
ADAPTIVE MAPREDUCE TASK SCHEDULER IN 
HETEROGENEOUS ENVIRONMENT USING DYNAMIC 

CALIBRATION 

 

 

 

 

LU XINZHU 

 

 

 

 

 

FACULTY COMPUTER SCIENCE AND INFORMATION 
TECHNOLOGY 

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

 
  
 2017

Univ
ers

iti 
Mala

ya



ADAPTIVE MAPREDUCE TASK SCHEDULER IN 
HETEROGENEOUS ENVIRONMENT USING DYNAMIC 

CALIBRATION 
 

 

 

LU XINZHU 

 

 

DISSERTATION SUBMITTED IN FULFILMENT OF 
THE REQUIREMENT FOR THE DEGREE OF MASTER 

OF COMPUTER SCIENCE 

 

 
FACULTY OF COMPUTER SCIENCE AND 

INFORMATION TECHNOLOGY 
UNIVERSITY OF MALAYA 

KUALA LUMPUR 
 
 
 

2017 
Univ

ers
iti 

Mala
ya



ii 

UNIVERSITY OF MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate: Lu Xinzhu       

Matric No:   WGA120061

Name of Degree: Master of Computer Science 

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): 

Field of Study: Distributed System 

    I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature                                                  Date:

Subscribed and solemnly declared before, 

           Witness’s Signature Date:  

Name: 

Designation: 

Univ
ers

iti 
Mala

ya



iii 

ABSTRACT 

MapReduce is a popular programming model for processing large-scale datasets in a 

distributed environment. Currently, the MapReduce implementation is based on the 

assumption that every compute node has the same capacity. However, in a heterogeneous 

environment, such assumptions may hinder the MapReduce performance where compute 

nodes are of varying capacity. Current works showed that make-span could be reduced if 

workloads are assigned in proportion to the capacity of the heterogeneous compute node. 

However, these approaches are static in nature where work load is assigned to each 

compute node based on historical data. This research is an attempt to propose an adaptive 

MapReduce Task scheduler, namely Adaptive MapReduce Task Scheduler Using 

Dynamic Calibration (AMTS-DC) to address the unbalanced node capacity problem. The 

proposed AMTS-DC algorithm uses the heartbeat and data locality to dynamically adapt 

and balance tasks assigned to each compute node. Based on the heartbeats received during 

early stage of the job, AMTS-DC is able to estimate the capacity of each compute node.  

After that, uncomputed local blocks at each compute node are reassigned so that compute 

nodes with greater capacity are able to reserve more local blocks. Experiment results 

show that AMTS-DC have relatively better performance when compare to Hadoop FIFO 

and Dynamic Data Placement Strategy (DDP) in dynamic heterogeneous environment. 

AMTS-DC has been further enhanced with the introduction of historical data and the 

enhanced version is named Enhanced Adaptive MapReduce Task Scheduler using 

Dynamic Calibration (EAMTS-DC). Experimental results show that EAMTS-DC 

performs better than AMTS-DC. 

 

 

Univ
ers

iti 
Mala

ya



iv 

ABSTRAK 

MapReduce adalah model pengaturcaraan popular untuk memproses set data yang 

besar-besaran dalam persekitaran teragih. Pelaksanaan MapReduce semasa adalah 

berasaskan andaian bahawa setiap nod pengiraan mempunyai kapasiti yang sama. Walau 

bagaimanapun dalam persekitaran yang heterogen, andaian itu boleh menghalang prestasi 

MapReduce di mana nod pengiraan terdiri daripada nod-nod yang mempunyai keupayaan 

berbeza.  Kerja semasa menunjukkan bahawa masa menyiapkan kerja dapat dipendekkan 

jika beban kerja diberi kepada nod pengiraan heterogen mengikut kadar kapasiti 

nod.Walau bagaimanapun pendekatan-pendekatan ini adalah statik di mana beban kerja 

yang diberikan kepada setiap nod pengiraan adalah berdasarkan kepada data sejarah. 

Kajian ini adalah satu percubaan untuk mencadangkan satu penyesuaian penjadual tugas 

MapReduce, iaitu Adaptive MapReduce Task Scheduler using Dynamic Calibration 

(AMTS-DC) untuk menangani masalah kapasiti nod yang tidak seimbang.  Algoritma 

AMTS-DC yang dicadangkan menggunakan denyutan jantung dan data tempatan untuk 

secara dinamik menyesuaikan dan seimbangkan tugas-tugas yang diberikan kepada setiap 

nod pengiraan. Berdasarkan denyutan jantung yang diterima semasa peringkat awal kerja, 

penjadual boleh menganggarkan keupayaan setiap nod pengiraan. Selepas itu, blok data 

tempatan yang belum diproses pada setiap nod pengiraan akan ditugaskan semula supaya 

nod pengiraan dengan kapasiti yang lebih besar dapat menempah blok tempatan yang 

lebih ramai. Keputusan experimen menunjukkan bahawa AMTS-DC mempunyai prestasi 

yang lebih baik apabila dibandingkan dengan Hadoop FIFO dan Dynamic Data 

Placement Strategy (DDP) dalam persekitaran yang dinamik. AMTS-DC telah 

dipertingkatkan lagi dengan pengenalan data sejarah dan versi yang dipertingkatkan 

dinamakan Enhanced Adaptive MapReduce Task Scheduler using Dynamic Calibration 

(EAMTS-DC). Keputusan eksperimen menunjukkan bahawa EAMTS-DC mempunyai 

prestasi yang lebih baik bila dibandingkan dengan AMTS-DC. 
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CHAPTER 1: INTRODUCTION 

This thesis presents the potential of dynamic MapReduce task scheduling in cloud 

computing through the proposed adaptive MapReduce task schedulers. The emergence of 

the big data era and the proliferation of data centers is the inevitable consequence of 

human ability to transform each and every event and interaction into digital data. A lot of 

valuable data could be derived by analyzing and extracting value from the data. However, 

the ever-increasing volume of data, leads to the search for more efficient data-intensive 

processing framework. An important aspect of this area of research is in the design and 

implementation of efficient scheduling mechanisms to reduce make-span and network 

traffic across computational cluster, data center and the Internet.  

1.1 Motivation 

Schedulers are important component of the MapReduce framework. There are 

schedulers whose function is to schedule jobs. For instance, the Fair Scheduler and 

Capacity Scheduler are well known job schedulers. However, there is another type of 

MapReduce schedulers whose focus is in the scheduling of sub-job (i.e. task) within a 

MapReduce function. Once a MapReduce job is submitted, the data file is partitioned into 

chunks of blocks of fixed sized. Hadoop Distributed File System (HDFS) will replicate, 

distribute and store the data blocks at the related data nodes. After that, Hadoop tasks 

scheduler will be initiated to process these data blocks. Our proposed task scheduler will 

re-schedule the replicated local data blocks to reduce unnecessary data block transfer.  

This thesis addresses these challenges from following angles 

i. An understanding of task scheduling in MapReduce in a heterogeneous 

environment  
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ii. Proposed dynamic measurement and calibration of computing capacity of 

heterogeneous compute-nodes  

iii. Proposed adaptive MapReduce Task Scheduler in a Heterogeneous Environment  

iv. Proposed enhancement of the Task Scheduler using historical run records 

1.2 Problem Statement 

In current Hadoop implementation of MapReduce, data blocks are queued and accessed 

sequentially using the first-in-first-out (FIFO) approach. FIFO is inefficient since no 

priority has been given to the processing of local data blocks. This increased network 

communication overhead. Unnecessary movement of data block between data-nodes 

increases network communication overhead, delays access of data block by the compute 

node and results in a longer make-span (i.e. the job completion time). In this research, our 

main concern is to improve the current task schedulers.   

1.3 Objectives 

The general objectives of this thesis are as follows:  

i. To review and compare the current task-scheduler techniques in MapReduce. 

ii. To propose mechanism to estimate dynamically the capacity of the compute nodes 

using Hadoop heartbeat 

iii. To propose MapReduce task scheduler in Heterogeneous environment based on 

the dynamically estimated compute node capacity 

iv. To strengthen the proposed MapReduce task scheduler in Heterogeneous 

environment based on historical run time record 

v. To validate the proposed schedulers using prototype and simulations with respect 

to make-span and network traffic  
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1.4 Research Questions  

The following research questions are dealt in this thesis: 

i. How to monitor and model task completion status using the heartbeat?  

ii. Is it possible to dynamically calibrate the computing capacity of compute 

nodes? 

iii. Is it possible to assigned proper portion of local tasks to a compute node 

based on the calibrated capacity so as to minimize the make-span and 

reduce network traffic? 

1.5 Scope  

The following is the scope of this research: 

i. Survey of literature related to schedulers in MapReduce 

ii. Details study of schedulers is limited to the task schedulers 

iii. Identify existing task schedulers and their limitations 

iv. Design and implement the proposed task schedulers 

v. Evaluated the proposed task schedulers using prototype and simulator 

To ensure the validity of this research, a prototype is developed using actual servers 

with virtualization technology. 

1.6 Thesis Outline 

The thesis is organized into seven chapters as follows: 

Chapter 1 is an introduction to the background of research, motivation, problem 

statement, objectives, research questions and the scope of the research. Chapter 2 is a 

literature review of the current works. Chapter 3 outlines the research methodology. 

Chapter 4 discusses the proposed adaptive MapReduce task scheduler using dynamic 
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calibration (AMTS-DC). Chapter 5 provides the prototype and simulation results to 

validate AMTS-DC. Chapter 6 discusses the proposed enhanced adaptive MapReduce 

task scheduler using dynamic calibration (EAMTS-DC). Chapter 7 concludes with 

overall assessment of the proposed schedulers. The achievement and limitations of the 

proposed schedulers and ideas for future enhancements are also presented. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Overview of the MapReduce model 

 

Figure 2.1 Overview of the MapReduce model 

Traditional Information Systems with centralized server to store and process data do 

not scale well to handle large volume of data. MapReduce is one important effort in 

solving the big data processing issue. It is a programming model associated with the 

implementation details that can process large data sets in parallel on multiple compute-

nodes (Dean & Ghemawat, 2008). Figure 2.1 provides an overview of the MapReduce 

model. The two components of MapReduce, namely the map() and reduce() functions, 

are inspired by functional programming. The Map() function filters and sorts (such as 

sorting words into queues with one queue for each word) while the Reduce() function 

summarizes (such as counting the frequency of words). The run-time system takes care 

of the details of partitioning the input data, scheduling the program’s execution across a 

set of machines, handling machine failures, and managing the required inter-machine 

communication (Dean & Ghemawat, 2008). 

The three main advantages of Hadoop are reliability, efficiency and flexibility. 
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i. Reliability: Suppose that a data-node in a computing cluster and storage fails, 

since Hadoop maintains multiple copies of the data, replicated data will be 

accessed instead. 

ii. Efficient: Data are processed in parallel on multiple nodes to improve the 

overall efficiency/speed of processing. 

iii. Flexibility: After setting up a Hadoop cluster, users need not know the 

underlying working principle of Hadoop to submit a job. Users are also allow 

to redesign and implement features in which the user deems necessary based 

on their requirement in the modelling of the data.  Hadoop is a distributed 

computing platform that allows users to easily build and use. 

2.2 Hadoop Distributed File System (HDFS) 

 

Figure 2.2 Hadoop HDFS  (Alex Holmes, 2012 ). 

The Hadoop Distributed File System (HDFS) is the storage component of Hadoop. 

HDFS is very similar to existing distributed file system but is optimized for high 

throughput and works best when handling large volume of data. It is designed to run on 

commodity hardware with the following assumptions and goals: 

i. Handle hardware failure & provide fault tolerance 

ii. Large data sets 
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iii. Simple coherency model 

iv. “Moving computation is cheaper than moving data” 

v. Portability across heterogeneous hardware and software platforms 

HDFS has a master/slave architecture. Figure 2.2 depicts the HDFS architecture 

showing an HDFS client talking to the master NameNode.   The NameNode, as a master 

server, manages the file system and regulates file access by clients. Data files are 

partitioned into blocks. Data blocks can be replicated to produce identical copies of each 

block. In Figure 2.2, data replication is set to 2. The NameNode determines the mapping 

of data blocks to data nodes. The DataNodes upon receiving instruction from the 

NameNode will perform block operations such as block creation, deletion, and 

replication.  

2.3 MapReduce 

 

Figure 2.3 MapReduce Architecture and Job Submission (Alex Holmes, 2012 ). 

Figure 2.3 depicts the MapReduce architecture. Major entitles include the client 

application, the JobTracker and a number of TaskTrackers. The JobTracker, running on 

a master node, manages and coordinates the jobs. A TaskTracker, running on each 

compute node, will launch and coordinate the tasks executed within that node. In Figure 
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2.3, a MapReduce client application is talking to the JobTracker. The JobTracker accepts 

the job request from the client and schedules the job to the TaskTrackers in the form of 

smaller tasks. The TaskTrackers then perform the assigned map and reduce tasks. 

In order to provide fault tolerance, Hadoop replicates data blocks during HDFS upload. 

Additional of the same data is replicated and stored in different nodes. When there is a 

node failure and render some data blocks inaccessible, these data blocks can be accessed 

via other nodes.  

2.4 Schedulers and related works 

This sections looks into current works in MapReduce schedules to identify useful 

insight which can be include in the proposed task scheduler. 

2.4.1 Default Schedulers in Hadoop 

Three schedulers are available in the Hadoop implementation (Tom White, 2009):  

i. First-in-First-out (FIFO) scheduler 

ii. Capacity scheduler 

iii. Fair scheduler 

FIFO Scheduler is the default Hadoop scheduler. Jobs are scheduled based on the first-

come first-server principle. In other words, FIFO Scheduler places jobs in a queue and 

runs them based on the order of job submission. A job received is partitioned into smaller 

tasks. Tasks are put into a queue and the tasks can be accessed by the JobTrackers. One 

of the advantage of FIFO is in its simplicity. The disadvantage of FIFO is that no 

consideration is given for capacity of the node. Capacity Scheduler allows the sharing a 

large cluster by organizations and guarantee each organization a minimum capacity. The 

benefit of Capacity Scheduler is that an organization can use and access excess capacity 

not being used by others. Fair Scheduler assigns resources to jobs and ensure that all jobs 
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get an equal share of resources over time. The scheduler ensures short jobs to finish within 

reasonable mask-span without starving long jobs. 

 Zaharia et al. (2008) have developed the LATE (Longest Approximate Time to End) 

algorithm. The 3 principles of LATE are: tasks are prioritized for speculation, fast nodes 

are chosen to execute tasks, and speculative tasks are capped to prevent thrashing. Hadoop 

assumes all compute-nodes has similar computing capacity. The LATE algorithm is one 

of the earliest work taking into the issue of heterogeneous environment. Late algorithm, 

by calculating the remaining number of tasks, to calculate the actual number of slow task, 

these relatively slow to do the task. However, the problem with LATE is that it is difficult 

to identify really slow task.  

Quan Chen et al. (2010) proposed SAMR: a Self-Adaptive MapReduce scheduling 

algorithm. SAMR can adapt to the variation in the environment by computing dynamical 

task progress. SAMR attempts to improve the computation of LATE. By analyzing 

historical record, SAMR is able to accurately identify actual slow task and backup the 

slow task to conserve storage. SAMR separate slow task into 1) slow map task and 2) 

slow reduce task. Backup tasks will be assigned to faster nodes. SAMR performed better 

than LATE.  

 Xie et al. (2010) pointed out that ignoring the data locality in heterogeneous 

environments could hindered MapReduce performance. They addressed the problem of 

data placement across nodes so that the data to be processed by each node is balanced. 

Data is allocated in proportion to the node capacity. However, as data replication is 

removed from the system, fault tolerance of Hadoop is not preserved. 

He et al. (2011)  proposed the MatchMarking algorithm to improve data locality at the 

task allocation level. A local task, compared to non-local task, always has a higher priority 
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to be executed.  In addition, each slave has a marker to mark a node to ensure that each 

node has fair chance to get its local task. In other words, MatchMarking gives every slave 

node a fair chance to grab local tasks before any non-local tasks are assigned to any slave 

node. The drawback of MatchMarking is no consideration has been given to 

heterogeneous environment. 

Lee et al. (2014) proposed the Dynamic Data Placement (DDP) Strategy for Hadoop 

in Heterogeneous Environments. DDP adapts and balances data stored in each node based 

on the computing capacity of each node. Higher capacity nodes get more data. DDP is 

static (even though the title contains the term “Dynamic”) and is based on historical run 

time data. DDP is very accurate should the computational environment remains static. 

However, in non-static environment, i.e. should there be fluctuation in the computation 

capacity of nodes within the make-span, DDP may not be able to perform well. Due to 

the exclusion of the HDFS and data replication, DDP does not support fault tolerance. 

Gu et al. (2013)  proposed SHadoop to improv MapReduce performance by optimizing 

job execution mechanism in Hadoop clusters. SHadoop replaces the heartbeat mechanism 

by instant messaging to monitor task to speed up the scheduling and execution of 

performance-sensitive task. SHadoop improves make-span especially that of short jobs.   

Xu et al. (2015) proposed the Dynamic Task Splitting Scheduler (DTSS) to address 

the tradeoffs issue between fairness and data locality during job scheduling. On a non-

data-local node, DTSS dynamically splits a task and execute the split task immediately to 

improve fairness. The drawback of DTSS is the copying of data blocks from local node 

to remote node as this increased network communication cost. 

Anjos et al. (2015) proposed MRA++, a novel MapReduce framework design that 

considers the heterogeneity of nodes during data distribution, task scheduling and job 
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control.  MRA++ characterizes a smaller number of machines as stragglers and executes 

a larger number of tasks concurrently in a heterogeneous environment. A knowledge base 

of execution time is used prior to the data distribution. MRA++ has shorten make-span. 

The disadvantage of MRA++ is the exclusion of slow machines and this is seen as a waste 

of resource. 

Cheng et al. (2014 ) proposed ANT. ANT is a self-adaptive genetic algorithm based 

task tuning mechanism. Ant will first divide the heterogeneous nodes into a homogeneous 

sub-cluster based on their hardware configurations. Each subcluster is treated as a 

homogeneous cluster and self-tuning algorithm is apply to the subcluster. ANT has higher 

complexity. 

Polo et al (2010) proposed a task scheduling mechanism that enables a MapReduce 

runtime to dynamically allocate resources in a computing cluster. The allocation is based 

on the observed progress rate achieved by the jobs, and the completion time goal 

associated with each job. The proposed task scheduler is able to predict the performance 

of concurrent jobs and dynamically allocate resource for the jobs.  

Selvarani and Sadhasivam (2010) proposed a task group scheduler in environment 

with heterogeneous resourse cost and computation capacity. Tasks are grouped according 

to the processing capability of the available resources. The cost-based scheduler allows 

the mapping of tasks to available resources. The scheduler groups a number of user jobs 

together according to a particular resource’s processing capabilities. It then send the 

grouped jobs to that resource. However, the mechanism of sending jobs to resources does 

not suit the modern architecture and the actual movement may incur higher overhead. 

Mao et. al (2011) proposed a task level scheduler. Both hardware configuration and 

real-time workload of the nodes are taken into consideration to shorten make-span and 
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improve hardware resource utilization. Tasks are assigned to Task Trackers according to 

the workload of slave nodes. The scheduler is able to adaptively adjusts the MapReduce 

map and reduce slot to increase cluster resources usage. 

Tang et. al (2012) proposed the MapReduce Task Scheduler for Deadline (MTSD) 

scheduler by taking into account data locality and cluster heterogeneity. MTSD allows a 

user to specify a job’s deadline and so that the job can be completed before the deadline. 

MTSD improved data locality and shortened average task completion time. However, 

since the node classification algorithm used by MTSD has not been incorporated into the 

Hadoop distribution file system, fault tolerant of MTSD could not be preserved. 

Althebyan et. al (2014) proposed the MTL scheduler that is based on a multi-threading 

principle. In the algorithm, a cluster is divided into multiple blocks where each one of 

them is scheduled by a special thread. In particular, multi –threading approach is used. 

When there are jobs to be processed, the threads start searching in their blocks node for 

local map task. MTL is able to improve performance. However, the proposed MLT lacks 

details of the relationship between the threads and Hadoop architecture. MLT may not be 

feasible in real Hadoop cluster. 

Dai and Bensaou (2016) proposed a Hadoop MapReduce task scheduler called 

dynamic priority multi-queue scheduler (DPMQS). DPMQS improves data locality of 

jobs. Jobs that are near to completing their map phase are given higher priority so that 

waiting time could be reduced. PMQS uses heartbeat and a privilege threshold value to 

monitor current job progress rate. However, the proposal lack technical details on how 

DPMQS could be incorporated in Hadoop. 
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 Table 2.1 Summary of strength and weakness of major current works 

Methods Description Strength Weakness Note 

LATE  

Zaharia et al. 
(2008) 

LATE (Longest 
Approximate 
Time to End) 
Find slow tasks 
by computing 
remaining time 
of all the tasks. 

always 
speculatively 
execute the 
task that 
might finish 
farthest into 
the future; 
shorter make 
span 

Does not take into 
account of data locality 
when launching 
speculative map tasks 

Cannot accurately 
identify really slow 
tasks 

Task level 

Non-standard 
heuristic to 
estimate time 

 

SARE 

Chen et al. 
(2010) 

SARE improves 
LATE algorithm 
by  calculating 
task progress 
dynamically 

SAMR does 
not launch 
backup tasks 
on slow nodes 
and thus 
ensuring that 
the backup 
tasks will not 
be slow tasks. 
Performed 
better than 
LATE 
(Zaharia et al. 
(2008)  

Data locality is only 
considered when 
launching backup tasks 

History data might get 
obsolete/inaccurate 

Task level 

 

Data 
Locality 

Xie et al. 
(2010) 

Allocates data 
according to 
node capacity;  

(Heterogeneous) 

Move data 
from one node 
to another in 
execution 

Time to 
Improve 
performance 

Removal of data 
replication;  

Negative impact on the 
data loss if there are 
node failures 

Task Level 

HDFS 

SAMR 

 

Chen et al. 
(2011) 

The main idea is 
to give every 
slave node a fair 
chance to grab 
local tasks  

Higher data 
locality 

Reduces 
network 
communicatio
n  

Does not consider 
heterogeneous 
environment 

Task level 

DDP 

 

Lee et al. 
(2014) 

Adapt and 
balance data 
stored in each 
node based on 
the computing 
capacity of each 
node in a 
heterogeneous 
Hadoop cluster 

Higher 
capacity 
nodes get 
more data  

Based on 
historical run 
time data 

More efficient 

 

Historical data may not 
be accurate or able to 
reflect the true situation 
should the environment 
becomes more dynamic; 

Data replication is 
removed and thus lacks 
fault tolerance 

Static and not 
dynamic 
(Though the 
title contains 
the term  
“Dynamic”); 

Task level 
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SHadoop  

Gu et al. 
(2014) 

Optimizes the 
setup and 
cleanup tasks of 
a MapReduce 
job  

Replaces 
heartbeat 
mechanism by 
instant 
messaging to 
monitor task 

Improves 
make-span  
especially for 
short jobs 

Dynamic 

Non-standard 
mechanism as heartbeat 
has been replaced by 
instant messaging 

Job/Task level 

DTSS 

Xu & Cai 
(2015) 

Dynamically 
splitting a task 
and executing 
the split task on 
a non-data-local 
node to improve 
fairness 

Split task to 
improve 
fairness 

Increased network 
communication  

 

Job/Task level 

MRA++ 

Anjos et al. 
(2015) 

MRA++ 
classifies a 
smaller number 
of machines as 
stragglers and 
executes tasks 
concurrently in a 
heterogeneous 
environment. 

knowledge 
base of 
execution 
times is used 
prior to the 
data 
distribution 

Shorten 
make-span 

Need chunk (block) 
copy from local to 
remote node 

Higher network 
overhead 

Slow machines are 
excluded from 
processing(waste of 
resources) 

Task and Job 
Setup Phase 

ANT 

Cheng et 
al.(2014) 

ANT is a self-
adaptive genetic 
algorithm based 
task tuning 
mechanism. 

Improves 
make-span 

Automated 
configuration 

Higher computational 
complexity 

Task level 

 

 

2.5 Gap analysis 

The literature survey has identified gaps that exist in the current works and are listed 

as follows: 

i. Lack of dynamic load predication/estimation mechanism to enable fair 

division of tasks among heterogeneous nodes. 
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ii. The current practice of using of static historical run time record to divide 

tasks among heterogeneous nodes may not work since the underlying 

parameters such as hardware/network configuration/work load of the 

computing cluster may change over time. 

iii. Lack of fault tolerance support after data blocks are partitioned and 

distributed to the data/compute nodes. Most of the time only one set of 

data block is available for the entire cluster.  

iv. Lack of dynamic mechanism in predicting/estimating computing capacity 

of the heterogeneous compute nodes 

v. Lack of effective mechanism to reduce data movement among compute 

nodes. Local compute nodes should be given higher priority as far as local 

data are concern. 

All the above gaps will be handled in our proposed research work and the efficiency 

of the proposed algorithms will be proven by comparing with previous works. 

 

2.6 Summary 

This chapter provide an overview of MapReduce and Hadoop Distributed File System.  

Current major works in the area of MapReduce scheduler are summarized in Table 2.1, 

with the strength/advantages and weakness/disadvantages identified. Based on this 

finding, we hope to receive helpful idea and better insight when designing our proposed 

task schedulers. 
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CHAPTER 3: RESEARCH METHODOLOGY 

This chapter describes the methodology carried out to achieve the objectives of this 

research work. It comprises of approach and strategy in which this research were carried 

out. The tools and software used at different stages are discussed.  

3.1 Outline of Methodology 

The goal of this research is to design MapReduce task schedulers that should be able 

to utilize the available heterogeneous compute nodes efficiently. The task schedulers 

should also utilize lesser network resources during computation. By efficient we meant 

that our proposed method, given a MapReduce job, would be using shorter make-span 

and lesser data movement to complete the job. Lesser data movement among compute 

nodes is achieved, by ensuing that within each compute node, higher priority is given to 

local data. 

To accomplish the objectives of the research, a scientific method depicted in Figure 

3.1 is utilized.  
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Define the problem

Do Background 
Research

Construct Hypothesis

Conduct experiments

Hypothesis is True
Hypothesis is False or 

Partially True

Report Results

Troubleshoot

 

Figure 3.1 Research Methodology Flowchart 

This section briefly explains the steps depicted in the research methodology flowchart.   

a. Defining the problem: 

Currently MapReduce implementation is based on the assumption that every compute 

node has the same capacity. What happen if the compute nodes have different capacity? 

The make-span will depend on the slowest compute node.  How would this affect the task 

scheduler? In this stage of study, the need for this research will be strengthened and the 

aim and objectives of this research formed.   

b. Background research 
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At this point of study, thorough study of current works in this area from academic 

journals, conference proceedings, white papers etc. will be carried out. This helped to 

identify good practice and widen the knowledge about this research topic. The literature 

survey will also paved way for better focus and allowed us to take note of the topic as 

something which worth further thought and investigation. 

c. Hypothesis construction 

A hypothesis is formed to provide a direction to further the research investigation. 

Attempts are made, based the background research and literature survey in the earlier 

step. The purpose of the hypothesis is not to arrive at the perfect answer to the question 

but with an effort to guess the possible answer of the question. At this stage, 

mechanisms/algorithms that are able to schedule MapReduce task more efficiently in a 

heterogeneous environment will be formulated. 

d. Conduct Experiments/Simulations 

After the formation of a hypothesis, the hypothesis will be tested through a set of 

experiments. To proof the feasibility of the proposed hypothesis and the concept, a 

prototype will be implemented as an extension to Hadoop (a MapReduce implementation) 

in a computer cluster environment. The hypothesis with the set of proposed 

mechanisms/algorithms will be implemented. After that, using the prototype the 

performance of the hypothesis is evaluated and contrasted against current works.  

Carefully designed and controlled experiments are crucial in the scientific method, as they 

are used to prove a hypothesis right or wrong, and to formulate scientific theories.  The 

experiments must also be reproducible so that they can be tested/verified by future 

researchers. The prototype is critical to verify the claim advantages of the proposed 

mechanisms/ algorithms. 

Univ
ers

iti 
Mala

ya



19 

Due to the complexity of the hypothesis, the evaluation of the hypothesis is 

complemented with simulation so that more complex scenario could be provided to test 

the proposed hypothesis. Given the hardware limitation and time constraint, the prototype 

is unable to handle more complex scenario with greater number of compute nodes and 

with larger input data size. A simulator is built so that more complex scenario could be 

used to test the hypothesis. At this stage, mechanisms/algorithms that will schedule 

MapReduce task more efficiently in a heterogeneous environment will be evaluated. 

e. Analyze the Data and Draw a Conclusion 

As experiments are conducted using the prototype and simulator, several trials are 

conducted to ensure that the results are consistent. Experimental results are carefully 

recorded so that conclusion can be drawn regarding the strength of the hypothesis. At this 

phase, benchmarking with current algorithms will also be carried out. If the experimental 

results prove that the hypothesis is correct, the original question is answered and the 

experiment could be concluded; otherwise, new hypothesis is formulated or further 

refinement to the hypothesis is conducted and further experiments are required to test the 

refined or new hypothesis. This process goes on until a hypothesis can be proven correct 

by the experiments. At this stage, mechanisms/algorithms that will schedule MapReduce 

task more efficiently in a heterogeneous environment will be validated. 
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3.2 Objectives, Methods and Tools used 

Table 3.1 Research objectives, Methods and Tools used 

No Research Objective Methods Tools Used 
i. To review and compare the 

current task-scheduler 
techniques in MapReduce. 

Literature Search - 

ii. To propose mechanism to 
estimate dynamically the 
capacity of the compute 
nodes using Hadoop 
heartbeat 

Critical review of Literature 

Experiment 

Hadoop 
prototype and 
computer cluster 

Java Simulator 
iii. To propose MapReduce 

task scheduler in 
Heterogeneous 
environment based on the 
dynamically estimated 
compute node capacity 

Critical review of Literature 

experiment 

Hadoop 
prototype and 
computer cluster 

Java Simulator 

iv. To strengthen the proposed 
MapReduce task scheduler 
in Heterogeneous 
environment based on 
historical run time record 

Critical review of Literature 

experiment 

Hadoop 
prototype and 
computer cluster 

Java Simulator 
v. To validate the proposed 

schedulers using prototype 
and simulations with 
respect to make-span and 
network traffic  

Experiment Hadoop 
prototype and 
computer cluster 

Java Simulator 
 

In Table 3.1 how each objective of the current study is achieved via literature search, 

experiment and simulation is elaborated. Software and hardware tools used are also 

included in the table. As outlined above, to prove the concepts and feasibility of the 

proposed algorithm, a prototype is developed and implemented empirically using actual 

servers. Actual Hadoop framework will be used in our investigation. Using the prototype, 

the relationship and interaction between MapReduce, HDFS, job schedulers and task 

schedulers is critically analyzed. After that, components which can affect the task 

execution speed such as job queuing list in task scheduler, heartbeat, data replication and 
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local task will be the focus. At this stage, relevant parameters will also be identified.  Due 

to the limited resource available in the research lab, the challenges in the creation of 

heterogeneous and dynamic environment is resolved using virtualization technique. All 

compute-nodes are deployed as virtual machines. Heterogeneous computational capacity 

of compute-nodes are created by adjusting the CPU and RAM configuration of the virtual 

machines. The prototype is also useful to test the actual heartbeat process, blocks (i.e. 

tasks) process and the actual make-span and traffic load. In addition, to provide more 

variability in terms of data size, greater range of heterogeneous computation capacity, a 

Java simulator has been developed to analyze and measure the task schedulers’ 

performance in terms of make-span, block movement and network traffic.  

The prototype is implemented by modifying JobTracker.java and JobInProgress.java 

in Apache Hadoop. The modifications extend the heartbeat, and returns the current 

computing capacity. The return value and node status (to capture non-running local tasks) 

are used so that local tasks could be re-assign to the compute nodes in such a way that 

local tasks assigned to a node is proportional to the capacity of the node. In other words, 

more powerful nodes are assigned with more local tasks. 

With the setting up of the Hadoop MapReduce prototype, current works in MapReduce 

task scheduling mechanism could be study and evaluated. The wordcount Hadoop 

application (an actual MapReduce application) with actual workload will be run in the 

prototype.  Due to the hardware resources constraint, only four servers are used in the 

prototype. The prototype will reside within a cluster of virtual machines connected by a 

computer switch. Experimental results gathered will be compared in terms of 

performance metrics such as make-span and block movement (network traffic). 

Since the prototype is limited by the number of compute node, data size, CPU 

computation variation and RAM size variation, more complicated scenario will be 
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evaluated using the Java simulator. In this way greater variability in terms of data size 

and computation power could be tested and evaluated. 

3.3 Chapter summary 

This chapter has elaborated the research methodology adopted using a flowchart 

diagram. Details is also provided on how the research objectives could be achieved based 

on the diagram using relevant methods and tools.  
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CHAPTER 4: ADAPTIVE MAPREDUCE TASK SCHEDULER USING 

DYNAMIC CALIBRATION (AMTS-DC) 

This chapter analyses task scheduling in MapReduce on Hadoop implementation and 

look into the effect of data locality on MapReduce in heterogeneous environment. The 

discussion will look into the basic operation on how in Hadoop, the original large data 

file, after being partitioned into smaller blocks and stored in the HDFS, are processed by 

Hadoop default and DDP. Details of the operation is examined within the period of the 

make-span to identify areas whereby task scheduling could be further enhanced. 

4.1 Heterogeneous Environment 

 

Figure 4.1 Homogeneous/Heterogeneous computation nodes 

Figure 4.1 depicts the different between homogeneous and heterogeneous computing 

environment. A homogeneous computing environment is one which has homogeneous 

network and homogeneous machines with equal computing capacity; otherwise it is a 

heterogeneous computing environment. Univ
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4.2 Hadoop FIFO  

 

Figure 4.2 Hadoop default data allocation strategy 

The basic design of Hadoop assumes a homogeneous environment. However, in real-

world environment this may not be the case as it may consist of cluster and servers of 

various specification. Figure 4.2 illustrates a situation where compute nodes have 

different computing capacity. The relative computing capacity of nodes A, B and C are 

respectively 3, 2 and 1. Since node A is the fastest, it is able to complete its entire local 

block in a shorter time. Node A will process non-local blocks which are located in nodes 

B and C. From Figure 4.2 (f), 3 data blocks (the blocks which are surrounded by an 

eclipse) are transferred from the other nodes. This prolong the make-span. 
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4.3 Dynamic Data Placement (DDP) 

 

Figure 4.3 DDP data allocation 

DDP (Lee et al, 2014) is a solution to resolve the issue of Hadoop default in 

heterogeneous environment. In DDP, data blocks are allocated in proportion to the 

computational capacity of each node. The computation capacity is obtained from 

historical record of previous run. In Figure 4.3., since the relative computing capacity of 

nodes A, B and C are respectively 3, 2 and 1, the number of blocks assigned to node A, 

B and C will also be in the ration of 3, 2 and 1. In this way,  DDP requires no data block 

movement between compute nodes within the duration of job processing.  This shorten 

the  make-span. 

Limitation of DDP 

1) DDP relies heavily on the use of historical run time record. The relative computing 

capacity of compute-node within a cluster are historical record generated from previous 
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run. The record is a tuple denoting the <computation ratio, amount of data processed>. 

Historical data though useful, may not be accurate due to the following:  

i. Changes in hardware configuration of the cluster: For instance the 

addition of RAM, upgrading of CPU, additional/removal of computing 

nodes within the cluster etc. 

ii. Though with the same name, a job recorded in the historical data might 

not be the same with the current running job. E.g. Difference versions of 

wordcount MapReduce application. In addition, the argument value and 

argument types may also affect the execution time. 

iii. Dynamic computation environment where additional process or 

application is running in the compute node 

2) DDP does not support fault tolerance. Since only one set of data block is 

available for the entire cluster. On the other hand, MapReduce by default creates 

multiple copies or replication of data items and storing them at different compute/data 

nodes. This increases the availability so that if a node fails, data could be accessed 

from a different node. 
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4.4 JobTracker, TaskTracker and heartbeat 

 

Figure 4.4 Heartbeat Mechanism in AMT-DC and the add-ons 

Prior to our discussion on how to improve DDP, a discussion of the Hadoop heartbeat 

mechanism is required. Figure 4.4 shows the job execution. Here, the JobTracker will 

schedule all the jobs and distribute the tasks to the TaskTrackers. As depicted earlier in 

Figure 2.3 (Chapter 2), when a JobTracker accepts job request from a client, it will 

schedule the job to the TaskTrackers in the form of smaller tasks. In other words, a job is 

partitioned into tasks before the job can be executed at the compute-nodes. The 

TaskTracker will then perform the tasks and the results are returned to the JobTracker. 

The Job-Tracker and TaskTrackers communicates using heartbeat. Each TaskTracker is 

assigned with a set of task slots. The TaskTracker can then work on the tasks. When the 

task slot is empty, the TaskTracker will use the heartbeat to inform the JobTracker. If 

there are more tasks to be completed, the JobTracker assigns the tasks to the TaskTracker 

using heartbeat response. Via the regular heartbeat, the JobTracker is able to know the 
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status of the tasks assigned. The default heartbeat interval of Hadoop is 3 second. Figure 

4.4 shows the heartbeat mechanism in AMT-DC and the add-ons. 

4.5 Proposed AMTS-DC Task Scheduler 

Based on the discussion in 4.2 and 4.3, to improve MapReduce performance in 

heterogeneous environment, the proportion of local blocks assigned to the compute-nodes 

should be proportional to the computational capacity of the nodes. This is exactly how 

DDP is designed to out-perform the default Hadoop FIFO. Firstly, DDP assigned the data 

blocks without going through HDFS, i.e. by passing HDFS. The blocks re-assignment in 

DDP are actually direct block placement into the file system. This made the proposed 

solution less plausible as HDFS is an essential component of Hadoop. Secondly, in DDP, 

only one set of data block is available for the entire cluster. DDP lacks fault tolerance 

support. The failure of a data node renders the data blocks stored in the node inaccessible 

and the job will have to be aborted. 

 

Figure 4.5 More local data blocks for faster node 

 

The proposed Adaptive MapReduce Task Scheduler Using Dynamic Calibration 

(AMTS-DC) is designed without modifying the current HDFS implementation. In the 
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initial stage, data files are replicated to the compute nodes by the instruction from the 

NameNode via HDFS. In the second stage, heartbeat mechanism in Hadoop is use to 

estimate the current relative computing capacity of the compute node instead of based on 

the historical data. As depicted in Figure 4.4, the Hadoop heartbeat is extended so that 

information of current slave progress, current reserve list and non-reserved list could be 

piggyback in the heartbeat and communicated to the JobTracker. In the third stage more 

local blocks will be reserved to compute nodes with greater capacity. This done by 

reserving more local tasks within the shaded area (depicted in Figure 4.5) to more 

powerful nodes. 

4.5.1 AMTS-DC Algorithm 

1    //HDFS partitioned job data file into blocks 
2    //NameNode randomly distribute blocks to slave nodes 
3    Let k = int((TotalBlock*replicate)/n) 
4    For Each slave node S 
5       Initialize the reservedBlock and non-reservedBlock 
6    Ticks := 0     // Ticks is the time 
7    While there are still data blocks to be processed 
8      If Ticks equals Update_Computing_Ratio_Now       
9        updateBlockReservedByEachSlaveNode 
10      For each slave node S 
11          If reservedBlock of Sis not empty 
12             Process a block in Reserved Block 
13          Else If non-reservedBlock of S is not empty 
14             Process a block in Non-reserved Block 
15          Else Move and Process a block from other Slaves 
16      Make-span=Ticks 
17      Ticks=Ticks+1 
18    End While 
19    Return Make-span 
20  End 
 

Figure 4.6 Pseudocode of AMTS-DC 

 

Figure 4.6 depicts the pseudocode of AMTS-DC, which provides a high overview of 

the AMTS-DC. Figure 4.6- 1 to Figure 4.6- 4 provides details of the proposed AMTS-

DC algorithm.  
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Variable: 

1 TotalTask (a job partitioned into many tasks),  
2 TotalBlock (data file is partitioned into many blocks; TotalBlock 

= TotalTask),  
3  r (replication number)and n (number of slave), 
4 HisRecExist (historical record of job and the relative node 

capacity exist) 
5  RelCapOfSlave (Relative Computing Capacity Of Slaves) 
6  SetOfComputeNode (S1,S2,..SN) 
7  update_CR_Now (time to update the computation Ratio of each slave), 
8  Block [S] (set of block assigned to slave S,  
9  RBlock[S] (set of block assigned to slave S and reserved for slave 

S), NBlock[S] (set of block assigned to slave S but not reserved 
for slave S),  

10 RoneB[S] (one block in RBlock[S]),  
11 NoneB[S] (one block in NBlock[s]),  

 
 

Figure 4.6- 1 AMTS-DC algorithm (Variables)  

  

Univ
ers

iti 
Mala

ya



31 

 
 
Proc Main()                     
1  Begin           
2    //HDFS partitioned job data file into blocks {B1,B2,B3…} 
3    //NameNode randomly distribute blocks to slave nodes 
4    Let k = int((TotalBlock*replicate)/n) 
5    For Each slave node S 
6      RBlock [S] :=    
7      NBlock [S] :=    
8      RBlock[S] := RBlock[S]  {Br,Br+1,…,Br+k} //r is a random 

num 
  9    // while there are still blocks at any slave unprocessed  
  10    Done := False  

11    Initialize() 
12    Ticks := 0     // Ticks is the time 
13    While NOT Done   
14      If Ticks equals Update_CR_Now       
15        updateReservedBlock() 
16      For each slave node S 
17        If (not busy S) 
18          If RBlock[S]is not empty 
19          // Process a block in Reserved Block 
20            RBlock[S]:=RBlock[S]\{RoneB[S]} 
21          Else 
22          If NBlock[S]is not empty 
23          // Process a block in Non-reserved Block 
24            NBlock[S]:=NBlock[S]\{NoneB[S]} 
25          Else 
26          // Process non reserved block from Slave T,.and T,.≠S
27            NBlock[T]:=NBlock[T]\{NoneB[T]} 
28          End If 
29          End If 
30        End If 
31      End For 
32      Make-span=Ticks 
33      Ticks=Ticks+1 
34    End While 
35    Return Make-span 
36  End 

Figure 4.6- 2 AMTS-DC algorithm (Main) 

 
Proc updateReservedBlock():         
1   Begin 
2    //Receive task status of each slave via HeartBeat     
3 compute RelCapOfSlave:={c[1],c[2],… ,c[n]} based on task status
4    For Each slave node S where S={1,2,..,n} 
5      //Get remaining number of unprocessed blocks: remUB 
6      Number of reserved block:=min(c[S]/Sum(cA,cB,….)*remUB 
7      Number of non-reserved block:=remUB-Number of reserved block
8      Update the reserved blocks 
9      Update the non-reserved blocks 
10    End For 
11 End 
 

Figure 4.6- 3 AMTS-DC algorithm (updateReservedBlock) 
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Proc Initialize(): 
1  Begin 
2    Set {cS1,cS2,… ,cSN} to {1,1,..1}  
3  End 
 

Figure 4.6- 4 AMTS-DC algorithm (Initialization) 

 

4.5.2 Details analysis of Hadoop FIFO, DDP and AMTS-DC  

In Hadoop when data file is written to HDFS, the file is split into data blocks. The 

default block size is 64MB. The parameter dfs.replication whose default value is 3 

controls how many copies of a block can be produced. Each copy of a block is known as 

a replica. The default placement policy of the replica placement, i.e. where each replica 

is actually placed, is a random process. Considered for example a cluster with n worker 

nodes (each running TaskTracker and DataNode). The replicated data will be “evenly” 

distributed among the worker nodes if the number of block is large (i.e the number of 

blocks is greater than, says, 3 times the number of worker nodes). 

As an illustration, consider 3 worker nodes (each running TaskTracker and DataNode) 

and with a replication set to 2 and there are 39 blocks with identity (ID): 1, 2, 3, 4  ... 39. 

The blocks are replicated to 1, 1, 2, 2, 3, 3, 4, 4  ... 39, 39.  

Total replicated blocks=2*39=78 

Each slave will be allocated 26 blocks as calculated from the equation below: 

Total replicated block/(total number of slave)=78/3=26 

One possible scenario is as follows with each slave being allocated 26 tasks. Note that 

the same replica will not appear twice within a worker node. 
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Slave 3: 15 16 23 10 20 4 33 32 18 30 24 11 12 38 27 26 3 35 9 36 17 

6 31 2 39 29  

Slave 2: 24 25 38 7 37 21 14 20 13 23 17 32 34 5 8 12 22 35 1 9 4 18 

15 26 28 19  

Slave 1: 6 2 29 3 27 37 33 34 28 7 21 30 16 8 10 25 13 5 11 36 1 39 19 

14 22 31  

Assume that the relative computing capacity of Slave 3: Slave 2: Slave 1 is 10:2:1 

respectively, where 10 is the most powerful and 1 is the least. Therefore, the time to 

complete each block by slave 3, Slave 2 and Slave 1 will be 10/10: 10/2: 10/1. This is 

equivalent to the ration 10: 5: 1. To simplify our discussion, and without losing generality, 

the time required to complete a block by the fastest node is assume to be 1 second. Time 

taken to process a block by the slaves are as followed: 

Slave 3: 1 second 

Slave 2: 5 seconds 

Slave 1: 10 seconds 

Network cost: 6 seconds* 

*Note that the network cost 6 seconds is obtained/estimated by measuring the time 

taken to move a data block from one data-node to another. This is an average value 

obtained from the prototype setup in Chapter 5. Here we assume a homogeneous network. 
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4.5.3 Case 1 Hadoop FIFO 

 

Figure 4.7 Hadoop original Block List 

06 02 29 28 01

24 25 38 07 37 14 34 08 22

15 16 23 10 20 04 33 32 18 30 11 12 27 26 03 35 09 36 17 31 39 21‐slave2 13‐slave2 05‐slave2 19‐slave2

39 21 13 05 19

15 16 23 10 20 04 33 32 18 30

11 12 27 26 03 35 09 36 17 31

Slave 3

Slave 2

Slave 1

06 02 29 28 01

24 25 38 07 37 14 34 08 22

1
0
s

2
0
s 30
s

4
0
s

5
0
s

Execution Time  

Figure 4.8 Hadoop: Block Processed vs Time 

(0)3dq3:15 (0)2dq2:24 (0)1dq1:6 (1)3dq3:16 (2)3dq3:23 (3)3dq3:10 (4)3dq3:20 
(5)3dq3:4 (5)2dq2:25 (6)3dq3:33 (7)3dq3:32 (8)3dq3:18 (9)3dq3:30 (10)3dq3:11 
(10)2dq2:38 (10)1dq1:2 (11)3dq3:12 (12)3dq3:27 (13)3dq3:26 (14)3dq3:3 
(15)3dq3:35 (15)2dq2:7 (16)3dq3:9 (17)3dq3:36 (18)3dq3:17 (19)3dq3:31 
(20)3dq3:39 (20)2dq2:37 (20)1dq1:29 X(21)3dq2:21 (25)2dq2:14 X(28)3dq2:13 
(30)2dq2:34 (30)1dq3:28 X(35)3dq2:5 (35)2dq2:8 (40)2dq2:22 (40)1dq3:1 
X(42)3dq2:19  

Figure 4.9 Hadoop Block Processed Time 

In this section, for simplicity of explanation, the time taken to process one data block 

by the fastest node is 1 second. From Figure 4.8 and Figure 4.9, it can be seen that at time 

t=20s, Slave 3 has completed all its local blocks and subsequently needs to move block 

21, 13, 5 and 19 from slave 2. There are a total of 4 blocks movement as depicted by the 

4 black boxes in Figure 4.8. The make-span can be calculated by adding the time to 

process a block (10 sec for slave 1) to the time the last block being processed by slave 1.  

Make-span is therefore equals to 50 seconds (40 + 10 = 50 seconds). The total data 
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movement count is equal to the black boxes in Figure 4.8 or the sections preceded by bold 

“X”  (eg X(21)3dq2:21 ) in Figure 4.9. Total data movement is 4. 

Make-span=50 seconds  

Data movement count = 4; 

4.5.4 Case 2 DDP 

Slave 3: 6 2 29 3 27 37 33 34 28 7 21 30 16 8 10 25 13 5 11 36 1 39 19 14 22 31 
24 38 20  

Slave 2: 23 17 32 12 35 9  
Slave 1: 4 18 15 26 

Figure 4.10 DDP original block List 

Note that in DDP, since there is no block replication, only one set of block has been 

allocated. 

(0)3dq3:1 (0)2dq2:9 (0)1dq1:26 (1)3dq3:24 (2)3dq3:32 (3)3dq3:11 (4)3dq3:28 
(5)3dq3:29 (5)2dq2:5 (6)3dq3:15 (7)3dq3:35 (8)3dq3:31 (9)3dq3:16 (10)3dq3:3 
(10)2dq2:8 (10)1dq1:20 (11)3dq3:33 (12)3dq3:25 (13)3dq3:39 (14)3dq3:4 
(15)3dq3:7 (15)2dq2:30 (16)3dq3:19 (17)3dq3:21 (18)3dq3:34 (19)3dq3:13 
(20)3dq3:37 (20)2dq2:23 (20)1dq1:2 (21)3dq3:27 (22)3dq3:17 (23)3dq3:10 
(24)3dq3:6 (25)3dq3:22 (25)2dq2:18 (26)3dq3:38 (27)3dq3:36 (28)3dq3:12 
(29)3dq3:14  

Figure 4.11 DDP Block Processed Time 

The case for DDP is straight forward as shown in Figure 4.10 and Figure 4.11. The 

last block processed by Slave 3 is at t=29 second. Therefore the make-span=29 + the time 

needed to process a block by Slave 3 = 29+1=30 seconds. Note that no data movement 

has been recorded in the entire make-span. This is because the number of blocks assigned 

to a compute node is proportional to the computational capacity of the node and all local 

nodes are processed and completed by the slave at almost the same time. DDP is very 

efficient and has the shortest make-span. 

Make-span=30 seconds  

Data movement count = 0; 
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4.5.5 Case 3 AMTS-DC 

Slave 3

Slave 2

Slave 1

06 02 29 03 27 37 33 34 28 07 1930 16 08 10 25 13 05 11 36 01 1421 22 3139

24 25 38 07 37 21 14 20 13 23 32 34 05 08 12 22 35 01 09 04 1817 15 26 28 19

15 16 23 10 20 04 33 32 18 30 3111 12 38 27 26 03 35 09 36 17 06 0224 39 29

 

Figure 4.12 AMTS-DC Original Task List 
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Execution Time

15 16 23 10 20 04 33 32 18 30 11 12 38 27 26 03 39 09 36 17 31

2
2
s

06 02 34

24 25 07 37 21

Completed List(Black Block)

24
29

15 16 23 10 20 04 33 32 18 30

11 12 38 27 26 03 35 09 36 17

31 39 29

06 02 34

24 25 0738  37

2
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Figure 4.13 Block Processed vs Time (0 ~ 22) 

Univ
ers

iti 
Mala

ya



37 

39

Slave 3

Slave 2

Slave 1

10
s

20
s

3
0
s

4
5
s

Execution Time

15 16 23 10 20 04 33 32 18 30 11 12 38 27 26 03 39 09 36 17 31

23
s

06 02 34

24 25 07 37 21

Completed List(Black Block)

24
13 05 0129

15 16 23 10 20 04 33 32 18 30

11 12 38 27 26 03 35 09 36 17

31 39 29

31 39 29

34 28 08 13 05 01 19 14 22

13 05 08 22 01 28 1921 14

NULLSlave 3

Slave 2

Slave 1

24 25 0738  37 21 14 08 22 19

06 02 34 28

 

Figure 4.14 Block Processed vs Time (23 ~ 45 second) 

(0)3dq3:15 (0)2dq2:24 (0)1dq1:6 (1)3dq3:16 (2)3dq3:23 (3)3dq3:10 (4)3dq3:20 
(5)3dq3:4 (5)2dq2:25 (6)3dq3:33 (7)3dq3:32 (8)3dq3:18 (9)3dq3:30 (10)3dq3:11 
(10)2dq2:7 (10)1dq1:2 (11)3dq3:12 (12)3dq3:38 (13)3dq3:27 (14)3dq3:26 
(15)3dq3:3 (15)2dq2:37 (16)3dq3:35 (17)3dq3:9 (18)3dq3:36 (19)3dq3:17 
(20)3dq3:31 (20)2dq2:21 (20)1dq1:34 (21)3dq3:39 (22)3dq3:29 X(23)S3dq2S:13 
(25)2dq2:14 X(30)3dq2S:5 (30)2dq2S:8 (30)1dq1S:28 (35)2dq2S:22 X(37)3dq2S:1 
(40)2dq2S:19 

Figure 4.15 AMTS-DC Block Processed Time 

 

Figure 4.16 AMTS-DC Completed list and Uncompleted list at time=19 sec 

Figure 4.12, 4.13 and 4.14 illustrate the working principle of the proposed AMTS-DC. 

They are complemented with Figure 4.14 and 4.15 to explain how local blocks can be 

reserved. 
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In Figure 4.15 and 4.16, the blocks 15 24 6 … 30 11 7 2 12 …9 36 17 (highlighted in 

yellow) have been completed before the capacity of slaves could be computed and 

returned by the heartbeat. These blocks are high-lighted in yellow. In Figure 4.15 the 

processing of the yellow blocks start at time = 0 seconds. When time equals 19 second, 

26 blocks have been completed. Once the capacity of each slaves is known, the 

uncompleted blocks, block 31 21 34 39 29 13 14 5 8 28 22 1 19 (highlighted in green) 

will be marked and reserved in proportion based on the computation capacity of the slaves 

as indicated in Figure 4.17. 

34

31 39 29

21 14 20 13 1817 32 34 05 08 12 22 35 01 09 04 1523 26 28 19

29 03 0537 33 28 07 21 30 16 08 10 25 13 1127 36 01 39 19 14 22 31

NULLSlave 3

Slave 2

Slave 1

Slave 3

Slave 2

Slave 1

29 03 27 37 33 34 28 07 21 30 2208 10 25 13 05 11 36 01 39 19 3116 14

21 14 20 13 23 17 32 34 05 08 22 35 01 09 04 18 15 26 28 1912

06 31 02 39 29

 

Figure 4.17 Blocks which are reserved after the heartbeat 

Figure 4.13 and 4.14 depict the block processed at time period 0 to 22 second and 23 

to 45 second. Figure 4.17 depicts the blocks which are being reserved after the heartbeat. 

The total blocks reserved by all slave is 6 (i.e. 3+2+1) as indicated as follows: 

Slave 3 reserved: 31 39 29  

Slave 2 reserved: 21, 14  
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Slave 1 reserved: 34  

Blocks unreserved for each slave are as follows: 

Slave 3 Unreserved: NULL* 

Slave 2 Unreserved: 13, 5, 8, 28, 19 

Slave 1 Unreserved: 3, 8, 1, 19, 22 

* Note: Note referring to Figure 4.18, Slave 3 has unreserved blocks 6 and 2 (black 

font with green background). However, since Slave 1 had already processed both blocks 

6 and 2 earlier, the total number of unreserved block for Slave 1 is thus NULL. 

Slave 3: 15 16 23 10 20 4 33 32 18 30 24 11 12 38 27 26 3     35 9 36 17 6 31 2 
39 29  

Slave 2: 24 25 38 7 37 21 14 20 13 23 17 32 34 5 8 12 22 35 1 9 4 18 15 26 28 19 

Slave 1: 6 2 29 3 27 37 33 34 28 7 21 30 16 8 10 25 13 5 11 36 1 39 19 14 22 31 
Figure 4.18 AMTS-DC (Reserved and Unreserved Blocks) 

(0)3dq3:15 (0)2dq2:24 (0)1dq1:6 (1)3dq3:16 (2)3dq3:23 (3)3dq3:10 (4)3dq3:20 
(5)3dq3:4 (5)2dq2:25 (6)3dq3:33 (7)3dq3:32 (8)3dq3:18 (9)3dq3:30 (10)3dq3:11 
(10)2dq2:7 (10)1dq1:2 (11)3dq3:12 (12)3dq3:38 (13)3dq3:27 (14)3dq3:26 
(15)3dq3:3 (15)2dq2:37 (16)3dq3:35 (17)3dq3:9 (18)3dq3:36 (19)3dq3:17 
(20)3dq3:31 (20)2dq2:21 (20)1dq1:34 (21)3dq3:39 (22)3dq3:29 X(23)S3dq2S:13 
(25)2dq2:14 X(30)3dq2S:5 (30)2dq2S:8 (30)1dq1S:28 (35)2dq2S:22 X(37)3dq2S:1 
(40)2dq2S:19 

Figure 4.19 AMTS-DC Block Computation 

Figure 4.18 is a snap-shot of Figure 4.12, after the yellow and blue blocks yellow in 

Figure 4.12 have been completed. Observed that in Figure 4.18, the number in white font 

within the green region are the reserved blocks. Number in black font within the green 

region are unreserved blocks. Block numbers in white font have the higher priority to be 

executed by the slave itself. For instance, blocks 31, 39 and 29 have higher priority of 

being executed by slave 3. Similarly blocks 21, 14 by Slave 2 and blocks 34 by Slave 1. 

In Slave 3, by reserving blocks 31, 39, 29 to itself, Slave 3 as the fastest node will have 
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all the remaining local blocks reserved to it. The execution of these local blocks by Slave 

3 will not incur additional network cost and hence shorten the make-span. Observe that 

the highlighted section in Figure 4.18 and Figure 4.19, there is a co-relation between 

sections of the same color. Observed in Figure 4.19 that data movement (i.e. copying of 

a block from one slave to another) is highlighted in red. More data movement implies 

longer make-span. Only 3 block-movements are recorded and the make-span of AMTS-

DC is 40+5 seconds=45 seconds. The reservation mechanism in AMTS-DC managed to 

improve the amount of local blocks executed by the faster node. This is not the case for 

Hadoop FIFO. Hadoop FIFO has four block-movements and a make-span of 50 seconds. 

Summary 

In this section the task scheduler of Hadoop FIFO and DDP are analyzed to identify 

areas where task scheduling could be further improved. Based on the finding a novel task 

scheduler namely, Adaptive MapReduce Task Scheduler Using Dynamic Calibration 

(AMTS-DC), is proposed. 
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CHAPTER 5: EXPERIMENTAL AND SIMULATION RESULTS  

In order to evaluate the performance of the proposed Adaptive MapReduce task scheduler 

with dynamic calibration (AMTS-DC) mechanism proposed in chapter 4, experiments are 

conducted using prototype and simulator. This chapter presents detailed experimental 

setup, results and analysis of the performance of the proposed AMTS-DC against Hadoop 

FIFO and DDP. Experiments are carried by varying job size and the number of computer 

nodes. It is then followed by the discussion and analysis of the experimental results. 

5.1 Prototype and Simulation Environment 

 

Figure 5.1  Hadoop JobTracker (“Hadoop Job Submission Initialization”) 
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Figure 5.2 JobTracker, TaskTracker and DataNode 

The prototype is developed using Hadoop version 1.2.1 framework. We use VMware 

ESXi server 5.5 and the compute/date nodes are virtual machines running Ubuntu 14.10 

desktop. Figure 5.1 depicts the relationship between the JobClient and the JobTracker. 

The relationship between master and slave node is shown in Figure 5.2 and Figure 5.3 

depicts the actual prototype cluster. 

 

Figure 5.3 Prototype Cluster  
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Table 5.1 Hardware Configuration 

 Machine CPU  RAM  Disk 
Host1 HP Compaq 

Elite 8300 
SFF 

4 CPUs * 3392 
GHZ  

12 GB 1 TB 

Host2 HP EliteDesk 
800 G1 TWR 

4 CPUs * 3392 
GHZ  

16 GB 1 TB 

Host3 HP Compaq 
Elite 8300 
CMT 

4 CPUs * 3392 
GHZ  

20 GB 1 TB 

Host4 Intel Core 
Quad CPU 
Q9400 

4 CPUs * 2659 
GHZ  

6 GB 1 TB 

 

The experiment environment consists of a computer cluster containing one Manager 

(Jobtracker) and three workers (TaskTracker) as out-lined in Table 5.1.  

Table 5.2 VM Configuration 

 CPU(Hz) RAM(Byte) Network Replication

 
Master 5120 3072 100 Mbps 2* 
Slave 1 900 3072 
Slave 2 1024 3072 
Slave 3 5120 3072 

*Note: Replication for Hadoop FIFO and AMTS-DC 

In Table 5.2, the CPU configuration of the Master node is set to the CPU speed of 5.12 

GHz. In order to test the effect of local task and non-local task, the number of replication 

should be always less than the number of slaves. In this prototype, the number of slave is 

3 and therefore the replication is set to 2. 

A simulator, namely AMST-Sim, is developed to evaluate the proposed task scheduler. 

AMST-Simulator is needed since the prototype is unable to handle more complex 

scenario with greater number of compute nodes and with larger input data size. 
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5.2 Performance Evaluation Metrics. 

In this section the performance of Hadoop default scheduler, DDP and the proposed 

AMTS-DC schedulers are evaluated using the wordcount Hadoop application with block 

size of 64 Mbyte. Data files feeding into the application are created by merging the text 

files downloaded from https://www.gutenberg.org.  

Experiment 1: Static environment 

All compute nodes are dedicated nodes and no other programs/processes are being run 

apart from the map-reduced jobs assigned to them. 

Experiment 1a: Evaluating Hadoop FIFO scheduler 

Using the hardware and the virtual machine configuration indicated in Table 5.1 and 

5.2, the make-span of jobs with different data size is recorded 

Experiment 1b: Evaluating DDP scheduler 

Step1: Historical record of the relative computing speed, i.e. the ratio, of the compute-

nodes are benchmarked by running map-reduce jobs and record the make-span of the job 

and the time taken by the node to complete the tasks assigned to the node.  

Step2：Based on the ratio captured in the historical record, appropriate number of data 

blocks is assigned to each compute node based on this ratio. More powerful nodes get 

more blocks. 

Experiment 1c: Evaluating AMTS-DC scheduler 

Step1: Jobs assigned to the compute nodes are executed and heartbeat are transmitted 

between the Job Tracker and the Task Tracker. In Hadoop, heartbeats are send to the job 
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tracker carrying with them information such as task status, task counters, and data 

read/write etc.  

Step2：Based on the dynamic information captured from the heartbeat a ratio 

expressing the relative computing power of each node is computed. The local blocks 

within each compute node are re-assigned based on this ratio. More powerful nodes will 

get more local blocks reserved. 

 

Experiment 2: Dynamic environment 

Some of the compute nodes are non-dedicated nodes. Apart from running the map-

reduced jobs assigned to them, other programs/processes as well might be running in the 

nodes. 

5.3 Prototype Experimental Results and AMST-Sim Calibration 

Experiment 1: Static environment 

Table 5.3 Hadoop FIFO 

 CPU 
(Hz) 

data size 
(MB) 

Number of 
Block 
allocated  

Blocks 
completed 

Average total 
Completion 
time (Make-
span) 

Slave1 900 900 40 10 888 sec 
Slave2 1024 1024 40 13 
Slave3 5120 3092 40 37 
Total 

Block 
  120 60*  

 

* since data replication is set to 2, the number of block to be completed is half of the 

total block allocated, i.e., 120/2=60 blocks. 
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Table 5.4 DDP 

 CPU(Hz) Data size 
(MB) 

Historical 
record ratio 

Number of 
Block 
allocated 

Blocks 
completed 

Average total 
Completion 
time (Make-
span) 

Slave1 900 900MB 0.15 9 9 690sec 
Slave2 1024 1024MB 0.18 11 11 
Slave3 5120 3092MB 0.67 40 40 
Total 

Block 
   60* 60 

 

Table 5.2, 5.3 and 5.4 provide details of the static environment experiment. In Table 

5.4, the job to be processed by DDP is directly assigned to the compute nodes. Only one 

set of data and no data replication is involved. 

Table 5.5 AMTS-DC 

 

 

CPU 
(Hz) 

Memory 
(MB) 

Blocks 
Allocated  

Blocks 
completed 

The total 
Completion 
time (Make-
span) 

Slave1 900 900MB 40 9 757 sec 
Slave2 1024 1024MB 40 13 
Slave3 5120 3092MB 40 38 
Total 

Block 
  120 60  

 

In Table 5.5, note that since data replication is set to 2, the number of block to be 

completed is half of the total block allocated, i.e. 120/2=60 blocks. Block allocation is 

dynamically handled by HDFS 
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Figure 5.4- 1 Make-span of Hadoop FIFO, DDP and AMTS-DC (Static Env) 

Figure 5.4-1 is derived from the experimental result obtained in Table 5.3, 5.4 and 5.5. 

The relative computational capacity (0.15, 0.18, 0.67) is obtained from the historical run 

time. The improvement of DDP make-span over Hadoop make-span is 22%. The 

improvement of AMTS-DC make-span over Hadoop make-span is 15%. In this 

experiment, DDP has the best performance with the shortest make-span. This is followed 

by AMTS-DC and Hadoop FIFO. DDP is able to outperform AMTS-DC because it is 

able to optimize the overall block-ratio (in this case all the 60 blocks) to be assigned to 

each compute node; while AMTS-DC on the other hand, only optimized part of the local 

blocks (in this case about 20 blocks) within each compute node.  

AMTS-DC is able to outperform Hadoop FIFO because AMTS-DC is able to reserve 

some of the local tasks within the faster node. By doing so AMTS-DC is also able to cut 

down the number of data block to be transferred from one compute node to the other. In 

this experiment, Slave 3 of AMTS-DC and Hadoop FIFO only manage to execute 38 and 

39 out of the 40 local tasks respectively. Some local tasks in Slave3 have been replicated 

in Slave1 or Slave2 and these tasks had been executed on the slower nodes (either Slave1 

or Slave2) instead of by Slave3. DDP is able to complete all 40 local blocks using the 
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fastest node (slave3) while AMTS-DC and Hadoop FIFO only managed to finish 38 and 

37 blocks respectively using the fastest node. 

In this experiment when the environment is static, DDP outperforms AMTS-DC. This 

may not be the case if the computing resources are dynamic as it will be shown in the 

next experiment. 

Experiment 2: Dynamic Environment 

In this experiment, the computation environment of Slave3 is dynamic. In other words, 

during the MapReduce job other processes are invoked and resulted in the reduction in 

the computation power of Slave3.  

Table 5.6 Hadoop (dynamic environment) 

Hadoop CPU(Hz) Data 
Size 
(MB) 

Number of 
Block 
allocated 

Status Average total 
Completion 
time (Make-
span) 

Slave1 900 900 40 Static 950sec 
Slave2 1024 1024 40 Static 
Slave3 5120 3092 40 dynamic 

 

Table 5.7 DDP (dynamic environment) 

DDP CPU(Hz) Data Size 
(MB) 

Historical 
record 
ratio* 

Number 
of Block 
allocated 

Status Average 
total 
Completion 
time 
(Make-
span) 

Slave1 900 900MB 0.15 9 Static 1010sec 
Slave2 1024 1024MB 0.18 11 Static 
Slave3 5120 3092MB 0.67 40 dynamic 

*Relative computational capacity ratio  
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Table 5.8 AMTS-DC (dynamic environment) 

AMTS-
DC 

CPU(Hz) Data 
Size 
(MB) 

Number of 
Block 
allocated 

Status Average 
total 
Completion 
time 
(Make-
span) 

Slave1 900 900 40 Static 882 sec 
Slave2 1024 1024 40 Static 
Slave3 5120 3092 40 dynamic 

 

 

Figure 5.4- 2 Make-span of Hadoop FIFO, DDP and AMTS-DC (Dyn Env) 

Figure 5.4-2 is derived from the results obtained in Table 5.6, 5.7 and 5.8. In this 

experiment, DDP has the worst performance with the longest make-span. This is followed 

by Hadoop FIFO and AMTS-DC. DDP is unable to perform although the block size to be 

allocated is proportion to the static computation power of each node. Since the status of 

Slave3 is dynamic, the computational power of Slave3 will vary from time to time. DDP 

should be able to perform well should the number of block to be allocated is proportion 

to the dynamic ratio of the computation power of each node instead of the static ratio as 

the case for AMTS-DC. AMTS-DC has the best performance in this experiment. 
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Since the prototype is unable to handle more complex scenario with greater number of 

compute nodes and with larger input data size. AMST-Sim is developed so that more 

complex scenario could be used to test the hypothesis. AMST-Sim is a discrete event 

simulator developed using Java programming language. The high-level pseudocode of 

the main method of AMST-Sim is as follows: 

while (moreTask) {   
            int n; 
            for (int i = 1; i < numberOfQueue; i++) { 
                if (ticks == fireNextQ[i]) { 
                    if (!q[i].isEmpty()) { 
                        n = q[i].dequeue(); 
                        fireNextQ[i] += fire[i];  // process one data block}}} 
            ticks++; 
            if ( Every Queue is isEmpty) { 
                moreTask = false;}} 
 

Figure 5.4 AMST-Sim (Pseudocode) 

In order to improve the accuracy of AMST-Sim, the simulator is calibrated using the 

output from the prototype. Measurements obtained from prototype experiment 1 is used 

to configure the simulator parameters such as make-span, network cost, value of relative 

computing capacity and so on. Table 5.9-1 and 5.9-2 provide details of the simulation 

configuration. 

Table 5.9- 1 Nodes and Replication 

Compute-Nodes 
(Slaves) 

Replication Task size 
(64MB/Block) 

3 2 60Blocks 
 

Table 5.9- 2 Relative computational capacity of nodes 

Compute Node Relative computation power 

Slave1 1 (slowest) 

Slave2 1.2 
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Slave3 4.8 (fastest) 

Table 5.9- 3 Results obtained from Prototype Vs Results obtained from 
Simulation 

Scheduler Prototype 
Average  

Completion time 

 (Make-span) 
seconds 

Simulation Average 
Completion time 

 (Make-span) seconds 

Difference 
(%) 

Hadoop 
FIFO 

888 882 1% 

AMTS-DC 757 749 1% 
DDP 690 699 -1% 

 

 

Figure 5.5 Comparison of results from Prototype and Simulation 

As indicated in Table 5.9-3 and depicted in Figure 5.6, within the experiment error, 

the make-span obtained from the simulation is very close to that from the prototype with 

an overall error of -1% to 1%. For most cases, the make-span produced by the simulator 

is very close to the make-span obtained from the prototype experiments. Note that due to 

the used of a very small data size (only 60 blocks) in the calibration, the relative 

performance of the task schedulers may not reflects their relative strength. 
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5.4 Simulation results of Hadoop, DDP and AMTS-DC 

Experiment 3 

 

Figure 5.6 Make-span of Hadoop FIFO, DDP and AMTS-DC (Static Env) 

 

Figure 5.7 Block movement of Hadoop FIFO, DDP and AMTS-DC (Static Env) 

In this experiment, all node are set to the same computational power of 2. As expected, 

as shown in Figure 5.7, all schedulers almost have similar make-span of around 800 (799 

to 839) seconds. As shown in Figure 5.8, there is one block movement for Hadoop FIFO 

and AMTS-DC. This accounts for why both Hadoop FIFO and AMTS-DC has longer 
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make-span of 839 seconds. There is no block movement for DDP. This is expected as 

DDP has optimized the data placement of all blocks. 

 

Experiment 4 & 5  

 

Figure 5.8 Make-span of Hadoop FIFO, DDP and AMTS-DC in different 
Capacity (Static Env)  

 

Figure 5.9 Block movement of Hadoop FIFO, DDP and AMTS-DC with 
capacity setting in Figure 4.8 (Static Env) 
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In these experiment, all nodes have different computation power. The computing 

power of slave 1, slave 2 and slave 3 are 1, 2, 7 respectively. It can be seen that Hadoop 

has the longest make-span and most data movement of 11. This is followed by AMTS-

DC with data movement of 4. DDP remains the best with the shortest make-span and no 

data movement between the compute nodes. In experiment 5, the different in 

computational power among the nodes is even greater. The different in the computing 

power of slave 1, slave 2 and slave 3 are 1, 3, and 11 respectively. It can be seen that 

Hadoop again has the longest make-span of 1857 seconds and with the most data 

movement (14 blocks are moved). This is followed by AMTS-DC with shorter make-

span of 1646 seconds (only 6 blocks are moved). DDP remains the best with the shortest 

make-span and no data movement between the compute nodes. 

Experiment 6 & 7 

 

Figure 5.10 Make-span of Hadoop FIFO, DDP and AMTS-DC with Different 
Capacity (Dynamic Env) 
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Figure 5.11 Block movement of Hadoop FIFO, DDP and AMTS-DC with 
Different Capacity (Dynamic Env) 
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is 10% worse than that of Hadoop FIFO. This extended the DDP make-span. This is 

followed by Hadoop. The performance of the proposed AMTS-DC is the best with the 

shortest make-span and only one data movement between the compute nodes. 

Experiment 7 is similar to experiment 5 except that the computational power is 
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the remaining tasks has to be completed by the now “slower” fastest node (slave 3) alone. 

This extended the DDP make-span. This is followed by Hadoop. The performance of 

AMTS-DC is the best with the shortest make-span and only 3 data movement between 

the compute nodes. 

Summary 

In this section the performance of Hadoop FIFO, DDP and AMTS-DC are compared 

and analyzed.  In homogeneous environment all the task schedulers (i.e. Hadoop FIFO, 

DDP and AMTS-DC), within experimental error, has the equal performance. In static 

heterogeneous environment, the performance of the scheduler, in descending order, are 

DDP, the proposed AMTS-DC and Hadoop FIFO. Lastly in dynamic heterogeneous 

environment where computing capacity of node varies with time, the proposed AMTS-

DC has the best performance followed by Hadoop FIFO. DDP tailed the list as it is unable 

to adapt to dynamic changing environment. 
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CHAPTER 6: ENHANCED ADAPTIVE MAPREDUCE TASK SCHEDULER 

USING DYNAMIC CALIBRATION (EAMTS-DC) 

This chapter discusses the limitations faced by the AMTS-DC mechanism proposed in 

chapter 4 and the motivation to enhance AMTS-DC.  

6.1 Limitation of AMTS-DC  

For ease of discussion, Figure 4.12, 4.15 and 4.16 are repeated here as Figure 6.1-1, 

6.1-2 and 6.1-3. 

Slave 3

Slave 2

Slave 1

06 02 29 03 27 37 33 34 28 07 1930 16 08 10 25 13 05 11 36 01 1421 22 3139

24 25 38 07 37 21 14 20 13 23 32 34 05 08 12 22 35 01 09 04 1817 15 26 28 19

15 16 23 10 20 04 33 32 18 30 3111 12 38 27 26 03 35 09 36 17 06 0224 39 29

 

Figure 6.1- 1 AMTS-DC Original Task List 

(0)3dq3:15 (0)2dq2:24 (0)1dq1:6 (1)3dq3:16 (2)3dq3:23 (3)3dq3:10 (4)3dq3:20 
(5)3dq3:4 (5)2dq2:25 (6)3dq3:33 (7)3dq3:32 (8)3dq3:18 (9)3dq3:30 (10)3dq3:11 
(10)2dq2:7 (10)1dq1:2 (11)3dq3:12 (12)3dq3:38 (13)3dq3:27 (14)3dq3:26 
(15)3dq3:3 (15)2dq2:37 (16)3dq3:35 (17)3dq3:9 (18)3dq3:36 (19)3dq3:17 
(20)3dq3:31 (20)2dq2:21 (20)1dq1:34 (21)3dq3:39 (22)3dq3:29 X(23)S3dq2S:13 
(25)2dq2:14 X(30)3dq2S:5 (30)2dq2S:8 (30)1dq1S:28 (35)2dq2S:22 X(37)3dq2S:1 
(40)2dq2S:19 

Figure 6.1- 2 AMTS-DC Block Processed Time 

 

Figure 6.1- 3 AMTS-DC Completed list and Uncompleted list at time=19 sec 
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Figure 6.1- 1, 6.1- 2 and 6.1- 3, indicate that some local blocks have to be processed 

before any local blocks can be reserved. After the value relative computation capacity of 

the nodes are returned via the heartbeat, only 13 blocks (these blocks are highlighted in 

green) are left to be processed as depicted in Figure 6.1-3.  

34

31 39 29

21 14 20 13 1817 32 34 05 08 12 22 35 01 09 04 1523 26 28 19

29 03 0537 33 28 07 21 30 16 08 10 25 13 1127 36 01 39 19 14 22 31

NULLSlave 3

Slave 2

Slave 1

Slave 3

Slave 2

Slave 1

29 03 27 37 33 34 28 07 21 30 2208 10 25 13 05 11 36 01 39 19 3116 14

21 14 20 13 23 17 32 34 05 08 22 35 01 09 04 18 15 26 28 1912

06 31 02 39 29

 

Figure 6.1- 4 Blocks that are reserved by AMTS-DC 

The uncompleted list are the candidates which could be reserved are depicted in Figure 

6.1-4. It can be seen that the number of local block that could be reserved is very limited. 

In this case the total number of local block which can be reserved is only 6 (brown color 

in Figure 6.1-4).  

6.2 Motivation to enhance AMT-DC 

Supposing that the relative capacity of the compute nodes are known prior to the 

processing of any local blocks, then all local blocks are potential candidates that could be 

reserved by the compute node. A possible scenario is depicted in Figure 6.2 where the 

brown blocks are reserved blocks.  
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Figure 6.1 More blocks could be reserved if historical run record is used 

6.3 Proposed Enhanced AMTS-DC (EAMTS-DC) 

Supposing historical record of the relative computing capacity of the compute-nodes 

are known. The historical value can be used at the initialization stage, prior to the 

processing of the blocks. 

Proc Initialize(): 
1  Begin 
2    If Not HisRecExist  // No history, set all to 1 
3      Set {cS1,cS2,… ,cSN} to {1,1,..1}  
4    Else 
      //Obtain from history the value of c[1],c[2],… ,c[N] 
5      RelCapOfSlave:={c[1],c[2],… ,c[N]} 
6      For Each slave node S where S:={1,2,..,n} 
7        //Get remaining unprocessed local blocks: remUB 
8        Number of reserved block :=min(c[S]/Sum(c[1],c[2],… 

,c[N])*remUB 
9        Number of non-reserved block:=remUB-Number of reserved 

block 
10       Update reserved blocks 
11       Update non-reserved blocks 
12      End For 
13    End IF 
14  End 
 

Figure 6.3- 1 EAMTS-DC Algorithm (Initialization) 

Figure 6.3-1 depicts the Initial Data Allocation algorithm of EAMTS-DC. The rest of 

the EAMTS-DC is similar to the AMTS-DC Algorithm depicted in Figure 4.6-2, 4.6-3 

and 4.6-4.  For any job, if the historical record of the run time capacity of the nodes are 

known, then the record will be used at the initial stage of the job being executed, otherwise 

a general weightage of 1 will be used. A possible scenario is depicted in Figure 6.2 above 

where the brown blocks are reserved blocks.  
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Details analysis of EAMTS-DC 

A more detail analysis of EAMTS-DC is provided using the example below. 

 

Figure 6.3- 2 EAMTS-DC Original Task List 

Slave 3

Slave 2

Slave 1

06 02 29 03 27 37 33 34 28 07 1930 16 08 10 25 13 05 11 36 01 1421 22 3139

24 25 38 07 37 21 14 20 13 23 32 34 05 08 12 22 35 01 09 04 1817 15 26 28 19

15 16 23 10 20 04 33 32 18 30 3111 12 38 27 26 03 35 09 36 17 06 0224 39 29

n0

n1

: Reserved

: Non ‐ reserved

 

Figure 6.3- 3 EAMTS-DC reserved list 

Since the reservation of EAMTS-DC starts from the very beginning by assigning 

proportional amount of local task to each slave, the number of local task reserved will be 

higher for each slave. By applying the initial data allocation algorithm to the data blocks 

in Figure 6.3-2, we get the reserved blocks which are indicated in brown in Figure 6.3-3. 

The number of block reserved are 26, 6 and 4 for Slave 1, Slave 2 and Slave 3 

respectively. 35 blocks out of a total of 39 blocks are reserved. DDP as a contrast, are 

able to “reserve” all the 39 blocks. In theory the maximum number of block which could 

be reserved by Slave 3 is equal to (capacity of Slave 3)/ (total capacity)*(total 

blocks)=10/(1+2+10)*total blocks= 10/13*39=30 blocks. If Slave 3 is able to reserve 30 

blocks, the total number of block that could be reserved by EAMTS-DC will be 39 (i.e. 

30+6+3). However, since the number of local task for Slave 3 is only 26, only 26 blocks 
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could be reserved for Slave 3. DDP is able to out-perform EAMTS-DC in static 

environment since it could reserve the maximum number of blocks (i.e. all the blocks). 

 

Slave 3

Slave 2

Slave 1

10
s

20
s

3
0
s

Execution Time

25
s

34 28

Completed Blocks(Black Block)

15 16 23 10 20 04 33 32 18 30

05 01 19 22

05 22 01 1913

NULLSlave 3

Slave 2

Slave 1

Data Block Movement starts when Slave3 run out of local blocks

34 28 08 01

NULL

NULL

3915 16 23 10 20 04 33 32 18 30 11 12 38 27 26 03 35 09 36 17 06 05‐ slave2 19‐ slave22924 31 02

25 07 37 21 14 13 22

11 12 38 27 26 03 35 09 3624

17 06 31 02 39 29 05 19

08 01

2125 07 37 14 13 22

 

Figure 6.3- 4 EAMTS-DC- Reserved block list at time 25 second 

Figure 6.3- 4 shows the situation at time 25 second. At this time Slave 3 which is the 

fastest node, runs out of data block. Data block 05 and 19 are then moved from Slave 2 

to Slave 3. Slave 3 will then process data block 05 and 19 for processing. 

(0)3dq3:15 (0)2dq3:25 (0)1dq1:34 (1)3dq3:16 (2)3dq3:23 (3)3dq3:10 (4)3dq3:20 

(5)3dq3:4 (5)2dq3:7 (6)3dq3:33 (7)3dq3:32 (8)3dq3:18 (9)3dq3:30 (10)3dq3:24 

(10)2dq3:37 (10)1dq1:28 (11)3dq3:11 (12)3dq3:12 (13)3dq3:38 (14)3dq3:27 

(15)3dq3:26 (15)2dq3:21 (16)3dq3:3 (17)3dq3:35 (18)3dq3:9 (19)3dq3:36 

(20)3dq3:17 (20)2dq3:14 (20)1dq1:8 (21)3dq3:6 (22)3dq3:31 (23)3dq3:2 (24)3dq3:39 

(25)3dq3:29 (25)2dq3:13 X(26)3dq2S:5 2dq2:22 (30)1dq1:1 X(33)3dq2S:19  

Figure 6.2 EAMTS-DC Block Computation 
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As highlighted in red in Figure 6.4, only two block-movements are recorded. The 

number of block-movement by DDP, EAMTS-DC, AMTS-DC and Hadoop are 0, 2, 3 

and 4 respectively. This corresponding to the efficiency of the task schedulers. DDP is 

more efficient than EAMTS-DC. EAMTS-DC is more efficient than AMTS-DC and 

Hadoop the least. 

6.4 Evaluation of AMTS-DC and EAMTS-DC 

This section presents detailed simulation results and analysis of the performance of the 

proposed AMTS-DC against EAMTS-DC. Experiments are carried out by varying job 

size, the capacity of compute nodes and the number of computer nodes. 

 

Figure 6.3 Make-span of AMTS-DC and EAMTS-DC with different Capacity 
(Static Env)  
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Figure 6.4 Block Moved of AMTS-DC and EAMTS-DC with different Capacity 
(Static Env) 

In Figure 6.5 and Figure 6.6, it can be seen that EAMTS-DC has a shorter make-span 

and data block movement compared to AMTS-DC. This is because EAMTS-DC uses 

historical data from the beginning while AMTS-DC need time to “warm-up” and wait for 

the heartbeat to return the ratio of the computing power of the compute-nodes. 

 

Figure 6.5 Make-span of AMTS-DC and EAMTS-DC with different Capacity 
(Dynamic Env) 

4

6

3

5

0

1

2

3

4

5

6

7

BlockMoved BlockMoved

N
u
m
b
er
 o
f 
B
lo
ck
 M

o
ve
d

Block Moved

AMTS‐DC EAMTS‐DC

2857

1878

2807

1857

0

500

1000

1500

2000

2500

3000

capacity(1,2,7) capacity (1,3,11)

Ti
m
e 
In
 S
ec
o
n
d
s

Make‐span in seconds; Total 
Block:300; Rep:2;Dynamic Env.

AMTS‐DC EAMTS‐DC

Univ
ers

iti 
Mala

ya



64 

 

Figure 6.6 Block Moved of AMTS-DC and EAMTS-DC with different Capacity 
(Dynamic env) 

In Figure 6.7 and 6.8, it can be seen that EAMTS-DC again has both shorter make-

span and lesser data block movement compared to AMTS-DC.  

 

Figure 6.7 Make-span of Hadoop FIFO, DDP and AMTS-DC in 5 Slaves cluster 
and replication of 3 (Static Env) 
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Figure 6.8 Block movement of Hadoop FIFO, DDP and AMTS-DC in 5 slaves 
cluster and replication of 3 (Static Env) 

In Figure 6.9 and 6.10, the setup is 5 slaves with 3 replications. Since it is a static 

environment, DDP has the best overall performance in terms of make-span and data 

movement. EAMTS-DC is in the middle. The make-span and data movement of Hadoop 

FIFO are the poorest. The make-span and data movement of Hadoop FIFO are 2763 

seconds and 34 respectively. 
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Figure 6.9 Make-span of Hadoop FIFO, DDP and EAMTS-DC in 5 Slaves cluster 
and replication of 3 (Dynamic Env) 

 

Figure 6.10 Block movement of Hadoop FIFO, DDP and EAMTS-DC in 5 slaves 
cluster and replication of 3 (Dynamic Env) 
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is a dynamic environment, DDP has the worst overall make-span performance with a 
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seconds in experiment 14 and 15 respectively.  EAMTS-DC can do very well because it 

is able to reduce data movement to minimum. The data movements are 2 blocks and 0 

block for experiment 14 and 15 respectively.   

Summary 

In this section AMTS-DC is analyzed to identify areas where task scheduling could be 

further improved. Based on the finding, an enhanced version of AMTS-DC namely, 

Enhanced Adaptive MapReduce Task Scheduler Using Dynamic Calibration (EAMTS-

DC), is proposed by augmenting AMTS-DC with historical run time record. Experimental 

results show that EAMTS-DC has better performance than AMTS-DC in terms of make-

span and data transfer. The access to historical run time relative computing capacity 

allows EAMTS-DC to start reservation early and thus more local data blocks can be 

reserved. EAMTS-DC effectively reduced data movement and the make-span. 
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CHAPTER 7: CONCLUSION  

7.1 Achievement 

MapReduce is a software framework that allows for easy deployment of parallel 

applications relating to large amount of data set using large computing cluster. Literature 

survey conducted enables us to define the problems that exists in heterogeneous 

environment MapReduce task schedulers. The default MapReduce implementation in 

Hadoop is based on the assumption of homogeneous environment in which every 

compute node has the same capacity. However, in a heterogeneous environment with 

compute node of varying capacity, such assumption will actually hinder MapReduce 

performance.  

To address this problem, many works have been proposed. Some works demonstrated 

that the time taken to complete a MapReduce job could be reduced drastically if data files 

to be processed are located near to the compute nodes and the data files allocated is 

proportional to the computing capacity of the node (Lee et al., 2014) 

The strength of these approaches lies in the use of historical data. Historical records of 

all MapReduce jobs are recorded and the proportion of data files to be allocated is 

calculated based on the historical record.  These approaches work well and are very 

efficient should the environment remains static and unchanged. However, when the 

environment becomes more dynamic and non-static, the performance of these approaches 

diminish quickly. 

Major contributions of the thesis are as follows: 

i. AMTS-DC Task Scheduler algorithm 

ii. EAMTS-DC Task Scheduler algorithm 
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iii. A prototype of AMTS-DC and EAMTS-DC is developed using Hadoop to 

show the feasibility of the proposed mechanism by extending Hadoop. 

AMTS-DC utilizes the heartbeat to dynamically estimate the computing capacity of 

the compute nodes and rescheduled local task to efficiently process a MapReduce job. 

AMTS-DC has been implemented in Hadoop and in a simulator (AMST-Sim). 

Experiments were conducted for AMTS-DC to find out the performance of AMTS-DC 

in terms of make-span, data movement (data transmission during file transfer from one 

compute node to the other) by varying the job size and the relative computing capacity 

among the compute nodes. 

It has been observed that for static heterogeneous environment, DDP outperformed 

Hadoop FIFO and AMTS-DC by having shorter make-span and no data movement 

between compute nodes. However, as the heterogeneous environment becomes more 

dynamic, both Hadoop FIFO and AMTS-DC are able to adapt and their performance 

becomes better. DDP which is designed for static environment is unable to adapt to the 

dynamic situation and lagged behind and ended with the worse performance. The 

proposed AMTS-DC has the best performance. 

The task locality of AMTS-DC has been further optimized to EAMTS-DC by 

incorporating historical information of relative computing capacity of the compute-node 

during the initial stage of the job.  EAMTS-DC is evaluated in terms of make-span and 

data transfer. Experiment results show that in dynamic heterogeneous environment, both 

make-span and data transfer have been reduced in EAMTS-DC when compared to 

AMTS-DC.   
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7.2 Future Work 

The following research directions can be focused in future to further enhance the 

performance of the proposed AMTS-DC and EAMTS-DC. The Inclusion of a prediction 

model to predict the remote blocks to be processed and these blocks could be pre-fetch to 

reduce network communication time in terms of data block movement between blocks. 

Soft computing framework such as fuzzy logics could be used in the modelling and 

inferencing of the computation capacity of the compute nodes and the dynamic state of 

the compute-node.  
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