

REAL-TIME DENIAL OF SERVICE ATTACK
DETECTION AND MITIGATION ON CONTROLLER IN

SOFTWARE DEFINED NETWORK ENVIRONMENT

BILAL ISHFAQ

FACULITY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

iti
Mala

ya

REAL-TIME DENIAL OF SERVICE ATTACK
DETECTION AND MITIGATION ON CONTROLLER

IN SOFTWARE DEFINED NETWORK
ENVIRONMENT

BILAL ISHFAQ

DISSERTATION SUBMITTED IN PARTIAL
FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF COMPUTER SCIENCE

FACULITY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

iti
Mala

ya

iii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Bilal Ishfaq

Registration/Matric No: WGA140052

Name of Degree: MASTER OF COMPUTER SCIENCE

Title of Dissertation: Real-Time Denial of Service Attack Detection and

Mitigation on Controller in Software Defined Network Environment.

Field of Study:

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair

dealing and for permitted purposes and any excerpt or extract from, or
reference to or reproduction of any copyright work has been disclosed
expressly and sufficiently and the title of the Work and its authorship have
been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that
the making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the
copyright in this Work and that any reproduction or use in any form or by any
means whatsoever is prohibited without the written consent of UM having
been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed
any copyright whether intentionally or otherwise, I may be subject to legal
action or any other action as may be determined by UM.

Candidate’s Signature Date:

Date:

Subscribed and solemnly declared before,

Witness’s Signature

Name:

Designation:

Univ
ers

iti
Mala

ya

iv

ABSTRACT

Software Defined Network (SDN) decouples the control plane from the data plane to

provide logically centralized control of the network. The control plane is considered as a

brain of the network that controls the entire network. Due to such a unique feature, the

control plane becomes the central point of attraction to different adversaries in SDN. If

the controller is malfunctioned by the attacker than the whole operation of the SDN will

be affected. The DoS attack is one of the attacks which affect the controller in the

control plane in terms of network and computational resources. In this work, the focus is

on the computational aspect of the controller and proposed a solution which assists to

detect the attack at its early occurrence. The limitations in early proposed methods, such

as early detection of DDoS attack and time-based DDoS attack detection methods, only

detect the attack at controller, however it does not provide any information about its

solution, such as how to handle these attacks. The objective of this study is to protect

the SDN controller from DoS attack that will prevent the controller from being

unreachable. The proposed technique not only detects any DoS attacks but also mitigate

in real-time. This proposed technique is a lightweight solution which consumes less

controller resources in detecting and mitigating the DoS attack. The DoS policy of the

attack is implemented which blocks the traffic coming from the malicious node in SDN.

Univ
ers

iti
Mala

ya

v

ABSTRAK

Software Defined Network (SDN) memisahkan planar kawalan daripada planar data

untuk menyediakan rangkaian kawalan pusat yang logik. Planar kawalan berfungsi

sebagai pusat rangkaian yang mengawal seluruh rangkaian. Di sebabkan oleh ciri yang

unik tersebut,lapisan kawalan menjadi titik utama telah menarik serangan keatas SDN.

Sekiranya pusat kawalan diserang oleh penyerang, maka kesemua operasi SDN akan

terjejas. Penyerang DoS merupakan salah satu penyerang yang akan mempengaruhi

pusat kawalan sumber rangkaian dan komputasi di planar kawalan. Dalam kerja kami,

kami tertumpu pada aspek komputasi pada pusat kawalan dan mencadangkan

penyelesaian yang dapat membantu mengesan penyerang pada peringkat awal. Kaedah

yang dicadangkan sebelum ini, seperti pengesan awal penyerang DDoS dan kaedah

pengesan penyerang DDoS berdasarkan masa mempunyai batasan kerana mereka hanya

berupaya mengesan penyerang di pusat kawalan. Di samping itu, kaedah-kaedah

tersebut tidak berupaya menyediakan sebarang maklumat tentang cara menyelesaikan

dan mengendali serangan. Objektif kajian kami adalah untuk melindungi pusat kawalan

SDN daripada serangan DoS yang akan menghalang pusat kawalan daripada menerima

maklumat daripada sumber. Kaedah yang dicadangkan oleh kami bukan sahaja dapat

mengesan segala penyerang DoS malah dapat mengurangkan penyerang di masa

sebenar. Kaedah yang dicadangkan merupakan penyelesaian yang mudah kerana ia

mengurangkan pengunaan sumber daripada pusat kawalan dalam mengesan dan

mengurangkan serangan DoS. Kami telah melaksanakan polisi serangan DoS dan

menghalang laluan trafik daripada nod yang berniat jahat di SDN.

Univ
ers

iti
Mala

ya

vi

ACKNOWLEDGEMENTS

First of all, I am thankful to Almighty Allah who has given me the power to study. I

would like to offer special thanks to my supervisor: Dr. Rosli Salleh for his invaluable

guidance, supervision, and encouragement to me throughout this research. He not only

provided me helpful suggestions, but also accepted responsibility to oversee this

research, and guided me to the successful completion of this thesis. This thesis would

not have been produced without his invaluable advice, excellent knowledge, unceasing

support and enormous patience.

I would like to express my sincerest gratitude and appreciation to my parents for

their endless love and support during my life. Without their moral support, this

dissertation would never have been completed. Last but not least, to my all sisters, their

love and encouragements made this thesis possible. I would like to express my deep

appreciation to my dear lab friends, who provided so much support and encouragement

throughout this research and studies process. I wish them all the best in their future

undertaking.

Univ

ers
iti

Mala
ya

vii

TABLE OF CONTENTS

ABSTRACT .. IV

ABSTRAK .. V

ACKNOWLEDGEMENTS ... VI

TABLE OF CONTENTS .. VII

LIST OF FIGURES ... X

LIST OF SYMBOLS AND ABBREVIATIONS .. XII

CHAPTER 1: INTRODUCTION .. 1

1.1 Background .. 2

1.2 Motivation.. 3

1.3 Statement of Problem .. 4

1.4 Research Aim and Objective ... 4

1.5 Proposed Methodology .. 5

1.6 Thesis Organization ... 6

CHAPTER 2: LITERATURE REVIEW .. 7

2.1 Introduction.. 7

2.2 SDN Origin .. 9

2.3 Emerging Technologies Contribution to SDN .. 10

2.3.1 Centrally Managed .. 11

2.3.2 Programmability .. 11

2.3.3 Network Virtualization.. 12

2.3.4 Separate Control Plane .. 13

2.4 Conventional Networking and SDN .. 14

2.5 Infrastructure of SDN .. 15

2.6 OpenFlow .. 15

2.6.1 OpenFlow Ports ... 17

Univ
ers

iti
Mala

ya

viii

2.6.2 OpenFlow Tables .. 19

2.6.3 Pipeline processing.. 20

2.6.3.1 Flow Table .. 21

2.6.3.2 Group Table .. 21

2.6.3.3 Matching ... 22

2.6.4 OpenFlow Channel ... 23

2.6.4.1 OpenFlow Protocol ... 23

2.6.4.2 Message Handling .. 23

2.6.4.3 Connections of OpenFlow channel 24

2.7 Related Work ... 26

2.7.1 Application plane .. 26

2.7.2 Application-Control Interface ... 27

2.7.3 Control plane ... 28

2.7.4 Control-Data Interface .. 29

2.7.5 Data plane.. 30

2.8 Studies related to DoS attack on controller ... 30

2.9 Research Gap ... 32

2.10 Summary .. 32

CHAPTER 3: FRAMEWORK FOR DOS ATTACK DETECTION AND
MITIGATION ... 34

3.1 DoS Attack Scenario.. 34

3.2 Methodology .. 35

3.2.1 sFlow-rt Collector ... 38

3.3 Controller ... 40

3.3.1 Pyretic ... 42

3.3.2 DoS Policy .. 43

3.4 Concluding Remarks ... 43

CHAPTER 4: EXPERIMENTS AND RESULTS .. 45

4.1 Network Emulator ... 45

4.1.1 The advantages of Mininet .. 45

Univ
ers

iti
Mala

ya

ix

4.1.2 Comparison of Mininet with Alternative Approaches 46

4.1.3 Mininet Working ... 47

4.1.4 Mininet Workflow ... 48

4.1.5 Packet Generation ... 50

4.2 Setting Up Environment for Experiments ... 50

4.3 Experiments ... 51

4.4 Evaluation .. 56

CHAPTER 5: CONCLUSION ... 59

5.1 Achievements .. 59

5.2 Future Work ... 61

REFERENCES .. 62

LIST OF PUBLICATIONS AND PAPERS PRESENTED 66

APPENDIX .. 67

Univ
ers

iti
Mala

ya

x

LIST OF FIGURES

Figure 2.1: SDN architecture (Source: Online)... 8

Figure 2.2: SDN components (Source: Online) .. 9

Figure 2.3: Open hardware (Source: (Mousavi, 2014)) .. 14

Figure 2.4: Model of OpenFlow Switch (Source: (Mousavi, 2014) 16

Figure 2.5: Components of switches based on OpenFlow (Taha et. al, 2014) 17

Figure 2.6: Switch pipeline processing (Taha et. al, 2014) ... 20

Figure 2.7: Packet processing of OpenFlow switch (Mousavi, 2014) 22

Figure 2.8: Summary ... 33

Figure 3.1: DoS Attack Scenario .. 35

Figure 3.2: Methodology ... 36

Figure 3.3: DoS policy architecture .. 37

Figure 3.4: Traffic monitoring mechanism (Source: Online) ... 39

Figure 3.5: sFlow Components and working (Source: Online) 39

Figure 3.6: Traditional network architecture (Taha et. al, 2014) 40

Figure 3.7: SDN architecture (Taha et. al, 2014) ... 40

Figure 3.8: POX controller ... 41

Figure 4.1: Mininet working ... 48

Figure 4.2: Network topology .. 49

Figure 4.3: Steps for experiments ... 53

Figure 4.4: Result before DoS attack .. 54

Figure 4.5: Result during DoS attack .. 55

Figure 4.6: DoS attack mitigation ... 55

Figure 4.7: Result after DoS attack ... 56

Univ
ers

iti
Mala

ya

xi

Figure 4.8: CPU usage before DoS attack .. 57

Figure 4.9: CPU usage during DoS attack .. 57

Univ
ers

iti
Mala

ya

xii

LIST OF SYMBOLS AND ABBREVIATIONS

BGP

DoS

FSM

IP

IRP

SDN

Border Gateway Routing Protocol

Denial of Service

Finite State Machine

Internet Protocol

Internet Routing Protocol

Software Defined Network

TCP Transmission Control Protocol

TLS Secure Socket Layers

Univ
ers

iti
Mala

ya

1

CHAPTER 1: INTRODUCTION

Software Defined Network (SDN) decouples the control plane from the data plane to

provide logically centralized control of the network. The control plane is considered as a

brain of the network that controls the entire network. Due to such a unique feature, the

control plane becomes the central point of attraction to different adversaries in SDN. If

the controller is malfunctioned by the attacker than the whole operation of the SDN will

be affected. The DoS attack is one of the attacks which affect the controller in the

control plane in terms of network and computational resources. In this work, the focus

is on the computational aspect of the controller and proposed a solution which assists to

detect the attack at its early occurrence. The limitations in early proposed methods, such

as early detection of DDoS attack and time-based DDoS attack detection methods, only

detect the attack at controller; however it does not provide any information about its

solution such as how to handle these attacks. The objective of this study is to protect the

SDN controller from DoS attack that will prevent the controller from being unreachable.

The proposed technique not only detects the DoS attacks but also mitigate in real-time.

This proposed technique is a lightweight solution which consumes less controller

resources in detecting and mitigating the DoS attack. The DoS policy of the attack is

implemented which block the traffic coming from the malicious node in SDN.

This chapter presents the hypothetical framework and motivation for our planned

research. First, the background and motivation to undertake the research are presented.

Then, the statement of problem and objective of the research, and proposed

methodology are also presented. Finally, the outline of the thesis is highlighted.

Univ
ers

iti
Mala

ya

2

This chapter consists of six sections. Section 1.1 discusses the research background.

Section 1.2 explains the proposed work importance by highlighting the motivation

factors. Section 1.3 addresses the statement of problem. Section 1.4 lists the aim of

research and presents the objectives. Section 1.5 sums up the research methodology and

section 1.6 describe the thesis layout.

1.1 Background

Computer network is made up of computers connected to each other for sharing the

resources. These computers are connected to each other through network devices, such

as switches and routers and considered as the reliable and fastest way of communication

between computers. However the conventional network devices are vendor proprietary.

These devices make the network administrator job challenging, for example, in

conventional network, each device is configured separately. In addition to this, if

network devices are products of different vendors then configuration method is also

different which results the compatibility issue. To overcome these problems, SDN is

introduced which control the network in different way (Mousavi, 2014).

SDN stands for Software Defined Network is the separation of control plane and

forwarding plane. The forwarding plane, also known as data plane, consists of devices

such as router and switches. The network traffic is forwarded through these devices

according to defined rules. The control plane, connected to the data plane via

southbound interface, pushes the flow entries on data plane to forward the traffic

(Kreutz et al., 2015). By separating the control plane and data plane, the network

operator can see and control the network from single point. The main concept of

Software Defined Networking is the separation of control plane from data plane.

In SDN, switches are considered as the forwarding devices which forward the

packets according to the rule defined by controller. The decision of forwarding the

Univ
ers

iti
Mala

ya

3

packet towards the specific destination is made by control plane. Controller on control

plane defines the flow rules on switches and each forwarding packet is checked against

the flow rule (Dao, Park, Park, & Cho, 2015; Giotis, Argyropoulos, Androulidakis,

Kalogeras, & Maglaris, 2014).

For SDN architecture, different threat vectors have been identified by researchers,

e.g. spoofing, tampering, information disclosure, denial of service and access attack

(Casado et al., 2006). Some threat vectors are more similar as for existing conventional

networks. SDN specific threat vectors can affect the control plane, data plane,

northbound interface, southbound interface and application plane (Kreutz et al., 2015).

To prevent the control plane from network attacks, there is a need of defining a network

attack prevention policy which is the ultimate objective.

1.2 Motivation

Controller is considered as the brain of the network because all the forwarding

decisions take place at control plane and if due to DoS attack the connection between

controller and switches is lost, the SDN architecture will no longer be functional.

DoS attack affect the controller in terms of resource consumption as large number of

packets with spoofed IPs is sent to the network, as a result, the controller resources

exhaust and controller is no longer be functional (Dharma, Muthohar, Prayuda,

Priagung, & Choi, 2015).

Since DoS attack can fail the operations of controller which results the failure of

SDN architecture. Therefore, it is important to make the SDN controller secured from

DoS attack. To secure the controller, DoS policy is defined using Pyresonance platform.

Pyresonance changes the configuration of network by aid of state machine if event

occurs.

Univ
ers

iti
Mala

ya

4

1.3 Statement of Problem

In SDN, controller is considered as desired point to attackers for making the entire

network functionality abnormal. DoS attack is ideal to make the controller fall down as

the flooding of packets by DoS attack from compromised host exhaust the processing

capabilities of the controller. As a result, the controller will no longer be functional,

collapse the SDN architecture.

1.4 Research Aim and Objective

SDN architecture presents number of weak points vulnerable to network attacks. In

the existing studies, the main concern was to figure out these weak points for DoS

attack. As a result, controller is found as a weak point. The aim of this proposed

research is:

“To propose a technique which detect and mitigate the DoS attack using DoS policy

in real time on controller in SDN environment during the attack is occurred”. The DoS

policy is chosen as it mitigates the DoS attack on controller in real time.

. The main objectives of this research are as follow.

i. To review the current state of the art techniques related to DoS attack

detection and mitigation on controller in SDN.

ii. To design an automated system which will detect DoS attack on

controller in SDN environment and also mitigate the attack on

controller in order to prevent it and block the traffic coming from

malicious host in real time by using DoS policy.

iii. To implement the designed automated system by the use of Mininet

emulator.

Univ
ers

iti
Mala

ya

5

1.5 Proposed Methodology

To identify the limitations in existing proposed techniques, this research studied the

state-of-the-art techniques related to SDN security and proposed a research problem.

The investigation of research problem is carried out by studying the existing proposed

techniques. After finding the research gap in existing proposed techniques, the design is

proposed for detection and mitigation. Then performed experiments using Mininet

emulator to ensure that the proposed technique functioning is different and more

efficient than existing techniques.

In this work, the DoS attack is launched towards the controller which is further

connected to four switches and six hosts. The DoS attack is launched by one

compromised host towards the controller. CPU resource consumption is used for

evaluation.

It is desirable that the DoS attack should be detected before the completely failure of

controller and then appropriate technique should be applied to mitigate the DoS attack.

In this proposed work, sFlow-rt is used as a flow collector besides controller. sFlow-

rt is used to collect all the network measurement. A time based threshold is defined in

sFlow-rt. When abnormality in the traffic is observed greater than the defined threshold

time, sFlow-rt sends the signal of activation to the Pyresonance. Pyresonance

application is used to change the configuration of network when event occurs.

Pyresonance is the implementation of state machine at pyretic. In this proposed work,

the DoS policy is defined which blocks the traffic coming from compromised host by

detaching it from the network. However, the remaining hosts are able to communicate

with each other even during the occurrence of attack.

Univ
ers

iti
Mala

ya

6

The test is conducted by connecting the sFlow-rt to the controller for detection of

DoS attack and DoS policy is defined on controller, using Pyresonance, to mitigate the

DoS attack.

1.6 Thesis Organization

This research work is categorized into five chapters as follow.

Chapter 2 discusses the SDN architecture and the components of SDN. After that it

discusses the components vulnerable to DoS attack and then highlights the different

techniques for detection and mitigation of DoS attack. The literature review and first

objective of this proposed research is discussed at the end of this chapter. In Chapter 3,

solution proposed to the DoS attack is discussed. In chapter 4, the explanation of

experimental setup is given and finally obtained the results of solution. Chapter 5 is

concluding chapter. It gives the overview of research and discusses the results. Thesis

layout can be comprehended with the help of following Figure which highlights the

headings of all chapters.

Chapter 1: Introduction

Chapter 2: Literature Review

Chapter 3: Methodology

Chapter 4: Experiments and Results

Chapter 5: Conclusion

Univ
ers

iti
Mala

ya

7

CHAPTER 2: LITERATURE REVIEW

This chapter includes SDN introduction including its origin and emerging

technologies. It also discusses the conventional network, comparison with conventional

network and OpenFlow. Then it explains the threat vectors affecting the SDN

architecture and highlights the security issues. Finally, it reviews the existing SDN

controller security related techniques in related work and highlight the limitations and

significant issues to present the research gap.

 The Chapter includes ten sections. The section 2.1 gives the brief introduction of

SDN. The following section which is section 2.2 explains the origin of SDN. Next to

this section, there is section 2.3 which discusses the emerging technologies. Section 2.4

compares the conventional network with SDN. Section 2.5 presents the infrastructure of

SDN. In section 2.6, the detailed explanation of OpenFlow is given. Section 2.7

discusses the related work. Section 2.8 highlights the studies related to DoS attack on

controller. Section 2.9 identifies the research gap. Finally, section 2.10 summarizes the

chapter.

2.1 Introduction

SDN, stands for Software Defined Network is the separation of control plane and

forwarding plane, as shown in Figure 2.1 (source: online), where forwarding plane, also

known as data plane, consists of devices such as router and switches. Traffics are

forwarded by these devices according to defined rules. The control plane, connected to

the data plane via southbound interface, pushes the flow entries on data plane to forward

the traffic. By separating the control and data plane, the network operator can see and

control the network from single point (Salman, Elhajj, Kayssi, & Chehab, 2016). The

application plane is connected to the controller via northbound interface. The

Univ
ers

iti
Mala

ya

8

application plane consists of applications defined by users. The application is software

which is designed by user for SDN environment.

Figure 2.1: SDN architecture (Source: Online)

SDN advantages can be viewed by comparing it with static architecture of traditional

networks as SDN centralizes the network control. In conventional networking, the

control plane and data plane are on the same device. However, in SDN, data plane and

control plane are separated as shown in Figure 2.2 (Source: Online). The data plane

forwards the packets towards the destination according to the flow rules defined by

controller. Control plane is connected to the application plane via northbound interface

which resides at the top of control plane (Salman et al., 2016). Univ
ers

iti
Mala

ya

9

Figure 2.2: SDN components (Source: Online)

2.2 SDN Origin

Originally SDN architecture is inspiration of distributed system. However the

configuration of distribution system is volatile and buggy. To overcome this

unpredictability, enormous amount of researches were performed. In conclusion to all

studies, it was observed that one control point can solve the problems of

unpredictability and buggy configurations. IRP (Internet Routing Protocol) and BGP

(Border Gate way Routing Protocol) used this idea of centralization. By the passage of

time, this idea was further generalized with the name 4D architecture. The name 4D

architecture (Prasad, 2014), represents the four layers of architecture. The name of these

layers is as follow.

i. Data Plane

ii. Discovery Plane

iii. Dissemination Plane

iv. Control Plane

Each of these planes has different functionality. Data plane is only used to forward

data packets to the destination. Discovery plane directly report to the control plane and

Univ
ers

iti
Mala

ya

10

control plane knows the available resources whereas dissemination plane is for the

topology discovery. The fourth plane, which is considered as the brain of the network, is

the top layer responsible for all the traffic flow of network. To simplify the 4D

architecture, SDN was evolved in which all the network devices can be controlled by

single controller and devices are connected to the controller via OpenFlow protocol.

SDN history started right after java which is released by Sun Microsystems in 1995.

The very first project of SDN was GeoPlex proposed by AT&T (Vanecek, Mihai,

Vidovic, & Vrsalovic, 1999). GeoPlex is nothing except middleware which uses

operating systems, connected to the internet, running on computers. It is a platform of

services and manages the networks. AT&T required switches that can be reprogrammed

which was the limitation in GeoPlex project. The switches used in this project were not

reprogrammable and was the first barrier to SDN (Lerner, Vanecek, Vidovic, &

Vrsalovic, 2006).

To overcome this barrier, Mark Medovich started a company with the name

WebSprocket in 1998 and launched soft switch which was java sported and reconfigure

able in real time. Later in 2000, the same company launched VMFoundry and

VMServer. By the use of VMFoundry, the image of conventional network devices were

preloaded and then connected to the VMServer by deploying on the network using TCP

or UDP. Hence, WebSprocket controller consisted of code which could change or

rewriteable (Lerner et al., 2006).

2.3 Emerging Technologies Contribution to SDN

SDN introduces the programming which makes the network easier to manage and

also it facilitates the flexibility which allows the addition of new services without major

changes. All these factors make the SDN economical.

Univ
ers

iti
Mala

ya

11

2.3.1 Centrally Managed

In the beginning, both the data plane and control plane were sharing the one channel

for operations. To make it clearer, consider the example of “IN-BOUND

SIGNALING”. This example is specifically for phone network in which the control and

voice sharing one channel. Sharing a one channel was not secure which is considered as

disadvantage. After that, the improvement in telephone networking was seen by the

struggle of AT&T in 1980s. It gave the new idea with the name “NETWORK

CONTROL POINT”(Nunes, Mendonca, Nguyen, Obraczka, & Turletti, 2014) by

detaching the control from the data plane. The key idea was to use separate channel for

each plane such as signaling which is control plane and voice which is data plane. This

technique had more advantages than previous one as it was flexible to add new services

with less time required to install. These advantages ultimately eliminate the

IN_BOUND SIGNALING technique because of efficiency and have better view of

network.

2.3.2 Programmability

Programmability in a network allows software to handle the network behavior, whereas

the software is independent of network hardware. In a programmable network, a

network engineer can re-configure the infrastructure of network instead of building it

from scratch (Feamster, Rexford, & Zegura, 2014).

In 1990s, the programming in the networking was introduced, which is the inspiration

of active network projects (Prasad, 2014). Active network can be defined as the

networks in which network devices analyze and trace the packets or do custom

operations on packets. At present, firewall can be considered as the active network.

The active network idea is introduced by the research community with the name

“DARPA” in mid 1990s. It was observed that it is difficult to add new services in the

Univ
ers

iti
Mala

ya

12

network and the solution is to change the equipment or change the infrastructure. To

make the use of existing network for adding new services, active network gave the

concept of innovation such as network devices can be upgraded instead of changing the

complete device. In active network, devices only forward the packets and these devices

are controlled by programmable controller.

Active network based on two approaches. In the first approach, it is considered that

the packet which is moving also contains the program and contains the information

about delivery of packet to destination. This packet will be processed by the active

mode, for example, programmable switch or router.

In second approach, the process is reversed as all the forwarding rules are already

installed on programmable switches and packets are processed on switch and sent to the

destination. This approach is closely related to SDN.

2.3.3 Network Virtualization

Network virtualization combines the software and hardware resources of network to

one administrative entity which is software-based and called virtual network.

Virtualization of network is taking more than one instance of network, in which there

are may be more than one network topologies. The most common example of network

virtualization is VLANs (Virtual Local Area Network). There are several advantages of

network virtualization:

i. Virtualization of network facilitates more than one instances of network by

using the one platform.

ii. It provides the sharing properties, such as virtualization is installation of logical

system over physical system and both share the same resources.

Univ
ers

iti
Mala

ya

13

The example of network virtualization is Mininet which is used for experiments. In

Mininet, the virtual network is launched and performed experiments to obtain the

results.

2.3.4 Separate Control Plane

There are many advantages of separating the forwarding plane from control plane.

Controller in control plane makes the easier control of network. Network administrator

can have network view from single central point.

In late 2000, the data packets were controlled by Ethane technique (Casado et al.,

2007). This technique allows the applications to control the packets at data plane while

applications are installed at control plane. In short, this technique supports the

communication between control plane and data plane. The controller is able to control

the flow tables of switches and can modify the flow rules according to the requirements.

The main disadvantage of this technique was vendor proprietary. This disadvantage

motivated the researches to find the solution which should not be proprietary. As a

result, it led to the OpenFlow.

The OpenFlow (McKeown et al., 2008) as shown in Figure 2.3, works in a way that

flow entries of flow tables in switches are controlled by controller and new flow rules

can be added to flow tables without depending on vendor. The controller manages the

flow of network traffic and directs the traffic towards destination Univ
ers

iti
Mala

ya

14

Figure 2.3: Open hardware (Source: (Mousavi, 2014))

2.4 Conventional Networking and SDN

Separation of forwarding plane and control plane has made the network easy to

manage. In SDN, the co-ordination among different devices such as load balance and

security devices is easier than conventional networking. These devices perform the tasks

without interference. Another advantage which cannot be ignored is the control of

network from single point. The entire network can be controlled from one controller

which manages the hundreds to thousands of devices and traffic flow can also be

changed by using single command for all devices. However, in conventional

networking, each device is configured separately which makes the things complex for

network operator. In SDN, the whole network can be seen from single point and by

viewing the simple program; the network behavior can be recognized. Finally, SDN

combines the programming with networking which provides the opportunity to

implement conventional approaches in networking. In conventional networking, only

Univ
ers

iti
Mala

ya

15

some commands are used to manage the network. SDN uses the concept of OpenFlow

which lifts the conditions of vendor specification (Feamster et. al, 2014).

2.5 Infrastructure of SDN

SDN induced the programming into networking and detaches the control and data

plane. The control plane might be at isolated place and can be programmed according to

requirements. The controller could be a laptop or desktop system. It could be installed

on virtual machine and network resources can be used without knowing the location.

Controller is considered as brain in SDN because the intelligence of network exists

here and it is central point from where the whole network can be viewed.

SDN uses the OpenFlow concept which facilitates the enterprises to control the

network from single point and also eliminate the condition of vendor specification. It

makes the network simpler, agile and improves the performance. In SDN, the controller

is configured programmatically and can change the behavior of network on fly if any

event will happen, which makes the network secure. In addition, the services and

applications can be deployed on network in time less than conventional network.

2.6 OpenFlow

SDN, at present, is emerged in OpenFlow (McKeown et al., 2008). It is moderately

new system created by Stanford at first to give an approach to analysts to run tests

convention in the system. The protocol provided by an OpenFlow enables the controller

to manage the flow rules in OpenFlow switch.

Univ
ers

iti
Mala

ya

16

Figure 2.4: Model of OpenFlow Switch (Source: (Mousavi, 2014)

Figure 2.4 illustrate that OpenFlow switch has flow tables according to the version.

For instance, OpenFlow with switch version1.1 consists of more than one flow table.

However, the OpenFlow switch with version 1.0 has one flow table. The flow table

consists of flow entries which match the packets. The flow entries consist of match

fields. The match fields are compared with incoming packets and if the packet matches

the fields, more than one action will be accomplished. These actions could be

forwarding a packet to the destination or dropping packets in such a way that If there is

no flow entry, then packet is forwarded to the controller. The flow entries in the flow

table contain:

i. Match Field

ii. Instructions

iii. Counter

iv. Timeouts

v. Priority

vi. Cookie

The switch behavior is dependent on the state of flow table. The flow tables of all the

switches are maintained by the controller to which these switches are connected. The

controller defines the rules for the packets which are not matched to the flow entries in

Flow

Table

Ports

Flow

Table

Flow

Table

Flow

Table

Action Set

Execution

Ports

Group
Table

OpenFlow Switch v1.0 OpenFlow Switch v1.1, v1.2

Univ
ers

iti
Mala

ya

17

switch. Figure 2.5 shows the switches based on OpenFlow. The SDN controller and

network devices are connected by OpenFlow protocol. The switches which are

OpenFlow-enabled are of two types.

i. OpenFlow Only

ii. OpenFlow Hybrid

The first type of switches only supports the operations for OpenFlow and second

type of switches supports the operations for OpenFlow and for the Ethernet switching

also known as layer-2 switching. In short, OpenFlow is channel used to connect the

controller and OpenFlow switches. It also supports different APIs to change the network

behavior on fly.

Figure 2.5: Components of switches based on OpenFlow (Taha et. al, 2014)

2.6.1 OpenFlow Ports

Ports, for connecting the switches with each other, are interfaces of network for

transferring the packets in the network. Plenty of OpenFlow ports are available by

Univ
ers

iti
Mala

ya

18

OpenFlow switch for processing. The ports those are supported by OpenFlow switch are

of three types:

i. Physical Ports

The ports which are hardware interface and are defined by switch are known as

physical ports. At the top of switch hardware, the OpenFlow switch is virtualized for

some cases, which represents the virtual ports of corresponding physical hardware.

ii. Logical Ports

Logical ports do not have hardware interfaces and are defined by non-OpenFlow

procedures in switches. The physical ports can be differentiates from logical ports by

justifying that packets for logical ports have information about tunnel ID and physical

port for reporting to controller. For physical ports, the packets do not have Tunnel ID

information.

iii. Reserved ports

These ports are reserved for specific actions, e.g. flooding or ports reserved to send

specific packets to the controller. Only the ports with the tag “required” are supported

by the switch. Reserved ports with the name are stated below.

a) Required (ALL)

The required all indicate that for forwarding specific packet, switch have authority to

use all ports. Switch uses all the output ports and one packet is broadcast to all ports

except the ports which are configured not to forward the packets.

b) Required (Controller)

Univ
ers

iti
Mala

ya

19

These ports are representation of OpenFlow controller with control channel. An

entrance port and output port, both may be used for this type. The output port is used

when there is new packet encapsulated by packet-IN message and forwarded to the

controller via OpenFlow protocol. The use of entrance port represents that the source of

packet is controller.

c) Required (IN Port)

This is the representation of Ingress port and it is used as output port only. Packets

are sent out using Ingress port.

d) Required (ANY)

These ports are neither used as output nor as Ingress Port and when none of the port

is specified the OpenFlow commands are used by special value.

2.6.2 OpenFlow Tables

The OpenFlow switch consists of one or more flow tables but at least one flow table

is necessary for each OpenFlow switch. In OpenFlow switch, there is concept of

OpenFlow pipeline, consists of more than one flow tables. Each flow table consists of

flow entries. The matching of packets with appropriate flow entries in the flow table is

defined by pipeline processing. If there is flow entries in flow table for incoming

packets, the instruction of that specific flow entry is performed. There is possibility of

forwarding the packet towards a new flow table depending upon the instruction which

will be performed. On the contrary, if the packet is not matching with the flow entry in

flow table, then table miss will occur. At the occurrence of table miss, one of the

following possibilities will be considered for processing the packet:

i. Drop the Packet

ii. Forwarding the packet towards new flow table

iii. Forwarding it to controller

Univ
ers

iti
Mala

ya

20

There are two methods to remove the flow entries. The first one is the use of

controller and the second is defining the expiry time for flow entries.

2.6.3 Pipeline processing

In an OpenFlow switch, as shown in Figure 2.6, there is an OpenFlow pipeline which

consists of more than one flow tables and one flow table consists of more than one flow

entries. The processing of OpenFlow pipeline describes how flow tables interact with

packets. There must be one flow table for OpenFlow switch. However, more than one

flow table is optional. The pipeline processing of OpenFlow switch is simple for one

flow table and it is most desirable.

Figure 2.6: Switch pipeline processing (Taha et. al, 2014)

In OpenFlow switch, flow tables are numbered in ascending order and always start

from “0” flow table and moves sequentially towards “n” flow table. The remaining flow

tables are dependent on first flow table results, for example, if flow entry of first flow

table executes the instruction to pass the packet to the second flow table then packet will

move towards second flow table.

Packet Out

Tabl
e
 0

Tabl
e
 1

Table
 n

Execution

Action
Set

Packet In
Ingress

Port
…

Action
Set=0

Packet+
Ingress
Port +
Meta
Data

Action
Set

Action
Set

Packet

OpenFlow Switch

Univ
ers

iti
Mala

ya

21

2.6.3.1 Flow Table

There are many flow entries in one flow table as shown in Table 2.1. The one flow

entry is distinguished from another by combining the match field with priority. Flow

entry which priority is zero and match field is omitted is known is table miss.

Match
Field Priority Counters Instructions Timeout Cookie

Table 2.1: Flow entry components (Taha et. al, 2014)

2.6.3.2 Group Table

By combining group entries, a group table is formed as shown in Table 2.2. Group

entry components are as followed:

i. Group Identifier

Group identifier identifies the group entry and it is 32 bit long integer.

ii. Group Type

It determines the group semantics.

iii. Counter

Counter count the number of processed packets and is updated after processing.

iv. Action Buckets

These are the buckets, which consist of instructions and these instructions are

executed corresponding to defined parameters.

Univ
ers

iti
Mala

ya

22

Group
Identifier Group Type Counters Actions

Buckets

Table 2.2: Group entry components in group table (Taha et. al, 2014)

2.6.3.3 Matching

Figure 2.7 illustrates the packet processing of OpenFlow Switch. When the packet

arrived at OpenFlow switch, the table lookup process is performed by OpenFlow switch

and it looks for the flow entry in first flow table. However by following the pipeline

processing, it may look-up from other flow tables. Different dependencies are in table

lookup for match field, for example, packet types and header fields of packet. The

header fields include source address or destination address of packets. The two other

ways to match the fields are metadata and entrance port. However, metadata is useful

for exchanging information among tables of a single switch.

Figure 2.7: Packet processing of OpenFlow switch (Mousavi, 2014)

Packet In
Start at table 0

Match in
Table n?

Tablemiss
flow entry

exists?

Update counters
Execute instructions:
 Update action set
 Update packet set

fields
 Update metadata

Drop packet

Go to-

Table n?

Execute action

set

Yes

Yes

Yes

No

No

No

Univ
ers

iti
Mala

ya

23

2.6.4 OpenFlow Channel

In SDN, the southbound interface also known as OpenFlow channel provides the

connectivity between switch and controller. All the communication between switch and

controller takes place via this interface. OpenFlow channel utilizes the OpenFlow

protocol. To make the communication secure, the OpenFlow channel encryption is done

by TLS. However, TCP protocol is used when security is not essential.

2.6.4.1 OpenFlow Protocol

There are three types of messages, OpenFlow protocol can support.

i. Controller to switch

These are the messages, which controller starts for managing and controlling the

network devices.

ii. Asynchronous Messages

These are the type of messages which switch starts for updating controller about the

events, occured in the network.

iii. Symmetric Messages

The controller or switch can start these types of messages without solicitation.

2.6.4.2 Message Handling

Delivery of messages and packet processing is reliable via OpenFlow protocol.

However, it does not acknowledge the processing which can be understood by

following factors.

i. Message Delivery

Univ
ers

iti
Mala

ya

24

The delivery of message across OpenFlow protocol is guaranteed until the OpenFlow

protocol is working properly. In case of failure, the controller will be totally

disconnected from switch.

ii. Message processing

It is desired that all messages sent by controller towards switch should be processed

and in return acknowledgement should be sent back to the controller. In case of any

failure of message processing, error message should be sent to controller. The

generation of error message does not happen in Packet-Out message and after

processing of message at OpenFlow, there is no guarantee that whether the packet is

dropped or received by the switch. Several factors can lead to the dropping of packets

such as congestion, quality of Service (QoS) or invalid port.

iii. Message Ordering

Barrier messages are used to control the message ordering. Whereas barrier messages

are the messages, separate the two dependent messages sent by controller. To enhance

the performance, messages can be reordered by switches when the barrier messages are

not present. In this case, controller is independent of any processing order.

2.6.4.3 Connections of OpenFlow channel

As it is mentioned in the introduction of SDN in this chapter that message exchange

between controller and switches takes place via OpenFlow channel. One OpenFlow

controller can be connected to more than one OpenFlow channels and via these

channels, can be connected multiple OpenFlow switches. Similarly, OpenFlow switch

can be connected to one controller via OpenFlow channel and can also be connected to

more than one controller to avoid the network collapse if one controller is failed for

Univ
ers

iti
Mala

ya

25

connectivity, TCP/IP protocol may be good enough. The connection is always started

by OpenFlow switch towards controller.

i. Connection Setup

Connection setup between controller and switch takes place via OpenFlow channel

and always started by switch. The establish connection may be TCP or TLS and switch

uses controller IP address to establish this connection. The OpenFlow switch should be

smart enough to identify the incoming packets according to the flow entries.

ii. Connection Interruption

There are two modes which may be active when the connection between the switch

and controller is lost:

a) Fail Secure Mode

b) Fail Stand Alone Mode

The connection may be lost because of timeout of TLS session or time out of repeat

request. In case of fail secure mode, the working of switch is normal, such as, all the

flow entries are expired at defined timeout.

In fail stand-alone mode, reserved ports are used to process the packets. In this mode,

after losing connection with controller, all flow entries are present and after establishing

connection, it depends on controller to keep or delete the flow entries.

iii. Encryption

It is used to make the connection secure. TLS connection takes place between

controller and switch for securing the communication; it uses “6633” TCP port. Mutual

authentication takes place between controller and switch using private key for signing a

certificate. However, communication between controller and switch may takes place via

Univ
ers

iti
Mala

ya

26

plain TCP. Security measures other than TLS are desirable while using TCP in order to

prevent the communication from different network attacks.

2.7 Related Work

 The related work is classified into planes which explain the network attacks

corresponding to each plane.

2.7.1 Application plane

Application plane in SDN defines the rules on controller via north-bound interface.

Several studies for securing application layer have been carried out. The possible

attacks that can affect the application plane are unauthorized access, DoS attack,

malicious application and configuration issues.

 In (Anwer, Benson, Feamster, Levin, & Rexford, 2013), central controller is

proposed. The architecture is named as slick. Middle-boxes are used on which controller

is considered responsible of fix and transfer functions. Controllers are dependent on

applications which tell the controller about necessary functions to install for routing.

Security parameters are defined while functions are installed on middle-boxes.

In FlowTag architecture (Fayazbakhsh, Sekar, Yu, & Mogul, 2013), communication

between controller and middle-boxes takes place via application programming interface.

Packet headers in FlowTag architecture contains traffic flow information for controlled

routing of packets which are tagged. However, this architecture is not suitable for

dynamic actions and it supports only predefined policies which is considered as

disadvantage and not suitable for current technologies.

SIMPLE policy enforcement layer (Qazi et al., 2013) requires no modification in

SDN architecture which makes this technique different from (Anwer et al., 2013),

Univ
ers

iti
Mala

ya

27

(Fayazbakhsh et al., 2013). From the application layer, traffic can be directed to the

middle-box on which rules are defined in order to avoid the possible attacks.

2.7.2 Application-Control Interface

Application-control interface also known as north bound interface is source of

communication between application plane and control plane in SDN. In (Ballard, Rae,

& Akella, 2008), OpenSAFE technique is proposed. In this proposed technique, traffic

routing through network monitoring devices is managed by ALARM policy language.

In order to create the copy of network traffic, span ports are used at various interesting

points. Administrative boundaries are considered as desired interesting points. Another

technique cloudWatcheris proposed by (Shin & Gu, 2012) which also ensures that

network packets are passing through security devices.

Programmability makes SDN more vulnerable for threats. It is common to apply

security models on different applications which are installed on different devices in

order to prevent from fraudulent rule insertion. (Canini, Venzano, Perešíni, Kostić, &

Rexford, 2012) describes about to check the OpenFlow applications correctness with

the aid of suitable models. Switch contains flow tables and flow tables consist of flow

entries. It might be possible that intra-switch miss-configuration could be occurred

which results wrong packet forwarding. To overcome this problem, Binary decision

diagrams are proposed (Al-Shaer & Al-Haj, 2010).

To verify flow policies, Flover is proposed by (Son, Shin, Yegneswaran, Porras, &

Gu, 2013). This proposed technique consists of assertions set and modulo theories. The

FRESCO technique is proposed by (Shin et al., 2013), which explains about OpenFlow

security application development framework. Network threats detection and reduction

takes place by reusable module library. FRESCO includes FortNOX (Porras et al.,

2012). FortNOx is considered as enforcement engine and it verify the flow rules. If new

Univ
ers

iti
Mala

ya

28

rule is defined and if rule conflict occurs between the existing rule and the new rule,

then new rule is accepted or rejected depending upon the defined security rules.

2.7.3 Control plane

Control plane is considered as the main plane of SDN and responsibilities of control

plane are network monitoring, routing decisions and programming of physical network

to define the routing path.

One of the solutions to the control plane attacks is SANE architecture (Casado et al.,

2006). The proposed technique is more focused towards host authentication and policy

enforcement which are the responsibilities of controller. ETHANE (Casado et al., 2007)

advanced version of SANE which uses bit different concept to control the network.

Centralized controller and ETHANE switches are used in this approach. Centralized

controller enforces the globally defined flow rules or policies whereas switches are only

the fibber which forward data packets according to global policies or flow rules defined

in routing tables. The advantage of this architecture over SANE is that it requires less

changes in original network. The disadvantage is the network policy might be

compromised by application traffic.

The technique with the name Resonance (Nayak, Reimers, Feamster, & Clark, 2009)

is proposed in which the network devices enforce the dynamic access control. The

control is based on defined security rules.

In various types of traffic, flows are observed in order to detect the distributed denial

of service attack (DDoS) (Braga, Mota, & Passito, 2010). In this technique, controller is

used to monitor forwarding plane and detect the traffic which is malicious. To identify

abnormal traffic, Self-Organizing Maps are used.

Univ
ers

iti
Mala

ya

29

Several techniques can be used by attackers to find compromised nodes in order to

attack or to get information of network. The technique with the name MTD (Jafarian,

Al-Shaer, & Duan, 2012) gives the solution to prevent the IP addresses. Virtual IP

addresses are assigned to hosts in order to hide real IP addresses. IP addresses are

assigned randomly to hosts and virtual IP addresses pool is managed by controller. The

advantage of this technique is that attacker cannot obtain the real IP address of host

using different scanning techniques.

2.7.4 Control-Data Interface

Control-Data interface also known as southbound interface provides the

communication channel between control plane and data plane. Considerable amount of

studies exist for southbound interface security. (Kloti, Kotronis, & Smith, 2013)

proposed STRIDE threat analysis technique to analyze the OpenFlow protocol in order

to prevent from DoS attack and information leakage.

 For mutual validation between controller and switches, transport layer security

(TLS) is explained by OpenFlow switch specification (Mizrahi & Moses, 2013). As

TLS is not commonly used and DoS attacks can be effective at control-data interface, so

vulnerability assessment is discussed by (Benton, Camp, & Small, 2013).

(Kreutz, Ramos, & Verissimo, 2013) proposed various techniques with the name

replication, diversity and secure components to prevent the network from various

threats. These threats are usually because of the centralized controller as the whole

network is dependent on controller which makes it more desirable for attackers.

In (Skowyra, Lapets, Bestavros, & Kfoury, 2013), the Verificare technique is

discussed in order to make the OpenFlow network more scalable and secure. It provides

model which can be used to check the network correctness. (Handigol, Heller,

Univ
ers

iti
Mala

ya

30

Jeyakumar, Maziéres, & McKeown, 2012) discusses prototype network debugger.. This

prototype is developers friendly and SDN developers can easily find the root cause by

recreating the events those are cause of errors.

2.7.5 Data plane

Data plane also known as forwarding plane forward packets according to defined

rules which are defined by controller. Switches on data plane contain flow tables with

flow entries for forwarding packets. Various threat vectors can affect data plane to insert

fraudulent flow entries. Monitoring system IDS is proposed by (Skowyra et al., 2013).

For detection and response to network attacks in embedded mobile devices, this

proposed technique uses the architecture of SDN.

 (Goodney, Narayan, Bhandwalkar, & Cho, 2010) describes that Network IDS is on

hardware based which can be configured by network administrator and used for deep

packet inspection. The above two techniques detect abnormal traffic. (Mehdi, Khalid, &

Khayam, 2011) is about the implementation of IDS using SDN in small networks like

home or small office network.

 Another technique proposed by (Naous, Stutsman, Mazières, McKeown, &

Zeldovich, 2009) with the protocol name ident ++. This technique is proposed in order

to avoid controller which is considered as bottleneck and to make device capable of

forwarding packets. The proposed protocol demands end hosts additional information to

verify that host is legal or fake.

2.8 Studies related to DoS attack on controller

To protect the controller from DoS attack, a lot of researches have been carried out.

To detect the presence of DoS attack, technique with the name statistical method is

proposed by (Nugraha, Paramita, Musa, Choi, & Cho, 2014), which uses the

Univ
ers

iti
Mala

ya

31

characteristics of packets. To monitor and detect the attack, sFlow is used. However, the

limitation of this attack is that it does not consider the time characteristics and it counts

the malicious packets only. Another technique is proposed by (D. K. Lee, G. Y. Bang,

& Choi, 2014), this technique is monitoring the DDoS attack using centralized

monitoring system and detecting the DDoS by the use of snort. However, in this

technique, the attack target is not controller and also the time factor is not included.

The technique with the name lightweight DDoS attack detection (Braga et al., 2010)

is proposed. As the name of this technique represents that it uses less resources to detect

DDoS attack compared to the other method. This method exploits the SDN

programmability feature to manage the flow of traffic in switch. But it was not

explained that how SDN controller will be effected by DDoS attack.

(Mousavi & St-Hilaire, 2015) proposed a technique for DDoS detection. This

technique monitors the change in entropy in a way that if the destination IP addresses of

packets for specific host will be increased, the value of entropy will be decreased.

Threshold value is defined and if the entropy value is crossing the value of threshold,

then DDoS attack is detected. But the limitation of this technique is not considering the

time.

Another technique with the name Time-Based DDoS detection (Gde Dharma,

Muthohar, Prayuda, Priagung, & Choi, 2015) is proposed. This technique proposes the

detection of DDoS attack by monitoring the destination IPs for specifics hosts and the

required time for which the traffic rate will be high. However this technique is not

considering the mitigation of DDoS attack on controller in SDN environment.

Univ
ers

iti
Mala

ya

32

2.9 Research Gap

The techniques closely related to our proposed technique are (Gde Dharma et al.,

2015), which gave the idea of time-based DDoS attack detection based on entropy

change and (Giotis et. al, 2014) which combines the OpenFlow and sFlow for

mitigation of DDoS attack using whitelist table. However, In this proposed technique,

the detection and mitigation of DoS attack is done using sFlow-rt and DoS policy

respectively but working mechanism is different to benchmarked techniques. The DoS

policy is more efficient in mitigating the DoS attack than whitelist table technique as

DoS policy is simply installed on controller using pyresonance plateform and mitgate

the attack in real time.

2.10 Summary

In summary, this chapter discuss the architecture and importance of SDN. It also

explains the threat vectors affecting the SDN architecture. The existing SDN controller

security related techniques are reviewed and limitations and significant issues are

highlighted.

The key issue focussed is to detect the network attacks on controller in SDN

environment which includes DoS attack and to mitigate the DoS attack. Eventually, it

identifies the challenges involved to detect and mitigate the DoS attack in more

convenient way which includes the real time detection and mitigation.

To meet challenges, this chapter give emphasis to the model which is more

convenient for detection and mitigation of DoS attack. On the basis of review and

critical investigation of current detection and mitigation techniques, recommendation is

made that is starting point for real time detection and mitigation of DoS attack. The

summary can be explained with the help of Figure 2.8.

Univ
ers

iti
Mala

ya

33

Figure 2.8: Summary

Architecture of SDN

Threat Vectors to
SDN architecture

Existing Techniques

Challenges to
Detection and

Mitigation of Attack

Real Time Detection
and Mitigation of

Attack

Univ
ers

iti
Mala

ya

34

CHAPTER 3: FRAMEWORK FOR DOS ATTACK DETECTION AND

MITIGATION

This chapter includes the technique which is proposed for DoS attack detection and

mitigation on controller in SDN environment. First, it gives the scenario for DoS attack

and the methodology. In the methodology, it explains how sFlow-rt is connected with

controller to detect the DoS attack. Then it discusses the proposed controller and

explains how DoS policy is implemented on controller for DoS attack mitigation.

Finally, it gives the concluding remarks.

The chapter is categorized into four sections. Section 3.1 presents the DoS attack

scenario. Section 3.2 explains the methodology which is proposed to detect and mitigate

the attack. Section 3.3 explains how DoS policy works to protect the controller. Finally,

section 3.4 gives the conclusive remarks.

3.1 DoS Attack Scenario

Figure 3.1 depicts the DoS attack scenario. The topology which we used consists of

one open vSwitch, directly connected to the controller, and three simple switches which

are considered as fiber only used for forwarding the packets. To launch the topology,

MiniEdit in Mininet is used. The communication between switches and controller takes

place through open vSwitch and remaining switches are connected to hosts in their own

network. The communication process is step vise as first packets move towards sFlow

collector and after completion of traffic analysis, these packets move towards controller.

The entire process takes place only for new incoming packets which do not have flow

entries in switch flow tables. On the contrary, some hosts in network may be

compromised and can cause the DoS attack by generating packets that are malicious.

Since these packets do not have any flow entry in switch flow table, these packets are

forwarded to the controller for new flow entries. As a result, the controller may be

Univ
ers

iti
Mala

ya

35

exhausted because of processing the same packets again and again and the controller

may no longer be functional and may be unreachable to the remaining hosts.

Figure 3.1: DoS Attack Scenario

3.2 Methodology

This section includes the methods to carry out the research. The Figure 3.2 depicts

the flow of research. The research consists of five phases. It includes information

gathering and then analysis of the information, proposed method, designing and

implementation of system and evaluation.

Controller

Open vSwitch

Switch
Switch Switch

H1 H2 H3 H4
H5 H6

Normal Traffic

Malicious Traffic

Univ
ers

iti
Mala

ya

36

Figure 3.2: Methodology

In the methodology, the main objective is to protect the controller from DoS attack.

The proposed technique consists sFlow-rt, Pyresonance and DoS policy and mitigates

the attack in real time. The detection and mitigation process can be categorized into two

steps:

i. Monitoring and detecting the network traffic using sFlow-rt.

ii. Activation of DoS policy after detection to mitigate the attack.

In first step, sFlow-rt is mentioned. All the network traffic is monitored by sFlow

collector. In result, it differentiates the normal and abnormal traffic according to the

defined rule.

 Security Issues in SDN Environment

Selection of Specific Network (DoS) Attack

To Solve the Problem by Designing the
Topology

Experiments on Topology in SDN
Environment

Evaluation of Results

Univ
ers

iti
Mala

ya

37

In second step, real time mitigation is mentioned. This work is based on real time

mitigation by blocking the malicious packets. To generate malicious packets for DoS

attack on controller, ICMP packets are sent from compromised node. There exists no

flow entry in flow table for these packets. These packets are forwarded to the controller.

Since there is no rule defined against these packets at controller and also packets are

moving towards same destination, the sFlow indicates the DoS attack as abnormal

traffic rate is for higher time than the defined threshold time. At the indication of DoS

attack, DoS policy is triggered which is installed by using Pyresonance platform. The

DoS policy blocks the traffic coming from malicious node. Figure 3.3 illustrates the

proposed architecture.

Figure 3.3: DoS policy architecture

Univ
ers

iti
Mala

ya

38

3.2.1 sFlow-rt Collector

sFlow, stands for sampled flow, if added to the network results more reliable and

enhanced performance of network. By the addition of sFlow in network, the traffic from

all interfaces, on which sFlow is enabled, can be observed. This allows the network to

work normal and protects the network from abnormal traffic.

There are several sFlow applications which make the network more reliable. These

applications can be categorized as follow:

i. Detection of problem, identification and fixing of problem in a network.

ii. Handle the congestion in real time.

iii. Monitoring and observing the abnormal activities in the network and then

Figure out the root cause of this abnormal activity.

Different features of sFlow can be categorized as follow:

i. Wide View of Network

sFlow can be reconfigured and its capacity of monitoring interfaces can be increased

or decreased. As a result, the sFlow gives the complete network view from single point.

ii. Cheapest solution

It is considered as the cheapest solution in terms of system resources. For example, it

does not require extra system resources such as memory or CPU during operation.

In SDN, sFlow can be implemented on switches or controller. In this work, it is

installed on controller. Traffic monitoring mechanism of sFlow can be understood by

Figure 3.4.

Univ
ers

iti
Mala

ya

39

Figure 3.4: Traffic monitoring mechanism (Source: Online)

 The Figure 3.5 depicts the elements of sFlow. All network traffic first goes to the

sFlow collector and then to the controller.

Figure 3.5: sFlow Components and working (Source: Online)

Univ
ers

iti
Mala

ya

40

3.3 Controller

In SDN, the control plane and data plane are detached where data plane also known

as forwarding plane consists of switches. The separation of control plane and data plane

gives the orchestration concept by providing the view of entire network from single

point. This single point controller is the main component of SDN architecture. It is also

considered as the brain of a network. Any configuration change on controller may

change in the behavior of entire network. Figure 3.6 shows simplest architecture of

traditional network and Figure 3.7 depicts the simplest architecture of SDN.

Figure 3.6: Traditional network architecture (Taha et. al, 2014)

Figure 3.7: SDN architecture (Taha et. al, 2014)

Univ
ers

iti
Mala

ya

41

In this research, POX controller is selected for application development in SDN

architecture. It uses python language and several applications written in python can be

run by POX controller. The communication among the plane (control plane and data

plane) takes place via OpenFlow protocol. The Figure 3.8 illustrates that how

communication takes place between controller and switches.

Figure 3.8: POX controller

First, the connection between controller and switch is established by turning on the

switch. At the start, there is no flow entry in the flow table of switch. The packets first

go to the control plane. The controller at the control plane set flow rules on switch for

packets. All the flow tables in switch contain flow entries and flow entries consists of

following three parameters:

i. Rule which is defined for packet

ii. Actions according to the defined rule.

iii. Counter, counts the number of packets.

Once the rule is defined in flow table for new packet, second time the packet is

forwarded to the destination directly from the switch.

Rule Action Counters
Rule Action Counters
Rule Action Counters

POX Controller

Open Flow Switch

Univ
ers

iti
Mala

ya

42

3.3.1 Pyretic

In programming languages of SDN, Pyretic is considered as the family member of

frenetic. Pyretic is the combination of python and frentic. By the use of pyretic, a brief

network application can be written by programmers. Pyretic is embedded in the python

language and is programmer friendly. It also implements the program on switches.

Pyretic is installed on controller. It is installed by using “$ pyretic.py –m PQ

Pyretic.modules.mac learner”. Where “–m” represents the mode of operation of pyretic

on runtime and “p” represents proactive scheme, as rules for incoming packets are

already exists in switch flow table.

Pyresonance is one of the applications of SDN. Whenever a network event occurred,

Pyresonance changes the configuration of network by the aid of state machine. If the

word Pyresonance is split into two words, it will become Pyretic plus resonance. In

other words, Pyresonance is the combination of Pyretic and Resonance.

SDN can be managed by a framework called Resonance. By the use of Resonance,

the policy response to any network event can be defined by network administrator.

These policies are known as FSM (Finite State Machine). The FSM have finite number

of states. For example in proposed work, DoS policy is used which has two states. At

the first state, the machine is working normal as there is no DoS attack. The second

state is blocking the traffic coming from compromised host which is the cause of DoS

attack. There are many other network events for which transitions of state occurs such

as host authentication and intrusion detection system. In conclusion, by the use of

Resonance, it is easy for the network operators to define the policies relative to different

events of network.

Univ
ers

iti
Mala

ya

43

Pyresonance is started by “$ pyretic.py pyretic.pyresonance.main –

config=./pyretic/pyresonance/global.config – mode=manual”

3.3.2 DoS Policy

The main goal at this research is to protect the SDN controller from DoS attack. To

achieve this goal, the DoS policy is used. The DoS policy is implemented on the

controller by using Pyresonance platform. DoS policy is written in python language and

works in a way that if network traffic is normal, which the sFlow-rt is monitoring

continuously then the communication between hosts takes place. On the other hand, if

there is any compromised host in the network and sending the malicious traffic, then

DoS policy triggered and blocks the traffic coming from compromised host. Within few

seconds it will detach the malicious host and after that, malicious host is not able to

communicate with other hosts.

3.4 Concluding Remarks

This chapter explains how DoS attack targets the controller and then how this attack

is identified with the help of sFlow-rt. After detecting attack, how DoS attack is

mitigated by DoS policy which blocks the abnormal traffic and how Pyresonance

works.

According to the best of findings, it is considered that this solution is efficient and

uses fewer resources to secure the controller. The major advantages of the proposed

technique which cannot be ignored are as follow:

i. Real Time Solution

This solution is real-time, as it mitigates the DoS attack within few seconds and also

assures that network is functioning normal during mitigation.

Univ
ers

iti
Mala

ya

44

ii. Flexible and Agile

By the use of Pyresonance, more than one policy can be applied and after detecting

malicious host the remaining hosts in the network remains functional.

iii. Uses of Resources

The resources used in the proposed solution are limited. In general, controller is not

hardware equipment. Infect it is software which is installed on system. A system could

be any laptop or desktop. It is vendor flexible and controller can be designed according

to the requirements.

The next chapter explains the simulation of proposed technique to detect and

mitigate DoS attack.

Univ
ers

iti
Mala

ya

45

CHAPTER 4: EXPERIMENTS AND RESULTS

This chapter describes the steps which are followed for conducting experiments and

the evaluation of results of proposed real-time DoS attack detection and mitigation.

First, it discusses network emulator which is used for experiments. Then, it explains the

step followed to setup the experiment environments. Finally, it gives the evaluation.

 The chapter includes four sections. Section 4.1 reports the significance of network

emulator. Section 4.2 explains environment setup for experiments. Section 4.3 presents

the implementation of steps to get the results from experiments. Finally, section 4.4

evaluates the results.

4.1 Network Emulator

In this research work, Mininet is used as emulator. Mininet is an environment where

a realistic network topologies (virtual) can be easily created. These topologies are useful

for development, teaching and research. Topologies may be complex or simple varies

case to case. The use of Mininet emulator is same like working on the real network. By

the use of Mininet, different topologies can be made and then network traffic can be

tested on these topologies to obtain the results. After getting the desired results, these

topologies and all steps of methodology can be applied to real network. Mininet can be

installed on desktop or laptop having Linux and by taking the advantage of Linux

platform, complex topologies with several nodes and with bandwidth in gigabits can be

simulated. There are several other tools for network emulation but Mininet is considered

as more efficient for SDN.

4.1.1 The advantages of Mininet

The use of Mininet emulator tool is considered advantageous in many aspects. The

advantages are as follow:

Univ
ers

iti
Mala

ya

46

i. In Mininet, it is really easy to make the network topology, topology can be

made by using MiniEdit tool or users can write their own code using different

programming languages. It is also efficient in terms of speed.

ii. The use of Mininet makes it simple for making custom network topologies.

iii. As Mininet is very powerful emulator and working on it is very similar to work

on real network. As an example, the topology in the Mininet can have several

hosts and the capability of these hosts is same like as real hosts on network.

These hosts may run all the programs which the original hosts can run on Linux.

iv. Software Defined Networking is example of open source network and

programming functionality makes the network more flexible and reliable.

OpenFlow switches can be configured in Mininet, and after configuration, it can

be connected to the controller. A controller could be virtual or real.

v. By using Mininet, it is not difficult to extend the network by adding more

components which may participate in making the network more efficient such as

addition of security devices.

4.1.2 Comparison of Mininet with Alternative Approaches

The Mininet advantages can be analyzed by comparing it with alternative designs.

Different alternative designs and their comparisons with Mininet are explained as

follow:

i. One topology forever

For experimentation, to use real switches and routers is not an efficient way as

all the switches and routers need to be configure and new topology is required for

different experiments. Mininet is the solution to the mentioned problem. Using

Mininet, it is easy to make more than one topology and can be saved for future use

which eliminates the need of reconfiguration.

Univ
ers

iti
Mala

ya

47

ii. Virtualization

In this alternative to Mininet, it is considered that several instances or virtual

machines may be running on a single system or laptop. The main drawback of this

alternative is that it demands large system resources in term of memory and

processing power. After fulfilling the resource requirements, again it is able to run

limited number of virtual machines which is not reliable way. On the other hand, in

Mininet, there is concept of virtualization and it is based on operating system. As a

result, several hosts can run on the same virtual machine which demands fewer

resources. This factor ultimately reflects the efficiency of Mininet.

4.1.3 Mininet Working

Figure 4.1 depicts the working of Mininet. It explains that ‘mn’ is used to start the

process of Mininet. There are several sub processes in the Mininet process and each sub

process is representing the host of a network. In details, if there is need of more than

one host in a network, then the Mininet starter starts two sub processes and it results two

hosts. The metric (the host name and the Ethernet port) of each host is different. As the

Ethernet port is different for each host, so the connection between the OpenFlow switch

and the host takes place respectively to the assigned ports and the communication takes

place without any confusion. After establishment of connection among the hosts and

switches, the connection between the controller and switches takes place via OpenFlow

protocol. Controller pushes the flow entries to the flow table of switch corresponding.

This complete process takes place on the single virtual machine by the use of Mininet.

Univ
ers

iti
Mala

ya

48

Figure 4.1: Mininet working

4.1.4 Mininet Workflow

To make the experimental setup, following steps are performed in Mininet.

i. Making a Network

To create and start the network, the following command is used in the console.

“Sudo mn –topo single,3 --mac – switchovsk –controller remote”

The command creates a network of 6-hosts; each host has different IP (internet

protocol) address, one open vSwitch and one remote controller, as shown in Figure 4.2.

All the hosts are connected to the switch and open vSwitch is connected to the

controller.

Univ
ers

iti
Mala

ya

49

vs

Figure 4.2: Network topology

The controller in this case is POX controller. Mininet uses the Linux platform and all

the emulation is lightweight.

In order to check the connectivity, users can run the ping test. The command line

interface is flexible for users and they can control the network by using one console and

from the one console, the connectivity between two hosts can be checked by using the

following command:

“Mininet> h1 ping h3”

It confirms that the hosts are connected or not, by showing the packet reachability to

the destination.

ii. Physical Implementation

Controlle
r

open
vSwitch

Switch

Switch
Switch

1 2 3 4
5 6

Univ
ers

iti
Mala

ya

50

As it is mentioned earlier, that the virtual experimental setup can be implemented

practically for real network. Before the implementation, there is needed to make sure

that all the components of Mininet emulation must be working in a way according to the

physical environment.

4.1.5 Packet Generation

 To generate the DoS attack, the terminal of one host is used and the host is

considered as compromised host. The command which is used to generate the DoS

attack is as follow:

“ $ sudo ping (destination host IP) –i .05”

 It generates the packets after every 20th of second and lead to a DoS attack which is

used to evaluate the test bed for detection and mitigation. In DoS attack generating

command, the IP address of destination host is used which results in sending all the

packets to the host, who’s IP address is mentioned in command.

4.2 Setting Up Environment for Experiments

The automated system is used as the detection and mitigation is taking place

automatically without the network operator. The automated system consists of sFlow-rt,

Pyresonance and DoS policy which works on defined threshold. For experiments the

desktop system with 4GB RAM and 480GB hard drive is used. The processor was core

i5 and operating system was windows 7. However on this system, virtual box and

Ubuntu 14.04 64-bit is installed. The virtual operating system is allocated by 2GB

RAM.

The required software to download in order to run the experiments is virtual box,

Xserver and Mininet. The virtual box is used for virtualization of operating system. As

Univ
ers

iti
Mala

ya

51

an example, it creates the instance of Ubuntu on physical machine or simply on the

physical machine, another virtual machine can be installed.

Pyresonance is an application framework on top of which pyretic works, which is

used to prevent the network from DoS attack.

sFlow-rt is used to monitor the network traffic and in this network, sFlow-rt is used

to monitor the network traffic for preventing the SDN controller from DoS attack. In

this work, the sFlow-rt is connected with controller.

4.3 Experiments

Creating Network

In this work, for four switches, one controller and 6-hosts, MiniEdit is used to make

the network topology. After completing the topology on MiniEdit, the file is saved and

then opened from the console by setting the path to the directory where this file exists

for running the network.

To verify that the connection is working properly, ping test is performed. As mentioned

in the previous section, all the software and components are installed and verified that

these are working properly. The network is started in the terminal of VM.

In the second step, another terminal is opened to create the sFlow agent. The sFlow

agent, as discussed earlier is connected to controller, monitors the network traffic to

identify the DoS attack.

The third step is to start the sFlow to trace the network traffic. In the fourth step,

implementation of DoS policy is performed which mitigates the DoS attack. To

implement DoS policy, the DoS policy is copied into Pyresonance application directory

by using the following command:

Univ
ers

iti
Mala

ya

52

“ cp *.py/home/Ubuntu/pyretic/pyretic/pyresonance/apps/”

In the fifth step, third terminal is opened and started Pyresonance to mitigate the DoS

attack. To accomplish this step, first the path of pyretic is set by using the following

command:

“ $ cd/home Ubuntu/pyretic”

After that Pyresonance is started for mitigation of DoS attack. The following

command was used to mitigate the attack:

“$./pyretic.py pyretic.pyresonance.main --config

=./pyretic/pyresonance/global.config --mode=manual”

After implementing the above steps, the link connectivity is verified by pinging the

hosts using pingall.

To differentiate the normal network traffic and then network traffic after attack, three

test cases are considered. The host terminal is started using xtermh1. The host terminal

is used to generate DoS attack as this host was considered as compromised host. Figure

4.3 summarizes all the steps:

Univ
ers

iti
Mala

ya

53

Figure 4.3: Steps for experiments

The first test case is before the launching of DoS attack which shows the normal

network traffic. All the hosts are communicating with each other properly. The second

test case is during DoS attack. It shows the presence of DoS attack in the network. The

third test case is after DoS attack, which shows that malicious node is not able to

communicate in the network. The three test cases are as below:

i. Test Case 1: Result before DoS attack

As there is no DoS attack initially, the traffic is normal as shown in Figure 4.4.

To Create Network

To Create sFlow

To Start sFlow

Set the Path to
Pyresonance for DoS

Policy

To Start Pyresonance
for DoS Mitigation

Test Case 1
Before DoS

Attack

Test Case 2
During DoS

Attack

Test Case 3
After DoS

Attack

Univ
ers

iti
Mala

ya

54

Figure 4.4: Result before DoS attack

ii. Test Case 2: Result with DoS attack

In this case, the terminal of host 1 which is connected to switch (Figure 4.2, Section

4.1.4) is used to generate DoS attack. The DoS attack is generated by using, sudo ping

10.0.0.3 –i .05. By running this command, the packets with infinite number are sent to

the host 3, passing through controller. In short, the request for flow entries of same

packets with greater frequency is captured by controller and as a result sFlow-rt

determines the DoS Attack. In Pyresonance terminal, the messages of abnormal traffic

could be observed as shown in the Figure 4.5 and the malicious node h1 is not able to

communicate with target node h3 as shown in Figure 4.6. At this stage, the

communication is stopped with the malicious node h1.

Univ
ers

iti
Mala

ya

55

Figure 4.5: Result during DoS attack

Figure 4.6: DoS attack mitigation

iii. Test Case 3: Result after DoS attack

In this case, it is verified that all the hosts are communicating with each other and

only the traffic from malicious node 1 (node 1 Figure 4.2) is blocked as shown in Figure

4.7.

Univ
ers

iti
Mala

ya

56

Figure 4.7: Result after DoS attack

From Figure 4.7, it can be observed that out of 30 packets, 22 packets are received.

Each packet is approximately equal to 3.25% and total dropped packets are 8 which is

approximately 26% (8*3.25=26). As all nodes are able to communicate with each other

except h1 which shows that this system is mitigating the DoS attack by blocking the

traffic coming from malicious node h1 and detaching the malicious node h1 from

network. In addition to this, the proposed technique is for real time solution as only

malicious host traffic is blocked and remaining host are communicating normally.

4.4 Evaluation

For the evaluation of this work, the usage of system resources is considered to

observe the efficiency. As Pyresonance and sFlow-rt are connected with controller and

determined that this designed system is lightweight. It uses the resources of system with

no major difference as resources used by the normal tasks running on the system.

During experimentation, all the tasks running on the system are terminated except the

simulation which was running on Ubuntu. To differentiate the resource usage without

DoS attack and with DoS attack, the graph is added as shown in Figure 4.8 and 4.9

respectively.

Univ
ers

iti
Mala

ya

57

Figure 4.8: CPU usage before DoS attack

Figure 4.9: CPU usage during DoS attack

In Figure 4.9, the Y-axis which is representing the percentage of CPU usage is

divided into 16 units (points) and each unit is equal to 6.25% (100/16=6.25). In Figure

4.9, the peak of CPU usage is approximately reaching to unit 6 on Y axis which means

that the CPU usage is about 37.5% during DoS attack (6*units=6*6.25=37.5). At X-

axis, one second is approximately equal to 3.20 units (points) which mean that total 60

seconds are equal to 192 units (60*3.2=192). The peak value is approximately at unit 4

on X-axis when the CPU usage is 37.5% during DoS attack and it is approximately

equal to 1 second (3.20 units=1 second). It shows that attack appeared at 59th second

when the resource usage is approximately 37.8% and removed approximately at 49th

second when the resource usage becomes normal. It shows that the time taken is 10

seconds for mitigation of DoS attack.

In summary, (Gde Dharma et al., 2015), gave the idea of time-based DDoS attack

detection and (Giotis et. al, 2014) proposed the combining of OpenFlow and sFlow

Univ
ers

iti
Mala

ya

58

techinique, which is based on entropy change, to detect the DDoS attack. However, we

proposed a solution which uses sFlow-rt for detection and DoS policy, defined on

controller, for mitigation of DoS attack.

Univ
ers

iti
Mala

ya

59

CHAPTER 5: CONCLUSION

This chapter gives the conclusion of the entire work. First, it explains the

achievement and discusses all the chapters briefly. Finally, it discusses the future work.

This chapter is categorized into two sections. Section 5.1 gives the concluding

remarks and describes our research contribution. Section 5.2 labels the limitations and

suggest the future work.

5.1 Achievements

This research work presents the network security challenges to the SDN controller

and then proposes a solution for detection and mitigation of the attacks. The objectives

of this research work are discussed in section 1.3 of chapter 1. The summary of the

achievement of objectives is as given below.

The detailed literature was reviewed in the domain of SDN security and then selected

the articles which were most related to SDN controller security. The different security

techniques to prevent the controller, which were discussed in selected articles, were

thoroughly reviewed. The challenges, critical aspects and issues in those articles were

highlighted and finally the gap in the research was identified.

The real-time detection and mitigation of DoS attack on controller in SDN

environment was proposed as a solution. The architecture and the components of

proposed technique were discussed in Chapter 3.

To implement the DoS attack detection mechanism on SDN controller, the sFlow-rt

was connected to the controller, which notify the occurrence of attack. To mitigate the

attack, DoS policy was defined on the controller using Pyresonance framework. After

the occurrence of attack, the DoS policy was activated which block the traffic coming

Univ
ers

iti
Mala

ya

60

from malicious node. The Dos policy also detached the malicious node from the

network. Experiments were conducted in series for proposed technique evaluation. The

network functioning was observed normal during when the DoS attack occurred which

confirmed the real-time mitigation of attack. The time-based DDoS attack detection

model was selected as a reference. This technique proposed the idea of detection of

DDoS attack. The proposed technique is derived from this idea and implemented to get

the results. The proposed technique also mitigates the DoS attack. The research

contribution can be reviewed as:

i. To review the current state of the art techniques related to DoS attack

detection and mitigation on controller in SDN.

ii. To design an automated system which will detect the DoS attack on

controller in SDN environment and also mitigate the attack on controller in

order to prevent it and block the traffic coming from malicious host in real

time by using DoS policy.

iii. The implementation of the designed automated system by the use of Mininet

emulator.

Univ
ers

iti
Mala

ya

61

5.2 Future Work

In this research work, some prospective research directions are found. The research

direction could be extended as a future work.

In proposed solution, one open vSwitch and three simple switches were used. The

open vSwitch was connected to the controller and the normal switches were connected

to the nodes. Only the open vSwitch includes the flow tables and simple switches

forward the packets according to the open vSwitch instructions. It was observed that the

nodes connected to the same simple switch can communicate with each other without

communicating with controller and can bypass the defined DoS policy. This issue could

be investigated and could be preceded for future work.

Univ
ers

iti
Mala

ya

62

REFERENCES

Al-Shaer, E., & Al-Haj, S. (2010). FlowChecker: Configuration analysis and
verification of federated OpenFlow infrastructures. Paper presented at the
Proceedings of the 3rd ACM workshop on Assurable and usable security
configuration.

Anwer, B., Benson, T., Feamster, N., Levin, D., & Rexford, J. (2013). A slick control
plane for network middleboxes. Paper presented at the Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking.

Ballard, J. R., Rae, I., & Akella, A. (2008). Extensible and Scalable Network
Monitoring Using OpenSAFE. Paper presented at the INM/WREN.

Benton, K., Camp, L. J., & Small, C. (2013). Openflow vulnerability assessment. Paper
presented at the Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking.

Braga, R., Mota, E., & Passito, A. (2010). Lightweight DDoS flooding attack detection
using NOX/OpenFlow. Paper presented at the Local Computer Networks (LCN),
2010 IEEE 35th Conference on.

Canini, M., Venzano, D., Perešíni, P., Kostić, D., & Rexford, J. (2012). A NICE way to
test OpenFlow applications. Paper presented at the Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12).

Casado, M., Freedman, M. J., Pettit, J., Luo, J., McKeown, N., & Shenker, S. (2007).
Ethane: taking control of the enterprise. Paper presented at the ACM
SIGCOMM Computer Communication Review.

Casado, M., Garfinkel, T., Akella, A., Freedman, M. J., Boneh, D., McKeown, N., &
Shenker, S. (2006). SANE: A Protection Architecture for Enterprise Networks.
Paper presented at the Usenix Security.

D. K. Lee, G. Y. Bang, & Choi, D. (2014). A DDoS Blocking System Based on SDN
Using Centralized Traffic Monitoring. Paper presented at the The 3rd
International Conference on Smart Media and Applicatione.

Dao, N.-N., Park, J., Park, M., & Cho, S. (2015). A feasible method to combat against
DDoS attack in SDN network. Paper presented at the 2015 International
Conference on Information Networking (ICOIN).

Dharma, N. G., Muthohar, M. F., Prayuda, J. A., Priagung, K., & Choi, D. (2015).
Time-based DDoS detection and mitigation for SDN controller. Paper presented
at the Network Operations and Management Symposium (APNOMS), 2015 17th
Asia-Pacific.

Fayazbakhsh, S. K., Sekar, V., Yu, M., & Mogul, J. C. (2013). Flowtags: Enforcing
network-wide policies in the presence of dynamic middlebox actions. Paper

Univ
ers

iti
Mala

ya

63

presented at the Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking.

Feamster, N., Rexford, J., & Zegura, E. (2014). The road to SDN: an intellectual history
of programmable networks. ACM SIGCOMM Computer Communication
Review, 44(2), 87-98.

Gde Dharma, N., Muthohar, M. F., Prayuda, J., Priagung, K., & Choi, D. (2015). Time-
based DDoS detection and mitigation for SDN controller. Paper presented at the
Network Operations and Management Symposium (APNOMS), 2015 17th Asia-
Pacific.

Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D., & Maglaris, V. (2014).
Combining OpenFlow and sFlow for an effective and scalable anomaly
detection and mitigation mechanism on SDN environments. Computer
Networks, 62, 122-136.

Goodney, A., Narayan, S., Bhandwalkar, V., & Cho, Y. H. (2010). Pattern based packet
filtering using NetFPGA in DETER infrastructure. Paper presented at the 1st
Asia NetFPGA Developers Workshop, Daejeon, Korea.

Handigol, N., Heller, B., Jeyakumar, V., Maziéres, D., & McKeown, N. (2012). Where
is the debugger for my software-defined network? Paper presented at the
Proceedings of the first workshop on Hot topics in software defined networks.

Jafarian, J. H., Al-Shaer, E., & Duan, Q. (2012). Openflow random host mutation:
transparent moving target defense using software defined networking. Paper
presented at the Proceedings of the first workshop on Hot topics in software
defined networks.

Kloti, R., Kotronis, V., & Smith, P. (2013). OpenFlow: A security analysis. Paper
presented at the Network Protocols (ICNP), 2013 21st IEEE International
Conference on.

Kreutz, D., Ramos, F., & Verissimo, P. (2013). Towards secure and dependable
software-defined networks. Paper presented at the Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking.

Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., &
Uhlig, S. (2015). Software-defined networking: A comprehensive survey.
Proceedings of the IEEE, 103(1), 14-76.

Lerner, M., Vanecek, G., Vidovic, N., & Vrsalovic, D. (2006). Middleware Networks:
Concept, Design and Deployment of Internet Infrastructure (Vol. 18): Springer
Science & Business Media.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., .
. . Turner, J. (2008). OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review, 38(2), 69-74.

Univ
ers

iti
Mala

ya

64

Mehdi, S. A., Khalid, J., & Khayam, S. A. (2011). Revisiting traffic anomaly detection
using software defined networking. Paper presented at the Recent Advances in
Intrusion Detection.

Mizrahi, T., & Moses, Y. (2013). Time-based Updates in OpenFlow: A Proposed
Extension to the OpenFlow Protocol. Technion-‐ Israel InsYtute of Technology,
technical report, CCIT Report, 835.

Mousavi, S. M. (2014). Early Detection of DDoS Attacks in Software Defined Networks
Controller. Carleton University Ottawa.

Mousavi, S. M., & St-Hilaire, M. (2015). Early detection of DDoS attacks against SDN
controllers. Paper presented at the Computing, Networking and
Communications (ICNC), 2015 International Conference on.

Naous, J., Stutsman, R., Mazières, D., McKeown, N., & Zeldovich, N. (2009).
Delegating network security with more information. Paper presented at the
Proceedings of the 1st ACM workshop on Research on enterprise networking.

Nayak, A. K., Reimers, A., Feamster, N., & Clark, R. (2009). Resonance: dynamic
access control for enterprise networks. Paper presented at the Proceedings of the
1st ACM workshop on Research on enterprise networking.

Nugraha, M., Paramita, I., Musa, A., Choi, D., & Cho, B. (2014). Utilizing OpenFlow
and sFlow to Detect and Mitigate SYN Flooding Attack. Journal of Korea
Multimedia Society, 17(8), 988-994.

Nunes, B. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., & Turletti, T. (2014). A
survey of software-defined networking: Past, present, and future of
programmable networks. Communications Surveys & Tutorials, IEEE, 16(3),
1617-1634.

Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., & Gu, G. (2012). A security
enforcement kernel for OpenFlow networks. Paper presented at the Proceedings
of the first workshop on Hot topics in software defined networks.

Prasad, B. (2014). Security Issues in Software Defined Networking. Jadavpur University
Kolkata.

Qazi, Z. A., Tu, C.-C., Chiang, L., Miao, R., Sekar, V., & Yu, M. (2013). SIMPLE-fying
middlebox policy enforcement using SDN. Paper presented at the ACM
SIGCOMM Computer Communication Review.

Salman, O., Elhajj, I. H., Kayssi, A., & Chehab, A. (2016). SDN controllers: A
comparative study. Paper presented at the 2016 18th Mediterranean
Electrotechnical Conference (MELECON).

Shin, S., & Gu, G. (2012). CloudWatcher: Network security monitoring using
OpenFlow in dynamic cloud networks (or: How to provide security monitoring
as a service in clouds?). Paper presented at the Network Protocols (ICNP), 2012
20th IEEE International Conference on.

Univ
ers

iti
Mala

ya

65

Shin, S., Porras, P. A., Yegneswaran, V., Fong, M. W., Gu, G., & Tyson, M. (2013).
FRESCO: Modular Composable Security Services for Software-Defined
Networks. Paper presented at the NDSS.

Skowyra, R. W., Lapets, A., Bestavros, A., & Kfoury, A. (2013). Verifiably-safe
software-defined networks for CPS. Paper presented at the Proceedings of the
2nd ACM international conference on High confidence networked systems.

Son, S., Shin, S., Yegneswaran, V., Porras, P., & Gu, G. (2013). Model checking
invariant security properties in OpenFlow. Paper presented at the
Communications (ICC), 2013 IEEE International Conference on.

Vanecek, G., Mihai, N., Vidovic, N., & Vrsalovic, D. (1999). Enabling hybrid services
in emerging data networks. IEEE Communications Magazine, 37(7), 102-109.

Univ
ers

iti
Mala

ya

