
ADAPTIVE MAPREDUCE TASK SCHEDULER IN
HETEROGENEOUS ENVIRONMENT USING DYNAMIC

CALIBRATION

LU XINZHU

FACULTY COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

 2017

Univ
ers

iti
Mala

ya

ADAPTIVE MAPREDUCE TASK SCHEDULER IN
HETEROGENEOUS ENVIRONMENT USING DYNAMIC

CALIBRATION

LU XINZHU

DISSERTATION SUBMITTED IN FULFILMENT OF
THE REQUIREMENT FOR THE DEGREE OF MASTER

OF COMPUTER SCIENCE

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY
UNIVERSITY OF MALAYA

KUALA LUMPUR

2017
Univ

ers
iti

Mala
ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Lu Xinzhu

Matric No: WGA120061

Name of Degree: Master of Computer Science

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Field of Study: Distributed System

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

Univ
ers

iti
Mala

ya

iii

ABSTRACT

MapReduce is a popular programming model for processing large-scale datasets in a

distributed environment. Currently, the MapReduce implementation is based on the

assumption that every compute node has the same capacity. However, in a heterogeneous

environment, such assumptions may hinder the MapReduce performance where compute

nodes are of varying capacity. Current works showed that make-span could be reduced if

workloads are assigned in proportion to the capacity of the heterogeneous compute node.

However, these approaches are static in nature where work load is assigned to each

compute node based on historical data. This research is an attempt to propose an adaptive

MapReduce Task scheduler, namely Adaptive MapReduce Task Scheduler Using

Dynamic Calibration (AMTS-DC) to address the unbalanced node capacity problem. The

proposed AMTS-DC algorithm uses the heartbeat and data locality to dynamically adapt

and balance tasks assigned to each compute node. Based on the heartbeats received during

early stage of the job, AMTS-DC is able to estimate the capacity of each compute node.

After that, uncomputed local blocks at each compute node are reassigned so that compute

nodes with greater capacity are able to reserve more local blocks. Experiment results

show that AMTS-DC have relatively better performance when compare to Hadoop FIFO

and Dynamic Data Placement Strategy (DDP) in dynamic heterogeneous environment.

AMTS-DC has been further enhanced with the introduction of historical data and the

enhanced version is named Enhanced Adaptive MapReduce Task Scheduler using

Dynamic Calibration (EAMTS-DC). Experimental results show that EAMTS-DC

performs better than AMTS-DC.

Univ
ers

iti
Mala

ya

iv

ABSTRAK

MapReduce adalah model pengaturcaraan popular untuk memproses set data yang

besar-besaran dalam persekitaran teragih. Pelaksanaan MapReduce semasa adalah

berasaskan andaian bahawa setiap nod pengiraan mempunyai kapasiti yang sama. Walau

bagaimanapun dalam persekitaran yang heterogen, andaian itu boleh menghalang prestasi

MapReduce di mana nod pengiraan terdiri daripada nod-nod yang mempunyai keupayaan

berbeza. Kerja semasa menunjukkan bahawa masa menyiapkan kerja dapat dipendekkan

jika beban kerja diberi kepada nod pengiraan heterogen mengikut kadar kapasiti

nod.Walau bagaimanapun pendekatan-pendekatan ini adalah statik di mana beban kerja

yang diberikan kepada setiap nod pengiraan adalah berdasarkan kepada data sejarah.

Kajian ini adalah satu percubaan untuk mencadangkan satu penyesuaian penjadual tugas

MapReduce, iaitu Adaptive MapReduce Task Scheduler using Dynamic Calibration

(AMTS-DC) untuk menangani masalah kapasiti nod yang tidak seimbang. Algoritma

AMTS-DC yang dicadangkan menggunakan denyutan jantung dan data tempatan untuk

secara dinamik menyesuaikan dan seimbangkan tugas-tugas yang diberikan kepada setiap

nod pengiraan. Berdasarkan denyutan jantung yang diterima semasa peringkat awal kerja,

penjadual boleh menganggarkan keupayaan setiap nod pengiraan. Selepas itu, blok data

tempatan yang belum diproses pada setiap nod pengiraan akan ditugaskan semula supaya

nod pengiraan dengan kapasiti yang lebih besar dapat menempah blok tempatan yang

lebih ramai. Keputusan experimen menunjukkan bahawa AMTS-DC mempunyai prestasi

yang lebih baik apabila dibandingkan dengan Hadoop FIFO dan Dynamic Data

Placement Strategy (DDP) dalam persekitaran yang dinamik. AMTS-DC telah

dipertingkatkan lagi dengan pengenalan data sejarah dan versi yang dipertingkatkan

dinamakan Enhanced Adaptive MapReduce Task Scheduler using Dynamic Calibration

(EAMTS-DC). Keputusan eksperimen menunjukkan bahawa EAMTS-DC mempunyai

prestasi yang lebih baik bila dibandingkan dengan AMTS-DC.

Univ
ers

iti
Mala

ya

v

ACKNOWLEDGEMENTS

I wish to record my thanks to my supervisor Assoc. Prof. Dr. Phang Keat Keong for his

keen interest, constant support and encouragement leading to the completion of the thesis.

I am grateful to Assoc. Prof. Dr. Ling Teck Chaw for the inspiring guidance. I also wish

to thanks my friends at the Network Research Lab, Faculty of Computer Science and

Information Technology for their advice and support: Chun Yong Chong, Muhammad

Tayyab Chaudhry and Chai Yit Sheng. Last but not least, I am grateful to my parents and

family for their continuous support and love.

Univ
ers

iti
Mala

ya

vi

TABLE OF CONTENT

1.1 Motivation ... 1

1.2 Problem Statement .. 2

1.3 Objectives .. 2

1.4 Research Questions ... 3

1.5 Scope ... 3

1.6 Thesis Outline ... 3

2.1 Overview of the MapReduce model ... 5

2.2 Hadoop Distributed File System (HDFS) ... 6

2.3 MapReduce ... 7

2.4 Schedulers and related works .. 8

2.4.1 Default Schedulers in Hadoop ... 8

2.5 Gap analysis .. 14

2.6 Summary ... 15

3.1 Outline of Methodology .. 16

Abstract .. iii

Abstrak ... iv

Acknowledgements ... v

Table of Content ... vi

List of Figures .. ix

List of Tables .. xii

List of Symbols and Abbreviations .. xiii

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: Literature Review .. 5

CHAPTER 3: RESEARCH METHODOLOGY .. 16

Univ
ers

iti
Mala

ya

vii

3.2 Objectives, Methods and Tools used .. 20

3.3 Chapter summary .. 22

4.1 Heterogeneous Environment ... 23

4.2 Hadoop FIFO .. 24

4.3 Dynamic Data Placement (DDP) .. 25

4.4 JobTracker, TaskTracker and heartbeat .. 27

4.5 Proposed AMTS-DC Task Scheduler ... 28

4.5.1 AMTS-DC Algorithm ... 29

4.5.2 Details analysis of Hadoop FIFO, DDP and AMTS-DC 32

4.5.3 Case 1 Hadoop FIFO ... 34

4.5.4 Case 2 DDP ... 35

4.5.5 Case 3 AMTS-DC ... 36

5.1 Prototype and Simulation Environment .. 41

5.2 Performance Evaluation Metrics. .. 44

5.3 Prototype Experimental Results and AMST-Sim Calibration 45

5.4 Simulation results of Hadoop, DDP and AMTS-DC .. 52

6.1 Limitation of AMTS-DC .. 57

6.2 Motivation to enhance AMT-DC .. 58

6.3 Proposed Enhanced AMTS-DC (EAMTS-DC) .. 59

6.4 Evaluation of AMTS-DC and EAMTS-DC .. 62

CHAPTER 4: ADAPTIVE MAPREDUCE TASK SCHEDULER USING DYNAMIC

CALIBRATION (AMTS-DC) .. 23

CHAPTER 5: EXPERIMENTAL AND SIMULATION RESULTS 41

CHAPTER 6: ENHANCED ADAPTIVE MAPREDUCE TASK SCHEDULER USING

DYNAMIC CALIBRATION (EAMTS-DC) ... 57

Univ
ers

iti
Mala

ya

viii

7.1 Achievement ... 68

7.2 Future Work .. 70

CHAPTER 7: CONCLUSION .. 68

REFERENCES .. 71

APPENDIX A ... 74

APPENDIX B ... 83

Univ
ers

iti
Mala

ya

ix

LIST OF FIGURES

Figure 2.1 Overview of the MapReduce model .. 5

Figure 2.2 Hadoop HDFS (Alex Holmes, 2012). ... 6

Figure 2.3 MapReduce Architecture and Job Submission (Alex Holmes, 2012). 7

Figure 3.1 Research Methodology Flowchart ... 17

Figure 4.1 Homogeneous/Heterogeneous computation nodes .. 23

Figure 4.2 Hadoop default data allocation strategy .. 24

Figure 4.3 DDP data allocation ... 25

Figure 4.4 Heartbeat Mechanism in AMT-DC and the add-ons 27

Figure 4.5 More local data blocks for faster node .. 28

Figure 4.6 Pseudocode of AMTS-DC ... 29

Figure 4.6- 1 AMTS-DC algorithm (Variables) ... 30

Figure 4.6- 2 AMTS-DC algorithm (Main) .. 31

Figure 4.6- 3 AMTS-DC algorithm (updateReservedBlock) .. 31

Figure 4.6- 4 AMTS-DC algorithm (Initialization) .. 32

Figure 4.7 Hadoop original Block List ... 34

Figure 4.8 Hadoop: Block Processed vs Time .. 34

Figure 4.9 Hadoop Block Processed Time .. 34

Figure 4.10 DDP original block List ... 35

Figure 4.11 DDP Block Processed Time .. 35

Figure 4.12 AMTS-DC Original Task List ... 36

Figure 4.13 Block Processed vs Time(0 ~ 22) .. 36

Figure 4.14 Block Processed vs Time(23 ~ 45 second) .. 37

Figure 4.15 AMTS-DC Block Processed Time .. 37

Univ
ers

iti
Mala

ya

x

Figure 4.16 AMTS-DC Completed list and Uncompleted list at time=19 sec 37

Figure 4.17 Blocks which are reserved after the heartbeat ... 38

Figure 4.18 AMTS-DC (Reserved and Unreserved Blocks) .. 39

Figure 4.19 AMTS-DC Block Computation ... 39

Figure 5.1 Hadoop JobTracker (“Hadoop Job Submission Initialization”) 41

Figure 5.2 JobTracker, TaskTracker and DataNode ... 42

Figure 5.3 Prototype Cluster ... 42

Figure 5.4- 1 Make-span of Hadoop FIFO, DDP and AMTS-DC (Static Env) 47

Figure 5.4- 2 Make-span of Hadoop FIFO, DDP and AMTS-DC (Dyn Env) 49

Figure 5.5 AMST-Sim (Pseudocode) .. 50

Figure 5.6 Comparison of results from Prototype and Simulation 51

Figure 5.7 Make-span of Hadoop FIFO, DDP and AMTS-DC (Static Env) 52

Figure 5.8 Block movement of Hadoop FIFO, DDP and AMTS-DC (Static Env) 52

Figure 5.9 Make-span of Hadoop FIFO, DDP and AMTS-DC in different Capacity (Static
Env) ... 53

Figure 5.10 Block movement of Hadoop FIFO, DDP and AMTS-DC with capacity setting
in Figure 4.8 (Static Env) .. 53

Figure 5.11 Make-span of Hadoop FIFO, DDP and AMTS-DC with Different Capacity
(Dynamic Env) .. 54

Figure 5.12 Block movement of Hadoop FIFO, DDP and AMTS-DC with Different
Capacity (Dynamic Env) ... 55

Figure 6.1 More blocks could be reserved if historical run record is used 59

Figure 6.1- 1 AMTS-DC Original Task List ... 57

Figure 6.1- 2 AMTS-DC Block Processed Time .. 57

Figure 6.1- 3 AMTS-DC Completed list and Uncompleted list at time=19 sec 57

Figure 6.1- 4 Blocks that are reserved by AMTS-DC .. 58

Univ
ers

iti
Mala

ya

xi

Figure 6.2 EAMTS-DC Block Computation .. 61

Figure 6.3 Make-span of AMTS-DC and EAMTS-DC with different Capacity (Static
Env) ... 62

Figure 6.3- 1 EAMTS-DC Algorithm (Initialization) ... 59

Figure 6.3- 2 EAMTS-DC Original Task List .. 60

Figure 6.3- 3 EAMTS-DC reserved list .. 60

Figure 6.3- 4 EAMTS-DC- Reserved block list at time 25 second 61

Figure 6.4 Block Moved of AMTS-DC and EAMTS-DC with different Capacity (Static
Env) ... 63

Figure 6.5 Make-span of AMTS-DC and EAMTS-DC with different Capacity (Dynamic
Env) ... 63

Figure 6.6 Block Moved of AMTS-DC and EAMTS-DC with different Capacity
(Dynamic env) ... 64

Figure 6.7 Make-span of Hadoop FIFO, DDP and AMTS-DC in 5 Slaves cluster and
replication of 3 (Static Env) .. 64

Figure 6.8 Block movement of Hadoop FIFO, DDP and AMTS-DC in 5 slaves cluster
and replication of 3 (Static Env) ... 65

Figure 6.9 Make-span of Hadoop FIFO, DDP and EAMTS-DC in 5 Slaves cluster and
replication of 3 (Dynamic Env) .. 66

Figure 6.10 Block movement of Hadoop FIFO, DDP and EAMTS-DC in 5 slaves cluster
and replication of 3 (Dynamic Env) .. 66

Univ
ers

iti
Mala

ya

xii

LIST OF TABLES

Table 2.1 Summary of strength and weakness of major current works 13

Table 5.1 Hardware Configuration ... 43

Table 5.2 VM Configuration ... 43

Table 5.3 Hadoop FIFO .. 45

Table 5.4 DDP ... 46

Table 5.5 AMTS-DC ... 46

Table 5.6 Hadoop (dynamic environment) ... 48

Table 5.7 DDP (dynamic environment) .. 48

Table 5.8 AMTS-DC (dynamic environment) .. 49

Table 5.9- 1 Nodes and Replication .. 50

Table 5.9- 2 Relative computational capacity of nodes .. 50

Table 5.9- 3 Results obtained from Prototype Vs Results obtained from Simulation 51

Univ
ers

iti
Mala

ya

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

AMTS-DC Adaptive MapReduce Task Scheduler Using Dynamic Calibration

CPU central processing unit

DDP Dynamic Data Placement

EAMTS-DC Enhanced Adaptive MapReduce Task Scheduler Using Dynamic

Calibration.

FIFO First In First Out

HDFS Hadoop Distributed File System

LATE Longest Approximate Time to End

Univ
ers

iti
Mala

ya

1

CHAPTER 1: INTRODUCTION

This thesis presents the potential of dynamic MapReduce task scheduling in cloud

computing through the proposed adaptive MapReduce task schedulers. The emergence of

the big data era and the proliferation of data centers is the inevitable consequence of

human ability to transform each and every event and interaction into digital data. A lot of

valuable data could be derived by analyzing and extracting value from the data. However,

the ever-increasing volume of data, leads to the search for more efficient data-intensive

processing framework. An important aspect of this area of research is in the design and

implementation of efficient scheduling mechanisms to reduce make-span and network

traffic across computational cluster, data center and the Internet.

1.1 Motivation

Schedulers are important component of the MapReduce framework. There are

schedulers whose function is to schedule jobs. For instance, the Fair Scheduler and

Capacity Scheduler are well known job schedulers. However, there is another type of

MapReduce schedulers whose focus is in the scheduling of sub-job (i.e. task) within a

MapReduce function. Once a MapReduce job is submitted, the data file is partitioned into

chunks of blocks of fixed sized. Hadoop Distributed File System (HDFS) will replicate,

distribute and store the data blocks at the related data nodes. After that, Hadoop tasks

scheduler will be initiated to process these data blocks. Our proposed task scheduler will

re-schedule the replicated local data blocks to reduce unnecessary data block transfer.

This thesis addresses these challenges from following angles

i. An understanding of task scheduling in MapReduce in a heterogeneous

environment

Univ
ers

iti
Mala

ya

2

ii. Proposed dynamic measurement and calibration of computing capacity of

heterogeneous compute-nodes

iii. Proposed adaptive MapReduce Task Scheduler in a Heterogeneous Environment

iv. Proposed enhancement of the Task Scheduler using historical run records

1.2 Problem Statement

In current Hadoop implementation of MapReduce, data blocks are queued and accessed

sequentially using the first-in-first-out (FIFO) approach. FIFO is inefficient since no

priority has been given to the processing of local data blocks. This increased network

communication overhead. Unnecessary movement of data block between data-nodes

increases network communication overhead, delays access of data block by the compute

node and results in a longer make-span (i.e. the job completion time). In this research, our

main concern is to improve the current task schedulers.

1.3 Objectives

The general objectives of this thesis are as follows:

i. To review and compare the current task-scheduler techniques in MapReduce.

ii. To propose mechanism to estimate dynamically the capacity of the compute nodes

using Hadoop heartbeat

iii. To propose MapReduce task scheduler in Heterogeneous environment based on

the dynamically estimated compute node capacity

iv. To strengthen the proposed MapReduce task scheduler in Heterogeneous

environment based on historical run time record

v. To validate the proposed schedulers using prototype and simulations with respect

to make-span and network traffic

Univ
ers

iti
Mala

ya

3

1.4 Research Questions

The following research questions are dealt in this thesis:

i. How to monitor and model task completion status using the heartbeat?

ii. Is it possible to dynamically calibrate the computing capacity of compute

nodes?

iii. Is it possible to assigned proper portion of local tasks to a compute node

based on the calibrated capacity so as to minimize the make-span and

reduce network traffic?

1.5 Scope

The following is the scope of this research:

i. Survey of literature related to schedulers in MapReduce

ii. Details study of schedulers is limited to the task schedulers

iii. Identify existing task schedulers and their limitations

iv. Design and implement the proposed task schedulers

v. Evaluated the proposed task schedulers using prototype and simulator

To ensure the validity of this research, a prototype is developed using actual servers

with virtualization technology.

1.6 Thesis Outline

The thesis is organized into seven chapters as follows:

Chapter 1 is an introduction to the background of research, motivation, problem

statement, objectives, research questions and the scope of the research. Chapter 2 is a

literature review of the current works. Chapter 3 outlines the research methodology.

Chapter 4 discusses the proposed adaptive MapReduce task scheduler using dynamic

Univ
ers

iti
Mala

ya

4

calibration (AMTS-DC). Chapter 5 provides the prototype and simulation results to

validate AMTS-DC. Chapter 6 discusses the proposed enhanced adaptive MapReduce

task scheduler using dynamic calibration (EAMTS-DC). Chapter 7 concludes with

overall assessment of the proposed schedulers. The achievement and limitations of the

proposed schedulers and ideas for future enhancements are also presented.

Univ
ers

iti
Mala

ya

5

CHAPTER 2: LITERATURE REVIEW

2.1 Overview of the MapReduce model

Figure 2.1 Overview of the MapReduce model

Traditional Information Systems with centralized server to store and process data do

not scale well to handle large volume of data. MapReduce is one important effort in

solving the big data processing issue. It is a programming model associated with the

implementation details that can process large data sets in parallel on multiple compute-

nodes (Dean & Ghemawat, 2008). Figure 2.1 provides an overview of the MapReduce

model. The two components of MapReduce, namely the map() and reduce() functions,

are inspired by functional programming. The Map() function filters and sorts (such as

sorting words into queues with one queue for each word) while the Reduce() function

summarizes (such as counting the frequency of words). The run-time system takes care

of the details of partitioning the input data, scheduling the program’s execution across a

set of machines, handling machine failures, and managing the required inter-machine

communication (Dean & Ghemawat, 2008).

The three main advantages of Hadoop are reliability, efficiency and flexibility.

Univ
ers

iti
Mala

ya

6

i. Reliability: Suppose that a data-node in a computing cluster and storage fails,

since Hadoop maintains multiple copies of the data, replicated data will be

accessed instead.

ii. Efficient: Data are processed in parallel on multiple nodes to improve the

overall efficiency/speed of processing.

iii. Flexibility: After setting up a Hadoop cluster, users need not know the

underlying working principle of Hadoop to submit a job. Users are also allow

to redesign and implement features in which the user deems necessary based

on their requirement in the modelling of the data. Hadoop is a distributed

computing platform that allows users to easily build and use.

2.2 Hadoop Distributed File System (HDFS)

Figure 2.2 Hadoop HDFS (Alex Holmes, 2012).

The Hadoop Distributed File System (HDFS) is the storage component of Hadoop.

HDFS is very similar to existing distributed file system but is optimized for high

throughput and works best when handling large volume of data. It is designed to run on

commodity hardware with the following assumptions and goals:

i. Handle hardware failure & provide fault tolerance

ii. Large data sets

Univ
ers

iti
Mala

ya

7

iii. Simple coherency model

iv. “Moving computation is cheaper than moving data”

v. Portability across heterogeneous hardware and software platforms

HDFS has a master/slave architecture. Figure 2.2 depicts the HDFS architecture

showing an HDFS client talking to the master NameNode. The NameNode, as a master

server, manages the file system and regulates file access by clients. Data files are

partitioned into blocks. Data blocks can be replicated to produce identical copies of each

block. In Figure 2.2, data replication is set to 2. The NameNode determines the mapping

of data blocks to data nodes. The DataNodes upon receiving instruction from the

NameNode will perform block operations such as block creation, deletion, and

replication.

2.3 MapReduce

Figure 2.3 MapReduce Architecture and Job Submission (Alex Holmes, 2012).

Figure 2.3 depicts the MapReduce architecture. Major entitles include the client

application, the JobTracker and a number of TaskTrackers. The JobTracker, running on

a master node, manages and coordinates the jobs. A TaskTracker, running on each

compute node, will launch and coordinate the tasks executed within that node. In Figure

Univ
ers

iti
Mala

ya

8

2.3, a MapReduce client application is talking to the JobTracker. The JobTracker accepts

the job request from the client and schedules the job to the TaskTrackers in the form of

smaller tasks. The TaskTrackers then perform the assigned map and reduce tasks.

In order to provide fault tolerance, Hadoop replicates data blocks during HDFS upload.

Additional of the same data is replicated and stored in different nodes. When there is a

node failure and render some data blocks inaccessible, these data blocks can be accessed

via other nodes.

2.4 Schedulers and related works

This sections looks into current works in MapReduce schedules to identify useful

insight which can be include in the proposed task scheduler.

2.4.1 Default Schedulers in Hadoop

Three schedulers are available in the Hadoop implementation (Tom White, 2009):

i. First-in-First-out (FIFO) scheduler

ii. Capacity scheduler

iii. Fair scheduler

FIFO Scheduler is the default Hadoop scheduler. Jobs are scheduled based on the first-

come first-server principle. In other words, FIFO Scheduler places jobs in a queue and

runs them based on the order of job submission. A job received is partitioned into smaller

tasks. Tasks are put into a queue and the tasks can be accessed by the JobTrackers. One

of the advantage of FIFO is in its simplicity. The disadvantage of FIFO is that no

consideration is given for capacity of the node. Capacity Scheduler allows the sharing a

large cluster by organizations and guarantee each organization a minimum capacity. The

benefit of Capacity Scheduler is that an organization can use and access excess capacity

not being used by others. Fair Scheduler assigns resources to jobs and ensure that all jobs

Univ
ers

iti
Mala

ya

9

get an equal share of resources over time. The scheduler ensures short jobs to finish within

reasonable mask-span without starving long jobs.

 Zaharia et al. (2008) have developed the LATE (Longest Approximate Time to End)

algorithm. The 3 principles of LATE are: tasks are prioritized for speculation, fast nodes

are chosen to execute tasks, and speculative tasks are capped to prevent thrashing. Hadoop

assumes all compute-nodes has similar computing capacity. The LATE algorithm is one

of the earliest work taking into the issue of heterogeneous environment. Late algorithm,

by calculating the remaining number of tasks, to calculate the actual number of slow task,

these relatively slow to do the task. However, the problem with LATE is that it is difficult

to identify really slow task.

Quan Chen et al. (2010) proposed SAMR: a Self-Adaptive MapReduce scheduling

algorithm. SAMR can adapt to the variation in the environment by computing dynamical

task progress. SAMR attempts to improve the computation of LATE. By analyzing

historical record, SAMR is able to accurately identify actual slow task and backup the

slow task to conserve storage. SAMR separate slow task into 1) slow map task and 2)

slow reduce task. Backup tasks will be assigned to faster nodes. SAMR performed better

than LATE.

 Xie et al. (2010) pointed out that ignoring the data locality in heterogeneous

environments could hindered MapReduce performance. They addressed the problem of

data placement across nodes so that the data to be processed by each node is balanced.

Data is allocated in proportion to the node capacity. However, as data replication is

removed from the system, fault tolerance of Hadoop is not preserved.

He et al. (2011) proposed the MatchMarking algorithm to improve data locality at the

task allocation level. A local task, compared to non-local task, always has a higher priority

Univ
ers

iti
Mala

ya

10

to be executed. In addition, each slave has a marker to mark a node to ensure that each

node has fair chance to get its local task. In other words, MatchMarking gives every slave

node a fair chance to grab local tasks before any non-local tasks are assigned to any slave

node. The drawback of MatchMarking is no consideration has been given to

heterogeneous environment.

Lee et al. (2014) proposed the Dynamic Data Placement (DDP) Strategy for Hadoop

in Heterogeneous Environments. DDP adapts and balances data stored in each node based

on the computing capacity of each node. Higher capacity nodes get more data. DDP is

static (even though the title contains the term “Dynamic”) and is based on historical run

time data. DDP is very accurate should the computational environment remains static.

However, in non-static environment, i.e. should there be fluctuation in the computation

capacity of nodes within the make-span, DDP may not be able to perform well. Due to

the exclusion of the HDFS and data replication, DDP does not support fault tolerance.

Gu et al. (2013) proposed SHadoop to improv MapReduce performance by optimizing

job execution mechanism in Hadoop clusters. SHadoop replaces the heartbeat mechanism

by instant messaging to monitor task to speed up the scheduling and execution of

performance-sensitive task. SHadoop improves make-span especially that of short jobs.

Xu et al. (2015) proposed the Dynamic Task Splitting Scheduler (DTSS) to address

the tradeoffs issue between fairness and data locality during job scheduling. On a non-

data-local node, DTSS dynamically splits a task and execute the split task immediately to

improve fairness. The drawback of DTSS is the copying of data blocks from local node

to remote node as this increased network communication cost.

Anjos et al. (2015) proposed MRA++, a novel MapReduce framework design that

considers the heterogeneity of nodes during data distribution, task scheduling and job

Univ
ers

iti
Mala

ya

11

control. MRA++ characterizes a smaller number of machines as stragglers and executes

a larger number of tasks concurrently in a heterogeneous environment. A knowledge base

of execution time is used prior to the data distribution. MRA++ has shorten make-span.

The disadvantage of MRA++ is the exclusion of slow machines and this is seen as a waste

of resource.

Cheng et al. (2014) proposed ANT. ANT is a self-adaptive genetic algorithm based

task tuning mechanism. Ant will first divide the heterogeneous nodes into a homogeneous

sub-cluster based on their hardware configurations. Each subcluster is treated as a

homogeneous cluster and self-tuning algorithm is apply to the subcluster. ANT has higher

complexity.

Polo et al (2010) proposed a task scheduling mechanism that enables a MapReduce

runtime to dynamically allocate resources in a computing cluster. The allocation is based

on the observed progress rate achieved by the jobs, and the completion time goal

associated with each job. The proposed task scheduler is able to predict the performance

of concurrent jobs and dynamically allocate resource for the jobs.

Selvarani and Sadhasivam (2010) proposed a task group scheduler in environment

with heterogeneous resourse cost and computation capacity. Tasks are grouped according

to the processing capability of the available resources. The cost-based scheduler allows

the mapping of tasks to available resources. The scheduler groups a number of user jobs

together according to a particular resource’s processing capabilities. It then send the

grouped jobs to that resource. However, the mechanism of sending jobs to resources does

not suit the modern architecture and the actual movement may incur higher overhead.

Mao et. al (2011) proposed a task level scheduler. Both hardware configuration and

real-time workload of the nodes are taken into consideration to shorten make-span and

Univ
ers

iti
Mala

ya

12

improve hardware resource utilization. Tasks are assigned to Task Trackers according to

the workload of slave nodes. The scheduler is able to adaptively adjusts the MapReduce

map and reduce slot to increase cluster resources usage.

Tang et. al (2012) proposed the MapReduce Task Scheduler for Deadline (MTSD)

scheduler by taking into account data locality and cluster heterogeneity. MTSD allows a

user to specify a job’s deadline and so that the job can be completed before the deadline.

MTSD improved data locality and shortened average task completion time. However,

since the node classification algorithm used by MTSD has not been incorporated into the

Hadoop distribution file system, fault tolerant of MTSD could not be preserved.

Althebyan et. al (2014) proposed the MTL scheduler that is based on a multi-threading

principle. In the algorithm, a cluster is divided into multiple blocks where each one of

them is scheduled by a special thread. In particular, multi –threading approach is used.

When there are jobs to be processed, the threads start searching in their blocks node for

local map task. MTL is able to improve performance. However, the proposed MLT lacks

details of the relationship between the threads and Hadoop architecture. MLT may not be

feasible in real Hadoop cluster.

Dai and Bensaou (2016) proposed a Hadoop MapReduce task scheduler called

dynamic priority multi-queue scheduler (DPMQS). DPMQS improves data locality of

jobs. Jobs that are near to completing their map phase are given higher priority so that

waiting time could be reduced. PMQS uses heartbeat and a privilege threshold value to

monitor current job progress rate. However, the proposal lack technical details on how

DPMQS could be incorporated in Hadoop.

Univ
ers

iti
Mala

ya

13

 Table 2.1 Summary of strength and weakness of major current works

Methods Description Strength Weakness Note

LATE

Zaharia et al.
(2008)

LATE (Longest
Approximate
Time to End)
Find slow tasks
by computing
remaining time
of all the tasks.

always
speculatively
execute the
task that
might finish
farthest into
the future;
shorter make
span

Does not take into
account of data locality
when launching
speculative map tasks

Cannot accurately
identify really slow
tasks

Task level

Non-standard
heuristic to
estimate time

SARE

Chen et al.
(2010)

SARE improves
LATE algorithm
by calculating
task progress
dynamically

SAMR does
not launch
backup tasks
on slow nodes
and thus
ensuring that
the backup
tasks will not
be slow tasks.
Performed
better than
LATE
(Zaharia et al.
(2008)

Data locality is only
considered when
launching backup tasks

History data might get
obsolete/inaccurate

Task level

Data
Locality

Xie et al.
(2010)

Allocates data
according to
node capacity;

(Heterogeneous)

Move data
from one node
to another in
execution

Time to
Improve
performance

Removal of data
replication;

Negative impact on the
data loss if there are
node failures

Task Level

HDFS

SAMR

Chen et al.
(2011)

The main idea is
to give every
slave node a fair
chance to grab
local tasks

Higher data
locality

Reduces
network
communicatio
n

Does not consider
heterogeneous
environment

Task level

DDP

Lee et al.
(2014)

Adapt and
balance data
stored in each
node based on
the computing
capacity of each
node in a
heterogeneous
Hadoop cluster

Higher
capacity
nodes get
more data

Based on
historical run
time data

More efficient

Historical data may not
be accurate or able to
reflect the true situation
should the environment
becomes more dynamic;

Data replication is
removed and thus lacks
fault tolerance

Static and not
dynamic
(Though the
title contains
the term
“Dynamic”);

Task level

Univ
ers

iti
Mala

ya

14

SHadoop

Gu et al.
(2014)

Optimizes the
setup and
cleanup tasks of
a MapReduce
job

Replaces
heartbeat
mechanism by
instant
messaging to
monitor task

Improves
make-span
especially for
short jobs

Dynamic

Non-standard
mechanism as heartbeat
has been replaced by
instant messaging

Job/Task level

DTSS

Xu & Cai
(2015)

Dynamically
splitting a task
and executing
the split task on
a non-data-local
node to improve
fairness

Split task to
improve
fairness

Increased network
communication

Job/Task level

MRA++

Anjos et al.
(2015)

MRA++
classifies a
smaller number
of machines as
stragglers and
executes tasks
concurrently in a
heterogeneous
environment.

knowledge
base of
execution
times is used
prior to the
data
distribution

Shorten
make-span

Need chunk (block)
copy from local to
remote node

Higher network
overhead

Slow machines are
excluded from
processing(waste of
resources)

Task and Job
Setup Phase

ANT

Cheng et
al.(2014)

ANT is a self-
adaptive genetic
algorithm based
task tuning
mechanism.

Improves
make-span

Automated
configuration

Higher computational
complexity

Task level

2.5 Gap analysis

The literature survey has identified gaps that exist in the current works and are listed

as follows:

i. Lack of dynamic load predication/estimation mechanism to enable fair

division of tasks among heterogeneous nodes.

Univ
ers

iti
Mala

ya

15

ii. The current practice of using of static historical run time record to divide

tasks among heterogeneous nodes may not work since the underlying

parameters such as hardware/network configuration/work load of the

computing cluster may change over time.

iii. Lack of fault tolerance support after data blocks are partitioned and

distributed to the data/compute nodes. Most of the time only one set of

data block is available for the entire cluster.

iv. Lack of dynamic mechanism in predicting/estimating computing capacity

of the heterogeneous compute nodes

v. Lack of effective mechanism to reduce data movement among compute

nodes. Local compute nodes should be given higher priority as far as local

data are concern.

All the above gaps will be handled in our proposed research work and the efficiency

of the proposed algorithms will be proven by comparing with previous works.

2.6 Summary

This chapter provide an overview of MapReduce and Hadoop Distributed File System.

Current major works in the area of MapReduce scheduler are summarized in Table 2.1,

with the strength/advantages and weakness/disadvantages identified. Based on this

finding, we hope to receive helpful idea and better insight when designing our proposed

task schedulers.

Univ
ers

iti
Mala

ya

16

CHAPTER 3: RESEARCH METHODOLOGY

This chapter describes the methodology carried out to achieve the objectives of this

research work. It comprises of approach and strategy in which this research were carried

out. The tools and software used at different stages are discussed.

3.1 Outline of Methodology

The goal of this research is to design MapReduce task schedulers that should be able

to utilize the available heterogeneous compute nodes efficiently. The task schedulers

should also utilize lesser network resources during computation. By efficient we meant

that our proposed method, given a MapReduce job, would be using shorter make-span

and lesser data movement to complete the job. Lesser data movement among compute

nodes is achieved, by ensuing that within each compute node, higher priority is given to

local data.

To accomplish the objectives of the research, a scientific method depicted in Figure

3.1 is utilized.

Univ
ers

iti
Mala

ya

17

Define the problem

Do Background
Research

Construct Hypothesis

Conduct experiments

Hypothesis is True
Hypothesis is False or

Partially True

Report Results

Troubleshoot

Figure 3.1 Research Methodology Flowchart

This section briefly explains the steps depicted in the research methodology flowchart.

a. Defining the problem:

Currently MapReduce implementation is based on the assumption that every compute

node has the same capacity. What happen if the compute nodes have different capacity?

The make-span will depend on the slowest compute node. How would this affect the task

scheduler? In this stage of study, the need for this research will be strengthened and the

aim and objectives of this research formed.

b. Background research

Univ
ers

iti
Mala

ya

18

At this point of study, thorough study of current works in this area from academic

journals, conference proceedings, white papers etc. will be carried out. This helped to

identify good practice and widen the knowledge about this research topic. The literature

survey will also paved way for better focus and allowed us to take note of the topic as

something which worth further thought and investigation.

c. Hypothesis construction

A hypothesis is formed to provide a direction to further the research investigation.

Attempts are made, based the background research and literature survey in the earlier

step. The purpose of the hypothesis is not to arrive at the perfect answer to the question

but with an effort to guess the possible answer of the question. At this stage,

mechanisms/algorithms that are able to schedule MapReduce task more efficiently in a

heterogeneous environment will be formulated.

d. Conduct Experiments/Simulations

After the formation of a hypothesis, the hypothesis will be tested through a set of

experiments. To proof the feasibility of the proposed hypothesis and the concept, a

prototype will be implemented as an extension to Hadoop (a MapReduce implementation)

in a computer cluster environment. The hypothesis with the set of proposed

mechanisms/algorithms will be implemented. After that, using the prototype the

performance of the hypothesis is evaluated and contrasted against current works.

Carefully designed and controlled experiments are crucial in the scientific method, as they

are used to prove a hypothesis right or wrong, and to formulate scientific theories. The

experiments must also be reproducible so that they can be tested/verified by future

researchers. The prototype is critical to verify the claim advantages of the proposed

mechanisms/ algorithms.

Univ
ers

iti
Mala

ya

19

Due to the complexity of the hypothesis, the evaluation of the hypothesis is

complemented with simulation so that more complex scenario could be provided to test

the proposed hypothesis. Given the hardware limitation and time constraint, the prototype

is unable to handle more complex scenario with greater number of compute nodes and

with larger input data size. A simulator is built so that more complex scenario could be

used to test the hypothesis. At this stage, mechanisms/algorithms that will schedule

MapReduce task more efficiently in a heterogeneous environment will be evaluated.

e. Analyze the Data and Draw a Conclusion

As experiments are conducted using the prototype and simulator, several trials are

conducted to ensure that the results are consistent. Experimental results are carefully

recorded so that conclusion can be drawn regarding the strength of the hypothesis. At this

phase, benchmarking with current algorithms will also be carried out. If the experimental

results prove that the hypothesis is correct, the original question is answered and the

experiment could be concluded; otherwise, new hypothesis is formulated or further

refinement to the hypothesis is conducted and further experiments are required to test the

refined or new hypothesis. This process goes on until a hypothesis can be proven correct

by the experiments. At this stage, mechanisms/algorithms that will schedule MapReduce

task more efficiently in a heterogeneous environment will be validated.

 Univ
ers

iti
Mala

ya

20

3.2 Objectives, Methods and Tools used

Table 3.1 Research objectives, Methods and Tools used

No Research Objective Methods Tools Used
i. To review and compare the

current task-scheduler
techniques in MapReduce.

Literature Search -

ii. To propose mechanism to
estimate dynamically the
capacity of the compute
nodes using Hadoop
heartbeat

Critical review of Literature

Experiment

Hadoop
prototype and
computer cluster

Java Simulator
iii. To propose MapReduce

task scheduler in
Heterogeneous
environment based on the
dynamically estimated
compute node capacity

Critical review of Literature

experiment

Hadoop
prototype and
computer cluster

Java Simulator

iv. To strengthen the proposed
MapReduce task scheduler
in Heterogeneous
environment based on
historical run time record

Critical review of Literature

experiment

Hadoop
prototype and
computer cluster

Java Simulator
v. To validate the proposed

schedulers using prototype
and simulations with
respect to make-span and
network traffic

Experiment Hadoop
prototype and
computer cluster

Java Simulator

In Table 3.1 how each objective of the current study is achieved via literature search,

experiment and simulation is elaborated. Software and hardware tools used are also

included in the table. As outlined above, to prove the concepts and feasibility of the

proposed algorithm, a prototype is developed and implemented empirically using actual

servers. Actual Hadoop framework will be used in our investigation. Using the prototype,

the relationship and interaction between MapReduce, HDFS, job schedulers and task

schedulers is critically analyzed. After that, components which can affect the task

execution speed such as job queuing list in task scheduler, heartbeat, data replication and

Univ
ers

iti
Mala

ya

21

local task will be the focus. At this stage, relevant parameters will also be identified. Due

to the limited resource available in the research lab, the challenges in the creation of

heterogeneous and dynamic environment is resolved using virtualization technique. All

compute-nodes are deployed as virtual machines. Heterogeneous computational capacity

of compute-nodes are created by adjusting the CPU and RAM configuration of the virtual

machines. The prototype is also useful to test the actual heartbeat process, blocks (i.e.

tasks) process and the actual make-span and traffic load. In addition, to provide more

variability in terms of data size, greater range of heterogeneous computation capacity, a

Java simulator has been developed to analyze and measure the task schedulers’

performance in terms of make-span, block movement and network traffic.

The prototype is implemented by modifying JobTracker.java and JobInProgress.java

in Apache Hadoop. The modifications extend the heartbeat, and returns the current

computing capacity. The return value and node status (to capture non-running local tasks)

are used so that local tasks could be re-assign to the compute nodes in such a way that

local tasks assigned to a node is proportional to the capacity of the node. In other words,

more powerful nodes are assigned with more local tasks.

With the setting up of the Hadoop MapReduce prototype, current works in MapReduce

task scheduling mechanism could be study and evaluated. The wordcount Hadoop

application (an actual MapReduce application) with actual workload will be run in the

prototype. Due to the hardware resources constraint, only four servers are used in the

prototype. The prototype will reside within a cluster of virtual machines connected by a

computer switch. Experimental results gathered will be compared in terms of

performance metrics such as make-span and block movement (network traffic).

Since the prototype is limited by the number of compute node, data size, CPU

computation variation and RAM size variation, more complicated scenario will be

Univ
ers

iti
Mala

ya

22

evaluated using the Java simulator. In this way greater variability in terms of data size

and computation power could be tested and evaluated.

3.3 Chapter summary

This chapter has elaborated the research methodology adopted using a flowchart

diagram. Details is also provided on how the research objectives could be achieved based

on the diagram using relevant methods and tools.

Univ
ers

iti
Mala

ya

23

CHAPTER 4: ADAPTIVE MAPREDUCE TASK SCHEDULER USING

DYNAMIC CALIBRATION (AMTS-DC)

This chapter analyses task scheduling in MapReduce on Hadoop implementation and

look into the effect of data locality on MapReduce in heterogeneous environment. The

discussion will look into the basic operation on how in Hadoop, the original large data

file, after being partitioned into smaller blocks and stored in the HDFS, are processed by

Hadoop default and DDP. Details of the operation is examined within the period of the

make-span to identify areas whereby task scheduling could be further enhanced.

4.1 Heterogeneous Environment

Figure 4.1 Homogeneous/Heterogeneous computation nodes

Figure 4.1 depicts the different between homogeneous and heterogeneous computing

environment. A homogeneous computing environment is one which has homogeneous

network and homogeneous machines with equal computing capacity; otherwise it is a

heterogeneous computing environment. Univ
ers

iti
Mala

ya

24

4.2 Hadoop FIFO

Figure 4.2 Hadoop default data allocation strategy

The basic design of Hadoop assumes a homogeneous environment. However, in real-

world environment this may not be the case as it may consist of cluster and servers of

various specification. Figure 4.2 illustrates a situation where compute nodes have

different computing capacity. The relative computing capacity of nodes A, B and C are

respectively 3, 2 and 1. Since node A is the fastest, it is able to complete its entire local

block in a shorter time. Node A will process non-local blocks which are located in nodes

B and C. From Figure 4.2 (f), 3 data blocks (the blocks which are surrounded by an

eclipse) are transferred from the other nodes. This prolong the make-span.

Univ
ers

iti
Mala

ya

25

4.3 Dynamic Data Placement (DDP)

Figure 4.3 DDP data allocation

DDP (Lee et al, 2014) is a solution to resolve the issue of Hadoop default in

heterogeneous environment. In DDP, data blocks are allocated in proportion to the

computational capacity of each node. The computation capacity is obtained from

historical record of previous run. In Figure 4.3., since the relative computing capacity of

nodes A, B and C are respectively 3, 2 and 1, the number of blocks assigned to node A,

B and C will also be in the ration of 3, 2 and 1. In this way, DDP requires no data block

movement between compute nodes within the duration of job processing. This shorten

the make-span.

Limitation of DDP

1) DDP relies heavily on the use of historical run time record. The relative computing

capacity of compute-node within a cluster are historical record generated from previous

Univ
ers

iti
Mala

ya

26

run. The record is a tuple denoting the <computation ratio, amount of data processed>.

Historical data though useful, may not be accurate due to the following:

i. Changes in hardware configuration of the cluster: For instance the

addition of RAM, upgrading of CPU, additional/removal of computing

nodes within the cluster etc.

ii. Though with the same name, a job recorded in the historical data might

not be the same with the current running job. E.g. Difference versions of

wordcount MapReduce application. In addition, the argument value and

argument types may also affect the execution time.

iii. Dynamic computation environment where additional process or

application is running in the compute node

2) DDP does not support fault tolerance. Since only one set of data block is

available for the entire cluster. On the other hand, MapReduce by default creates

multiple copies or replication of data items and storing them at different compute/data

nodes. This increases the availability so that if a node fails, data could be accessed

from a different node.

Univ
ers

iti
Mala

ya

27

4.4 JobTracker, TaskTracker and heartbeat

Figure 4.4 Heartbeat Mechanism in AMT-DC and the add-ons

Prior to our discussion on how to improve DDP, a discussion of the Hadoop heartbeat

mechanism is required. Figure 4.4 shows the job execution. Here, the JobTracker will

schedule all the jobs and distribute the tasks to the TaskTrackers. As depicted earlier in

Figure 2.3 (Chapter 2), when a JobTracker accepts job request from a client, it will

schedule the job to the TaskTrackers in the form of smaller tasks. In other words, a job is

partitioned into tasks before the job can be executed at the compute-nodes. The

TaskTracker will then perform the tasks and the results are returned to the JobTracker.

The Job-Tracker and TaskTrackers communicates using heartbeat. Each TaskTracker is

assigned with a set of task slots. The TaskTracker can then work on the tasks. When the

task slot is empty, the TaskTracker will use the heartbeat to inform the JobTracker. If

there are more tasks to be completed, the JobTracker assigns the tasks to the TaskTracker

using heartbeat response. Via the regular heartbeat, the JobTracker is able to know the

Univ
ers

iti
Mala

ya

28

status of the tasks assigned. The default heartbeat interval of Hadoop is 3 second. Figure

4.4 shows the heartbeat mechanism in AMT-DC and the add-ons.

4.5 Proposed AMTS-DC Task Scheduler

Based on the discussion in 4.2 and 4.3, to improve MapReduce performance in

heterogeneous environment, the proportion of local blocks assigned to the compute-nodes

should be proportional to the computational capacity of the nodes. This is exactly how

DDP is designed to out-perform the default Hadoop FIFO. Firstly, DDP assigned the data

blocks without going through HDFS, i.e. by passing HDFS. The blocks re-assignment in

DDP are actually direct block placement into the file system. This made the proposed

solution less plausible as HDFS is an essential component of Hadoop. Secondly, in DDP,

only one set of data block is available for the entire cluster. DDP lacks fault tolerance

support. The failure of a data node renders the data blocks stored in the node inaccessible

and the job will have to be aborted.

Figure 4.5 More local data blocks for faster node

The proposed Adaptive MapReduce Task Scheduler Using Dynamic Calibration

(AMTS-DC) is designed without modifying the current HDFS implementation. In the

Univ
ers

iti
Mala

ya

29

initial stage, data files are replicated to the compute nodes by the instruction from the

NameNode via HDFS. In the second stage, heartbeat mechanism in Hadoop is use to

estimate the current relative computing capacity of the compute node instead of based on

the historical data. As depicted in Figure 4.4, the Hadoop heartbeat is extended so that

information of current slave progress, current reserve list and non-reserved list could be

piggyback in the heartbeat and communicated to the JobTracker. In the third stage more

local blocks will be reserved to compute nodes with greater capacity. This done by

reserving more local tasks within the shaded area (depicted in Figure 4.5) to more

powerful nodes.

4.5.1 AMTS-DC Algorithm

1 //HDFS partitioned job data file into blocks
2 //NameNode randomly distribute blocks to slave nodes
3 Let k = int((TotalBlock*replicate)/n)
4 For Each slave node S
5 Initialize the reservedBlock and non-reservedBlock
6 Ticks := 0 // Ticks is the time
7 While there are still data blocks to be processed
8 If Ticks equals Update_Computing_Ratio_Now
9 updateBlockReservedByEachSlaveNode
10 For each slave node S
11 If reservedBlock of Sis not empty
12 Process a block in Reserved Block
13 Else If non-reservedBlock of S is not empty
14 Process a block in Non-reserved Block
15 Else Move and Process a block from other Slaves
16 Make-span=Ticks
17 Ticks=Ticks+1
18 End While
19 Return Make-span
20 End

Figure 4.6 Pseudocode of AMTS-DC

Figure 4.6 depicts the pseudocode of AMTS-DC, which provides a high overview of

the AMTS-DC. Figure 4.6- 1 to Figure 4.6- 4 provides details of the proposed AMTS-

DC algorithm.

Univ
ers

iti
Mala

ya

30

Variable:

1 TotalTask (a job partitioned into many tasks),
2 TotalBlock (data file is partitioned into many blocks; TotalBlock

= TotalTask),
3 r (replication number)and n (number of slave),
4 HisRecExist (historical record of job and the relative node

capacity exist)
5 RelCapOfSlave (Relative Computing Capacity Of Slaves)
6 SetOfComputeNode (S1,S2,..SN)
7 update_CR_Now (time to update the computation Ratio of each slave),
8 Block [S] (set of block assigned to slave S,
9 RBlock[S] (set of block assigned to slave S and reserved for slave

S), NBlock[S] (set of block assigned to slave S but not reserved
for slave S),

10 RoneB[S] (one block in RBlock[S]),
11 NoneB[S] (one block in NBlock[s]),

Figure 4.6- 1 AMTS-DC algorithm (Variables)

Univ
ers

iti
Mala

ya

31

Proc Main()
1 Begin
2 //HDFS partitioned job data file into blocks {B1,B2,B3…}
3 //NameNode randomly distribute blocks to slave nodes
4 Let k = int((TotalBlock*replicate)/n)
5 For Each slave node S
6 RBlock [S] := 
7 NBlock [S] := 
8 RBlock[S] := RBlock[S]  {Br,Br+1,…,Br+k} //r is a random

num
 9 // while there are still blocks at any slave unprocessed
 10 Done := False

11 Initialize()
12 Ticks := 0 // Ticks is the time
13 While NOT Done
14 If Ticks equals Update_CR_Now
15 updateReservedBlock()
16 For each slave node S
17 If (not busy S)
18 If RBlock[S]is not empty
19 // Process a block in Reserved Block
20 RBlock[S]:=RBlock[S]\{RoneB[S]}
21 Else
22 If NBlock[S]is not empty
23 // Process a block in Non-reserved Block
24 NBlock[S]:=NBlock[S]\{NoneB[S]}
25 Else
26 // Process non reserved block from Slave T,.and T,.≠S
27 NBlock[T]:=NBlock[T]\{NoneB[T]}
28 End If
29 End If
30 End If
31 End For
32 Make-span=Ticks
33 Ticks=Ticks+1
34 End While
35 Return Make-span
36 End

Figure 4.6- 2 AMTS-DC algorithm (Main)

Proc updateReservedBlock():
1 Begin
2 //Receive task status of each slave via HeartBeat
3 compute RelCapOfSlave:={c[1],c[2],… ,c[n]} based on task status
4 For Each slave node S where S={1,2,..,n}
5 //Get remaining number of unprocessed blocks: remUB
6 Number of reserved block:=min(c[S]/Sum(cA,cB,….)*remUB
7 Number of non-reserved block:=remUB-Number of reserved block
8 Update the reserved blocks
9 Update the non-reserved blocks
10 End For
11 End

Figure 4.6- 3 AMTS-DC algorithm (updateReservedBlock)

Univ
ers

iti
Mala

ya

32

Proc Initialize():
1 Begin
2 Set {cS1,cS2,… ,cSN} to {1,1,..1}
3 End

Figure 4.6- 4 AMTS-DC algorithm (Initialization)

4.5.2 Details analysis of Hadoop FIFO, DDP and AMTS-DC

In Hadoop when data file is written to HDFS, the file is split into data blocks. The

default block size is 64MB. The parameter dfs.replication whose default value is 3

controls how many copies of a block can be produced. Each copy of a block is known as

a replica. The default placement policy of the replica placement, i.e. where each replica

is actually placed, is a random process. Considered for example a cluster with n worker

nodes (each running TaskTracker and DataNode). The replicated data will be “evenly”

distributed among the worker nodes if the number of block is large (i.e the number of

blocks is greater than, says, 3 times the number of worker nodes).

As an illustration, consider 3 worker nodes (each running TaskTracker and DataNode)

and with a replication set to 2 and there are 39 blocks with identity (ID): 1, 2, 3, 4 ... 39.

The blocks are replicated to 1, 1, 2, 2, 3, 3, 4, 4 ... 39, 39.

Total replicated blocks=2*39=78

Each slave will be allocated 26 blocks as calculated from the equation below:

Total replicated block/(total number of slave)=78/3=26

One possible scenario is as follows with each slave being allocated 26 tasks. Note that

the same replica will not appear twice within a worker node.

Univ
ers

iti
Mala

ya

33

Slave 3: 15 16 23 10 20 4 33 32 18 30 24 11 12 38 27 26 3 35 9 36 17

6 31 2 39 29

Slave 2: 24 25 38 7 37 21 14 20 13 23 17 32 34 5 8 12 22 35 1 9 4 18

15 26 28 19

Slave 1: 6 2 29 3 27 37 33 34 28 7 21 30 16 8 10 25 13 5 11 36 1 39 19

14 22 31

Assume that the relative computing capacity of Slave 3: Slave 2: Slave 1 is 10:2:1

respectively, where 10 is the most powerful and 1 is the least. Therefore, the time to

complete each block by slave 3, Slave 2 and Slave 1 will be 10/10: 10/2: 10/1. This is

equivalent to the ration 10: 5: 1. To simplify our discussion, and without losing generality,

the time required to complete a block by the fastest node is assume to be 1 second. Time

taken to process a block by the slaves are as followed:

Slave 3: 1 second

Slave 2: 5 seconds

Slave 1: 10 seconds

Network cost: 6 seconds*

*Note that the network cost 6 seconds is obtained/estimated by measuring the time

taken to move a data block from one data-node to another. This is an average value

obtained from the prototype setup in Chapter 5. Here we assume a homogeneous network.

Univ
ers

iti
Mala

ya

34

4.5.3 Case 1 Hadoop FIFO

Figure 4.7 Hadoop original Block List

06 02 29 28 01

24 25 38 07 37 14 34 08 22

15 16 23 10 20 04 33 32 18 30 11 12 27 26 03 35 09 36 17 31 39 21‐slave2 13‐slave2 05‐slave2 19‐slave2

39 21 13 05 19

15 16 23 10 20 04 33 32 18 30

11 12 27 26 03 35 09 36 17 31

Slave 3

Slave 2

Slave 1

06 02 29 28 01

24 25 38 07 37 14 34 08 22

1
0
s

2
0
s 30
s

4
0
s

5
0
s

Execution Time

Figure 4.8 Hadoop: Block Processed vs Time

(0)3dq3:15 (0)2dq2:24 (0)1dq1:6 (1)3dq3:16 (2)3dq3:23 (3)3dq3:10 (4)3dq3:20
(5)3dq3:4 (5)2dq2:25 (6)3dq3:33 (7)3dq3:32 (8)3dq3:18 (9)3dq3:30 (10)3dq3:11
(10)2dq2:38 (10)1dq1:2 (11)3dq3:12 (12)3dq3:27 (13)3dq3:26 (14)3dq3:3
(15)3dq3:35 (15)2dq2:7 (16)3dq3:9 (17)3dq3:36 (18)3dq3:17 (19)3dq3:31
(20)3dq3:39 (20)2dq2:37 (20)1dq1:29 X(21)3dq2:21 (25)2dq2:14 X(28)3dq2:13
(30)2dq2:34 (30)1dq3:28 X(35)3dq2:5 (35)2dq2:8 (40)2dq2:22 (40)1dq3:1
X(42)3dq2:19

Figure 4.9 Hadoop Block Processed Time

In this section, for simplicity of explanation, the time taken to process one data block

by the fastest node is 1 second. From Figure 4.8 and Figure 4.9, it can be seen that at time

t=20s, Slave 3 has completed all its local blocks and subsequently needs to move block

21, 13, 5 and 19 from slave 2. There are a total of 4 blocks movement as depicted by the

4 black boxes in Figure 4.8. The make-span can be calculated by adding the time to

process a block (10 sec for slave 1) to the time the last block being processed by slave 1.

Make-span is therefore equals to 50 seconds (40 + 10 = 50 seconds). The total data

Univ
ers

iti
Mala

ya

35

movement count is equal to the black boxes in Figure 4.8 or the sections preceded by bold

“X” (eg X(21)3dq2:21) in Figure 4.9. Total data movement is 4.

Make-span=50 seconds

Data movement count = 4;

4.5.4 Case 2 DDP

Slave 3: 6 2 29 3 27 37 33 34 28 7 21 30 16 8 10 25 13 5 11 36 1 39 19 14 22 31
24 38 20

Slave 2: 23 17 32 12 35 9
Slave 1: 4 18 15 26

Figure 4.10 DDP original block List

Note that in DDP, since there is no block replication, only one set of block has been

allocated.

(0)3dq3:1 (0)2dq2:9 (0)1dq1:26 (1)3dq3:24 (2)3dq3:32 (3)3dq3:11 (4)3dq3:28
(5)3dq3:29 (5)2dq2:5 (6)3dq3:15 (7)3dq3:35 (8)3dq3:31 (9)3dq3:16 (10)3dq3:3
(10)2dq2:8 (10)1dq1:20 (11)3dq3:33 (12)3dq3:25 (13)3dq3:39 (14)3dq3:4
(15)3dq3:7 (15)2dq2:30 (16)3dq3:19 (17)3dq3:21 (18)3dq3:34 (19)3dq3:13
(20)3dq3:37 (20)2dq2:23 (20)1dq1:2 (21)3dq3:27 (22)3dq3:17 (23)3dq3:10
(24)3dq3:6 (25)3dq3:22 (25)2dq2:18 (26)3dq3:38 (27)3dq3:36 (28)3dq3:12
(29)3dq3:14

Figure 4.11 DDP Block Processed Time

The case for DDP is straight forward as shown in Figure 4.10 and Figure 4.11. The

last block processed by Slave 3 is at t=29 second. Therefore the make-span=29 + the time

needed to process a block by Slave 3 = 29+1=30 seconds. Note that no data movement

has been recorded in the entire make-span. This is because the number of blocks assigned

to a compute node is proportional to the computational capacity of the node and all local

nodes are processed and completed by the slave at almost the same time. DDP is very

efficient and has the shortest make-span.

Make-span=30 seconds

Data movement count = 0;

Univ
ers

iti
Mala

ya

36

4.5.5 Case 3 AMTS-DC

Slave 3

Slave 2

Slave 1

06 02 29 03 27 37 33 34 28 07 1930 16 08 10 25 13 05 11 36 01 1421 22 3139

24 25 38 07 37 21 14 20 13 23 32 34 05 08 12 22 35 01 09 04 1817 15 26 28 19

15 16 23 10 20 04 33 32 18 30 3111 12 38 27 26 03 35 09 36 17 06 0224 39 29

Figure 4.12 AMTS-DC Original Task List

39

Slave 3

Slave 2

Slave 1

1
0
s

2
0
s

Execution Time

15 16 23 10 20 04 33 32 18 30 11 12 38 27 26 03 39 09 36 17 31

2
2
s

06 02 34

24 25 07 37 21

Completed List(Black Block)

24
29

15 16 23 10 20 04 33 32 18 30

11 12 38 27 26 03 35 09 36 17

31 39 29

06 02 34

24 25 0738 37

2
1

Figure 4.13 Block Processed vs Time (0 ~ 22)

Univ
ers

iti
Mala

ya

37

39

Slave 3

Slave 2

Slave 1

10
s

20
s

3
0
s

4
5
s

Execution Time

15 16 23 10 20 04 33 32 18 30 11 12 38 27 26 03 39 09 36 17 31

23
s

06 02 34

24 25 07 37 21

Completed List(Black Block)

24
13 05 0129

15 16 23 10 20 04 33 32 18 30

11 12 38 27 26 03 35 09 36 17

31 39 29

31 39 29

34 28 08 13 05 01 19 14 22

13 05 08 22 01 28 1921 14

NULLSlave 3

Slave 2

Slave 1

24 25 0738 37 21 14 08 22 19

06 02 34 28

Figure 4.14 Block Processed vs Time (23 ~ 45 second)

(0)3dq3:15 (0)2dq2:24 (0)1dq1:6 (1)3dq3:16 (2)3dq3:23 (3)3dq3:10 (4)3dq3:20
(5)3dq3:4 (5)2dq2:25 (6)3dq3:33 (7)3dq3:32 (8)3dq3:18 (9)3dq3:30 (10)3dq3:11
(10)2dq2:7 (10)1dq1:2 (11)3dq3:12 (12)3dq3:38 (13)3dq3:27 (14)3dq3:26
(15)3dq3:3 (15)2dq2:37 (16)3dq3:35 (17)3dq3:9 (18)3dq3:36 (19)3dq3:17
(20)3dq3:31 (20)2dq2:21 (20)1dq1:34 (21)3dq3:39 (22)3dq3:29 X(23)S3dq2S:13
(25)2dq2:14 X(30)3dq2S:5 (30)2dq2S:8 (30)1dq1S:28 (35)2dq2S:22 X(37)3dq2S:1
(40)2dq2S:19

Figure 4.15 AMTS-DC Block Processed Time

Figure 4.16 AMTS-DC Completed list and Uncompleted list at time=19 sec

Figure 4.12, 4.13 and 4.14 illustrate the working principle of the proposed AMTS-DC.

They are complemented with Figure 4.14 and 4.15 to explain how local blocks can be

reserved.

Univ
ers

iti
Mala

ya

38

In Figure 4.15 and 4.16, the blocks 15 24 6 … 30 11 7 2 12 …9 36 17 (highlighted in

yellow) have been completed before the capacity of slaves could be computed and

returned by the heartbeat. These blocks are high-lighted in yellow. In Figure 4.15 the

processing of the yellow blocks start at time = 0 seconds. When time equals 19 second,

26 blocks have been completed. Once the capacity of each slaves is known, the

uncompleted blocks, block 31 21 34 39 29 13 14 5 8 28 22 1 19 (highlighted in green)

will be marked and reserved in proportion based on the computation capacity of the slaves

as indicated in Figure 4.17.

34

31 39 29

21 14 20 13 1817 32 34 05 08 12 22 35 01 09 04 1523 26 28 19

29 03 0537 33 28 07 21 30 16 08 10 25 13 1127 36 01 39 19 14 22 31

NULLSlave 3

Slave 2

Slave 1

Slave 3

Slave 2

Slave 1

29 03 27 37 33 34 28 07 21 30 2208 10 25 13 05 11 36 01 39 19 3116 14

21 14 20 13 23 17 32 34 05 08 22 35 01 09 04 18 15 26 28 1912

06 31 02 39 29

Figure 4.17 Blocks which are reserved after the heartbeat

Figure 4.13 and 4.14 depict the block processed at time period 0 to 22 second and 23

to 45 second. Figure 4.17 depicts the blocks which are being reserved after the heartbeat.

The total blocks reserved by all slave is 6 (i.e. 3+2+1) as indicated as follows:

Slave 3 reserved: 31 39 29

Slave 2 reserved: 21, 14

Univ
ers

iti
Mala

ya

39

Slave 1 reserved: 34

Blocks unreserved for each slave are as follows:

Slave 3 Unreserved: NULL*

Slave 2 Unreserved: 13, 5, 8, 28, 19

Slave 1 Unreserved: 3, 8, 1, 19, 22

* Note: Note referring to Figure 4.18, Slave 3 has unreserved blocks 6 and 2 (black

font with green background). However, since Slave 1 had already processed both blocks

6 and 2 earlier, the total number of unreserved block for Slave 1 is thus NULL.

Slave 3: 15 16 23 10 20 4 33 32 18 30 24 11 12 38 27 26 3 35 9 36 17 6 31 2
39 29

Slave 2: 24 25 38 7 37 21 14 20 13 23 17 32 34 5 8 12 22 35 1 9 4 18 15 26 28 19

Slave 1: 6 2 29 3 27 37 33 34 28 7 21 30 16 8 10 25 13 5 11 36 1 39 19 14 22 31
Figure 4.18 AMTS-DC (Reserved and Unreserved Blocks)

(0)3dq3:15 (0)2dq2:24 (0)1dq1:6 (1)3dq3:16 (2)3dq3:23 (3)3dq3:10 (4)3dq3:20
(5)3dq3:4 (5)2dq2:25 (6)3dq3:33 (7)3dq3:32 (8)3dq3:18 (9)3dq3:30 (10)3dq3:11
(10)2dq2:7 (10)1dq1:2 (11)3dq3:12 (12)3dq3:38 (13)3dq3:27 (14)3dq3:26
(15)3dq3:3 (15)2dq2:37 (16)3dq3:35 (17)3dq3:9 (18)3dq3:36 (19)3dq3:17
(20)3dq3:31 (20)2dq2:21 (20)1dq1:34 (21)3dq3:39 (22)3dq3:29 X(23)S3dq2S:13
(25)2dq2:14 X(30)3dq2S:5 (30)2dq2S:8 (30)1dq1S:28 (35)2dq2S:22 X(37)3dq2S:1
(40)2dq2S:19

Figure 4.19 AMTS-DC Block Computation

Figure 4.18 is a snap-shot of Figure 4.12, after the yellow and blue blocks yellow in

Figure 4.12 have been completed. Observed that in Figure 4.18, the number in white font

within the green region are the reserved blocks. Number in black font within the green

region are unreserved blocks. Block numbers in white font have the higher priority to be

executed by the slave itself. For instance, blocks 31, 39 and 29 have higher priority of

being executed by slave 3. Similarly blocks 21, 14 by Slave 2 and blocks 34 by Slave 1.

In Slave 3, by reserving blocks 31, 39, 29 to itself, Slave 3 as the fastest node will have

Univ
ers

iti
Mala

ya

40

all the remaining local blocks reserved to it. The execution of these local blocks by Slave

3 will not incur additional network cost and hence shorten the make-span. Observe that

the highlighted section in Figure 4.18 and Figure 4.19, there is a co-relation between

sections of the same color. Observed in Figure 4.19 that data movement (i.e. copying of

a block from one slave to another) is highlighted in red. More data movement implies

longer make-span. Only 3 block-movements are recorded and the make-span of AMTS-

DC is 40+5 seconds=45 seconds. The reservation mechanism in AMTS-DC managed to

improve the amount of local blocks executed by the faster node. This is not the case for

Hadoop FIFO. Hadoop FIFO has four block-movements and a make-span of 50 seconds.

Summary

In this section the task scheduler of Hadoop FIFO and DDP are analyzed to identify

areas where task scheduling could be further improved. Based on the finding a novel task

scheduler namely, Adaptive MapReduce Task Scheduler Using Dynamic Calibration

(AMTS-DC), is proposed.

Univ
ers

iti
Mala

ya

41

CHAPTER 5: EXPERIMENTAL AND SIMULATION RESULTS

In order to evaluate the performance of the proposed Adaptive MapReduce task scheduler

with dynamic calibration (AMTS-DC) mechanism proposed in chapter 4, experiments are

conducted using prototype and simulator. This chapter presents detailed experimental

setup, results and analysis of the performance of the proposed AMTS-DC against Hadoop

FIFO and DDP. Experiments are carried by varying job size and the number of computer

nodes. It is then followed by the discussion and analysis of the experimental results.

5.1 Prototype and Simulation Environment

Figure 5.1 Hadoop JobTracker (“Hadoop Job Submission Initialization”)

Univ
ers

iti
Mala

ya

42

Figure 5.2 JobTracker, TaskTracker and DataNode

The prototype is developed using Hadoop version 1.2.1 framework. We use VMware

ESXi server 5.5 and the compute/date nodes are virtual machines running Ubuntu 14.10

desktop. Figure 5.1 depicts the relationship between the JobClient and the JobTracker.

The relationship between master and slave node is shown in Figure 5.2 and Figure 5.3

depicts the actual prototype cluster.

Figure 5.3 Prototype Cluster

Univ
ers

iti
Mala

ya

43

Table 5.1 Hardware Configuration

 Machine CPU RAM Disk
Host1 HP Compaq

Elite 8300
SFF

4 CPUs * 3392
GHZ

12 GB 1 TB

Host2 HP EliteDesk
800 G1 TWR

4 CPUs * 3392
GHZ

16 GB 1 TB

Host3 HP Compaq
Elite 8300
CMT

4 CPUs * 3392
GHZ

20 GB 1 TB

Host4 Intel Core
Quad CPU
Q9400

4 CPUs * 2659
GHZ

6 GB 1 TB

The experiment environment consists of a computer cluster containing one Manager

(Jobtracker) and three workers (TaskTracker) as out-lined in Table 5.1.

Table 5.2 VM Configuration

 CPU(Hz) RAM(Byte) Network Replication

Master 5120 3072 100 Mbps 2*
Slave 1 900 3072
Slave 2 1024 3072
Slave 3 5120 3072

*Note: Replication for Hadoop FIFO and AMTS-DC

In Table 5.2, the CPU configuration of the Master node is set to the CPU speed of 5.12

GHz. In order to test the effect of local task and non-local task, the number of replication

should be always less than the number of slaves. In this prototype, the number of slave is

3 and therefore the replication is set to 2.

A simulator, namely AMST-Sim, is developed to evaluate the proposed task scheduler.

AMST-Simulator is needed since the prototype is unable to handle more complex

scenario with greater number of compute nodes and with larger input data size.

Univ
ers

iti
Mala

ya

44

5.2 Performance Evaluation Metrics.

In this section the performance of Hadoop default scheduler, DDP and the proposed

AMTS-DC schedulers are evaluated using the wordcount Hadoop application with block

size of 64 Mbyte. Data files feeding into the application are created by merging the text

files downloaded from https://www.gutenberg.org.

Experiment 1: Static environment

All compute nodes are dedicated nodes and no other programs/processes are being run

apart from the map-reduced jobs assigned to them.

Experiment 1a: Evaluating Hadoop FIFO scheduler

Using the hardware and the virtual machine configuration indicated in Table 5.1 and

5.2, the make-span of jobs with different data size is recorded

Experiment 1b: Evaluating DDP scheduler

Step1: Historical record of the relative computing speed, i.e. the ratio, of the compute-

nodes are benchmarked by running map-reduce jobs and record the make-span of the job

and the time taken by the node to complete the tasks assigned to the node.

Step2：Based on the ratio captured in the historical record, appropriate number of data

blocks is assigned to each compute node based on this ratio. More powerful nodes get

more blocks.

Experiment 1c: Evaluating AMTS-DC scheduler

Step1: Jobs assigned to the compute nodes are executed and heartbeat are transmitted

between the Job Tracker and the Task Tracker. In Hadoop, heartbeats are send to the job

Univ
ers

iti
Mala

ya

45

tracker carrying with them information such as task status, task counters, and data

read/write etc.

Step2：Based on the dynamic information captured from the heartbeat a ratio

expressing the relative computing power of each node is computed. The local blocks

within each compute node are re-assigned based on this ratio. More powerful nodes will

get more local blocks reserved.

Experiment 2: Dynamic environment

Some of the compute nodes are non-dedicated nodes. Apart from running the map-

reduced jobs assigned to them, other programs/processes as well might be running in the

nodes.

5.3 Prototype Experimental Results and AMST-Sim Calibration

Experiment 1: Static environment

Table 5.3 Hadoop FIFO

 CPU
(Hz)

data size
(MB)

Number of
Block
allocated

Blocks
completed

Average total
Completion
time (Make-
span)

Slave1 900 900 40 10 888 sec
Slave2 1024 1024 40 13
Slave3 5120 3092 40 37
Total

Block
 120 60*

* since data replication is set to 2, the number of block to be completed is half of the

total block allocated, i.e., 120/2=60 blocks.

Univ
ers

iti
Mala

ya

46

Table 5.4 DDP

 CPU(Hz) Data size
(MB)

Historical
record ratio

Number of
Block
allocated

Blocks
completed

Average total
Completion
time (Make-
span)

Slave1 900 900MB 0.15 9 9 690sec
Slave2 1024 1024MB 0.18 11 11
Slave3 5120 3092MB 0.67 40 40
Total

Block
 60* 60

Table 5.2, 5.3 and 5.4 provide details of the static environment experiment. In Table

5.4, the job to be processed by DDP is directly assigned to the compute nodes. Only one

set of data and no data replication is involved.

Table 5.5 AMTS-DC

CPU
(Hz)

Memory
(MB)

Blocks
Allocated

Blocks
completed

The total
Completion
time (Make-
span)

Slave1 900 900MB 40 9 757 sec
Slave2 1024 1024MB 40 13
Slave3 5120 3092MB 40 38
Total

Block
 120 60

In Table 5.5, note that since data replication is set to 2, the number of block to be

completed is half of the total block allocated, i.e. 120/2=60 blocks. Block allocation is

dynamically handled by HDFS
Univ

ers
iti

Mala
ya

47

Figure 5.4- 1 Make-span of Hadoop FIFO, DDP and AMTS-DC (Static Env)

Figure 5.4-1 is derived from the experimental result obtained in Table 5.3, 5.4 and 5.5.

The relative computational capacity (0.15, 0.18, 0.67) is obtained from the historical run

time. The improvement of DDP make-span over Hadoop make-span is 22%. The

improvement of AMTS-DC make-span over Hadoop make-span is 15%. In this

experiment, DDP has the best performance with the shortest make-span. This is followed

by AMTS-DC and Hadoop FIFO. DDP is able to outperform AMTS-DC because it is

able to optimize the overall block-ratio (in this case all the 60 blocks) to be assigned to

each compute node; while AMTS-DC on the other hand, only optimized part of the local

blocks (in this case about 20 blocks) within each compute node.

AMTS-DC is able to outperform Hadoop FIFO because AMTS-DC is able to reserve

some of the local tasks within the faster node. By doing so AMTS-DC is also able to cut

down the number of data block to be transferred from one compute node to the other. In

this experiment, Slave 3 of AMTS-DC and Hadoop FIFO only manage to execute 38 and

39 out of the 40 local tasks respectively. Some local tasks in Slave3 have been replicated

in Slave1 or Slave2 and these tasks had been executed on the slower nodes (either Slave1

or Slave2) instead of by Slave3. DDP is able to complete all 40 local blocks using the

888

757
690

0

100

200

300

400

500

600

700

800

900

1000

Hadoop FIFO DDP AMTS‐DC

Ti
m
e
In
 S
ec
o
n
d
s

Total Blocks:60; Relative computational
capacity(0.15,0.18,0.67); Static Env

Univ
ers

iti
Mala

ya

48

fastest node (slave3) while AMTS-DC and Hadoop FIFO only managed to finish 38 and

37 blocks respectively using the fastest node.

In this experiment when the environment is static, DDP outperforms AMTS-DC. This

may not be the case if the computing resources are dynamic as it will be shown in the

next experiment.

Experiment 2: Dynamic Environment

In this experiment, the computation environment of Slave3 is dynamic. In other words,

during the MapReduce job other processes are invoked and resulted in the reduction in

the computation power of Slave3.

Table 5.6 Hadoop (dynamic environment)

Hadoop CPU(Hz) Data
Size
(MB)

Number of
Block
allocated

Status Average total
Completion
time (Make-
span)

Slave1 900 900 40 Static 950sec
Slave2 1024 1024 40 Static
Slave3 5120 3092 40 dynamic

Table 5.7 DDP (dynamic environment)

DDP CPU(Hz) Data Size
(MB)

Historical
record
ratio*

Number
of Block
allocated

Status Average
total
Completion
time
(Make-
span)

Slave1 900 900MB 0.15 9 Static 1010sec
Slave2 1024 1024MB 0.18 11 Static
Slave3 5120 3092MB 0.67 40 dynamic

*Relative computational capacity ratio

Univ
ers

iti
Mala

ya

49

Table 5.8 AMTS-DC (dynamic environment)

AMTS-
DC

CPU(Hz) Data
Size
(MB)

Number of
Block
allocated

Status Average
total
Completion
time
(Make-
span)

Slave1 900 900 40 Static 882 sec
Slave2 1024 1024 40 Static
Slave3 5120 3092 40 dynamic

Figure 5.4- 2 Make-span of Hadoop FIFO, DDP and AMTS-DC (Dyn Env)

Figure 5.4-2 is derived from the results obtained in Table 5.6, 5.7 and 5.8. In this

experiment, DDP has the worst performance with the longest make-span. This is followed

by Hadoop FIFO and AMTS-DC. DDP is unable to perform although the block size to be

allocated is proportion to the static computation power of each node. Since the status of

Slave3 is dynamic, the computational power of Slave3 will vary from time to time. DDP

should be able to perform well should the number of block to be allocated is proportion

to the dynamic ratio of the computation power of each node instead of the static ratio as

the case for AMTS-DC. AMTS-DC has the best performance in this experiment.

950

1010

882

800

850

900

950

1000

1050

Hadoop FIFO DDP AMTS‐DC

Ti
m
e
In
 S
ec
o
n
d
s

Total Blocks:60; Relative computational
capacity(0.15,0.18,0.67); Dynamic Env

Univ
ers

iti
Mala

ya

50

Since the prototype is unable to handle more complex scenario with greater number of

compute nodes and with larger input data size. AMST-Sim is developed so that more

complex scenario could be used to test the hypothesis. AMST-Sim is a discrete event

simulator developed using Java programming language. The high-level pseudocode of

the main method of AMST-Sim is as follows:

while (moreTask) {
 int n;
 for (int i = 1; i < numberOfQueue; i++) {
 if (ticks == fireNextQ[i]) {
 if (!q[i].isEmpty()) {
 n = q[i].dequeue();
 fireNextQ[i] += fire[i]; // process one data block}}}
 ticks++;
 if (Every Queue is isEmpty) {
 moreTask = false;}}

Figure 5.4 AMST-Sim (Pseudocode)

In order to improve the accuracy of AMST-Sim, the simulator is calibrated using the

output from the prototype. Measurements obtained from prototype experiment 1 is used

to configure the simulator parameters such as make-span, network cost, value of relative

computing capacity and so on. Table 5.9-1 and 5.9-2 provide details of the simulation

configuration.

Table 5.9- 1 Nodes and Replication

Compute-Nodes
(Slaves)

Replication Task size
(64MB/Block)

3 2 60Blocks

Table 5.9- 2 Relative computational capacity of nodes

Compute Node Relative computation power

Slave1 1 (slowest)

Slave2 1.2

Univ
ers

iti
Mala

ya

51

Slave3 4.8 (fastest)

Table 5.9- 3 Results obtained from Prototype Vs Results obtained from
Simulation

Scheduler Prototype
Average

Completion time

 (Make-span)
seconds

Simulation Average
Completion time

 (Make-span) seconds

Difference
(%)

Hadoop
FIFO

888 882 1%

AMTS-DC 757 749 1%
DDP 690 699 -1%

Figure 5.5 Comparison of results from Prototype and Simulation

As indicated in Table 5.9-3 and depicted in Figure 5.6, within the experiment error,

the make-span obtained from the simulation is very close to that from the prototype with

an overall error of -1% to 1%. For most cases, the make-span produced by the simulator

is very close to the make-span obtained from the prototype experiments. Note that due to

the used of a very small data size (only 60 blocks) in the calibration, the relative

performance of the task schedulers may not reflects their relative strength.

888

757
690

882

749
699

‐200

0

200

400

600

800

1000

Hadoop FIFO AMTS‐DC DDP

Ti
m
e
In
 S
ec
o
n
d
s

Prototype results vs Simulation results Total Blocks:60;
Relative computational capacity(1,1.2,4.8); Static Env

Prototype Average Completion time (Make‐span) seconds

Simulation Average Completion time (Make‐span) seconds

Difference(%)

Univ
ers

iti
Mala

ya

52

5.4 Simulation results of Hadoop, DDP and AMTS-DC

Experiment 3

Figure 5.6 Make-span of Hadoop FIFO, DDP and AMTS-DC (Static Env)

Figure 5.7 Block movement of Hadoop FIFO, DDP and AMTS-DC (Static Env)

In this experiment, all node are set to the same computational power of 2. As expected,

as shown in Figure 5.7, all schedulers almost have similar make-span of around 800 (799

to 839) seconds. As shown in Figure 5.8, there is one block movement for Hadoop FIFO

and AMTS-DC. This accounts for why both Hadoop FIFO and AMTS-DC has longer

839

799

839

770

780

790

800

810

820

830

840

850

Hadoop FIFO DDP AMTS‐DC

Ti
m
e
In
 S
ec
o
n
d
s

Total Blocks:60; Relative computational capacity(2,2,2); Static
Env

0

0.2

0.4

0.6

0.8

1

1.2

Hadoop FIFO DDP AMTS‐DC

N
u
m
b
er
 o
f
B
lo
ck
 M

o
ve
d

Moved Block

Univ
ers

iti
Mala

ya

53

make-span of 839 seconds. There is no block movement for DDP. This is expected as

DDP has optimized the data placement of all blocks.

Experiment 4 & 5

Figure 5.8 Make-span of Hadoop FIFO, DDP and AMTS-DC in different
Capacity (Static Env)

Figure 5.9 Block movement of Hadoop FIFO, DDP and AMTS-DC with
capacity setting in Figure 4.8 (Static Env)

2796

2368 2458

1857

1541
1646

0

500

1000

1500

2000

2500

3000

Hadoop FIFO DDP AMTS‐DC

Ti
m
e
In
 S
ec
o
n
d
s

Make‐span in seconds; Total Block:300; Rep:2; Static Env.

capacity(1,2,7) capacity(1,3,11)

11

0

4

14

0

6

0

2

4

6

8

10

12

14

16

Hadoop FIFO DDP AMTS‐DC

N
u
m
b
er
 o
f
B
lo
ck
 M

o
ve
d

Block Moved

series1 series2)

Univ
ers

iti
Mala

ya

54

In these experiment, all nodes have different computation power. The computing

power of slave 1, slave 2 and slave 3 are 1, 2, 7 respectively. It can be seen that Hadoop

has the longest make-span and most data movement of 11. This is followed by AMTS-

DC with data movement of 4. DDP remains the best with the shortest make-span and no

data movement between the compute nodes. In experiment 5, the different in

computational power among the nodes is even greater. The different in the computing

power of slave 1, slave 2 and slave 3 are 1, 3, and 11 respectively. It can be seen that

Hadoop again has the longest make-span of 1857 seconds and with the most data

movement (14 blocks are moved). This is followed by AMTS-DC with shorter make-

span of 1646 seconds (only 6 blocks are moved). DDP remains the best with the shortest

make-span and no data movement between the compute nodes.

Experiment 6 & 7

Figure 5.10 Make-span of Hadoop FIFO, DDP and AMTS-DC with Different
Capacity (Dynamic Env)

3022

3371

2785

1955
2235

1878

0

500

1000

1500

2000

2500

3000

3500

4000

Hadoop FIFO DDP AMTS‐DC

Ti
m
e
in
 S
ec
o
n
d
s

Make‐span in seconds; Total Block:300; Rep:2; Dynamic Env.

capacity (1,2,7) capacity (1,3,11)
Univ

ers
iti

Mala
ya

55

Figure 5.11 Block movement of Hadoop FIFO, DDP and AMTS-DC with
Different Capacity (Dynamic Env)

Experiment 6 is similar to experiment 4 except that the computational power is

dynamic. The speed of the fastest node is changed in the middle of computation. The

speed is reduced from 7 to 6, i.e. by a small factor of 1/7. The make-span for all schedulers

has increased. But it can be seen that now DPP Hadoop has the worst performance with

the longest make-span of 3371 seconds and with no data movement (data are not moved

in DDP, the replication number for DDP is 1). This means for DDP, the remaining tasks

has to be completed by the now “slower” fastest node (slave 3) alone. This performance

is 10% worse than that of Hadoop FIFO. This extended the DDP make-span. This is

followed by Hadoop. The performance of the proposed AMTS-DC is the best with the

shortest make-span and only one data movement between the compute nodes.

Experiment 7 is similar to experiment 5 except that the computational power is

dynamic. The speed of the fastest node is reduced in the middle of the computation. The

speed is reduced from 11 to 10, i.e. by a smaller factor of 1/11. It can be seen that now

DPP again has the longest make-span of 2235 seconds and with no data movement (data

are not moved in DDP, since the replication number for DDP is 1). This means for DDP,

8

0

1

6

0

3

0

1

2

3

4

5

6

7

8

9

Hadoop FIFO DDP AMTS‐DC

N
u
m
b
er
 o
f
B
lo
ck
 M

o
ve
d

Block Moved

Block Moved Block Moved

Univ
ers

iti
Mala

ya

56

the remaining tasks has to be completed by the now “slower” fastest node (slave 3) alone.

This extended the DDP make-span. This is followed by Hadoop. The performance of

AMTS-DC is the best with the shortest make-span and only 3 data movement between

the compute nodes.

Summary

In this section the performance of Hadoop FIFO, DDP and AMTS-DC are compared

and analyzed. In homogeneous environment all the task schedulers (i.e. Hadoop FIFO,

DDP and AMTS-DC), within experimental error, has the equal performance. In static

heterogeneous environment, the performance of the scheduler, in descending order, are

DDP, the proposed AMTS-DC and Hadoop FIFO. Lastly in dynamic heterogeneous

environment where computing capacity of node varies with time, the proposed AMTS-

DC has the best performance followed by Hadoop FIFO. DDP tailed the list as it is unable

to adapt to dynamic changing environment.

Univ
ers

iti
Mala

ya

57

CHAPTER 6: ENHANCED ADAPTIVE MAPREDUCE TASK SCHEDULER

USING DYNAMIC CALIBRATION (EAMTS-DC)

This chapter discusses the limitations faced by the AMTS-DC mechanism proposed in

chapter 4 and the motivation to enhance AMTS-DC.

6.1 Limitation of AMTS-DC

For ease of discussion, Figure 4.12, 4.15 and 4.16 are repeated here as Figure 6.1-1,

6.1-2 and 6.1-3.

Slave 3

Slave 2

Slave 1

06 02 29 03 27 37 33 34 28 07 1930 16 08 10 25 13 05 11 36 01 1421 22 3139

24 25 38 07 37 21 14 20 13 23 32 34 05 08 12 22 35 01 09 04 1817 15 26 28 19

15 16 23 10 20 04 33 32 18 30 3111 12 38 27 26 03 35 09 36 17 06 0224 39 29

Figure 6.1- 1 AMTS-DC Original Task List

(0)3dq3:15 (0)2dq2:24 (0)1dq1:6 (1)3dq3:16 (2)3dq3:23 (3)3dq3:10 (4)3dq3:20
(5)3dq3:4 (5)2dq2:25 (6)3dq3:33 (7)3dq3:32 (8)3dq3:18 (9)3dq3:30 (10)3dq3:11
(10)2dq2:7 (10)1dq1:2 (11)3dq3:12 (12)3dq3:38 (13)3dq3:27 (14)3dq3:26
(15)3dq3:3 (15)2dq2:37 (16)3dq3:35 (17)3dq3:9 (18)3dq3:36 (19)3dq3:17
(20)3dq3:31 (20)2dq2:21 (20)1dq1:34 (21)3dq3:39 (22)3dq3:29 X(23)S3dq2S:13
(25)2dq2:14 X(30)3dq2S:5 (30)2dq2S:8 (30)1dq1S:28 (35)2dq2S:22 X(37)3dq2S:1
(40)2dq2S:19

Figure 6.1- 2 AMTS-DC Block Processed Time

Figure 6.1- 3 AMTS-DC Completed list and Uncompleted list at time=19 sec

Univ
ers

iti
Mala

ya

58

Figure 6.1- 1, 6.1- 2 and 6.1- 3, indicate that some local blocks have to be processed

before any local blocks can be reserved. After the value relative computation capacity of

the nodes are returned via the heartbeat, only 13 blocks (these blocks are highlighted in

green) are left to be processed as depicted in Figure 6.1-3.

34

31 39 29

21 14 20 13 1817 32 34 05 08 12 22 35 01 09 04 1523 26 28 19

29 03 0537 33 28 07 21 30 16 08 10 25 13 1127 36 01 39 19 14 22 31

NULLSlave 3

Slave 2

Slave 1

Slave 3

Slave 2

Slave 1

29 03 27 37 33 34 28 07 21 30 2208 10 25 13 05 11 36 01 39 19 3116 14

21 14 20 13 23 17 32 34 05 08 22 35 01 09 04 18 15 26 28 1912

06 31 02 39 29

Figure 6.1- 4 Blocks that are reserved by AMTS-DC

The uncompleted list are the candidates which could be reserved are depicted in Figure

6.1-4. It can be seen that the number of local block that could be reserved is very limited.

In this case the total number of local block which can be reserved is only 6 (brown color

in Figure 6.1-4).

6.2 Motivation to enhance AMT-DC

Supposing that the relative capacity of the compute nodes are known prior to the

processing of any local blocks, then all local blocks are potential candidates that could be

reserved by the compute node. A possible scenario is depicted in Figure 6.2 where the

brown blocks are reserved blocks.

Univ
ers

iti
Mala

ya

59

Figure 6.1 More blocks could be reserved if historical run record is used

6.3 Proposed Enhanced AMTS-DC (EAMTS-DC)

Supposing historical record of the relative computing capacity of the compute-nodes

are known. The historical value can be used at the initialization stage, prior to the

processing of the blocks.

Proc Initialize():
1 Begin
2 If Not HisRecExist // No history, set all to 1
3 Set {cS1,cS2,… ,cSN} to {1,1,..1}
4 Else
 //Obtain from history the value of c[1],c[2],… ,c[N]
5 RelCapOfSlave:={c[1],c[2],… ,c[N]}
6 For Each slave node S where S:={1,2,..,n}
7 //Get remaining unprocessed local blocks: remUB
8 Number of reserved block :=min(c[S]/Sum(c[1],c[2],…

,c[N])*remUB
9 Number of non-reserved block:=remUB-Number of reserved

block
10 Update reserved blocks
11 Update non-reserved blocks
12 End For
13 End IF
14 End

Figure 6.3- 1 EAMTS-DC Algorithm (Initialization)

Figure 6.3-1 depicts the Initial Data Allocation algorithm of EAMTS-DC. The rest of

the EAMTS-DC is similar to the AMTS-DC Algorithm depicted in Figure 4.6-2, 4.6-3

and 4.6-4. For any job, if the historical record of the run time capacity of the nodes are

known, then the record will be used at the initial stage of the job being executed, otherwise

a general weightage of 1 will be used. A possible scenario is depicted in Figure 6.2 above

where the brown blocks are reserved blocks.

Univ
ers

iti
Mala

ya

60

Details analysis of EAMTS-DC

A more detail analysis of EAMTS-DC is provided using the example below.

Figure 6.3- 2 EAMTS-DC Original Task List

Slave 3

Slave 2

Slave 1

06 02 29 03 27 37 33 34 28 07 1930 16 08 10 25 13 05 11 36 01 1421 22 3139

24 25 38 07 37 21 14 20 13 23 32 34 05 08 12 22 35 01 09 04 1817 15 26 28 19

15 16 23 10 20 04 33 32 18 30 3111 12 38 27 26 03 35 09 36 17 06 0224 39 29

n0

n1

: Reserved

: Non ‐ reserved

Figure 6.3- 3 EAMTS-DC reserved list

Since the reservation of EAMTS-DC starts from the very beginning by assigning

proportional amount of local task to each slave, the number of local task reserved will be

higher for each slave. By applying the initial data allocation algorithm to the data blocks

in Figure 6.3-2, we get the reserved blocks which are indicated in brown in Figure 6.3-3.

The number of block reserved are 26, 6 and 4 for Slave 1, Slave 2 and Slave 3

respectively. 35 blocks out of a total of 39 blocks are reserved. DDP as a contrast, are

able to “reserve” all the 39 blocks. In theory the maximum number of block which could

be reserved by Slave 3 is equal to (capacity of Slave 3)/ (total capacity)*(total

blocks)=10/(1+2+10)*total blocks= 10/13*39=30 blocks. If Slave 3 is able to reserve 30

blocks, the total number of block that could be reserved by EAMTS-DC will be 39 (i.e.

30+6+3). However, since the number of local task for Slave 3 is only 26, only 26 blocks

Univ
ers

iti
Mala

ya

61

could be reserved for Slave 3. DDP is able to out-perform EAMTS-DC in static

environment since it could reserve the maximum number of blocks (i.e. all the blocks).

Slave 3

Slave 2

Slave 1

10
s

20
s

3
0
s

Execution Time

25
s

34 28

Completed Blocks(Black Block)

15 16 23 10 20 04 33 32 18 30

05 01 19 22

05 22 01 1913

NULLSlave 3

Slave 2

Slave 1

Data Block Movement starts when Slave3 run out of local blocks

34 28 08 01

NULL

NULL

3915 16 23 10 20 04 33 32 18 30 11 12 38 27 26 03 35 09 36 17 06 05‐ slave2 19‐ slave22924 31 02

25 07 37 21 14 13 22

11 12 38 27 26 03 35 09 3624

17 06 31 02 39 29 05 19

08 01

2125 07 37 14 13 22

Figure 6.3- 4 EAMTS-DC- Reserved block list at time 25 second

Figure 6.3- 4 shows the situation at time 25 second. At this time Slave 3 which is the

fastest node, runs out of data block. Data block 05 and 19 are then moved from Slave 2

to Slave 3. Slave 3 will then process data block 05 and 19 for processing.

(0)3dq3:15 (0)2dq3:25 (0)1dq1:34 (1)3dq3:16 (2)3dq3:23 (3)3dq3:10 (4)3dq3:20

(5)3dq3:4 (5)2dq3:7 (6)3dq3:33 (7)3dq3:32 (8)3dq3:18 (9)3dq3:30 (10)3dq3:24

(10)2dq3:37 (10)1dq1:28 (11)3dq3:11 (12)3dq3:12 (13)3dq3:38 (14)3dq3:27

(15)3dq3:26 (15)2dq3:21 (16)3dq3:3 (17)3dq3:35 (18)3dq3:9 (19)3dq3:36

(20)3dq3:17 (20)2dq3:14 (20)1dq1:8 (21)3dq3:6 (22)3dq3:31 (23)3dq3:2 (24)3dq3:39

(25)3dq3:29 (25)2dq3:13 X(26)3dq2S:5 2dq2:22 (30)1dq1:1 X(33)3dq2S:19

Figure 6.2 EAMTS-DC Block Computation

Univ
ers

iti
Mala

ya

62

As highlighted in red in Figure 6.4, only two block-movements are recorded. The

number of block-movement by DDP, EAMTS-DC, AMTS-DC and Hadoop are 0, 2, 3

and 4 respectively. This corresponding to the efficiency of the task schedulers. DDP is

more efficient than EAMTS-DC. EAMTS-DC is more efficient than AMTS-DC and

Hadoop the least.

6.4 Evaluation of AMTS-DC and EAMTS-DC

This section presents detailed simulation results and analysis of the performance of the

proposed AMTS-DC against EAMTS-DC. Experiments are carried out by varying job

size, the capacity of compute nodes and the number of computer nodes.

Figure 6.3 Make-span of AMTS-DC and EAMTS-DC with different Capacity
(Static Env)

2458

1646

2390

1604

0

500

1000

1500

2000

2500

3000

capacity(1,2,7) capacity (1,3,11)

Ti
m
e
In
 S
ec
o
n
d
s

Make‐span in seconds; Total Block:300; Rep:2;Static Env.

AMTS‐DC EAMTS‐DC

Univ
ers

iti
Mala

ya

63

Figure 6.4 Block Moved of AMTS-DC and EAMTS-DC with different Capacity
(Static Env)

In Figure 6.5 and Figure 6.6, it can be seen that EAMTS-DC has a shorter make-span

and data block movement compared to AMTS-DC. This is because EAMTS-DC uses

historical data from the beginning while AMTS-DC need time to “warm-up” and wait for

the heartbeat to return the ratio of the computing power of the compute-nodes.

Figure 6.5 Make-span of AMTS-DC and EAMTS-DC with different Capacity
(Dynamic Env)

4

6

3

5

0

1

2

3

4

5

6

7

BlockMoved BlockMoved

N
u
m
b
er
 o
f
B
lo
ck
 M

o
ve
d

Block Moved

AMTS‐DC EAMTS‐DC

2857

1878

2807

1857

0

500

1000

1500

2000

2500

3000

capacity(1,2,7) capacity (1,3,11)

Ti
m
e
In
 S
ec
o
n
d
s

Make‐span in seconds; Total
Block:300; Rep:2;Dynamic Env.

AMTS‐DC EAMTS‐DC

Univ
ers

iti
Mala

ya

64

Figure 6.6 Block Moved of AMTS-DC and EAMTS-DC with different Capacity
(Dynamic env)

In Figure 6.7 and 6.8, it can be seen that EAMTS-DC again has both shorter make-

span and lesser data block movement compared to AMTS-DC.

Figure 6.7 Make-span of Hadoop FIFO, DDP and AMTS-DC in 5 Slaves cluster
and replication of 3 (Static Env)

2

3

1

2

0

0.5

1

1.5

2

2.5

3

3.5

BlockMoved BlockMoved

N
u
m
b
er
 o
f
B
lo
ck
 M

o
ve
d

Block Moved

AMTS‐DC EAMTS‐DC

893 800 813

2763

2400 2413

0

500

1000

1500

2000

2500

3000

Hadoop FIFO DDP EAMTS‐DC

Ti
m
e
In
 S
ec
o
n
d
s

Make‐span in seconds; Slave:5; Rep:3;
rel Cap(1,2,6,8,24); Static Env.

AMTS‐DC EAMTS‐DC
Univ

ers
iti

Mala
ya

65

Figure 6.8 Block movement of Hadoop FIFO, DDP and AMTS-DC in 5 slaves
cluster and replication of 3 (Static Env)

In Figure 6.9 and 6.10, the setup is 5 slaves with 3 replications. Since it is a static

environment, DDP has the best overall performance in terms of make-span and data

movement. EAMTS-DC is in the middle. The make-span and data movement of Hadoop

FIFO are the poorest. The make-span and data movement of Hadoop FIFO are 2763

seconds and 34 respectively.

10

0
2

34

0
2

0

5

10

15

20

25

30

35

40

Hadoop FIFO DDP EAMTS‐DC

N
u
m
b
er
 o
f
B
lo
ck
 M

o
ve
d

Block Moved

AMTS‐DC EAMTS‐DC

Univ
ers

iti
Mala

ya

66

Figure 6.9 Make-span of Hadoop FIFO, DDP and EAMTS-DC in 5 Slaves cluster
and replication of 3 (Dynamic Env)

Figure 6.10 Block movement of Hadoop FIFO, DDP and EAMTS-DC in 5 slaves
cluster and replication of 3 (Dynamic Env)

In Figure 6.11 and Figure 6.12, the setup is 5 slaves with replication set to 3. Since it

is a dynamic environment, DDP has the worst overall make-span performance with a

value of 1596 seconds and 4796 seconds in experiment 14 and 15 respectively (no data

movement for DDP as the replication for DDP is 1). The proposed EAMTS-DC has the

best overall performance with a make-span of make-span of 843 seconds and 2710

1083
1596

843

3203

4796

2710

0

1000

2000

3000

4000

5000

6000

Hadoop FIFO DDP EAMTS‐DC

Ti
m
e
In
 S
ec
o
n
d
s

Make‐span in seconds; Slave:5; Rep:3;
rel Cap(1,2,6,8,24); Dynamic Env.

AMTS‐DC EAMTS‐DC

4

0

2

7

0 0
0

1

2

3

4

5

6

7

8

Hadoop FIFO DDP EAMTS‐DC

N
u
m
b
er
 o
f
B
lo
ck
 M

o
ve
d

Block Moved

AMTS‐DC EAMTS‐DC

Univ
ers

iti
Mala

ya

67

seconds in experiment 14 and 15 respectively. EAMTS-DC can do very well because it

is able to reduce data movement to minimum. The data movements are 2 blocks and 0

block for experiment 14 and 15 respectively.

Summary

In this section AMTS-DC is analyzed to identify areas where task scheduling could be

further improved. Based on the finding, an enhanced version of AMTS-DC namely,

Enhanced Adaptive MapReduce Task Scheduler Using Dynamic Calibration (EAMTS-

DC), is proposed by augmenting AMTS-DC with historical run time record. Experimental

results show that EAMTS-DC has better performance than AMTS-DC in terms of make-

span and data transfer. The access to historical run time relative computing capacity

allows EAMTS-DC to start reservation early and thus more local data blocks can be

reserved. EAMTS-DC effectively reduced data movement and the make-span.

Univ
ers

iti
Mala

ya

68

CHAPTER 7: CONCLUSION

7.1 Achievement

MapReduce is a software framework that allows for easy deployment of parallel

applications relating to large amount of data set using large computing cluster. Literature

survey conducted enables us to define the problems that exists in heterogeneous

environment MapReduce task schedulers. The default MapReduce implementation in

Hadoop is based on the assumption of homogeneous environment in which every

compute node has the same capacity. However, in a heterogeneous environment with

compute node of varying capacity, such assumption will actually hinder MapReduce

performance.

To address this problem, many works have been proposed. Some works demonstrated

that the time taken to complete a MapReduce job could be reduced drastically if data files

to be processed are located near to the compute nodes and the data files allocated is

proportional to the computing capacity of the node (Lee et al., 2014)

The strength of these approaches lies in the use of historical data. Historical records of

all MapReduce jobs are recorded and the proportion of data files to be allocated is

calculated based on the historical record. These approaches work well and are very

efficient should the environment remains static and unchanged. However, when the

environment becomes more dynamic and non-static, the performance of these approaches

diminish quickly.

Major contributions of the thesis are as follows:

i. AMTS-DC Task Scheduler algorithm

ii. EAMTS-DC Task Scheduler algorithm

Univ
ers

iti
Mala

ya

69

iii. A prototype of AMTS-DC and EAMTS-DC is developed using Hadoop to

show the feasibility of the proposed mechanism by extending Hadoop.

AMTS-DC utilizes the heartbeat to dynamically estimate the computing capacity of

the compute nodes and rescheduled local task to efficiently process a MapReduce job.

AMTS-DC has been implemented in Hadoop and in a simulator (AMST-Sim).

Experiments were conducted for AMTS-DC to find out the performance of AMTS-DC

in terms of make-span, data movement (data transmission during file transfer from one

compute node to the other) by varying the job size and the relative computing capacity

among the compute nodes.

It has been observed that for static heterogeneous environment, DDP outperformed

Hadoop FIFO and AMTS-DC by having shorter make-span and no data movement

between compute nodes. However, as the heterogeneous environment becomes more

dynamic, both Hadoop FIFO and AMTS-DC are able to adapt and their performance

becomes better. DDP which is designed for static environment is unable to adapt to the

dynamic situation and lagged behind and ended with the worse performance. The

proposed AMTS-DC has the best performance.

The task locality of AMTS-DC has been further optimized to EAMTS-DC by

incorporating historical information of relative computing capacity of the compute-node

during the initial stage of the job. EAMTS-DC is evaluated in terms of make-span and

data transfer. Experiment results show that in dynamic heterogeneous environment, both

make-span and data transfer have been reduced in EAMTS-DC when compared to

AMTS-DC.

Univ
ers

iti
Mala

ya

70

7.2 Future Work

The following research directions can be focused in future to further enhance the

performance of the proposed AMTS-DC and EAMTS-DC. The Inclusion of a prediction

model to predict the remote blocks to be processed and these blocks could be pre-fetch to

reduce network communication time in terms of data block movement between blocks.

Soft computing framework such as fuzzy logics could be used in the modelling and

inferencing of the computation capacity of the compute nodes and the dynamic state of

the compute-node.

Univ
ers

iti
Mala

ya

71

REFERENCES

Abad, C. L., Lu, Y., & Campbell, R. H. (2011). DARE: Adaptive Data Replication for
Efficient Cluster Scheduling. 2011 IEEE International Conference on Cluster
Computing.

Anjos, J. C. S., Carrera, I., Kolberg, W., Tibola, A. L., Arantes, L. B., & Geyer, C. R.

(2015). MRA++: Scheduling and data placement on MapReduce for
heterogeneous environments.Future Generation Computer Systems, 42, 22-35.

Apache Hadoop (2017). Available from: <http://hadoop.apache.org.>[10 August
2017].

Brinkmann, A., Effert, S., & Heide, F. M. a. d. (2007). Dynamic and Redundant Data

Placement. 27th International Conference on Distributed Computing Systems
(ICDCS '07).

Cheng, D., Rao, J., Guo, Y., & Zhou, X. (2014). Improving MapReduce performance in

heterogeneous environments with adaptive task tuning. Proceedings of the 15th
International Middleware Conference, Bordeaux, France.

Chen, Q., Zhang, D., Guo, M., Deng, Q., & Guo, S. (2010). SAMR: A Self-adaptive

MapReduce Scheduling Algorithm in Heterogeneous Environment. 2010 10th
IEEE International Conference on Computer and Information Technology.

Dai, X., & Bensaou, B. (2016). Scheduling for response time in Hadoop MapReduce.

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large
clusters.Commun. ACM, 51(1), 107-113

Divya, M., & Annappa, B. (2015). Workload characteristics and resource aware

Hadoop scheduler. 2015 IEEE 2nd International Conference on Recent Trends
in Information Systems (ReTIS).

Elkholy, A. M., & Sallam, E. A. H. (2014). Self adaptive Hadoop scheduler for

heterogeneous resources. 2014 9th International Conference on Computer
Engineering & Systems (ICCES).

Gu, R., Yang, X., Yan, J., Sun, Y., Wang, B., Yuan, C., & Huang, Y. (2014). SHadoop:

Improving MapReduce performance by optimizing job execution mechanism in
Hadoop clusters. Journal of Parallel and Distributed Computing, 74(3), 2166-
2179.

He, C., Lu, Y., & Swanson, D. (2011). Matchmaking: A New MapReduce Scheduling

Technique. Proceedings of the 2011 IEEE Third International Conference on
Cloud Computing Technology and Science.

Jiong, X., Shu, Y., Xiaojun, R., Zhiyang, D., Yun, T., Majors, J., Xiao, Q. (2010,).

Improving MapReduce performance through data placement in heterogeneous
Hadoop clusters. 2010 IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW).

Univ
ers

iti
Mala

ya

72

Lee, C.-W., Hsieh, K.-Y., Hsieh, S.-Y., & Hsiao, H.-C. (2014). A Dynamic Data

Placement Strategy for Hadoop in Heterogeneous Environments. Big Data
Research, 1, 14-22.

Lee, L.-W., Scheuermann, P., & Vingralek, R. (2000). File Assignment in Parallel I/O

Systems with Minimal Variance of Service Time. IEEE Trans. Comput., 49(2),
127-140.

Madathil, D. K., Thota, R. B., Paul, P., & Tao, X. (2008). A static data placement

strategy towards perfect load-balancing for distributed storage clusters. 2008
IEEE International Symposium on Parallel and Distributed Processing.

Mao, H., Hu, S., Zhang, Z., Xiao, L., & Ruan, L. (2011). A Load-Driven Task Scheduler

with Adaptive DSC for MapReduce.

Polo, J., Carrera, D., Becerra, Y., Steinder, M., & Whalley, I. (2010). Performance-

driven task co-scheduling for MapReduce environments.

Qutaibah, A., Alqudah, O., Jararweh, Y., & Yaseen, Q. (2014). Multi-threading based

Map Reduce tasks scheduling.

Selvarani, S., & Sadhasivam, S. (2010). Improved cost-based algorithm for task

scheduling in cloud computing.

Tang, Z., Zhou, J., Li, K., & Li, R. (2013). A MapReduce task scheduling algorithm for

deadline constraints (Vol. 16).

Tom White.(2009). Hadoop: The Definitive Guide, O’Reilly.

Uysal, M. Ulus, T, (2007). A Threshold Based Dynamic Data Allocation Algorithm-A
Markov Chain Model Approach. Journal of Applied Sciences, 7: 165-174.

Verma, A., Cherkasova, L., & Campbell, R. H. (2012). Two Sides of a Coin: Optimizing

the Schedule of MapReduce Jobs to Minimize Their Make-span and Improve
Cluster Performance. 2012 IEEE 20th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems.

Wang, W., Zhu, K., Ying, L., Tan, J., & Zhang, L. (2016). MapTask scheduling in

mapreduce with data locality: throughput and heavy-traffic
optimality. IEEE/ACM Trans. Netw., 24(1), 190-203.

Xu, Y., Cai, W. (2015). Hadoop Job Scheduling with Dynamic Task Splitting. 2015

International Conference on Cloud Computing Research and Innovation
(ICCCRI).

Xu, Y., Li, K., Hu, J., & Li, K. (2014). A genetic algorithm for task scheduling on

heterogeneous computing systems using multiple priority queues. Information
Sciences, 270, 255-287.

Univ
ers

iti
Mala

ya

73

Yao, Y., Tai, J., Sheng, B., & Mi, N. (2013). Scheduling heterogeneous MapReduce
jobs for efficiency improvement in enterprise clusters. 2013 IFIP/IEEE
International Symposium on Integrated Network Management (IM 2013).

Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R., & Stoica, I. (2008). Improving

MapReduce performance in heterogeneous environments. Proceedings of the 8th
USENIX conference on Operating systems design and implementation, San
Diego, California.

Univ
ers

iti
Mala

ya

