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ABSTRACT 

In this research, a novel method based on randomly generated grids is proposed. This 

method enables fast convergence and improves the accuracy of the solution for a given 

problem. It also enhances the quality of precision by minimizing the error. The finite-

difference method involving uniform grids is commonly used to solve the partial 

differential equation. However, it requires a higher number of iterations to reach 

convergence.  

In addition, there is still no definite principle for the discretization of the model to 

generate the mesh. The newly proposed method employed randomly generated grids 

for mesh generation. This method is compared with the uniform grids method to check 

the validity and potential in minimizing the computational time and error. The 

comparative study is conducted for the first time by generating meshes of different 

sizes and boundary values. 

The numerical solutions of partial differential equations and the generalized 

classification of fractional differential equations are obtained through various 

approaches, such as exact solutions, analytically, fractional differentiations, and the 

more generalized form of finite difference method over uniform novel method 

randomly generated grids. The proposed method is also known as sanaullah mastoi’s 

method or SM’s method.  

The new approach is the numerical solution through the finite difference method 

using randomly generated grids. This study proves that the finite difference method 

over randomly generated grids found faster convergence iteratively, reduced 

computational time than uniform grids, and minimize error. A significant reduction in 

computational time is also noticed. Thus, this method is recommended to be used in 
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solving the partial differential equation. However, SM’s Method’s performance may 

be increased by reshaping the mesh parameters, and broad scope of research is 

available. 

Keywords: Fractional Differential equation, Partial differential equation, Finite 

difference method, Randomly generated grids, Uniform meshes, Non-uniform meshes, 

S.M’s Method, Biological system. 
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ABSTRAK 

Dalam penyelidikan ini, kaedah baru  dicadangkan  berdasarkan grid yang dihasilkan 

secara rawak. Kaedah ini memungkinkan penumpuan yang cepat dan meningkatkan 

ketepatan penyelesaian untuk masalah tertentu. Ia juga meningkatkan kualiti ketepatan 

dengan mengurangkan ralat. Kaedah perbezaan terhingga yang melibatkan grid 

seragam biasanya digunakan untuk menyelesaikan persamaan pembezaan separa. 

Walau bagaimanapun, ia memerlukan bilangan ulangan yang lebih tinggi untuk 

mencapai penumpuan. 

 Di samping itu, masih belum ada prinsip yang pasti untuk diskritisasi model untuk 

menghasilkan jaringan. Kaedah yang baru dicadangkan menggunakan grid yang 

dihasilkan secara rawak untuk penjanaan jaringan. Kaedah ini dibandingkan dengan 

kaedah grid seragam untuk memeriksa kesahan dan potensi dalam meminimumkan 

masa dan ralat pengiraan. Kajian perbandingan dilakukan untuk pertama kalinya 

dengan menghasilkan jaringan dengan pelbagai ukuran dan nilai sempadan. 

 Penyelesaian berangka dari persamaan pembezaan separa dan klasifikasi umum 

persamaan pembezaan, yang merupakan persamaan pembezaan pecahan, diperoleh 

melalui pelbagai pendekatan seperti penyelesaian tepat, analitik, pembezaan pecahan, 

dan bentuk kaedah perbezaan terhingga yang lebih umum daripada grid seragam dan 

kaedah baru grid yang dihasilkan secara rawak. Kaedah yang dicadangkan juga 

dikenali sebagai kaedah sanaullah mastoi atau kaedah SM. 

 Pendekatan baru ini adalah penyelesaian berangka melalui kaedah perbezaan 

terhingga menggunakan grid yang dihasilkan secara rawak. Kajian ini membuktikan 

bahawa kaedah perbezaan terhingga grid yang dihasilkan secara rawak mendapati 

penumpuan lebih cepat secara berulang, mengurangkan masa pengiraan daripada grid 
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seragam, dan mengurangkan ralat. Pengurangan masa pengiraan yang ketara juga 

diperhatikan. Oleh itu, kaedah ini disyorkan untuk digunakan dalam menyelesaikan 

persamaan pembezaan separa. Namun, prestasi Kaedah SM dapat ditingkatkan dengan 

mengolah parameter jaringan, dan ruang skop penyelidikan yang luas tersedia. 

Kata Kunci: Persamaan Pembezaan Pecahan , Persamaan Pembezaan separa, 

Kaedah pembezaan terhingga, Grid yang dihasilkan secara rawak, Jaringan seragam, 

Jaringan tidak seragam , Kaedah S.M, Sistem biologi. 
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CHAPTER 1:  

INTRODUCTION 

 General  

The solutions of the differential equations are wide-ranging in the study. The study 

focuses on the components in the areas of scientific applications, mathematics, and 

computers. These three facets are connected, or we can say that strongly tied. Numerical 

solutions of partial differential equations involve the applied aspect of a problem without 

considering mathematical and computing factors. The mathematical aspects of numerical 

partial differential equations can often be developed without considering applications or 

computing, but experience shows that this approach does not yield valuable results. The 

numerous techniques help to solve partial differential equations analytically and 

numerically. The finite differences, finite elements, spectral methods, collocation 

methods, domain decomposition method, adomain decomposition method, a new method 

(SM’s Method), etc., are various techniques. We will provide a review of an extensive 

range of methods. A certain amount of theory and rigor will be included, but the 

implementation of the methods will be stressed at all times. The goal is to come out of 

this course with many methods about which you have theoretical knowledge and with 

which you have numerical experience. Often, when numerical techniques are going to be 

used to solve a physical problem, it is not possible to thoroughly analyze the methods 

used. Whenever we use methods that have not been thoroughly investigated, we must 

resort to methods that become a part of numerical experimentation. As we shall see, often 

such investigation will also become necessary for linear problems. We usually do not 

even know what to prove analytically until we have run a well-designed series of 

experiments. The methods that we develop, analyze, and implement will usually be 

illustrated using standard model equations. These will often be the heat equation, the one-
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way wave equation, or the Poisson equation. We will generally separate the methods to 

correspond to the different equation types by first doing methods for parabolic equations, 

then methods for hyperbolic equations, and finally methods for elliptic equations. 

However, we reserve the right to introduce an equation of a different type and a method 

for equations of various types at any time. 

 Calculus 

Calculus is the branch of mathematics in which we compute the derivatives and integrals. 

Most historians and mathematicians are agreed that the idea of calculus was developed 

autonomously by the great mathematicians Isaac Newton (1643–1727) and the German 

Gottfried Leibniz (1646–1716), whose images appear in Figure 1.1. The fact is that the 

idea of calculus (the relationship between differentials and the integrals) was first 

understood by Leibniz and Newton. Both mathematicians benefited from predecessors' 

work, such as Barrow 1669, Fermat 1629, and Cavalieri 1635. The amicable relationship 

between two mathematicians appears, and later, a bitter controversy exploded over whose 

work took precedence. Although it seems likely that Newton did, indeed, arrive at the 

ideas behind calculus first, we are indebted to Leibniz for the notation that we commonly 

use today. 
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Figure 1.1: The Great Mathematician Isaac Newton and Gottfried Wilhelm 
Leibniz are the founders of the calculus 

 Differential equations 

The differential Equation (DE) is widely used to simulate the various physical 

processes (Farlow, 2006; Zwillinger, 1998). To obtain the numerical solution of the two-

dimensional equation, the proper choice of mesh (alternatively called the grid) is the 

foremost step to achieve better accuracy and convergence. However, the mesh generation 

process is not unique since there is no universal rule (formula) to be discovered. Usually, 

the meshes are designed according to the problem and physical structures. It is often found 

that the better mesh quality led to a greater rate of convergence (Ang). Creating the most 

feasible mesh for a particular problem is challenging due to the boundary conditions and 

domain structure variability. The two-dimension domain is filled with structured or 

unstructured meshes with quadrilateral or triangular elements, respectively. The 

structured meshes are naturally easier to compute and implement and may require more 

elements or worse-shaped elements. At the same time, the unstructured meshes are often 

computed by Delaunay triangulation of point sets (Ang). There are pretty varied 
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approaches for structured and unstructured meshes having their own merits and 

limitation. 

 Ordinary differential equations 

In mathematics, an ordinary differential equation (ODE) is a differential equation 

containing one or more functions of one independent variable and the derivatives of those 

functions (Dinesh.) The term ordinary is used in contrast with the term partial differential 

equation, which may be concerning more than one independent variable. 

Ordinary differential equations (ODEs) arise in many contexts of mathematics and 

social and natural sciences. Mathematical descriptions of change use differentials and 

derivatives. Various differentials, derivatives, and functions become related via 

equations, such that a differential equation is a result that describes dynamically changing 

phenomena, evolution, and variation. Often, quantities are defined as the rate of change 

of other quantities (for example, derivatives of displacement to time) or gradients of 

quantities, which is how they enter differential equations. 

Specific mathematical fields include geometry and analytical mechanics. Scientific 

areas include much of physics and astronomy (celestial mechanics), meteorology 

(weather modeling), chemistry (reaction rates),(Shchepetkin & McWilliams, 2005) 

biology (infectious diseases, genetic variation), ecology and population modeling 

(population competition), economics (stock trends, interest rates, and the market 

equilibrium price changes). 

 Partial differential equation 

A partial differential equation (or briefly a PDE) is a mathematical equation that 

involves two or more independent variables, an unknown function (dependent on those 

variables), and partial derivatives of the unknown function to the independent 
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variables(Samaniego et al., 2020; Strauss, 2007; Thomas, 2013). The order of a partial 

differential equation is the order of the highest derivative involved. A solution (or a 

particular solution) to a partial differential equation is a function that solves the equation 

or, in other words, turns it into an identity when substituted into the equation. A solution 

is called general if it contains all particular solutions of the equation concerned(Chen, 

Fan, & Wen, 2012). The term exact solution is often used for second-and higher-order 

nonlinear PDEs to denote a particular solution. Partial differential equations are used to 

mathematically formulate and thus aid the solution of physical and other problems 

involving functions of several variables. (Agarwal, Agarwal, & Ruzhansky, 2020; 

Ahmad, Akgül, Khan, Stanimirović, & Chu, 2020; Duan & Tang, 2020; El-Ajou, Al-

Smadi, Oqielat, Momani, & Hadid, 2020; Ghosh, 2020; Habeeb et al., 2020; Harir, 

Melliani, El Harfi, & Chadli, 2020; Hosseini, Kalhori, & Al-Jumaily, 2020; Kucharski et 

al., 2020; Miller, 2020; Samaniego et al., 2020; Smitha & Nagaraja, 2020; S. Sun, Gou, 

& Geng, 2020; Vargas-González et al., 2020; Wang & Yamamoto, 2020), such as the 

propagation of heat or sound, fluid flow, elasticity, electrostatics, electrodynamics, etc. 

 Fractional differential equations 

Fractional calculus is a branch of mathematical analysis that studies the different 

possibilities of defining real number powers or complex number powers of the 

differentiation operator D. 

𝐷𝐷𝐷𝐷(𝑥𝑥) =
𝑑𝑑
𝑑𝑑𝑥𝑥

𝐷𝐷(𝑥𝑥) 

and of the integration operator J 

𝐽𝐽𝐷𝐷(𝑥𝑥) = � 𝐷𝐷(𝑠𝑠) 𝑑𝑑𝑠𝑠
𝑥𝑥

0
 

and developing a calculus for such operators generalizing the classical one. 
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In this context, the term powers refers to iterative application of a linear operator D to 

a function f, that is, repeatedly composing D with itself, as in 𝐷𝐷𝑛𝑛𝐷𝐷(𝑥𝑥) =

(𝐷𝐷⊙ D ⊙ D ⊙, … ,⊙ D)𝐷𝐷 = (𝐷𝐷(𝐷𝐷(𝐷𝐷(…𝐷𝐷(𝐷𝐷) … )))). For example, one may ask for a 

meaningful interpretation of √𝐷𝐷 = 𝐷𝐷
1
2, as an analogue of the functional square root for 

the differentiation operator, that is, an expression for some linear operator that when 

applied twice to any function will have the same effect as differentiation. More generally, 

one can look at the question of defining a linear operator 𝐷𝐷𝛼𝛼, for every real number a in 

such a way that, when a takes an integer value n ∈ ℤ, it coincides with the usual n-fold 

differentiation D if n > 0, and with the (−n)-th power of J when n < 0. 

One of the motivations behind the introduction and study of these sorts of extensions 

of the differentiation operator D is that the sets of operator powers { Da | a ∈ ℝ } defined 

in this way are continuous semigroups with parameter a, of which the original discrete 

semigroup of { Dn | n ∈ ℤ } for integer n is a denumerable subgroup: since continuous 

semigroups have a well developed mathematical theory, they can be applied to other 

branches of mathematics. 

Several researchers focused and concentrated on studying the exact and numerical 

solutions of the differential equations. We considered and modified the available method 

introduced in (Farlow; Strauss) to solve the fractional partial differential equations in the 

present work. 

Fractional differential equations, also known as extraordinary differential equations, 

generalized differential equations through the application of fractional calculus. 

The 𝑖𝑖th derivative of a function f (x) at a point x is a local property only when a is an 

integer; this is not the case for non-integer power derivatives. In other words, a non-
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integer fractional derivative of a function f (x) at x = a depends on all values of f, even 

those far away from a. Therefore, it is expected that the fractional derivative operation 

involves boundary conditions involving further information on the function. The 

fractional derivative of a function to order a is often defined by the Fourier or Mellin 

integral transforms. 

 Numerical Methods 

A numerical method is consistent if all the derivatives' approximations (finite 

difference, finite element, finite volume, etc.) tend to the exact value as the step size (∆t, 

∆x etc.) tends to zero. Moreover, a numerical method is stable (like IVPs) if the error does 

not grow with time (or iteration). 

1.7.1 Iterative method 

In computational mathematics, an iterative method is a mathematical procedure that uses 

an initial value to generate a sequence of improving approximate solutions for a class of 

problems. The n-th approximation is derived from the previous ones. A specific 

implementation of an iterative method, including the termination criteria, is an algorithm 

of the iterative method. An iterative approach is called convergent if the corresponding 

sequence converges for given initial approximations. Mathematically rigorous 

convergence analysis of an iterative approach is usually performed; however, heuristic-

based iterative methods are also common. 

In contrast, direct methods attempt to solve the problem by a finite sequence of 

operations. In the absence of rounding errors, direct methods would deliver an exact 

solution (like solving a linear system of equations 𝐴𝐴𝑥𝑥 = 𝑏𝑏 by Gaussian elimination). 

Iterative methods are often the only choice for nonlinear equations. However, iterative 

methods are often helpful even for linear problems involving many variables (sometimes 
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of the order of millions), where direct methods would be prohibitively expensive (and in 

some cases impossible) even with the best available computing power. 

The numerical method is iterative. This method is said to be consistent if 

approximations such as FDM, FEA. FVM. tends to the size of the exact values. (Chen et 

al., 2012; Schiesser, 2012). 

 Finite difference Method 

The discussion begins with the numerical methods for the PDEs by getting solved a 

problem numerically. 

𝑆𝑆𝑙𝑙 = 𝐴𝐴𝑆𝑆𝑚𝑚𝑚𝑚,𝑚𝑚 ∈ (𝑎𝑎, 𝑏𝑏), 𝑙𝑙 > 𝑎𝑎                   (1.8.1) 

𝑆𝑆(𝑚𝑚, 𝑏𝑏) = 𝑔𝑔(𝑚𝑚),𝑚𝑚 ∈ [𝑎𝑎, 𝑏𝑏]                    (1.8.2) 

𝑆𝑆(𝑎𝑎, 𝑙𝑙) = 𝑝𝑝(𝑙𝑙),𝑆𝑆(𝑏𝑏, 𝑙𝑙) = 𝑞𝑞(𝑙𝑙), 𝑙𝑙 ≥ 𝑎𝑎    (1.8.3) 

Where 𝑔𝑔(𝑎𝑎) = 𝑝𝑝(𝑎𝑎),𝑎𝑎𝑎𝑎𝑑𝑑 𝑔𝑔(𝑏𝑏) = 𝑞𝑞(𝑎𝑎). We can solve this problem numerically for 

the illustrations of the finite difference method (FDM). In numerical analysis, finite-

difference methods (FDM) are numerical techniques for solving differential equations by 

approximating derivatives with finite differences. The spatial domain and time interval 

(if applicable) are discretized or broken into a finite number of steps, and the solution's 

value at these discrete points is approximated by solving algebraic equations containing 

finite differences and values from nearby points. 

Finite difference methods convert ordinary differential equations (ODE) or partial 

differential equations (PDE), which may be nonlinear, into a system of linear equations 

that matrix algebra techniques can solve. Modern computers can perform these linear 

algebra computations efficiently, which, along with their relative ease of implementation, 

has led to the widespread use of FDM in current numerical analysis(Grossmann, Roos, & 
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Stynes, 2007). Today, FDM is one of the most common approaches to the numerical 

solution of PDE, along with finite element methods.(Dinesh.) 

 SM’s Method 

In FDM, it relies on the discretization of function on grids or meshes. There is no 

principle for mesh generations. Usually, FDM uses uniform or regular grids, but SM’s 

Method focuses on randomly generated grids. There is no special treatment in solving 

SM’s method than FDM. The only mesh generation process is different than regular 

meshes. In this method, we use mathematical software like MATLAB, ANSYS etc. 

The name SM’s method is abbreviated from Sanaullah Mastoi’s Method. The research 

work is already published (Kumaresan., 2020; Mastoi, Kalhoro, et al., 2021; Mastoi, 

Mugheri, Kalhoro, & Buller, 2020; Mastoi, Mugheri, et al., 2021; Mastoi, Othman, Ali, 

Rajput, & Fizza, 2021; Mastoi, Othman, & Nallasamy., 2020a, 2020b; Othman, 2020) 

research journals. 

  Research Questions and Research Hypothesis 

This study's prominent role and enthusiasm is the mesh generation process. However, 

there is no specific rule or principle for mesh generation. This thesis is based on randomly 

generated grids. Numerical solution of a basic differential equation with the help of the 

finite difference method using randomly generated grids. Therefore, it is hypothesized 

that “the randomly generated meshes may improve the convergence of the numerical 

solution.” If the numerical convergence improves, then the research question occurs: 

“what accuracy can be obtained using randomly generated grids.” 

  Problem statement 

The execution of the FDM depends on the discretization schemes, dividing the 

subdomain and the nodal parameters. Usually, it is found that FDM uses regular, uniform, 
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or equal step size or meshes. Most scholars recommended that the idea of using a 

randomly generated grid helpful in rapid solutions. The investigations are keen on 

regarding the randomly generated grids. Therefore, an inquiry into the effect of randomly 

generated meshes, non-uniform grids, variable step size, and FDM performance is the 

primary motivation of the proposed research. The idea may be implemented on the 

fractional partial differential equations, and a comparative study has been done. The One, 

Two, and Three-dimensional partial differential equations used with boundary conditions 

for testing and implementation purposes. Detailed research has been done on the Two-

dimensional basic PDEs. 

The proposed research will focus on numerical convergence by comparing the results 

obtained on uniform meshes with random samples of meshes. 

  Aim and objectives 

The specific objectives of this research are as follows: 

1) Introducing finite-difference random grids and notations of functions defined on 

grids. 

2) Introducing the SM’s Method for the Partial differential equations. 

2(a). By generating the uniform meshes for the finite-difference solution of 

differential equations. 

2(b). Generating the random meshes for finite difference solutions of the partial 

differential equations. 

2(c). along with an introduction of treatment of some methods and functions like 

fractional differential equations, domain decompositions method, and heat equation 

using SM’s Method. 

3) Implementation of SM’s Method, through analyzing the effect of samples of random 

meshes on the convergence of the numerical solution of the differential equation. 
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4) To test the practicability and feasibility of using the randomly generated finite 

difference meshes by statistical analysis of the random samples of meshes used to 

obtain the numerical solution. 

5) To validate the results by point-wise comparison of the numerical solution and the 

computational time reductions of uniform and random meshes. 

  Scope and limitations of the research 

The proposed study is applied on one, two, and three-dimensional differential 

equations where the finite difference solution is achieved over samples of random 

meshes. The differential equation is considered stable dirichlet boundary conditions 

and limited to regular domains like rectangles and squares. The idea is also 

recommended for fractional partial differential equations. 

  Expected outcomes of the research 

The proposed research is expected to explore the new techniques to design the best 

finite difference meshes for the improved numerical accuracy and convergence of the 

simulation of differential equations. In addition, the proposed research results may be 

helpful to solve the various real-world problems governed by the differential equation in 

general and random geometric features. 

  Thesis layout 

This thesis consists of eight chapters and is organized so that each chapter starts with 

introductory remarks and ends with a summary. Chapter 1 provides the introduction of 

the project by highlighting the primary motivation and objective of the research. In 

chapter 2, the brief literature review is presented by citing the more related works. Chapter 

3 presents the complete methodology to achieve the objectives of the proposed research. 

The extensive results are obtained, discussed, and justified. In Chapter 4, Local solutions 

on uniform grids, Chapter 5 Local solutions on randomly generated grids, and Chapter 6 
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Statistical tests of numerical solutions (Uniform Vs. Random) and Chapter 7 Point-wise 

comparisons (Uniform Vs. Random) and examples and Finally, Chapter 8 gives the 

overall conclusion and offers some directions for the future work. 
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CHAPTER 2:  

LITERATURE REVIEW 

 Introduction 

The proposed research's study motivations and study objectives have been 

discussed in detail in the previous chapters. This chapter reviews research works on 

numerical methods, techniques, and mesh generation. To the best of the author's 

knowledge, it is declared that, previously, there isn’t work has been done on the randomly 

generated meshes or randomly generated grids. Numerical solution of partial differential 

equations using SM’s method or finite difference method using randomly generated grids 

was not studied before or found in the literature. So, This is why it wasn't easy to find 

material or research work or enough stuff on this topic, but some general ideas like the 

mesh generation process and their applications are briefly reviewed. 

 History of Finite difference method 

In 1592, the concept of Finite difference originated by Jost Burgis(van den Ende et 

al., 2015). Various scientists, including Issac Newton(Craig, 1901; Fraser, 1927; Moffatt, 

1997), used the finite difference in their studies. In 1715, Brook Taylor extended the idea 

of Finite Differences presented in studies. The Method was simplest, helpful, and exciting 

by increasing interest by various scholars. George Boole in 1860, the L. M. Milne-

Thomson in 1933, and Károly Jordan in 1939 were done in the finite difference method 

(Navarro Crespo, 2020). The Method (FDM) is a mathematical difference expression of 

the document 𝐷𝐷 (𝑠𝑠 +  𝑚𝑚)  −  𝐷𝐷 (𝑠𝑠 +  𝑎𝑎), which divided into the subdomains or step size 

tends to zero. For example, the finite difference is divided into 𝑚𝑚 −  𝑎𝑎, becomes a 

difference quotient. The approximation of derivatives by finite differences play a part in 

finite difference methods for the numerical solution of differential equations, especially 

boundary value problems. 
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In FDM, the most important is the cell, mesh, grids, or step size. There is no specific 

method or formula for the mesh generation process. However, meshes are generated as 

per problem or conditions. Thus, we can say as per demand. Generally, uniform or equal 

step size is followed in mathematical, engineering, and scientific problems. This concept 

gives an enormous motivation to introduce SM’s method. Furthermore, the particular 

recurrence relations can be written as difference equations by replacing iteration notation 

with finite differences. 

 Solutions of differential equations 

In mathematics, A differential equation involves an unknown function 𝑦𝑦 = 𝐷𝐷(𝑥𝑥) and 

one or more of its derivatives. A solution to a differential equation is a function 𝑦𝑦 = 𝐷𝐷(𝑥𝑥) 

that satisfies the differential equation when function f and its derivatives are substituted 

into the equation. A partial differential equation (PDE) is an equation that imposes 

relations between the various partial derivatives of a multivariable function. An 

"unknown" solved for, similarly to how variable is considered an unknown number, to be 

solved for, in an algebraic equation. However, it is usually impossible to write down 

explicit formulas for solutions of partial differential equations. There is, correspondingly, 

a vast amount of modern mathematical and scientific research on methods to numerically 

approximate solutions of certain partial differential equations using computers. Partial 

differential equations also occupy a large sector of pure mathematical research. The usual 

questions are on identifying general qualitative features of solutions of the various partial 

differential equation. 

 Analytical method 

A differential equation may be analytically solved with different available methods. 

For example, The methods are separation of variables, homogenous, non-homogenous or 

in-homogenous, non-liner differential equations, method of characterizations, integral 
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transform, change of variables, fundamental solution, superposition principle, methods 

for non-linear equations, lie group method, semi-analytical methods, and others. First, the 

analytical method defines a differential equation involving an unknown function and one 

or more of its derivatives. Then the Analytical solution or solution to the differential 

equation is a function that satisfies the differential equation when the function and its 

derivatives are substituted into the equation. 

 Fractional differential equation 

Fractional order differential and integral operator generalize traditional integer-order 

integration and derivation gained more attention from the last two decades because of 

physical interpretation in different fields such as biology, economics, biochemistry, 

medicine, and engineering science. The idea of fractional calculus is old as classical 

calculus; Leibniz and L’Hospital discussed it for the first time in 1965. Nonlinear 

fractional evolution equations describe complex phenomena in different areas such as 

biology, acoustics, physics, finance, and fractional dynamics(Bin, 2012). Many 

researchers have solved various numerical and analytical numerical and analytical 

methods of linear, nonlinear, integers, and fractional order problems. Numerical methods 

such as finite fourth-order difference methods are used by Ali et al. (Umair Ali, Sohail, 

Usman, et al., 2020). They solved the non-integer order sub-diffusion model and found 

the theoretical analysis of stability and convergence. Another literature (U Ali, Kamal, & 

Mohyud-Din) used the Crank-Nicolson scheme's 2D diffusion equation of fractional 

order. Jiang and Jingtan (Guan et al.) developed the high order finite element approach 

for the fractional-order differential equation and finding the convergence order rate. 

Srivastava et al. (Srivastava, Kung, & Wang) discussed the local meshless method for 3D 

convection-diffusion equation. They approximated the space derivatives based on the 

meshless procedure and fractional-order time derivatives are by Caputo derivative. The 

2D time-fractional order differential equation is solved in ("Chapter 5 Preliminary 

Univ
ers

iti 
Mala

ya



 

16 

Review of Finite Difference Methods," ; Zwillinger). They used numerical approximation 

and discussed the stability and convergence analysis for the diffusion model of fractional 

order. Ahmad et el. (Abouelregal, Moustapha, Nofal, Rashid, & Ahmad) studied a new 

and simple numerical approach for the fifth-order KdV equation. Also, it compared the 

obtained values with Adomian’s decomposition method and briefly explained the 

theoretical analysis to assess the accuracy. Ali and Abdullah (Umair Ali, Mastoi, Othman, 

Khater, & Sohail) explicitly developed the Saul’yev technique for the 2D diffusion model 

with stability analysis and provided test examples to demonstrate accuracy. Ahmad et al. 

(Abouelregal et al.) suggested an efficient local differential quadrature technique for the 

2D hyperbolic telegraph equation. The time and space derivatives are approximated based 

on the time integration technique and multiquadric radial basis. Balasim and Mohd Ali 

(Mahmood, Md Basir, Ali, Mohd Kasihmuddin, & Mansor) worked on a 2D fractional-

order Cable equation. They found the solution by two numerical methods, fully implicit 

and Crank-Nicolson method. Akgül (Ahmad et al.) developed a novel approach to 

reproducing kernel Hilbert space function and used Atanagana-Baleanu fractional 

derivatives. They solved fractional initial values problems to demonstrate the numerical 

results. Akgül et al. (Ahmad et al.; Saeed, Riaz, Baleanu, Akgül, & Husnine) considered 

the fractional-order integrator circuit model and established a unique solution. They find 

out the stability analysis and numerical results of the proposed model by Atanaga-Toufik 

scheme. The SM’s method as finite random difference method and Caputo definition are 

discretized introduced by (Bar-Sinai, Hoyer, Hickey, & Brenner; Farlow; Folland; 

Strauss), having applications in control theory. Akgül (Ahmad et al.) studied the solution 

of the fractional-order differential model and used the Laplace transform to get the 

solution. The effective analytical methods to construct the solitary wave for differential 

equations such as Shang and Zheng (Y. Sun, Sun, & Zheng) constructed all possible exact 

solutions by the method. Yokus et al. (Yokus, Durur, Ahmad, Thounthong, & Zhang) 
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solved the Bogoyavlenskii equation and used (G′/G, 1/G)-expansion and (1/G′)-

expansion to find the exact traveling wave solution. Barman et al. (Barman, Seadawy, 

Akbar, & Baleanu) studied the interesting nonlinear equations Riemann wave and 

Novikov-Veselov that describe the ocean's tidal and tsunami types of waves. The author’s 

implemented the generalized Kudryashov technique for the exact solution of the proposed 

equations and obtained various solitons. Jawad et al. (Jawad, Petković, & Biswas) 

discussed the nonlinear evolution equations, which describe nerve propagation in biology 

and genetics. They applied the simple equation approach for the suggested equations and 

discussed the physical phenomena. In (Islam, Akbar, & Azad) presented the (G′/G)-

expansion to find the solutions for the evolution equations and used Jumaire’s definition 

for fractional-order derivative. Bashan et al. (Bashan, Yagmurlu, Ucar, & Esen) combined 

the finite-uniform and random difference procedure (FUDP-FRDP) with the quadratic 

differential scheme (QDS) to discuss the solution of the modified two-dimensional partial 

differential equation as a wave-type physical phenomenon. They obtained and discussed 

the solitary wave nature solution. They recorded and listed the error norms, and the 

solution is displayed against several emerging parameters in graphs. Modified spline 

technique (MST) has been adopted by Bashan et al. (Bashan et al.) to compute the soliton 

solution of the nonlinear Schrodinger equation. They examined the efficiency and 

effectiveness of proposed procedure for five different problems and found an excellent 

agreement while computing the error norms. Few important contributions are covered in 

(Başhan). The three models of shallow water wave equations are determined by Wazwaz 

(Wazwaz). The Hirota bilinear approach was used for multiple solitons solutions and the 

coth-tanh for single soliton solution. Hosseini et al. (Hosseini et al.) considered the special 

type of mathematical model (3+1)-dimensional breaking solitons equation and used the 

linear superposition method. The method shown high efficiency and strongly handled the 

nonlinear model. In the said literature partial and fractional order differential equations 
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are solved successfully. Fractional order is sometime a function of dependent or 

independent variables which are more appropriate to discuss the diffusion processes in 

porous medium and medium structure (Umair Ali, Sohail, & Abdullah). The reaction 

kinetics of proteins has been originated to show simple mechanisms that are accurately 

defined by fractional-order changes with temperature (Mastoi, Othman, et al.). These 

examples show that the variable-order operator describes some classes of physical models 

better than fractional order. In the review article Sun et al. (Y. Sun et al.) provided basics 

definitions, models, numerical techniques, and applications. So far, in the previous 

literature, many researchers have solved the variable-order fractional evolution equations 

by various numerical methods, such as Shekari (Shekari, Tayebi, & Heydari) solved the 

2D time-fractional variable-order wave equation base on numerical moving least squares 

approach for a different domain. The resulted solution confirmed the efficiency and easy 

implementation of variable order models. Chen et al. (Chen et al.) focused on Stokes's 

first problem variable order and found the solution numerically. Also, we discussed the 

theoretical analysis via the Fourier series. The theoretical analysis supported the obtained 

numerical solution. The advection-diffusion equation of variable-order is solved 

explicitly and implicitly with the nonlinear forcing term by Zhuang (Samaniego et al.). 

Chen et al. (Gu, Wang, Chen, Zhang, & He) considered the anomalous diffusion of 

variable order equation with the numerical algorithm. The theoretical analysis of stability, 

convergence, and solvability via Fourier was discussed. The numerical solutions were 

effective, and the proposed scheme is powerful for such types of variable order models. 

The studies reported in (U Ali et al.; Umair Ali et al.; Umair Ali, Sohail, & Abdullah; 

Umair Ali, Sohail, Usman, et al.) discussed the chaotic analysis by using fractional 

operators. 

This study aims to extend the closed-form traveling waves solution to the nonlinear 

variable-order fractional evolution equations. Here, we solve nonlinear space-time 
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variable-order fractional MEWE based on variable-order Caputo derivative by exp 

method. The variable-order problems are more complicated than a constant fractional-

order problem, and the evolution of a system can be more accurately described. This 

contribution seems natural and modeled many systems with variable-order (Lee & Kim; 

Sohail et al.). The closed-form solutions for variable-order evolution equations and finite 

random grids are unavailable to the author’s knowledge, and we hope it contributes to the 

literature. Few significant contributions relating to the concepts of variable-order 

fractional operators and other related studies are reported in (Al-Shawba, Gepreel, 

Abdullah, & Azmi). 

This study aims to extend the work in the numerical solution of finite random grids, 

SM’s method, and fractional differential equation in partial differential equations. 

Moreover, the concept helps solve the problem related to various FPDE’s, Laplace 

equations, Poisson’s equations, domain decomposition method, adomain decompositions 

method, Legendre functions, and others.   

 Numerical Computing 

The massive power of mathematics is, arguably, best divulged by “crunching” 

numbers. While an equation or a formula can provide significant insight into a physical 

phenomenon, its depth can only be welcomed by a limited few that already have a 

relatively thorough understanding of the phenomenon, to begin with, the same equation 

or formula. However, when put to use to generate numbers, it reveals significantly more. 

For example, the Navier–Stokes equations, which govern fluid flow, are not particularly 

appealing on paper except, perhaps, to a select few. However, when appropriately post-

processed, their solution is depicted in line plots, field plots, and animations. In the 

realization that the numbers generated out of sophisticated equations are far more 

revealing than the equations themselves, for more than a century, applied mathematicians 

Univ
ers

iti 
Mala

ya



 

20 

have endeavored to find ways to generate numbers from equations rapidly. The desire to 

create numbers has also been partly prompted by closed-form analytical solutions that 

only exist for a few scenarios. Even those require number crunching or computing to 

some degree.  

Although the history of computing can be traced back to Babylon, an abacus was 

believed to develop over 2400 bc. It was not until the nineteenth century that the 

development of devices that could, according to the modern sense of the word, compute, 

came to be realized. While the industrial revolution created machines that made our 

everyday life more accessible, the nineteenth and twentieth centuries witnessed strong 

interest among mathematicians and scientists in building a device that could crunch 

numbers or compute repeatedly and rapidly. The so-called Analytical Engine, proposed 

by Charles Babbage around 1835, is the first computer design capable of logic-based 

computing. Unfortunately, it was never built due to the political and economic turn of 

events. In 1872, Sir William Thomson made an analog tide-predicting machine that could 

integrate differential equations. The Russian naval architect and mathematician Alexei 

Krylov (1863–1945) built a device to integrate an ordinary differential equation in 1904. 

These early analog machines were based on mechanical principles and made using 

mechanical parts. As a result, they were slow. The Second World War stimulated renewed 

interest in computing both on the German and British sides. The Zuse Z3, designed by 

Conrad Zuse (1910–1995), was built by German engineers in 1941. It is believed to be 

the world’s first programmable electromechanical computer. The British cryptanalyst 

Alan Turing is also known as the father of computer science and artificial intelligence. 

The Imitation Game recently brought to the limelight, built an electromechanical machine 

to decode the Enigma machine used by the German military for their internal 

communication. Shortly after the war, Turing laid the theoretical foundation for the 

modern stored-program programmable computer. This machine does not require any 
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rewiring to execute a different set of instructions. This so-called Turing Machine later 

became the academic standard for computer design, and modern computer designs, upon 

satisfying a set of mandatory design requirements, are referred to as “Turing complete.” 

With the invention of the bipolar transistor in 1947 and integrated circuits in 1952, the 

world witnessed a meteoric rise in computer hardware technology and computing power. 

In 1965, in a famous statement (Dinesh.), known today as the Moore’s Law, Gordon E. 

Moore predicted that the number of transistors in an integrated circuit would 

approximately double every two years. Over the past four decades, the growth in Very 

Large Scale Integrated (VLSI) circuit technology has roughly followed Moore’s law. The 

62-core Xeon Phi processor, released by Intel Corporation in 2012, has 5 billion 

transistors, compared with 2300 transistors in the Intel 4004 processor released in 1971. 

The number of millions of instructions per second (MIPS), an important marker of 

processor speed, scales directly as the number of transistors per processor. The Intel Core 

i7, one of the most prevalent processors in modern (as of 2014), executes 105 MIPS. 

Over the past two decades, this dramatic increase in computing power and reduction 

in cost has stimulated significant research, development, and educational activities that 

focus on computing. For example, the US National Academy of Engineering now 

recognizes finite element analysis and computational fluid dynamics. In mainstream 

industries, such as the automotive industry, the traditional methodology of “make and 

break” is rapidly being replaced by a paradigm in which analysis and analysis-based 

understanding of the working principles of a device, part, or process, is considered 

imperative. The focus is extended to the finite difference method, the SM’s Method, and 

available methods. As a result, having a working knowledge of the popular simulation 

tools is rapidly becoming a necessity rather than a choice for the next-generation 

workforce. In the academic and research communities, the drastic increase in computing 
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power has also prompted renewed interest in developing algorithms that use the enhanced 

computing power to execute complex tasks efficiently.  

The Finite difference method over randomly generated grids is followed the simulation 

process on computers through mathematical and statistical software. Thus, profile 

simulation and massive data can be only possible with the help of the computer—the 

possibilities for computer simulations to promote scientific discoveries and improve our 

everyday lives. 

 Numerical Methods 

Numerical methods for ODE can also be extended to the solution of PDE. For example, 

methods discussed for treating initial value problems can be adopted for parabolic and 

hyperbolic equations. Similarly, practices discussed for treating BVPs can be adopted to 

solve elliptic PDEs, also boundary value problems. However, the extension of the 

methods to solve PDE is not straightforward. 

Methods such as finite difference method (FDM), finite volume method (FVM), finite 

element method (FEM), boundary element method (BEM), etc., are commonly used for 

treating PDE numerically. All numerical methods used to solve PDEs should have 

consistency, stability, and convergence. 

A numerical method is consistent if all the derivatives' approximations (finite 

difference, finite element, finite volume, etc.) tend to the exact value as the step size (∆t, 

∆x, etc.) tends to zero. A numerical method is stable (like IVPs) if the error does not grow 

with time (or iteration). The convergence of a numerical method can be ensured if the 

technique is consistent and stable. 
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In summary, the numerical methods are iterative and must be used if the problem is 

multidimensional and the region's geometry is too complex. Thus, they need a high degree 

of mathematical formulation and programming. 

We shall look at different aspects of the numerical treatment of different types of PDE 

in the forthcoming chapters. 

2.7.1 Finite Volume Method 

The finite volume method derives its name from the fact that in this method, the 

governing PDE is satisfied over finite-sized control volumes rather than at points. The 

first step in this method is to split the computational domain into a set of control volumes 

known as cells, as shown in Fig. 2.1. In general, these cells may be of arbitrary shape and 

size. However, traditionally, the cells are convex polygons (in 2D) or polyhedrons (in 

3D), i.e., they are bounded by straight edges (in 2D) or planar surfaces (in 3D). As a 

result, if the bounding surface is curved, it is approximated by straight edges or planar 

faces, as is evident in Fig. 2.1. These discrete bounding surfaces are known as cell faces 

or simply faces. The vertices of the cells, on the other hand, are called nodes and are, in 

fact, the same nodes that were used in the finite difference method. All information is 

stored at the geometric centroids of the cells, referred to as cell centers. 
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Figure 2.1: Schematic representation of Computational domain and Meshes 

Schematic representation of a 2D Computational Domain and Mesh 

Hollow squares denote the cell centers to be used for the finite volume method. The nodes, 

indicated by solid squares, are used in the finite difference method and are the vertices of 

the cells. 

In contrast with the finite difference method, the governing PDE is not solved directly 

in the finite volume method, as evident from the preceding discussion. Instead, it is first 

integrated over the control volume and then approximated and solved. Furthermore, since 

no cell center is located at the boundary, the boundary conditions cannot be satisfied 

directly. Due to these reasons, the solution to the PDE’s, obtained using the finite volume 

method, is known as the weak form solution.  

2.7.2 Finite Element Method 

The finite element method is a numerical technique for solving partial differential 

equations. Biological systems, engineering models, solid mechanics, fluid mechanics, 

electromagnetics, thermodynamics, mathematical models, etc are used (Kreyszig, 2011; 

Deb, Babuška, & Oden, 2001). However, one of the most powerful techniques for solving 

PDEs with weak formulations is using a weighted residual method called the Galerkin 

finite element method (GFEM).  

The formulation requires generating a basis function (Ainsworth & Oden, 1997) based 

on the elemental boundary conditions. This trial function is substituted in the partial 

differential equation. The first derivative of the trial function is taken for each nodal 

variable (Burden & Faires, 2001) to construct the residual function. The weighed form of 

the residual function for the whole domain is integrated by setting it equal to zero. Green’s 

theorem can be applied over the boundary if necessary (Afzal, Sulaeman, & Okhunov, 

2016). The corresponding numerical model is set up by discretizing the rectangular 
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domain into smaller elements. Each element consists of nodal coordinates and nodal 

variables, which are used to perform the Galerkin approximation of the PDEs. 

This study generates an element matrix and vector matrix of the boundary by 

integrating the total number of elements. The set of linear equations represented by the 

matrices are consecutively solved using the Galerkin approach. For comparison purposes, 

an exact solution is already available for the non-linear PDE (time-independent and no 

heat source) used in the 2D heat conduction rectangular domain with both Dirichlet and 

Neumann boundary conditions. Finally, a stiffness matrix applicable for a homogenous 

rectangular domain consisting of structured mesh grid elements is presented, the solution 

scheme of which significantly reduces the CPU performance cost 

2.7.3 Finite difference method 

When the appropriate finite-difference operators approximate partial derivatives 

apparent in the differential equations and boundary conditions, the initial-boundary value 

problem under study is reduced to the solution of a system of algebraic equations at all 

points in a defined domain. Such a discretization is called a difference scheme, which 

yields a different solution. A method of differential equations can be approximated by an 

arbitrary number of different schemes, so that it is necessary to compare their 

performances and to establish some criteria for checking goodness of 

approximation("Chapter 5 Preliminary Review of Finite Difference Methods," 1992). It 

has been used to solve a wide range of problems. These include linear and non-linear, 

time-independent, and dependent problems. 

In 1950, a first mathematical definition of the stability of difference schemes was 

proposed, based on the requirement that roundoff error should not be amplified 

unboundedly with increasing step numbers. However, this definition has its 

disadvantages. On the one hand, it depends not only on the difference scheme adopted 
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but also on the computer used; on the other hand, when the step sizes become smaller, the 

roundoff error would become larger and more prominent due to the increasing number of 

operations. Therefore, the definition was changed before long into a new requirement that 

the error in the difference solution produced by a disturbance to the initial data would not 

be amplified rapidly. Accordingly, stability may be defined as follows:  

For a fixed step size, when the number of time steps grows unboundedly, the upper 

bound of the error of the difference solution can be estimated based on the disturbance. 

Here, the disruption is shown in two aspects: the initial value error and the degree of 

smoothness. It is noticeable that convergence of the difference solution of a Cauchy 

problem is related to the class of the initial function. Even the initially given process is 

sufficiently smooth (e.g., it can be expanded into a Fourier series in the Lz-norm sense), 

the operands treated by computer would be decidedly unsmoothed (they cannot be 

developed into an infinite series or even a finite sum). Therefore, it is also often required 

that the convergence of the difference solution can be assured for all common initial 

functions encountered. 

Because of the inconvenience of the above definition, in the mid-l950s, Lax and 

Richtmyer proposed a second definition, requiring that for the calculation of a different 

solution at a given instant, the amplification of the solution must be bounded with 

vanishing step sizes. Considering that the exact solution itself may grow with time, the 

definition of stability may be alternatively stated as follows:  

When step sizes shrink to zero, the rate of growth of the difference solution should not 

exceed that of the exact solution. 

The new definition has two features. (i) the theoretical analysis can be made so long 

as the difference equation and the boundary condition have been given (making no use of 
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the exact solution), (ii) since the amplification of the difference solution is bounded, the 

discretization error and roundoff error must also be bounded. 

The above two definitions of stability are distinct. In the first definition, step sizes are 

fixed while the number of steps increases unboundedly, and so it is called step stability. 

In the second one, initial and final instants are fixed, while the number of steps still 

increases unboundedly as step sizes vanish; thus, it describes a limit error behavior at 

some fixed point in space and time and therefore is called point stability. Since the 

differential equations used in both definitions are identical, they are quite close to each 

other for the same number of steps. 

Unfortunately, they are still unsatisfactory in some respects. For example, oscillations 

may sometimes appear in the numerical solution, even around an incorrect one. Such a 

phenomenon is indeed instability (computational instability may be classified into two 

types, one is strongly unstable if the solution is divergent, and the other is weakly unstable 

if there are spurious oscillations of finite amplitudes appearing in the solution); however, 

it would be judged as stable by the two definitions, since the solution and its error remain 

bounded. Conversely, so long as a numerical solution, although it does not converge 

mathematically, is accurate enough for practical purposes, it is acceptable. 

From the viewpoint of functional analysis, the solution at any instant (a field) may be 

considered a point in some Banach space. The problem is equivalent to finding a tiny 

operator which transforms an initial point into a moving point. Norm (or modulus) of the 

operator may be smaller than, equal to, or greater than one, corresponding respectively to 

the cases that energy is continually dissipated, conservative, or accumulated so that 

stability will eventually be lost. 
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The distinction between convergence and stability should be emphasized. 

Conceptually, convergence means that the exact solution of a difference scheme 

approaches the exact solution of a differential equation. In contrast, stability means that 

the approximate solution of a difference scheme comes to the exact solution. On the other 

hand, theoretically, convergence requires that a prior estimate holds uniformly in step 

size, in a form such that a certain norm of the error in a numerical solution is equal to or 

smaller than a product which is obtained from summing the two norms of truncation 

errors in the difference equation and numerical boundary condition, and then multiplying 

the sum by some constant. Stability requires a uniform estimate, in a form such that the 

norm of the numerical solution is equal to or smaller than a product of some constant and 

the summed models of the initial and boundary data. 

A difference problem is well-posed if it is consistent with the associated differential 

problem and stable. Naturally, this property is closely related to the well-posedness of the 

associated differential problem. In general, the condition of the well-posedness of the 

differential problem is more straightforward. A 1-D difference scheme may be 

numerically unstable, while a differential problem may be ill-posed only in at least 2-D 

cases. In addition, in a differential problem, wave dispersion is independent of step size, 

Ax, but for a different scheme, it depends on the waves with wave-length greater than 

2𝑑𝑑𝑥𝑥, i.e., with wavenumber satisfying the condition 𝑘𝑘𝑑𝑑𝑥𝑥 𝐸𝐸 ( 0 ,𝑎𝑎 ) 

 Mesh generation and its applications 

The Mesh generation procedure is not unique. It is a practice, and the practice varies 

from problem to problem. Mesh is usually called grids or nodes formed per desired and 

physical or engineering models (S. Sun et al., 2020). It is mostly found that mesh quality 

depends on the convergence rate; if mesh quality is not good, the convergence rate cannot 

reach some cases (Duan & Tang, 2020). The challenging design of the most feasible grids 
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for the specific model is variability in boundary conditions and the domain structure. 

Meshes are divided into structured, unstructured, and hybrid grids. A 2 dimension domain 

is filled with the structure that is regular parts and easier to implement, compute and 

unstructured is usually use for complex part in worse shaped and hybrid contain a 

combination of both grids that is structured and unstructured with quadrilateral and 

triangular shapes are often computed by Delaunay triangulation of given set of points 

(Rani & Mishra, 2020). Structured and unstructured meshes having different approaches 

and advantages and the limitations. The inspiration is a new technique that is to “Generate 

random grids” and solve a two-dimensional partial differential equation with the help of 

FDM. So, they hypothesized that “the randomly generated grids(meshes) improve 

convergence of the numerical solution.” Mesh has different types like curvilinear, 

cartesian, rectilinear, triangular grids, domain decomposition, and many others. These all 

types of grids found in the major two categories are structured and unstructured(Buller., 

2020; Kumaresan., 2020; Nallasamy., 2020; Othman, 2020). Structured grids are used for 

regular shapes. The irregular shape we use unstructured grids or meshes with quadrilateral 

and triangular connectivity is regular or uniform and irregular or non-uniform grids. A 

hybrid grid is a scheme for joining the unstructured and structured grids (Zhong & Sheng, 

2020). In a single strategy, both types were discussed and benefited (Zubar et al., 2020). 

The meshes or the grids or nodes are designed recalled as per mathematical model 

structures. Nowadays, the physical problem and model are solved using computer 

technology to find various algorithms and solutions in less computational time. To highest 

convergence with less computational time a partial differential equation of Heat equation 

solved, designed and random grids designed for the ease and various solution of problems. 

In this way, the numerical algorithm development for the partial differential equation, 

usually called PDEs, purely depends upon grids. The mesh generation already gained 

much consideration because of the applicability of physical problems, structural 
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mechanics, CFD computational fluid dynamics, and electromagnetism (Ghosh, 2020; 

Zhong & Sheng, 2020). The boundaries of shapes change into meshes from finite 

difference methods, which can construct to the finite element meshes (Ang, 2013; Smitha 

& Nagaraja, 2020; X. Zhao, Mo, Guo, & Li, 2020). The technique of discretizing PDEs 

in various techniques is proposed in the literature. However, the numerical solution 

approach varies with the model as a physical phenomenon to be simulated and the type 

of original equation and the computational domain of the problem.  Previously studies are 

found on equal step size on a regular mesh (J. Zhao, Yi, & Xu, 2020; Zubar et al., 2020) 

variable grid size(Lee & Kim, 2020), moving mesh (Duan & Tang, 2020; Uzunca, 

Karasözen, & Küçükseyhan, 2017; Yan, Rennie, & Mohammadian, 2021) can found on 

quasilinear applied in the partial differential equation in magnetohydrodynamics (Ghosh, 

2020; Liu, 2019; Song & Karniadakis, 2019), porous medium, meteorology, low-speed 

viscous flow, free surface viscous elastic flow, multi-phase flows and so on (Ang, 2013; 

Duan & Tang, 2020; El-Ajou et al., 2020; Ghosh, 2020; Han, Nica, & Stinchcombe, 2020; 

Harir et al., 2020; Hosseini et al., 2020; Kovács, Kirchner, & Bolin, 2020; Kucharski et 

al., 2020; Lee & Kim, 2020; Li, Sun, & Crouseilles, 2020; Rani & Mishra, 2020; Smitha 

& Nagaraja, 2020; S. Sun et al., 2020; Vargas-González et al., 2020; Xiong, Wen, & 

Zheng, 2020; Xu, Huang, & Ma, 2020; Yan et al., 2021; J. Zhao et al., 2020; X. Zhao et 

al., 2020; Zhong & Sheng, 2020; Zubar et al., 2020). Hereafter the different scholars 

applied some techniques on strand meshes in complex flow fields and aerodynamics 

problem. Precision the details, mesh generation need to explore, in past two decades, 

regular and irregular mesh generations are solved for finite element and boundary element 

methods to solve the physical, engineering and scientific problems (Sankarganesh, 

Gowtham, Thamilarasan, & Karthik, 2018; Song & Karniadakis, 2019). Unstructured or 

random meshes depend upon the irregular, dispersed, or scatter points in which the partial 

differential equation is solved for local smoothing. Therefore, Classical FD schemes are 
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bound or restricted on uniform grids with regular geometry. The finite random grids are 

frequently appropriate for FEM but need to expand on FDM (Habeeb et al., 2020). There 

is no appropriate data available data for the finite difference method using random grids. 

The idea is recommended in the literature (Habeeb et al., 2020). Therefore, the motivation 

and interest developed to explore the effect of random grids using the finite difference 

method. A physical model is chosen as1D, 2D & 3D differential equations, from which 

the detailed data is collected and implemented on 2D PDEs with Dirichlet boundary 

conditions for further investigation, implementation, and testing purposes. The methods 

are based on discretization of the differential equation by finite difference quotients, 

parameters of mesh. It is frequently observed that the finite difference method (FDM) 

operates on the regular step or equal step size or variable step grid size. 

 SM’S Method 

In this thesis, the method known as SM’s Method is focused. This method is an 

approximate method, which is abbreviated from Sanaullah Mastoi’s Method. This method 

uses the numerical solution of partial differential equations using the finite difference 

method over randomly generated grids. Mesh generation does not have any specific 

formula or principle. In this method, numerical solutions found converging, rapid 

solutions with less computational time and less error. 

 Summary 

This chapter discusses some basic definitions and concepts related to the solution of 

differential equations using analytical method, partial differential equation, finite 

difference method, and thoroughly mesh generation process. Furthermore, some related 

works regarding mesh generation and its applications are reviewed.  

The solution of PDEs is quite challenging. The number of methods available to find 

closed-form analytical solutions to canonical PDEs is limited. These include separation 
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of variables, superposition, product solution methods, Fourier transforms, Laplace 

transforms, and perturbation methods, among a few others. Even these methods are 

limited by constraints such as regular geometry, linearity of the equation, constant 

coefficients, and others. The imposition of these constraints severely curtails the range of 

applicability of analytical techniques for solving PDEs, rendering them almost irrelevant 

for problems of practical interest. In realization of this fact, applied mathematicians and 

scientists have endeavored to build machines that can solve differential equations by 

numerical means, as outlined in the brief history of computing presented at the beginning 

of this chapter. 

The methods for numerical solutions to PDEs can broadly be classified into two 

types: deterministic and stochastic. A deterministic method is one in which the output is 

always the same for a given input to an equation. The outcome does not depend on how 

many times one solves the equation, when it is solved, or what computer it is solved on 

(disregarding precision errors, which may be slightly different on different computers). 

On the other hand, a stochastic method is based on statistical principles. The output can 

be somewhat different for the same input depending on how many times the calculation 

is performed and other factors. In this case, by “slightly different,” we mean within the 

statistical error bounds. A simple example best elucidates the difference between these 

two approaches. Let us consider a scenario in which a ball is released from a certain height 

above the horizontal ground. Upon collision with the ground, the ball bounces back to a 

size ho. Let us assume that based on experimental observations or other physical laws, 

we know that the ball always bounces back to half the height from which it is released. 

Following this information, we may construct the following deterministic equation: h = 

(1 / 2)h0 i. If this equation is used to compute the height of a bounced ball, it would always 

be one-half of release height. In other words, the equation (or method of calculation) has 

one hundred percent confidence built into it. Hence, it is termed a deterministic method. 
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The stochastic viewpoint of the same problem would be pretty different. In this viewpoint, 

one would argue that if n balls were made to bounce, by the laws of theoretical probability, 

n/2 balls would boot to a height slightly above half the released size. The remaining n/2 

balls would leap to a height slightly below the released peak, such that in the end, when 

tallied, the mean height to which the balls bounce back to would be exactly half the height 

of release. Whether this exact result is recovered or not would depend on how many balls 

are bounced, i.e., the number of statistical samples used. The stochastic viewpoint may 

be implemented, for example, by drawing random numbers from a uniform deviate 

between 0 and 1. If the random number is more significant than half, then the ball is made 

to bounce to a height greater than half the released height, while if it is less than half, it is 

made to reflect a size less than half the released height. This viewpoint is more in keeping 

with experimental observations because, in reality, it is unlikely for each ball to bounce 

back to exactly half the size from which it is released. In other words, statistical 

variability, as prevalent in any experimental measurement, is already built into the 

stochastic viewpoint. 

The next chapter will demonstrate the methodology of research that is mainly focused 

on the randomly generated meshes. 
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CHAPTER 3:  

RESEARCH METHODOLOGY 

 Introduction 

This chapter demonstrates the detailed methodology of the proposed research. First of 

all, the model problem specifications are described, and then the finite difference 

discretization of the governing equation is presented. After that, the mesh generation 

process is defined for both uniform and random spacing. Finally, for the analysis of 

results, sufficient data is collected in terms of uniform and random meshes, viz., different 

meshes of uniform spacing are generated, and meshes with random spacing are generated.  

 Model problem specification 

The systematic procedure is followed to achieve the objectives. First, the governing 

equation is chosen as one, two, and three-dimensional partial differential equations and 

applied with initial and boundary conditions, as shown in Figure 3.1.  

𝑢𝑢𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑧𝑧) + 𝑢𝑢𝑦𝑦𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑧𝑧) + 𝑢𝑢𝑧𝑧𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = − 𝐷𝐷(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)  
𝑎𝑎 < 𝑥𝑥 ≤ 𝑏𝑏,𝑎𝑎 < 𝑦𝑦 ≤ 𝑏𝑏  & 𝑎𝑎 < 𝑧𝑧 ≤ 𝑏𝑏  

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2

= − 𝐷𝐷 (𝑥𝑥 ,𝑦𝑦, 𝑧𝑧 )  
  𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏,𝑎𝑎 ≤ 𝑦𝑦 ≤ 𝑏𝑏 & 𝑎𝑎 ≤ 𝑧𝑧 ≤ 𝑏𝑏  with 𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 0   

𝑢𝑢 ( 𝑝𝑝,𝑦𝑦, 𝑧𝑧 ) =  𝑎𝑎 1 ,𝑢𝑢( 𝑞𝑞,𝑦𝑦, 𝑧𝑧 ) =  𝑎𝑎 2 ,𝑢𝑢( 𝑥𝑥, 𝑝𝑝, 𝑧𝑧) =  𝑏𝑏1,𝑢𝑢(𝑥𝑥 , 𝑞𝑞, 𝑧𝑧)  =

𝑏𝑏2,𝑢𝑢(𝑥𝑥 ,𝑦𝑦,𝑝𝑝)  = 𝑐𝑐1 & 𝑢𝑢(𝑥𝑥 ,𝑦𝑦, 𝑞𝑞)  = 𝑐𝑐2                 (3.1) 

 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦 + 𝑢𝑢𝑧𝑧𝑧𝑧 = 𝑢𝑢𝑟𝑟𝑟𝑟 + 1
𝑟𝑟
𝑢𝑢𝑟𝑟 + 1

𝑟𝑟2
𝑢𝑢𝜃𝜃𝜃𝜃 + 1

𝑟𝑟 sin𝜃𝜃
𝑢𝑢𝜗𝜗𝜗𝜗 = 𝐷𝐷(𝑟𝑟, 𝜃𝜃,𝜗𝜗), 

0 < 𝑟𝑟 < 𝑚𝑚, 0 < 𝜃𝜃 < 𝑎𝑎𝑛𝑛, 0 < 𝜗𝜗 ≤ 𝑝𝑝𝑛𝑛  

where u is the dependent variable on 𝑥𝑥,𝑦𝑦, and 𝑧𝑧 (in polar ( 𝑟𝑟,𝜃𝜃 and 𝜗𝜗)) coordinates. 𝐷𝐷 

is a given forcing function, where 𝑎𝑎1, 𝑎𝑎2, 𝑏𝑏1, 𝑏𝑏2, 𝑐𝑐1 and 𝑐𝑐2 are the left, right, top, bottom, 

front and back boundary conditions, respectively; six faces, 12 edges, and 8 vertices, 

respectively. 
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Figure 3.1: Model problem with boundary conditions 

 Finite difference discretization of the model 

After the model problem specification, the governing equation is discretized by using 

the finite difference schemes. Since the problem is well-posed and does not require any 

special treatment regarding consistency and stability. Therefore, the second-order 

accurate central finite difference scheme is used, and the following Eq describes the 

resulting system. 3.2 (a-c) as, 

𝑢𝑢(𝑖𝑖 +1,𝑗𝑗,𝑘𝑘)−2𝑢𝑢(𝑖𝑖,𝑗𝑗,𝑘𝑘)+𝑢𝑢(𝑖𝑖−1,𝑗𝑗,𝑘𝑘)
𝑒𝑒2

+ 𝑢𝑢 (𝑖𝑖,𝑗𝑗+1,𝑘𝑘)−2𝑢𝑢(𝑖𝑖,𝑗𝑗,𝑘𝑘)+𝑢𝑢(𝑖𝑖,𝑗𝑗−1,𝑘𝑘)
𝑔𝑔2

+
𝑢𝑢 (𝑖𝑖,𝑗𝑗,𝑘𝑘+1)−2𝑢𝑢(𝑖𝑖,𝑗𝑗,𝑘𝑘)+𝑢𝑢(𝑖𝑖,𝑗𝑗,𝑘𝑘−1)

ℎ2
= − 𝐷𝐷 (𝑖𝑖 , 𝑗𝑗,𝑘𝑘)       

for all 𝑖𝑖, 𝑗𝑗,𝑘𝑘 ∈ ℕ, 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 1 ≤ 𝑗𝑗 ≤ 𝑎𝑎, & 1 ≤ 𝑘𝑘 ≤ 𝑙𝑙, 𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑢𝑢(𝑖𝑖, 𝑗𝑗,𝑘𝑘) = 𝐷𝐷 

 𝑢𝑢 (1, 𝑗𝑗,𝑘𝑘 ) =  𝑎𝑎 1 , 𝑢𝑢( 𝑚𝑚, 𝑗𝑗,𝑘𝑘 ) =  𝑎𝑎 2 , 𝑢𝑢( 𝑖𝑖, 1,𝑘𝑘) =  𝑏𝑏1 , 

𝑢𝑢( 𝑖𝑖,𝑎𝑎,𝑘𝑘)  = 𝑏𝑏2,𝑢𝑢( 𝑖𝑖, 𝑗𝑗, 1) =  𝑐𝑐1, 𝑢𝑢(𝑖𝑖 , 𝑗𝑗, 𝑙𝑙)  = 𝑐𝑐2     (3.2 a) 

𝑢𝑢(𝑖𝑖+ 1 ,   𝑗𝑗 ) − 2𝑢𝑢 ( 𝑖𝑖 ,𝑗𝑗 ) + 𝑢𝑢 ( 𝑖𝑖 −1,   𝑗𝑗)
𝑒𝑒2

+ 𝑢𝑢 (𝑖𝑖 ,𝑗𝑗 +1 ) − 2𝑢𝑢 ( 𝑖𝑖 ,𝑗𝑗) + 𝑢𝑢( 𝑖𝑖 ,𝑗𝑗−1 )
𝑔𝑔2

= − 𝐷𝐷 (𝑖𝑖 , 𝑗𝑗)   
for all 𝑖𝑖, 𝑗𝑗 ∈ ℕ, 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 1 ≤ 𝑗𝑗 ≤ 𝑎𝑎, 𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑢𝑢(𝑖𝑖, 𝑗𝑗) = 𝐷𝐷 

𝑢𝑢 ( 1, 𝑗𝑗 ) =  𝑎𝑎 1 , 𝑢𝑢( 𝑚𝑚, 𝑗𝑗 ) =  𝑎𝑎 2 , 𝑢𝑢( 𝑖𝑖, 1) =  𝑏𝑏1, 𝑢𝑢( 𝑖𝑖,𝑎𝑎) = 𝑏𝑏2  (3.2 b)  

𝑢𝑢(𝑖𝑖 +1 )−2𝑢𝑢(𝑖𝑖)+𝑢𝑢(𝑖𝑖−1)
𝑒𝑒2

= 𝐷𝐷(𝑖𝑖)         

for all 𝑖𝑖, 𝑗𝑗 ∈ ℕ, 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 𝑢𝑢 ( 1 ) =  𝑎𝑎 1 , 𝑢𝑢( 𝑚𝑚 ) =  𝑎𝑎 2     (3.2c) 

The computational domain is discretized accordingly as a finite difference mesh. A 

schematic of discretized mesh with uniform spacing for 1D, 2D and 3D are exhibited 

in Figure 3.2(a-c). 
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Figure 3.2: The schematic of discretized domain for (a) 1-D, (b)2-D & (c)3-D  

In figure 3.2. the uniform grids are applied on the interval from 𝑎𝑎 to 𝑏𝑏 in the figure 3.2 

a, 0 to 𝑚𝑚 in 𝑥𝑥- axes, 0 to n in 𝑦𝑦-axis in figure 3.2b and in the figure 3.2c the axes are equal 

in length that is a to b. the uniform or regular grids. 

3.3.1 Generation of uniform finite-difference grids 

To solve the governing equation and obtain sufficient numerical results, the ten 

different sizes mesh equally spaced increments in one, two, and three dimensions along 

with 𝑥𝑥, 𝑥𝑥 and 𝑦𝑦, and 𝑥𝑥,𝑦𝑦 𝑎𝑎𝑎𝑎𝑑𝑑 𝑧𝑧 axes are generated in uniform meshes with one two and 

three dimensions respectively. The mesh data is shown in the following Table 3.1(a-c), 

Table 3.1: (a-c): Data for Uniform Mesh Generations (1-D, 2-D and 3-D) 

Table 3.1 a: 1-D 

Mesh size 10 20 30 40 50 60 70 80 90 100 

Step size 0.1 0.05 0.03 0.025 0.020 0.017 0.014 0.013 0.011 0.01 

Number of nodes 11 21 31 41 51 61 71 81 91 101 

Cell Standard deviations 0 0 0 0 0 0 0 0 0 0 

 

    𝑖𝑖 = 𝑎𝑎      𝑖𝑖 = 𝑎𝑎0   𝑖𝑖 = 𝑎𝑎1   𝑖𝑖 = 𝑎𝑎2  𝑖𝑖 = 𝑎𝑎3                                 𝑖𝑖 = 𝑎𝑎𝑀𝑀    𝑖𝑖 = 𝑏𝑏    

𝟑𝟑.𝟐𝟐 𝒂𝒂 
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 𝑘𝑘 = 3  

…. 

𝒙𝒙 

𝒚𝒚 

𝒛𝒛 

𝟑𝟑.𝟐𝟐 𝒄𝒄 

Univ
ers

iti 
Mala

ya



 

37 

 

Table 3.1 b : 2-D 

S. No Mesh size Step size Number 
of nodes 

Number 
of cells 

Average cell 
size 

Cell 
standard 
deviation 

1 10 × 10 0.100 121 100 0.100 0 
2 20 × 20 0.050 441 400 0.050 0 
3 30 × 30 0.033 961 900 0.033 0 
4 40 × 40 0.025 1681 1600 0.025 0 
5 50 × 50 0.020 2601 2500 0.020 0 
6 60 × 60 0.017 3721 3600 0.017 0 
7 70 × 70 0.014 5041 4900 0.014 0 
8 80 × 80 0.013 6561 6400 0.013 0 
9 90 × 90 0.011 8281 8100 0.011 0 
10 100 × 100 0.010 10201 10000 0.010 0 

 

Table 3.1 c: 3-D 

S. 
No Mesh size Step size Number 

of nodes 
Number 
of cells 

Average cell 
size 

Cell 
standard 
deviation 

1 10 × 10 × 10 0.100 1331 1000 0.10 0 
2 20 × 20 × 20 0.050 9261 8000 0.05 0 
3 30 × 30 × 30 0.033 29791 27000 0.03 0 
4 40 × 40 × 40 0.025 68921 64000 0.02 0 
5 50 × 50 × 50 0.020 132651 125000 0.02 0 
6 60 × 60 × 60 0.017 226981 216000 0.017 0 
7 70 × 70 × 70 0.014 357911 343000 0.014 0 
8 80 × 80 × 80 0.013 531441 512000 0.013 0 
9 90 × 90 × 90 0.011 753571 729000 0.011 0 
10 100 × 100 × 100 0.010 1030301 1000000 0.01 0 

 

The uniform meshes are generated by writing a MATLAB code and meshes 

constructed by using the data given by Table 3.1(a-c). Then numerical solution is 

implemented on each interior node by explicit scheme by Eq. (3.3) as follows. 

𝑢𝑢𝑝𝑝+1 = (𝛿𝛿2 + 2)𝑢𝑢𝑝𝑝 − 𝑢𝑢𝑝𝑝−1         (3.3a) 

𝑢𝑢 𝑞𝑞+1( 𝑖𝑖 , 𝑗𝑗 ) =

 𝑘𝑘 2 ×� ℎ  2 ×  𝑓𝑓 ( 𝑖𝑖 ,𝑗𝑗 ) + 𝑢𝑢 𝑞𝑞 ( 𝑖𝑖 + 1 ,𝑗𝑗 ) −  𝑢𝑢 𝑞𝑞  ( 𝑖𝑖− 1 ,𝑗𝑗 ) � +  ℎ 2 × � 𝑢𝑢 𝑞𝑞 ( 𝑖𝑖 ,𝑗𝑗 + 1 ) −  𝑢𝑢 𝑞𝑞  ( 𝑖𝑖 ,𝑗𝑗− 1)�
2(ℎ2+𝑘𝑘2)   (3.3b) 
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𝑢𝑢 𝑟𝑟+1( 𝑖𝑖 , 𝑗𝑗,𝑘𝑘 ) =

 (𝑒𝑒𝑔𝑔ℎ)2𝑓𝑓 ( 𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘)  [�(𝑔𝑔ℎ)2(𝑢𝑢𝑟𝑟 (𝑖𝑖+1,𝑗𝑗,𝑘𝑘)−𝑢𝑢𝑟𝑟(𝑖𝑖−1,𝑗𝑗,𝑘𝑘)�

+(𝑒𝑒ℎ)2�𝑢𝑢𝑟𝑟(𝑖𝑖,𝑗𝑗+1,𝑘𝑘)−𝑢𝑢𝑟𝑟 (𝑖𝑖 ,𝑗𝑗−1,𝑘𝑘)�+(𝑒𝑒𝑔𝑔)2�𝑢𝑢𝑟𝑟(𝑖𝑖,𝑗𝑗,𝑘𝑘+1)−𝑢𝑢𝑟𝑟 (𝑖𝑖 ,𝑗𝑗,𝑘𝑘−1)�]
2(𝑔𝑔2ℎ2+𝑒𝑒2ℎ2+𝑔𝑔2𝑒𝑒2)   (3.3c) 

where 𝑝𝑝, 𝑞𝑞, 𝑟𝑟 stands for iteration, and 𝑝𝑝 + 1, 𝑞𝑞 + 1 & 𝑟𝑟 + 1 are the successive iteration. 

3.3.2 Generation of random finite difference meshes 

Just like the generation of uniform meshes, the samples of random meshes are required 

to test their feasibility, as mentioned in the objectives of this research. It can be observed 

from the data of uniform meshes (Table 3.1(a-c)) that the meshes parameters like step 

sizes for one dimension 𝑒𝑒, for two dimensions 𝑒𝑒 & 𝑔𝑔 and three dimensions 𝑒𝑒,𝑔𝑔 & ℎ,  cell 

are same. Cell sizes may be the minimum cell size, maximum cell size and average cell 

size remain the same for the size of a particular grid. However, when random meshes are 

generated, all parameters change randomly for specific grid size, and as many times the 

mesh is generated, the mesh parameters vary. For testing and implementation purposes, 

ten samples of each mesh size (10, 20, 30, 40, …  100, 10 × 10, 20 × 20, …  100 × 100, 

10 × 10 × 10, 20 × 20 × 20, …  100 × 100 × 100 for one, two, and three dimensions, 

respectively) are obtained on MATLAB and ANSYS FLUENT software using the built-

in function rand for MATLAB (given mesh size). It means for all ten different mesh sizes. 

We have ten different samples (or realizations) totaling 10,100 and 1000 meshes each one 

is different for one, two, and three dimensions. The mesh parameters are further extended 

as minimum cell size, maximum cell size, average cell size, the standard deviation of 

cells, skewness of cells, correlation in cells along axes like 𝑥𝑥,  𝑥𝑥 & 𝑦𝑦, & 𝑥𝑥, 𝑦𝑦 & 𝑧𝑧  

directions. These parameters help choose an appropriate numerical solution scheme and 

for selecting random samples with fast convergence. For uniform meshes, the numerical 

solution can be implemented using Eq. 3.3 (𝑎𝑎 − 𝑐𝑐), but for random meshes, the situation 

changes due to instantaneous changes in the step size e, g, and h, as shown in Figure 

3.3(𝑎𝑎 − 𝑐𝑐). Here three different approaches can handle the unequal step size maximum, 
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minimum and average cell size.  𝑒𝑒𝑚𝑚𝑚𝑚𝑥𝑥,𝑔𝑔𝑚𝑚𝑚𝑚𝑥𝑥 𝑎𝑎𝑎𝑎𝑑𝑑 ℎ𝑚𝑚𝑚𝑚𝑥𝑥 be the excellent selection, detailed 

discussed in the chapter of solution profile of randomly generated grids.  

𝑢𝑢𝑝𝑝+1 = �𝛿𝛿𝑚𝑚𝑚𝑚𝑥𝑥
2 + 2�𝑢𝑢𝑝𝑝 − 𝑢𝑢𝑝𝑝−1        (3.4a) 

𝑢𝑢 𝑞𝑞+1( 𝑖𝑖 , 𝑗𝑗 ) =

 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
 2 ×� ℎ𝑚𝑚𝑚𝑚𝑚𝑚  2 ×  𝑓𝑓 ( 𝑖𝑖 ,𝑗𝑗 ) + 𝑢𝑢 𝑞𝑞 ( 𝑖𝑖 + 1 ,𝑗𝑗 ) −  𝑢𝑢 𝑞𝑞  ( 𝑖𝑖− 1 ,𝑗𝑗 ) � +

  ℎ𝑚𝑚𝑚𝑚𝑚𝑚 2 × � 𝑢𝑢 𝑞𝑞 ( 𝑖𝑖 ,𝑗𝑗 + 1 ) −  𝑢𝑢 𝑞𝑞  ( 𝑖𝑖 ,𝑗𝑗− 1)�
2�ℎ𝑚𝑚𝑚𝑚𝑚𝑚

2+𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
2�

   (3.4b) 

𝑢𝑢 𝑟𝑟+1( 𝑖𝑖 , 𝑗𝑗,𝑘𝑘 ) =

 (𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚𝑚𝑚)2𝑓𝑓 ( 𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘)  [�(𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚𝑚𝑚)2(𝑢𝑢𝑟𝑟 (𝑖𝑖+1,𝑗𝑗,𝑘𝑘)−𝑢𝑢𝑟𝑟(𝑖𝑖−1,𝑗𝑗,𝑘𝑘)�

+(𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚𝑚𝑚)2�𝑢𝑢𝑟𝑟(𝑖𝑖,𝑗𝑗+1,𝑘𝑘)−𝑢𝑢𝑟𝑟 (𝑖𝑖 ,𝑗𝑗−1,𝑘𝑘)�+(𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚)2�𝑢𝑢𝑟𝑟(𝑖𝑖,𝑗𝑗,𝑘𝑘+1)−𝑢𝑢𝑟𝑟 (𝑖𝑖 ,𝑗𝑗,𝑘𝑘−1)�]
2�𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚2ℎ𝑚𝑚𝑚𝑚𝑚𝑚

2+𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚2ℎ𝑚𝑚𝑚𝑚𝑚𝑚
2+𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚2𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚2�

    (3.4c) 

 

 

Figure 3.3 (a-c): Random spacing on sample meshes 

3.4 Algorithm for the implementations of methodology 

Most of the significant steps for implementing the proposed research have already been 

described in the previous sections. However, the systematic procedure for both the 

uniform and random meshes are summarized separately in Tables 3.3-3.4. 
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3.4.1 Algorithm for the implementation of a methodology for uniform meshes 

The systematic procedure followed for generating and implementing the uniform 

grids. In this procedure, the most critical cell size, converging iterations, computational 

time, and error analysis. 

Table 3.2: Algorithm using uniform meshes 

Steps Description 
 Initialize the algorithm MATLAB and ANSYS 

1 Generate the step size as data points with uniform step sizes for dimensions 
as one, two, and three dimensions as e, g, and h, respectively 

2 Draw the computational domain and assign the boundary conditions 
3 Assign the mesh size l, m, n and construct the uniform mesh 
4 Start iteration 𝑝𝑝 = 𝑝𝑝 + 1,𝑞𝑞 = 𝑞𝑞 + 1, 𝑟𝑟 = 𝑟𝑟 + 1 𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝒑𝒑,𝒒𝒒, 𝒓𝒓 = 𝟏𝟏 as initial 
5 Run the solution algorithm Eq. 3.3(𝒂𝒂 − 𝒄𝒄), with predefined error 
6 If the solution is converged, then stop. Else repeat steps four and step five 
7 Count the converging iterations and CPU as computational time (In sec) 
8 Solution profiling 

 

3.4.2 Algorithm for the implementation of a methodology for random meshes 

The systematic procedure for the novel method (SM’s Method), which is randomly 

generated grids, is followed for developing and implementing the finite random grids. 

This procedure generates maximum, minimum, and average cell size, statistical 

parameters, converging iterations, computational time, and error analysis. 

Table 3.3: Algorithm using random meshes 

Steps Description 
 Initialize the algorithm on MATLAB and ANSYS 

1 Generate the Step size data points with random step sizes: e, g, and h, 
respectively. 

2 Draw the computational domain and assign the boundary conditions 

3 Construct the samples of random mesh size 𝒍𝒍, 𝒍𝒍 × 𝒎𝒎, 𝒍𝒍 × 𝒎𝒎 × 𝒏𝒏 and save as 
.xls file for one, two, and three dimensions, respectively. 

4 Import the stored (.xls) file in the MATLAB program and locate the specific 
random sample 

5 Collect the statistical parameters and compute the maximum step sizes 

6 Start iteration p, q, r with p+1, q+1 and r+1, where p,q,r=0 as initial 
7 Run the solution algorithm Eq. 3.4(𝒂𝒂 − 𝒄𝒄), with predefined error 
8 If the solution is converged, then stop. Else repeat steps four & step five 
9 Count the converging iterations and CPU as computational time (In sec) 

10 Solution profiling, analysis of the accuracy 
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 Summary 

In this chapter, the complete methodology is demonstrated for obtaining the objectives 

of the proposed research, which is mainly associated with the analysis of uniform and 

random finite difference meshes. Therefore, the first model problem is briefly described, 

and then the procedure to generate the uniform and random meshes is explained. The 

input mesh data is given and shown by Tables and Figures, respectively. The step-by-step 

implementation of the methodology has also been illustrated that will provide the 

statistical and numerical solution results. The next chapter will elaborate on uniform 

meshes, random meshes, and their results from implementing the methodology. The 

concealed ideas related to the proposed research are expected to be discovered and 

justified. 
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CHAPTER 4: SOLUTIONS PROFILE ON UNIFORM GRIDS 

 

 Introduction 

The research methodology was already described concisely in the previous chapter. 

This chapter demonstrates and analyzes the output results obtained from the 

implementation of methods through generating uniform grids. In addition, the numerical 

solution profiles are exhibited and interpreted. Finally, it is essential to mention that in 

this research, ten uniform meshes are studied. 

 Generation of uniform finite-difference grids 

The uniform meshes are generated by writing a MATLAB code. The meshes 

constructed by using the data given in Table 3.1 are shown in Figure 4.1. Then the 

numerical solution is implemented on each interior node by the explicit method by using 

Eq. (3.3). 

The uniform grids are generated using second-order partial differential equations in one, 

two, and three dimensions. The Numerical simulation of one, two, and three dimensional in 

uniform meshes of size 10, 20, 30, 40, … , 100,   10 × 10, 20 × 20, … , 100 × 100 & 

10 × 10 × 10, 20 × 20 × 20, … , 100 × 100 × 100 respectively.                         .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                         

Univ
ers

iti 
Mala

ya



 

43 

 

Figure 4.1: 𝒂𝒂- three-dimensional, 𝒃𝒃- two dimensional and 𝒄𝒄- three dimensional unfirom 

grids of second order PDEs. 

The uniform grids are generated using MATLAB codes, and the step size can be presented 

graphically and tabularly. For example, in Figure 4.1 a., the three-dimensional uniform grids are 

shown having cell sizes from 10 × 10 × 10, 20 × 20 × 20, … , 100 × 100 × 100 for the 

three-dimensional domain, where step sizes are represented by 𝑒𝑒,𝑔𝑔,ℎ or 𝑔𝑔, ℎ and 𝑘𝑘 with an 

equal step size in all dimensions. The help of ANSYS FLUENT software generates the 

three-dimensional grids because of the enormous data and cell size. Therefore, it is 

challenging to get the results through MATLAB Program.  Similarly, the two-dimensional 
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uniform grids are generated with the help of MATLAB and ANSYS FLUENT software, 

Figure 4.1 b. shows the data collected for two-dimensional grids 10 × 10, 20 × 20, 30 ×

30, 40 × 40, … , 90 × 90, 100 × 100 step size in a given domain. Finally, we have stored 

one-dimensional step size using MATLAB and ANSYS FLUENT software, managed grids, 

and stored in the tabular form with steps 10, 20, 30, 40, 50, … , 100. 

 Numerical solution profiles over uniform meshes 

Figures 4.2(𝑎𝑎 − 𝑐𝑐) shows that the numerical profile simulation of the one-dimensional, 

two- dimensional and three dimensional PDEs respectively. The one dimensional time-

fractional advection-diffusion equation using uniform grids 10, 20, 30, 40, 50, … , 100 

respectively. The steady-state temperature in the unit square over uniform meshes of size 

10 × 10, 20 × 20, … , 100 × 100, respectively. Each figure exhibits a local solution profile 

where the numerical solution values vary from 25oCto 100oC. The solution's smoothness 

verifies the problem's well-posedness and consistency, which are the best properties of 

Poisson’s equation. Increasing the mesh size increases the smoothness. The purpose of 

obtaining these simulation profiles is to use them as benchmarks for the simulation profiles 

obtained on random meshes. It will facilitate deciding on the feasibility of using random 

meshes for such problems. Three-Dimensional facet reflection in optical waveguides is solve 

using the finite difference method over uniform grids sizes which are 10 × 10 × 10, 20 ×

20 × 20, … , 100 × 100 × 100, respectively. The finite difference method simulates devices 

with a complex structure. Univ
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Figure 4.2: Local solution profile on Uniform mesh of size (a-1D, b-2D, and 3-D) 

The finite difference method uses uniform grids to solve one-dimensional time-fractional 

advection-diffusion equations involving the Caputo fractional derivative. The Caputo time 

 

  

 

𝟒𝟒.𝟐𝟐 𝒂𝒂 

𝟒𝟒.𝟐𝟐 𝒃𝒃 

𝟒𝟒.𝟐𝟐 𝒄𝒄 

Univ
ers

iti 
Mala

ya



 

46 

derivative is discretized employing a direct generalization of the well-known fractional to the 

case of uniform meshes in figure 4.2 a. 

The 2-D PDEs is solved through the profile simulations , in Figure 4.2b, shows the profile 

smoothness, where the solution veries from 250C to 1000C. The problem's well-posedness 

and consistency, which are the best properties of Poisson’s equation. 

The 3D method has been applied successfully applied to the calculation of waveguide 

facet reflection. Parallel computing has been used to overcome large memory consumption 

and is expected to achieve high precision in measures while using randomly generated grids. 

The 3D-FDTD algorithm implemented through parallel computing can handle all the 

structural varieties and is sufficiently accurate to capture even subtle structural differences. 

The problem of facet reflection has been studied using the example of rectangular-shaped and 

reverse trapezoid-shaped ridge waveguides and different tilting schemes. This approach has 

shown that a horizontally tilted waveguide with a rectangular-shaped ridge best reduces facet 

reflection. 

 Summary 

In this chapter, uniform grids are shown in the form of the figures. The complete 

methodology is followed, demonstrated for obtaining the analysis of uniform finite 

difference meshes. The purpose of bringing these simulation profiles is to use as benchmarks 

for the simulation profiles obtained on random meshes. Moreover, it will facilitate making 

the decision about the feasibility of using random meshes for such problems. The next 

chapter will be elaborated for random meshes and their simulation profiles obtained from 

implementing the methodology where the concealed ideas related to the proposed 

research are expected to be discovered and justified.                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                         
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CHAPTER 5:  

SOLUTIONS PROFILE ON RANDOM GRIDS 

 Introduction 

In the previous chapter, the uniform grids and profile simulations are obtained by 

following the research methodology described. This chapter demonstrates and analyzes 

the output results obtained from the implementation of methods through generating 

randomly grids. The numerical solution profiles are exhibited and analyzed. It is essential 

to mention that in this research that hundred random meshes are studied. 

 Generation of random finite difference grids 

The mesh generation process for randomly generated meshes are same as the 

generation of uniform meshes. The samples of random meshes are required to test their 

feasibility as mentioned in the objectives of this research. It can be observed from the data 

of uniform meshes (Table 3.1) that the mesh parameters like step sizes 𝑒𝑒, or  ℎ,𝑘𝑘 and 

𝑒𝑒,𝑔𝑔,ℎ or 𝑔𝑔, ℎ,𝑘𝑘, for one dimension, two dimension and three dimension respectively. The 

step size has minimum cell size, maximum cell size, and average cell size remains the 

same for a particular grid size. However, when a random mesh is generated, all parameters 

change randomly for a specific grid size. As many times the mesh is generated so many 

times the mesh parameters vary. For testing and implementation purposes, many samples 

like ten, for each mesh size that is 10, 20, 30, 40, …  90, 100, 10 × 10, 20 × 20, …  100 ×

100, and 10 × 10 × 10, 20 × 20 × 20, 30 × 30 × 30, … ,100 × 100 for 1-D, 2-D and 3-

D respectively, are obtained on MATLAB, ANSYS FLUENT using the built-in function 

rand (given mesh size) for MATLAB. It means for all different mesh sizes, and we have 

various samples (or realizations), the meshes are different from each other. The mesh 

parameters are further extended as minimum cell size, maximum cell size, average cell 

size, the standard deviation of cells, skewness of cells, correlation in cells along 𝑥𝑥, 𝑥𝑥 & 𝑦𝑦 
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, and 𝑥𝑥,𝑦𝑦 & 𝑧𝑧 direction for 1D, 2D and 3D respectively. These parameters help choose an 

appropriate numerical solution scheme and select random samples with fast convergence. 

Table 5.1: Random samples for random mesh generation of size 10×10 

S. 
No 

Sample 
(Realization) 

Min 
cell size 

Max cell 
size 

Average 
cell size 

Standard 
deviation of 

cells 

Skewness 
of cells 

Correlation 
in cells 

1 10 × 10 (1) 1.7 × 10−4 0.0995 0.01 0.0094 0.424 0.222 
2 10 × 10 (2) 2.7× 10−4 0.0574 0.01 0.0059 -0.114 0.126 
3 10 × 10 (3) 1.2× 10−4 0.0497 0.01 0.0047 -0.171 0.227 
4 10 × 10 (4) 1.5× 10−4 0.0932 0.01 0.0077 -0.156 -0.057 
5 10 × 10 (5) 1.4× 10−4 0.0625 0.01 0.0061 0.098 -0.268 
6 10 × 10 (6) 1.6× 10−4 0.1086 0.01 0.0091 -0.189 0.291 
7 10 × 10 (7) 7.6× 10−5 0.0945 0.01 0.0071 -0.354 0.046 
8 10 × 10 (8) 2.2× 10−4 0.0404 0.01 0.0041 0.114 0.351 
9 10 × 10 (9) 3.9× 10−4 0.0674 0.01 0.0061 -1.246 -0.018 

10 10 × 10 (10) 8× 10−5 0.1414 0.01 0.0126 1.0312 0.307 
 

Table 5.2: Random samples for random mesh generation of size 20×20 

S. 
No 

Sample 
(Realization) 

Min 
cell size 

Max cell 
size 

Average 
cell size 

Standard 
deviation of 

cells 

Skewness 
of cells 

Correlation 
in cells 

1 20 × 20(1) 2.3× 10−5 0.0283 0.0025 0.0018 -0.591 0.127 
2 20 × 20(2) 2× 10−6 0.0369 0.0023 0.0025 -1.033 0.058 
3 20 × 20(3) 4× 10−6 0.0431 0.0025 0.0028 -1.297 -0.166 
4 20 × 20(4) 1× 10−6 0.0339 0.0025 0.0024 -1.556 -0.119 
5 20 × 20(5) 2× 10−6 0.0339 0.0025 0.0022 1.515 0.156 
6 20 × 20(6) 5× 10−6 0.0252 0.0023 0.0018 0.731 0.355 
7 20 × 20(7) 1.9× 10−5 0.0225 0.0023 0.0014 0.178 0.232 
8 20 × 20(8) 7× 10−6 0.0281 0.0025 0.0018 1.587 0.03 
9 20 × 20(9) 1× 10−6 0.0334 0.0019 0.0022 -0.691 -0.054 

10 20 × 20(10) 1× 10−7 0.0298 0.0022 0.0023 -0.926 0.052 
 

Table 5.3: Random samples for random mesh generation of size 30×30 

S. 
No 

Sample 
(Realization) 

Min 
cell size 

Max cell 
size 

Average 
cell size 

Standard 
deviation of 

cells 

Skewness 
of cells 

Correlation 
in cells 

1 30 × 30(1) 1× 10−7 0.0144 0.001 0.0008 -0.219 -0.079 
2 30 × 30(2) 2× 10−6 0.0146 0.001 0.0008 -0.474 0.167 
3 30 × 30(3) 1× 10−8 0.0146 0.001 0.0009 -1.455 0.075 
4 30 × 30(4) 6× 10−6 0.0142 0.001 0.001 1.166 -0.0072 
5 30 × 30(5) 1.5× 10−7 0.013 0.001 0.0007 -0.175 -0.279 
6 30 × 30(6) 1 × 10−8 0.0396 0.001 0.001 -0.058 -0.145 
7   30 × 30(7)  1 × 10−9 0.0099 0.001 0.0007 0.15 0.082 
8 30 × 30(8) 2× 10−6 0.0109 0.001 0.0007 -0.66 0.358 
9 30 × 30(9) 1× 10−8 0.0175 0.001 0.0009 1.29 -0.02 

10 30 × 30(10) 2× 10−9 0.017 0.001 0.001 -1.43 -0.007 
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Table 5.4: Random samples for random mesh generation of size 40×40 

S. 
No 

Sample 
(Realization) 

Min 
cell size 

Max cell 
size 

Average 
cell size 

Standard 
deviation of 

cells 

Skewness 
of cells 

Correlation 
in cells 

1 40 × 40(1) 1 × 10−7 0.013 0.0006 0.000545 -0.353 0.204 
2 40 × 40(2) 1 × 10−8 0.013 0.0006 0.000572 0.404 0.325 
3 40 × 40(3) 3× 10−6 0.012 0.0006 0.000473 0.154 -0.198 
4 40 × 40(4) 1 × 10−8 0.016 0.0006 0.000634 0.0198 -0.068 
5 40 × 40(5) 1× 10−8 0.007 0.0006 0.000502 0.612 -0.039 
6 40 × 40(6) 1× 10−6 0.007 0.0006 0.000511 1.378 -0.163 
7 40 × 40(7) 2× 10−7 0.008 0.0006 0.000483 -0.195 0.152 
8 40 × 40(8) 3 × 10−8 0.023 0.0006 0.000922 -0.091 -0.028 
9 40 × 40(9) 1× 10−9 0.014 0.0006 0.000584 -1.456 -0.127 

10 40 × 40(10) 1× 10−7 0.022 0.0006 0.000856 0.835 0.049 
 

Table 5.5: Random samples for random mesh generation of size 50×50 

S. 
No 

Sample 
(Realization) 

Min 
cell size 

Max cell 
size 

Average 
cell size 

Standard 
deviation of 

cells 

Skewness 
of cells 

Correlation 
in cells 

1 50 × 50(1) 1 × 10−7 0.0092 0.0004 0.00046 0.994 0.191 
2 50 × 50(2) 1 × 10−7 0.0043 0.0004 0.00031 1.157 0.091 
3 50 × 50(3) 1 × 10−7 0.0079 0.0004 0.00039 -1.414 -0.068 
4 50 × 50(4) 1 × 10−8 0.0061 0.0004 0.00038 -0.805 -0.151 
5 50 × 50(5) 1 × 10−7 0.0044 0.0004 0.00029 0.892 -0.034 
6 50 × 50(6) 1 × 10−8 0.0096 0.0004 0.00037 -1.618 0.122 
7 50 × 50(7) 1 × 10−9 0.0097 0.0004 0.00043 1.543 0.233 
8 50 × 50(8) 1 × 10−7 0.0043 0.0004 0.00031 1.515 0.317 
9 50 × 50(9) 1 × 10−7 0.0057 0.0004 0.00033 0.394 0.0163 

10 50 × 50(10) 2 × 10−8 0.0044 0.0004 0.00022 0.767 0.272 
 

Table 5.6: Random samples for random mesh generation of size 60×60 

S. 
No 

Sample 
(Realization) 

Min 
cell size 

Max cell 
size 

Average 
cell size 

Standard 
deviation of 

cells 

Skewness 
of cells 

Correlation 
in cells 

1 60 × 60(1) 1 × 10−7 0.0035 0.00028 0.0002 -1.301 0.033 
2 60 × 60(2) 1 × 10−7 0.0052 0.00028 0.0003 0.877 0.0122 
3 60 × 60(3) 1 × 10−7 0.0072 0.00028 0.0002 1.429 -0.017 
4 60 × 60(4) 1 × 10−7 0.0057 0.00028 0.0002 -1.316 -0.015 
5 60 × 60(5) 1 × 10−7 0.0046 0.00028 0.0002 -1.456 0.0385 
6 60 × 60(6) 1 × 10−6 0.0038 0.00028 0.0002 1.556 0.0313 
7 60 × 60(7) 1 × 10−7 0.0089 0.00028 0.00031 -0.286 -0.235 
8 60 × 60(8) 1 × 10−7 0.0046 0.00028 0.00026 1.317 0.0398 
9 60 × 60(9) 1 × 10−7 0.0065 0.00028 0.00025 1.263 -0.236 

10 60 × 60(10) 1 × 10−7 0.0035 0.00028 0.00023 -0.422 0.031 
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Table 5.7: Random samples for random mesh generation of size 70×70 

S. 
No 

Sample 
(Realization) 

Min 
cell size 

Max cell 
size 

Average 
cell size 

Standard 
deviation of 

cells 

Skewness 
of cells 

Correlation 
in cells 

1 70 × 70(1) 9e-8 0.007 0.00021 0.0002 -1.401 -0.0412 
2 70 × 70(2) 1 × 10−7 0.003 0.00021 0.0001 -1.428 -0.0191 
3 70 × 70(3) 2× 10−8 0.005 0.00021 0.0002 -1.407 -0.0733 
4 70 × 70(4) 1 × 10−8 0.004 0.00021 0.0002 -1.332 -0.0134 
5 70 × 70(5) 2 × 10−8 0.003 0.00021 0.0002 -1.386 0.0394 
6 70 × 70(6) 1 × 10−7 0.005 0.00021 0.0002 1.594 0.1395 
7 70 × 70(7) 1 × 10−7 0.008 0.00021 0.0003 1.232 -0.1593 
8 70 × 70(8) 2 × 10−7 0.003 0.00021 0.0002 -1.455 -0.0005 
9 70 × 70(9) 1 × 10−8 0.005 0.00021 0.0002 -1.232 -0.0675 

10 70 × 70(10) 1 × 10−7 0.004 0.00021 0.0002 -1.391 -0.0895 
 

Table 5.8: Random samples for random mesh generation of size 80×80 

S. 
No 

Sample 
(Realization) 

Min 
cell size 

Max cell 
size 

Average 
cell size 

Standard 
deviation of 

cells 

Skewness 
of cells 

Correlation 
in cells 

1 80 × 80(1) 1 × 10−7 0.0025 0.00016 0.00012 -1.4879 0.0203 
2 80 × 80(2) 2× 10−8 0.0031 0.00016 0.00016 1.1943 0.0747 
3 80 × 80(3) 1 × 10−8 0.0021 0.00016 0.00011 -0.1957 -0.0607 
4 80 × 80(4) 2 × 10−8 0.0031 0.00016 0.00016 0.0852 -0.0557 
5 80 × 80(5) 1 × 10−7 0.0019 0.00016 0.00011 1.0831 -0.0668 
6 80 × 80(6) 1 × 10−7 0.0029 0.00016 0.00011 -1.323 -0.1135 
7 80 × 80(7) 2 × 10−7 0.0022 0.00016 0.00011 -1.3241 -0.1059 
8 80 × 80(8) 1 × 10−8 0.0023 0.00016 0.00014 -1.4485 0.1048 
9 80 × 80(9) 1 × 10−7 0.0026 0.00016 0.00012 1.0242 0.0979 

10 80 × 80(10) 1 × 10−7 0.0022 0.00016 0.00012 1.3125 -0.1309 
 

Table 5.9: Random samples for random mesh generation of size 90×90 

S. 
No 

Sample 
(Realization) 

Min 
cell size 

Max cell 
size 

Average 
cell size 

Standard 
deviation of 

cells 

Skewness 
of cells 

Correlation 
in cells 

1 90 × 90(1) 1 × 10−9 0.0038 0.000123 0.000133 -1.353 0.038 
2 90 × 90(2) 2× 10−9 0.0033 0.000123 0.000124 -1.405 0.032 
3 90 × 90(3) 1 × 10−8 0.0035 0.000123 0.000129 -1.314 0.153 
4 90 × 90(4) 2 × 10−8 0.0055 0.000123 0.000156 0.995 0.221 
5 90 × 90(5) 1 × 10−7 0.0023 0.000123 0.000107 1.361 -0.002 
6 90 × 90(6) 1 × 10−7 0.0030 0.000123 0.000099 1.391 -0.096 
7 90 × 90(7) 2 × 10−7 0.0026 0.000123 0.000121 1.437 0.108 
8 90 × 90(8) 1 × 10−8 0.0031 0.000123 0.000117 -1.259 0.037 
9 90 × 90(9) 1 × 10−7 0.0023 0.000123 0.000094 1.218 -0.047 

10 90 × 90(10) 1 × 10−7 0.0033 0.000123 0.000127 -1.352 0.063 
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Table 5.10: Random samples for random mesh generation of size 100×100 

S. 
No 

Sample 
(Realization) 

Min 
cell size 

Max cell 
size 

Average 
cell size 

Standard 
deviation of 

cells 

Skewness 
of cells 

Correlation 
in cells 

1 100 × 100(1) 1 × 10−9 0.002 0.0001 0.000098 -1.383 0.117 
2 100 × 100(2) 2× 10−9 0.002 0.0001 0.000096 -1.337 -0.089 
3 100 × 100(3) 1 × 10−8 0.003 0.0001 0.000093 1.317 0.045 
4 100 × 100(4) 2 × 10−8 0.008 0.0001 0.000087 0.525 -0.092 
5 100 × 100(5) 1 × 10−7 0.003 0.0001 0.000109 1.259 -0.045 
6 100 × 100(6) 1 × 10−7 0.004 0.0001 0.000099 1.132 -0.033 
7 100 × 100(7) 2 × 10−7 0.003 0.0001 0.000108 1.175 0.052 
8 100 × 100(8) 1 × 10−8 0.003 0.0001 0.000111 1.463 0.043 
9 100 × 100(9) 1 × 10−9 0.002 0.0001 0.000087 -0.793 0.086 

10 100 × 100(10) 1 × 10−9 0.002 0.0001 0.000087 1.368 -0.013 
 

For uniform meshes, the numerical solution can be implemented using Eq. 3.3. Still, 

the situation changes for random meshes due to instantaneous change in the step size h 

and k, as shown in Figure 3.3. Here three different approaches can be used to handle the 

unequal step size. Consider the shaded region in Figure 3.3 contains an interior node 𝑢𝑢𝑖𝑖,𝑗𝑗 

where the solution is required to compute surrounded by different values of ℎ (ℎ1 and ℎ2) 

and 𝑘𝑘 (𝑘𝑘1 𝑎𝑎𝑎𝑎𝑑𝑑 𝑘𝑘2). ℎ 𝑎𝑎𝑎𝑎𝑑𝑑 𝑘𝑘 can be chosen as minimum, maximum or average of (ℎ1 and 

ℎ2) and (𝑘𝑘1 and 𝑘𝑘2) respectively. It was roughly tested that among ℎ𝑚𝑚𝑖𝑖𝑛𝑛 =

min(ℎ1 and ℎ2), ℎ𝑚𝑚𝑚𝑚𝑥𝑥 = max(ℎ1 and ℎ2)and ℎ𝑚𝑚𝑎𝑎𝑔𝑔 =avg (ℎ1 and ℎ2) and 𝑘𝑘𝑚𝑚𝑖𝑖𝑛𝑛 =

min(𝑘𝑘1 and 𝑘𝑘2), 𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥 = max(𝑘𝑘1 and 𝑘𝑘2)and 𝑘𝑘𝑚𝑚𝑎𝑎𝑔𝑔 =avg (𝑘𝑘1 and 𝑘𝑘2). The ℎ𝑚𝑚𝑚𝑚𝑥𝑥  and  

𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥  seems to be a good selection for the converged solution. Different random meshes 

based on the data given in Tables 5.1-5.10 are constructed by writing a MATLAB code and 

are shown in Figure 5.1., In this Figure, six random samples are presented carried out from 

Table 5.1-5.10. 
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Figure 5.1: Random mesh of size realizations from 𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏 to 𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟏𝟏  

Various randomly generated grids are generated with the help of MATLAB code. The 

above random mesh size realizations were taken from Table 5.1 to Table 5.10. Although the 

Tabular presentations are already presented, graphical representations are offered in different 

realizations. 

 Numerical solution profiles over uniform meshes 

The numerical profile solutions are obtained using random meshes. Figure 5.2 shows the 

numerical simulation of steady-state temperature in the unit square over randomly generated 
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meshes of size 10 × 10, 20 × 20, … , 100 × 100, respectively. Each figure exhibits a local 

solution profile where the numerical solution values vary from 25oCto 100oC. In some of the 

figures, the solution profiles are not smooth compared to the solution on uniform meshes. 

However, for a specific grid size out of 10 realizations, the many are approximately the same 

as uniform meshes at some percentage error. In few samples, there is an error in solution 

profiles because of the standard deviation in the cell size of random meshes. The higher the 

standard deviation higher the error in the solution. 

    

  

Figure 5.2: Local Solution profile on Random mesh 

                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                         
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 Summary 

In this chapter, random grids are generated and shown in the form of figures. The 

motivation of procure these simulation profiles is to use as benchmarking for the simulation 

profiles prevails on random meshes. The next chapter will be elaborated for random meshes 

and their simulation profiles obtained from the implementation of the methodology where 

the concealed ideas related to the proposed research are expected to be discovered and 

justified. The further discussion of these profiles will be addressed more systematically in 

Next chapter, where the statistical and converging analysis uniform meshes Versus Random 

grids shown through tables and figures.                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        . 
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CHAPTER 6:  

STATISTICAL PARAMETERS ON CONVERGING ITERATIONS  

(UNIFORM VS RANDOM) GRIDS 

 Introduction 

Random samples are highlighted in this chapter. The effect of statistical parameters like, 

grid size, minimum cell size, maximum cell size, average cell size, standard deviation, 

skewness, and correlation between cell sizes are analyzed. For each mesh size, the minimum 

iterations are compared with the iterations of uniform mesh and highlighted. The relationship 

between the converging iterations over uniform and random meshes predicted the minimum 

iterations for a given uniform mesh size. Thus, the relationships between the uniform mesh 

iterations and the random meshes are established for each sample by regression fitting (used 

polynomial interpolation method). In last, the goodness of fit is presented. 

 Statistical and convergence analysis iterations (uniform vs. random meshes) 

The improvement in the convergence and number of iterations are noted for each 

random sample. The effect of statistical parameters likes grid size, minimum cell size, 

maximum cell size, average cell size, standard deviation, skewness, and correlation 

between cell sizes are analyzed. For each mesh size, the minimum iteration is compared 

with the uniform mesh iterations and highlighted in the following Tables 6.1-6.10. It can 

be observed that for each random sample of meshes, the number of converging iterations 

is varied, while the iterations in uniform mesh remain the same for each trial because their 

step size is fixed. The number of iterations in every sample of mesh is analyzed, and found 

that most of the examples are converging faster than uniform meshes. It means roughly 

90% of samples may converge faster than the uniform meshes. However, the accuracy of 

the solution with fast convergence may not be guaranteed due to the randomness. The 

scrutinizing also revealed that one with a large maximum cell size and a small standard 

deviation of cell size has fewer converging iterations among all the random mesh samples. 
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The effect of other statistical parameters on the converging iterations is put on view 

through Figures 6.1-6.10. 

Table 6.1: Statistical and convergence analysis of 10×10 random and uniform 
meshes 

Mesh Size Iterations (Random mesh) Iterations (Uniform mesh) 
10 × 10(1) 120 124 
10 × 10(2) 119 124 
10 × 10(3) 115 124 
10 × 10(4) 121 124 
10 × 10(5) 118 124 
10 × 10(6) 114 124 

 

Table 6.2: Statistical and convergence analysis of 20×20 random and uniform 
meshes 

Mesh Size Iterations ( Random mesh) Iterations ( Uniform mesh) 
20 × 20(1) 389 390 
20 × 20(2) 382 390 
20 × 20(3) 390 390 
20 × 20(4) 364 390 

 

Table 6.3: Statistical and convergence analysis of 30×30 random and uniform 
meshes 

Mesh Size Iterations ( Random mesh) Iterations ( Uniform mesh) 
30 × 30(4) 670 732 
30 × 30(5) 646 732 
30 × 30(7) 728 732 
30 × 30(8) 718 732 
30 × 30(9) 727 732 

 

Table 6.4: Statistical and convergence analysis of 40×40 random and uniform 
meshes 

 

 

 

Table 6.5: Statistical and convergence analysis of 50×50 random and uniform 
meshes 

Mesh Size Iterations ( Random mesh) Iterations ( Uniform mesh) 
50 × 50(1) 1502 1518 
50 × 50(3) 1503 1518 
50 × 50(9) 1506 1518 

Mesh Size Iterations ( Random mesh) Iterations ( Uniform mesh) 
40 × 40(1) 1098 1116 
40 × 40(3) 1051 1116 
40 × 40(5) 1103 1116 
40 × 40(8) 987 1116 
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Table 6.6 : Statistical and convergence analysis of 60×60 random and uniform 
meshes 

Mesh Size Iterations ( Random mesh) Iterations ( Uniform mesh) 
60 × 60(3) 1836 1920 
60 × 60(8) 1790 1920 

 

Table 6.7 : Statistical and convergence analysis of 70×70 random and uniform 
meshes 

Mesh Size Iterations ( Random mesh) Iterations ( Uniform mesh) 
70 × 70(1) 2198 2306 
70 × 70(2) 2042 2306 
70 × 70(4) 2017 2306 

70 × 70(10) 2067 2306 
 

Table 6.8: Statistical and convergence analysis of 80×80 random and uniform 
meshes 

Mesh Size Iterations ( Random mesh) Iterations ( Uniform mesh) 
80 × 80(1) 1979 2666 
80 × 80(2) 1923 2666 
80 × 80(7) 2414 2666 
80 × 80(8) 2623 2666 
80 × 80(9) 2515 2666 

 

Table 6.9: Statistical and convergence analysis of 90×90 random and uniform 
meshes 

Mesh Size Iterations ( Random mesh) Iterations ( Uniform mesh) 
90 × 90(6) 2249 2984 

 

Table 6.10: Statistical and convergence analysis of 100×100 random and 
uniform meshes 

Mesh Size Iterations ( Random mesh) Iterations ( Uniform mesh) 
100 × 100(1) 3185 3250 
100 × 100(4) 3207 3250 
100 × 100(7) 2988 3250 

100 × 100(10) 2833 3250 
 

 Effect of. the statistical. parameters on. the converging. iterations. (Uniform Vs. 

Random. meshes.) 

The data shown. in. the previous. section is. further analysed. for random. and uniform. 

meshes. simultaneously concerni.ng the maximu.m cell size, the . standard deviation of cell 
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size, skewness of cell size, and cell size correlation are exhibited in Figure 6.1. These are 

forty Figures divided into a set of four Figures depending upon the mesh size. For 

example, Figure 6.1 analyzes the effect of the above-mentioned statistical parameters for 

the mesh samples of size for two-dimensional PDEs. The number of samples with the 

best results is scrutinized by graphical representation. About 6 to 9  samples of random 

meshes provide feasible results. It isn't easy to establish a deterministic relationship 

between the statistical parameters and the converging iterations. If we compare each set 

of four-figure, then it appears that there is no similar pattern for converging iterations 

under the effect of statistical parameters. The reduced iterations than uniform mesh vary 

chaotically. It shows that randomness does not imply any relation. A deeper insight was 

put into the figures. It was found that somehow the maximum cell size and standard 

deviation are related for the minimum number of iterations. At the same time, skewness 

and correlation are not more sensitive for the converging iterations as they have chaotic 

behavior. While the relation between the random converging iterations and uniform 

converging iterations can be established, that can be useful to predict the random 

converging iterations concerning the uniform converging iterations for given mesh size 

regardless of statistical parameters. The construction of such relationships can be adopted 

by the idea of the polynomial that will also be demonstrated. 
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Figure 6.1: Effect of Statistical parameters (Maximum cell size, Skewness, Standard 

deviation, and correlation analysis) on converging iterations for .cell sizes 

 Regression. fitt.ing for con.verging itera.tion and. test. of statistical. significance 

(Uniform Vs. Random. meshes)  

The relationship. between. converging. iterations over. uniform and. random mesh.es can 

help predict. the minimum. iterations. for a. given. uniform. mesh. size.. Thus, the. 

relationships. between the. uniform mesh. iterations and the. random meshes. are established. 

for each. sample by. regression. fitting (used. polynomial interpolation. method). The 

Univ
ers

iti 
Mala

ya



 

60 

regression. equation is an 8th.-degree polynomial. whose parameters. lie within the. 95% 

confidence. interval. Also, the. goo.dness of fit. is .presented. 

   

    

Figure 6.2: Regression fit for realisation of each cell size (Random Iteration Vs. 
Uniform iterations) 

Regression Parameters and Goodness of fit  
 

𝐷𝐷1(𝑥𝑥) = 𝑞𝑞1𝑥𝑥8 + 𝑞𝑞𝑥𝑥7 + 𝑞𝑞3𝑥𝑥6 + 𝑞𝑞4𝑥𝑥5 + 𝑞𝑞5𝑥𝑥4 + 𝑞𝑞6𝑥𝑥3 + 𝑞𝑞7𝑥𝑥2 + 𝑞𝑞8𝑥𝑥1 + 𝑞𝑞9 
 
Constant Coefficients ( 95%- Confidence bounds):  
 
q1 = −4.9e-022 (-1.826e-021, 8.365e-022),  q2 = 5.8e-018 (-1.209e-017, 2.381e-017)  
q3 = −2.8e-014 (-1.277e-013, 7.171e-014),  q4 = 6.9e-011 (-2.253e-010, 3.639e-010)  
q5 = −9.5e-008 (-5.933e-007, 4.027e-007),  q6 = 7.2e-005 (-0.0004092, 0.0005548)  
q7 = −0.061 (-0.2814, 0.2222),    q8 = 6.8 (-54.31, 68.03), 
q9 =−386.12 (-5103, 4331)  
 
Goodness of fit:  
SSE (Sum of Square Error): 2392  
Square of Coefficient of Correlation (R-square): 0.9989  
RMSE (root mean square error): 48.89  
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6.5 SUMMARY 

In this chapter, a significant amount of results was analyzed and discussed. The 

results were tried to interpret with the help of comparative tables and figures. 

Based on the assumptions of using random meshes, many interesting facts about 

the random meshes are found. The next chapter will be discussed for pointwise 

comparisons and computational time and percentage error discussed.                         .                        

.                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        

.                        .                        .                        . 
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CHAPTER 7:  

BENCHMARK COMPARISONS 

 Introduction 

The solution's numerical. accuracy. over random. meshes and the. point-wise comparison 

of the solution with uniform mesh are presented. in Figures 7.1-7.10. It is observed that 

most of the samples are pretty near to the solution. of uniform meshes while others deviate 

due to standard .deviation. in the cell size. So. far, the pointwise comparison of the 

numerical solution. and the. numerical simulation profiles of random meshes are found. 

Still, it is a .question of how. to determine their accuracy. compared to. uniform. meshes. 

Furthermore., investigations. are carried. by calculating. the percentage. error and 

percentage.. reductions. for each. sample. It can quickly. be decided that how. much a random 

sample. is. near the. uniform sample.. For example., suppose if the percentage. error in the 

solution. of any random sample of mesh is 10%, then we can say that. the 90% solution is 

near to. the solution of uniform. mesh. Another critical aspect of dealing with random 

samples. is the computational time. (sec) required. to find the numerical. solution. The next 

section addresses the computational time and numerical accuracy of the. random. meshes 

about. the converging. iterations.                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        
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Figure 7.1: Pointwise com,parison for the 2D PDEs mesh size 10×10 

 

Figure 7.2: Pointwise com,parison for the 2D PDEs mesh size 20×20 
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Figure 7.3: Pointwise com,parison for the 2D PDEs mesh size 30×30 

 

Figure 7.4: Pointwise com,parison for the 2D PDEs mesh size 40×40 
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Figure 7.5: Pointwise com,parison for the 2D PDEs mesh size 50×50 

 

Figure 7.6: Pointwise com,parison for the 2D PDEs mesh size 60×60 
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Figure 7.7: Pointwise com,parison for the 2D PDEs mesh size 70×70 

 

Figure 7.8: Pointwise com,parison for the 2D PDEs mesh size 80×80 
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Figure 7.9: Pointwise com,parison for the 2D PDEs mesh size 90×90 

 

Figure 7.10: Pointwise com,parison for the 2D PDEs mesh size 100×100 

In this pointwise comparison, we use randomly generated grids Vs., uniform grids. 

The results are shown in the images on each cell size and number of random realizations. 

Thus, we can say that The Randomly generated grids found better and fast in convergence 

results than uniform grids.  
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 Computational time and the percentage accuracy for numerical solution using 

uniform and random meshes 

Finally, the comparative summary of the vital output parameters, namely the 

converging iterations, computational time, and percentage error in the numerical solution 

over random meshes, is presented in Tables 7.1-7.10. The improvement in the number of 

iterations in the random meshes is highlighted. From the scrutinizing of the Tables, it can 

be deduced that it is not always the case that less number of iterations will imply less 

computational time and less percentage error. However, at some places by chance, few 

specific random samples have good results in minimum iteration in minimum time with 

minimum error. The overall analysis reveals that there is a chance that up to 8 samples of 

random meshes may be found better than uniform meshes, and about 87% to 97% of 

numerical solution profiles on random samples may be near to that of uniform meshes. 

Table 7.1: Iteration and CPU Time (In second) wise compairisons (Cell Size 10×10) 

S.No Size 
Iteration Time Percentage 

Error 
Uniform Random Uniform Random 

1 10 × 10(1) 124 128 0.0179 0.0340 7.4895 
2 10 × 10(2) 124 133 0.0179 0.0350 10.4352 
3 10 × 10(3) 124 125 0.0179 0.0291 8.7687 
4 10 × 10(4) 124 133 0.0179 0.032 5.8561 
5 10 × 10(5) 124 129 0.0179 0.0241 6.5274 
6 10 × 10(6) 124 135 0.0179 0.0421 7.3620 
7 10 × 10(7) 124 121 0.0179 0.0291 6.690 
8 10 × 10(8) 124 129 0.0179 0.0281 10.185 
9 10 × 10(9) 124 118 0.0179 0.0306 13.8284 
10 10 × 10(10) 124 114 0.0179 0.0215 10.0673 
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Table 7.2: Iteration and CPU Time (In second) wise compairisons (Cell Size 20×20) 

S.No Size 
Iteration Time Percentage 

Error Uniform Random Uniform Random 

1 20 × 20(1) 390 431 0.1245 0.1207 13.3565 
2 20 × 20(2) 390 398 0.1245 0.1723 6.3700 
3 20 × 20(3) 390 456 0.1245 0.1212 21.7264 
4 20 × 20(4) 390 382 0.1245 0.0870 6.9483 
5 20𝑥𝑥20(5) 390 427 0.1245 0.0451 9.2699 
6 20 × 20(6) 390 390 0.1245 0.0951 15.5964 
7 20 × 20(7) 390 405 0.1245 0.0981 5.3241 
8 20 × 20(8) 390 464 0.1245 0.1012 23.1439 
9 20 × 20(9) 390 416 0.1245 0.1109 3.4983 

10 20 × 20(10) 390 388 0.1245 0.1020 8.4170 
 

Table 7.3: Iteration and CPU Time (In second) wise compairisons (Cell Size 30×30) 

S.No Size 
Iteration Time Percentage 

Error Uniform Random Uniform Random 

1 30 × 30(1) 732 854 0.3155 0.3267 13.8935 
2 30 × 30 (2) 732 859 0.3155 0.3514 14.1853 
3 30 × 30 (3) 732 826 0.3155 0.3523 10.3204 
4 30 × 30 (4) 732 670 0.3155 0.2614 13.0784 
5 30 × 30 (5) 732 646 0.3155 0.2632 19.8685 
6 30 × 30 (6) 732 849 0.3155 0.2392 14.2445 
7 30 × 30 (7) 732 748 0.3155 0.2910 2.5416 
8 30 × 30 (8) 732 778 0.3155 0.3997 3.3646 
9 30 × 30 (9) 732 727 0.3155 0.1910 5.4423 

10 30 × 30 (10) 732 849 0.3155 0.4013 14.9839 
 

Table 7.4: Iteration and CPU Time (In second) wise compairisons (Cell Size 40×40) 

S.No Size Iteration Time Percentage 
Error 

Uniform Random Uniform Random 
1 40 × 40 (1) 1116 1098 0.6095 0.9666 12.7467 
2 40 × 40 (2) 1116 1212 0.6095 0.8796 7.7098 
3 40 × 40 (3) 1116 1051 0.6095 0.5013 15.4096 
4 40 × 40 (4) 1116 1249 0.6095 0.6187 3.4520 
5 40 × 40 (5) 1116 1183 0.6095 0.6031 6.6157 
6 40 × 40 (6) 1116 1274 0.6095 0.7943 7.2821 
7 40 × 40 (7) 1116 1214 0.6095 0.2991 7.8928 
8 40 × 40 (8) 1116 987 0.6095 0.5813 18.4328 
9 40 × 40 (9) 1116 1373 0.6095 0.8901 20.4144 
10 40 × 40 (10) 1116 1334 0.6095 0.8814 13.9951 
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Table 7.5: Iteration and CPU Time (In second) wise compairisons (Cell Size 50×50) 

S.No Size 
Iteration  Time 

Percentage 
Error 

Uniform Random Uniform Random 

1 50 × 50 (1) 1518 1502 1.1354 1.3201 8.2579 
2 50 × 50 (2) 1518 1708 1.1354 1.6913 18.0615 
3 50 × 50 (3) 1518 1603 1.1354 1.5820 5.9155 
4 50 × 50 (4) 1518 1509 1.1354 1.4710 7.2018 
5 50 × 50 (5) 1518 1532 1.1354 1.2017 4.1911 
6 50 × 50 (6) 1518 1782 1.1354 1.4200 9.8148 
7 50 × 50 (7) 1518 1771 1.1354 1.3401 11.0597 
8 50 × 50 (8) 1518 1836 1.1354 1.4235 13.8783 
9 50 × 50 (9) 1518 1606 1.1354 1.4792 13.6575 

10 50 × 50 (10) 1518 1857 1.1354 1.4129 13.6323 
 
Table 7.6: Iteration and CPU Time (In second) wise compairisons (Cell Size 60×60) 

S.No Size 
Iteration Time Percentage 

Error Uniform Random Uniform Random 

1 60 × 60 (1) 1920 2086 1.8222 1.9013 3.0321 
2 60 × 60 (2) 1920 2436 1.8222 2.3241 16.3994 
3 60 × 60 (3) 1920 1836 1.8222 2.912 15.0607 
4 60 × 60 (4) 1920 2095 1.8222 2.3281 5.8969 
5 60 × 60 (5) 1920 2201 1.8222 2.0980 11.6052 
6 60 × 60 (6) 1920 1933 1.8222 1.6512 9.1422 
7 60 × 60 (7) 1920 2232 1.8222 2.3127 18.9657 
8 60 × 60 (8) 1920 1709 1.8222 1.4271 13.5796 
9 60 × 60 (9) 1920 2910 1.8222 2.1432 23.2238 

10 60 × 60 (10) 1920 2105 1.8222 1.9123 5.2158 
 

Table 7.7: Iteration and CPU Time (In second) wise compairisons (Cell Size 70×70) 

S.No Size Iteration Time Percentage 
Error Uniform Random Uniform Random 

1 70 × 70 (1) 2306 2198 3.5449 3.1188 8.9361 
2 70 × 70 (2) 2306 2042 3.5449 4.6498 12.8594 
3 70 × 70 (3) 2306 2731 3.5449 4.0904 13.8529 
4 70 × 70 (4) 2306 2017 3.5449 2.9217 17.1358 
5 70 × 70 (5) 2306 2706 3.5449 3.1599 9.8384 
6 70 × 70 (6) 2306 3221 3.5449 4.5271 21.4260 
7 70 × 70 (7) 2306 2902 3.5449 4.0271 11.7434 
8 70 × 70 (8) 2306 2702 3.5449 3.9390 14.0924 
9 70 × 70 (9) 2306 2759 3.5449 4.1275 11.8808 

10 70 × 70 (10) 2306 2067 3.5449 3.0952 11.4737 
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Table 7.8: Iteration and CPU Time (In second) wise compairisons (Cell Size 80×80) 

S.No Size Iteration Time Percentag
Error Uniform Random Uniform Random 

1 80 × 80 (1) 2666 1979 4.4224 2.7043 11.6885 
2 80 × 80 (2) 2666 1923 4.4224 2.6458 12.1357 
3 80 × 80 (3) 2666 3075 4.4224 4.1943 22.6994 
4 80 × 80 (4) 2666 2932 4.4224 4.1415 14.8689 
5 80 × 80 (5) 2666 2879 4.4224 3.8355 7.5659 
6 80 × 80 (6) 2666 3368 4.4224 5.0268 20.8415 
7 80 × 80 (7) 2666 2414 4.4224 3.2932 11.0635 
8 80 × 80 (8) 2666 2623 4.4224 4.0040 15.4069 
9 80 × 80 (9) 2666 2515 4.4224 2.7040 8.9071 

10 80 × 80 (10) 2666 2847 4.4224 3.0044 12.1675 
 

Table 7.9: Iteration and CPU Time (In second) wise compairisons (Cell Size 90×90) 

S.No Size Iteration Time  Percentage 
Error Uniform Random Uniform Random 

1 90 × 90 (1) 2984 4000 6.5926 9.9073 16.9081 
2 90 × 90 (2) 2984 3648 6.5926 7.8027 7.2622 
3 90 × 90 (3) 2984 3564 6.5926 7.9823 11.3747 
4 90 × 90 (4) 2984 4332 6.5926 10.0660 15.3732 
5 90 × 90 (5) 2984 3201 6.5926 6.8601 3.0260 
6 90 × 90 (6) 2984 2249 6.5926 5.0736 10.8850 
7 90 × 90 (7) 2984 3016 6.5926 6.3257 9.4133 
8 90 × 90 (8) 2984 3431 6.5926 7.6009 8.2304 
9 90 × 90 (9) 2984 4041 6.5926 8.6947 12.7733 
10 90 × 90 (10) 2984 3025 6.5926 6.6446 3.4961 

 

Table 7.10: Iteration and CPU Time (In second) wise compairisons (Cell Size 100×100) 

S.
No Size 

Iteration Time Percentage 
Error Uniform Random Uniform Random 

1 100 × 100 (1) 3250 3185 7.6443 8.9009 9.7572 
2 100 × 100 (2) 3250 3889 7.6443 9.7716 15.9726 
3 100 × 100 (3) 3250 3456 7.6443 8.9317 13.7269 
4 100 × 100 (4) 3250 3207 7.6443 7.2889 9.5222 
5 100 × 100 (5) 3250 3228 7.6443 8.4705 14.1568 
6 100 × 100 (6) 3250 4501 7.6443 12.1745 10.8340 
7 100 × 100 (7) 3250 2988 7.6443 5.4988 14.5016 
8 100 × 100 (8) 3250 4334 7.6443 10.1134 11.4511 
9 100 × 100 (9) 3250 3964 7.6443 10.3191 8.3286 

10 100 × 100 (10) 3250 2833 7.6443 7.2272 7.9895 
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 Computational time reduction 

The randomly generated grid over uniform grids is analysed, and the key output 

parameters (i.e., converging iterations, computational time (seconds), and percentage (%) 

reduction in computational time) are compared in the numerical solution. The improving 

iterations and the computational time (Uniform versus Randomly generated grids) are 

presented in Table 7.11. The computational time for the cell sizes could reduce up to 43% 

from uniformly generated grids to randomly generated grids 

Table 7.11: Computational time and number of iterations 

S. No Cell Size 
Converging Iteration Computational time 

(seconds) Percentage 
reductions Uniform 

grids 
Random 

grids 
Uniform 

grids 
Random 

grids 
1 10 × 10 125 114 0.0189 0.0147 22.22% 
2 20 × 20 382 390 0.1246 0.1102 11.55% 
3 30 × 30 646 732 0.3154 0.2652 15.9% 
4 40 × 40 987 1116 0.6094 0.4401 27.78% 
5 50 × 50 1502 1518 1.1345 1.1314 0.2732% 
6 60 × 60 1790 1920 1.8222 1.0621 41.71% 
7 70 × 70 2017 2306 3.5448 2.0071 43% 
8 80 × 80 1923 2666 4.442 3.0781 30.70% 
9 90 × 90 2249 2984 6.69425 5.0012 25.39% 
10 100 × 100 3185 3250 7.6442 5.2988 30.68% 

 

 Summary  

In1_1 this1_1 chapter, 1_1a significant1_1 amount1_1 of1_1 results1_1 was1_1 analyzed, compared, and1_1 

discussed. The1_1 results1_1 were1_1 tried1_1 to interpret with the1_1 help1_1 of 1_1comparative 1_1tables and 

figures. Based1_1 on the1_1 assumptions1_1 of using1_1 random meshes1_1 many exciting facts1_1 about 

the random1_1 meshes are1_1 found. That1_1 will enable1_1 us to answer1_1 the research1_1 question 

highlighted1_1 in chapter 1. The details of these1_1 outcomes as1_1 concluding remarks will be 

presented in the next chapter.                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        
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.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

.                        .                        .                        .                        .                        .                        .                        

. 
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CHAPTER 8:  

CONCLUSION AN FUTURE WORK 

 Conclusion 

This 1_1 study considers the 1_1numerical1_1 solutions 1_1of1_1 one, two, and three-dimensional 

differential equations. The numerical solutions and procedure followed for one, two, and 

three dimensional PDEs, the numerical profile solutions were obtained. In addition, the 

new method was implemented on the two-dimensional with Dirchlet boundary conditions 

with special1_1 treatment1_1 of randomly1_1 generated1_1 meshes. The numerical solutions used 

the 100, 10000, and 1000000 samples of random meshes were obtained from one, two, 

and three dimensions, and results are compared with available grids are uniform or regular 

grids. Furthermore, the feasibility and the practicality of applying the samples of 

randomly generated meshes are tested for each random sample's 1_1corresponding1_1 cell1_1 

sizes and1_1 the statistical1_1 parameters. The 1_1hypothesis is assumed that the random meshes 

might improve the convergence of the numerical solution, which theory is accepted by 

proving the results. However, the statistical analysis helped justify the1_1 main1_1 objective, 

which is to test1_1 the1_1 practicability1_1 and feasibility1_1 of using1_1 the randomly1_1 generated finite 

difference1_1 meshes for the numerical solutions. Further, the research question regarding 

the accuracy, while using S.M’s Method briefed in the concluding remarks, leading to 

justify the research objectives, hypothesis, and the research question: 

 

1) The samples of SM’s Method, a new method, from every ten different samples of 

random meshes using one dimensional PDEs, two dimensional PDEs, and Three 

dimensional PDEs and Fractional PDEs eight models of random sample provid 

faster1_1 convergence1_1 than 1_1uniform 1_1meshes. However1_1, the only smoothness of the 

solutions is challenging because smoothness cannot guaranty owing to randomness 

in the mesh parameters. 
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2) Smoothnes using the SM’s Method, the numerical solutions are violated due to 

random behavior and the minimum cell size with high standard deviation in the 

meshes. 

3) The statistical parameters, variance, cell sizes in average, minimum, and maximum 

are obtained. It is easy to manifest between random and uniform meshes due to 

statistical parameters. However, the best results were found because random 

meshes have maximum cell size and slight standard deviation of cells over uniform 

meshes. In comparison, the correlation and the skewness between the cells were 

found less vulnerable. 

4) The statistical parameters create the relationship between converging iterations in 

randomly generated samples over uniform meshes. 

5) Solutions are compared with the help of pointwise comparisons. The numerical 

solution taken by random meshes with uniformly generated solutions reveals about 

ninety-five percent of the samples of random meshes found near the uniformly 

generated solutions. 

6) However, the CPU, Computational time, and percentage error are mostly found less 

in random samples and have good results by comparing the iterations. The number 

of iterations is less in number than the available method with minimum error. 

Finally, it is concluded that the new method, SM’s Method, which uses randomly 

generated meshes to solve the one, two, and three partial differential equations using the 

finite difference method, is recommended and suggested. 

 Future work 

There are some ideas that I would have liked to recommend for future study. In 

mathematics, the model can be chosen irregularly shaped bodies. The model chosen is 

composed of several different materials because the element equations are evaluated. This 

work can be extended for the supercomputer, where numbers of meshes and boundary 
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conditions are used to solve the models. This study can deal with the different dynamic 

effects, The nonlinear behavior existing with large deformations and nonlinear materials. 

 In Engineering fields: An electronics and electrical engineering, the differential 

equations describing complex circuits containing capacitors, inductors and resistors can 

be replaced with finite random grids. The most important is Computer simulations of the 

models are used to estimate voltages and currents in the nodes of the circuits. 

In Biology system: Various dynamics of growth rate-dependent and washout, 

Infection, susceptible, and the change in concentration, nitrate concentration with time 

for a column inoculated with a dilution of Nitrobacter can be used Finite random grids. 
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