detection of a crescent moon 

for best time data are slightly higher than the original data. It shows that, the 

accuracy of crescent moon visibility criteria using best time data is better 

compared to the criteria using original data due to higher percentage of correct 

detection. The procedure using the best time is slightly better as it gives higher 

probability of observing crescent moon and hence give better estimation of the 

crescent moon visibility criteria. 

 

3. The fit of the circular simple regression model to the best time data with Elon and 

Alt(M) as the variables of the model is better than the fit of the other models since 
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the two variables have a high correlation between each other and provides a higher 

percentage of correct detection. 

 

4. The crescent moon visibility criteria using best time data can be used during 

sighting process. The possibility of observing the new moon is higher with the 

new criteria shown in table 5.5. 

 

Applying  Yallop’s procedure  to the circular variables in the best time data using the 

JS circular regression model  also provides almost the same  results as  the  original data. 

We also find that the Elon-Alt(M) model performs well in estimating the criteria for all 

the  parameters compared to the other regression models. Based on the results obtained, 

the percentages of correct detection are slightly higher when we apply the procedure to 

best time data  than the original data. We suspect that, by increasing the number of 

observations, the percentage of visibility will increase too. A data cleaning process may 

improve the quality of the data and the criteria of crescent moon visibility.  

 

Table 5.5: Comparison of the output best time data and original data. 

 

 

 

 

 

 

Variables Value of criteria 

(original data) 

(°) 

Value of criteria  

(best time data) 

(°) 

Elon 7.28 5.58 

Alt(M) 3.33 2.45 

ARCV 3.74 2.80 

Alt(S) -0.35 -0.35 

Width 0.10 0.06 
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5.5 Summary 

 

In this chapter, we have reviewed the theory of ‘best time’ for observing the crescent 

moon. We have transformed the original data into the best time data and have applied the 

procedure that we have developed in Chapter 4 to the local best time data. We have 

observed a higher probability of observing the crescent moon, or a higher percentage of 

correct detection of the crescent moon obtained using the best time data compared to the 

original data.  
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CHAPTER 6: CONCLUSION 

6.1 Summary of the study 

This research has achieved all four objectives. We have described the local crescent moon 

data using circular statistics. A new visibility test based on crescent moon sighting data 

is developed using circular regression in this study. We have determined the new criteria 

of moon visibility based on the Malaysian crescent moon data. We also have shown that 

the local best time improves the visibility criteria in this thesis. 

Although several variations of observing the new moon are described in the literature, 

no existing procedure determines the visibility criteria based on the circular statistical 

theory. The variables useful for the crescent moon visibility are circular types in nature. 

Thus, the use of circular descriptive statistics is more appropriate to describe the 

Malaysian crescent moon data. One of the circular descriptive statistics is the circular 

correlation statistics. Based on the circular correlation statistics, we have identified 

several combinations of variables with a strong correlation, this includes Elon – Alt(M), 

Elon – ARCV and ARCV – Alt(M). This  information is useful  for building the circular 

regression model.    

First, we have used circular regression based on JS circular regression 

(Jammalamadaka & Sarma, 1993) method to obtain a new visibility test for crescent 

moon. We have chosen three circular regression models, which are the Elon-Alt(M), Elon-

ARCV and ARCV-Alt(M) models, due to the strong correlation between the variables. We 

have shown that all  three models are significantly important using the significance test 

carried out on each polynomial term in the circular model.  
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 Following Yallop (1979) that has developed the visibility test based on the linear 

model, we have constructed a visibility test based on residuals in  the circular regression 

method. The three circular regression models Elon-Alt(M), Elon-ARCV and                

ARCV-Alt(M) were used to develop a visibility test  as an indicator to determine the 

criteria for crescent moon visibility. We have developed three visibility tests  Elon-

Alt(M), Elon-ARCV and ARCV-Alt(M) tests that correspond to each model. Three 

visibility categories are considered in this research; (i) Category A (Visible to the unaided 

eye), (ii) Category B (May need optical aid) and (iii) Category C (Not visible). Then we 

have calculated the percentage of correct detection for each visibility test to compare the 

performance of the three visibility tests. The higher the percentage of correct detection, 

the better the test. We find that the best indicator for the visibility test is the Elon-Alt(M) 

test with the percentage of correct detection 70.1%. Then, we have used the Elon-Alt(M)  

test to obtain the crescent moon visibility criteria for the Malaysian crescent moon data, 

which are 5.58° for Elon, 2.45° for Alt(M), 2.80° for ARCV, -0.35° for Alt(S) and 0.06° 

for Width(W). 

  

In the concept of best time data, the original data are transformed into the best time 

data. The possibility of viewing the moon is higher during the best time data (Yallop, 

1974).  We have applied the procedures of obtaining the visibility criteria developed using 

the circular statistical approach to the local best time data.  The visibility criteria obtained 

using  the best time data is better than the original data because the percentage of correct 

detection for the Elon-Alt(M) test using the best time data is slightly larger than that of 

the original data. The crescent moon visibility criteria for best time data are 7.28° for 

Elon, 3.39° for Alt(M), 3.74° for ARCV, -0.35° for Alt(S) and 0.10° for Width(W). 
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In conclusion, we have studied the crescent moon data and  proposed new visibility 

criteria using  a circular statistical approach. The work  shows that the circular statistical 

method is beneficial to deal with a real world problem, particularly in the moon sighting 

process.  

 

6.2  Contributions 

 

The study has contributed to the development of new crescent moon visibility criteria 

using circular analysis in the following ways: 

 

1. The existing methods used in the development of the crescent moon visibility 

criteria are conducted using linear statistical theories, whereas most variables considered 

are of circular types. Using the circular statistical theory, the circular descriptive statistics 

are used to give simple summary statistics that describe the basic features of the 

Malaysian crescent moon data.  

 

2. We have proposed a generalized JS circular regression model for accommodating 

two or more explanatory circular variables in the models. The relevant theory is presented 

and using the JS circular regression procedure, we developed a model for crescent moon 

data. The model is used to estimate the minimum value of the parameter or the best criteria 

for moon visibility using Yallop procedure. The model also proven to perform well in 

determining the crescent moon visibility criteria which give high percentage of correct 

detection. Then the new visibility criteria for crescent moon have be determined using the 

visibility tests developed. 
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3. We have applied the same procedure (Yallop’s procedure) using circular

regression to best time crescent moon data. The result shows, based on the model that 

have been developed, the percentage of correct detection is slightly higher than the 

original data. It proved that it performs well and gives a better result than using original 

data. As a result, the improved crescent moon visibility criteria have been determined 

using best time data. 

6.3 Further Research 

There are various ways for furthering research in this field. Some suggestions are given 

as follows: 

(i) To extend the simple circular regression into multiple circular regression and the

logistic circular regression. 

(ii) To extend the work with outlier detection in the data and fit the regression model

to the cleaned data. 

(iii) To use other models apart from the JS model like Down and Mardia DM circular

regression model and make a comparison between the methods developed. 

(iv) Use data from other sources or merge all the data collected in Malaysia to develop

a better circular regression model. 

We are aware that there could be other variables that can affect the determination of the 

first day of the month and the crescent moon visibility criteria issue can been resolved 

using more appropriate statistical techniques explored in near future. 
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